
by
Ilya Zubarev

Visual and
Functional Aids
to Support
the Statistical
Analysis
Workflow

Master’s Thesis
submitted to the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Dr. Axel Mayer

Registration date: 05.09.2018
Submission date: 05.03.2019

Eidesstattliche Versicherung

___________________________ ___________________________

Name, Vorname Matrikelnummer

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/
Masterarbeit* mit dem Titel

__

__

__

selbständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusätzlich auf
einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die elektronische
Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner
Prüfungsbehörde vorgelegen.

___________________________ ___________________________

Ort, Datum Unterschrift

 *Nichtzutreffendes bitte streichen

Belehrung:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung
falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei
Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige fals che Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so
tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158
Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:

___________________________ ___________________________

Ort, Datum Unterschrift

v

Contents

Abstract xiii

Acknowledgements xv

Conventions xvii

1 Introduction 1

2 Related work 5

2.1 Issues of Exploratory Programming 5

2.1.1 Code hoarding and duplication 6

2.1.2 Intermodal and intercontextual code
transfer 7

2.1.3 Context retention 8

3 Data model 9

3.1 Functions and Variables 10

3.2 Hypotheses 15

4 Hypothesis Manager 17

vi Contents

4.1 Shiny . 18

4.2 Parser . 19

4.2.1 Adjustable scanning window 21

4.3 Limitations . 22

4.3.1 Parsing Loop 24

4.3.2 Shiny server blocking behaviour . . . 24

4.4 Visualization 25

4.4.1 Metaphor 25

4.4.2 Implementation 27

4.5 Interactivity 29

4.5.1 Tooltips 30

4.5.2 Modes of operation 31

4.5.3 Hypothesis editing 32

4.5.4 Drag-select and hypothesis injection . 33

5 Evaluation 37

5.1 Study Design 38

5.2 Failure to find participants 39

6 Summary and future work 41

6.1 Summary and contributions 41

6.2 Future work 42

6.2.1 Evaluation 42

Contents vii

6.2.2 Improvements 42

Parser-Server decoupling 43

Partial parsing 43

Scopes and user-defined functions . . 43

RStudio REPL block 44

Non-tree visualization hierarchy . . . 44

Better hypothesis editor view and
non-regex replacement . . . 44

Code selection synchronization 45

Deeper reflection 45

6.2.3 Features 45

Semantic labeling of graph nodes . . . 46

Duplicate extractor 46

Bibliography 47

Index 49

ix

List of Figures

1.1 Comparative R popularity 3

1.2 RStudio overview screenshot 4

2.1 Infromal versioning example 7

4.1 Hypothesis Manager 17

4.2 First attempt at data visualization 26

4.3 Variable graph 28

4.4 Graph notch 29

4.5 Graph node tooltip 30

4.6 Hypothesis editor 32

4.7 Drag selection 34

xi

Listings

3.1 Serialized function instance 11

3.2 Serialized variable instance 12

3.3 Variable reassignment example 14

3.4 Serialized hypothesis instance 15

4.1 pryr::call tree evaluation 20

xiii

Abstract

Organisational, psychological and practical aspects of software development pro-
cess have been extensively analyzed over the several last decades, and have in
the recent years received a lot of public spotlight, with the technological start-up
boom and increased public interest in the internal workings of the larger compa-
nies, brought in by their outstanding financial growth.

It is more so remarkable, than, that the day-to-day of the ”data science”, which
often gets credited for facilitating this state of affairs, has long remained compara-
tively very scarcely explored.

Following the wave of newfound interest in the practices of exploratory program-
ming and suggestions on classification of its needs and issues, we have created a
Hypothesis Manager — a proof of concept extension for RStudio, one of the popular
interactive developer environments of the field.

With it we aim to improve the user’s ability to asses and navigate the context of
their ongoing work, decreasing the time required to resume the active program-
ming process after the attention shift, and promoting their ability to reuse their old
code without having to resort to excessive duplication.

xv

Acknowledgements

First of all I would like to thank Krishna Subramanian for his guidance and pa-
tience with me during the work on this thesis, and Prof. Dr. Axel Mayer, for his
involvement was instrumental to my understanding of the practical dimension of
the problems I was trying to solve, and has on multiple occasions allowed me to
change the perspective to the benefit of the project.

Secondly, I would like to thank my colleagues at m3connect GmbH for not firing
me over the erratic attendance and decreased productivity during the later stages
of work on the thesis.

Thirdly, I would like to thank Ray Becker for providing me with the necessary
weekly dose of social interaction, as well as a valuable second opinion on the prac-
tical aspects of the topic.

Lastly, I would like to dedicate this work, however underwhelming it might have
ended up being, to my late grandmother.

xvii

Conventions

Throughout this thesis we use the following conventions.

Text conventions

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in Canadian English.

1

Chapter 1

Introduction

Exploration of new possibilities and exploitation of old cer-
tainties are the two basic strategies of adaptation exhibited
by complex systems, from the genetic scale of organic life,
to communal organizations and artificial decision-making
agents [March, 1991]. Exploratory behaviour is character-
ized by terms like ”variation”, ”experimentation”, ”risk
taking” and ”discovery”; exploitative — by ”refinement”,
”efficiency”, ”choice” and ”execution”.

Examining the field of information technology through the
lens of these strategies, we can categorize software engi-
neeringas being ”exploitative”, with its problem scope be- Software

Engineering here is
taken in the
generalized sense,
as systematic
software
development
procedure,
performed in
accordance with the
provided software
specification

ing primarily focused on implementation, and innovation
coming from refinement of known and tried technologies,
techniques and concepts, rather than from active discovery.

Conversely, the exploratory programming can be defined as
a workflow with the following two properties [Kery and
Myers, 2017]:

1. The programmer writes code as a medium to proto-
type or experiment with different ideas.

2. The programmer’s goal is open-ended, and evolves
through the process of programming.

It has first been described by Shiel [1983], as Xerox PARC

2 1 Introduction

management attempted to conceptualize the actuality of
the AI research that was being conducted at the facility:
it became obvious that contemporary software engineering
practices were failing to apply to the inherently exploratory
workflow. To the day exploratory programming remains
characteristic for a broad variety of the data science fields
[Kery and Myers, 2017], from computational statistics to
computer vision to scientific visualization.

In Chapter 2 we explore this diversity and its characteristic
issues, based on the prior and ongoing research.

However, while these issues can be considered universal,
addressing them in a universal context does not seem fea-
sible, due to a variety of specific usage scenarios and tools
that are being employed in every particular field of data
science.

We have chosen significance testing as a jumping-off point
for our search for solutions to these issues, as it exhibits
several lucrative traits, like broad cross-disciplinary impor-
tance, relative platform-independence, and low set-up and
exploration costs. In comparison, it would be impossi-
ble to address computer vision while ignoring the propri-
etary and fairly restricted platform of MATLAB, and any
computation-intensive fields would have required organi-
zation of the relevant infrastructure, at least in its mock-
up version, while we can satisfy most of our needs with
a Read-Eval-Print Loop (REPL, also commonly referred to
as ”[language name] console”) and a small collection of
language-specific packages and, in rare cases, system li-
braries.

Chapter 3 showcases our attempt at creating a mental and
data model for representation of the source code in signifi-
cance testing.

Chapter 4 presents the inner workings our proof-of-
concept solution — Hypothesis Manager, an add-in for
RStudio IDE for R language.

