
Arduino
in a Nutshell
Jan Borchers

Version 1.13 (Jun 26, 2015)

for Arduino Uno R3 & Arduino IDE 1.6.5

Latest version at: hci.rwth-aachen.de/arduino

USB
power

...or...

7–12V
in

14 digital inputs/outputs (40mA)
incl. 6 ‘analog’ outputs (〜～)

3.3 & 5V out 6 analog inputs

ATmega microcontroller

http://hci.rwth-aachen.de/borchers
http://hci.rwth-aachen.de/borchers

ACKNOWLEDGEMENTS

Thanks to Jeff and Drake for playing with the

Arduino last night, and almost completing our

plans for world domination through an army of

robots doing our bidding (insert finger wiggling

and evil laugh here). I wrote this booklet in

about four hours after getting home last night,

and illustrated it this morning. It closely follows

our adventures into Arduinoland.

The Arduino team continues to do an awesome job

providing this easy-to-use electronics platform, and all

schematics were created using the excellent software

from Fritzing.org. Jim Hollan at UCSD is a great host,

and my students back in Germany are bravely suffering

through (enjoying?) the time with me away on sabbatical.

This booklet is dedicated to Ina who is always

wonderfully supportive of her geek.

San Diego, Aug 9, 2012

For great feedback, thanks to the arduino-teachers,

Sketching In Hardware and i10 mailing lists, especially

CTP, David Mellis (Arduino), Gerald Ardito, Jonathan

Oxer (shieldlist), Linz Craig (SparkFun), Michael Shiloh,

Nick Ward, Patricia Shanahan, and Thorsten Karrer!

2
 Arduino in a Nutshell

I. INTRODUCTION

The Arduino is a family of

microcontroller boards used by

artists, hackers, hobbyists, and

professionals to easily design,

prototype, and experiment with electronics. Use it as

brains for your robot, to build a new digital music

instrument, or to make your house plant tweet you when

it’s dry. Know a little programming, but no electronics?

This book will get you started quickly.

Arduinos (we use the standard Arduino Uno R3) contain

an ATmega microcontroller — that’s a complete computer

with CPU, RAM, Flash memory, and input/output pins,

all on a single chip. Unlike, say, a Raspberry Pi, it’s

designed to attach all kinds of sensors, LEDs, small

motors and speakers, servos, etc. directly to these pins,

which can read in or output digital or analog voltages

between 0 and 5 volts. The Arduino connects to your

computer via USB, where you program it in a simple

language (C/C++, similar to Java) inside the free

Arduino IDE by uploading your compiled code to the board.

Once programmed, the Arduino can run with the USB

link back to your computer, or stand-alone without it —

no keyboard or screen needed, just power.

Arduino in a Nutshell
 3

II. GETTING STARTED:
 BLINK AN LED!

1.Get the MAKE Ultimate Micro-

controller Pack with an Arduino Uno

R3 from makershed.com or RadioShack ($100–150).

Also get a standard USB A-B cable and a 9V battery.

Or, for just the parts we’ll use here, get the Wish List

at sparkfun.com/wish_lists/46366 ($60). SparkFun’s

Inventor’s Kit or Adafruit’s Experimentation Kit also

have most parts we need, and more.

2. Download the Arduino IDE for Mac OS X, Linux or

Windows from arduino.cc. Install it by following their

Getting Started guide. You’ll also need Java (a JRE).

3. Connect your board via USB. Launch the Arduino

app. From the Tools: Board menu, select Arduino Uno.

From the Tools: Port menu, select the new serial port

with “Arduino” in its name. Open the sketch

(program) File: Examples: 01.Basics: Blink. Click the

 toolbar button to upload it to your board.

After some flickering, its tiny yellow LED should blink

regularly (1 second on, 1 second off). You’ve

programmed your first microcontroller! Change the

durations in delay() and upload again to see the effect.

