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Abstract

The process of creating large documents like a computer program, a book, or a
movie can take several years. During this process the author may want to return
to earlier versions of the document in order to compare different iterations or to
undo an earlier change. Navigating in the evolution of a document is usually a
tedious process because exiting tools typically consider the history of a document
as a whole. The user’s navigation goals, however, are focused around a specific
change from only a part of the document.

We compare the navigation of document versions to video navigation, where we
see interfaces that enable users to find a specific frame based on an object’s location
in the video. Unfortunately, these interfaces restrict which frames are accessible
to those frames where an object moves. It is also difficult to directly translate these
interfaces to non-video media media because they require a static frame of reference
which does not typically exist in other media types. We discuss extensions of these
video navigation interfaces that lift some, but not all, of the restrictions.

We then go on to propose an alternative approach based on a document’s changing
structure. Because such a structure changes slowly over time, we can base tempo-
ral navigation around this structure as a reference point. We discuss the principles
of strcutrue in temporal navigation interfaces and propose an approach to visu-
alize and interact with hierarchical structures over time. We introduce a system
for source code history navigation based on the soruce code’s hierarchical struc-
ture. Users perform navigation tasks twice as fast using structure aware interfaces
compared to existing similar interfaces. They also strongly prefer our visualization
when it comes to exploration tasks. Finally, we discuss how to extend this approach
to other media types and non-hierarchical structures.
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Überblick

Das Erstellen von Dokumenten, beispielsweise eines Computer Programms, eines
Buchs, oder eines Films kann mehrere Jahre dauern. Während dieses Prozesses
kann es relevant werden frühere Version mit der aktuellen zu vergleichen, oder
eine ältere Änderung rückgängig zu machen. Das Ziele zu einer speziellen Ver-
sion eines bestimmten Teils des Dokumentes zurückzukehren wird von typischen
Werkzeugen nicht gut unterstützt, da häufig nur das Dokument als Ganzes betra-
chtet wird.

Wir vergleichen die Navigation in Dokumentversionen mit Videonavigation. In
diesem Bereich existieren Interfaces, die, basierend auf der Bildposition von Ob-
jektem, einen bestimmten Zeitpunkt ansteuern. Es ist allerdings nur möglich Zeit-
punkte anzusteuern, in denen sich ein Objekt bewegt. Auch die Anwendung dieser
Interfaces in anderen Medientypen gestaltet sich schwierig, da von einem statis-
chen Hintergrund ausgegangen wird. Wir stellen Erweiterungen dieser Naviga-
tionsinterfaces vor, die einige, aber nicht alle, dieser Probleme lösen.

Als Alternative stellen wir einen Ansatz vor, der auf der Struktur eines Dokuments
beruht. Da die Struktur sich über Zeit nur langsam verändert, kann der Nutzer
sie als Referenzpunkt für die Navigation verwenden. Wir definieren wie Struktur
in einem temporalen Navigationsinterface verwendet werden kann, und wie man
Veränderung hierarchischer Strukturen visualisieren kann. Wir stellen ein Nav-
igationswerkzeugs für die Historie von Quellcode vor, und zeigen, dass Nutzer
mit diesem Werkzeug schneller durch eine solche Historie navigieren können. Wir
zeigen auch, dass Nutzer die vorgeschlagene Visualisierung für die Exploration
stark bevorzugen. Abschließend diskutieren wir Ansätze für die Nutzung dieser
Ideen für anderen Medientypen und nicht-hierarchischen Strukturen.
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Chapter 1

Introduction

“A complex system that works is invariably
found to have evolved from a simple system that

worked.”

—John Gall

Navigation through time is usually seen as a means to The evolution of a
document is a
time-based medium.

select a playback time of a video or an audio file. There
are a lot of tasks where users want to navigate to a certain
time in such a time-based medium. Examples of theses tasks
are editing, ethnography, or simply wanting to find a spe-
cific scene in a video. In this thesis, we also consider a less
thought of time-based media type: the evolution of a doc-
ument over time. Changes to a document gradually affect
individual aspects of that document and can slowly trans-
form it from something short to something long, something
simple to something complex, or something disorganized
to something refined. An author writing a novel, a pro-
grammer writing a piece of source code, or a designer de-
veloping a logo, create their respective artifact slowly over
time in lots of individual steps. When we consider all of the
versions of a document linearly arranged in time, we get
something similar to a video that arranges individual video
frames over time and each frame only has minor changes to
the previous one.

Going back to any of the steps from a document’s history
might be interesting for several reasons.
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Figure 1.1: Adobe Photoshop history list (left) and selec-
tive undo for paintings [Myers et al., 2015]. The history list
in Photoshop describes the past actions. When the user se-
lects an item for undo, all items following the selected item
will also be undone. Myers’ selective undo for painting
applications shows a similar list of changes, but individ-
ual changes can be undone without affecting subsequent
changes in the list.

• The user undoes recent changes or completely rein-
states an earlier version.

• The user looks at a previous version, copies a certain
part of the older document that she has deleted since,
and pastes the copy into the most recent version.

• The user wants to understand a document and looks
at different versions from the history to understand
what the document used to look like and how it
changed over time.

Of course, this functionality exists in the form of undo, his-
tory lists, or version control systems (see Figure 1.1).

Unfortunately, undo and history lists can easily be destruc-Undo is usually
destructive. tive; accidentally typing a character after hitting undo a
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Figure 1.2: The Youtube playback interface with a typical timeline slider at the
bottom. The interface on the right shows frames surrounding the current playhead.
These provide additional context and help the user to find navigation targets.

couple of times makes it impossible to go back to the cur-
rent version. They also do not allow to undo one specific
change while leaving newer changes intact. Research pro-
totypes have proposed ways to implement such a selective
undo, e.g., [Berlage, 1994] and [Myers et al., 2015] (Figure
1.1). Here, only selected events from a history are undone
by reapplying inverse changes to the end of the document.

A problem of all of these undo approaches is that they focus
only around the most recent changes. Undoing a modifica-
tion hundreds let alone thousands of changes ago is impos-
sible because usually only a limited set of recent versions
is available. Even with version control systems that enable
this long-term undo, finding the right change to undo is still
difficult. Typically we navigate the history of a file through
a list of user generated change descriptions. If these de-
scriptions are not precise enough to let the user find what
she is looking for, she has to search all changes.

In this thesis, we aim at creating a temporal navigation in- Our goal is to enable
temporal navigation
in the history of
documents.

terface for the history of a document. This interface helps
the user understand what kind of changes occurred, which,
in turn, helps to find a version of interest easily and quickly.
To do so, we draw on the knowledge of temporal naviga-
tion interfaces from the domain of video navigation.
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Figure 1.3: Apple’s Time Machine interface for navigating versions of a text doc-
ument. The timeline is stacked vertically on the right of the screen with a callout
around the current location of the mouse pointer.

1.1 Temporal Navigation Interfaces

The typical navigation interface for time-based media is a
timeline. A timeline localizes points in time uniformly on a
slider. We obviously see timeline interfaces in media play-
ers such as Youtube (Figure 1.2). There are also some time-
line based interfaces for version management of files or
documents such as Apple’s Time Machine (Figure 1.3). In
these interfaces, navigation to a point in time is easy if one
can estimate the target on the timeline and then drag the
slider to that point; this is only the case if one can express
the navigation target in terms of time.

1.1.1 Content-based Temporal Navigation

Arguably, the user’s navigation goals are rarely formulated
in terms of time, but rather in terms of content. In video,
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Figure 1.4: Display of thumbnail images from a movie in
Swifter [Matejka et al., 2013]. As the user scrubs the time-
line (not shown), Swifter shows a quick overview of the
scenes in the movie. Users can also select navigation tar-
gets directly from this overview.

the user does not want to navigate to minute 20 of a soc-
cer game, they want to navigate to the moment of the first
goal. Similarly, a user does not want to find the version of a
text document created at 3PM but the version that had ‘the
classier subtitle’.

Thus, there are a number of navigation interfaces that an- Annotated timelines
attempt to bridge the
gap between
content-based goals
and time-based
navigation.

notate the timeline with some visualization of the content.
Youtube’s video player shows a row of small frames around
the current time as soon as the user starts dragging (Figure
1.2). Swifter [Matejka et al., 2013] uses a similar approach
but uses more space which enables the user to quickly skim
even long videos (Figure 1.4).

The slider annotation does not need to show the contents These annotations
do not have to be the
content itself.

directly but can also visualize properties of the content.
Consider the waveform visualization of an audio file that
shows the peak amplitude of the audio signal (Figure 1.5).
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Figure 1.5: A timeline slider annotated with an audio wave-
form. Volume changes are easily visible and allow the user
to reason about which audio events might impacting the
visualization.

A user cannot directly understand the content from this vi-
sualization but she can use it to infer what event in the con-
tent caused the specific visualization. A user might want to
find the part of an orchestral music piece where a soloists
finishes and the whole orchestra starts again; she interprets
a part of the audio with small amplitude as the soloist part
and the following part with larger amplitude as the whole
orchestra. Through her own interpretation, she can identify
the right point in time without the visualization actually
providing the answer directly. Although she may also mis-
interpret the visualization, she will often be able to find the
right point in time by looking at multiple potential naviga-
tion targets. Pirolli [2007] calls this indirect representation
of content information scent. People sometimes specifically
design actions to create strong information scent in such
a visualization, e.g., the slate clap when filming a movie
scene scene creates a sound that is easily identifiable in the
waveform and is used during editing for syncing video and
audio.

1.1.2 Direct Manipulation Temporal Navigation

We also see interfaces that go beyond using a slider inter-
face. Karrer et al. [2008] allow users to directly interact with
the motion of the objects in a video scene (Figure 1.6). The
user can select an object in the scene, the system will dis-
play its motion trail, or trajectory, and the user can then
drag it to any locations on its motion trail; the video will
just jump to the time where the object is at that location.
Time is completely ignored in these interfaces in favor of a
more goal-oriented property like an object’s location. Kar-
rer [2013] describes theses interfaces as semantic navigation
interfaces because they try to directly represent the user’s
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Figure 1.6: Video navigation using the DRAGON interface
[Karrer et al., 2008]. Users can select objects such as the
car by clicking. The system shows the movement trajectory
(yellow) and allows her to navigate in the video by drag-
ging to a specific location. The object will snap to the time
where the location on its movement trajectory is closest to
the mouse cursor.

understanding of the medium’s content and her task, e.g.,
DRAGON supports tasks that involve a moving object and
a static reference point. Because of this specialization, these
interfaces usually perform very well in their domain.

In this work, we argue that this specialization becomes Direct Manipulation
Temporal Navigation
is too restrictive for
exploration tasks.

problematic when the user has to deal with a number of
different tasks or badly defined tasks such as exploration
of a document’s history. When the task changes, the inter-
face can quickly become unsuitable and has to be replaced
by another, more suitable interface. Assume the car in Fig-
ure 1.6 stopped at some point to let another car cross the
intersection. Times where an object is stationary are not ac-
cessible with a system like DRAGON. If the task is to find
out why the car stopped, the user has to choose a different
interface, usually the timeline, to find an answer. Depend-
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ing on the task, creating semantic navigation interfaces can
also be very difficult, especially when it comes to the in-
terpretation of content. We cannot easily find an algorithm
that understands and parses concepts like argumentative
structure in a text.

1.2 Structural Navigation Interfaces

We propose to side-step this issue by creating an inter-A document’s
structure is often

easy to find and the
user can interpret its

meaning.

face that builds on hierarchical structures within a medium.
Such hierarchical structures are often easy to find, and can
be used as information scent for higher level tasks. In
written text, we can easily find structural elements such
as words, clauses, sentences, paragraphs, sections, or chap-
ters. A user who identified that two paragraphs represent
two different arguments can look for changes within these
paragraphs or for changes in the ordering of these para-
graphs. Selecting the right representation level, like para-
graph or sentence, and judging if the navigation goal has
been reached are left to the user. In this work, we created an
interactive prototype that visualizes the structure of a doc-
ument and allows the user to follow the information scent
provided by these structural changes.

1.3 Thesis Structure

The remaining part of this chapter further motivates the
need for analyzing the history of documents in detail. In
the subsequent thesis chapters we then discuss the follow-
ing:

• Chapter 2—“Exploration with Semantic Navigation
Interfaces” provides an overview of semantic navi-
gation in the context of video and our approaches to
improve direct manipulation video navigation. We
attempt to create an interface that allows the user to
retain the context of a situation even when an object
is not currently moving. The approach informs our
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understanding of the need for a different kind of in-
terface for exploration.

• Chapter 3—“Structural Navigation Interfaces” builds
on these findings and shows an interface for the ex-
ploration of the writing process of exams. Based on
this simple interface we generalize the notion of struc-
tural navigation interfaces and define four navigation
properties that are specifically enabled by these inter-
faces.

• Chapter 4—“Chronicler: Navigation in Source Code
Histories” dicusses specific structural navigation in-
terfaces for the exploration of source code. Using
the inherent hierachical structure of source code gives
us the opportunity to create a visualization that can
then be used for navigation and exploration. A
study shows that structural interfaces outperform
non-structural interfaces for navigation tasks, and the
visualization is strongly preferred by users in explo-
ration tasks.

• Chapter 5—“Generalizing Tree Flow Interfaces”
shows how to create similar hierarchical structures
for other media types and the trade-offs we have to
consider.

• Chapter 6—“Summary and Future Work” concludes
our work with a review of our work and an overview
of open questions.

1.4 Navigating Document Histories

We already mentioned several reasons for navigating doc-
ument histories. In this section we are giving some insights
into why this is a relevant topic of research. We focus on
two topics, selective undo, and understanding document
evolution.
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1.4.1 Selective Undo

Berlage [1994] introduced direct selective undo as a way toSelective undo
interface present the
user with a linear list

to find changes.

undo only specific commands from the document history.
His work considers when and how selective undo would
work. He imagines commands to undo to be selected us-
ing a history list of textual descriptions of the commands.
[Myers et al., 2015] who recently presented selective undo
for painting applications (see Figure 1.1), use a visual rep-
resentation of the changed painting element to show the
document state. [Yoon et al., 2013] propose a visualization
of the document history, that supports finding the right ver-
sions for selective undo. Instead of showing the actual doc-
ument content, they only highlight where in the document
changes occurred.

Version control systems are probably the most well-known
class of applications that support selective undo today.
Finding the right version of the document there is usually
done using a linear history of all documents in a repository.
We can sometimes reduce the amount of versions to look
through by only considering changes to a certain file. Most
programming environments also have a special “diff view”
(Figure 1.7) where the user can compare at two versions of a
file side by side. Usually these views also show additional
annotations based on a textual difference algorithms, e.g.,
[Myers, 1986].

We also see a form of selective undo in file system backup
tools like Apple’s Time Machine. Time Machine enables the
user to look through backed up versions of the file hierar-
chy and then recover a modified or deleted version from
the backup. While an individual file is either completely
overwritten or duplicated, other files in the folder are not
touched. Time Machine also works to look at individual
files 1.3 and shows two editable versions side by side to se-
lectively copy parts of the document.

All of these tools have the issue that the user must findAll examples
mentioned above do
not support the user

to find the right
version.

the right version to compare or restore first. Most tools
require the user to navigate the history linearly with the
minor restriction of being able to focus on a certain file or
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Figure 1.7: File comparison view in Apple’s Xcode. The dif-
ference annotations easily show how the five methods on
the left were deleted sometime between the two versions.
Interestingly, this display is incorrect. The methods were
actually moved somewhere else in the file, but the Diff al-
gorithm chosen by Xcode could only model this as a delete
here and an insert at the new location.

folder. Yoon et al. [2013] allow the user to consider changes
by their location in the file, but the location of an entity of
interest can easily change by adding text somewhere else in
the document.

1.4.2 Understanding Document Evolution

It is also possible to use the history to understand the evo-
lution of a document. We can look at this in two ways: we
can use it to understand the current version better and an-
swer questions about how old a part of a document is, what
other parts it was introduced together with, or how often it
has been changed. Or we can use it to understand an old
version which may give us insights into the thought pro-
cess of creating the document.

One popular example of using the document history is an The visualization of
Darwin’s “Origin of
Species” shows
when certain
passages where
introduced.

experiment by Ben Fry about Charles Darwin’s “Origin of
Species” [Fry, 2009b] (see Figure 1.8). His experiment visu-
alizes changes to the book and highlights what was added
or modified in each version. He reports [Fry, 2009a] that
the idea came “from a discussion with a friend, who had
begun to wonder whether Darwin had stolen most of his
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Figure 1.8: Ben Fry’s visualization of “The Origin of
Species”. Each colors denotes a different edition and shows
which text was inserted when.

better ideas from Alfred Russel Wallace.” According to Fry,
the understanding resulting from the experiment instead
raised Fry’s appreciation for Darwin’s ideas.

Deininghaus [2010], who wrote his diploma thesis underWe created an
interface for literary

scholars who
analyze the evolution

of books.

the author’s guidance, developed an interactive tabletop
application for literary scholars. His work was later pub-
lished at ITS 2010 [Deininghaus, Möllers, Wittenhagen, and
Borchers, 2010]. Part of Deininghaus’ work was the analy-
sis of the work-habits of literary scholars.

He found that the core work material of the interviewed
scholars, the historical-critical editions, are an “extensive
collection of textual variants, facsimiles of preserved origi-
nal documents, commentary, historical background, or in-
formation on the text’s reception and transmission”. The
work process of literary scholars includes understanding
different passages, secondary literature, and, most relevant
for this work, comparing different versions of the same text.
In our paper we proposed to integrate digital representa-
tion into the typically paper-based work process (see Figure
1.9).
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Figure 1.9: The digital table proposed in our paper. It en-
ables literary scholars to add digital annotations to physical
books on top of the table. From [Deininghaus et al., 2010]

An open issue is how to find appropriate versions to com-
pare in the large amount of text available in such an edition.
Historical-critical editions seek to support analysis from a
wide number of different angles. Their contents are typi-
cally rather extensive in order to cover a large number of
aspects; however, this also means that for many conceiv-
able questions, much of that information might well be ir-
relevant [Deininghaus et al., 2010]. This again supports the
idea that we need an interface to help find specific versions
of a document. Also, when looking at an unknown docu-
ment or a new question, a user often cannot know which
characteristics might be most interesting to compare. Thus,
an interface that is as unrestrictive as possible and supports
exploration of unknown versions would also be important
for this usecase.

