
Chronicler: Interactive Exploration of Source Code History

Moritz Wittenhagen, Christian Cherek, Jan Borchers
RWTH Aachen University
52074 Aachen, Germany

wittenhagen, cherek, borchers@cs.rwth-aachen.de

ABSTRACT
Exploring source code history is an important task for software
maintenance. Traditionally, source code history is navigated
on the granularity of individual files. This is not fine-grained
enough to support users in exploring the evolution of indi-
vidual code elements. We suggest to consider the history of
individual elements within the tree structure inherent to source
code. A history graph created from these trees then enables
new ways to explore events of interest defined by structural
changes in the source code. We present Tree Flow, a visual-
ization of these structural changes designed to enable users to
choose the appropriate level of detail for the task at hand. In a
user study, we show that both Chronicler and the history aware
timeline, two prototype systems combining history graph nav-
igation with a traditional source code view, outperform the
more traditional history navigation on a file basis and users
strongly prefer Chronicler for the exploration of source code.

Author Keywords
programming; source code history; navigation; tree structure;
history graph; flow visualization

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation (e.g. HCI):
Graphical User Interfaces (GUI)

INTRODUCTION
Accessing source code history has been shown to be a task
crucial for software maintenance. It supports programmers in
understanding how code changed over time [20], in finding
the person responsible for a certain code snippet [8], or even
suggesting sensible changes when writing new code [21].

Navigating source code history, is usually supported on the
level of source code files. However, as developers are often
interested in source code on a snippet level [7, 9], the focus on
files makes navigation of such a snippet’s history tedious. Typ-
ical ‘diff views’ found in todays IDEs alleviate this problem to
some extent, but they fail quickly, because they do not consider

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org. CHI’16,
May 07 - 12, 2016, San Jose, CA, USA Copyright is held by the owner/author(s).
Publication rights licensed to ACM. ACM 978-1-4503-3362-7/16/05...$15.00 DOI:
http://dx.doi.org/10.1145/2858036.2858442

func () {
 if {

 }
 else if {

 }
 else {

 }
}

func () {
 if {

 }
 else {

 }
}

case

switch

func

if

else

funcfunc

if

else

else if default

case

func () {
 switch {
 case :

 case :

 default:

 }
}

A

B

Figure 1. A short history of a source code snippet (A) and its respective
history graph (B). Structural source code elements (func, if, switch, etc.)
create a hierarchical tree representation (solid lines in B) for each ver-
sion of the text representation. Each of these code elements has its own
history and changes (dashed lines in B).

many of the typical changes ocurring during development. It
is not possible, for example, to properly represent moving a
snippet somewhere else because this often has to be modeled
as a separate delete and insert event. This may suffice when
checking which recent changes occurred in a file. It does not,
however, suffice when visualizing the complete history of a
file with easily hundreds of versions.

In this paper, we discuss how to use the inherent hierarchi-
cal structure of source code to visualize and interact with its
history in more useful ways. Instead of only considering the
history of entire files (Figure 1-A), we consider a source file
to have a tree structure in which each element of the tree has
its own history (Figure 1-B). Based on the history graph that
spans this history of trees, we can then define how a user
should be able to interact with individual parts of the tree,
such as a method, and how she should be able to explore this
individual element’s history. We used this abstract definition
of the interaction as a basis for creating our prototype system
Chronicler.

Our contributions are:

• A discussion on how the graph structure facilitates interac-
tion in source code history.

• Chronicler, a software prototype based on this discussion,
that combines flow visualization of the history graph with a
typical source code view.

• A user study performed with Chronicler that shows that this
technique greatly benefits navigation tasks and supports the
exploration of source code.

RELATED WORK
The tasks around source code have been studied by LaToza et
al. [9]; they interviewed developers to understand the questions
developers have when dealing with source code. Below, we
loosely follow their classification of source code history tasks
to discuss related work.

“When, how, by whom, and why was this code changed or
inserted?” These questions are usually answered by today’s
version control systems (VCS) and their respective visualiza-
tion tools, e.g, commit messages (why) or blame (who and
when). However, they often make it tedious to understand the
entire history of a piece of code, because they focus on the
most recent change. Ogawa et al. [12] consider not only the
latest changes but show responsibilities of different authors’
over time (who). Hartmann et al. [6] automatically create
annotations for code inserted from webpages showing their
origin (how). Kagdi et al. [8] built a system that supports
developers in finding someone who can help them understand
how to make a specific change (who).

“What else changed when this code was changed or inserted?
How has it changed over time?” Current VCS do not con-
sider this beyond the grouping of changes into individual
changesets, e.g., commits. Research prototypes [18, 21] use
repeating change patterns to suggest related code changes for
subsequent edits. Azurite [20] visualizes change events by
annotating a timeline with markers showing the location of
insertions, deletions, and modifications. A newer version [19]
allows semantic zooming on the timeline. This allows users
to quickly see in what parts of a file changes occurred. They
also propose to use this to selectively undo changes from the
history by applying inverse changes to the current version.
Telea et al. [16] aim at providing a detailed visualization of
changes over time based based on flow visualizations. Similar
visualizations have also been used to visualize the history of
news articles [13, 2] or changes within Wikipedia documents
[17]. Among other contributions, we introduce a similar visu-
alization that facilitates the interaction between visualization
and source code.

“Has this code always been this way?” SeeSoft [3] displays
information gathered from the history as a heat map on top
of the source code itself. They propose a number of proposed
metrics, most notably change frequency and age. Chronos
[14] arranges the full text of different versions on a large plane
that the user can navigate vertically to look at the content of
one individual version and horizontally to explore the history.
They align text that is unchanged over multiple versions by
inserting whitespace, allowing the user to quickly see inserts
and deletes when navigating the history.