4
 Arduino in a Nutshell

http://www.makershed.com/Ultimate_Microcontroller_Pack_p/msump.htm
http://www.makershed.com/Ultimate_Microcontroller_Pack_p/msump.htm
https://www.sparkfun.com/wish_lists/46366
https://www.sparkfun.com/wish_lists/46366
http://arduino.cc/en/Main/Software
http://arduino.cc/en/Main/Software
http://arduino.cc/en/Guide/HomePage
http://arduino.cc/en/Guide/HomePage

III. RUN WITHOUT A COMPUTER

1. Disconnect the USB cable from your board.

2. Put the 9V battery into the battery case (takes some

fiddling) or connect it to the 9V battery clip.

3. Plug the barrel plug from the battery case into the

round socket on the Arduino. Turn on the switch on

the battery case if it has one.

4. Your sketch starts running as soon as the board is

powered up, and the LED blinks, until you turn off

power — no computer needed! That’s a great way to

build small, autonomous systems around an Arduino.

The Arduino converts the 9V from the battery down to 5V

using a regulator on the board. You can also connect

anything from 7–12 volts DC to the barrel plug socket

(2.1 mm / 5.5 mm diameter, center positive), or stick

cables directly into the Vin and GND (Ground) pins to

power the board from 7–12 volts — great if you don’t

have a barrel plug on your power source.

Don’t attach a 5V power source directly to the +5V pin

though — it’s a voltage output pin only, and you may fry

your onboard regulator. Use the USB connector instead.

Arduino in a Nutshell
 5

IV. CONNECT A BIG LED

1. Always disconnect or turn

off your power source before

you change your circuit to

avoid shorts. They may shut

down your USB port until you

reboot, or worse.

2. Bend and stick the longer lead (+) of any red, yellow

or green LED into Digital Pin 13 on the Arduino. Stick

its shorter lead (—) into the GND pin next to pin 13,

as shown.

3. Connect USB — now your big LED blinks too.

The “Blink” sketch outputs a high signal (5V) on pin 13

using digitalWrite(led,HIGH); then waits for 1000 ms (1s)

using delay(1000); then outputs a low signal (0V) and

waits another second. This makes your LED blink. The

yellow onboard LED is also connected to pin 13, so it

blinks along.

Every Arduino sketch has one setup() function that runs

once whenever the Arduino powers up or resets, and a

loop() function that is repeated after that until the board

is powered off or reset again. No OS, no multiple apps!

6
 Arduino in a Nutshell

Made with Fritzing.org

longer lead (+)

V. ADD A RESISTOR

Connecting an LED directly to 5V and GND would

normally fry it because of too much current flowing

through it. Our LED survived only because the Arduino

limits the current on each pin to 40 mA (milliamps).

However, that’s still more than the 20 mA that standard

LEDs are comfortable with. LEDs also drop (consume)

around 2V of “forward voltage” (Vf). For precise values,

google, e.g., “SparkFun red 5mm LED” (SparkFun sells

great basic components and documents them well). To

limit the current, add a resistor before or after the LED.

What’s the right resistor value? The Arduino pins provide

5V. 2V are dropped by the LED. That leaves 3V to drop

over the resistor, at a current of 20 mA. Ohm’s law (I use

the picture on the right to remember it) says

U (voltage) = R (resistance) x I (current), or

R = U / I = 3 V / 20 mA = 3 V / 0.02 A = 150 Ω.

Choose the next bigger resistor you have; in our case it’s

330 Ω (Orange–Orange–Brown–Gold). Use the color

code table in the Make Pack booklet, google “resistor

color codes”, or get Adafruit’s simple Circuit Playground

app or the comprehensive Electronic Toolbox Pro app for

your iPhone/iPad.

Arduino in a Nutshell
 7

 U
 R I

http://www.sparkfun.com
http://www.sparkfun.com
http://adafruit.com/circuitplayground
http://adafruit.com/circuitplayground
http://itunes.apple.com/us/app/electronic-toolbox-pro/id339158729?mt=8
http://itunes.apple.com/us/app/electronic-toolbox-pro/id339158729?mt=8

Disconnect USB. In the mini

solderless breadboard, each

vertical column of 5 holes is

connected inside the board.