We also strongly believe that the process of understand- The same concepts
apply to developers.ing and exploring histories is also relevant for other me-

dia types. Developers, for example, could use these ideas
to understand a particularly complex method by navigat-
ing to an older version that might still conceptually do the
same but is easier to understand. Before coming back to
navigating histories of text documents, we take a look at
video navigation interfaces and how well these interfaces
can enable exploration tasks in the domain of video.
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Chapter 2

Exploration with
Semantic Navigation
Interfaces

“We know what we are, but know not what we
may be.”

—William Shakespeare

When navigating a document’s history, we have two deal
with two separate groups of tasks. Navigation lets the user
select the version of the document we want to see. Explo-
ration allows the user to find out about what versions of a
document actually exist.

Our original idea for navigating change histories was to
use concepts found in direct manipulation video naviga-
tion interfaces. Thus, we look at existing temporal navi-
gation interfaces in general and DRAGON, an interface for
semantic navigation in video scenes in particular. While
this tool works well for a certain kind of navigation tasks,
it performs worse when the navigation task changes even
slightly. We show how to extend the interface so that it can
handle a more diverse set of navigation tasks. However, the
amount of flexibility required for exploration tasks seems
infeasible to achieve with the proposed interface. This in-
forms our argument that of using an alternative represen-
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tation of content over time to allow exploration based on
information scent.

2.1 Exploration

Consider the tasks we have described so far; undo andIn Navigation tasks,
the user has a

specific goal in mind.
understanding a document. Especially for undo tasks,
we often have a clear goal in mind, e.g., one wants to
find the document that does contain a particular sentence.
These kinds of tasks can be solved with interfaces like the
timeline slider, albeit without helping the user understand
where they have to navigate to. This problem is tackled
by content-aware navigation interfaces like DRAGON that
bridge the gap between content-oriented goals and time-
based navigation.

For the second example of understanding document evo-Exploration tasks
require the user to

first discover a series
of navigation goals.

lution, the user may not know beforehand which versions
they want to see and compare. Discovering these ver-
sions is what we consider to be exploration. During explo-
ration the user may consider different document versions
and then move on to a different version that may be better
suited for their task. In our definition, exploration is the
process of finding a series of before unknown navigation
goals. User interfaces can support this task by providing
information scent.

2.1.1 Information Foraging and Information Scent

Pirolli [2007] extensively studied how user’s navigate in-Information scent
represents content in

a way that helps
users to find the

information they are
looking for.

formation and models users as information foragers, anal-
ogous to animals foraging in patchy environments where
food is arranged into clumps. As a user gathers knowledge
from an information patch, the available new information
will be reduced, until she has to find a new patch. One core
concept in finding these new patches is information scent.
Pirolli [1997] define information scent as a “[. . . ] terse repre-
sentation of content [. . . ] whose trail leads to information of
interest”. Pirolli and Card [1999] expand on this definition
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stating that “information scent is the (imperfect) perception
of the value, cost, or access path of information sources ob-
tained from proximal cues [. . . ].” Examples of information
scent are textual or visual summaries of websites in search
results. There is a strong impact of the quality of informa-
tion scent on the navigation task that is to be solved.

Pirolli [2007, chapter 4] exemplifies this using a web search
task. The information structure of links on the Web create a
lattice graph. Possible browsing choices at each node of the
graph (a link) can be idealized as a search tree that the user
has to traverse to find the right web site. With perfect infor-
mation scent, the amount of links to follow becomes linear,
i.e., the depth of the target in the tree. As the information
scent becomes worse, the user has to search more and more
of the tree, requiring a full tree search in the worst case,
i.e. an exponential amount of links to follow. Small im-
provements in the quality of information scent “can have
dramatic qualitative effects on surfing large hypertext col-
lections.”

Pirolli models this quality as the user’s ability to interpret Information foragers
can learn to
understand what
original content
created a terse
representation.

proximal cues, e.g. the website summary, as being caused
by desired information, e.g., the website discussing a spe-
cific topic. Note that the quality is not only dependent on
the information scent, but also on the users’ learned ability
to interpret it. In summary, “the theory of information scent
proposes that information foragers have mechanisms that
reflect the probabilistic texture of the environment.” We
further use these concepts in chapter 3—“Structural Nav-
igation Interfaces”.

2.2 Related Work

We distinguish the field of temporal navigation techniques
into timeline based and direct manipulation techniques.
Timeline based techniques are built on top of the timeline
slider and enrich the navigation in some way. Direct ma-
nipulation techniques [Shneiderman, 1982] enable the user
to directly interact with the content.
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Figure 2.1: Stacked timeline visualization with editing
events. The hierarchical nature of the annotations allows
to summarize individual event timelines in a group and
allows to hide unwanted details. From [Grossman et al.,
2010]

2.2.1 Timeline Based

Obviously, there are many extensions of timeline ap-Multi-level timelines
refine the selection of

a lower-level on
higher-level

timelines.

proaches for time-based navigation. Mills et al. [1992] cre-
ated a multi-level timeline interface that samples frames
from the video and equally distributes them over the time-
line. A user can then select part of the timeline to create
a new sub-timeline which can then sample frames from
a subset. [Arman et al., 1994] automatically detect shot
boundaries and find representative frames for each shot.
They then present scenes with similar representatives on
a second level timeline.

Other approaches use multiple stacked timelines that rep-Stacked timelines
represent different

aspects of a medium
at once.

resent different aspects of the medium. Mackinlay et al.
[1991] developed the perspective wall, a well-known fo-
cus + context technique that uses a central 2D focus area
and a perspectively distorted context area. The 2D focus
area represent events on multiple stacked timelines over a
spanning domain, commonly time. Grossman et al. [2010]
use a timeline hierarchy for several event classes that oc-
curred during the creation of a document (see Figure 2.1).
While these events do not directly represent the state of the
document at a certain time, they serve as information scent
for the user. Besides events, single points in time, stacked
timeline can also be used to describe time ranges. Vascon-
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Figure 2.2: Stacked timeline visualization showing a movie
trailer. Each stack level shows a different aspect of the shot
(A = action, D = close-up, C = crowd, S = natural set). From
[Vasconcelos and Lippman, 1998]

Figure 2.3: BrowseLine provides information scent based
on the frequency of browsing events. The vertical timeline
on the right replicates an abstraction of the main view to
navigation to sparse or dense event clusters on a certain
day. From [Hoeber and Gorner, 2009]

celos and Lippman [1998] propose to use stacked timelines
to provide information about different aspects of shots like
action or close-up (see Figure 2.2)

BrowseLine [Hoeber and Gorner, 2009] uses a 2D time vi- 2D timeline
visualizations often
present both
overviews and
details.

sualization approach for a user’s browsing history. The sys-
tem represents time in 2D (hours vertically, minutes hori-
zontally) and also linearly on a scrollbar which also shows
a miniature representation of the 2D view (Figure 2.3). Con-
tinuum [André et al., 2007] shows a summary timeline with
an activity graph and a detail view containing information
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Figure 2.4: Continuum shows a hierarchical arrangement
of music pieces by composer by era. From [André et al.,
2007]

about activity. The summary timeline does not show the ac-
tual content but an abstraction of the data. Their stated goal
is to enable navigation through a large number of events
(1000 to 10000). To achieve this they use the hierarchical
structure of the event data; Figure 2.4 shows their “com-
poser example” with music pieces grouped by era and com-
poser. Swifter [Matejka et al., 2013] shows a grid of repre-
sentative video frames around the current location of the
timeline slider. In this grid, the user can then easily see
upcoming differences like scene changes when navigating
through a longer video.

SlitTears [Tang et al., 2009, 2008] allows the user to draw
lines into a video scene (Figure 2.5). At each point in time
the pixels under the line are copied to the timeline. This
extrudes all events at the location of the slit over time and
makes it easy for the user to see changes occurring at the
location of the line. By drawing lines at strategic locations,
the user can then find relevant events.

2.2.2 Direct Manipulation

In the last decade, researchers have created a numberDirect Manipulation
Temporal Navigation

ignores time and
allows the user to

interact with the
location of objects in

the scene
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Figure 2.5: SlitTears replicate the pixels under lines drawn
in a video scene on a timeline. When the pixels change this
creates visible effects on the timeline that can be interpreted
by the user, e.g., the long curved streak in tear 1 indicates
a car coming from the top stopping at the intersection and
then continuing. From [Tang et al., 2009]

of direct manipulation interfaces in the domain of video.
Schematic Storyboarding [Goldman et al., 2006] is a vi-
sualization technique inspired by movie production sto-
ryboards. This visualization adds movement information
about objects and the camera directly into the scene in the
form of arrows. By clicking and dragging on these arrows,
the user can manipulate the location of the object repre-
sented by the arrow.

Trailblazing [Kimber et al.], DRAGON [Karrer et al., 2008],
and DimP [Dragicevic et al., 2008] all track selected ob-
jects and display their 2D movement trajectories within
the scene. The user can then navigate through the video
by dragging object to locations on that trajectory. DimP
also enables background stabilization to deal with camera
motion (see Figure 2.7). Trailblazing additionally localizes
objects on a map spanning multiple cameras in a surveil-
lance setting and allows the user to interact with the video
by dragging the object on the map representation. [Gold-
man et al., 2008] allow the same interaction, but among
other usecases, introduce more sophisticated object selec-
tion mechanisms through drawing on areas. We also ex-
tended DRAGON for interaction on mobile devices [Karrer,
Wittenhagen, and Borchers, 2009].
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Figure 2.6: Schematic storyboarding summarizes move-
ment in a scene by 3D arrows. Clicking and dragging on
these arrows scrubs through the video. From [Goldman
et al., 2006]

Figure 2.7: DimP allows direct manipulation video naviga-
tion even when the camera is moving by shifting the posi-
tion of the image in the video view in the opposite direction
of the camera movement. From [Dragicevic et al., 2008]

Perin et al. [2014] and Vuillemot and Perin [2015] createdDirect manipulation
of table cells easily

allows a visualization
of all data over all

points in time.

similar direct manipulation approaches for ranking tables.
They describe two approaches. The first approach lets the
user drag selected table rows to a vertical location, i.e., its
rank. The second approach displays a line chart that shows
the values of a selected columns for each point in time
and then lets the user drag to a horizontal location to se-
lect one of these versions. Since the column data is one-
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Figure 2.8: Direct Manipulation of values in ranking tables
allows the user to drag a selected cell to a rank in the table.
We can easily see the co-evolution of multiple selected rows
at the same time. From [Vuillemot and Perin, 2015]

dimensional, the display of all values of one column at all
times creates a 2D visualization (see Figure 2.8). This 2D vi-
sualization can easily show where and when several values
change together or switch ranks.

For video this is not easily possible without a 3D visualiza-
tion like [Eccles et al., 2008] or the reduction of 2D content
to a line like SlitTears [Tang et al., 2008]. 3D Visualizations
have the issue that they do not scale well in the number and
size of visualized objects because of occlusion issues.

2.3 Semantic Navigation

Karrer [2013] introduced the notion of semantic interfaces.
While Karrer defines these interfaces for a number of do-
mains, we will focus on semantic navigation interfaces in
the domain of video. A semantic navigation interface is de-
signed to minimize the semantic distance from the users goal
to a navigation action. It is the amount of effort a user has
to make to translate an intention into actions performed in
the interface Karrer [2013, chapter 2.2]. Karrer showed that
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these navigation interfaces allow the user to solve a specific
task in a highly efficient manner.

By design, they are, however, strongly linked to their spe-
cific task. We argue that this strong coupling between
task and interface creates problems when the tasks are not
known a priori or the amount of potential tasks becomes
too large. This is typically the case during exploration
tasks, because the user first has to identify her next navi-
gation goal. Semantic navigation interfaces can also be in-
herently difficult to design when the task requires a very
complex semantic structure.

2.3.1 Issues of Semantic Navigation Interfaces

We look at the issues of semantic navigation interfaces inSemantic navigation
interfaces are linked

to a specific task.
the area of video navigation. The DRAGON interface works
as follows. A user selects an object in a video scene by click-
ing, the system computes the location of the object at each
frame in the video scene until it disappears. All of these
locations form a path that is visually shown on top of the
video scene; thus a user can see at which locations in the
scene the object will be. When scrubbing along this path,
the system jumps to the point in time where the object is
closest to the location of the mouse pointer. The task solved
with DRAGON is effectively: “navigate to a time in the
video where a specific object reaches or moves past a fixed
location in the scene.” A concrete navigation task could
be “navigate to the time where this car leaves the intersec-
tion.” Such direct manipulation video navigation (DMVN) in-
terfaces allow the user to easily translate this intention into
actions, i.e. click on car, drag to where the trajectory leaves
the scene. The timeline does not allow this as easily because
the drag target is unclear; users have to guess a target, scrub
there, reevaluate the scene content, and repeat.

The object for a DRAGON task must be specific, because it
has to be selected before navigation, it must also be visible
so it can be selected, and it must move because otherwise
we do not have a trajectory to interact with. It is also not
allowed for the target location to be another moving object,
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Figure 2.9: When interacting with the selected car in the
scene, it is easy to navigate to static reference points, e.g.,
the moment the car passes the street light. It is not possible
to drag the car to a moving object like the bike because the
bike will likely have moved somewhere else by the time the
car gets to that location.

because if it was, the visualization would not help us deter-
mine where the two objects would meet. We end up with a
similar problem as the timeline slider (see Figure 2.9).

In the area of direct manipulation video navigation there
are two major issues we want to discuss.

1. During exploration tasks, the user has a difficult time
to define her next navigation task.

2. The problem of having restrictions around a specific
tasks is difficult to solve.

The following sections discuss attempts to integrate differ-
ent tasks into semantic navigation interfaces. We discuss
a task selection interface by Kathrein [2011] and our Dra-
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gLocks [Karrer, Wittenhagen, and Borchers, 2012] exten-
sion of DRAGON that enables interaction through objects
pauses, e.g., the car stopping in the middle of the inter-
section. Our conclusion is that these attempts can create
benefits for navigation but these techniques still only have
limited use for exploration interfaces.

2.4 Task Changes in Semantic Navigation
Interfaces

We analyzed how semantic navigation interfaces handle
task variations using Direct Manipulation Video Navigation
(DMVN) systems. We already discussed the problem of
navigating to a point where multiple objects meet. Kathrein
[2011] identified other tasks and created multiple semantic
interfaces for each of these tasks.

The upcoming sections discuss two solutions for problems
like this. Create an interface for each task, or create a single
interface that can deal with multiple tasks.

2.5 Providing Multiple Interfaces

In a scenario where more fine grained control over navi-To specialize for a
variety of tasks, we

can use an interface
per task.

gation goals is necessary, we can create interfaces for each
individual task. Especially tools supporting tasks around
long running video could benefit from more fine grained
task distinction. Kathrein [2011], who wrote her Bache-
lor’s thesis under the supervision of the author, identi-
fied a range of tasks that are currently not well-covered by
DMVN interfaces. She classified these tasks into four dis-
tinct groups.

1. Area Dependencies

2. Objects Act

3. Objects Interact
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Figure 2.10: Different tasks not supported in direct manipulation video navigation

4. Direction and Velocity

Figure 2.10 shows the tasks identified for all groups.

A common theme for these tasks is the interaction of mul- DMVN systems have
trouble with tasks
involving multiple
moving objects.

tiple objects, e.g., are these objects in the region at the same
time, do they move together, are they increasing their ve-
locity in sync? Kathrein proposed a timeline interface that
highlights time ranges or events for selected objects in a
scene (Figure 2.11).

The success of such an approach heavily depends on two
factors. First, the completeness of provided interfaces deter-
mines if the user can solve her current task. It is easy to
come up with scenarios where the user requires the detec-
tion of a movement pattern that is not covered by such a
system. What if we are only interested in other more spe-
cific shapes of trajectories? How does a user select objects
that are not yet visible in the frame? If we created an auto-
matic selection algorithm, how do we describe the objects
that should be selected? While this could to some extent
be alleviated by end-user programming, creating an event
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Figure 2.11: The timeline interface to highlight time ranges
of object movement patterns. Here we see that the selected
objects, the red and the yellow ball, will enter and leave the
orange region simultaneously.

detector for video is outside the abilities of most end-users.
Second, with the growing number of interfaces, the ability
of the user to select an appropriate interface is also problem-
atic. This requires additional effort in the design of the in-
terface selection which is difficult to scale to large number
of tasks.

It certainly makes sense to have these interfaces that areSpecialized semantic
interfaces are good

for navigation but
problematic for

exploration.

specialized towards specific semantic goals. But, when it
comes to exploration of content, these interfaces put the
user in a position where they have to make an uninformed
choice for an interface. If a user does not know what is go-
ing to happen in the video, she can only guess at different
event types with arbitrarily selected objects. We argue that
these specialized interfaces should be complemented by a
more general navigation interface that allows users to form
hypotheses for these specific tasks.
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Figure 2.12: Temporal ambiguity during a pause. The top left, top right, and bottom
left frame are accessible, while the bottom right frame can only be accessed using
the timeline slider because the person has not moved.

2.6 Handling Multiple Tasks

Instead of providing multiple interfaces, it may also be pos-
sible to create one interface that works for multiple tasks.
Such an interface would still have a small semantic distance
for its designated task but also allow access to times that
would usually not be covered by this interface. The work
in this section has been published at CHI 2012 [Karrer, Wit-
tenhagen, and Borchers, 2012].

We analyzed how different DMVN systems deal with the Moments where
objects pause in a
scene are not
navigable.

ambiguities arising from certain object motion patterns.
Figure 2.12 shows an example where a person moves into
a scene from the left, sits down towards the center of the
frame and then moves out to the right. Events while the
person is sitting down are not accessible using DMVN sys-
tems. When dragging the object across that pause, typi-
cal DMVN systems skip the frames in the pause, losing the
context of other events occurring during that pause. Dur-
ing a pause, the object stays in the same space for some
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amount of time. We call this a temporal ambiguity. A tempo-
ral ambiguity occurs whenever an object occupies the same
space at different times.

We considered three different movement patterns that lead
to temporal ambiguities:

1. An object crossing its own path leads to self-
intersecting trajectories, e.g., a roller coaster going
through a loop will be at the base twice. At the in-
tersection point, it is not clear if the user wants to
navigate to the earlier or the later occurrences of this
location.