R language is an open-source multi-paradigm programming
language with a C-similar syntax and a strong functional

3

Figure 1.1: R popularity comparative to other languages
[Robinson, 2017]

programming affinity [R core team, 2018]. Like its pre-
decessor S, R is purposely designed for statistical analy-
sis, providing for example a built-in support for special-
ized data storage types like matrices and datasets, complete
with element-wise operations; as well as standard library
packages for statistical modelling and graphics — some-
thing that in Python would only be available with exter-
nal (albeit popular) packages like numpy and pandas. The
language is a popular (see Figure 1.1) and its popularity is
steadily growing [Robinson, 2017], possibly due to prolifer-
ation of ”big data” across the industries.

RStudio is the most popular (according to the Alterna-
tiveTo.net aggregation) Interactive Development Environ-
ment for R language, incorporating a script editor with
optional interactive notebook functionality, a debugger, a
REPL with session overview, an integrated graphics and R

https://www.alternativeto.net
https://www.alternativeto.net

4 1 Introduction

Figure 1.2: RStudio overview screenshot

help viewers, and a version control system interface.

RStudio is also extendable with plug-ins (referred to as
”add-ins”) with rich visualization capabilities and provides
an API with direct access to the IDE’s working context, both
of which are instrumental to our project.

Particularities of R language and RStudio design and their
influence on the development process are also examined in
Chapter 4.

Chapter 5 explains how Hypothesis Manager addresses the
issues of exploratory programming, and presents the de-
sign for user evaluation, that we, unfortunately, were not
able to perform due to failure to recruit participants.

Chapter 6 summarizes this work and details some avenues
for possible future improvement of the Hypothesis Man-
ager, that we saw in the process of the development, but
conceded in preference to more immediately important
ones.

5

Chapter 2

Related work

Since its definition by Shiel [1983], exploratory program-
ming has maintained a stable interest of the scientific com-
munity: Google Scholar lists approximately 1850 results for
the keyword, distributed throughout the decades. It is im-
portant to note, however, that a number of those results,
particularly from the earlier years, are mainly dedicated to
Smalltalk, as it was a manifestation of Xerox PARC inter-
nal work on the concept, with exploratory programming in
general being referenced, but only so.

Kery and Myers [2017] readdress exploratory program-
ming on the conceptual level, contemplating ”[the] lack of
tool support for experimentation, including a lack of sup-
port for recording and sensemaking of exploration history,
and a lack of support for exploration by groups of people”.
While Kery et al. [2017] focus on the exploration history
aspect with Variolite, Patterson et al. [2017] independently
suggest a schematic for language representation in collabo-
rative data science environment,

2.1 Issues of Exploratory Programming

Through interviews, observation and collected code sam-
ples Subramanian et al. [2019] have identified several spe-

6 2 Related work

cific issues that arise for data scientists in the process of ex-
ploratory programming.

2.1.1 Code hoarding and duplication

Exploratory processes naturally involve juxtaposition and
rejection of alternative prospects. While some of these
prospects remain irrelevant for the rest of the exploration, it
is equally as natural for them to resurface due to increased
credibility after their alternative has been rejected further
during the analysis.

In application to exploratory programming, it means that
programmers build their workflow around immediate ac-
cess to multiple prior stages of the development of their
ongoing project.

Version Control Systems (VCS) are a commonplace solution
for similar issues in the ”exploitative” software develop-
ment, however as Kery et al. [2017] have found, even data
scientists that have the relevant experience and actively use
VCS in other projects, tend not to abstain form them in the
exploratory scenarios. Their reasoning on this gets some-
what contradictory — interviewees state that they do not
need backtrack, while clearly exhibiting backtracking in
their code — and some of the argumentation against VCSs’
usage exposes an ill-informed perception of these tools in
general, putting emphasis on the collaboration or pointing
out the quality of life complications that are resolvable with
a dedicated VCS GUI or an extension for their text editor or
IDE of choice.

The fact remains, however, that exploratory programming
necessitates preservation of the older versions of the code,
and, in absence of the Version Control Systems, it ends up
getting preserved as is. Depending on the application, lan-
guage and environment it may be a different script file (see
figure 2.1) or a side-by-side copied code chunk, which is
either commented out or informally labeled as obsolete.

The code base that Subramanian et al. [2019] have collected

2.1 Issues of Exploratory Programming 7

Figure 2.1: Infromal versioning example [Kery et al., 2017]

has examples of R language script files of multiple hundred
lines, that up to 75% consist of the repetition of the same 3 to
40-line code chunks with a single function argument being
different between any two duplicates.

2.1.2 Intermodal and intercontextual code transfer

Informal version archive is not the only way code duplica-
tion occurs in exploratory projects. As it occurs in the soft-
ware development at large, some of the code gets to carry
over from project to project as a personal toolbox of the par-
ticular author.

And, perhaps uniquely to the realm of data science, exe-
cutable code is often not the only form of code that exists
within a particular research. Exploration may take place
entirely in the REPL environment, while being stored in
the script file for posterity , or samples may also get to be Sometimes together

with the unfiltered
and unedited
print-outs, which turn
the script file
practically invalid

8 2 Related work

included into the reports.

This results in code being independently iterated in the sev-
eral locations at a risk of becoming divergent.

Interactive language notebooks do alleviate this problem to
a degree, providing the universal modality for storage, ex-
perimentation and (to a certain degree) reporting, but their
availability and functionality depends on the exact pro-
gramming language and flavour of data science: for some
applications interactive notebooks can only serve explana-
tion or reporting purpose, since code execution would only
available in the form of script files.

2.1.3 Context retention

Extensive size of the code hoards, coupled with the neces-
sity of regular context switches makes it difficult for data
workers to retain a mental model of the working code file
and turns reconstruction of this mental model into an ad-
ditional chore, whether or not informal versioning is em-
ployed within the file.

As data workers also admit to be actively reusing the code
from their past projects, this issue can surface even if the
ongoing work is maintained in a fashion that minimizes the
hoarding or context switching.

DeLine et al. [2006] address a problem of an unfamiliar
code navigation as a more generalized scenario, and on the
basis which is not immediately related to the exploratory
programming per se. However, their solution of this prob-
lem, and its later practical implementations like ”minimap”
of Sublime Text editor1 served an important inspiration to
our work.

1We were not able to prove any direct connection between DeLine
et al. [2006] and development of Sublime Text, or its authors, Will Bond
and Jon Skinner. The likeness of their approach to the design of the
navigational feature is, however, remarkable.

9

Chapter 3

Data model

The specifics of why our add-in required an intermediate
data representation will be explored in the next chapter, to-
gether with the rest of the add-in’s inner workings, how-
ever it is important to state that they have, and this con-
straint gave us an opportunity to develop a model that
would be used throughout the rest of this report as a way
of thinking about the entities that we are operating with.

While this model is inherently an answer to the specific
obstacle we had faced, and therefore is tailored to the R
language and significance testing workflow to a certain de-
gree, we propose that already in its current stage it can be
used in the broader context.

There are also certain similarities with the collaboration-
centered model proposed by Patterson et al. [2017], but they
are superficial, as our approach demanded bigger variety
in types of entities and a greater granularity of expression
representation.

As a final disclaimer we should add that the labels used
for different types of entities are a product of early devel-
opment stages, and their common meaning does not nec-
essarily represent exactly what they have ended up being
attached to later on. These situations will be highlighted to
minimize the ambiguity.

10 3 Data model

3.1 Functions and Variables

Or, in a more proper terminology, expressions and objects.
While ”variables” and ”objects” can be used interchange-
ably with difference between the terms being relevant only
in the context of the inner logic of R language, ”expres-
sions” cover a broad range of language statements with
”functions” being just a single kind. For the purposes of
our model, however, the more exotic scenarios (examples
and more detail are explored in section 4.2) are ignored, so
that in practice expressions end up covering only function
calls and operator usage.