“What recent changes have been made?” Many existing tools
enable the user to compare two different versions of a file,
e.g., Eclipse’s Diff view. DeepDiffs [15] shows the age of text
snippets inline using multi-colored highlights.

1 2 3 4

Figure 2. History Graph with four versions. Each node represents a
part of a source tree, e.g., a class, method, or code block. Nodes with the
same color represent the same structural element, e.g., an if block, but
not necessarily the same content, e.g., a changed condition. 1: A single
red node is created. 2 (insert): A new blue node and its two children
are inserted as children of the red node. 3 (split): A new green node is
created by duplicating the blue node but not its children, i.e., the user
copied parts of the code. 4 (merge): The code represented by the two
light blue child nodes is consolidated into a single node, e.g., because two
special cases could be handled by a single branch.

“Have changes in another branch been integrated into this
branch?” VCS visualizations often show a graph visualiza-
tion of different branches and their merge status (see e.g.,
github.com). For this work, we focus on navigating a linear
history and exclude branching.

CODE STRUCTURE
Existing VCS allow navigation of the history only on a file
basis. The user can select a version of the file from the history,
she then ascertains if the version is of interest for the question
at hand, e.g., how this method was changed in the last 6 months.
She may have to scroll in the file to find the method again,
then identify changes and their relevance before deciding if
to continue to the next version. This process is very tedious
and does not promote easy exploration and easy access to the
history.

Our approach uses the source code’s inherent hierarchical
structure to visualize events of interest that the user may use to
inform navigation decisions. Typically, source code changes
only affect a fraction of the whole file contents. Exceptions
would be a larger refactoring or the introduction of a new
feature. This also means that most changes are not relevant
for tasks related to an individual method. Providing the user
with the means to select which parts of the code structure are
relevant can thus simplify navigation and make relevant parts
of the history quicker to access.

One way to structure a source code file is by means of its
abstract syntax tree (AST). Every node in this tree represents
a range of text in the source code file, e.g., a method node rep-
resents the whole contents of the method. A child represents a
subrange of its parent node and siblings never represent inter-
secting subranges. For example, an if block within a method is
a child of the method node, and thus represents a subrange of
the method text. It will never intersect with another else block,
as defined by the programming language syntax. If we know
what node in this structure changed from one version to the
next, we can build a history graph that does not only linearly
connect all versions of the file but also represents the changes
of individual nodes in the AST. Figure 1 shows a simplified
example of such a history graph consisting of syntax trees over

A

B

C

1 2 3 4

D

1 2 3 4

Figure 3. Structural navigation properties of a history graph. Selected history paths are shown in bold. A—Filtering: we can hide parts of the
graph in order to simplify the structure to consider. If version 2 and 3 have no content changes, we can also contract them into a single version.
B—Abstraction: we can find a representative for groups of structural elements and thus simplify the graph; here we use an allowed depths of 1.
C—Viewport Stabilization: we can make sure that when switching between versions a node will always have the exact same position in the viewport,
represented here by the boxes around the nodes. D—Propagation: we can pass on properties such as selection to other versions of a node. During
navigation we can keep it the same, helping the user to orient herself.

three versions of a file. Such a history graph enables a more
detailed overview of the history of a repository.

The history graph consists of trees representing each file ver-
sion. Each node in such a tree can have an arbitrary number of
predecessors and successors pointing to neighboring versions.
Figure 2 shows an example. Similarly to [16], we look for
certain events of interest.

Insert events (Figure 2-2) occur when the user adds a new
structural element in the code. They may be interesting nav-
igation targets to see the state of the code when the element
was first introduced. Similarly, a delete shows the removal of
a structural element. Knowing about deletes would enable the
user to see code that previously existed in a method but has
since been removed.

A split event (Figure 2-3) occurs when source code is du-
plicated, i.e., copied and pasted. Merge events (Figure 2-4)
happen when two code elements are consolidated into a single
element. The programmer would usually move code from
one element into another, e.g., to remove overly complicated
branching. Splits and merge events allow the user to reason
about common ancestry and identify errors caused by over-
simplification of source code such as no longer handling a
necessary special case.

We will later use the term primary successor to denote the
structural element that source code was copied from. Similarly,
the primary predecessor is the predecessor that source code
was moved into.

Interaction
We envision a source code history navigation tool to be used
in conjunction with a typical source code view as found in
any development environment. We explored two different
kinds of interaction with a history graph. The first kind is,
interaction with the history graph itself, which changes the
shape of the graph. We describe one possible visualization
of this graph after the interaction discussion. The second
kind is, the interplay of the history graph with a source code

representation, enabling users to navigate the history of the
source code represented by the visualization.

Changing the History Graph
The two techniques discussed here reduce the complexity of
the history graph, and thus the visual clutter in a visualization
of this graph. The user may not be interested in the history
of the whole document, but instead only the history of an
individual code snippet, e.g., a method. First, we can reduce
the complexity by considering only one individual history
path. A history path starting in a given node is created by
adding the selected node’s primary successor to the path and
then repeat the process until we are at the end of the path; we
then do the same with the predecessors respectively. Such a
history path does not necessarily contain nodes from all trees,
but at most one node from any given tree.