2. Recurring movement occurs when an object repeat-
edly follows the same path at different points in time,
e.g., a swinging pendulum or a ball bouncing up and
down. This creates issues for tasks where one wants
to navigate to a specific ‘iteration’ of the movement.
When dragging an object towards a cusp in the tra-
jectory, it is unclear whether the video is supposed to
be advanced forward or backward in time.

3. Pauses are created by an object staying at the same
location for some time, e.g., a car stopping at an inter-
section and then continuing on. At the location of the
pause the time to choose is ambiguous.

Any of the ambiguous times may be interesting to the user,There is no
automatic method for
selecting the correct

time interesting to
the user.

so we cannot generally select one point in time over the oth-
ers. This is especially problematic in pauses and recurring
movement ambiguities. A user may want to navigate to
where a model stops on the runway, strikes a pose, and the
scene lighting is good. Navigate to a pass of a grandfather
clock’s pendulum at 10:09AM. These tasks are still strongly
related to one object, but require a secondary condition to
hold that is not modeled in the interface. In the previous
section, we already argued that having an interface for a lot
of these special conditions is infeasible. For the proposed
tasks this would also be very difficult to implement, i.e., the
computer vision algorithm to interpret the quality of scene
lighting is non-trivial. However, it may be possible for the
interfaces to detect and deal with the motion ambiguities.
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2.6.1 Handling Ambiguities in Different DMVN
Systems

The DMVN literature prior to our paper describes interac- Motion ambiguities
have been
considered in
existing DVMN
systems.

tion techniques intended to handle undesired jumps in the
video while navigating. These same techniques also affect
how self-intersecting and recurring movement ambiguities
are handled. All these approaches rely on modifying the
distance measure d that is used to determine the next frame
f to be displayed during the interaction:

f(p, T ) = [argmin
t∈T

(d(p, t))]f

where p is the screen position the user is dragging the object
to and T ⊆ F × P is the object’s trajectory consisting of tu-
ples (tf , tp) of a frame number and a position [Karrer, Wit-
tenhagen, and Borchers, 2012]. When dragging the object
to a position this formula determines the frame in which
the object is closest to that position under a given distance
measure d.

We distinguish purely spatial and spatio-temporal distance
measures, where purely spatial measures only depend on
tp and spatio-temporal measures depend both on tp and tf .

Goldman et al. [2008] employ the trivial implementation of
a purely spatial distance measure:

d1(p, t) ∼= ‖p− tp‖

This approach always displays the frame in the video Purely spatial
measures may be
confusing and cannot
navigate pauses.

where the object is closest to p, usually the mouse cursor.
It distinctly has the advantage of allowing quick access to
any non-ambiguous point along the trajectory. However,
should another segment of the trajectory get closer to the
mouse cursor than the segment the user is currently inter-
acting with, the playback position will jump discontinu-
ously. This may be confusing to the user. Temporal am-
biguities are not considered using d1. Depending on the
implementation of the argmin operator, a different repre-
sentative frame will be selected for any ambiguous part of
the trajectory. Pauses are completely skipped and are only
detectable by a sudden change in the scene around the ob-
ject.
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Dragicevic et al. [2008] explicitly consider recurring move-
ments at trajectory cusps by requiring their distance mea-
sure to have directional continuity and self-intersecting tra-
jectories by requiring arc-length continuity:

d2(p, t) ∼= ‖p− tp‖+ ‖arclen(tp, op)‖+ kD

where op is the previous position of the object and kD > 0 a
constant being added when the arc-length changes sign. d2
is still a purely spatial distance measure and will thus skip
pauses completely.

Karrer et al. [2008] discuss the need to disambiguate re-Spatio-temporal
distance measures
will stick to pauses

but also cannot
navigate them.

curring movement patterns and jumps during navigation.
They include the temporal component in the distance com-
putation, so that ambiguities can be resolved through tem-
poral distance to certain frames. Their distance function
with the current frame number of is:

d3(p, t) ∼= ‖(px − tpx, py − tpy, of − tf )
T ‖

Their approach can still not navigate the content of pauses.
In contrast to d1 and d2, the consideration of the temporal
component allows the detection of pauses. A dragged ob-
ject will stick at the beginning of a pause because the tem-
poral outweighs the spatial component. Dragging it further
leads to the spatial component becoming stronger until the
object snaps past the pause. Frames after the pause can be
accessed by backtracking. This also reduces the ambigu-
ity at cusps and self-intersecting trajectories. However, the
closer the user drags to the tip of the cusp, the less impact
the temporal component has.

Kimber et al. propose a spatio-temporal distance metric
that handles the cusps better by also ensuring directional
continuity.

d4(p, t) ∼= cθ · ‖p− tp‖+ ‖of − tf‖+ kD

with kD defined as above. It otherwise behaves similar to
d3 but includes a time-dependent term cθ that makes the
‘snapping’ across pauses happen more easily the longer the
dragging takes.

All these distance measures emphasize slightly differ-
ent tasks that may be performed during in-scene naviga-
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Figure 2.13: Spatial pause extent in different navigation
techniques. On the timeline (a), the frames are spaced
evenly, a pause in a DMVN (b) has no extent, the DMVN
with embedded timeline (c) distributes the pause over a
part of the trajectory, and loop (d) changes the shape of the
trajectory. From [Karrer et al., 2012]

tion. Selecting an appropriate distance measure is task-
dependent and could be done by the user, potentially us-
ing a quasimode [Raskin, 2000] like holding down the con-
trol key. While d1 will be fastest when the user knows ex-
actly where to drag an object and she does not care about
intermediate steps, the other measures emphasize continu-
ity and help to support keeping track of the context dur-
ing navigation. Measures d3 and d4 enable the detection of
pauses which comes at the cost of speed when accessing
frames after pauses. The trade off for the spatio-temporal
always boils down to the question “how many pixels is one
frame worth?”. This question does not have a universal an-
swer. None of the discussed systems allow accessing con-
tent during pauses without resorting to secondary timeline
slider interface.

2.6.2 Handling Pauses

We proposed two solutions that enable DMVN systems to We proposed to
embed timing
information into the
trajectory to solve
this issue.

navigate pauses: loop, which changes the geometry of the
trajectory around the pause location, and embedded time-
line, which changes the meaning of the trajectory around
the pause location. Figure 2.13
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Loop

The idea behind loop is to alter the shape of the trajec-Loop alters the
shape of the

trajectory.
tory around the pause. This techniques is inspired by the
Popup-Vernier [Ayatsuka et al., 1998]. The single spatial
point of the pause is expanded into the shape of a loop that
can then be navigated in a single stroke. Rehoming to the
timeline slider is thus no longer necessary. Besides enabling
navigation, the shape of a loop provides the user with a hint
about its special meaning through its recognizable shape.
Frames of the pause are equally around the loop and are
now accessible as if on a curved timeline slider interface.
The base of the slider corresponds to beginning and end of
the pause. Although this is in itself a self-intersection am-
biguity, it can easily be handled by the discussed distance
measures d2–d4.

The temporal granularity of navigation inside the loop can
implicitly be adjusted through the radius of the dragging
gesture. A larger gesture provides more granularity be-
cause a larger movement is necessary to spatially get closer
to the next frame. This works similarly to the microme-
ter interface [Ahlberg and Shneiderman, 1994] or the mo-
bile zoom slider [Hürst and Götz, 2008]. Non-pause loca-
tions on the trajectory are not affected by the loop approach,
guaranteeing direct manipulation accessibility for all non-
pause frames.

Embedded Timeline

The second technique alters the meaning of the trajectoryEmbedded timeline
alters the meaning of

the trajectory.
along a short extent around the pause location. Location
on the trajectory does not map to the location of the ob-
ject but to the time in the pause. The shape of the trajec-
tory is not altered. This means that we embed the time-
line into the shape of the trajectory. All time points on this
part of the trajectory are redistributed equally. Expanding
the pause into the spatial domain again guarantees that we
can navigate the pause without having to resort to the time-
line slider. In contrast to the loop technique, the embedded
timeline causes no, potentially disrupting, visual modifica-
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tion. This comes at the cost of decoupling navigation from
the object in the altered part of the trajectory. There is also
no way to identify a pause from the shape of the trajectory;
thus, we set the color of the embedded timeline to be differ-
ent from that of the rest of the trajectory. For longer pauses,
this technique will show the same resolution problems as
the timeline slider, making it hard to navigate to a specific
frame inside the pause.

2.6.3 Implications for Navigation

A user’s navigation target can be in four different areas We identified four
different navigation
targets around
pauses.

around pauses: before the pause, at the edge of the pause, in
the pause, and after the pause. We describe these cases for
forward navigation. Navigation before the pause works
analogous to navigation without a pause; we consider it
covered by standard DMVN approaches. The edge of the
pause described the frame where an object stops moving.
As discussed earlier, spatio-temporal distance measures
easily support navigation to the edge of a pause. Both the
embeded timeline and the loop visualize the edge of the
pause, but loops may make accessing the edge easier be-
cause of the ability to affect navigation granularity. Purely
spatial measures make accessing the edge hardest because
they are neither visualized nor do they affect interaction.
Loop and embedded timeline are both designed to support
navigation in a pause. We expect the loop to perform bet-
ter for longer pauses because of the resolution issues men-
tioned earlier. Existing DMVN systems all require the use
of the timeline slider to access pauses. Crossing the pause
to access frames after the pause is easiest with purely spa-
tial distance measures since dragging is not affected by the
pause. Spatio-temporal measures may actually require the
use of the timeline slider to cross the pause if the pause is
so long that the available distance on screen is not large
enough to outweigh the temporal component of the met-
ric. Loop and embedded timeline are designed for crossing
the pause easily.
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Figure 2.14: Means navigation times and 95% confidence
intervals. Navigation to the edge, in, and after short (S)
and long (L) pauses using spatio-temporal (blue), purely
spatial (green), loop (yellow) and embedded timeline (red).
Adapted from [Karrer et al., 2012]

2.6.4 Experiment

We evaluated the navigation performance of existing
DMVN systems using d1 and d3, and the two new tech-
niques using d3. For details about the experiment, we refer
to the paper [Karrer, Wittenhagen, and Borchers, 2012].

The experiment again shows the strong influence of se-The choice of
interface has a big

impact on navigation
times.

mantic interfaces specialized for a certain task (Figure
2.14). Navigating to the edge of a long pause with spatio-
temporal distance measures is on average 3.5 times faster
than purely spatial measures. Navigating across a long
pause is on average 3.1 times faster using purely spatial
measures compared to spatio-temporal. Loop performs
fastest within pauses although there is no significant evi-
dence that it outperforms the other approaches.

These results support that even small task changes have a
large impact on the interface performance for semantic nav-
igation interfaces. Selecting the right interface for these task
thus becomes crucial. In our paper, we suggested to imple-
ment this using a quasimode. The problem with introduc-
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Figure 2.15: Difference between 2D and 3D trajectories.
Both trajectories show the hand movement in the upper
part of the video. The transformed trajectory on the right al-
lows pauses and recurring movement to be navigated eas-
ily. It comes at the cost of losing the tight coupling between
absolute position on the trajectory and absolute position in
the video. From [Nguyen et al., 2013]

ing modes, even quasimodes, means we have to solve the
same scaling issues mentioned for explicitly using multiple
interfaces.

Using one of the two suggested techniques we could prob-
ably create an acceptable compromise. Exploration works
slightly better with such an interface because we can access
all frames during a pause. The visualization of the loop
provides information scent for a pause and by navigating
through the pause, the user can attempt to find out why an
object stopped. Unfortunately, this only solves one of the
discussed ambiguities and none of the tasks discussed by
Kathrein [2011].

Nguyen et al. [2013] presented a solution to all three ambi- Newer solutions can
handle the other
ambiguities at the
cost of the original
strength of a DMVN
interface.

guity issues. They resolve ambiguities by transforming the
trajectory into a 3D representation that contains time as an
axis. While navigating, the trajectory transformation will
be updated so that the current position on the trajectory re-
flects the current position of the object1. Figure 2.15 shows
the difference between 3D and 2D trajectories. In this way,
ambiguities will be distinguishable because of a distortion
of the trajectory on top of the video. While this resolves
temporal ambiguities, it also changes the direct manipula-
tion interface. We stated that DMVN systems are designed

1Video figure: https://www.youtube.com/watch?v=
YomeZfCo7P0

https://www.youtube.com/watch?v=YomeZfCo7P0
https://www.youtube.com/watch?v=YomeZfCo7P0
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especially around one moving object and a static reference
point. Since the user’s reference points will also be trans-
formed, they will now be moving as well. Thus, drag tar-
gets are now harder to identify. This works well for the use-
case of recurring movements or pauses, because the user
can predict the repetition easily. It produces issues when
the movement is not repetitive; the interface thus has to be
a mode. Obviously, the proposed system does not affect
how we can navigate to interaction points of multiple mov-
ing objects.

GeoTime [Kapler and Wright, 2005, Eccles et al., 2008] pro-3D interfaces can
handles all issued we
described, but easily

become cluttered.

vides a 3D visualization that enables to see the relationship
of multiple objects on a static map (Figure 2.16). It shows
the map with trajectories floating above it so that they rep-
resent time. We could imagine a similar system for video
where the map is replaced by the scene background, per-
haps as an extension to [Nguyen et al., 2012]. GeoTime
works well to see the interaction of a small number of ob-
jects on a map. Because of the difficulty of projecting the
location of the floating trajectories to a point on the map,
the trajectories are anchored on the map in regular inter-
vals. This means the display easily becomes cluttered when
there is lots of motion. A technique like GeoTime also relies
on a static background, because the absolute position of ob-
jects becomes meaningless when the background changes.

2.7 Other Media Types

So far , we have talked about temporal navigation in the do-Other media types
do not rely on the

absolute position as
much as video.

main of video. As described in the introduction, we want to
be able to also deal with other time-based media types, es-
pecially the evolution of documents over time. With other
media times, we usually have the issue that we cannot take
the same approach as DMVN systems, because the absolute
location of objects is not meaningful. This works in individ-
ual video scenes because we can expect the background to
be static, because even if there is camera movement we can
reverse its effects for the purpose of navigation [Dragicevic
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Figure 2.16: GeoTime displays 3D trajectories on top of the
map with time on the y-axis. This means that intersection
int the space above the map mean the same location at the
same time. From [Eccles et al., 2008]

et al., 2008, Wittenhagen, 2008]. Thus, objects in the back-
ground become static reference points to navigate to.

Interestingly, it could make sense for the history of some 2D A DMVN system
could work for the
history of
presentation slides.

media types, e.g., presentation slides or graphics programs.
The objects on the slide, i.e., text, images, and video, have
different locations and sizes over time. In theory, we can
use the exact same interaction approaches for these. We
could navigate to a version of a slide where an object was
at a certain location on its slide. However, the relationship
between multiple objects may actually be more interesting
to the user than their location.

In text documents, movement of individual segments to
fixed locations becomes meaningless. There is no such
thing as a fixed background that stays constant. If the au-
thor adds something in the beginning of the text, lines in
the end will move; the whole ‘scene’ constantly changes.
Thus, we cannot use an interface such as DRAGON.
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2.8 Requirements for Temporal Explo-
ration

In summary, we want a temporal exploration interface that
implements the following features:

1. Ambiguity-free: Any point in time is accessible.

2. Multi-object visualization: The change history of multi-
ple objects is visualized.

3. Historical object visualization: Objects that are not visi-
ble in the current frame are visualized.

The interface should avoid ambiguities when the user se-
lects a point in time, i.e., we want all frames to be acces-
sible. A common timeline slider is a simple interface that
implements this feature, but not the other two features that
are especially important for exploration tasks. We want the
user to learn the relationship of multiple objects, and see
entities that are currently not visible. We discuss how to
create an annotated timeline interface that enables all three
features in the next two chapters.



41

Chapter 3

Structural Navigation
Interfaces

“A scene has to have a rhythm of its own, a
structure of its own.”

—Michelangelo Antonioni

We discussed that it can be very difficult to extend seman-
tic navigation interfaces to encompass a variety of naviga-
tion tasks, and they are thus not well-suited for exploration
interfaces. In this chapter, we tackle the problem from an-
other angle and show that the inherent structure of media
is often easy to capture and the structure can directly in-
form navigation interfaces. We formalize the concept of
a structural navigation interface and describe the form of
structures that we find in digital media.

3.1 Using Structure for Temporal Naviga-
tion and Exploration

What we have been capturing with DMVN systems is Structure changes
slowly over time and
can thus be used as
a slowly changing
point of reference.

the relationship of objects to fixed objects on a fixed back-
ground. For the exploration of the history of a document,
we usually do not have such a fixed background. How-
ever, text in such a document only changes gradually over
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time and they are grouped together in chapters, sections,
paragraphs, and sentences. So, we hypothesize that we
can use this temporary stability with gradual changes as
at least temporary reference points that help the user to ori-
ent herself. Structural navigation then uses this stability and
the form of the structure to let the user find such anchor
points. If we can communicate the structure to the user and
visualize its changes over time it may provide sufficient in-
formation scent to make hypotheses about changes in the
underlying content.

What structure is used is not necessarily as important. The
syntactical structure of chapter, sections, etc. as described
above is very much based on the medium of written text.
But we could also imagine this structure to be more mean-
ingful like relationships between characters in a book, or
the connection of methods through the call graph in soft-
ware development.

Structure is an abstraction of the content of a document. It
can reflect only the presence of some content object, or more
detailed information about the relationship of different ob-
jects. Examples of such relationships are be neighborhood,
distance, or containment.

In the next section, we describe an example of how we can
capture content changes in a given structure and how this
helps us to navigate that content. We then continue to de-
fine structure and finish this chapter with how structure can
enable navigation before we continue to discuss visualiza-
tion in the next chapter.

3.2 ExamPen

We now show how, by capturing content changes in a veryWe use ExamPen as
an example of how
structure can serve

as information scent.

simple structure, a user can understand a lot higher-level
semantic information. This can then be also be augmented
with user generated semantic information.