In every computer language variables provide
a means of accessing the data stored in mem-
ory. R does not provide direct access to the com-
puter’s memory but rather provides a number
of specialized data structures we will refer to
as objects. These objects are referred to through
symbols or variables. — R core team [2018]

When a user types a command at the prompt (or
when an expression is read from a file) the first
thing that happens to it is that the command is
transformed by the parser into an internal rep-
resentation. The evaluator executes parsed R
expressions and returns the value of the expres-
sion. All expressions have a value. This is the
core of the language. — R core team [2018]

We assume the function object to have the following prop-
erties:

• unique identifier

• name

• location in the script file

• full signature, if available

3.1 Functions and Variables 11

• function’s (or its namesakes’) origin package, if avail-
able

• list of arguments

• depth within the call tree

• breakpoint identifiers, if relevant

Listing 3.1: Serialized function instance
{

’ ’ id ’ ’ : ’ ’ f−d208439a−0b45−40d9−a43a−dfb4f0dbb721 ’ ’ ,
’ ’name ’ ’ : ’ ’ aov ’ ’ ,
’ ’ l i n e s ’ ’ : [3 1 , 3 1] ,
’ ’ s ignature ’ ’ : ’ ’m = aov (WPM ˜ Alphabet , data=alphabets) # f i t model ’ ’ ,
’ ’ packages ’ ’ : [’ ’ package : s t a t s ’ ’] ,
’ ’ arguments ’ ’ : [

’ ’ h−a5fd4a79−b442−4bcc−b07c−9f0760c2abc6 ’ ’ ,
’ ’ v−a5f30b8b−c0c8−4d4b−a543−05f4738fe4ce ’ ’

] ,
’ ’ depth ’ ’ : 1

}

Argument list can contain constant values as well as other
entities’ identifiers, including those of the nested expres-
sions.

Nested expressions precede their ”parent” in the function
object collection, and can be identified by the depth param-
eter of a greater value.

Breakpoint is assigned if an existing variable is known to
have been partially modified as a result of an expression.
Complete overwrites of the same variable name do not gen-
erate a breakpoint, as these objects are considered distinct.

Variable object have the following properties:

• unique identifier

• name

• precursor variables’ identifiers list, if applicable

12 3 Data model

• column identifiers list, if applicable

• origin function identifier

• internal type definition, one of:

– data — for datasets

– model — for variables that can be explicitly iden-
tified as (statistical) models

– column — for column names, as R language al-
lows them to be referenced independently from
the dataset as a whole

– formula — rare case when R formula is assigned
to the variable before being used in a modeling
function

– constant — for values that fit neither of the other
types

• value, is auxiliary and can be nullified if its data type
does not support serialization

• generation

Listing 3.2: Serialized variable instance
{

’ ’ id ’ ’ : ’ ’ v−6846 c0cc−6103−42dd−8677−a193e631353e ’ ’ ,
’ ’name ’ ’ : ’ ’m’ ’ ,
’ ’ precursors ’ ’ : [

’ ’ v−a5f30b8b−c0c8−4d4b−a543−05f4738fe4ce ’ ’
] ,
’ ’ columns ’ ’ : [] ,
’ ’ or ig in ’ ’ : ’ ’ f−b7f11c3b−01a0−46d0−8ca4−6bb385175897 ’ ’ ,
’ ’ type ’ ’ : ’ ’ model ’ ’ ,
’ ’ value ’ ’ : nul l ,
’ ’ generat ion ’ ’ : 1

}

Origin function is one that had its output assigned to the
variable’s name. Precursor variables are ones that are used
as arguments in that function. I.e. statistical model would
have its dataset marked as a precursor, dataset that is read
from the file would have no precursors if the file name has

3.1 Functions and Variables 13

not been retrieved from the separate (”constant”-type) vari-
able, otherwise this variable would be marked as a precur-
sor for the dataset.

Variable’s generation is incremented upon the highest gen-
eration value among its precursors. We have considered
fixating the datasets’ generation to a single base value,
but in practice that would have meant applying cascading
changes to its precursors and those precursors’ other ”chil-
dren”, which might have lead to inconsistencies, as sev-
eral datasets may be derived from the same arrangement of
”constant” lists with, for example, randomization resulting
in additional intermediate variable for one of them. There-
fore, in absence of a practical need for such behaviour, the
idea got scrapped.

Multiple variables can share a name, as it is common in the
duplicated code, where informal index suffixes are applied
independently to several models within each step of the ex-
ploration (see listing 3.3).

For the purposes of the model these variables are distin-
guished by their unique identifiers. It is also taken as
granted, that once the name has been reassigned, the old
variable can not be referenced anymore.

14 3 Data model

Listing 3.3: Variable reassignment example
−> PC2 −−
f i r s t up−down component
m0 <−lmer (PC1 ˜ mat + c l u s t e r + mat∗ c l u s t e r +

(1 | pop) + (1 | pla) + (1 | p o s i t i o n) ,
data=up . 2)

m1 <−lmer (PC1 ˜ mat + c l u s t e r +
(1 | pop) + (1 | pla) + (1 | p o s i t i o n) ,

data=up . 2)
m2 <−lmer (PC1 ˜ c l u s t e r +

(1 | pop) + (1 | pla) + (1 | p o s i t i o n) ,
data=up . 2)

m3 <−lmer (PC1 ˜ (1 | pop) + (1 | pla) + (1 | p o s i t i o n) ,
data=up . 2)

anova (m0,m1) # INTERACTION
anova (m0,m2) # MATING SYSTEM
anova (m0,m3) # GENETIC CLUSTER
summary (m0)

−> PC3 −−
f i r s t l e f t −r i g h t component
m0 <−lmer (PC1 ˜ mat + c l u s t e r + mat∗ c l u s t e r +

(1 | pop) + (1 | pla) + (1 | p o s i t i o n) ,
data= l e f t . 2)

m1 <−lmer (PC1 ˜ mat + c l u s t e r +
(1 | pop) + (1 | pla) + (1 | p o s i t i o n) ,

data= l e f t . 2)
m2 <−lmer (PC1 ˜ c l u s t e r +

(1 | pop) + (1 | pla) + (1 | p o s i t i o n) ,
data= l e f t . 2)

m3 <−lmer (PC1 ˜ (1 | pop) + (1 | pla) + (1 | p o s i t i o n) ,
data= l e f t . 2)

anova (m0,m1) # INTERACTION
anova (m0,m2) # MATING SYSTEM
anova (m0,m3) # GENETIC CLUSTER
summary (m0)

3.2 Hypotheses 15

3.2 Hypotheses

Semantic information that is enclosed in the function and
variable entities is limited to the variable type and, from a
certain point of view, the function’s origin library, as it can
allow to suggest its purpose (keeping in mind that dedi-
cated packages may include popular utility functions).

We describe the majority of the semantics in the additional
entity type, called ”hypothesis”. Details on the emergence
of this concept are included into the section 4.4.1.

Unlike the base two entity types, hypotheses are heavily
predicated on the context if significance testing. It may
be possible to extrapolate them into more generic ”explo-
rations”, but that would likely require introduction of sev-
eral alternating schematics.

