
Diplomarbeit im Studiengang Medieninformatik

Audiospace: A universal service for interactive rooms

vorgelegt von Stefan Werner
an der Fachhochschule Stuttgart Hochschule der Medien

am 27. Feb. 2004
1. Prüfer: Prof. Dr. Walter Kriha
1. Prüfer: Prof. Dr. Jan Borchers

ii

iii

Eidesstattliche Versicherung

Ich versichere an Eides statt durch meine Unterschrift, dass ich die vorstehende Arbeit selbständig
und ohne fremde Hilfe angefertigt und alle Stellen, die ich wörtlich oder annähernd wörtlich aus
Veröffentlichungen entnommen habe, als solche kenntlich gemacht habe, mich auch keiner anderen
als der angegebenen Literatur oder sonstiger Hilfsmittel bedient habe.

Stuttgart, den 27. Februar 2004

Stefan Werner

iv

Abstract

The AudioSpace project provides a universal audio service for interactive rooms. It allows the
sharing of multichannel high quality audio over high-speed local wired and wireless IP networks.
Other than existing networked audio solutions, the AudioSpace was designed for the low latencies
required by interactive applications while being fully compatible with legacy software. This paper
describes a Mac OS X-based implementation that integrates with the host platform as an audio
device and makes extensive use of the CoreAudio framework. By using system-standard user
interfaces and automatic network configuration, the system can be used by unexperienced users.
In addition, this thesis introduces a novel approach for clock skew compensation in low-latency
applications.

Contents

1 Introduction 1

1.1 Goal of this thesis . 1

1.2 Motivation . 1

1.3 Overview . 2

2 Requirements 3

2.1 Environment . 3

2.1.1 Interactive Rooms . 3

2.1.2 The Media Space . 3

2.2 Application compatibility . 4

2.3 Usability . 4

2.4 Latency . 4

2.5 Scenarios . 5

2.5.1 DVD playback . 5

2.5.2 Musical performance . 5

3 Basics 7

3.1 Digital Audio . 7

3.1.1 Sampling . 7

3.1.2 Compression . 8

3.1.3 Audio handling in computers . 8

v

vi CONTENTS

3.2 Networking . 9

3.2.1 IEEE 802.3 Ethernet . 10

3.2.2 IP networking . 11

3.2.3 FireWire . 13

3.3 Mac OS X . 14

3.3.1 Mach and BSD . 14

3.3.2 Kernel space and user space . 14

3.3.3 CoreAudio . 15

4 Previous Work 17

4.1 Audio over network . 17

4.1.1 Audio over Ethernet . 17

4.1.2 Audio over IP . 18

4.1.3 Audio over FireWire . 20

4.2 Tapping Audio . 20

4.2.1 ReWire . 21

4.2.2 Audio Hijack Pro . 21

4.2.3 JackOSX . 21

4.3 Comparison to the AudioSpace requirements . 22

5 Design and Implementation 23

5.1 Approach . 23

5.1.1 Guidelines . 23

5.1.2 Design . 24

6 Implementation 27

6.1 Client driver . 27

6.1.1 AudioHardwarePlugin . 27

CONTENTS vii

6.1.2 Kernel Space Driver . 27

6.2 Networking . 28

6.2.1 Protocol . 28

6.2.2 Rendezvous . 29

6.3 Server . 29

6.3.1 Application . 29

6.4 Audio . 30

6.4.1 Audio mixing and output . 30

6.4.2 Jitter . 30

6.4.3 Clock skew . 31

6.4.4 Performance optimization . 32

6.5 User experience . 33

6.5.1 Server . 33

6.5.2 Client . 33

7 Results 35

7.1 Performance of the System . 35

7.1.1 Localhost . 35

7.1.2 Small wired setups . 35

7.1.3 Large wired setup . 36

7.1.4 Wireless setups . 36

7.1.5 Latency . 37

7.2 Compatibility . 37

7.3 Limitations and problems . 37

7.4 Future Work . 38

7.5 Conclusion . 39

A User space drivers in Mac OS X 41

viii CONTENTS

B Clock skew compensation 43

C An illustrated walk-through 47

Chapter 1

Introduction

1.1 Goal of this thesis

The goal of this thesis is to design and implement an audio service for use in the “Media Space”
interactive room at RWTH Aachen. The service will allow any application on any computer in
the room to access the multi-channel audio interface and speakers that are connected to a central
server. The clients will be able to independently choose the speakers they want their sound streams
to play through and the overall latency of the system will be low enough to have no or minimal
impact on interactive applications. The system will work over Ethernet and allow guest computers
to also use the speaker system over wireless Ethernet. In the following, this system will be referred
to as the AudioSpace.

1.2 Motivation

The network services available on today’s operating systems provide transparent sharing of disk
space and printers: When a computer is set to share a hard drive partition or a printer on the
network, users of other computers in the same network will be able to use the hard drive or
the printer as if they were connected directly to their respective computers. This integration is
usually provided on system level so that application developers do not need to explicitly equip their
applications with these capabilities. Instead, the operating system is providing abstract file access
and printing services to the applications and will take care of the networking by itself.

Unfortunately, the development of such transparent network services did not keep up with the rapid
development that happened in the computer industry over the last few years: Multichannel audio
and high-quality video are not niche applications any more but are widely being used by home
users on commodity hardware. Networking bandwidth has also increased, hardly any computer
today ships without a Fast Ethernet port for local networks and for connections to broadband
Internet services over cable modems or DSL lines. Yet, despite all these developments, only a few
specialized applications are able to transfer audio and video streams over networks, often in highly
compressed format with in low fidelity and high latencies. Transparent services for sharing audio

1

2 CHAPTER 1. INTRODUCTION

or video devices, comparable to the printing services described before, are not available.

1.3 Overview

In the following chapter, the detailed requirements of the AudioSpace will be described. In chapter
3, a few basic concepts about networking, audio and Mac OS X will be explained. Chapter 4 takes
a look at related previous work, where chapter 5 and 6 document the design and implementation
of the AudioSpace software. Chapter 7 analyzes the results from testing the AudioSpace and
takes a look at possible future work. Appendix A describes a previously undocumented method
for user space audio drivers in Mac OS X. Appendix B describes a new approach for clock skew
compensation that was developed for the AudioSpace. Appendix C provides a walk-through of a
sample use of the AudioSpace system.

Chapter 2

Requirements

This chapter will outline the specific requirements that the AudioSpace system will have to fulfill.