Stick the LED, 330 Ω resistor

and jumper wires in as

shown. Current will now flow

from Arduino pin 13 through

the resistor and the LED to

GND when pin 13 is HIGH.

Connect USB. Your LED will glow slightly less bright than

before, but will last forever. The current is now around 3

V / 330 Ω = 9 mA. Current is the same everywhere in a

simple closed circuit without branches. So it doesn’t

matter if you put the resistor before or after the LED.

8
 Arduino in a Nutshell

Made with Fritzing.org

Tip: Always use red wires for connections to 5V, black

wires for connections to GND, and other colors using a

schema you like. I use yellow wires for outputs to LEDs,

green wires for outputs to motors and servos, and blue

wires for sensor inputs. It’ll help avoid confusion, short-

circuits, and fried components. Trust me; I’ve been there.

VI. DIGITAL INPUT:
 READ A BUTTON

Disconnect USB. Add a

pushbutton, 10 kΩ resistor

(Brown—Black—Orange—

Gold) and wires as shown.

Orient the button so the pins

that are closer are next to

each other. These connect

when you push it; the pins

below each other are

always connected!

Above the setup() function, add int pushbutton = 2;. At

the start of your loop() function, add the line

if (digitalRead(pushbutton)==LOW) {...}. Replace the

ellipsis between the curly braces with the rest of the code

in loop(). Note the double equal sign. Now, the LED will

only blink while you press the button and pin 2 is low.

We are using pin 2 as a digital input to detect if its

voltage is closer to GND or 5V. Every digital pin 0..13

can be an input or output pin. While input is the default,

it’s good style to add pinMode(pushbutton,INPUT); to

your setup() function to make it more readable.

Remember to end each statement with a semicolon.

Arduino in a Nutshell
 9

Made with Fritzing.org

The 10 kΩ resistor is a pullup resistor. It provides a

defined voltage (5V) to pin 2 when the pushbutton switch

is open (it “pulls it up to 5V”). Otherwise pin 2 would be

connected to nothing, or “floating”, and pick up random

electromagnetic noise like an antenna, leading to

unpredictable HIGH/LOW values when you read it.

When you push the button, it pulls pin 2 low (connects it

to GND = 0V), and a small current flows through the

resistor and switch to GND. All 5V then “drop” across

the resistor. Arduino inputs themselves just measure the

voltage on their pins while consuming hardly any current.

VII. INTERNAL PULLUP RESISTORS

Remove the 10 kΩ pullup resistor from the board. Now

your LED may blink or not, since pin 2 is floating. Change

setup() to say pinMode(pushbutton, INPUT_PULLUP); and

upload. This connects an internal pullup resistor to that

pin inside the ATmega chip. It works like your external

pullup resistor, but you can simplify your circuit.

10
 Arduino in a Nutshell

pin 2

10
 k
Ω

GND

5V

pushbutton

Tip: For help with any function, click on it, then select the

Help:Find In Reference menu. I also use the language

reference at arduino.cc/en/Reference a lot; more

tutorials are at arduino.cc/en/Tutorial/Foundations.

Pullup
resistor

http://arduino.cc/en/Reference
http://arduino.cc/en/Reference
http://arduino.cc/en/Tutorial/Foundations
http://arduino.cc/en/Tutorial/Foundations

VIII. READING ANALOG
 VALUES

Disconnect USB. Remove the

pushbutton and connect a

force-sensitive resistor (FSR),

the 10 kΩ resistor and wires to

analog input A0 as shown.

Open and upload the sketch

File: Examples: 03. Analog:

AnalogInput. Now, the harder

you press the FSR, the slower

the LED will blink.