We can then filter (Figure 3-A) the history graph by reducing
the visualized history graph to a subgraph based in a history
path. Such a filtered subgraph only contains tree nodes that
are in the subtrees of nodes on the history path. In this way, we
reduce the breadth of displayed information and allow the user
to focus on the history of individual elements. We also chose
to contract the history subgraph by only including versions
that have changes from their neigbors. Note that the filtered
subgraph created from a history path containing all root nodes
is equivalent to the full history graph.

Abstraction (Figure 3-B) of the graph allows us to reduce
the depth of the information displayed. This allows users to
focus on the “bigger picture”, showing only the history of
methods in a class instead of also considering all lines of code
within these methods. Given a filtered subgraph, we reduce
the depth of this subgraph by merging all subtrees with a depth
larger than a given value into their parent. The more the user
increases the allowed depth, the more details about changes in
child structure are revealed. However, this also increases the
graph’s complexity.

We leave it to the user to use both filtering and abstraction
in combination to select an appropriate level of detail. If a

Figure 4. Two version of a short piece of source code when navigat-
ing through history. We have viewport stability, since even though the
if. . .else statement was replaced with a switch statement, the selec-
tion appears at the same location and is highlighted correctly.

user only wants to know about the methods being added and
removed from a class, she could choose to filter the graph
based on the class, and then use abstraction to hide details of
changes within the methods.

So far, these techniques affect the the graph itself. In order to
communicate the restricted visualization in the source code
view, we suggest to gray out or hide the source code not
represented in a filtered subgraph.

Interplay with Source Code
We see the history graph as a way to navigate and explore
different versions of source code. The knowledge of each ele-
ment’s history enables new possibilities for history navigation.

Assuming the user selected a history path, we can ensure the
version tree nodes on this path to always be displayed in the
same location. As the user navigates through the versions
of a code snippet, we can scroll each version of the code
snippet to the exact same viewport location. This enables the
user to know where to look for changes in the code she is
navigating. We call this viewport stabilization. Figure 3-C
shows an abstraction and Figure 4 shows the concrete effect
in an example with source code.

Through a similar mechanism, we can also propagate other
properties (Figure 3-D). We use it to make sure that the text
blocks that represent the predecessors and successors on the
history path are always selected. However, this concept could
also be extended to propagate annotations, e.g., comments
made by the user exploring an unfamiliar piece of source code,
or even changes in a system like [4].

Tree Flow Visualization
Based on the interaction between graph and source code view,
we need a visualization of the graph that (a) shows the history
of different levels of a tree, (b) that supports easy adding and
removal of abstraction levels, and that (c) enables selection of
history paths by the user.

CAP

Figure 5. Tree Flow visualization of the two trees depicted on the right.
The red node and a blue parent node are removed and the two light blue
leaf nodes are merged into a single node. The height and position of each
curve is determined by the number of represented source code lines and
the starting line number.

We achieve this in our visualization called Tree Flow. Tree
Flow is heavily influenced by Arctrees [11], a one-dimensional
tree visualization, and other flow visualizations [16, 17]. We
first create an Arctree of each source code version and then
connect adjacent levels of this tree based on their successors
and predecessors in the history graph. Starting at the root,
we draw each node as a box with a given width. Similar to
[17], the height and position of the box are determined by the
number of source code lines represented by a node and the
starting line number in the source file. In this way, we create a
relief of the source code content. We can connect two adjacent
trees drawn in this way by drawing cubic bezier curves from a
node to its primary successor or predecessor. Insert and delete
events are drawn as caps (Figure 5 red path) in between the two
Arctrees. To create an organic look, we draw the Arctrees with
an effective width of zero, thus only defining the connection
points for the flow connections. The individual connections of
the flow visualizations are click targets, representing individual
history paths the user can select. In contrast to CodeFlows
[16], this visualization considers multiple tree levels at once
which enables us to only remove higher tree levels, if required
by the user (abstraction).

We specially handle a merge into a parent node as a delete
and a split into child nodes as insert event. Our coloring
approach works predecessor-to-successor and top-down: to
color a version tree, we first propagate the colors of all nodes
in the predecessor tree to their successor nodes. All nodes
left uncolored are colored using a desaturated variant of their
parent’s color or pick a color from a color map if the parent is
the tree root. This ensures that each first-level tree element and
its children have similar colors, but also moved code elements
will retain their original color after the move.

Since Tree Flow only visualizes structural changes, we finally
mark content changes between two versions by annotating
both versions with a vertical mark. This allows the user to
identify content that has stayed constant, and helps to identify
navigation targets not based on structural changes.

Figure 6. User interface of Chronicler for a short file with a short history. We see the source code view at the top and the Tree Flow visualization at
the bottom. The gray bar in the bottom right indicates the current version. We can easily see how long the individual blocks have been around, e.g, the
yellow switch statement was only recently added, and the initial version contained only a short version of the red sayHello function. The currently
selected code snippet is highlighted in dark blue in the visualization and in the source code. Vertical lines indicate a change at a commit, the yellow enum
statement e.g. was not changed since it was introduced.

PROTOTYPE
We built three prototypes that fulfill different subsets of our
structural navigation properties (Figure 3). A Normal Time-
line that allows to navigate in the history of a file and does not
provide any structural navigation properties. A History-aware
timeline that provides viewport stability. And Chronicler, that
uses Tree Flow visualization to create an annotated timeline.
On the Tree flow visualization Chronicler also provides Propa-
gation of the selected area, Filtering, and Abstraction. We also
created a fast parsing and matching algorithm for source code
that enabled us to run a user study with long code histories
provided by our study participants.