Hypothesis entity consists of:

• unique identifier

• name

• arrangement of references to the ”column”-type vari-
ables, distinguishing a dependent and a list of inde-
pendent (or ”control”) dataset columns

• list of functions’ identifiers for the functions that were
categorized as exploring this hypothesis

• list of ”model”-type variables’ identifiers that are cre-
ated from these functions, if any

• list of ”formula”-type variables’ identifiers, relevant
to this hypothesis, if any

Listing 3.4: Serialized hypothesis instance
{

’ ’ id ’ ’ : ’ ’ h−d665d82c−3d46−4d47−9497−5ef018eb310c ’ ’ ,
’ ’name ’ ’ : ’ ’logWPM ˜ Alphabet ’ ’ ,
’ ’ columns ’ ’ : {

’ ’ dependant ’ ’ : ’ ’ v−5fed8f3 f −0711−44b9−913b−0374a14d1d7b ’ ’ ,

16 3 Data model

’ ’ contro l ’ ’ : [
’ ’ v−5ec29826−ef56−4dce−9f24−7cdf145c25bc ’ ’

]
} ,
’ ’ funct ions ’ ’ : [

’ ’ f−0614e121−b80f−4c46−81d8−9abd555664ee ’ ’ ,
’ ’ f−30f527c3−b43f−480c−8da8−3ffd9c4a516e ’ ’ ,
’ ’ f−55a48aa0−84c3−41ac−b236−bc4f58b07d64 ’ ’

] ,
’ ’ models ’ ’ : [

’ ’ v−72a92c36−e876−42a7−adc2−fa63a21374bf ’ ’
] ,
’ ’ formulas ’ ’ : []

}

We have consciously decided not to distinguish the exact
interrelation between the control columns, which may dif-
fer, as formula syntax of R language includes multiple of R
base operators and allows for limited constant usage.

Hypothesis exploration is not limited to creation and sub-
sequent use of model variables. If dataset columns are plot-
ted against each other, or control columns are used to create
a subset to examine the dependent column’s values, these
functions are categorized as exploring the hypothesis as
well.

17

Figure 4.1: Hypothesis Manager

Chapter 4

Hypothesis Manager

Although may not be apparent from the first sight, ”RStu-
dio IDE” itself is a Webkit-based client for the ”RStudio-
server” application (available as a stand-alone commercial
product), that manages the execution of R code, session
storage and other utility aspects of working with the R lan-

18 4 Hypothesis Manager

guage. Its add-ins, therefore, inherently have to have some
server code, even if no client-server interaction is going to
be present.

Client-server interactions can be managed two-fold:
rstudioapi package can be used to mimic or trigger
IDE’s own functionality, from setting of the text cursor po-
sition and saving the changes in the open files to selecting
the visual theme of the IDE. Developers, however, are not
allowed further ”under the hood” of the application, which
makes it impossible to interact with the text editor input
events or extend the basic visuals of the IDE. Limitations of
this happenstance and their influence on the design of the
add-in will be elaborated upon in the designated section.

Since RStudio overhauls the base R language approach to
representing graphics and help pages, these can also be
considered interactive to a degree, however the details on
internals of this overhaul are not documented and due to
a very limited scope of use, it can hardly be considered ex-
tendable.

Part of the visuals which developer is, on the other hand,
in the significantly more independent control of is the
”Viewer” pane of the RStudio, intended for the display of
”Shiny applications”.

4.1 Shiny

Shiny, distributed as an eponymous R package, is another
part of a broader RStudio project, providing a web frame-
work for R, complete with a server, an assortment of tools
— page layouts, sophisticated inputs (for instance, replac-
ing the basic select and multiselect inputs with the selec-
tize.js counterparts1), visualization built-ins for geospatial
or graph data — and a front-end JavaScript library to facil-
itate the client-server interactions.

1See https://selectize.github.io/selectize.js/ for the
detailed list of selectize.js features

https://selectize.github.io/selectize.js/

4.2 Parser 19

It aims to enable R programmers to build web applications
”without requiring HTML, CSS, or JavaScript knowledge”
[RSt]. These applications can be executed in the IDE on
a one-off basis, included into the R Markdown interactive
notebook cells, or deployed on a dedicated hosting, pro-
vided by the RStudio team, directly from the IDE.

If not extended further with the help of packages like
htmlwidgets, Shiny application is a textbook example of
a ”thin client application”. Extension would allow devel-
oper to include custom design elements and front-end code
and business-logic, that can still receive the data via the de-
fault Shiny event system.

The server part of the Hypothesis Manager is an exam-
ple of such extended Shiny server, with the additional cus-
tom output used along with a number of the default ”thin”
Shiny client inputs and outputs. It also handles the utiliza-
tion of rstudioapi for manipulations with a script editor
pane of the IDE, and parsing of the source code.

4.2 Parser

We distinguish syntactic and semantic stages in the process
of parsing the code parsing process.

Ultimately, syntactic parsing is handled by R language
built-in parse() function that turns valid plain-text into
the expression-type object, but due to reasons that would
later be elaborated upon, we could not settle with putting
the entire raw script file through that mechanism at once,
introducing some original logic and code into that process.

Expression object may contain nested expressions as well
as 2 other types of values:

1. symbol - character strings, representing function or
variable names;

2. atomic - unnamed constants of atomic types:
booleans, numbers, strings and null-values;

20 4 Hypothesis Manager

It is important to stress that, as Listing 4.1 illustrates, there
is no distinction between function calls, operators (includ-
ing assignment), control structures and block statements
within the control structures.

Listing 4.1: pryr::call tree evaluation
> c a l l t r e e (quote (
+ for (i in 7 : ncol (dataParents)) {
+ dataParents [, i] = as . numeric (dataParents [, i])
+ }
+))
\− () # e x p r e s s i o n
\− ‘ for # symbol − name o f e x p r e s s i o n
\− ‘ i # symbol − r e g u l a r v a r i a b l e
\− ()
\− ‘ :
\− 7 # a t o m i c
\− ()
\− ‘ ncol
\− ‘ dataParents

\− ()
\− ‘{
\− ()
\− ‘=
\− ()
\− ‘ [
\− ‘ dataParents
\− ‘MISSING # symbol − m i s s i n g p a r a m e t e r
\− ‘ i

\− ()
\− ‘ as . numeric
\− ()
\− ‘ [
\− ‘ dataParents
\− ‘MISSING
\− ‘ i

Semantic parsing assumes expression objects as input and
matches them with one of the designed case scenarios
based on its contents, here partially grouped for better
transparency of reasoning:

4.2 Parser 21

• assignment operators: <- and =

• Syntax that can indicate hypothesis presence

– formulas: ˜

– index-based multi-item retrieval: [

– name-based item retrieval: $

• Syntax that is obstructs function detection

– parentheses: (

– control structures: if, for, while, repeat

– block statements: {

• expressions

• symbols

• atomic values

4.2.1 Adjustable scanning window

Expression objects, perhaps, obviously so, do not preserve
indentation, comments or distinction between the expres-
sions, separated by semicolon and a newline character,
which makes it inconvenient to attempt to associate expres-
sions with their location in the file, which is necessary for
several aspects of visualization and interactivity of the add-
in.

Which has lead to the aforementioned manual overhaul of
the parts of the parsing process: file lines are being iter-
ated through, parse() function is being called on each
line individually, with two specific parsing exceptions be-
ing intercepted as they signify that expression should have
had continued on the next string. In these cases, the sec-
ond margin of the window starts to expand until either the
exception-less pass gets performed, or a different kind of
exception interrupts the process altogether. The parsing
will then resume from the next line after the successfully
productive window.

22 4 Hypothesis Manager

In this fashion, besides having a way to map the function
with its position in the file, it also becomes possible to lo-
cate the problematic lines of code, if such happen to occur
in the file, track the progress of the parsing process, which
becomes useful for script hoards of multiple hundreds, or
thousands, lines in length, and to preserve the function sig-
nature in its original form, later used to make the particular
instance of the function more recognizable among the oth-
ers.

4.3 Limitations

As it may be evident from the glance inside the R language
internals we have provided, Perl paradigm ”There’s more
than one way to do it” applies to R in full extent.