2.1 Environment

2.1.1 Interactive Rooms

Interactive Rooms like the Stanford iRoom1 or the Stockholm University’s iLounge2 are being used
to explore new possibilities for people to work in environments of ubiquitous computing. Equipped
with large touch-screen displays, wireless input devices, cameras and microphones, they provide a
testbed for experiments with post-desktop user interfaces. The use of wireless networking allows
users to bring personal devices like notebooks or PDAs and use them to interact with the room.
In order to adapt to different needs and to test various ideas, they must be easily reconfigurable
and must not rely on a static layout. New frameworks provide a platform for developing software,
hardware and user interfaces for use in interactive rooms.[1]

2.1.2 The Media Space

The main focus of the Media Space interactive room at the Media Computing group of the RWTH
Aachen3 will be on the research of interaction with non-static time-constrained media like audio and
video. The computing back-end will be a number of Apple PowerMac dual-G5 computers running
Mac OS X version 10.3. The computers will be connected through a switched GBit Ethernet, and
an additional wireless Ethernet will be available in the Media Space room. The user will mostly be
interacting with large touch screen displays and multichannel surround sound speakers (8 satellite
speakers and one subwoofer). Each of the displays will be connected to its own computer, where
the speaker system will be connected to a central audio server. User input will happen through

1http://iwork.stanford.edu/
2http://www.dsv.su.se/fuse/
3http://media.informatik.rwth-aachen.de/

3

4 CHAPTER 2. REQUIREMENTS

interfaces like gesture or speech recognition or the iStuff4 framework.[2]

2.2 Application compatibility

The AudioSpace system will be used to play all kinds of audio streams from any computer in the
Media Space room through the speakers connected to the audio server. Many of the applications
running on these computers will not be specifically written for the AudioSpace but be “off the
shelf” software that expects regular audio hardware. Still, these applications should be able to use
the AudioSpace without modifications.

Many applications are not prepared for multichannel audio but only process stereo signals. Still,
stereo applications should not be restricted to certain speaker pair but be able to use any two out
of the nine speakers in the Media Space.

2.3 Usability

Users that are familiar with Mac OS X should be able to use AudioSpace clients with little or
no instructions. Therefore, the AudioSpace software should use the system’s usual controls for
audio hardware wherever possible, and applications and the operating system should present the
AudioSpace to the user as if it were a regular audio device. After setting up a computer to use
the AudioSpace for sound output, the applications should behave as if they were using local sound
hardware.

The installation process of the AudioSpace software should not require special skills and anyone
who has installed other application software on a Mac OS X computer before should be able to
install and use the AudioSpace software.

2.4 Latency

In interactive applications, a high latency can ruin the user experience. The system’s feedback on
a user’s action must follow within a 0.25 seconds[3] to be recognized as being caused by that action
(some sources like [4] mention 0.1 seconds), otherwise they irritate the user. In musical applications,
even lower latencies are required: Sometimes response times exceeding 0.01 seconds are already
being considered unacceptable[5]. Note that most desktop operating systems are unable to provide
such latencies in their standard configurations: Using the built-in system APIs of Windows or Mac
OS 9, audio latencies are often in the range of 0.06 to 0.2 seconds[6].

4For information about iStuff, see Ballagas, Ringel, Stone, Borchers: iStuff: A Physical User Interface Toolkit for
Ubiquitous Computing Environments, Proceedings of CHI 2003, p. 537-544.

2.5. SCENARIOS 5

2.5 Scenarios

To further illustrate the requirements of the AudioSpace, two hypothetical use case scenarios will
be described, along with a few requirements that these scenarios imply. These are certainly not
meant to be the only possible applications - as a system designed for use in a research facility, the
AudioSpace is likely to be used in a variety of experimental scenarios that cannot be foreseen yet.

2.5.1 DVD playback

Scenario: A user wants to watch a DVD with a multichannel audio track on a computer in the
Media Space. She wants it to show on the screen connected to that computer, with the front
channels of the audio track playing from the speakers to the left and to the right of that screen,
and the rear channels through the speakers on the opposite wall. After she realizes that the sun
is glaring on that screen, she decides to use a different computer, one on the opposite side of the
room. Accordingly, she wants the front and rear speakers to be swapped now, to conform the new
situation.

Requirements: The audio server must handle multiple channels. The software must allow the
user to route sounds to specific speakers without any cabling and without leaving the computer
she’s working on. The system must be able to play audio streams fast enough to be in sync with
the video. It must be compatible with the DVD playing software.

2.5.2 Musical performance

Scenario: Two musicians are performing in the Media Space. Each of them brings his own com-
puter with a MIDI keyboard connected to it. Both use music software they wrote themselves and
perform using two regular channels and a low frequency effect channel. The regular channels play
through separate speakers for each computer, the low frequency channels play both simultaneously
through the Media Space’s subwoofer.

Requirements: Multiple clients must be able to use the AudioSpace simultaneously. The Au-
dioSpace software must be easy to install on guest computers in the Media Space. Speakers must
be shareable between clients. The latency must be low enough for musical performances. The
AudioSpace must be compatible with arbitrary software.

6 CHAPTER 2. REQUIREMENTS

Chapter 3

Basics

Due to the interdisciplinary nature of the subject, the reader may not be familiar with the fun-
damentals of every aspect of it. Therefore, the following chapter explains the basics of the areas
involved as far as necessary.

3.1 Digital Audio

3.1.1 Sampling

The core concept of handling audio signals in a computer is sampling, that is, converting continuous
analog signals into discrete time-sampled signals, called samples. The Nyquist-Shannon sampling
theorem states that when converting analog to digital signals, the sampling frequency must be
greater than twice the highest frequency of the input signal in order to be able to reconstruct the
original perfectly from the sampled version.[7][8] The sampling frequency is also often referred to
as the sample rate. Two standard sampling frequencies were established in 1985 by the Audio
Engineering Society, 44.1kHz and 48kHz. The frequencies were chosen with respect to the highest
frequency audible by the human ear, which is at about 20kHz. Common technologies using that
sample rates are the Compact Disc (CD) at 44.1kHz and the Digital Audio Tape (DAT) at 48kHz[9].
Common audio hardware for computers works also at these sample rates. Higher frequencies, up
to 192kHz, are being used in recording studios in order to have more headroom when processing
signals, but have close to no significance outside recording studios. Playback of a recording at a
different sample rate than it was recorded will change both its duration and pitch.

The information stored within a single sample depends on the number of bits that are used to store
a sample, the bit depth. The standard bit depth for CD, DAT and most computer hardware is 16
Bits, representing values ranging from 0 to 216 − 1, resulting in a dynamic range (the difference
between the highest and the lowest level that can be reproduced) of 96 dB. Equipment in recording
studios can digitize at sample rates of up to 24 Bits (144 dB), which is also the bit depth used for
DVDs. In software processing of sampled audio data, it is not uncommon to store samples in 32
bit floating point numbers for additional precision.

7

8 CHAPTER 3. BASICS

A continuous series of samples is referred to as an audio stream, in its raw form sometimes called
PCM (pulse code modulation). When multiple sources are combined in one stream, these are called
channels. Stereo signals have two channels, left and right, where surround sound systems in movie
or home theaters have up to eight separate channels. The samples of all the channels in a stream
at a certain sampling point are called a frame.