At the CHI 2010 Workshop on Next Generation of HCI and
Education, we presented ExamPen [Karrer, Wittenhagen,
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Lichtschlag, and Borchers, 2010], a digital pen based tool
for analysis and visualization of student performance dur-
ing written exams. The focus of the paper lies on support-
ing teachers to understand their students’ perceptions of
the exam and strategies employed to solve the exam. We
enable support for this task through very simple annota-
tion of content with structural information and then record-
ing changes within this structure over time. Even though
this approach enables a rich understanding of the exam-
taking process, it is virtually free with modern technolo-
gies and does not require extra efforts from the student or
the teacher.

3.2.1 Task

Exams are the prevalent way to evaluate students’ perfor- It is crucial but
difficult to create fair
exams.

mance at schools and universities. Devising fair exams is
difficult and time consuming. A teacher has to design ques-
tions that are are easily understandable and unambiguous.
The questions must be able to differentiate different levels
of skills. An exam can be highly stressful for the students,
so a fair question also clearly communicates the required
knowledge and effort to the students. Each task should also
yield an appropriate amount of marks that reflects this re-
quired effort and knowledge.

Our system is designed to support teachers to refine exam ExamPen supports
teachers to evaluate
exam questions
before reuse.

questions over multiple iterations. These iterations can
span from test-drives with teaching assistants to repeatedly
using questions over multiple years. Past answers can indi-
cate difficulties the students may have had with a question.
This helps to uncover misleading question texts or tune the
marks a question awards. By including the timing of ques-
tions, i.e., how long and when students work on a task,
we aim at enabling even more understanding of students’
strategies and the relationship between exam questions.
Understanding how students perceive and approach the
exam helps the teacher to identify potential flaws in their
exam design or grading policies. With ExamPen, teachers
can not only see the final version of the exam papers, but
explore the paper’s evolution over the course of the exam.
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Including timing makes new quality indicators accessible,
like the time a student spent on a specific task or the num-
ber of times she revisited a task to modify her answer. In-
dividual strategies on how a student approaches an exam
can enable teachers to provide better personalized tutoring
on areas students have difficulties with or on test-taking
strategies as a whole.

3.2.2 System Design

ExamPen structures the exam into task regions. Each taskThe structure of our
example exam is a

linear list of fixed task
regions.

has a dedicated space where the students write their an-
swers. We explicitly chose to use digital pen technology
and not keyboard or tablet based systems (e.g, [de Silva
et al., 2007]) to leave the experience of writing the exam
unchanged. This has the advantage that we do not increase
the cognitive load through an unfamiliar system, which is
linked to worse test performances [Oviatt et al., 2006]. We
captured the students’ work over time by printing the exam
on Anoto1 micro-dot pattern; students then wrote the exam
using Anoto digital pens. The pens not only record the lo-
cation of where a stroke was drawn but also the timestamp
of when the stroke was drawn. Together, the timestamps
and the location within the task structure allow us to visual-
ize strategies and dynamic behavior of the test-takers. This
structure is very simple and does not yet have the property
that it dynamically changes.

Our ExamPen software groups strokes into stroke chainsStroke chains are
logical groups of pen

strokes occurring
together.

based on both, temporal and spatial proximity. Temporal
to group individual letter strokes into words and sentences.
Spatial to avoid grouping words across the end of a line.
This secondary structure on top of the completely unstruc-
tured pen input (x, y, time) approximates the perception of
words or lines without actually understanding them. We
can use this to then create colored bounding boxes around
the written text where the color represents the time of writ-
ing (see Figure 3.1). If the order of certain words seems
important, the teacher can quickly navigate there using a
color annotated timeline (Figure 3.2).

1http://www.anoto.com
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Figure 3.1: Grouping of handwritten text in ExamPen. The
digital version of the exam can be annotated with timing in-
formation and awarded points. From this we can easily see
that the student was unsure about what to put down and
only gave the correct answers in later passes of the exam
(olive ≈ 25 min, blue ≈ 55 min, purple ≈ 75 min). From
[Karrer et al., 2010]

Figure 3.2: Time-based navigation in ExamPen. Since we
annotated stroke chains with a color representing time, a
teacher can quickly navigate to their creation using the an-
notated timeline.

From just looking at the grouping and their colors, we can
already gather a quick overview on how long a student
took for a task and how often she revisited it for annota-
tions or corrections. We can also use these colored boxes
for navigation to the moment something was written by us-
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Figure 3.3: Neutral stroke chains around keywords made
towards the end of the exam. The student checks if he has
finished all important parts of the task. From [Karrer et al.,
2010]

ing a timeline slider that is annotated with the same time-
derived colors. The teacher can add annotations for correct,
wrong, and neutral, as well as the amount of awarded or
deducted points to the stroke chains. Examples for neutral
chains are margin notes or emphasis marks like underlin-
ing of important aspects in an exam question. These anno-
tations are integrated into the structure as another level of
information that could not be trivially automated. Based on
this mixture of automatically and manually collected data
our software creates visualizations for each individual stu-
dent and the group as a whole.

3.2.3 Data Analysis

We visualize the time a student spends in each task in a vi-
sualization based on a floating bar chart. Bars represent a
stroke chain, the position of the bar is determined the task,
the width of the bar is determined by the stroke chain dura-
tion, and the height of the bar is determined by the teachers
estimate of the time required to be spent on the task 3.4.

This visualization highlights several characteristics aboutOur visualization of
activity within a

structure over time
indicates exam

solving strategies.

the student’s exam solving strategy. In Figure 3.4, the stu-
dent went through the whole of the exam in three front to
back passes. We see how often each question is being revis-
ited by only focusing by one horizontal slice of the graph.
The teacher can gauge the ratio of time spent to time ex-
pected to be spend when accumulating all strokes for one
tasks. Especially tasks 13b also took a lot longer than ex-
pected. The fact that there are some strokes in the earlier
iterations may indicate that the student skipped the task
knowing that they are not as clear on the answer. Questions
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Figure 3.4: The diagram shows how the students solves the
exam in three clearly visible passes. The impact diagram
shows where points were added and deducted. It is easy
to identify that task 13b took longer than expected by the
teacher. From [Karrer et al., 2010]

8a is only worked on once, indicating that the student did
not feel they needed to add to their answer in later itera-
tions. The shape is also roughly square, suggesting that the
teacher’s estimate worked well for this particular student.

Besides visualizing the exam progress of individual stu-
dents we can look at accumulated data for the whole class.
We project the ratio rt of average time spent and time ex-
pected to be spent on to rectangles by giving them a fixed
width c for rt ≤ 1 and determine the height as rt · c. For
rt > 1 we use height c and width c

rt
. This helps to deter-

mine if the group as a whole spent a different amount of
time on a task than the teacher expected and can indicate
unfairly designed questions (see Figure 3.5). A wide foot-
print means more time spent than alloted, narrow less time
than alloted, and a square is a desirable result. This gives
a quick overview of which tasks could benefit from addi-
tional analysis.
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Figure 3.5: The task footprints at the top indicate the qual-
ity of the task duration estimation by the teacher. Tasks 18
took longer than expected on average and tasks 2b and 10a
shorter. The point distributions underneath shows that task
14 suggests to the students they need to write more than ac-
tually expected. From [Karrer et al., 2010]

Up to this point, we only used automatically generated in-Semantic information
on top of the given

structure can reveal
additional details.

formation based on stroke chains in the task structure over
time. When incorporating the mark annotations we can
also visualize at what time, i.e., the aggregate of time spent
on writing for a specific question, marks were made or lost.
If the students feel they needed to write more than actually
expected, we see a skewed distribution of point awards to
the start or the end of the time spent (see Figure 3.5).

3.2.4 ExamPen Summary

ExamPen shows that looking at the creation process withinThe example
indicates that simply
having information of

structure over time
can help the user to

interpret what
happened.

a fixed structure can support the understanding of that cre-
ation process. This structure was intentionally very simple,
which made it easy to track over time. Teachers can already
use a simple structure like this to recognize exam solving
strategies. Custom annotations can then also add semantic
information identified on top of this structure.

Interestingly, this this is possible without changing the pro-
cess of writing and exam for the students and it is easy to
imagine that mark annotations could also be made using a
pen. So, simply by adding structure and timing informa-
tion, we can create an interface that supports understand-
ing and visualizing documents over time.
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Our goal is to find a structural visualization that works
for other media types, like creative writing, source code,
or presentations. A lot of documents for any of these pur-
pose already have a concept of changing over time. There
are version control systems for source code, e.g., git or sub-
version, and design documents, e.g. Pixelapse2. Authors
sometimes physically keep drafts of their books before re-
lease [Barrows, 2015]. Other documents like presentation
often have multiple versions stored for backup purposes.

However, all these document histories are missing struc-
tural information. With some effort, we can add this
structural information later, as we show in chapter 4—
“Chronicler: Navigation in Source Code Histories”. The
rest of this chapter deals with how having structure sup-
ports temporal navigation.

3.3 What is Structure?

Dix et al. [2004, chapter 20] states “[. . . ] the data sets that
arise in information systems typically have many discrete
attributes and structure: hierarchies, networks, and most
complex of all, free text.”. We follow the same notion of
modeling structure as a graph. However, we seek to avoid
the complexity of free text and other intricate media types
by not actually fully modeling such structure. Instead we
attempt to only employ simple rules common to a medium
to represent it. In written text words are separated by
spaces, sentences by periods, paragraphs by empty whites-
pace. These rules are in place to make a text human read-
able and are rarely broken. However, we only aim at pro-
viding a frame of reference which the user can employ for a
higher-level task. Figure 3.6 shows such a simple structure
for the example of a sentence.

We consider structure to be an abstraction of content of Structure represents
the relationships of
content entities in a
document.

one version of a document. It describes some relationship
of entities in the medium. Entities can be content, such as
characters in text or pixels in an image. They can also be

2https://www.pixelapse.com
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It's a trap!

trapaIt's

I 't s a t r a p

!

Figure 3.6: A simplified structure of a sentence. In this ex-
ample, a sentence would be delimited by special punctua-
tion character and is made up of words that are themselves
made up of characters. Note that this means we do not
even consider special cases like the contraction and we also
get bad results when someone adds an ! in the middle of
sentence. However, such a structure is very independent of
content, e.g., the language used.

structural elements, such as words formed by characters, or
a group of pixels. The relationship could be spatial colo-
cation, containment, or other arbitrary adjacency measures
such as a call graph connection in source code. It typically
makes sense to consider a mixture of relationships, e.g., we
never consider a structure without a containment relation-
ship.

We can describe these structures in terms of a graph. A
structure graph is a directed graph with vertices V represent-
ing entities, and edges E representing the relationship be-
tween these entities. Note that a graph, in this general def-
inition, may have cycles or multiple connections between
between two nodes. We speak of an ordered structure if
all edges between two vertices have an ordering. For our
work, we consider three different shapes of such a struc-
ture graph.

1. Linear structures only represent an ordering of enti-
ties. The task structure in ExamPen is such a linear
structure because we only considered the content cre-
ated in the solution space ordered by the tasks num-
ber they belonged to.
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Figure 3.7: A complex network structure has no restrictions
about the layout or connection of individual nodes.

2. Hierarchical structures, i.e. trees, are graphs that have
a special root node, are acyclic, and every node can be
reached from the root by exactly one path. Such a tree
is ordered when each node’s children have an order-
ing. The latter is often easy to find when content it-
self is arranged linearly, e.g. sentences in a paragraph
and words in these sentences have a trivial ordering
(Figure 3.6). Two dimensional content usually does
not have this inherent ordering, but we may be able
to create one (see chapter 5—“Generalizing Tree Flow
Interfaces”).

3. For now, we consider all other graphs to be complex
networks 3.7. An example of this would be the struc-
ture spanned by the call graph, or the emotional re-
lationship between characters in a book. While other
special graph types might have interesting properties
for history navigation, they are not further discussed
in this thesis.

3.4 Structural Representation

Before we generally describe how to use structure for tem-
poral navigation, we look at other examples of interfaces
explicitly using structural information. The goal of this is
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Figure 3.8: The Alphaslider allows people to select entries
from a list. The spacing of the letters below the slider in-
dicates how many entries there are for each letter. From
[Ahlberg and Shneiderman, 1994]

to get an overview of how different kinds of structures are
used for interface design.

The Alphaslider [Ahlberg and Shneiderman, 1994] ab-
stracts from a list of words by index the list by first letter.
Letters are then presented underneath the slider interface
where the spacing after each letter proportionally repre-
sents the amount of represented words. This is, of course,
a simple linear structure on top of the list. Ishak and Feiner
[2006] create a content-aware scroll bar by using structural
knowledge of the document to create a linear scrolling ex-
perience through important content that is non-linearly ar-
ranged. Examples are the typical two column layout in sci-
entific papers and faces in an image. This approach does
not affect the visual appearance of a standard scroll bar.

As Johnson and Shneiderman [1991] put it, “a large quan-
tity of the world’s information is hierarchically structured:
manuals, outlines, corporate organizations, family trees, di-
rectory structures, internet addressing, library cataloging,
computer programs . . . and the list goes on.” It is no sur-
prise that we see a lot research for how to use this hierar-
chical structure for different purposes.

Some of the approaches we already discussed in the previ-
ous chapter also have a strong hierarchical component to
them. Continuum [André et al., 2007] uses the hierarchical
nature of the data to group items together. The detail view
still displays all items but uses boxes and colors to enable
the user to visually focus on the relevant level first, i.e., first
find the right era, then the right composer, then the piece.
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Figure 3.9: User-created hierarchy of timeline sliders. Each
level refines which range of frames from the level above is
shown in more detail. From [Mills et al., 1992]

[Mills et al., 1992] rely on the user to create a hierarchy (see
Figure 3.9). While the medium of video does have a hier-
archical structure, consider a movie with chapters, scenes,
and shots, this structure is difficult to find automatically.
[Arman et al., 1994] used shots as their structure but do not
consider the higher levels.

In all of these examples we see the trend to use hierarchies
in the data that is being navigated. But even approaches
that deal with complex networks are often doing this by
using the specific form of the network or a secondary struc-
ture. Heer and Boyd [2005] designed a system to explore
different aspects of a social network that is based on clus-
tering the people in the network into ‘communities’. These
communities do not overlap, and thus, create a linear struc-
ture on top of the graph (see Figure 3.10). Repeatedly ap-
plying this approach within the sub-clusters could also cre-
ate hierarchies. [Holten, 2006] visualize a complex network
by showing a secondary hierarchy as a radial tree on the
outside of a circle. The graph is then drawn on the in-
side of the circle connecting the individual nodes placed
with in the secondary hierarchy (see Figure 3.11). Hive-
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Figure 3.10: Vizster showing different clusterings of a social network centered
around one person. The clusters do not overlap and thus create an unordered tree
of the data; a social network is made up of clusters made up of people. From [Heer
and Boyd, 2005]

Plots [Krzywinski et al., 2012] use certain node properties
to place nodes on three distinct axes arranged in a circle.
These properties can be determined by the user or auto-
matically, based on graph properties such as a nodes rank
or clustering coefficient. Again, the assignment of a node to
an axis and then to a location on the axis creates a hierarchy.

While we cannot completely ignore complex network
structures, we see that there is a strong tendency to use hier-
archical information for visualizations. We create a special-
ized interface for tree structures in chapter 4—“Chronicler:
Navigation in Source Code Histories”. For the rest of this
chapter, we continue with complex networks because the
navigation properties we derive from structure are inde-
pendent of its shape.
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Figure 3.11: Visualization of a large call graph using Hier-
archical Edge Bundles. A radial tree visualization encodes
the location of a caller, while the graph in the middle en-
codes call graph connections. Direction is encoded by color
(caller = red, callee = green). From [Holten, 2006]

3.5 History Graph

We defined the history of a document to be a sequence of
individual versions of this document where most versions
had small changes. Adding the concept of structure to this
means that we now have structure graph for each version
of the history. A history graph connects all these individual
structure graphs.

Evolution of a document implies small punctual changes.
This means that not only the whole document, but also in-
dividual content elements change from one version to the
next. Whenever the content represented by a structural el-
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2 3 41

Figure 3.12: History Graph with four versions. 1: A single
blue node is created. 2: The original blue node stays the
same and two new green nodes are inserted and connected
to the blue node. 3: The green nodes stay the same and the
blue node is duplicated. 4: The two green nodes merge into
a single green node.

ement changes, we want to connect the two versions of the
structural element in either version. The graph resulting
from this is what we call a history graph. These changes are
also represented in the history meaning that each structural
node has predecessors and successors in the (temporally)
adjacent structures. Figure 3.12 shows a history graph for a
small network.

Nodes do not necessarily have only one predecessor and
successor. Duplicating content from one element to another
creates a split (Figure 3.12-3), i.e. two or more successors,
because both successors evolved from one node. We can
also take content from multiple nodes and move it into a
single node which creates a merge (Figure 3.12-4), i.e, two or
more predecessors. These can also occur at the same time,
e.g., if part of the content is copied to an existing node.

3.6 Structural Navigation Properties

Interfaces that are based on a history can use the knowledge
about elements and their relationship to provide the user
with context when navigating that history. We define the
following features that are enabled by employing structure
for temporal navigation.
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C

D

2 3 41

Figure 3.13: Structural navigation properties of a history
graph. A—Structural Propagation: we can pass on prop-
erties such as selection to other versions of a node, here
selection of the top blue node. During navigation we can
keep it the same, helping the user to orient herself. B—
Viewport Stability: we can make sure that when switch-
ing between versions a node will always have the exact
same position in the viewport. Again, we chose the top
blue node. C—Context Awareness: we can focus on a de-
fined environment, here direct neighbors of the blue node.
D—Structural Abstraction: we can find a representative for
groups of structural elements and thus simplify the graph,
here multiple elements of the same color are abstracted.
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1. Structural propagation (Figure 3.13-A) allows us to for-
ward interaction from one version to another. A sim-
ple example of this can be a selection made in one
version that occurs when we navigate to the next one.
More complex examples are annotations occurring at
all versions of a node.

2. Knowledge about the history of sub structures di-
rectly enables us to provide viewport stability during
navigation (Figure 3.13-B). If we know what struc-
tural element a user is currently focusing on, either
implicitly through the current viewport, or explicitly
through selection, we can keep that structural ele-
ment visible at all times.

3. Often, not only the object of attention but also its con-
text changes. Sometimes, we may want to focus on a
certain part of a structure and ignore changes in sur-
rounding elements. An interface aiming at providing
structural filtering (Figure 3.13-C) can show only a se-
lected object and a well defined context. This can be
achieved through viewport manipulations like zoom-
ing and hiding other parts of the structure.