This is further articulated by that R packages may intro-
duce custom operators, that may introduce complicated be-
haviour to the visually basic code, for example:

• magrittr introduces a pipe operator %>% enabling
user to chain the data processing commands similarly
to Java streams or JavaScript Array.prototype
functions

car_data <-
mtcars %>%
subset(hp > 100) %>%
aggregate(. ˜ cyl, data = .,

FUN = . %>% mean %>% round(2)) %>%
transform(kpl = mpg %>% multiply_by(0.4251))

In base R, this operations would have to be written as
a nested arrangement of function calls:

car_data <- transform(
aggregate(

. ˜ cyl,
data = subset(mtcars, hp > 100),

4.3 Limitations 23

FUN = function (x) round(mean(x, 2))
),
kpl = mpg*0.4251

)

• zeallot package introduces another operator %<-%,
which allows for Python-like multiple assignment for
vectors and list objects:

c(duration, wait) %<-% head(faithful)

While existence of the latter package have been of a
great relief during the work on the add-in, due to devel-
oper’s personal preferences and habits of working with the
Python language, attempting to process its usages as in-
tended would have severely complicated the parsing pro-
cess, possibly making the text-based implementation im-
possible, since making even broad assumptions on the na-
ture of the returned values would require knowing posi-
tional output of the invoked function. It is important to note

that while magrittr

pipe operator does
not have these
issues, processing it
a general-purpose
expression does not
have any practical
downsides either

Additionally, while this package can be found used in-
ternally by multiple popular R packages, like keras and
vctrs, both being in the 16th percentile according to rdoc-
umentation.org, it does not exhibit such popularity itself —
96th percentile with zero recent downloads.

Finally, extraneous operators may become ambiguous, as,
for example, %<-% operator also exists in the igraph pack-
age, which is as, if not more, popular as zeallot: 99th per-
centile, but >3000 monthly downloads according to rdocu-
mentation.org.

Under these considerations, for our parser we have decided
to go off of the R code base that was available to us with
one preliminary exception: no support for custom model-
ing languages, like those used in lavaan or rjags.

24 4 Hypothesis Manager

4.3.1 Parsing Loop

As it has been mentioned, while rstudioapi provides a
lot of control on the working context of the RStudio, allow-
ing, among other things, to switch the projects and modify
the open files, it does not allow to intercept the input events
that are happening in the Ace text editor on its front-end.

While ideally we would have liked to plug the parser trig-
ger directly into the Shiny server event system, due to these
limitations it had to be mimicked with a periodically firing
event and an extra manual check for change of the script
editor context (file name or file contents’ hash being differ-
ent from to previous successful iteration).

As a consequence, parsing is getting initiated practically
with each keyboard stroke which is more often that it
would have been desirable. With smaller files in can lead to
barrages of ”false negative” error messages, and for bigger
files that can take minutes to parse these interruptions may
be flow-breaking.

To mitigate this issue to a degree, we have introduced a
manual pause switch, but it is evident that either additional
logic for its automatic engagement, or a more sophisticated
file difference identification (and, perhaps, partial parsing)
mechanism is required for a more comfortable usage.

4.3.2 Shiny server blocking behaviour

While we were not able to find a documented explanation
for this quirk of Shiny server, questions on the topic can
be found across the project’s GitHub2 and in Stack Over-
flow communities3. At the moment of writing, it can only
be asserted: Shiny server blocks the REPL interface of the
RStudio and commands get stacked until the server is shut
down.

2https://github.com/rstudio/shiny/issues/652
3https://stackoverflow.com/questions/24020636/

access-use-r-console-when-running-a-shiny-app

https://github.com/rstudio/shiny/issues/652
https://stackoverflow.com/questions/24020636/access-use-r-console-when-running-a-shiny-app
https://stackoverflow.com/questions/24020636/access-use-r-console-when-running-a-shiny-app

4.4 Visualization 25

We have investigated ways to bypass this issue with mul-
tithreading and multi-session execution, and found those
unsuccessful, since session information proved to be vital
for RStudio client-server contact retention.

However, while direct access to REPL is unlikely to be re-
gained until relevant changes are introduced to RStudio or
Shiny by their maintainers, we could still provide a proxy
for execution of the script editor context chunks.

4.4 Visualization

Before there were RStudio and direct address of ex-
ploratory programming design concerns, this project was
initially conceived with an intention to introduce a graphi-
cal programming tool for StatWire [Maas, 2017] R program-
ming environment.

With a shift away from graphical programming and neces-
sity to represent the code one-to-one, and towards a sup-
plementary modality with visualization granularity and
metaphor in general left to our arbitration, we were also
enabled to operate with the concepts from the realms of se-
mantic and methodical.

4.4.1 Metaphor

Particularly, we were now interested in how users’ work-
flow was manifesting itself through the code.

At first, perhaps out of the habits of our day-to-day prac-
tices, we were expecting to use variables and their muta-
tions and transitions as a main indicator of the workflow
routines and milestones.

However, upon maturing the data model and add-in back-
end enough to reliably produce data for visualization, it
became apparent that in common practice, data scientists
rarely, if ever, actively use more than two generations of the

26 4 Hypothesis Manager

Figure 4.2: First attempt at data visualization

data variables, with model variables being derived either
directly from the initial dataset, its subsets, or ”first genera-
tion” models, number of datasets being, perhaps obviously,
mostly limited to one per script, and, in cases where there
are more, almost never getting compared to one another.

Figure 4.2 depicts a basic force-directed graph that we have
started off with, with variables as its nodes and their mu-
tual relationships as arcs. Five nodes around the central
one represent all the extra variables used within the same
file that was later visualized in figure 4.1.

This has prompted us to iterate on the initial visual
metaphor, giving a meaningful place to functions that areLondon tube map

became an important
inspiration for this

iteration of the visual
metaphor, although

final version arguably
much more

resembles the Git
branches

visualization.

executed on the datasets and their statistical models, which,
while being included to the data model from the very be-
ginning, had yet to find an appropriate visual representa-
tion.

Additionally, this has helped to articulate the idea of hy-
pothesis, visually — as a way to distinguish the similar
function sets, and conceptually — as a unit of exploration

4.4 Visualization 27

that could (or so our thinking went) be condensed into a
function and extracted as a reusable subroutine.

This duplication reduction functionality was at the initial
point perceived as the main interactive feature of the add-
in, and a ”solution” to the problem of duplicate hoarding
in general. However, multiple reassessments of its viability
throughout the development have remained inconclusive.
More so when new, more inconspicuous approaches (4.5.3,
4.5.4) of influencing user’s workflow were introduced.

4.4.2 Implementation

To provide ourselves with necessary degree of freedom in
visualization, we extend the base shiny capabilities with
aforementioned htmlwidgets and add a d3.js library for
front-end. D3 provides a wide range of tools for data visu-
alization, complete with a custom Document Object Model
navigation toolkit for simpler element manipulation and
direct association between graphics and original data.

Specifically, we utilize the d3.js capabilities for hierarchy
generation and graph construction. While it leaves an av-
enue for an overhaul in future (see 6.2.2), the source code
functions are arranged in a tree, with dataset origin being a
root node.

Available dataset variables and hypotheses are listed in the
side panels of the graph, former being a selection menu
to switch between the graphs for each specific dataset (if
multiple are available) and latter — a legend for the color-
coding of the graph notches, and an entry point for hy-
pothesis editing functionality, which will be explored later
(4.5.3) together with the rest of the interactive features.

A single function node consists of a circular notch, used as
visual focal point and an anchor for the graph arches, and
a function name.

The notches are colored according with the hypotheses they
represent, with multiple colors forming a pie chart, and hy-

28 4 Hypothesis Manager

Figure 4.3: Single variable graph

pothesis-less notches having white background and a light-
grey rim (see figure 4.4).