Building a History Graph
In contrast to [1], we do not match the complete AST to create
a history graph. We implemented a tree parser based on code
blocks which fits the notion that developers are often interested
in code on the “snippet level” [9, 7]. Most programming lan-
guages group code into blocks through statements like begin
and end or brackets. Usually, the same grouping mechanism
is used for namespaces, classes, methods, loops, etc. Thus,
we can approximate a rough syntax tree by only parsing code
based on this grouping mechanism. This removes the com-
plexity and performance requirements of parsing the whole
AST. This also allows us to parse many different programming
languages (e.g. JavaScript, Java, C, Objective-C, or Swift),
since we can quickly adapt our matching algorithm. Parsing
and matching only to the code block allows us to easily test
and verify the concepts discussed in this paper.

Our matching is based on a simple bag-of-words model. We
define a word to be any group of alphanumeric characters, i.e.,

variable names, language keywords, words in strings, words
in comments, and numbers. Any element of the syntax tree
is annotated with all words from the text it was parsed from.
We can then match two elements by comparing the contents of
the two multi-sets (bags) B1 and B2. The match score between
two nodes is defined as:

1
2
· |B1 \B2| ·

✓
1

|B1|
+

1
|B2|

◆

This results in values between 0 for bags with no common
elements, ans 1 for two bags that are the same. When matching
two trees we use the fact that changes are iterative to avoid
a lot of exhaustive tree searches. We first check for trivial
matches, i.e., completely unchanged nodes and nodes with
large scores (0.9 has worked well for our prototype). We only
do full tree searches for the remaining nodes. This allows us
to match even large trees quickly. In our experience, we could
reliably match nodes with 3 or more words.

Our final structure is a tree, similar to the AST, in which each
node represents a range in the original source code. Each
subtree represents a subrange of the text represented by its
parent. Children are easily linearly ordered by their occurrence
in the parent’s text. An abstract example of such a code block
tree can be seen in Figure 1.

Chronicler
The Chronicler prototype consists of a source code view and
the Tree Flow visualization. The Tree Flow visualization
also serves as timeline to navigate through source code history.
Whenever the user starts to drag on the visualization, we switch

Figure 7. Chronicler visualization for a longer file (about 1000 lines) with 200 versions. We used Abstraction to reduce the depth of the tree to the
method level. The visualization reveals details about the selected method (dark blue) and shows that it has been around for the lifetime of the code,
and was moved to another location in the file recently. We can also identify large refactorings (A), short lived experiments (B), and methods that were
merged into another one (C).

the code to the version corresponding to the horizontal location
of the mouse pointer.

Users can select a code block by clicking on the corresponding
history paths in the visualization. This selection scrolls the
code block into the viewport, highlights it, and highlights the
history path in the visualization. Selecting a code block in the
source code view will also highlight the corresponding history
path. As described in Figure 3-C and -D the selected code
block is highlighted and kept in the viewport during history
navigation.

To dynamically change the depth of the history tree, as de-
scribed in Figure 3-B, we added two buttons at the bottom left
of the visualization. Decreasing the depth of the history tree in
Figure 6 would let the red func-block to be the only represen-
tation for this part of the tree. This would also hide the lighter
red lines in the visualization. To filter based on a given history
path (Figure 3-A), the user can double-click a history path.
This moves the selected code block into view and changes
the visualization to only display the history of this subgraph.
We gray out the remaining source code to make sure the user
knows on which part the visualization is currently focused.
In this way, the user can descend into the tree to reveal more
details about classes, methods, or individual code blocks.

Figure 6 shows the Chronicler interface for a short source code
file. The currently selected code block is highlighted in the
source code, and the corresponding history path is highlighted
in the visualization. The buttons to change the abstraction
level are in the bottom left of the visualization.

To show also small changes, that do not affect the size of
a code snippet, we added vertical lines at commits where
something was changed. In Figure 6 the first case-statement
within the red block was touched in nearly every version, while
the yellow enum-statement was not changed after it had been
introduced.

Figure 7 shows a longer history from a file in a public GitHub
repository1. Currently the visualization is not filtered, pro-

1http://github.com/AFNetworking/AFNetworking

viding an overview on the evolution of the file to highlight
events like a major refactoring. A filtered version showing
only an individual method would look similar to the short file
in Figure 6.

History-Aware Timeline
For some tasks it might be unnecessary to provide the user with
a complete visualization of the history graph. Therefore, we
developed a history-aware timeline that only provides viewport
stability and selection propagation (Figure 3-C and -D).

We created an interface that consists of a source code view
and a timeline slider. When clicking into the source code, the
source code view highlights the code block around the line
containing the text cursor and selects the history path starting
at the respective history graph node.

After selecting a code block, the user can navigate the history
of the code block. The first line of each version will always
be scrolled to the same viewport position as the first line of
the previously displayed code block. In this way, the user
can easily identify the past versions of the original code block
during navigation. Figure 4 shows two states of the history-
aware timeline UI during navigation.

Of course, timeline navigation has its disadvantages; For ex-
ample, the user cannot tell what version to navigate to in order
to find a particular change. It may however be sufficient to get
back to an earlier version that the user still remembers clearly.
The history-aware timeline is thus more suitable for navigating
known source code than exploring an unknown code history.

EXPERIMENT
We conducted a study, comparing Chronicler, the history-
aware timeline, and a normal timeline. The normal timeline
only considers file versions and no structural knowledge. It
only uses the heuristic that source code changes are typically
small and scrolls back to the same absolute viewport location.