4. We can use structural abstraction (Figure 3.13-D) to re-
duce the amount of structural elements that the user
needs to consider. This works through finding or cre-
ating a representative for a group of structural ele-
ments. In our figure, we use a content property, i.e.,
the node color, but we will later also use structural
properties, i.e., representing subtrees through their
root elements. Structural Abstraction helps when we
cannot or do not want to visualize the evolution of
individual structural elements, e.g., because we want
to avoid clutter. We can independently also hide the
respective content elements if required.

Note that the paths through the history graph chosen inChoosing between
different history

paths is dependent
on the

implementation.

Figure 3.13 always follow the top blue node. Which blue
node is chosen is dependent on the construction of such a
history path. One option is to build the path outward, from
the starting node in both directions by following the pre-
decessor and successor relationships. If we select any blue
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node from version 3, the resulting path is unique. Choos-
ing the blue node from version 1 or 2, requires us to make
a decision at the split. How to construct the right path de-
pends on the particular usecase and implementation. If we
want to always follow the evolution of the structural ele-
ment linearly through its history we must decide for one
path at some point.

3.6.1 Usage in Existing Interfaces

There are application as well as research projects that al-
ready use one ore more of these features. In the following
we describe some of the examples we found in multi-track
media editors, version control systems, or research papers.
Multi-track media editors like Maya3, Adobe Premiere4, or
Motion5 arrange content in tracks on a timeline; tracks are
often arranged in a tree.

Structural propagation is available in all of the multi-track Structural
propagation helps to
keep track of object
locations.

editors mentioned above. Figure 3.14 shows Motion. When
navigating to a different time, the selection is kept, and
when a group of objects is selected, the visible selection is
dynamically extended when a new group object appears on
the timeline. Ginosar et al. [2013] created an editor for au-
thoring multi-stage source code examples. Changes in one
line of one version can be propagate to the other stages of
the source code example.

Structural filtering is also common in multi-track media
editors. We usually can hide any element or group in
the structure using checkboxes (Figure 3.14). Because of Structural filtering is

used to hide
unwanted content.

the static nature of the structure, i.e., the same tree for all
versions, this is essentially the same as structural filter-
ing without considering time, e.g., hiding layers and layer
groups in Photoshop. Maruyama et al. [2012] filter events
from the change history based on their relation to a struc-
tural element, e.g. only changes within a certain method.
All other elements in the history and the code view are

3http://www.autodesk.com/maya
4http://www.adobe.com/premiere
5http://www.apple.com/motion
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Figure 3.14: Motion. The selection around both images is
based on the selection of the structured timeline at the bot-
tom. When navigating to a time where one of the two im-
ages is not visible, e.g, frame 60, the selection updates to
only the visible image. The arrow in the bottom left al-
low structural abstraction by hiding individual tracks in a
group and and the check boxes enable structural filtering
by hiding content of unchecked tracks at all times.

grayed out (see Figure 3.15). Some commercial version con-
trol tools, e.g., SourceTree6, can filter the history of changes
based on changes affecting a specific file. In SourceTree, all
other changes are hidden, while GitX-dev7 highlights the
changes affecting a file. SourceTree also employs a filter-
ing interface where the user selects a file or folder from any
version, while GitX-dev uses search.

We could only find a few navigation examples of viewportThere are not many
examples of viewport
stability or structural

abstraction

stability and structural abstraction. Time Machine in OS X
Yosemite uses it when looking at old versions of directo-
ries and always scrolls the current version of a selected file
into the viewport. We also see it used as a means to show
tracked regions in video trackers, e.g., [Jepson et al., 2003].
Most other tools we found use it only as a feature for out-
puts, e.g., the virtual camera in Blender can follow an ob-

6http://atlassian.com/sourcetree
7http://rowanj.github.io/gitx/
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Figure 3.15: Operation slice of the method setX, all code
and history not belonging to the method is grayed out.
From [Maruyama et al., 2012]

Figure 3.16: Code Folding in Eclipse. Clicking the – button hides code that a user
is currently not interested in and represents it as the method name.

ject, keeping it in the viewport of the rendered output as it
moves. We see structural abstraction in multi-track media
editors where the user can represent all group members by
the group itself (Figure 3.14). This has no impact on how
the content is displayed, but only simplifies the timeline.

We see structural abstraction for content without the con-
sideration of time in programming environments like
Eclipse, where we can fold code blocks in on themselves
and only represent them by a summary line, e.g. the
method (Figure 3.16).

All tools described here circumvent the problem of split- Splitting and merging
is not handled in the
tools described here.

ting and merging in some way. The multi-track editors
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do not allow splitting and merging in their structure and
all other systems described here select all possible path.
They can do so because they either only highlight paths
(GitX-dev) or accept jumps between the alternative ver-
sions, sorted by change date, when navigating the history
(SourceTree).

3.7 Summary

We discussed ExamPen, an introduction of how structure
can create information scent for time-based navigation. Af-
terwards, we introduced the notion of a structure as a graph
representing relationships between content entities. Fi-
nally, we discussed how a navigation interface may benefit
from knowledge of this structure over time, and we defined
four navigation properties which are enabled by consider-
ing structure in temporal navigation.

Now that we described the existing structures in media, we
can create interfaces based on these structures. We first
introduce a tree based interface for structural navigation
in source code histories. In chapter 5—“Generalizing Tree
Flow Interfaces”, we then show how that approach can be
generalized for other media and structure types.
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Chapter 4

Chronicler: Navigation
in Source Code Histories

“History doesn’t repeat itself, but it does
rhyme.”

—Mark Twain

The previous chapter defined the notion of a structural nav-
igation interface and their advantages. In this chapter, we
show that we can use this to implement Chronicler, a his-
tory navigation interface for source code. We start with an
overview of related work in the area of how document his-
tories have been used in the past. We then go on to explain
why we picked source code as an example domain and fi-
nally introduce our prototype system Chronicler.

4.1 Related Work

We look at research around the use of history in two ways. History digests
summarize history as
a whole. History
guides help to find a
specific version.

First, tools that provide a digest of the history as a whole
and does not allow the developer to find to specific version.
Second, tools that guide the user to find a specific version.
There are few pure digest systems because many visual-
izations for histories are designed over time and can thus
easily be used for navigation.
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Figure 4.1: Examples of Edit Wear and Read Wear. Left (from [Hill et al., 1992]): the
first two scrollbars are annotated with edit wear showing the frequency of changes,
while the two scrollbars on the right show read wear. Right (from [Shannon et al.,
2010]): in-line edit wear showing the age of edits as a colored highlight of the text.

4.1.1 Digests

The most common form of digests provides the user with a
summary of certain aspects of the document, e.g., the quan-
tity of changes of a certain line of code. One highly in-Computational wear

changes the
appearance of a

document over time.

fluential work in the area of history digests is Edit Wear
and Read Wear [Hill et al., 1992]. They introduce the idea
of “computational wear” where repeatedly editing or dis-
playing sections of a document slowly make them more
visually pronounced. Figure 4.1 shows their example of a
scrollbar that displays how often a line in a text document
was edited or read. Edit Wear can also be integrated di-
rectly into the document. Shannon et al. [2010] highlight
recently changed parts of a text in-line.

Another seminal work describing a history digest for
source code is Seesoft [Eick et al., 1992] (see Figure 4.2).
Seesoft is a larger system for adding visual information
to source code. It displays the content of multiple files
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Figure 4.2: Seesoft visualization of source code age. The
color indicates the age of a piece of source code with the
bar on the left acting as a legend. From [Eick, 1994].

shrunken down to fit on to the screen. The system can then
add information to the lines of the displayed files through
a number of proposed metrics, most notably change fre-
quency and age. Eick [1994] later extended his work with
other text document types and new functionality like the
ability to highlight files and changes that occurred together
with a selected change.

Digests are also used prescriptively where information Prescriptive Digests
inform a developer’s
next steps.

from the history informs the user’s next development task.
Zimmermann et al. [2003] use history to analyze the deci-
sions that have been made in regards to system architecture
to inform necessary restructurings. Ying et al. [2004] collect
information about what files were changed together in the
past. In turn, they can use this to identify other files that
may have to be considered for an upcoming change. Kagdi
et al. [2008] built a similar system that supports developers
in finding someone who can help them understand how to
make a specific change. According to [LaToza et al., 2006],
this role of answering questions about unknown code and
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pointing out responsibilities is traditionally filled by the
team historian.

4.1.2 Time-based Visualizations

There are a lot of tools that are designed to visualizeVisualizations over
time can trivially be
used to annotate a

timeline.

changes over time. While they are often meant to be di-
gests, they could also easily be used as a guide by using the
visualization to annotate a timeline.

Viégas et al. [2006] extract keywords from email conversa-
tions and use these as a summary of a conversation history.
The chosen keywords are arranged over time, which means
that it is difficult to follow a keyword’s age because the user
has to look for the same keyword repeatedly. Highlighting
keywords by search allows users to see keywords occurring
at multiple times (see Figure 4.3).

Several researchers built storyline or flow graphs based on
Theme River [Havre et al., 2002] (see Figure 4.4) to show
the development of certain aspects of code. Flow graphs
are stacked bar graphs where similar bars of two adjacent
stacks are bridged using smooth curves. This smooth vi-
sualization of a bar for all stacks is called a stream. Flow
layouts are particularly suited for history visualization be-
cause we often see gradual changes in individual stacks
over time. Software evolution storylines [Ogawa and Ma,
2010] visualize which developers actively took part in de-
velopment over time and who is responsible for what part
of the code. They created a force-directed graph layout de-
signed to look like a well-known movie storyline visualiza-
tion1.

Rose et al. [2009] introduce a technique to show the evolu-
tion of topics in news. They explicitly consider that these
topics impact each other and visualize splitting and merg-
ing of topics. Cui et al. [2011] built on Rose’s work, and, be-
sides creating a more organic visualization (see Figure 4.5),
they also introduce interaction techniques that help a user
to filter and highlight topics of interest. An initial dense

1http://xkcd.com/657/
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Figure 4.3: History of email conversations visualized as
stacks of keywords. The content of the search field at the
top is highlighted to identify recurring keywords. From
Viégas et al. [2006].

stacked graph can be pulled apart to highlight a certain
topic and its connections to neighboring topics. They also
allows the user to add threads, lines on top of the flow vi-
sualization, emphasizing selected keywords within a topic.

So far, the order of streams has been arbitrary; the data Streams may also be
ordered.these visualizations were based on, i.e., topics in the news,

have no real order. We also see flow visualization that
use structural information to inform the order of streams.
Viégas et al. [2004] created History Flow, a visualization
that reveals patterns of collaborative and antagonistic be-
havior in wiki changes (see Figure 4.6. History Flow rep-
resents the absolute position and extent of paragraphs and
lines on a Wikipedia page; at each point in time, the line
that is at the top of the document, will also be at the top of
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Figure 4.4: An example of the Theme River visualization.
Here, we see news events from July 1990. It is easy to iden-
tify the age of a topic and the amount of news activity at a
certain point in time. From [Havre et al., 2002]

Figure 4.5: Text Flow visualization of news data from
early 2011 with topics “budget / spending” (A), “protest
in Egypt” (B and C), “republican” (D), and “campaign” (E).
Events have been separated to easily see the relationship
of topics through splits and merges. The threads on top of
the flow graph, highlight user-selected keywords and their
relationships. From [Cui et al., 2011]



4.1 Related Work 69

Figure 4.6: History Flow of the history of the Chocolate
Wikipedia page. It is easy to see the quick growth of the
document at the beginning and an edit war where different
authors switched between two variants of the page. From
[Viégas et al., 2004]

the visualization. Figure 4.7 shows CodeFlows [Chevalier
et al., 2007, Telea and Auber, 2008], a visualization designed
to reveal structural source code changes. It uses the tree
structure of the syntax tree source to create a flow visualiza-
tion of changes between several versions. They match the
syntax trees of individual versions based on structural sim-
ilarity, and, for each line, show the evolution of the largest
matched tree node.

4.1.3 Guides

We also see systems that are specifically designed to guide Guides often rely on
annotated timelines
as an overview.

the user to find a specific version. They typically also
have an annotated timeline component that serves as an
overview. A system focused on guiding the user to find
a specific time is Chronoviz [Weibel et al., 2011, 2012]. They
use the co-evolution of multiple information sources to al-
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Figure 4.7: The Code Flows visualization of six similar versions of a C++ file. It is
easy to see how large parts of the code stay stable over all versions, and which part
of the code changes in each version. From [Telea and Auber, 2008]

low the user to rediscover a relationship between events
from different sources. Figure 4.8 shows their interface col-
lecting data from a flight simulator; the interface allows the
user to understand what was going on in the other domains
while she wrote a note on paper. Interestingly, notetakers
experienced with this system start to rely on the connection
and spend less effort on writing annotations like times or
verbose explanations.

Servant and Jones [2013] designed Chronos, a system that
enables to quickly navigate the history of a text document,
especially source code. They arranged all versions of the
documents on a plane and align multiple versions over
time so that horizontal scrolling always shows the same
part of the text, e.g., a method. Azurite [Yoon et al., 2013] vi-
sualizes change events by annotating a timeline with mark-
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Figure 4.8: The Chronoviz interface for a simulated flight session. On the left, we
see multiple timelines with various annotations like audio or velocity. The views on
the right show two-dimensional data, like text or a map location. Semi transparent
text in the notes view indicates that it had not been written at the selected time.
From [Weibel et al., 2012]

Figure 4.9: Azurite’s timeline navigation displays which files were recently
changed and where in the file the change occurred relative to the length of the
file. From [Yoon et al., 2013]

ers for insertion, deletion, and modifications (Figure 4.9).
They also propose to use this to selectively undo changes
from the history by applying inverse changes to the current
version.
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DMVN systems as discussed earlier are guides withoutDMVN systems are
guides that do not

consider time.
a temporal visualization. They instead simply help to ar-
range a certain state of the video content. We see this as a
disadvantage of such systems because it limits what times
in a video are accessible. Even DragLocks does not con-
sider time a primary navigation concern, although it is not
as restrictive as the other systems. However, the duration
of movements or pauses in DragLocks are not considered
in these systems.

Instead, we aim at creating a system that annotates a time-Our goal is to create
a guide that uses

structure as
information scent.

line with structural changes that can serve as information
scent. If that visualization does not express the users goals,
it is still possible to use it as a normal timeline; the worst
case is a fallback to an unannotated system. This is a paral-
lel approach to adding more specialized navigation meth-
ods on top that the user can choose for specific tasks.

4.2 Why Source Code?

We use source code as an example for two reasons. It is a
medium where history exploration is a well-known usecase
and it has a rich syntactic structure.

4.2.1 Usecase

The tasks around source code have been studied by La-
Toza and Myers [2010]; they interviewed developers to un-
derstand the questions developers have when dealing with
source code. We reiterate the questions they describe in the
area of history, how different systems support solving these
questions, and if and how we want to handle these ques-
tions.

• “When, how, by whom, and why was this code
changed or inserted?” These questions are often tack-
led in today’s history navigation interfaces of version
control systems. Many interfaces cover only the last
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changes affecting a line of code, e.g. Xcode’s2 blame
functionality. Thus, developers have to manually
search the version history of a file for these changes.
Ogawa and Ma [2010] propose to answer the ques-
tions of who was responsible for a change by visu-
alizing the responsibilities of different authors’ over
time. Our goal is to easily allow developers to nav-
igate back through the history of code. We want to
to so by providing structural hints as to the nature of
those changes. For now, we leave out the question of
how and by whom the code was changed.

• “What else changed when this code was changed or
inserted? How has it changed over time?” We see
this tackled in research prototypes that attempt to au-
tomatically predict what other code to change [Ying
et al., 2004, Zimmermann et al., 2004]. In his mas-
ter’s thesis, under the guidance of the author, Schulz
[2014] proposes CodeShape, a guide that integrates
sketches of the state of software into the timeline.
These sketches can be used to understand architec-
ture changes over time. A change that also affected
the sketch may also indicate it had a bigger impact
on the code than a simple one-line bugfix. We do
not want to tackle this question directly, but allow the
user to identify hints that correspond to these ques-
tions, e.g, by structural changes occurring together.

• “Has this code always been this way?” Static visu-
alizations of the amount of changes in source code
[Eick et al., 1992] don’t help to navigate to a certain
change but they do help to understand how stable
a part of the code has been. Chronos [Servant and
Jones, 2013] allows navigation of the full text of a file
over multiple versions. This detailed representation
makes it difficult to get an overview of what changed
over time. Instead we want to use a flow visualiza-
tion similar to [Telea and Auber, 2008] and adapt it to
interactively switch between overviews and detailed
visualizations.

• “What recent changes have been made?” This is to
a small extent visible in existing version control sys-

2https://developer.apple.com/xcode/
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tems. SourceTree3, e.g., show the most recent list
of changes on all branches in a table. The user can
then look at the change summaries or the individ-
ual changes. It is also possible to show only changes
related to a specific branch or changes to individual
files. We also see this in DeepDiffs [Shannon et al.,
2010], where recently changed lines get multicolored
highlights to show their age. This again fits our core
goal of highlighting changes in the code structure.

• “Have changes in another branch been integrated
into this branch?” We also see this in the graph vi-
sualization of version control system, e.g. in Tower4.
Versions of the two branches are connected when the
changes are integrated. For now, we will leave out
branching of into multiple versions of the same file.
Our focus will be on duplicating (branching) and (in-
tegration) merging of content within a file. If a file is
changed in multiple parallel branches, we expect the
user would have to select the correct branch for their
question using some other means. So for now we as-
sume a history to be linear.

Another benefit of source code is that it has a very rigid
structure because it has to be machine readable.

4.2.2 Source Code Structure

The obvious choice of structure is the syntax tree which isThe syntax tree of
source code is a rich

hierarchical
structure.

very easy to parse. Programming languages are generally
based on context-free grammars; this makes it easy for the
parser to understand the language but the rules can also be
given to programmers as a recipe of how to create syntac-
tically correct code. Source code files are easily parsed into
abstract syntax trees that are a hierarchical representation
of text based on that grammar; Figure 4.10 shows an exam-
ple.