The data rate of an audio stream calculates as datarate = samplerate ∗ bitdepth ∗ channels A
compact disc thus has a data rate of 44100Hz ∗ 16Bits ∗ 2 = 176400 Bytes

second , resulting in a total data
of over 600 MB for one hour of audio. The hardware components that are used for conversion from
analog sound signals to digital samples are called D/A converters, the components that construct
analog signals from digital data are A/D converters.

3.1.2 Compression

In order to reduce the memory and bandwidth requirements of digital audio, several compression
methods were developed. The process of compressing the signal is called encoding, the reverse
is called decoding. Software components that perform the processes of encoding and decoding
are called CODECs. Compression algorithms are divided in two categories: Lossless and lossy
compression. Losslessly compressed signals restore to the exact same data when decoded, where
lossy compressions do not reproduce the exact same data. As a consequence, lossy compressions
are able to reduce the amount of data much more than lossless compressions but can have audible
artifacts. Most lossy compression algorithms are also much more complex than lossless algorithms
and their software implementations require a lot more resources from the computer’s CPU.[10]

3.1.3 Audio handling in computers

Most computers systems follow a layered approach: At the bottom, there are hardware drivers that
control the audio hardware of the computers, above that is a system framework providing basic
mixing services and on top are the applications that talk to the framework. These layers pass their
data in buffers, a group of consecutive sample frames. Larger buffer sizes require less CPU, but
have a higher latency. Smaller buffer sizes lower the audio latency but have a higher CPU overhead
and too small buffers can result in skipping, when the operating system’s scheduler is not switching
to the audio handling processes in time.

There are two ways of storing multiple channels in one buffer (Figure 3.1): One is concatenating
multiple buffers of single channels to one large buffer, the other is interleaving the channels’ samples
in the buffer.

non-interleaved interleaved

Figure 3.1: Multiple channels in one buffer

Most audio hardware in computers has A/D and D/A converters for stereo signal, with a trend
going towards multiple output channels. Often they also include analog amplification that allows

3.2. NETWORKING 9

the user to connect microphones directly to the computer. The converters in computer hardware
have their own clock source for the sample rate, usually a quartz oscillator. Therefore, they can
only run at one or several fixed sample rates but not at arbitrary sample rates. In order to play
audio that has a different sample rate than the hardware, sample rate conversion or resampling is
required. Converting from one sample rate to another requires inserting or removing samples to keep
the duration of the sound constant. A non-interpolating algorithm that just skips or duplicates
single samples is destroying the sample’s continuity and leaving audible artifacts. A huge gain
in quality can already be had with linear interpolation where a new sample is being created by
placing it between two existing samples and where samples are dropped by replacing two samples
with a sample between them. Still, linear interpolation has a noticeable quality loss which is
why many resampling implementations use higher order polynomial or trigonometric functions for
interpolation. The communication between the sound hardware and the system software happens
over a shared buffer and an interrupt. The audio driver is writing samples to the buffer, the sound
hardware is reading samples from the buffer. The sound hardware is notifying the system via an
interrupt every time it needs a new chunk of data. If the audio driver is not able to fill that buffer
in time, dropouts in the audio signal occur.

3.2 Networking

The standard method for describing networks is the using a layer model. It is describing networks
in a stack of layers, where each layer is building on defined services provided by the layer below it
and providing defined services to the layer above it (see figure 3.2). The services a layer is providing
to the layer above it are specified in an interface. Layer n on node A communicates with layer n on
node B using a defined protocol. By defining communication between layers in a standard interface,
the actual implementations of these layers are exchangeable without affecting the other layers - for
example, changing from a dial-up modem to a DSL connection does not require any changes to the
web browser.

Usually, a network protocol is not sending infinitely large blocks of data but is dividing it in packets,
consisting of a protocol-specific header part that contains metadata like size, source and destination
of the packet and a payload part that contains the actual data the packet is transporting.

The standard networking technology for Mac OS X is TCP/IP over Ethernet. Figure 3.2 shows
a schematic overview of the layers in such a network. The TCP/IP reference model which will
be used here has using four layers: On the bottom is the host-to-network layer, above of it is the
network layer, then the transport layer and on top is the application layer. The host-to-network
layer connects TCP/IP to the physical network, the network layer is mainly providing routing
services between hosts and the transport layer is providing interfaces to the applications running
on these hosts. The standard for the network layer is IP, the transport layer can be either TCP or
UDP.

The TCP/IP model is a practical simplification of the more detailed OSI reference model which is
using seven layers.

10 CHAPTER 3. BASICS

Computer BComputer A

Ethernet

IP

TCP UDP

IP

TCP UDP

Applications Applications

Figure 3.2: A typical Ethernet-based LAN

3.2.1 IEEE 802.3 Ethernet

Ethernet is the most widespread hardware standard for local networks. Ethernet adapters and
cables are cheap, and hardly any computer today ships without an integrated Ethernet interface.

Ethernet is based on a shared medium that all stations are directly connected to. The stations
have unique MAC (media access control) addresses that usually are stored in the interface’s ROM.
Characteristic for Ethernet is the CSMA/CD (Carrier Sense Multiple Access/Collision Detection)
algorithm by which the stations decide who is allowed to send when: A station that intends to send
begins by listening on the media if any other station is currently sending. If the media is free, the
station starts sending while still listening at the same time. If stations start sending at the same
time, their signals will overlap, resulting in unidentifiable garbage - a collision. When a station
detects a collision, it starts sending a special collision signal that causes all sending stations to stop
sending, wait for a random period and then to try to resend. If a station is unable to send after 16
tries, the packet is being dropped.

The CSMA/CD algorithm is a reason why shared media Ethernet networks can’t reach their nom-
inal maximum throughput: The number of collisions is increasing with the number of stations and
the amount of traffic, and a lot of bandwidth gets wasted by colliding signals. A solution for that
problem was provided with the invention of the switch device which doesn’t connect all the stations
to one wire but establishes direct connections between two stations when data is being sent be-
tween them, virtually eliminating collisions. While the nominal speed of an Ethernet network does
not increase when the central hub is replaced with a switch, every station has the full bandwidth
available and does not have to share it with all the other stations.

Ethernet is specified for a variety of speeds and media. The ones used in currently shipping
Macintosh computers are Fast Ethernet and Gigabit Ethernet for Cat5 twisted pair wire cables.[11]

3.2. NETWORKING 11

Fast Ethernet

Fast Ethernet is the extension of CSMA/CD and the Ethernet packet format to 100MBit/s,
of which, due to protocol overhead and design limitations, only up to 60MBit/s are usable as
payload[11]. In terms of audio streaming, this bandwidth translates to 70 channels at 24Bit/44.1kHz.[17]

Gigabit Ethernet

Gigabit Ethernet was designed to extend the existing Fast Ethernet to a nominal speed of 1000MBit
using the same Cat5 cables. Again, the protocol overhead makes not the full bandwidth available
to the stations.