Node-hypothesis attribution builds upon the direct
function-hypothesis link, captured in the data model, by
also tracking the model variables and marking the func-
tions where they were called as belonging to a hypothesis.
In these cases, names of these model variables are also
visualised on the opposite side from the function name. If
multiple models are used in a single function, their names
are replaced with an ellipsis.

Functions are then attached to each other in the order of
their occurrence in the source code, with two notable devi-
ations:

4.5 Interactivity 29

Figure 4.4: Close-up of different kinds of notches

1. If the function was recognized to modify the dataset,
it serves and a breakpoint, becoming an intermediate
root for all the later functions to get attached to

2. Hypotheses spawn their own branches under the
common root node, with functions that do not belong
to any hypothesis being grouped together as if there
was one

If the hypothesis is being explored both prior and past the
breakpoint, it spawns branches separately with each root
node, since we can not ensure that the exploration has not
been disturbed by changes in the data.

4.5 Interactivity

Since we were aiming to improve the workflow at large,
we could not limit ourselves with just visualizing the code.
Coming back to the tube map metaphor, active code navi-
gation was one of the immediate inspirations brought with
introduction of this idea.

This is also the place where the introduction of ad-
justable scanning window (see 4.2.1) had a direct implica-
tion: knowing the lines that correspond to each function,

30 4 Hypothesis Manager

Figure 4.5: Graph node tooltip

rstudioapi now allowed us to set the cursor to the po-
sition that corresponds to the the graph node. After some
additional consideration it has also been decided that cre-
ating a cursor selection for the entire span of the expression
would serve as a better indication, due to being more visi-
ble and also allowing user to execute the function immedi-
ately finding it in the code.

4.5.1 Tooltips

After the initial trials, it has also became apparent that even
though direct association between the node and the expres-
sion in code allows to facilitate the mental connection be-
tween the two, function name on its own is a sub-par indi-
cator of the exact instance of the expression (for heavily du-
plicated code can hold a number of almost identical func-
tion calls), and that the meaning behind the function can be
obscure for somebody who has no prior knowledge of the
exact package this function is derived from.

On the other hand, putting the full function signature onto
the graph would heavily impede its readability, and par-
tially defy the purpose behind the addition of the new
modality into the environment.

The compromise was found in introduction of the interac-
tive tooltips, that, while overlaying the graph, did not hin-
der its usefulness, but can provide an extensive amount in-
formation with the natural action of putting the cursor over
the object of interest.

4.5 Interactivity 31

While these tooltips can be greatly extended in future if
found necessary, at the point of writing, they contain:

• Full function signature

• Optional separate citation of the end-of-the-line com-
ment

• Links to the R help pages for the function (or its name-
sakes)

While, as it has been mentioned before, help pages can not
be triggered through any of the RStudio APIs, we have
found a way to reliably present them by sending the out-
put of the default R help command (or ? operator) to the
print output.

4.5.2 Modes of operation

The notion of the text-only parsing has already been
brought up elsewhere in the text. During the development
process we have experienced somewhat of the distortion
of perception: having the moderately vast code base, but
lacking any context for what the contents of this code base
were initially written for, we perceived this approach to the
R code as commonplace, whereas the data scientist would
have also had, and actively employed, the dataset file that
was actually being explored in the script they are writing.

Besides enabling the code execution, availability of the
dataset file can also improve the parsing process, as it al-
leviates the ambiguity of dataset column name references,
which are not necessarily being made with a direct conjunc-
tion with the dataset variable reference and can, therefore,
be confused with constants. Reading the dataset form the
file, on the other hand, allows to generate all of the column
variables from the very beginning of the processing and en-
sure that no column can spontaneously occur in the unfore-
seen context.

32 4 Hypothesis Manager

Figure 4.6: Hypothesis editor modal dialog

It is interesting to note that the name ”Run” in the context of
RStudio is used to refer to the current line/selection execu-
tion, which is also bound to a widely used Ctrl/Cmd+Enter
hotkey. At the same time full script execution — a common-
place default for the IDEs — doesn’t have a hotkey and is
called ”Source”, which, while remaining meaningful, con-
tradicts naming conventions.

From that, and from the fact that most of the R code in
our possession is used to output data into the console or
into the graphics viewer, we infer that automatic execu-
tion of the entirety of the script would be undesirable, and
have limited it to the assignment expressions, which en-
hances the parser’s understanding of the script’s context
and would allow for a less constrained operation with the
variables further down the line, but would not produce any
additional output.

4.5.3 Hypothesis editing

Current state of variable and hypotheses lists by the sides of
the graph are a product of several iterations on the add-in’s

4.5 Interactivity 33

UI. Hypothesis list in particular have always been present,
as it served as a legend for the graph color-coding, but was
not initially meant to be interactive.

After one of these iterations we have received a suggestion
to allow user to shift the hypotheses in place, practically as
a test of strength to see if the targeted code manipulations
we wanted to make with the duplicate extractor, explained
in the latter part of the 4.4.1, are possible.

Hypothesis editor is a Shiny default modal dialog that al-
lows user to replace the columns for the hypothesis, or add
the new names. If opened from the hypotheses list, as it
was initially, changes (if made and confirmed) will affect all
of that hypothesis’s functions. Upon which, as soon as the
change in the source code get registered, the visualization
will update itself.

4.5.4 Drag-select and hypothesis injection

While changing the hypothesis indiscriminately for all of
its functions may be viable for some of the usage scenarios,
this is still a very crude tool.

Making it finer, however, would have required introduc-
tion of an individual node selection mechanism, which the
add-in was lacking up to that point.

Moreover, as node selection became a candidate for im-
plementation, it became apparent that a certain additional
limitation mechanism will have to be implemented to re-
strict user from editing several hypotheses at once. We
concluded that this limitation would have had to be im-
plemented identically regardless of the complexity of the
selection mechanism, which enabled us to make a try at
implementing the more user-friendly drag selection, since
failure to do so would not have had impeded the overall
progression with the feature development.

Additional limitation had to have been introduced for the
suggested visual node copy mechanism to work: aside

34 4 Hypothesis Manager

Figure 4.7: Drag selection

from having to belong the same hypothesis, only the nodes
within the same code segment between the breakpoints
could be selected. Figure 4.7 illustrates this, as functions
on the left branch that are separated by the log function
breakpoint are unavailable for selection despite belonging
to the same ”orange” hypothesis.

The selection limitations are being updated as the cursor is
being dragged through the canvas, but generally the break-
point limitation relies only on the initial position of cursor,
a dominant direction of its displacement (sign and module
difference of its axis coordinates difference) and their rela-
tion to the nearest breakpoint. And the hypothesis limita-
tion, on the top of that, checks whether or not any hypoth-
esis-marked node have already been selected. If they are,
other hypotheses’ nodes within the ”breakpoint region” be-

4.5 Interactivity 35

come disabled as well, however breakpoint node itself and
non-hypothesis nodes never do.

When the nodes are selected, Edit and Copy buttons be-
come available for the user. These operations use Hypoth-
esis editor as their interface, but the server-side changes in
processing. Selection edit operation is different from the
mass-edit only in that is doesn’t change all of the functions,
but only the selected ones, while copy operation also has
to factor in the next closest breakpoint position, and will
insert the copied code just before it.

37

Chapter 5

Evaluation

Reiterating form 2.1, with our add-in we were addressing
the following problems that arise in the exploratory pro-
gramming workflow:

• Backtracking and safekeeping leading to the accumu- We leave the issue of
intercontextual and
intermodal code
duplication aside
since is not confined
within a single
environment we
could address it in.

lation of ”hoards” of functionally similar code

• Data-scientists having to reintroduce themselves to
these hoards of code after switching back to code af-
ter dedicating time to other aspects of their work, like
reporting or data accumulation

We attempt to disincentivise the hoarding behaviour and
code duplication by providing the tools that allow for eas-
ier experimentation, presented and described in 4.5.3 and
4.5.4. While the core problem of backtracking while the ex-
act set of operations that will be used for exploration of each
of the hypotheses is being developed is left unaddressed,
we propose that as soon as (if ever) user turns from this
process to iteration through the data column relationships,
being able to switch them at once and come back, again, at
once either through the undo operation or another switch
would be able to address the core of the duplication issue.