Our goal was to find out how users approach history navigation
with each of these tools as well as which tool performs best
in terms of task time. Therefore, we divided our experiment

in three parts: In the first part, all users were asked to dis-
cuss problem solving strategies for four different exploratory
tasks. Secondly, users had to perform a set of eight concrete
navigation tasks using one of the tools in a between groups
experiment. Third, we let again all users explore their own
repository with familiar source code; here they could choose
all tools again.

Before the first part users we explained all three tools on an
example file. We showed them how the structural navigation
properties are implemented in the different tools and let them
play around before the first part started. The normal time-
line did not provide any structural navigation properties, the
history-aware timeline has viewport stability, and Chronicler
has all four structural navigation properties.

After the first part, users were asked to fill out a questionnaire
regarding their opinion on how suitable each tool was for the
given task. In the second part, we measured the users’ task
completion times for the navigation tasks. The exploration
of their own code was used to collect additional qualitative
data, which gave us insights into how developers could use
history navigation tools. Throughout the study, we took notes
to gather qualitative data about users’ navigation behavior and
their impressions on the tools and tasks.

We recruited 21 people (2 female) between the age of 21 and
35 from a local developer mailing list at our computer science
department. They reported a median coding experience of 4
on a five-point Likert scale. The study took about 45 min-
utes. Free snacks and drinks were offered during the study;
participants were not compensated in any other way.

Part 1: Strategy Discussion
We identified four source code understanding tasks that can
be solved using the code’s history.

Task 1: How do you find out where a method originates from?
This is relevant in tasks where the programmer wants to un-
derstand a code snippet that may seem to be out of place or
a duplication of code. The snippet’s history may reveal that
the out of place code has been moved from a different method
without being properly adapted.

Task 2: How do you understand this version of a method?
Quick access to the history of a method allows the programmer
to look at older versions of a method. Older versions of a
method often are less complex since they handle fewer special
cases, making the core functionality easier to extract.

Task 3: There used to be an interesting line in this code snippet.
How do you find it?
A developer may have run into a problem and was told that
there used to be a special solution for this issue somewhere
else, maybe pointed out by the team historian [10].

Task 4: How do you identify a big refactoring in the code?
Identifying refactoring helps to understand reference points in
the history itself. People may have to treat leftovers from old
code differently than things that have been introduced more
recently. Also, the changes during the refactoring may clarify
the purpose of the code.

We call all of these tasks exploration tasks; the user does not
know in advance which version holds the answer to the ques-
tions. After each task, we asked each participant to evaluate
how well each tool was suited for the tasks on a five-point
Likert scale. Our hypotheses were as follows:

Hyp 1: The history-aware timeline and Chronicler will be
preferred over the normal timeline.

Hyp 2: For Task 1, Chronicler will be preferred over the
history-aware timeline, because the structure tree visualization
actually shows a merge, or lack thereof, when a code snippet
used to be part of a different context.

Hyp 3: For Task 2, the answer to the question is not provided
by the visualization. However, since structural changes, e.g.,
the length of a method or the existence of certain code blocks,
could be information scent for “easier to understand”, we
expected Chronicler to outperform the timelines.

Hyp 4: In Task 3, we specifically asked for a non-structural
element that cannot be visualized in Chronicler. Still the visual
information may suggest the existence of rich information that
is not there, therefore we expected the history-aware timeline
to perform better than Chronicler in Task 3.

Hyp 5: For Task 4, we expected Chronicler to outperform the
timelines, since when only looking at a small part of the code,
refactorings are very difficult to identify in these conditions.

We identified examples of these tasks in existing files from our
own development projects and a public GitHub repository2.
We urged participants to think about how they would solve the
task with each tool, instead of just completing it quickly. They
could switch back and forth between the three conditions at
their own leisure and amend their previous strategies.

Results
Quantitative Analysis
To analyze the nonparametric data from our questionnaire
we used a Kruskal-Wallis test and a Wilcoxon test for pair-
wise comparison. Overall, we found a significant preference
(Z = 10.34, Z = 6.90, p < 0.0001 both) for Chronicler over
both the normal timeline, as well as the history aware time-
line. We also found a significant preference (Z = �7.05,
p < 0.0001) for the content aware timeline over the normal
timeline, thus we accepted Hypothesis 1. For Hyp. 2, we found
Chronicler to perform better than both timelines (Z = 5.66,
Z = 4.90, p> 0.0001 both). For, Task 2, there is no significant
difference between Chronicler and the history-aware timeline
(Hyp. 3). This did not match our expectation; participants did
not consider the visualization to have an additional benefit over
a history-aware timeline. For Task 3, we found both Chron-
icler and the history-aware timeline to perform significantly
better than the normal timeline. However, there was no sig-
nificant difference between Chronicler and the history-aware
timeline, thus we have to reject Hyp. 4. Users probably were
not as easily distracted by the visualization as we expected,
and just used Chronicler in similar ways as the history-aware
timeline to fulfill this task. In Task 4, there was a significant

2http://github.com/AFNetworking/AFNetworking

Task 1 Task 2 Task 3 Task 4
G

ra
de

Tool applicability

C CHC H N H NC H NN
five four three two one

Figure 8. The results from the Likert-Scale questionnaire asking how
well the tool was suited for each of the discussed strategies. Generally
Chronicler was rated highest with an exception for Task 3. H: History-
Aware Timeline, N: Normal Timeline, C: Chronicler

difference between Chronicler and the timelines (Z = 5.66,
Z = 4.90, p < 0.0001 both), but no significant difference be-
tween the two timeline conditions, thus we can accept Hyp. 5.
As we expected, both slider conditions did not help to solve
this task, since they barely visualize a refactoring. Figure 8
shows a stack bar diagram of the questionnaire results for each
individual strategy.