Wireless Ethernet

Wireless Ethernet as defined in IEEE 802.11 is a technology for local networks on radio waves.
In contrast to wired Ethernet, a wireless interface is not able to listen for collisions while it’s
sending and therefore cannot use the CSMA/CD protocol. A different procedure, CSMA/CA (CA
= Collision Avoidance) is being used. Collision avoidance stands for the practice that a station that
detected existing signals on the media will wait for a random time until it tries to send. Since a
station is unable to detect collisions while sending, the sending station is sending an announcement
prior to the actual transfer and waits for an acknowledge message from the receiver after the
transfer. This adds to additional overhead of the protocol.

The most common standards for wireless Ethernet are 802.11b (11MBit/s) and 802.11g (54MBit/s)
that both operate at a carrier frequency of 2.4GHz. The 802.11a standard that transmits 54MBit/s
at 5GHz was available before 802.11g appeared, but was not as successful as it was not directly
compatible to the already widespread 802.11b.

Since radio waves go through walls, wireless Ethernets have no physical access restrictions like
wired networks (if you can’t get to the cable, you can’t get to the network). Most wireless adapters
understand the WEP encryption scheme which does not live up to its promises (WEP stands
for “wired equivalent privacy”) as a few design flaws make it very vulnerable to attacks. Apple is
selling interfaces on the 802.11b and 802.11g standards under the brand names AirPort and AirPort
Extreme.

3.2.2 IP networking

The technologies for local networking explained in the previous section are usually taken care of
on operating system level. Hardly ever does an application programmer need to implement these
protocols herself. In practice, network applications do not touch Ethernet at all but only deal with
IP addressing and one of the protocols building on top of it.

12 CHAPTER 3. BASICS

IP

IP, short for “Internet Protocol”, marks todays standard for the majority of computer to computer
networks. While originally invented, as the name suggests, for the Internet, it quickly gained
popularity in local networks, replacing proprietary protocols such as IPX or NetBEUI.

IP implements the network layer. Nodes in an IP network have a logical IP address that unlike a
MAC address is not tied to a physical device or a certain host. IP is a best-effort protocol that
makes no delivery guarantees. IP packets may not reach their destination, may arrive incomplete,
damaged, out of order or twice without any notification to the receiver or the sender.

IP addresses can be assigned statically by the user or dynamically, usually via a DHCP server.
IP version 4, as used by today’s Internet, is using 32 bit to support 4 ∗ 109 addresses, which is
not sufficient to have worldwide unique addresses. The newer IP version 6 supports, amongst
other improvements, 3.4 ∗ 1039 addresses stored in 128 bit address fields. IP addresses can be
assigned manually by the user, or a central DHCP server in the network can assign IP addresses
automatically. A special address in IPv4 is 127.0.0.1, also known as localhost : Each computer
is seeing itself under the address 127.0.0.1, and applications can use this address to send packets
to other applications on the same computer. The services on an IP host are identified by a port
number that is associated to them.

IP is using a minimum header size of 20 Bytes.[11]

UDP

UDP (User Datagram Protocol) is a protocol on the transport layer that is designed to run on IP.
The services it provides to the application layer are data checksumming and application multiplex-
ing. UDP has a very low data overhead the size of the UDP header size is 8 Bytes. UDP, like IP,
is a best-effort protocol and does not detect or compensate packet loss or packets arriving out of
order.[14]

TCP

TCP (Transmission Control Protocol) is a connection-oriented transport protocol. Before sending
data to a remote host, the sender must first establish a connection. Once the receiver accepts
the connection, datagrams can be transmitted in both directions. The TCP protocol ensures
integrity, order, uniqueness and provides features such as flow control and congestion avoidance.
These additional services come at a price, though: TCP is slower than UDP, which is why most
multimedia applications like video streaming or real-time applications like games prefer UDP for
their communication. The TCP header is 24 Bytes in size, resulting in a larger overhead than
UDP.[13]

3.2. NETWORKING 13

RTP/RTSP

RTP (Real Time Protocol) and RTSP (Real Time Streaming Protocol) are protocols optimized
for streaming audio and video data over the Internet. They are used in conjunction, with RTP
transporting the actual data and RTSP taking care of controlling the stream. They don’t fit entirely
in either the transport or the application layer but sit between the chairs. Usually, they’re used on
top of UDP/IP but specifications exist to run it over other protocols too.

RTP and RTSP provide services that are useful for broadcast or video conferencing, like timing
information, loss detection, security, synchronization, source identification and quality of service
feedback. Despite their naming, they cannot guarantee real-time delivery as they have no influence
on the timing behavior of the network layers under them.[10]

Zeroconf/Rendezvous

Zeroconf1 is a system for automatic discovery of devices, services and computers in a local IP net-
work without the need for central servers. The Apple developer pages list the following features[19]:

• allocate IP addresses without a DHCP server

• translate between names and IP addresses without a DNS server

• locate or advertise services without using a directory server

Apple has included Zeroconf in the OS X operating system since version 10.2 and is advertising it
under the brand name Rendezvous. Apple’s software is making extensive use of Zeroconf to provide
for example file-sharing or instant messaging services between computers that are connected through
a network without requiring any configuration from the user.

Zeroconf is an IETF standard with freely available specifications and reference implementations.

3.2.3 FireWire

FireWire or IEEE1394 is not a networking technology in the usual sense. It’s main purpose is
not to connect computers to computers but to connect high-bandwidth periphery like cameras or
hard drives to a computer. FireWire was developed by Apple in the late 1980s and soon was
adopted as an IEEE standard. It was specified as IEEE1394a for transfer speeds of 100, 200
and 400MBit/s over four wires. Optionally, a six-wire FireWire cable can also provide power for
external devices. FireWire allows up to 63 devices per bus, cable lengths of up to 4.5 meters
and allows flexible topologies. Recently, a faster “FireWire 800”/IEEE1394b was introduced, with
current implementations delivering 800MBit/s over nine wires while being backwards compatible
to IEEE1394a. The road map is prepared for future speeds of 1600MBit/s and 3200MBit/s.

The reason why FireWire is interesting for networks is that many operating systems provide an
implementation of the IP protocol (see the following section) over FireWire, allowing users to

1http://www.zeroconf.org

14 CHAPTER 3. BASICS

connect multiple computers in a network using FireWire cables. While FireWire is not suitable as
a multi-purpose networking technology that could replace Ethernet, it provides a good alternative
for high-speed transfer of data between two computers.