You’ve created a voltage

divider. Normally the FSR has

a resistance much higher than

10 kΩ, so A0 gets pulled down to almost 0V by the

10 kΩ resistor. But as you press on the FSR, you lower its

resistance. It can go way below 10 kΩ, and the voltage

on A0 then goes up to almost 5V. So: more pressure —

higher voltage. The Arduino uses analogRead(...) to read

the voltage on A0, and turns the LED on and off with a

delay determined by that voltage. analogRead() returns

values from 0 (0V) to 1023 (5V). That’s how you can

measure continuous (analog) voltages with your Arduino.

Arduino in a Nutshell
 11

Made with Fritzing.org

Voltage divider

10
 k
Ω

A0

FS
R

5V

GND

IX. DEBUGGING USING SERIAL OUTPUT

It’s hard to really see what values you’re getting from the

FSR through the analog pin just by looking at the blink

frequency of that LED. To see the actual numbers, open

File: Examples: 01.Basics: AnalogReadSerial. Upload it,

then click on the magnifier toolbar button in the top right

to open the Serial Monitor

window. You’ll see values

changing as you press the FSR.

The code uses Serial.begin(9600) to open a serial

connection back to your computer in setup(), and

Serial.println(...) to output (“print”) numbers to that serial

connection, which end up in the Serial Monitor window

on your screen. It’s also possible to send data back to

the Arduino that way, using Serial.read(...).

12
 Arduino in a Nutshell

X. ANALOG OUTPUT
 AND PWM

Disconnect USB. Move the yellow wire

from pin 13 to pin 11. Pin 11 has a

tilde (~) on the board to indicate

that it can output analog values.

In your loop(), add the line

analogWrite(11,sensorValue/4);

after the analogRead() line.

Analog values for output go

from 0 to 255, not 1023, so

we divide the value from

analogRead(...) by 4 before

writing it to the LED pin.

Connect USB and upload your code. Now

you can control the brightness of your

LED by pressing on the FSR.

Arduino uses Pulse-Width Modulation (PWM) to create

analog values — it’ll turn the output on (5V) and off (0V)

at 500 Hz, and increase the duty cycle (relative on-time)

of that square wave signal to represent higher analog

values. 500 Hz is too fast for the human eye, so the LED

looks like it’s always on, just more or less bright.

Arduino in a Nutshell
 13

PWM: lower value higher value

Made with Fritzing.org

XI. CONTROLLING
 SERVOS

Disconnect USB, and add a

servo to your setup: Stick

matching jumper wires into

the servo connector, then

connect its black or dark

brown lead to GND, its red

lead to 5V, and its orange,

yellow or white lead (the

“signal” lead) to pin 9.

Load the sample sketch

File: Examples: Servo: Knob

(it’s further down in the

list). Instead of the

potentiometer (an adjustable resistor) mentioned in the

code, we’ll just use the FSR voltage divider we already

have to provide an analog value to input A0.

Run the code, and you can control the angular turning

position of the servo by pressing on the sensor.

Internally, servos are also controlled by PWM — the

longer the signal, the further to the right they turn,

usually in a range of 0..180 degrees.

14
 Arduino in a Nutshell

Made with Fritzing.org

However, the Servo library for Arduino takes care of all

this. Note the #import statement, the Servo object

declaration, and how the sample code then sends data to

the servo using angular values. You can easily declare,

create, and control two or more Servo objects this way —

essential for your robot!

For extra credit, make a walking robot bug: Put your

Arduino onto a piece of cardboard or SparkFun’s

Arduino breadboard holder, hotglue two servos to the

underside, and attach stiff wire “legs” with some thin

wire to each servo arm — see the photo on the last page.

Servos can take around .5–1s to reach their target

position. For a simple walking movement, just send the

maximum angle, wait, then send the minimum angle,

wait, and so on.

Arduino in a Nutshell
 15

Tip: If you run out of 5V pins on the Arduino, bring 5V

over to a column on the breadboard, and connect things

from there (similar for GND). Use red and black wires to

keep your sanity! On larger breadboards like the large

one in the MAKE Pack, use the horizontal connector rows

(“rails”) along the top and bottom — but put 5V only to

the top red rail, and GND only to the bottom blue rail, to

avoid plugging things into the wrong one.