3https://www.sourcetreeapp.com
4http://www.git-tower.com
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Figure 4.10: Parts of the grammar required for the switch
statement in Swift. Following these production rules creates
a valid statement. The completed statement forms a tree
that has one expression subtree and an arbitrary number of
switch-case subtrees. From [Apple, 2014]

We cannot consider our structure independent of the his-
tory aspect. It must be easy to match individual syntax trees
representing a method to another syntax tree representing
a changed version of this method. Chevalier et al. [2007]
discovered that you can use the shape of the syntax tree to
match two versions of a C++ file. Based on this they created
the visualization shown in Figure 4.7. We want to create a
similar visualization and then enable it with the structural
navigation properties described earlier.

There are however problems with using the structure as the
means to matching. Simply reorganizing a method, e.g.,
for error handling, can quickly create a structural differ-
ence that we would be unable to match. Adding new code
also affects the structure, which leads to the same problem.
While this may have been intended by Telea and Auber
[2008] to focus on detailed changes in between two ver-
sions (see detail in Figure 4.7), it does not work for our
purposes. To properly use any of our navigation proper-
ties, we need such additions and reorganizations to match
well. E.g., when the methods in a class where refactored for
a new error handling model, we still want the two versions
of the class to match.

We decided to use a top-down approach for matching
based on a bag-of-words model. For us, a word is any
group of alphanumeric characters, i.e. variable names, lan-
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func sayHello() {
print("Hello")

}

func
sayHello
print
Hello

func sayHello(language: String) {
if language == "German" {

print("Hallo")
}
else {

print("Hello")
}

}

String
if

language x 2

func
sayHello

German
print x 2
Hallo
else
Hello

Figure 4.11: Two versions of a method in Swift and their
respective word bags. The matching score between the two
methods would be 2

3

guage keywords, words in strings, or words in comments,
and numbers. Any element of the syntax tree is annotated
with all keywords from the text it was parsed from. We
can then match two elements by comparing the contents of
the two multi-sets (bags) B1 and B2. Then, the match score
between two nodes is defined as

1

2
· |B1 ∩B2| ·

(
1

|B1|
+

1

|B2|

)
Figure 4.11 shows an example.

When matching two trees we use the fact that changes are
iterative to avoid a lot of exhaustive tree searches. We first
check for trivial matches, i.e., completely unchanged nodes
and nodes with large scores (0.9 has worked well for our
prototype). We only do full tree searches for the remaining
nodes. This allows us to match even large trees quickly.

This matching approach works well until we get to the level
of individual lines. The amount of keywords in a line is of-
ten too small and nodes cannot be matched or are matched
incorrectly. Thus, we decided to stop parsing at the level of
code blocks, because they are easily understood by a devel-
oper and contain enough keywords to be reliably matched
(2–3 already works well in our experience).
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Figure 4.12: Simple code block tree of a short method. In-
cluding text before opening brackets makes sense because it
represents the control flow responsible for a particular code
block.

Since this work focuses on how to use the tree structure
for interaction, we found this trade-off acceptable. In lan-
guages like Java or Swift, this structure entails, classes,
methods, closures, control flow.

This structure is also easier to parse than the full syntax
tree, which means we can greatly improve parsing speed
by replacing the language parser, e.g., clang5, with a triv-
ial code block parser. The latter also allows us to become
language agnostic and parse any language that uses curly
braces to denote code blocks, e.g., C, C++, Objective-C,
Swift, Java, or JavaScript. We discuss approaches to use
a more detailed structure in the limitations section of this
chapter.

So, our final structure is a tree, where each node represents
some range in the original source code. Each subtree repre-
sents a subrange of the text represented by its parent. Chil-
dren are easily linearly ordered by their occurrence in the
parent’s text. An example of such a code block tree can be
seen in Figure 4.12

5http://clang.llvm.org
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We can now describe how this structure can be employed
for improving interaction techniques around source code
history. We envision such a structural navigation technique
to be used in conjunction with a view of the content, i.e.,
the source code.

4.3 Structure Aware Timeline

For some problems it might be unnecessary to provide the
user with a complete visualization. Thus, we describe how
to create a structure aware timeline using the features de-
scribed in chapter 3.6. Such a structure aware slide could
work for local navigation in a defined scope.

We created an interface that consists of a source code view
and a timeline slider. The source code code view highlights
the structure around the line containing the text cursor, i.e.,
the code block containing that line. The timeline, a simple
slider, represents the versions of the file.

We propagate this highlight to every version of that code
block when navigating through history. In this way, the
user can easily identify the current version of the original
code block.

When the user navigates to a different version by dragging
the handle on the timeline, the source code view displays
that version of the file and automatically scrolls the version
of the originally selected code block to the same position.
Enabling viewport stability like this enables the user to fo-
cus on the changes within her particular selection. It does
not matter if the code block was moved from a different
method or where it is in the file. Figure 4.13 shows this
behavior. In conjunction with the highlight, the user can
easily see if the length of the code block changes during
navigation.

Using the timeline as an interface has the advantage that it
is completely agnostic to the type of structure. Even if we
had a underlying structure other than a tree, we could still
employ the same method. However, since history paths
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Figure 4.13: Two version of a short piece of source code when navigating using the
Structure Aware Timeline. Even though the if. . . else statement was replaced with
a switch statement and a new enum declaration was added at the beginning of the
file, the selected statement appears at the same location and is correctly highlighted.

can split and merge often, we have to decide where to con-
tinue without explicit user interaction. When we encounter
a split, we compare the next node on all potential paths
to follow and select the one with the best match score. Of
course, the timeline has all usual disadvantages of timeline
navigation. The user cannot tell what version to navigate
to in order to see a particular change. It does not fulfill our
desired goals from chapter 2.8. To deal with this problem,
we now describe our Tree Flow visualization of structural
changes.
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4.4 Tree Flow

Our goal for tree flow was to create an interface that en-
ables navigation or exploration without restricting which
versions are accessible. We also wanted the user to be able
to identify the relationship of multiple objects at once and
even see objects from the history that are not visible in the
current version. This is exactly what we can visualize using
the hierarchical structure of source code. The relationships
visualized right now are colocation and containment in a
source code file.

We chose to visualize an abstraction of the content changesTree flow abstracts
from the content and

only displays
structure.

on the timeline because the amount of source code in a typ-
ical file does not fit into the code viewport. Any visualiza-
tion on top would have the issue that it cannot be under-
stood as a whole. One such inline visualization is Chronos
[Servant and Jones, 2013]. Chronos arranges code on a
large surface, that allows horizontal navigation through
time and vertical navigation through the code version. Dif-
ferent versions of code arranged horizontally are aligned
to each other to facilitate comparison. This alingnment can
leave vertical gaps that users may overlook when navigat-
ing through horizontally. Schulz [2014], who did his Mas-
ter’s thesis under the guidance of the author, observed this
issue during a user study comparing, Chronos, Azurite,
and his own tool Code Shape.

The idea behind tree flow is to extend the code flows visu-
alization in such a way that it can easily deal with hundreds
of versions of a source file. We want to be able to provide
an overview of the history of a whole file but also be able
to focus on the history of individual classes, methods, or
control structures to enable a developer to focus on code on
the lower levels. LaToza and Myers [2010] and Holmes and
Begel [2008] describe that developers are often interested in
code on the “snippet level”.
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4.4.1 Visualization

We cannot simply copy the Code Flows visualization ap-
proach for several reasons.

• Since we want to display hundreds of versions, we do
not have room for the icicle plot visualization of code
lines in the middle of the visualization.

• For the same reason, we need a different curve ren-
dering approach. This can easily be seen in the detail
part of Figure 4.7: the bridges connecting the different
versions sometimes overshoot vertically and attach to
the connection points diagonally. If we want conti-
nuity of this curve between multiple versions, these
overshoots will become even larger. We solve this by
imposing a derivative of zero at the start and end of
each of these bridges; this guarantees continuity be-
tween multiple curves in a row without creating ver-
tical overshoots.

• A less trivial reason is that Code Flows generates an
essentially flat visualization of the tree and assigns
colors to tree elements based on common flow pat-
terns and the type of syntax tree node that created it.
This produces similar colors for similar elements, but
it also means that we always see a mixture of different
levels of the tree. We want to instead retain the tree’s
hierarchical nature to allow the user to select which
level of detail is interesting to her at a given time.

For the latter point we looked at different tree visualiza- We used Arctrees as
a one-dimensional
visualization of a
tree.

tions; Schulz et al. [2011] present a comprehensive sur-
vey of such visualizations and Jürgensmann and Schulz
[2010] give a visual overview. Tree visualizations are
usually based on two-dimensional representations of the
tree. However, Arctrees [Neumann et al., 2005] are a one-
dimensional visualization of trees that also consider non-
ordered tree graphs and also visualize the relationship of
child nodes. For our purposes, we only consider a simpli-
fied version of Neumann’s visualization that we call a tree
stack. We can easily draw such a tree stack at any width
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Figure 4.14: Arctrees (left). From [Neumann et al., 2005])
and Tree Stack (center) and the represented tree (right). The
details of the Arctrees more clearly show tree levels and
relationship between sibling nodes. Tree Stacks can easily
be drawn at any width.

and, using predecessor and successor information from our
matching, we can easily connect the two using the afore-
mentioned bezier curves at the top and bottom of each tree
level.

Each version of the source code is parsed into code blocksThe code block tree
can easily be

represented as a tree
stack.

as described above visualized as tree stack with zero width,
and placed on the timeline; versions are distributed uni-
formly. The vertical extent of each tree node is determined
by the number of lines represented by the node. We scale
each stack based on the extent of the longest source code
version, meaning that the longest represented version fills
the whole vertical space available while shorter versions
only fill proportionally less space. Every node in each
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Figure 4.15: Tree flow connection of the two trees depicted
on the right.

tree stack is connected to its neighboring versions by cubic
bezier curves connecting start and end of each version. If a
node does not have a neighboring version (insert or delete
of the node), we create a rounded end of the visualization.
The visualization in this way easily handles splits, merges,
inserts and deletes. We specially handle merges and splits
into or from parents. A split from a parent into a child is
drawn as an insert. A merge from a child into its direct
parent is drawn as a delete.

We then color the visualized history graph starting at the
first version by assigning colors from a predefined color
set to each first level node, i.e. the children of the root
node. Each child is subsequently colored by taking its par-
ent color and reducing the saturation by a constant fac-
tor. This approach provides a clear distinction between first
level elements, retains visual similarity of child and parent
elements, and still shows the evolution of individual child
elements.

We follow each colored node’s successor mapping to color All versions of a code
block will have the
same color.

the nodes best matching successor using the same color.
Any uncolored node will receive a new color based on the
rules above. This approach is different from Code Flows
coloring scheme which removes structural information in
the depth of the tree in favor of more clearly visualizing
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merges and splits of child elements. The colors chosen for
the visualization are also visible in the code view to enable
the user to quickly understand the relationship between the
two.

Finally we annotate content changes within the individual
code block histories. If there is a content change between
two versions, both versions of a particular code block are
annotated with a vertical mark. This makes it easy to see if
the content of a code block has stayed constant.

We implemented this tree flow visualization in a prototypeChronicler is an
implementation of

tree flow connected
with a source code

view.

system called Chronicler. Figure 4.16 shows the history of
the examples discussed in Figures 4.11 (versions 1 and 2)
and ?? (versions 4 and 8). Figure 4.17 show a longer history
from a file in a public GitHub repository6. We now continue
to describe how the user can interact with the system.

4.4.2 Interaction

We use the tree flow visualization as an annotated timeline.
Thus, when the user starts drags, we switch the code view
to the version under the mouse pointer.

We use structural propagation and viewport stability as de-During navigation,
we retain the current
selction and position
of the selected code

block.

scribed for the structure aware timeline. The code block
selected in the source code view will be highlighted and
kept stable during navigation. It will also be highlighted in
the tree flow visualization. The selection can also be made
in the visualization; when clicking on the history path of
a code block, the current version of code block, if it exists,
will be scrolled into view. This makes it easy to explore the
different aspects of the visualization.

We implement structural abstraction by allowing the user toThe user can change
the depth of the
visualized tree.

dynamically change the depth of the tree that is visualized.
This means that they can focus on the depth of the tree that
is currently of interest. For example, consider a file con-
taining multiple classes. It may be interesting to see when
these classes were inserted or how they grew over time, the

6http://github.com/AFNetworking/AFNetworking
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user in this case does not care about individual methods
and does not show these details. Later, it may interesting
to see why a class grew, showing more details about meth-
ods, enabling the user to see if methods were inserted or
maybe moved from another class. This does not impact
structural propagation, which means that the selection in
the code view might be overlaid on top of the visualization.

We use structural filtering to focus the visualization on aThe user can
exclusively focus on

the history of
selected history path.

particular sub-history. By double clicking on a history path,
the user can select a history path to visualize in more detail.
Starting from a code block in Figure 4.17, we would end up
with something similar to Figure 4.16. The available space
is then only filled by the history of the selected subtree as
defined by its history path. We gray out all other content to
make sure the user knows what the visualization shows at
a point in time. In this way a user can descend into the tree
to reveal more details about classes, methods, or individual
code blocks.

4.5 Experiment

We conducted a study, comparing Chronicler, the struc-We compared
Chronicler and two

timeline variants.
ture aware timeline, and a normal timeline. The normal
timeline represents existing user interfaces such as Xcode’s
version editor, or Tower’s file history view. The study was
separated in three parts. First, after showing participants
the three tools, we let user discuss problem solving strate-
gies for four different problems. This provided insights
into how users approached history navigation with each
of these tools. The qualitative results from this part in-
dicate that users devise very different strategies when us-
ing the slider-based tools than when using Chronicler. The
first part also familiarized our participants with each of the
conditions. Second, participants were given eight concrete
navigation tasks with one of the three conditions. Third,
users were asked to bring a repository with familiar source
code; they could then explore it with all of the three tools.
This part of the study was optional, but was designed to
provide insights into how history navigation tools could be
used.
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We recruited 21 people (2 female) between 21 and 35. They
were recruited from a local developer mailing list and our
computer science department. They reported a media cod-
ing experience of 4 on a five point Likert scale. Free snacks
and drinks were offered during the study; participants
were not compensated in any other way.

4.5.1 Strategy Discussion

We identified four source code understanding tasks that
can be solved using the code’s history.

1. How do you find out where a method originates
from? This is relevant in tasks where the programmer
wants to understand a code snippet that may seem
to be out of place or a duplication of code. The his-
tory may reveal that the out of place code has been
moved from a different method without being prop-
erly adapted.

2. How do you understand this version of a method?
Quick access to the history opens up the option to
look at different versions of a method. This may be
particularly interesting when the version of interest
handles a lot of special cases that did not use to be
there. By understanding the simpler version, the user
already knows what the core functionality is, and has
an easier time to identify and particularly focus on the
special cases in the version of interest.

3. There used to be an interesting line in this code snip-
pet. How do you find it? A developer may have run
into a problem and was told that there used to be a
special solution for this issue somewhere else, maybe
pointed out by the team historian [LaToza et al., 2006].

4. How do you identify a big refactoring in the code?
Identifying refactoring helps to understand reference
points in the history itself. People may have to
treat leftovers from old code differently than things
that have been introduced more recently. Also, the
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changes during the refactoring may clarify the pur-
pose of the code.

Following our definition, all of these tasks are exploration
tasks; the user does not know in advance which version
holds the answer to their questions.

After each task, we asked each participant to evaluate how We hypothesized
that Chronicler would
outperform the
timelines for 3 of 4
conditions.

well each tool was suited for the tasks on a five point Lik-
ert scale. For obvious reasons, we hypothesized the other
conditions to always be preferred over the normal timeline.
For Task 1, we hypothesized Chronicler to be preferred over
the structure aware timeline because the structure tree vi-
sualization actually shows a merge, or lack thereof, when a
code snippet used to be part of a different context. In Task
2, Chronicler does not provide the answer in the visualiza-
tion. However, since structural changes, e.g., length of the
method or existence of certain code blocks, could be infor-
mation scent for “easier to understand”, we expected it to
outperform the timelines. Task 3 is specifically asking for a
non-structural element that cannot be visualized in Chron-
icler. The visualization still provides some information, i.e.,
the age of the surrounding code block and when it changed.
We expected the structure aware slider to be preferred, be-
cause the visualization may suggest the existence of rich in-
formation that is not there. For task 4, a refactoring is very
difficult to identify in the timeline conditions because the
user can only see a small part of the code at a time. The vi-
sualization provides a global view and was thus expected
to outperform the structure aware timeline.

We identified examples of these tasks in existing files from
our own development projects and a public GitHub reposi-
tory7. Participants spent roughly ten minutes for each task.
We urged them to think about how they would solve the
task with each tool instead of doing it quickly. They could
switch back and forth between the three conditions at their
own leisure and amend their previous strategies.

7http://github.com/AFNetworking/AFNetworking
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Task
1 2 3 4

1

2

3

4

5

S N V S N V S N V S N V

Figure 4.18: The results from the questionnaire asking how
well the tool was suited for each of the discussed strate-
gies with median. S: Structure Aware Timeline, N: Normal
Timeline, C: Chronicler

Quantitative Results

To analyze nonparametric data we used a Kruskal-WallisChronicler
outperformed the

timeline for all
conditions.

test and Wilcoxon tests for pairwise comparison. Overall,
we see a significant preference (p < 0.01) for the visualiza-
tion over both the normal timeline, as well as the structure
aware timeline. For, Task 2 there is no significant difference
between Chronicler and the structure aware timeline. This
did not match our expectation; participants did not con-
sider the visualization to have an additional benefit over
a structure aware timeline. And in Task 4 there is no sig-
nificant difference between the timeline and the structure
aware timeline. This is unsurprising because both slider
conditions barely visualize a refactoring. All other tasks
show a significant preference (p < 0.01) for Chronicler over
the structure aware slider and a significant preference of the
structure aware slider over the normal timeline (p < 0.05).
Figure 4.18 shows a box plot of the results for each individ-
ual strategy.

The results clearly indicate that Chronicler is generally bet-
ter suited for these kinds of exploration tasks, with the ex-
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ception of understanding a method where people could not
see a particular benefit of the visualization. Unsurprisingly,
people would always prefer a structure aware navigation
method over a normal timeline.