3.3 Mac OS X

Mac OS X is an operating system by Apple Computer, Inc that runs on their current line of
Macintosh computers. While the first version of Mac OS X was released in March 2001, large parts
of the system are a lot older than that: Most of the core is derived from NextStep, the operating
system that the “NeXT” computers ran in the early 1990’s. This heritage is still showing through
in the naming of some of the keywords in the system (the names of many framework classes start
with “NS”) and the copyright notes of header files. The Mac OS X kernel is a derivate of the
Mach microkernel, with many changes towards a more speed-optimized monolithic design. On top
of Mach is a BSD layer, a set of libraries, APIs, services and tools from the University of Berkeley’s
Unix distribution. Most of it is taken from the FreeBSD variant, but there are also parts from
OpenBSD, NetBSD and BSD386. The core parts of Mac OS X are also available as an open source
operating system under the name of Darwin2.[22]

The higher frameworks of Mac OS X are proprietary and not available as open source: Some of
these frameworks have been developed by Apple for their previous “Classic” Mac OS versions, like
Quicktime (a media framework) and Carbon (a general application framework for the C language).
Other frameworks are again taken from NextStep, like the Cocoa, an object oriented application
framework for Objective-C and Java, or are Apple’s implementation of cross-platform standard
APIs like OpenGL. A number of APIs in Mac OS X are new developments by Apple, for example
CoreAudio for audio and MIDI applications.[22]

3.3.1 Mach and BSD

The core of Mac OS X is derived from the Mach kernel and the BSD operating system. The
BSD libraries give Mac OS X many attributes found in traditional Unix systems, like the UFS file
system, the BSD network sockets API or pthreads for multithreading. The Mach kernel, which is
responsible for scheduling, has an important attribute for multimedia applications: It can mark
threads as real-time threads, in which case the kernel will try to assign a certain amount of CPU
time to the the thread in regular intervals. However, Mac OS X cannot guarantee that scheduling
and does therefore not fully qualify as a real-time operating system.

3.3.2 Kernel space and user space

The memory in OS X is divided in two regions, the kernel space and the user space. The kernel
space is reserved for only the very essential core parts of the system like the scheduler or memory
management and hardware drivers that require direct hardware access, where the user space is
being used for other system services, libraries and user applications.

2http://developer.apple.com/darwin/projects/darwin/

3.3. MAC OS X 15

Since the kernel is the central part of the operating system, the kernel and the user space are strictly
separated and applications in the user space cannot access the kernel space memory directly. Even
more, applications in Mac OS X are separated from each other and cannot directly access other
applications’ memory spaces, ensuring that an error in one application leaves other applications
and the system unaffected. In the opposite direction, the kernel itself is not able to access user
space libraries.

This has significant implications for the application developer: As user space applications have no
impact on system stability, they can be interrupted and examined at any point. This functionality
is widely used in software development tools (“debuggers”) and makes finding errors in applications
a lot easier. The kernel on the other hand cannot be interrupted as easily, and therefore tools for
developing and debugging kernel code are much less comfortable. Where programming mistakes in
a user space crash only that application, errors in a kernel module often result in a system crash
that requires a system reboot.

Apple recommends that software stays outside the kernel space whenever possible.

3.3.3 CoreAudio

The audio parts of Mac OS X do not inherit from previous systems. Where in Mac OS 9 applications
had to go through third party APIs such as ASIO, VST3, or OMS4 in order to get access to low-
latency multichannel hardware, to use audio plug-ins or to communicate over MIDI, Mac OS X
comes with all of this included in the CoreAudio framework.[23] In practical situations, CoreAudio
is able to deliver latencies of less than 4 ms even on consumer grade hardware under heavy CPU
loads[6], which makes Mac OS X a good platform for interactive audio applications.

CoreAudio is using a “pull” model for its audio streams: Each time a node requires data, it is
calling the previous node in the chain. This makes the end node the node that determines the
timing. Usually, the audio output driver is the end node in the signal chain.

HAL

CoreAudio’s hardware abstraction layer (HAL) sits between the applications and the kernel. Its
purpose is to make the applications independent of the kernel drivers and vice versa. It allows
multiple applications to access the audio hardware with arbitrary stream formats. It provides
functions to record and play audio streams, to list the audio hardware installed in the system and
to configure these devices through properties. In addition, it provides time-stamping mechanisms
for high precision timing.[23]

The default stream format for the HAL is interleaved float32 samples.

3http://www.steinberg.net/
4http://www.opcode.com/products/oms/

16 CHAPTER 3. BASICS

Architecture of Mac OS X Audio

The audio capabilities of Mac OS X arise from several software technologies that are accessible
through their public programming interfaces. These technologies are situated at different levels
of the operating system where their relationships with each other can be characterized as client
and provider. In other words, Mac OS X audio software is layered, with one layer dependent on
the layer “under” it and communicating, through defined interfaces, with adjoining layers (see
Figure 2-1 (page 12)). The relative locations of these technologies within the layers of system
software suggest their degree of abstraction and their proximity to audio hardware. Some audio
technologies in Mac OS X are incorporated into the kernel environment (that is, Darwin) while
others are packaged as frameworks for use by application environments, applications, and other
user processes.

Figure 2-1 Mac OS X audio layers

Applications

CarbonAudio frameworks Cocoa Classic

Audio HAL (Core Audio framework)

Audio family

Driver

Audio device

User space

Kernel

I/O Kit

At the lowest level of the Mac OS X audio stack is the driver that controls audio hardware. The
driver is based on the I/O Kit’s Audio family, which provides much of the functionality and data
structures needed by the driver; for example, the Audio family implements the basic timing
mechanisms, the user-client objects that communicate with the upper layers, and maintains the
sample and mix buffers (which hold audio data for the hardware and the hardware’s clients,
respectively). The basic role of the audio driver is to control the process that moves audio data
between the hardware and the sample buffer. It is responsible for providing that sample data to
the upper layers of the system when necessary, making any necessary format conversions in the
process. In addition, an audio driver must make the necessary calls to audio hardware in response
to format and control changes (for example, volume and mute).

Immediately above the driver and the I/O Kit’s Audio family—and just across the boundary
between kernel and user space—is the Audio Hardware Abstraction Layer (HAL). The Audio
HAL functions as the device interface for the I/O Kit Audio family and its drivers. Its essential
job is, for input streams, to make the audio data it receives from drivers accessible to its clients
and, for output streams, to take the audio data from its clients and pass it “down” to a particular
audio driver.

12 Architecture of Mac OS X Audio
© Apple Computer, Inc. 2004

C H A P T E R 2

Audio on Mac OS X

Figure 3.3: CoreAudio’s HAL in OS X

Audio Drivers

The vast majority of audio drivers in Mac OS X is implemented as kernel extensions. As the HAL is
already taking care of the communication with the applications, sample rate conversion and mixing,
the audio drivers can be kept very simple and mainly need to deal with the audio hardware and
pass sample buffers between the hardware and the HAL. The interfaces for writing kernel audio
drivers are well documented and a number of examples are provided.