Our results clearly indicate that Chronicler is generally better
suited for these kinds of exploration tasks, with the exception
of understanding a method where people could not see a par-
ticular benefit of the visualization. As we expected, people
always preferred a navigation with viewport stability over a
normal timeline.

Qualitative Results
When being explained the Chronicler prototype, many users
directly started making assumptions about the code history.
They started playing around with the visualization, and many
discovered features like the viewport stability without it being
directly explained . Users were highly interested in looking
into their own repositories and many stated they’d like to have
this available for their daily routine.

Regarding the comments and observations we made during the
first part of our experiment, we identified two key differences
between the timeline conditions and the Chronicler conditions.
First, Chronicler encourages lateral exploration of other code
blocks. Even when given a task about a specific method, partic-
ipants often also looked at other methods or code elements for
comparison. In the timeline conditions we usually observed
users to be focused on one code block. Second, the visual-
ization of structural change was often used as an indicator of
relevant versions. During exploration, participants started at
versions emphasized by a structural change occurring. The
timeline conditions do not have any such indicator, therefore
we observed a lot more random or even exhaustive searches
of versions.

As expected, the normal timeline was difficult to use over
multiple versions. 13 of the participants worked around this
using the ‘Find’ and ‘Find Next’ commands. The rest manually
searched for the method of interest in each version they looked
at.

With the visualization of Chronicler, people explicitly looked
for key versions with structural changes (17) and/or content
changes (5) when solving Tasks 1 and 2. Most participants (18)
used the visualization to identify valid navigation ranges be-
fore attempting any navigation. Only four participants looked
at each version individually.

In the timeline conditions however, only four people attempted
to identify key versions first. Nine participants randomly
selected older versions to find a version to compare and 12
proposed an exhaustive search of all versions.

18 participants also explicitly noted the helpfulness of the
overview provided by Chronicler for all tasks. For tasks 1 and
2, these participants not only tested their proposed strategies
with the indicated code, but also looked at other methods.
Only one participant did so for the timeline conditions. 14
also explicitly mentioned the ability to focus on a method as a
means to understand detailed changes (Tasks 1 – 3).

In Task 4, refactorings were mainly spotted in two ways. With
the timelines, one group (10) of participants used the length
of the file as a global indicator; they either looked at the end
of the file without using structural features or at the size of
the scrollbar. Large changes in scrollbar height or a large
jump of the end of the file were then interpreted as a potential
refactoring. The rest (11) looked at a specific method and tried
to identify versions with large changes in such a local view.
Two participants used a number of variable declarations at the
beginning of the file as a static reference point. They used
changes in these variables as indicator for a refactoring.

Both groups usually verified their hypotheses in the Chronicler
condition however. There, the refactorings were reported to be
easily identifiable through structural reorganization or length
changes.

All participants tried to select small, easily identifiable code
snippets when looking at the code in accordance with [9].
When possible, they selected a snippet that was completely
visible on screen.

Part 2: Navigation Tasks
The second part of our study was designed to consider nav-
igation that requires the participant to know what the target
version looks like. We consider local undo to be a history
navigation task, e.g., when the user wants to go back to an
earlier version after trying an experimental change. The user
likely still knows what the earlier version looked like. An-
other example are variants of strategy Task 3 where the user is
explicitly told what to look for.

We selected eight navigation tasks based on two characteristics:
the representation in the structure, i.e., if the code that was
to be found is visualized in the structure, and the amount
of versions having the particular change, i.e., fewer or more

Task Completion Time

Chronicler History-Aware Timeline

0

50

100

150

200 sec

Task 1 Task 8Task 7Task 6Task 5Task 4Task 3Task 2

Figure 9. Task completion times for individual tasks with standard error
bars.

than 10% of the versions on the timeline. We looked for two
examples for each combination of characteristics.

We performed a between-groups study; each participant was
randomly assigned a condition. Since users did not know the
repository we created sheets that contained a unique descrip-
tion of the lines of code they were supposed to look for. In
this way, they had an easy way to check if they had reached
the right version or not. All targets contained a small code
snippet that occurred for only one time period within the his-
tory. We gave people as much time as they wanted with these
sheets to understand the tasks before starting the experiment.
We measured the task completion time from starting the ex-
periment to the last navigation event. When performing the
navigation, users were asked to find the correct version as
quickly as possible.

Our hypotheses were as follows:
Hyp 1: Overall, conditions with viewport stability are faster
than the normal timeline.
Hyp 2: For each trial, conditions with viewport stability are
faster than the normal timeline.
Hyp 3: Represented events are faster to find using Chronicler
because the user can see where they have to navigate to, es-
pecially when less than 10% of versions have the indicated
change.
Hyp 4: Events not represented are faster to find using the
history aware timeline because there is no distracting visual-
ization.

Results
Overall, Chronicler had the lowest task completion times
with a mean of 39.47s. Users with the history-aware time-
line needed 45.05s, and users with the normal timeline slider
needed 85.33s on average.

We analyzed our measurements with a multi-factor ANOVA
and post-hoc analysis using paired t-tests. The analysis showed
a significant effect of condition on task completion time
(F = 8.20p < 0.01). Pairwise comparison showed that both

Chronicler and the history-aware timeline were significantly
faster than the normal timeline (MD = 45.86, StdErr = 12.47,
p < 0.01 for Chronicler and MD = 40.28, StdErr = 12.27,
p < 0.01 for history aware timeline).