Qualitative Results

We identified two key differences between the timeline con-
ditions and the Chronicler conditions. First, Chronicler Chronicler

encourages lateral
exploration.

encourages lateral exploration of other code blocks. Even
when given a task about a specific method, participants of-
ten also looked at other methods or code elements for com-
parison. In the timeline conditions we usually observed
users to be focused on one code block.

Second, the visualization of structural change is used as Structural changes
are used as a strong
indicator for relevant
versions.

strong indicator for relevant versions. During exploration,
participants start at versions emphasized by a structural
change occurring. The timeline conditions do not have any
such indicator and we see a lot more random or even ex-
haustive searches of versions.

We now describe the detailed observations. As expected,
the normal timeline was difficult to use over multiple ver-
sions. 13 of the participants worked around this using
the ‘Find’ and ‘Find Next’ commands. The rest manually
searched for the method of interest in each version they
looked at. The strategies in the slider conditions otherwise
were the same for most participants and we report them as
one. A notable exception are two participants who, in the
normal timeline condition, used a number of variables at
the beginning of the file as a static reference point. They
used changes in these variables as an indicator for a refac-
toring in task 4. Otherwise the normal timeline was treated
as a less helpful version of the structure aware timeline,
where the user had to manually adjust the viewport after
navigation.

Using the timelines, refactorings were spotted in two ways. Some participants
used suddent
changes in the length
of a file as an
indicator for change.

One group (10) of participants used the length of the file
as a global indicator; they either looked at the end of the
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file without using structural features or at the size of the
scroll bar. Large changes in scrollbar height or a large jump
of the end of the file were then interpreted as a potential
refactoring. The rest (11) looked at a specific method and
tried to identify versions with large changes in such a local
view. Both groups usually verified their hypotheses in the
Chronicler condition however. There, the refactorings were
reported to be easily spottable through structural reorgani-
zation or length changes.

In the timeline condition, only four people attempted to
identify key versions first (Tasks 1 and 2). Key versions
were the beginning and end of the method, as well as
“large” changes. Nine participants randomly selected older
versions to find a version to compare and 12 proposed an
exhaustive search of all versions.

With the visualization of Chronicler, people instead explic-Chronicler
encourages people
to look for versions

with structural
change.

itly looked for versions with structural changes (17) and/or
content changes (5). Here, only four proposed to look at
each version. Most participants (18) used the visualization
to identify valid navigation ranges before attempting any
navigation.

18 participants also explicitly noted the helpfulness of theBoth, overview and
detail visualizations

can be helpful.
overview provided by Chronicler for all tasks. For tasks
1 and 2, these participants not only tested their proposed
strategies with the indicated code, but also looked at other
methods. Only one participant did so for the timeline con-
ditions. 14 also explicitly mentioned the ability to focus on
a method as a means to understand detailed changes (Tasks
1 – 3).

All participants tried to select small, easily identifiable code
snippets when looking at the code in accordance with [La-
Toza and Myers, 2010]. When possible they selected a snip-
pet that was completely visible on screen.

4.5.2 Navigation Tasks

So far we have only dealt with exploration tasks. The sec-The second part of
our study tested

navigation speed.
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Find the last version 

- (void)operationDidStart { 
 …    
 …    
 if ([self isCancelled]) {    
        [self finish]; 
    } 
}

- (void)operationDidStart { 
 if ([self isCancelled]) {    
        [self finish]; 
    } 
 …    
 …    
}

Figure 4.19: Cheat sheet for a navigation tasks showing the
initial version on the left and the final version on the right.

ond part of our study was designed to consider navigation.
Navigation requires the participant to know what the tar-
get version looks like. This is not the case for the explo-
ration tasks used in the strategy discussions. Local undo
often requires such a navigation task. Consider a the user
wanting to go back to an earlier version after trying an ex-
perimental change. She likely still knows what the earlier
version looked like and thus has a clear idea what version
she wants to go back to. Improved history navigation inter-
faces could support that use case. Another example of nav-
igation tasks are variants of task 3 mentioned above where
the user is explicitly told what to look for.

We selected eight navigation tasks based on two character-
istics. The representation in the structure, i.e., if the code
that was to be found is visualized in the structure. And the
amount of versions having the particular change, i.e., more
or less than 10% of the versions on the timeline. We looked
for two examples for each combination of characteristics.

Participants were given a cheat sheet (Figure 4.19) contain-
ing a unique description of the lines of code they were sup-
posed to look for. In this way, they had an easy way to
check if they had reached the right version or not. We gave
people as much time as they wanted with these cheat sheets
to understand the tasks before starting the experiment. We
measured the task completion time from starting the exper-
iment to the last navigation event.
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Our hypotheses were as follows:

1. Overall, the structure aware conditions are faster than
the normal timeline.

2. For each trial, the structure aware conditions are
faster than the normal timeline.

3. Represented events are faster to find using Chronicler
because the user can see where they have to navigate
to, especially when less than 10% of versions have the
indicated change.

4. Not represented events are faster to find using the
structure aware timeline because there is no distract-
ing visualization.

We performed a between-groups study, where each partic-The structure aware
interfaces are

roughly 2 times
faster than the

normal timeline.

ipant was randomly assigned to a condition. We analyzed
the measurements with a multi-factor ANOVA and post-
hoc analysis using paired t-tests. The analysis shows a sig-
nificant decrease in task completion times when using the
structure aware tools (effect of condition: p < 0.01, normal
timeline vs. chronicler: p < 0.01, normal timeline vs. struc-
ture aware timeline: p < 0.01). Figure 4.20 shows a bar
graph of the task completion times over all tasks.

No significant differences between the two structure aware
conditions were found. We could also not find a signifi-
cant effect of any individual task on performance. While
this does not mean that Chronicler cannot be faster than the
structure aware timeline in terms of navigation time, it in-
dicates that it may not be worth it to spend the screen space
on the larger visualization for navigation.

4.5.3 Exploring Familiar Source Code

For the last part of the study, we let participant explor-The final part of the
study let participants

explore familiar
source code.

ing familiar code. Participants were asked to bring their
own repositories in any of the following programming lan-
guages: JavaScript, CoffeeScript, Java, C, Objective-C, or
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Figure 4.20: Task completion times over all tasks with stan-
dard error bars. Blue: Chronicler (39.47s), red: structure
aware timeline (45.05s), green: normal timeline (85.33s). On
average structure aware navigation is roughly twice as fast
as the normal timeline.

Swift. Before the study we explicitly told participants that
we would not keep the code and that they could delete it
from the study machine when the study was over. As men-
tioned earlier, we assume history to be linear for now, so
when loading the participant’s repositories we always used
those branches from the version control system that con-
tained the most changes on a loaded file.

Four participants did not bring any familiar source code.
Unsurprisingly, everyone exclusively used the Chronicler
visualization, although all conditions were available to
them. The reception was positive throughout and people
described a number of interesting usecases.

• General use: There were some comments indicating
that people would use the tool.

– “With this, I actually would look into my old
code more often, right now I don’t do this at all.”

– “The lack of good version control made me store
old versions of my methods within the com-
ments a lot.”
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Especially the second comment highlights that peo-
ple may have kept history versions around manually,
which they may replace with a tool like Chronicler.

• Structural soundness and stability: Some people fo-
cused on the structural soundness of their code and
identified regions that were meant to be structured
differently. Others said they could use the structural
stability of certain code parts to identify edge case
handling.

– “This tool would make me create better code
structure, just by showing what the originally
planned structure was.”

– “This tool can show me, If my code should be
refactored soon.”

– “With this tool I can see my code structure is
messed up, I think I will fix that for my next ver-
sion.”

– “When I look at this, I ask myself why I decided
to move this piece of code.”

– “This could be used to identify edge cases for
a method. Typically the edge case handling
gets introduced later than the main functional-
ity, with this tool I can find it easily.”

• Collaboration: We saw some examples where people
used the tool to identify what a colleague did.

– “A colleague added something to our repository
and I was not able to find it quickly. This tool
would have helped a lot in this situation.”

– “I think I am able to see which commits were
done by me, and which were done by my col-
league.”

Especially the first example seems to be an interesting
usecase.

• Customer communication: Lastly, a developer men-
tioned a very interesting problem that regularly came
up in their company, since they create special versions
of their software for each customer.
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– “This would help a lot to identify the age of
a bug in a project. If the bug is discovered
in a newer version of the project, all affected
branches can be easily notified.”

4.5.4 Interface Enhancements

Our participants requested some interface enhancements
for the Chronicler interface, no specific requests for the
slider interfaces was mentioned.

• Diff : Almost everyone wanted to see a typical Diff to
compare between two versions. This of course makes
sense. We would suggest to implement such a view in
way that it displays the actual structural differences
as described here. In this way, a user could then see
that the code in Figure 1.7 was not actually deleted
but moved as a whole.

• Zoom on both axes: Similarly, most people requested to
be able to zoom in on a certain time range as well as
the depth of the tree. They mentioned that it could
sometimes be less interesting to look at the history as
a whole, but maybe only at a part of the history to a
certain event, e.g, the last refactoring.

• Searching in time: Some people mentioned they would
like to find all versions containing a certain string,
type, or other element by searching. This would be
easy to add by highlighting the structural element
containing such a string. It might be interesting to fil-
ter this search by structural elements to avoid clutter
from other methods.

• Manual grouping: A few people also suggested to al-
low manual grouping of elements that they identified
to be interesting as a group. This would create a new
structure on top of the automatically parsed structure
that would contain more meaning. It is, however, not
clear how to deal with splits and changes within such
a user defined structure.
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We agree that these changes would be beneficial to a pro-
duction level system.

4.6 Summary

We showed that the existing history navigation tech-Depending on the
tasks the user should

be able to switch
between a structure
aware timeline and

our tree flow
visualization.

niques are outperformed easily by structural navigation
techniques with roughly a 2 fold speedup. This is likely
to be even more when comparing it to other commonly
used interfaces, e.g., combo boxes to select versions. While
we could not show a difference in navigation times be-
tween the two structural navigation techniques for navi-
gation tasks, we see significant differences in preferences
for exploration. This indicates that, when designing for
navigation tasks, we could use a structure aware timeline,
which takes up less screenspace and can thus be visible in
the interface permanently. If also designing for exploration
tasks, this timeline can easily unfold into the Chronicler
timeline. With the comments from developers in our study,
we can also confirm developer’s interest in this area.

4.6.1 Limitations

The design currently has some limitations that should beThe visualization
should not

completely exclude
other code blocks

when looking at the
detail view.

addressed in the future. Besides the enhancements men-
tioned by our study participants, we also identified other
limitations of the system. Currently, stepping into a method
history is a discrete step where surrounding blocks are not
visible or accessible anymore. This produces ambiguous vi-
sualizations between structure elements ending and mov-
ing into other methods. We imagine this to be replaced by a
focus + context or fish-eye visualization where the selected
code block takes up most the available vertical space and all
other elements taking up the remainder, distorting the pro-
portional height but leaving the order intact. A user could
then still see code blocks splitting and merging from the
selection and could even follow them easily, switching the
focus to the new containing block. It is also currently not
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possible to compare the behavior of several methods in par-
allel. Providing a structural filtering method on multiple
structural elements could provide a more situation specific
arrangement of methods.

The fact that we are currently using code blocks as the It would be
interesting to see the
behavior of more
detailed elements
within the code
blocks.

finest structural detail limits the usefulness of the tool for
individual lines. Interestingly, we heard no requests for
showing a sub-history of a structural representation lower
than the level of code blocks during our study. This in-
dicates that we do not necessarily need to visualize these
structures in the same way. Instead of filtering the history
based on these smaller elements, we can only use structural
propagation to highlight the path of such smaller struc-
tures, e.g., the history of an assignment on top of the code
block structure similar to [Cui et al., 2011]. This would bet-
ter support tasks focused on individual elements.

Aside: Detailed Histories

One way to get to the history of individual lines and state- Related work asks
for a more finer
grained recording of
histories.

ments, would be to record finer grained code histories as
argued by [Yoon et al., 2013] and others. Hill et al. [1992] al-
ready stated “it is in keeping with the generalization of Edit
Wear and Read Wear that all interaction histories should be
recorded permanently, event by event, and be made acces-
sible for later redisplay by interface objects such as menu-
items, [...].” We could then use these individual changes
to built the correct history over time; changes occur in an
existing structure, in a line, or create new structure, a new
line. This makes it trivial to know in what structure changes
happened and where things were copied from. We could
even easily bridge the code to other sources [Hartmann
et al., 2011] and these sources’ histories.

Besides storage space issues, this approach also has strong Recoding and
sharing everything
has strong privacy
implications.

privacy implications for the user creating a document. Es-
pecially in non-source code applications, having access to
everything the user may have tried and then deleted af-
terwards will not sound appealing to a lot of users. Also,
having the history cluttered with every experimental ver-
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Figure 4.21: Aggregate changes within a history graph with
original (top) and aggregated graph (bottom). The succes-
sors of a node in the aggregated graph are all successors of
the successors in the original graph.

sion may not be practical. It is not necessarily interesting to
undo individual character changes after a certain time has
passed.

To avoid these concerns, we propose to only build theAn editor can
aggregate small fine

grained details into
larger chunks to

easily match.

history ephemerally. Assume we have a persisted version
from something like a version control system and a struc-
ture aware editor. As the document changes, the editor
records the editing history of the document for undo. It
is easy to know which fine structures are affected or cre-
ated for these individual edits, and where they mave been
moved or copied from. This enables the user to use a sys-
tem like Chronicler for fine-grained undo during an edit-
ing session, similar to how undo works now. We can then
aggregate all these individual changes into a large change
from one persisted version to the next without the require-
ment for heuristic matching later on (see Figure 4.21). The
user would still be in control about what is persisted, but
without losing the benefit of the correct structural evolu-
tion of fine grained elements.

In the next chapter, we will introduce other uses for the
structure tree visualization of Chronicler. We will also dis-
cuss how to find appropriate structures in other media
types.



101

Chapter 5

Generalizing Tree Flow
Interfaces

“There is no abstract art. You must always start
with something. Afterward you can remove all

traces of reality.”

—Pablo Picasso

With Chronicler, we introduced a tool that handles the spe-
cific structure of source code arrangement in a file. We can
easily extend Chronicler for written text like books using
the separation of text into sentences, paragraphs, chapters,
etc.. This chapter deals with the challenges of generalizing
the idea of tree flow to other media types. We look at struc-
tures that exist in parallel, e.g, the syntax tree and the call
graph, then we discuss structures that are not ordered, e.g.,
the elements in a 2D image, and finally we look at unstruc-
tured data where the structure can be user-generated.

5.1 Parallel Structures

Our idea was to find structures that represent as many Depending on the
the medium, other
structures might be
interesting.

tasks as possible by using structure as information scent.
However, as [Pirolli, 2007] stated, quality of information
scent “can have dramatic qualitative effects on surfing
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Figure 5.1: A small example call graph. Blue nodes have a
call path to the yellow node, red nodes have no call path to
yellow, and green nodes are callees.

large hypertext collections.” No matter what structure
we choose, there will always be tasks that are not well-
represented by a given interface. A structure like the code
hierarchy used for Chronicler expresses spatial and con-
tainment relationship of lines in a file. But, we could also
easily be interested in other relationships of source code,
e.g., the function call relationship described by the call
graph. Note that we can still access and navigate to any
version of the call graph within the syntax tree, but infor-
mation scent is limited to the displayed methods. With the
proposed extension of Chronicler that enables users to se-
lect multiple methods, she could then choose to select the
methods called by a method of interest.

But, the history of the call graph, representative for aSometimes, multiple
structures deserve

special
consideration.

similar second structure in a medium, may be important
enough to warrant special consideration. This is one step
back into semantic interfaces, but instead of creating a spe-
cialized interface for each specific task, we consider classes
of tasks that occur in different structures. Supporting code
navigation within a single version by use of the call graph
has been shown to be a useful tool [Karrer et al., 2011a]. In
our CHI 2013 paper, we showed that a developer’s navi-
gation behavior is affected by the chosen call graph naviga-
tion tool [Krämer, Karrer, Kurz, Wittenhagen, and Borchers,
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Figure 5.2: Top: the immediate callers (green) and callees
(blue) of the yellow method as used by Stacksplorer. Bot-
tom: an arbitrary call path through the yellow method node
as used by Blaze.

2013]. Stacksplorer [Krämer, 2011] and Blaze [Kurz, 2011]
are tools that show a specific linear graph subset part of
the call graph. While Stacksplorer displays the method ad-
jacent to current methods, i.e., the callers and callees, Blaze
displays one of the possible call paths that affect the current
method (Figure 5.2 shows both).

The history of the call graph could support developers to
find a recently introduced bug. Consider a developer look-
ing at a code snippet that stopped working recently, e.g.,
according to a test case. When she investigates, she finds
the method called by the test case has not changed, which,
to her, indicates a side effect in one of the callees. A com-
mon approach to find the issue would be to step through
the method and look at unexpected return values, and then
repeat the process in the callee. Depending on how deep
the issue is hidden in the call graph, this is a tedious pro-
cess. The idea is that if we can visualize changes within in
the call graph structure over time, we can use this to draw
conclusions about the bug.
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Call graph structure and syntax tree structure are parallel,Parallel structures
can represent

different relationships
on the same entities.

because even though they represent some of the same ver-
tices, i.e., methods, they represent very different relation-
ships; just because two methods are implemented at differ-
ent ends of a file, does not say anything about if they call
each other. The two structures have a different shape, the
syntax tree was an ordered tree structure, and the call graph
is an ordered network. In the call graph, two nodes are con-
nected when one node, a method, calls another method, i.e.
the caller and callee. There are obvioulsy not many restric-
tions to this relationship, a caller can call a method several
times or not at all, it can even call itself. We do consider
calls to be ordered by their appearance in the caller’s source
code.

If we want to use a visualization like Chronicler for the
history of the call graph, we have to find a visualization
for this graph. To our knowledge, there is no approach
that can easily visualize a lot of versions of such a complex
graph structure over time. Complex networks are difficult
to visualize slicable, i.e., in one dimension, because of their
inherent multi-dimensionality; Gibson et al. [2013], Parker
et al. [1998], and Erten et al. [2004] are some example ap-
proaches for 2D and 3D visualization. We can attempt to
reduce such a complex graph into a tree structure, which
enables us to then use the tree flow visualization approach.
The literature shows a number of ways to reduce a network
into a tree structure, which in turn could be visualized as a
slice using the tree stack approach. Heer and Boyd [2005],
Archambault et al. [2006] find non-overlapping clusters in
the graph which, when applying this approach recursively,
form a tree. We discuss two ways to do this, create a subtree
of the graph and use a secondary structure.