In addition to kernel space audio drivers, Mac OS X provides a mechanisms for user space audio
drivers. The API for user space drivers however is almost completely undocumented. In order
to determine whether or not this API is suitable for use in the AudioSpace project, the author
examined this API closer, with the details being documented in Appendix A. In short, user space
drivers are possible in OS X, but they do not take advantage of most of the HAL’s services and
have to communicate with the applications directly.

AudioUnits

Mac OS X introduced its own standard for audio components, AudioUnits. These units can gen-
erate, process or receive audio streams. Applications can instantiate and use these components
through a standard interface. Often, software synthesizers or effects are implemented as AudioUnits.
Mac OS X ships with a number of ready to use units like mixers, reverb, delays and a HALOut-
putUnit that wraps hardware outputs in an AudioUnit, and a number of software companies that
produce audio software make their effects plug-ins available as AudioUnits too. Other standards for
audio plug-ins supported by Mac OS X are Steinberg’s VST and plug-ins for Digidesign’s ProTools.

Chapter 4

Previous Work

In the following, related work to the AudioSpace will be described. First, there will be a look at
existing applications to transport audio over networks, then at existing approaches for tapping the
audio streams of Mac OS X applications.

4.1 Audio over network

4.1.1 Audio over Ethernet

A number of systems exist to replace the multi-core cables in audio studios with the much cheaper
Cat5 Ethernet cables. These systems provide very low latencies, multiple channels and a high
audio quality, but they rely on hardware end devices and cannot be used from computers, which
disqualifies them for use in the AudioSpace.

Gibson MaGIC

MaGIC (Media-accelerated Global Information Carrier) is a technology by Gibson Guitar Corp,
that was first introduced in 1999. Gibson, being primarily a maker of fretted string instruments,
is selling MaGIC equipped guitars and licensing MaGIC for use in mixing desks, amplifiers and
effects, promoting the technology to be used as a fully digital system for stage and studio use.
MaGIC allows to transmit up to 32 channels of 32bit information with up to 192kHz sample rate.
The reference implementation is based on Fast Ethernet, using Cat-5 cabling and the IEEE 802.3
protocol, but the MaGIC network layer can also run on other media (e.g. GBit Ethernet, optical).
The MaGIC network layer is not compatible with IP.[20]

17

18 CHAPTER 4. PREVIOUS WORK

EtherSound

EtherSound is also an Ethernet-based transport protocol for digital audio established by DigiGram.
EtherSound is advertised as a system used for audio distribution in large buildings, intercom,
broadcast and live sound. Information about the protocol is rather sparse, but DigiGram claims
a latency of 125µsec at quality ranges up to 24bit/48kHz. DigiGram does not provide products
to connect personal computers to an EtherSound network. The EtherSound licensing fees depend
on the number of products sold by the licensee and the number of channels that the product
supports.[21]

CobraNet

CobraNet by Peak Audio is also based on 802.3 Ethernet. Just like EtherSound, it is primarily
advertised as a system for audio distribution in large buildings. The standard is a latency of 256
samples (5.33ms) through buffering on both sides, some more recent implementations allow latencies
of 2.67ms and 1.33ms. CobraNet can work in existing switched Ethernet LANs. According to Peak
Audio, 802.11b Wireless Ethernet is not suitable for use with CobraNet. The CobraNet network
layer is not compatible with IP.[28]

4.1.2 Audio over IP

The availability of large bandwidths in the Internet enabled the transfer of compressed audio and
video streams over the Internet in real-time. With the adoption of IP for local networks, IP is also
being used to send uncompressed audio over local networks.

Internet streaming

What comes quickly to mind when thinking about networked audio are streaming technologies
such as Quicktime1, Windows Media2 or RealMedia3. These, however, aim at completely different
goals: These streaming services are designed to stream mostly prerecorded streams from one central
provider over the Internet (and thus taking complex paths over a number of routers) to multiple
recipients. They do not pursue low latencies but can well live with latencies in the range of
seconds: These streaming services are not aimed at interactive use at all but only for presentation
and broadcast purposes. Such streaming technologies operate with latencies in the range of up to
10 seconds and rely lossy compression algorithms, severely reducing the audio quality in favor of
bandwidth savings.

Internet streaming services should be able to reach all kinds of target platforms and cannot rely on
services specific to a certain hard- or software platform, therefore they are not very tightly integrated
in the host system and only available in a few applications that were specifically designed to use
them.

1http://www.apple.com/quicktime/
2http://www.microsoft.com/windows/windowsmedia/
3http://www.real.com/

4.1. AUDIO OVER NETWORK 19

Voice over IP

Another popular application of networked audio is voice over IP (VoIP). The aim of this technology
is a bi-directional transport of voice and sometimes video data over IP networks for communication
purposes, replacing traditional telephony solutions that require a direct connection.

Most VoIP implementations follow the H.323 standard. H.323 is aimed at being a universal and
flexible communication service and therefore comprises specifications for dialing, routing, negoti-
ating and controlling. The audio quality of data transmitted over H.323 is very low, targeting
mainly voice data and maintaining compatibility with low-bandwidth access technologies like ana-
log modems. While VoIP is used for real-time communication, latencies are still large enough to
be unsuitable for interactive systems.

Esound (esd)

The “enlightened sound daemon”, short Esound or ESD4 is an audio service written for the
GNU/Linux operating system5. It provides mixing services allowing multiple applications to access
the audio hardware simultaneously. Connections to the Esound process are being made over local
or remote sockets, allowing clients that access the service from remote computers over the TCP/IP
protocol. Esound is not real-time capable and crackling or stuttering may occur. This may be one
of the reasons why Esound development has virtually stopped in favor of the real-time capable Jack
audio server (see section 4.2.3).

The Esound server and a number of client applications supporting the Esound protocol have been
ported to Mac OS X. Especially interesting is the Esound kernel driver that has been developed
for Mac OS X6: While it doesn’t provide the desired low latency, it is a fine example of a universal
audio service that works with all kinds of applications.

Both the Esound driver and the server for OS X do not provide a GUI. The driver even requires a
recompilation to change the address of the destination server.

aRts

A probably more popular Linux sound daemon exists with aRts7, which is the sound server of choice
of the KDE project. It does also provide optional network transparency, and like with Esound it
appears that development has stalled (the project web site hasn’t been updated in almost a year)
and the latency is reportedly not very low.

4http://developer.gnome.org/doc/whitepapers/esd/
5On earlier versions of the GNU/Linux operating system, audio devices could be used by only one application at a

time. This has led to the development of several “audio servers” which provide an abstract audio device that can be
accessed by multiple applications simultaneously and mix the incoming streams. More recent developments around
the audio drivers and the kernel, mainly the ALSA project, removed the necessity for such servers.

6http://homepage.mac.com/samoconnor/Esound/
7http://www.arts-project.org/

20 CHAPTER 4. PREVIOUS WORK

FX Teleport

FX Teleport8 is a commercial VST plug-in for Windows that enables the user to run other VST
plug-ins on a remote computer. A version for Mac OS X is promised but has not been released yet
(Jan 10th 2004). Latencies are stated to be as low as 6ms.