Figure 9 shows timing results for the individual tasks. The
exceptional high standard error bars for the timeline condi-
tion in Task 3 and 6 can be explained by the different search
strategies. As mentioned in Part 1, some people used a ran-
dom search strategy to solve the task, which resulted in longer
search times for tasks with a small amount of target versions.

There were no significant differences between Chronicler and
the history-aware timeline conditions. There also was no
significant effect of any individual task on performance, and
no interaction effects between task and condition. While this
does not mean that Chronicler cannot be faster than the history-
aware timeline in terms of navigation time, it indicates that it
may not be worth it to spend the screen space on the larger
visualization for quick navigation tasks.

Part 3: Exploring Familiar Source Code
For the last part of the study, we let participants explore famil-
iar code. They were asked to bring their own repositories in a
programming language of their choice.

Since not all participants could bring their own code, this
part of the study was optional. Nevertheless, all but four
participants brought familiar source code and participated
in this last part. Everyone exclusively used the Chronicler
visualization, although all conditions were available to them.
The reception was positive throughout and people described a
number of interesting use cases.

General use: There were some comments indicating that peo-
ple would use the tool regularly.

• “With this, I actually would look into my old code more
often, right now I don’t do this at all.”

• “The lack of good version control made me store old ver-
sions of my methods within the comments a lot.”

Especially the second comment highlights that people may
have kept history versions around manually, a habit that they
may replace with a tool like Chronicler.

Structural soundness and stability: Some people focused on
the structural soundness of their code an identified regions that
were meant to be structured differently. Others said they could
use the structural stability of certain code parts to identify edge
case handling.

• “This tool would make me create better code structure, just
by showing what the originally planned structure was.”

• “This tool can show me, If my code should be refactored
soon.”

• “With this tool I can see my code structure is messed up, I
think I will fix that for my next version.”

• “When I look at this, I ask myself why I decided to move
this piece of code.”

Figure 10. The UI prototype for presentation slides, the Tree Flow vi-
sualization shows multiple objects that are copied into another slide, re-
orderd, and resized.

• “This could be used to identify edge cases for a method.
Typically the edge case handling gets introduced later than
the main functionality, with this tool I can find it easily.”

Collaboration: We saw some examples where people used the
tool to identify what a colleague did.

• “A colleague added something to our repository and I was
not able to find it quickly. This tool would have helped a lot
in this situation.”

• “I think I am able to see which commits were done by me,
and which were done by my colleague.”

Especially the first example seems to be an interesting use
case.

Customer communication: Lastly, a developer mentioned a
very interesting problem that regularly came up in their com-
pany, since they create special versions of their software for
each customers.

• “This would help a lot to identify the age of a bug in a
project. If the bug is discovered in a newer version of the
project, all affected branches can be easily notified.”

LIMITATIONS AND FUTURE WORK
We also received user comments how to further improve the
Chronicler interface. Users specifically requested zooming
on both axes of the visualization and a search functionality
through all history versions. We noticed that it may be ben-
eficial to select multiple history paths at once. This could,
for example, enable users to compare the evolution of two
methods side by side.

One limitation we accepted for the study is the code parser that
only considers code blocks. Some users noted that they would
be interested in the evolution of individual lines. This limita-
tion is mostly produced by only using heuristical matching.
We would like to explore how a structure aware IDE could
track changes over time. Such an IDE could include a VCS
that offers a more detailed history to help with undo or provide

support to discuss changes for code reviews. Including the
structure awareness into the VCS would also omit the need for
a matching algorithm, since the system can save the required
information during the development.

Until now, our matching algorithm only parses single file his-
tories, we would to add functionality for complete repositories
as well. To display this in Tree Flow visualization we would
add another layer of Abstraction that displays file level. This
would allow to see when parts of the code are moved into other
files, or which files have a longer lifetime.

Application to Other Types of Media
History graph visualizations are not only useful for source
code history. Chronicler nicely demonstrates the application
to a medium that is essentially one-dimensional, namely lines
of code. However, we can also use a system like this for other
media types.

Figure 10 shows a UI prototype that implements history graph
navigation for presentation slides. The presentation is repre-
sented as the root node of the history graph, the slides are the
first child nodes and objects on the slides are leaf nodes. In-
stead of representing the position and number of lines in a file
in Tree Flow, as we did with source code, we use the vertical
position to denote the order of slides as well as z-position of
objects on the slide and size to denote the area covered by
the object. We can still easily see when objects are copied to
different slides, their area changes, or they are reordered.

Similar approaches may also be interesting for 2-dimensional
graphics tools such as Photoshop. Capturing workflow histo-
ries has been shown to be relevant, and information about tool
use can support navigation in such a history [5]. An approach
using the structure of the file, e.g., through layer groups and
layers, may also help to identify relevant content changes.

SUMMARY
We introduced the notion that the history of individual code
elements can create new navigation techniques around source
code histories. We defined four navigation properties that
allow users to interact with a history graph and a corresponding
content view. Tree Flow, our visualization of a history graph,
is designed to support these properties by allowing dynamic
filtering and abstraction of the visualized graph.

We showed that our prototypes, Chronicler and the history-
aware timeline, outperform timeline-based navigation through
source code. While we could not observe a significant differ-
ence in navigation times between Chronicler and the history-
aware timeline, users significantly preferred Chronicler to a
user interface without the visualization. This is confirmed by
our qualitative observations which indicate that Chronicler is
better suited for exploration tasks around source code.

REFERENCES
1. Fanny Chevalier, David Auber, and Alexandru Telea.