5.1.1 Subtrees

The goal of understanding the call graph over time can beThe call graph may
be interesting as a

whole or a local
subset.

twofold. We can consider the user to be focused on an indi-
vidual method, similar to Stacksplorer, or we can attempt
to understand the call graph as a whole, e.g., to see con-
nected components in the code [Zimmermann et al., 2003].
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Figure 5.3: Tree expansion based on the focus method (yel-
low) for both callers (blue) and callees (green) of the call
graph in Figure 5.1. Nodes that can be reached over multi-
ple paths in the call graph are repeated in the tree.

At first, we consider the former case; we will deal with the
latter in the next section.

With a focus element, a method selected by the user, we Using a focus
element we can build
subtrees of the
graph.

can easily build a subtree from the call graph. For some
structures, it may be interesting to find a spanning tree
of the strongly connected component, rooted in the focus
method. This does not work for our example usecase, be-
cause it may be interesting that a change in method a co-
incides with changes in b, but not c. Instead, we create a
tree expansion of the the graph that represents all possible
call paths originating in the focus method. For each call we
append a new child node representing the called method.
The traversal stops when it encounters a method that is al-
ready represented on the path from the origin. We can do
an analogous traversal for callers. We can invert the pro-
cess and represent callers the same way, we could even do
it at the same time representing callers and callees in paral-
lel. Figure 5.1 shows a call graph and Figure 5.3 shows its
tree expansion.

Visualizing the history of this tree using the tree flow vi- The tree shows
changes in a call
connected subset of
methods.

sualization now gives us information about changes in the
call structure. In the tree flow visualization, we can see re-
ordering of calls, as well as changes happening in the depth
of the tree. More importantly, when looking for changes
that may have caused a bug, the user can directly hone in



106 5 Generalizing Tree Flow Interfaces

on changed parts, so she can reason about how they may
have caused the problem. This has the potential to shorten
the search time for these bugs substantially. If the change is
structural, we may even be able to see it in the visualization
itself. Examples of this would be removing an important
call in a previous version.

5.1.2 Visualization Properties

If we are interested in the call graph as a whole, we canWe can visualize the
history of

visualization
properties.

not directly use tree flow. However, since the call graph is a
complex network, we will need a specific visualization for
it, otherwise, we cannot see the graph as a whole, which
would defeat the purpose. Holten [2006] represent callers
and callees in a ring visualization, where the locations on
the ring are aligned based on the location of nodes in a
source hierarchy, e.g., packages, components, and meth-
ods. This is nothing else but an extended syntax tree that
includes the file structure and stops at the method level.

One possible way to show the history of the graph is to not
exchange the tree flow visualization in this case, but only
the content visualization. The content view could show
something like hierarchical edge bundles Holten [2006] or
HivePlots [Krzywinski et al., 2012], and the history could
show the secondary, hierarchical structure of the visualiza-
tion.

5.2 Content Linearization

Similar to textual media, we want to represent the history
of other media types. The evolution of an image can be in-
teresting for understanding its origin; one famous example
from Art History is Picasso’s “The Bull”, e.g. [Lavin, 1993].

Consider presentations as a highly structured visual
medium. Navigating through the history of a presentation
can help the user to go back to the version of this slide that
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had the picture of that car. Similar to source code, navigat-
ing back to an older version of images is tedious.

Some visual media types have a rich syntactical structure Like text, visual
media are often
hierarchical.

which is later lost in the presentation version. A typical pre-
sentation created with a slideware presentation tool con-
tains slides, slide groups, objects, and object groups. All of
these can be used to group slides and slide elements. We
could easily use this information to create a tree structure.

Consider the case of visualizing the location history of the The structures are
often not ordered.elements on the slide. We can easily build a tree structure

using the above elements, but with two-dimensional media
the elements in the tree do not have an ordering. It needs
to be linearized in some way.

So far, we have not explicitly talked about this lineariza-
tion even though it also occurs in source code, i.e., text,
where we abstracted the 2-dimensionality of lines, contain-
ing words, by simply representing all content of the line by
the lines height. We call this projection. The simplest form
of projection, axis projection, takes data and reduces it to
one axis. This works for lines in code because the content
in a line forms a logical unit; typically, everything in a line
belongs to a single statement. With images, axis projection
does not work because we have to consider side by side
objects individually. In most cases, there is no trivial axis
over which we can summarize content. We may be able to
visualize each axis separately. Figure 5.4 shows projection
approaches.

This process of taking multi-dimensional data and finding
a linear representation is what we call content linearization.
We suggest three approaches to deal with this problem:

1. It is possible to create an automatic content ordering.
For example, Ishak and Feiner [2006] used a Hamil-
tonian path through faces in an image to allow linear
scrolling from one face to another at any zoom level.
Let us assume we do this on a video frame and we
have perfect face detection. As people move, we al-
ways know where they are in the video frame. We
could then try to find another Hamiltonian path, that
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Figure 5.4: Three versions of a 2D canvas and tree flow vi-
sualizations with different projection approaches. Top: pro-
jection on y-axis. Movement from version 1 to version 2 is
not visible. Middle: projection on x-axis. Movement from
version 2 to version 3 is not visible. Bottom: projection on
radial axis. Shown movements are visible but the visual-
ization is harder to interpret.

is similar to our original path, e.g., in length. This
approach is easy to implement, but it comes with the
issue that the structure may change drastically as peo-
ple move, which can become an issue when the user
does understand the reason for the drastic change.

2. Sometimes, we can find other, non-trivial axes for
projection that provide enough information to cre-
ate a tree graph. This mostly works for special cases
with some additional content restrictions. Presenta-
tions where the amount of items on a slide is limited
by readability for the audience enable us to create a
radial axis (Figure 5.2). We can then project the cen-
ter location of items and item groups onto that axis.
The user can then draw conclusions about the area a
tree element is in at a given time, and which other el-
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ements it is close to. There are some trade-offs that
should be considered with this approach. Objects
next to each other but across the axis origin will be
far away from each other. Two objects on the same
projection axis, will have to share the available space,
which makes it infeasible for large amounts of ob-
jects. There is also a jump from 360◦ at the bottom
to 0◦ at the top of the graph and a jump when mov-
ing through the origin. This approach is not so well
suited for video or animation, because it also trans-
forms motion paths through the scene. A straight line
in the video would result in a curved representation
in the annotation. Worse, movement towards or away
from the center will not be represented at all.

3. As with the structure of a visualization, we can more
generally use secondary structure of the same data.
Assume we want to create a tree flow visualization
showing where a user has taken the photos in their
photo library. If we visualize the locations on a map,
we can easily build a tree structure over continents,
countries, regions, cities, etc. We can also map the
locations through history by grouping them over a
time and distance threshold, similar to stroke chains
in ExamPen, e.g., if two photos were taken at the same
location within a certain time, the location “contin-
ues” in the history. To linearize the locations on each
level of the tree structure, we can use the secondary
structure of the location’s name to order them.

5.3 User-created Structure

Some applications, especially graphics application actually Users often
structures
documents during
creation.

may have a rich user-created structure that is independent
of object locations. An example is Adobe Illustrator where
the user creates layers, layer groups, or smart objects for
their drawing. These groups can create a very detailed
and complex hierarchy. A user generated hierarchy with
user-generated labels may be the better solution to visual-
ize changes of a document than the objects’ location. And
we will still see splits, merges, and movements as the user
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moves content between layers, groups layers, or rasterizes
layer groups. The visualization would now represent an
unknown user-defined relationship, which may still be eas-
ily understood by another user.

We can use similar approaches to build structures after theWe can use
structural

propagation to let the
user create

structures after the
fact.

fact. As described earlier, some media types like video have
a very sparse syntactical structure. Navigating through a
video using a technique like tree flow requires us to create a
new structure from the provided syntactic information. As
with DRAGON, where the user selects objects to show their
trajectory, we may be able to select objects to insert them as
an element of the structure. Goldman et al. [2008] showed
that objects can also be selected in regions by using painting
over objects as a selection technique. When the user selects
an object in one of these ways, we can use the movement
information of every individual pixel, e.g., through flow
fields [Brox et al., 2004], as a match through time. Then, us-
ing structural propagation, we can label all reachable pixels
in all frames as belonging to the object, which we can visu-
alize. By selecting objects one after another and grouping
them explicitly, the user can build a tree structure over time.
It may even be feasible to automatically register splits and
merges. We see an example of this grouping in Trailblaz-
ing [Kimber et al.], where objects under a certain distance
threshold are grouped together.

Another example of a media type with a sparse syntac-Users already know
how to add complex

structures to
spreadsheets.

tic structure are spreadsheets. Spreadsheets have no inher-
ent information about their content and content elements
usually have lots of different relationships, i.e., each table
column provides another ordering of the data. Spread-
sheet applications let the user sort data by these individ-
ual columns and combination of the columns. We can use
a similar approach to group information over time. Perin
et al. [2014] and Vuillemot and Perin [2015] argued that
navigating through the evolution of tables can be interest-
ing to understand the development of soccer ranking ta-
bles or macroeconomic data. Vuillemot and Perin [2015]
also introduced an approach to navigate through table el-
ements by showing a ranking trajectory for data under a
given ordering. While this works for sparse datasets like
a soccer table, larger tables quickly become cluttered (see
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Figure 5.5: Excerpt of a ranking table with macroeconomic
data. The overlay easily gets cluttered for large tables. The
colors provide a form of visual grouping. We propose to
allow the user to make these groupings more explicit. From
[Vuillemot and Perin, 2015]

Figure 5.5). We suggest to let the user define the struc-
ture with ordering and grouping techniques together with
structural propagation to create a tree history of such a ta-
ble. If the same column exists in all versions of the data, we
can propagate sorting and grouping to all versions of the ta-
ble, For macroeconomic data, a user could create a group-
ing of countries into geographic regions, free trade zones,
economic growth factors, etc.; the best grouping completely
depends on the user’s questions.

5.4 Summary

We have provided some concepts of how we can find and
use hierarchical structure to create tree flow like visualiza-
tions of the history of different media types. The final chap-
ter summarizes this work and describes potential interest-
ing questions for future work.
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Chapter 6

Summary and Future
Work

“Never make predictions, especially about the
future.”

—Casey Stengel

In this chapter, we briefly summarize the contents of our
work and highlight contributions. Finally, we give a brief
outlook on future work.

6.1 Summary and Contributions

This work was motivated by the difficulty to navigate a
document’s history and find appropriate changes to com-
pare, undo, or understand. We likened this to temporal
navigation and exploration in the context of navigation
tasks of more classic temporal media, in particular video.

While we see content driven navigation interfaces in that Semantic navigation
interfaces restrict
accessible frames.

domain, we recognized that those interfaces run into prob-
lems when the user tries to explore a media file. The main
reason for this are that we cannot easily display all con-
tent from a whole video over time. Thus, we have to look
at miniature versions of the content, which can quickly
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become confusing, and are thus unsuited to get a quick
overview of a whole video. Another option is to abstract
from the content, as we have seen with DMVN systems,
where we represent the movement of individual objects
through trajectories. However, those interfaces restrict the
navigation to certain frames and can only work for individ-
ual objects.

We introduced DragLocks, an extension for direct manip-We defined three
requirements for

supporting temporal
exploration.

ulation video navigation systems that allows us reduce the
navigation restrictions in the interface. Unfortunately, even
with our extension, the direct manipulation interfaces can-
not easily handle the exploration of relationships from mul-
tiple objects. This led us to define three requirements we
aim at for temporal exploration interfaces, such an interface
should be ambiguity-free and consider multiple objects as
well as historical objects.

Instead of attempting to extend existing video naviga-We introduced how
structure can support

navigation.
tion systems with these properties, we looked for another
approach visualizing structural changes within a medium
that could serve as information scent, leaving the interpre-
tation of changes to the user. We then showed the useful-
ness of using structure over time with our ExamPen proto-
type. From there, we defined our notion of structure and
structural properties that we can use for temporal naviga-
tion.

Based on this understanding, we designed Chronicler, aChronicler is a
navigation and

exploration interface
for source code.

system for navigating and exploring source code histories
based on the tree structure of source code. We showed that
the system has a strong user preference when it comes to
exploration tasks and it also outperforms a non-structure
aware timeline slider when it comes to navigation tasks.
Such a system can complement more specialized naviga-
tion mechanisms that have to make trade offs between nav-
igation speed in specific tasks and restricting navigation
for other tasks. Finally, we illustrated how the tree struc-
ture and propsosed temporal navigation interface can be
applied to other domains.
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6.2 Future Work

There are many opportunities to extend on this work. One
could look into different structural representation and vi-
sualizations, more specific usecases, e.g., interfaces to cre-
ate user-defined structures, and finally prescriptive use of
these methods.

6.2.1 Structural Representations

While we have defined structural navigation properties for How can other
structures be
visualized?

any kind of structure, we focused on ordered tree struc-
tures for the rest of this work. However, there are struc-
tures that are not easily transformed into such an ordered
tree, especially 2D location data. We have given some in-
sights into how to transform such a structure into a tree,
by using special axis transformations or using secondary
structures. Solving this issue would probably require a 3D
visualization which has to deal with occlusion issues, e.g.,
when objects are contained within other objects in such a
scene.

There are also more restricted structures that could bene-
fit from a special visualization. Consider multilevel hier-
archies [Sugiyama et al., 1981] graphs with multiple levels
where any node in a level only has edges to higher levels.
There could be a way to directly make a history visualiza-
tion of special graph structure like this. With a history visu-
alization of structures different from tree graphs, we could
potentially find better visualizations for problems like the
call graph.

6.2.2 Usecases

Considering details of specific usecases would be interest- How can interfaces
implement our
structural navigation
properties?

ing to further explore the meaning of the structural navi-
gation properties. For example, so far we have only used
structural propagation for simple concepts like selection.
However, it may be interesting to use it for more complex
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annotations. Imagine a user looking at an old version to un-
derstand a method. In these cases it may be interesting to
actually make annotations of that method available in the
future. We could even go as far as [Ginosar et al., 2013],
who try to change multiple versions at once. It is interest-
ing to find out how well users are able to do this, what kind
of strategies they employ, and what tasks it benefits their
task.

6.2.3 Prescriptive Use

In our GI 2012 paper [Walther-Franks, Herrlich, Karrer,
Wittenhagen, Schröder-Kroll, Malaka, and Borchers, 2012],
we used the information from direct manipulation naviga-
tion prescriptively. We extended Blender, a multi-track in-
terface for animation and rendering, with a new technique
to define animation timing. The user could first create the
path of an object through a scene without adding any tim-
ing information to that path. Then, instead of navigating
to a time when dragging the object through the scene, the
timing of the dragging gesture would define the movement
timing of the object. This allowed users to define natural
looking motion simply by demonstrating it to the objects
themselves.

There could be similar approaches for the structural part ofWe could also let the
user define how

structure changes
over time.

such an animation editor. Imagine, instead of having mul-
tiple static tracks and track groups, tracks can move from
one track group into another. This could allow the user to
define grouping that makes sense over time. First, an ob-
ject may move in a group and have attributes like speed,
volume, opacity, etc. from that group. Then the user could
separate its track at a certain point in time, at which point it
gets the properties from itself or its new group. This could
increase the understanding of objects belonging together
and separating over time in the user interface.
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Wolfgang Hürst and Georg Götz. Interface Designs for Pen-
Based Mobile Video Browsing. In DIS ’08: Proceedings of
the 7th ACM conference on Designing Interactive Systems,
pages 395–404, 2008.

Edward W Ishak and Steven Feiner. Content-Aware
Scrolling. In UIST ’06: Proceedings of the annual ACM
symposium on User Interface Software and Technology, pages
155–158, 2006.

A D Jepson, D J Fleet, and T F El-Maraghi. Robust Online
Appearance Models for Visual Tracking. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 25(10):
1296–1311, 2003.

Brian Johnson and Ben Shneiderman. Tree-Maps: A Space-
Filling Approach to the Visualization of Hierarchical In-
formation Structures. In Visualization ’91: Proceedings of
the IEEE Conference on Visualization, pages 284–291, 1991.

S Jürgensmann and H J Schulz. A Visual Survey of
Tree Visualization. http://vcg.informatik.
uni-rostock.de/˜hs162/treeposter/
oldposter/treevis_lores.pdf, 2010.

Huzefa Kagdi, Maen Hammad, and Jonathan I Maletic.
Who Can Help Me with This Source Code Change? In
ICSM ’08: IEEE International Conference on Software Main-
tenance, pages 157–166, 2008.

Thomas Kapler and William Wright. Geotime Informa-
tion Visualization. Information Visualization, 4(2):136–146,
2005.

Thorsten Karrer. Semantic Navigation in Digital Media. PhD
thesis, RWTH Aachen University, 2013.

Thorsten Karrer, Malte Weiss, Eric Lee, and Jan Borchers.
DRAGON: A Direct Manipulation Interface for Frame-
Accurate in-Scene Video Navigation. In CHI ’08: Proceed-
ings of the SIGCHI Conference on Human Factors in Comput-
ing Systems, pages 247–250, 2008.

Thorsten Karrer, Moritz Wittenhagen, and Jan Borchers.
PocketDRAGON: A Direct Manipulation Video Naviga-
tion Interface for Mobile Devices. In MobileHCI ’09: Pro-
ceedings of the international Conference on Human-Computer

http://vcg.informatik.uni-rostock.de/~hs162/treeposter/oldposter/treevis_lores.pdf
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/oldposter/treevis_lores.pdf
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/oldposter/treevis_lores.pdf


124 Bibliography

Interaction with Mobile Devices and Services, pages 1–3,
2009.

Thorsten Karrer, Moritz Wittenhagen, Leonhard
Lichtschlag, and Jan Borchers. ExamPen: How Digital
Pen Technology Can Support Teachers and Examiners.
In CHI ’10: Workshop on Next Generation of HCI and
Education, 2010.

Thorsten Karrer, Jan-Peter Krämer, Jonathan Diehl, Björn
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