Wormhole

Wormhole9 is a brand-new commercial audio over TCP/IP solution for OS X that implemented
as an AudioUnit. Claimed are low latencies, but gives no quantitative figures. Wormhole is a
commercial project that costs $25 per license. Wormhole is using a static IP address configuration
and works point to point.

Since Wormhole was released on Jan 10th 2004, it was too late to evaluate it for the AudioSpace
project, but it is mentioned here for completeness.

4.1.3 Audio over FireWire

mLAN

mLAN is a technology pioneered by Yamaha. Intended to replace MIDI and analog audio cables,
it transmits multiple channels of digital audio and MIDI data over a single FireWire (IEEE 1394)
cable. mLAN is mainly being used with instruments, but Mac OS X also includes drivers to talk
to mLAN devices that are connected to the computer’s FireWire port. However, one cannot use
mLAN to connect two or more PowerMacs directly and applications running Mac OS X cannot
access mLAN hardware directly.

The fact that mLAN is a closed system that cannot be used from custom hardware disqualifies it
for the use in the AudioSpace.

4.2 Tapping Audio

As the AudioSpace will run with legacy software, a way must be found to get access to the audio
streams of these applications. Mac OS X itself does not offer methods for sending audio from one
application to another. However, some third party implementations for sending audio between
applications on OS X are available.

8http://www.fxteleport.com/
9http://www.apulsoft.ch.vu/

4.2. TAPPING AUDIO 21

4.2.1 ReWire

ReWire10 is a standard developed by Propellerheads, a software company producing software in-
struments and sequencers. ReWire is an API that allows to route audio between applications on
the same computer, like plugging the output of a CD player to the input of a tape deck. In order
to take advantage of that, an application must explicitly support the ReWire protocol which re-
quires an SDK license from Propellerheads. Such a license is free, but only available to registered
companies. Propellerheads does explicitly not issue ReWire licenses to private persons and schools.
ReWire is widely used in many professional and semiprofessional audio applications.

4.2.2 Audio Hijack Pro

Audio Hijack Pro11 is an application that puts itself between Mac OS X’ HAL and an audio
application and intercepts function calls. Audio Hijack Pro allows the user then to record the
audio data the “hijacked” application is playing or to play it back with effects added to it.

Audio Hijack Pro is using the “Application Enhancer” (APE) framework from Unsanity12, a frame-
work that allows writing code that will be executed in any other application’s memory space, pri-
marily to replace system calls with custom functions. Since that is relying on assumptions about
what function calls the respective host application is using and how it is using them, applications
using APE tend to be not fully compatible and often require updates with newer releases of the
operating system.

4.2.3 JackOSX

The Jack audio server for Linux has been ported to Mac OS X a while ago. Jack is not only
providing a low latency mixer but is also an audio routing system, comparable to ReWire. The
user can create arbitrary connections between applications that use Jack and use the sound output
of one application as input for another. Since hardly any applications for Mac OS X are using the
Jack API, a group of developers started to write wrappers that act as VST or AU plug-ins. With
these plug-ins, Jack can be used to create connections between applications that can use VST or
AU plug-ins.

The next step for Jack on Mac OS X started in summer 2003 when the author of this thesis was
taking a first look at the mostly undocumented AudioHardwarePlugin API in Mac OS X (see
Appendix A): Having read about these investigations in user space audio drivers on Mac OS X,
members of the Jack on Mac OS X project contacted the author and received a copy of a simple
prototype of such a user space driver. Based on that prototype, the Jack developers eventually
developed a user space audio driver that interfaces with Jack, allowing almost every application on
Mac OS X to be used with Jack. The full package was called JackOSX13 and was first released to
the public on January 7th 2004, mentioning the author’s contribution in the documentation14.

10http://www.propellerheads.se/technologies/rewire/
11http://www.rogueamoeba.com/audiohijackpro/
12http://www.unsanity.com
13http://www.jackosx.com
14http://www.jackosx.com/Documentation.pdf

22 CHAPTER 4. PREVIOUS WORK

4.3 Comparison to the AudioSpace requirements

With the exception of the Esound driver for Mac OS X, all the audio over network solutions
described above are tied to a certain application range: CobraNet, EtherSound and MaGIC are
focused on using Ethernet cables as a cheap replacement for analog multi-core audio cables. Quick-
time Streaming, Windows Media or RealMedia are all designed for broadcasting compressed media
from one sender to many receivers. FX Teleport and Wormhole are specialized on effects in audio
applications and are building on the plug-in APIs of these applications. They all have in common
that a program that wants to use their services has to meet certain requirements, be it supporting
the streaming protocol directly or being a host for a certain kind of plug-in.

In contrast, the AudioSpace system needs to work with any application and therefore cannot be
tied to a certain plug-in API. The operating system should treat the AudioSpace like a regular
audio device and present it as such to the applications and the user.

On the networking side, the restrictions are not always as strict: VoIP or broadcast streaming work
with any IP connection, with no difference whether it’s an intercontinental satellite connection or
a 10m cross-cable between two workstations. The AudioSpace works in a different environment:
It is safe to make certain assumptions about the network infrastructure and the computers in that
network, where at the same time it should be compatible with any application that can run on
these computers.

Most of the systems that for tapping into an OS X application’s audio stream are not universal
enough either: ReWire works only with applications that are explicitly written to use it and Audio
Hijack Pro is not working with every application. It looks like using an audio driver is the best,
like done in JackOSX or the Esound driver for Mac OS X.

Overall, Esound’s shared audio is going in the same direction as the AudioSpace, but is very lacking
in usability and latency.

Chapter 5

Design and Implementation

5.1 Approach

5.1.1 Guidelines

The first step of designing the AudioSpace software was to outline the general approach to the
problem. In addition to the requirements that were given in chapter 2, a few guidelines for the
development process were laid out:

low client overhead The AudioSpace software should have as little impact on the client’s re-
sources as possible. Chances are the client is needing its resources for tasks such as software
synthesis, decoding and playback, and the AudioSpace software should not interfere with that.
If the client’s driver software requires too much system resources, the results can be skipping,
clicking or other undesirable effects. A low CPU and RAM overhead on the client computer’s
resources will result in a much better user experience and make it much less noticeable for
the user that he is using remote audio hardware.

well integrated in the system The AudioSpace should play to the host system’s rules and con-
form to its development guidelines. Hacks and patches are much more likely to break with
system updates and can potentially collide with other software installed in the system. Play-
ing by the system’s rules will also guarantee a maximum of compatibility with existing and
upcoming software.

straightforward This may sound obvious, but experience shows that in the process of developing
an application there’s always the danger of getting caught in details, often leading to an
unnecessary complexity of the final product. High complexity can lead to programs that are
hard to understand, hard to debug and instable.

don’t reinvent the wheel The operating system is providing a number of services for software
running on it. Usually, system software is much better taking advantage of the system’s
capabilities than 3rd party software. A 3rd party reimplementation of such services is likely
to be not as good as the software built by the same company that built the system itself.
Since system software is being used by many 3rd party developers, it receives much better

23

24 CHAPTER 5. DESIGN AND IMPLEMENTATION

stress-testing than newly written software can get. System software has been tested on all
possible hardware and software configurations where a new implementation can only be tested
in environments the developer has access to.

multithreaded Since the server hardware in the Media Space is a PowerMac G5 with two CPUs,
the server should be able to split the load across the two processors as good as possible.

practical No matter how well-designed a system looks on the paper, no matter how beautiful it is
from a scientific viewpoint: At the end of the day, what counts is the answer to the question
“but does it work”? Since the AudioSpace system is going to be used on a regular basis,
the “it works”-category is a very important aspect and must not be neglected just for design
ideals.