2007. Structural Analysis and Visualization of C++ Code
Evolution Using Syntax Trees. In IWPSE ’07:
International Workshop on Principles of Software
Evolution. 90–97.

2. Weiwei Cui, Shixia Liu, Li Tan, Conglei Shi, Yangqiu
Song, Zekai Gao, Huamin Qu, and Xin Tong. 2011.
TextFlow: Towards Better Understanding of Evolving
Topics in Text. IEEE Transactions on Visualization and
Computer Graphics 17, 12 (2011), 2412–2421.

3. Stephen G. Eick, Joseph L. Steffen, and Eric E.
Sumner Jr. 1992. Seesoft—A Tool for Visualizing Line
Oriented Software Statistics. IEEE Transactions on
Software Engineering 18, 11 (1992), 957–968.

4. Shiry Ginosar, Luis Fernando De Pombo, Maneesh
Agrawala, and Björn Hartmann. 2013. Authoring
Multi-Stage Code Examples with Editable Code
Histories. In UIST ’13: Proceedings of the 26th annual
ACM symposium on User Interface Software and
Technology. 485–494.

5. Tovi Grossman, Justin Matejka, and George Fitzmaurice.
2010. Chronicle: Capture, Exploration, and Playback of
Document Workflow Histories. In UIST ’10: Proceedings
of the annual ACM symposium on User Interface
Software and Technology. 143–152.

6. Björn Hartmann, Mark Dhillon, and Matthew K. Chan.
2011. HyperSource: Bridging the Gap Between Source
and Code-Related Web Sites. In CHI ’11: Proceedings of
the annual conference on Human Factors in Computing
Systems. 2207–2210.

7. Reid Holmes and Andrew Begel. 2008. Deep Intellisense:
A Tool for Rehydrating Evaporated Information. In MSR
’08: Proceedings of the International Working Conference
on Mining Software Repositories.

8. Huzefa Kagdi, Maen Hammad, and Jonathan I. Maletic.
2008. Who Can Help Me with This Source Code
Change?. In ICSM ’08: IEEE International Conference
on Software Maintenance. 157–166.

9. Thomas D. LaToza and Brad A. Myers. 2010.
Hard-to-Answer Questions About Code. PLATEAU ’10:
Evaluation and Usability of Programming Languages
and Tools (2010).

10. Thomas D. LaToza, Gina Venolia, and Robert DeLine.
2006. Maintaining Mental Models: A Study of Developer
Work Habits. In ICSE ’06: Proceedings of the 28th
international conference on Software Engineering.
492–501.

11. Petra Neumann, Stefan Schlechtweg, and Sheelagh
Carpendale. 2005. ArcTrees: Visualizing Relations in

Hierarchical Data. In EUROVIS’05: Proceedings of the
joint Eurographics / IEEE VGTC conference on
Visualization. 53–60.

12. Michael Ogawa and Kwan-Liu Ma. 2010. Software
Evolution Storylines. In SOFTVIS ’10 Proceedings of the
5th international symposium on Software Visualization.
35–42.

13. Stuart Rose, Scott Butner, Wendy Cowley, Michelle
Gregory, and Julia Walker. 2009. Describing Story
Evolution From Dynamic Information Streams.

14. Francisco Servant and James A. Jones. 2013. Chronos:
Visualizing Slices of Source-Code History. In VISSOFT
’13: Proceedings of IEEE Working Conference on
Software Visualization. 1–4.

15. Ross Shannon, Aaron Quigley, and Paddy Nixon. 2010.
Deep Diffs: Visually Exploring the History of a
Document. In AVI ’10: Proceedings of the international
Conference on Advanced Visual Interfaces.

16. Alexandru Telea and David Auber. 2008. Code Flows:
Visualizing Structural Evolution of Source Code.
Computer Graphics Forum 27, 3 (2008), 831–838.

17. Fernanda B. Viégas, Martin Wattenberg, and Kushal
Dave. 2004. Studying Cooperation and Conflict Between
Authors with History Flow Visualizations. In CHI ’04:
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. 575–582.

18. A. T. T. Ying, G. C. Murphy, R. Ng, and M. C.
Chu-Carroll. 2004. Predicting Source Code Changes by
Mining Change History. IEEE Transactions on Software
Engineering 30, 9 (2004), 574–586.

19. YoungSeok Yoon and Brad A. Myers. 2015. Semantic
Zooming of Code Change History. In VL/HCC ’15: IEEE
Symposium on Visual Languages and Human-Centric
Computing.

20. YoungSeok Yoon, Brad A. Myers, and Sebon Koo. 2013.
Visualization of Fine-grained Code Change History. In
VL/HCC ’13: IEEE Symposium on Visual Languages and
Human-Centric Computing. 119–126.

21. T. Zimmermann, P. Weibgerber, S. Diehl, and A. Zeller.
2004. Mining Version Histories to Guide Software
Changes. In Software Engineering, 2004. ICSE 2004.
Proceedings. 26th International Conference on. 563–572.

	Introduction
	Related Work
	Code Structure
	Interaction
	Changing the History Graph
	Interplay with Source Code

	Tree Flow Visualization

	Prototype
	Building a History Graph
	Chronicler
	History-Aware Timeline

	Experiment
	Part 1: Strategy Discussion
	Results
	Quantitative Analysis
	Qualitative Results

	Part 2: Navigation Tasks
	Results
	Part 3: Exploring Familiar Source Code

	Limitations and Future Work
	Application to Other Types of Media

	Summary
	REFERENCES