Hypothesis Manager’s visualization also provides a mind-
map of the user’s code, which, while not necessarily align-

38 5 Evaluation

ing exactly with their intention, would help to navigate
it without having to read or do a text search through the
script file.

5.1 Study Design

While we would have liked to test both of our allegations,
hoarding is a persistent behaviour that could only be im-
pacted with a long-term treatment, that we couldn’t see to
be implemented in the confines of the thesis timeframe. We
see an optimal way to study it in releasing the add-in R
package into the open source and collecting the code sam-
ples and screen recordings of work from volunteers over
time, similar to how Subramanian et al. [2019] have gath-
ered their data.

Therefore, we have have decided to focus our study on the
second aspect.

We were going to compare the quality of the users’ recog-
nition of the scripts’ context and internal logic and struc-
ture, by asking them to read and interpret R code samples
in pairs of equivalent size and structural complexity.

In each pair, one script were to be read with RStudio default
interface and functionality, whereas for the other the partic-
ipant would be permitted to use the Hypothesis Manager.
The interpretations were going to be recorded, and record-
ings were to be graded for fidelity by an invited R expert.
The application of Hypothesis Manager to the scripts in the
pairs would have been alternated between the participants
to provide an even representation within each pair. Partic-
ipants were also to be inquired on their experience with R
language and significance testing to provide a frame of ref-
erence for their answers and even the expectations for the
results.

Additionally, we considered taking metrics on speed of the
participants’ preparation to present their interpretations,
and utilized means of navigation within the RStudio, either
with or without the Hypothesis Manager enabled.

5.2 Failure to find participants 39

5.2 Failure to find participants

Over the period of three weeks we have advertised our
study with multiple online platforms and communities
with the theoretical maximum cumulative outreach of ap-
proximately 23 thousands. This includes, in chronolog-
ical order, first our personal acquaintances on the social
networks and whomever the word of mouth could have
reached, then the r/rstats subreddit1 — an online commu-
nity dedicated to R language with approximately 22 thou-
sands subscribed users at the time of the ad submission,
then Köln R User Group2 — a local, mostly offline meetup
community of 904 (again, at the time of the ad submission).

Of course, it would be preposterous to suggest that more
than a hundredth of these people have actually seen our
advertisement, but we were still able to receive a more
than average positive reception on the r/rstats, and to find
two volunteers for the study with the caveat that it would
have had to be performed via the remote control software
(which, while being inconvenient, would not violate the
study design).

Scheduling the session, however, became an issue, since
one of these volunteers have not answered the request, and
the other had to withdraw due to personal issues.

At the time of submission of this report, we have just
started to receive delayed responses to some of our initial
inquiries, including a new volunteer, but the circumstances
do not allow us to act on this opportunity to add to this
report’s value.

1A link to the posting: https://www.reddit.com/r/rstats/
comments/as9x4t/im_working_on_rstudio_shiny_plugin_
that_aims_to/

2https://www.meetup.com/KoelnRUG/

https://www.reddit.com/r/rstats/comments/as9x4t/im_working_on_rstudio_shiny_plugin_that_aims_to/
https://www.reddit.com/r/rstats/comments/as9x4t/im_working_on_rstudio_shiny_plugin_that_aims_to/
https://www.reddit.com/r/rstats/comments/as9x4t/im_working_on_rstudio_shiny_plugin_that_aims_to/
https://www.meetup.com/KoelnRUG/

41

Chapter 6

Summary and future
work

6.1 Summary and contributions

We have created a prototype for the programming product
— interactive RStudio add-in — that addresses the issues
of exploratory programming in the context of significance
testing.

Aside from the prototype as a whole, we also consider fol-
lowing our contributions:

• As a backbone for the add-in, we have introduced a
model for the exploratory code representation, based
around a concept of the hypotheses that are being
tested by the user.

• To generate the data according to this model, we have
developed a semantic wrapper and utility extensions
for the R language syntax parser.

Although the graphical user interface of the Hypothesis
Manager also contains original solutions and design deci-
sions, with the lack of a proper user evaluation we hesitate
to highlight any of those.

42 6 Summary and future work

6.2 Future work

6.2.1 Evaluation

As we were not able to conduct the evaluation, correcting
this should take priority for the continuation of this project.

Furthermore, if R users recruited for the evaluation show
interest in seeing the add-in reach maturity, it may be pos-
sible to recruit some of them for repeated usability studies
in the benefit of the graphical interface of the add-in. We
were not focusing on the UI/UX development in the con-
text of this thesis due to being primarily concerned with
prototyping, but the lack of study subjects would not have
allowed us to successfully do that to begin with.

6.2.2 Improvements

In the process of the development we had numerous mo-
ments where the choice between several features or im-
provements had to be made. As a general rule, we were
first prioritizing the creation of a Minimal Viable Product,
then making target enhancements that would advance the
quality and reliability of the parser, or fix the issues that
became apparent from the experiments with the code base.

While some of these were later re-prioritized and imple-
mented (see 4.5.4 for an example of such a feature), a lot of
quality-of-life improvements had stayed in the ”To Do” list.

Before going into the specifics, we would also like to make
a broad disclaimer, that the general code quality, especially
on a project with a single developer, regardless of their
discipline or experience with the tools, can always be im-
proved. In a similar sentiment, we understand that the vi-
sual metaphor we have settled with can benefit from more
user studies and be iterated further. This is in part why
the strong focus was put on creating a comprehensive code
data model, which could, as was our intention, allow for
independent refinement of various parts of the project.

6.2 Future work 43

Parser-Server decoupling

On the subject of independence, introduction of code scan-
ning window (see 4.2.1) had forced a compromise on our
intention to keep the shiny server clearly separated from
the parsing algorithm. Peculiarities of R language ex-
ception handling mechanism necessitated a merger of the
visual progress updates into the scanning window loop,
which is inherently a part of the parser.

We believe that this merger should be deconstructed, as,
ideally, parsing algorithm should exemplify a generator
function. Although generators are not a part of R language
paradigm, there is evidence [Rudolph, 2018] that this be-
haviour is possible to replicate.

Partial parsing

On the subject of the parser, as it was mentioned in 4.3.1,
the time spent on re-parsing of the code could be reduced if
the code-expression association were to be applied to skip
the unchanged parts of the script file. Details of this par-
ticular improvement are yet to be considered: for instance,
whether the entirety of the code after the modified chunk
should be re-parsed in case the changes have altered its
meaning, or if this behaviour could somehow be condi-
tioned to only apply to the affected parts of the script.

Scopes and user-defined functions

Wrapping up with the parser, user-defined function, both
named and anonymous, have ended up being altogether
ignored by the algorithm. While not a particularly fre-
quent occurrence within the project code base, handling
them properly is an important stepping stone for further
development of the add-in, as it will likely involve an in-
troduction of scope entities to the data model.

Scopes could then be used to better contextualize other

44 6 Summary and future work

parts of the code, like control statement blocks and lambda-
like anonymous functions.

RStudio REPL block

The issue of Shiny server blocking the REPL interface of the
RStudio has been thoroughly explored in 4.3.2. If relevant
changes to the RStudio get implemented, or a bypass to this
problem is found, the add-in would cast away its only hin-
dering aspect.