XII. SHIELDS

Shields are PCBs that stack on top of the Arduino and

connect to all Arduino pins, to add all kinds of hardware

features. There are shields to play MP3 files, for WiFi,

Bluetooth, Ethernet, Zigbee, MIDI, GPS, cameras, to log

data, drive big motors, etc. — shieldlist.org lists over 300!

Good shields are stackable — they have the same female

header pins as the Arduino on top.

The MAKE Pack contains a kit for a

MakerShield prototyping shield

(see photo). Solder it together (URL

for instructions on the pack), stick

the mini breadboard onto it, and

you have a very useful board with

some built-in LEDs, buttons, even a

potentiometer for quick experiments. It’s not a perfect fit

for the Arduino, but it works well enough. SparkFun has a

similar ProtoShield.

RadioShack also carries a simpler, but more modern

prototyping shield designed by the Arduino team, to

solder your own parts onto. In the future, look for shields

like that one, with 18 pins in the top row, which is the

new Arduino standard.

16
 Arduino in a Nutshell

http://shieldlist.org
http://shieldlist.org
http://www.makershed.com/MakerShield_p/msms01.htm
http://www.makershed.com/MakerShield_p/msms01.htm
http://www.sparkfun.com/products/7914
http://www.sparkfun.com/products/7914

XIII. SOME POINTERS

To learn more about Arduino and build fun projects,

check out these resources:

arduino.cc is your first stop for help with the IDE, the

Arduino language reference, board specifications, new

official boards and software versions, international

distributors, tutorials, a helpful community, and libraries

for a lot of stuff you may want to hook up to your

Arduino.

Sparkfun.com has great components, shields, sensors,

breakout boards, and their own Arduino board designs.

They support open-source hardware and have all

schematics online. Decent pricing, great community.

Adafruit.com is smaller but similar, with great products,

learning resources and community support.

MAKE Magazine has an Arduino blog with great tutorial

videos and projects at http://makezine.com/category/

electronics/arduino/. Their printed magazine is also

great fun, especially with kids.

RadioShack.com has all essential parts, a bit pricey, but

lets you check online if a part is available at your local

store — perfect for those last-minute projects!

Arduino in a Nutshell
 17

http://arduino.cc
http://arduino.cc
http://sparkfun.com
http://sparkfun.com
http://adafruit.com
http://adafruit.com
http://makezine.com/category/electronics/arduino/
http://makezine.com/category/electronics/arduino/
http://makezine.com/category/electronics/arduino/
http://makezine.com/category/electronics/arduino/
http://RadioShack.com
http://RadioShack.com

Digikey.com, Mouser.com, and Farnell.com are

professional electronic component vendors. They carry

and have datasheets for everything, at the best prices if

you know what you’re looking for, but they are

overwhelming to beginners — try the stores above first.

Fritzing.org has a great free tool to document your

Arduino breadboard designs, and to design shields that

can then be made by submitting your files to an online

PCB maker. I used it for all the Arduino diagrams here.

In general, if you want to hook up X to an Arduino,

google “Arduino X” and you’re likely to find a solution. :)

Look for the above sites among the search results.

There are countless Arduino books out there; the gentlest

is probably Getting Started With Arduino by Massimo

Banzi, who designed the Arduino board. Tom Igoe’s

Making Things Talk is excellent and beautifully designed,

focusing on making Arduinos and other electronic devices

connect and share information. Arduino Bots and Gadgets

is interesting if you want to build robots. However, all

Arduino books become outdated quickly because the

boards and IDE change constantly. Look for a book

edition that’s no older than a year. For a current book on

basic electronics — not Arduino — there is no better choice

than Charles Platt’s Make: Electronics. Beautifully

18
 Arduino in a Nutshell

http://Digikey.com
http://Digikey.com
http://Mouser.com
http://Mouser.com
http://Farnell.com
http://Farnell.com
http://Fritzing.org
http://Fritzing.org

illustrated, starts with the basics, very accessible

and fun. And experiment #1 is licking a 9V

battery. I read it cover to cover as a refresher.