Non-tree visualization hierarchy

Mentioned in 4.4.2, the visualization graph nodes are
bound by their tree hierarchy, while direct model com-
parisons like stats:anova require several hypotheses’
branches to be able to converge and introduce graph loops.

While in the code base, instances of such code still allow for
branches to be associated with one another due to the hap-
penstance of proximity of their placement, introduction of
the different hierarchy or overall graph generation mecha-
nism would remove this concern altogether.

Better hypothesis editor view and non-regex replacement

Current implementation of Hypothesis Editor (see 4.5.3)
lacks functionality that would allow to modify the hypothe-
ses’ formulas more that with interchange of the column
names. Extending it to be able to use the full extent of the
formula syntax while preserving the current functionality
of selecting columns seems challenging, but would increase
the power of this tool manyfold.

6.2 Future work 45

Code selection synchronization

There is no principal limitation for manually made source
code selection ranges not to be represented in the add-
in visualization, as rstudiapi provides the list of them,
among other parts of source editor context. And client-
server transmission of this information can be added into
the same event loop as code parsing, since this script editor
code contents is retrieved from the very the same context.

Enabling multiple custom outputs per application should
also be an easy process, since multiple of base shiny inputs
and outputs are generated without any additional com-
mands aside of the element creation.

However, for unknown reasons, we were not able to make
this client-server interaction work in the dedicated time
frame, so it has been relegated to the backlog.

Deeper reflection

It should be theoretically possible to find which exact inter-
nal function is getting invoked in the case of generic func-
tions like summary, at least when plug-in is in the dataset-
enhanced mode. This information would make tooltips’
help page links more precise.

Obtaining the reflection information in R language, how-
ever, seems to require the execution of the functions, and,
to that end, tweaking of the parser internal rule of only ex-
ecuting the assignment statements.

6.2.3 Features

There also were some full pieces of new functionality that
have been considered, but set aside for resource considera-
tions.

46 6 Summary and future work

Semantic labeling of graph nodes

Replacing the function name labels with their generalised
semantic purpose was a suggestion that went in completely
opposite direction to what lead to the introduction of the
tooltips (see 4.5.1), but that may be viable in conjunction
with the tooltips, that can serve as a counter-balance, still
providing the full information on the function.

The thinking behind it was that some of the function names
are generic or ambiguous, and having them replaced with
short full-text descriptions like ”model creation”, ”hypoth-
esis testing”, ”potting” would not impede the recognition
of the function place in the script, as it already very poor,
but improve the representation of the workflow in general.

Duplicate extractor

The feature that was kept in the ”Future work” from the
very beginning of the development of this thesis, it would
rely on several of the aforementioned improvements to be
successfully introduced.

The details on its implementation are far from being clear,
however. For example, how the extracted subroutine
should be represented in the visualization, should it sep-
arated as the independent context and just referenced by
name in the overall graph similar to a library function, or
should it be extended for each of the occurrences? In the
latter case, how should the navigation behave, should it go
into the function body or into the particular instance of the
function’s invocation?

47

Bibliography

Rstudio. URL https://www.rstudio.com/.

Robert DeLine, Mary Czerwinski, Brian Meyers, Gina
Venolia, Steven Drucker, and George Robertson. Code
thumbnails: Using spatial memory to navigate source
code. In Visual Languages and Human-Centric Computing
(VL/HCC’06), pages 11–18. IEEE, 2006.

Mary Beth Kery and Brad A. Myers. Exploring exploratory
programming. IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), pages 25–28, 2017.
doi: https://doi.org/10.1109/VLHCC.2017.8103446.

Mary Beth Kery, Amber Horvath, and Brad A. Myers. Var-
iolite: Supporting exploratory programming by data sci-
entists. In CHI, pages 1265–1276, 2017. doi: http://dx.
doi.org/10.1145/3025453.3025626.

Johannes Maas. StatWire: Visual Flow-Based Programming
for Statistical Analysis. PhD thesis, RWTH Aachen Uni-
versity, 2017.

James G. March. Exploration and exploitation in organiza-
tional learning. Organization science, 2(1):71–87, 1991.

Evan Patterson, Robert McBurney, Hollie Schmidt, Ioana
Baldini, Aleksandra Mojsilovic̀, and Kush R. Varshney.
Dataflow representation of data analyses: Toward a plat-
form for collaborative data science. IBM Journal of Re-
search and Development, 61(6):9–1, 2017.

R core team. R language definition, 2018. URL
https://cran.r-project.org/doc/manuals/
r-release/R-lang.html.

https://www.rstudio.com/
https://cran.r-project.org/doc/manuals/r-release/R-lang.html
https://cran.r-project.org/doc/manuals/r-release/R-lang.html

48 Bibliography

David Robinson. The impressive growth of r, 2017. URL
https://stackoverflow.blog/2017/10/10/
impressive-growth-r/.

Konrad Rudolph. Python-like generators in r,
2018. URL https://gist.github.com/klmr/
d10623a0b4c7e1e9a6523eebee4913d1.

Beau Shiel. Power tools for programmers. Morgan Kaufmann
Publishers Inc., 1983.

Krishna Subramanian, Ilya Zubarev, Simon Völker, and
Jan Borcheres. Supporting data workers to perform ex-
ploratory programming. In CHI, 2019.

https://stackoverflow.blog/2017/10/10/impressive-growth-r/
https://stackoverflow.blog/2017/10/10/impressive-growth-r/
https://gist.github.com/klmr/d10623a0b4c7e1e9a6523eebee4913d1
https://gist.github.com/klmr/d10623a0b4c7e1e9a6523eebee4913d1

49

Index

abbrv, see abbreviation
add-in, 2, 4, 9, 18, 21, 23, 25, 27, 32, 33, 37, 38, 41–45

Context, 7, 8, 37, 38

Exploitation, exploitative, 1, 6
Exploration, exploratory, 1, 2, 6, 7, 16, 37, 41
Exploratory programming, 1, 2, 4, 5, 8, 25, 37, 41

Hoard, hoarding, 6, 8, 22, 27, 37, 38
hypothesis, 15, 16, 21, 26–29, 32–35, 37, 41, 44
Hypothesis Manager, 2, 4, 19, 37, 38, 41

plug-in, 4, 45

R language, 2–4, 7, 9, 10, 12, 16, 18, 19, 22, 38, 39, 41, 43, 45
REPL, 2, 3, 24, 25, 44
RStudio, 2–4, 17, 18, 24, 25, 31, 32, 38, 41, 44

Shiny, 18, 19, 24, 25, 27, 33
Significance testing, 2, 9, 15, 38, 41
Software Engineering, 1

Version Control System, 4, 6

Typeset March 5, 2019

	Abstract
	Acknowledgements
	Conventions
	Introduction
	Related work
	Issues of Exploratory Programming
	Code hoarding and duplication
	Intermodal and intercontextual code transfer
	Context retention

	Data model
	Functions and Variables
	Hypotheses

	Hypothesis Manager
	Shiny
	Parser
	Adjustable scanning window

	Limitations
	Parsing Loop
	Shiny server blocking behaviour

	Visualization
	Metaphor
	Implementation

	Interactivity
	Tooltips
	Modes of operation
	Hypothesis editing
	Drag-select and hypothesis injection

	Evaluation
	Study Design
	Failure to find participants

	Summary and future work
	Summary and contributions
	Future work
	Evaluation
	Improvements
	Parser-Server decoupling
	Partial parsing
	Scopes and user-defined functions
	RStudio REPL block
	Non-tree visualization hierarchy
	Better hypothesis editor view and non-regex replacement
	Code selection synchronization
	Deeper reflection

	Features
	Semantic labeling of graph nodes
	Duplicate extractor

	Bibliography
	Index