OReilly.com has excellent books on Arduino and

other techie topics. Their eBook and PDF versions

are DRM-free, offer lifetime access, dropbox syncing,

frequent updates, 3-for-2 deals, and special pricing if

you own the printed book.

There are dozens of different Arduino boards out there.

Stick with those documented on arduino.cc at first! The

new Leonardo board, e.g., can act as a USB keyboard or

mouse, the Due is faster, and the Yún adds a Linux

backend for heavier computation and networking tasks.

Adafruit’s $8 Gemma or SparkFun’s Arduino Pro Micro

are great tiny, wearable options. But for beginners, these

are not quite as smooth to use as the Uno yet.

This booklet has been updated many times, and

even translated, since its release in 2012. Check

back at the URL on the front

cover for updates. Meanwhile,

join — or create — your local

Fab Lab, Dorkbot or maker

space community, and have fun

creating with Arduino!

Arduino in a Nutshell
 19

Gemma

Arduino Pro Micro

http://oreilly.com
http://oreilly.com

About the author

Jan Borchers is a professor of computer science and head of the
Media Computing Group at RWTH Aachen University in Germany. He
works in human-computer interaction, usability, and digital fabrication,
and has taught Arduino to students and kids since 2008.

Feel free to use this booklet for yourself, with your friends, or
in noncommercial classes. Instead of hosting a local copy,
please link back to the URL on the cover so we can keep old
versions from floating around. I’ll keep older versions of the
booklet available as needed. Thanks!

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this
license, visit creativecommons.org/licenses/by-nc-nd/3.0/. For other
uses, including commercial or derivative works, contact the author.

Version history

2015-06-26 (1.13) Updated Serial window screenshot on p.12. Tested with IDE 1.6.5.
2015-05-05 (1.12) “Serial Port” -> “Port” menu. Tested with IDE 1.6.3.
2015-03-21 (1.11) New document width 5.5” for 2-up printing on US Letter. Labeled board

on title page. Added circuit diagram for pullup resistor on p.10.
2015-03-18 (1.10): Replaced upload button image, updated serial port naming and serial

window screenshot, clarified code changes in Ch.VI, reformatted all menu paths.
2015-03-12 (1.9): Updates, additions and clarifications in text and illustrations throughout.

Added robot bug building instructions, voltage divider diagram, new Uno photo,
current kit prices, Java requirements, image captions, Gemma, fixed pushbutton
errata, verified with IDE 1.6.1.

2013-08-05 (1.8): Added QR code, adjusted cover page graphics.
2013-07-31 (1.7): Clarified p.4, updated SparkFun prices, corrected pinMode typo,

updated for IDE 1.0.5.
2013-01-24 (1.6): Added target audience, author info, premium headers on wishlist.

Updated pushbutton declaration. Updated for IDE 1.0.2 & 1.0.3. Cosmetic
corrections throughout.

2012-08-17 (1.5): Corrected button use in Ch.VI. Changed title page, tips, last page.
2012-08-15 (1.4): Added shieldlist.org.
2012-08-15 (1.3): Updated acknowledgements, Java reference, +5V pin, enabling pullups,

page footers, layout. Added Creative Commmons license terms.
2012-08-15 (1.2): Added: cropmarks, boldface in first chapters, Raspberry Pi, SparkFun

wish list, other starter kits, Electronic Toolbox, Arduino Pro Micro, Make: Electronics
cover, double-sided layout for binding. Edited: shields, O’Reilly, title, headings.

2012-08-12 (1.1): Added: missing sensor wire in ch. X+XI diagrams, Circuit Playground,
different boards, version history. Fixed typos.

2012-08-09 (1.0): Initial release, see Acknowledgements.

20
 Arduino in a Nutshell

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