5.1.2 Design

Based on these guidelines and the analysis in chapter 3, the following design was derived (figure
5.1):

ServerClient

CoreAudio HAL

AudioSpace Driver Kernel level

OS level

Application level

TCP/IP

GBit Ethernet

AudioSpace Server

TCP/IP

CoreAudio HAL

Audio Hardware Driver

Audio Hardware

Hardware

MacOS X 3rd Party Software AudioSpace

Audio
Application

Audio
Application

AudioSpace Plugin

System
Prefs

Audio-
Space
Pane

Figure 5.1: How the AudioSpace integrates in the host system

Audio driver for the clients

The ideal integration in the system can be achieved with a regular audio driver. That way, the
AudioSpace will work with any application that supports sound output in an OS X compliant way
and not be restricted to applications that support a certain plug-in format.

5.1. APPROACH 25

Helper applications on the client side

Since the audio applications depend on the drivers, faulty or complex driver software can cause
the applications that are using them to become unstable. Since the AudioSpace requires more
user intervention than a regular audio driver, like selecting the destination server or assigning local
channels to remote speakers, the code could potentially become complex and with it prone to errors.
By putting these features in to separate applications where possible, the more critical code could
be kept out of the driver and with it, out of the scope of applications using the driver.

It was decided that the configuration tool should be a plug-in for OS X system control panel, a
so-called PreferencePane and that a separate startup item would load the saved defaults when the
system boots, providing persistent preferences without the need for file access from the driver.

UDP/IP networking

While the IP protocol adds a slight additional CPU and bandwidth overhead over raw Ethernet
packets, it was chosen as the base for the network transfer. Since IP is very popular, the system
routines for it are usually highly optimized and well-documented, especially in the case of the BSD
IP stack which is used in Mac OS X. Sending raw Ethernet packets is possible in Mac OS X, but
it has restricted access and documentation and sample code is rather rare.

As a bonus, IP networking provides independence of wired Ethernet, allowing connections over
FireWire cables or wireless Ethernet.

At first sight, TCP may look like a good base protocol: It maintains the packet order, is built for
continuous streams of data and offers connection handling. However, a few tests revealed that TCP
has latencies ranging from 1ms up to 30ms when sending packets from a user space application
to a user space application on the same machine (not involving any physical network). UDP
instead showed to have an average latency of 0.5ms with spikes up to 4ms. Considering the latency
requirements outlined in section 2.4, this makes TCP unacceptable for musical applications.[10]
While UDP does not protect from packet loss or out of order arrival, this has close to no relevance
when used in local Ethernet networks[15], so the decision was made in favor of UDP.

Rendezvous

Using IP enables the use Rendezvous as well. The use of Rendezvous significantly enhances the
user experience as it will completely shield the user from the technical details of IP networking.

AudioUnits

Since Mac OS does already come with a number of useful audio services included, it is only natural
to use them for signal processing where possible. The big advantage over custom routines with equal
functionality is that the components that come with the operating system are usually well-integrated
in the system, well-tested and should be better optimized (for example using the AltiVec SIMD

26 CHAPTER 5. DESIGN AND IMPLEMENTATION

unit of the G4 and G5 processors) for Apple’s current and future hardware. Since the AudioUnits
are also being updated with newer releases of Mac OS, the AudioSpace application will be able to
profit from these enhancements automatically.

Cocoa server

For the server application, the combination of the Cocoa framework and the ObjectiveC pro-
gramming language was chosen over alternatives like Java, Carbon/C or Qt/C++. Cocoa and
Objective-C are well supported by the development tools included in Mac OS X and with the
Interface Builder tool it is very easy to create graphical user interfaces for applications in a short
amount of time. The Cocoa framework supports the use of the BSD networking API and provides
classes for dealing with multithreading.

Chapter 6

Implementation

6.1 Client driver

6.1.1 AudioHardwarePlugin

The CoreAudio documentation describes only how to implement kernel drivers for audio devices,
no hints are given about any user space drivers. Despite that, there is an API for user space audio
drivers, found in the AudioHardwarePlugin.h header file. The author spend some time evaluating
this undocumented API, the interested reader can find the detailed results in Appendix A.

The conclusion was that this API is unsuitable for the purposes of the AudioSpace: Drivers that
built on that API are loaded as an plug-in in the application’s space, therefore instanced once for
every audio program loaded on that computer. An audio driver sending network packets would
therefore send a separate stream of packets on the network for every application using it, using
more network and system resources than necessary. In addition, it turned out to be hard to make
the driver compatible with all possible audio applications. Therefore, it was decided to use a kernel
space driver instead.

6.1.2 Kernel Space Driver

The Mac OS X developer documentation recommends implementing audio drivers in the kernel.
While in other cases it is recommended to stay in user space wherever possible, all the audio drivers
Mac OS X ships with - except the iSight driver which was added in October 2003 with in 10.3 - are
kernel extensions. In contrast to the AudioHardwarePlugin API, writing audio drivers as kernel
extensions is well documented and a few examples are provided. Since the HAL is providing a lot
of services for the kernel driver, a kernel driver can be kept very simple and doesn’t have to answer
applications’ questions like an AudioHardwarePlugin has to. With the addition of the available
source code for the Esound driver (see section 4.1.2) it was surprisingly simple to implement kernel
extension that transmits audio packages over the network. First tests using a modified Esound
driver showed that the kernel driver had a lower latency than a AudioHardwarePlugin, despite the
extra abstraction layer of the HAL between the between it and the application. Furthermore, the

27

28 CHAPTER 6. IMPLEMENTATION

kernel driver was also much more reliable when the system was under load, where a AudioHard-
warePlugin was much more likely to stutter. Since a kernel driver also has the benefit of getting the
buffers readily mixed from the HAL, the decision was made in favor of the kernel driver, despite
the harder debugging and user space communication.

Since the kernel driver has only very limited access to user space APIs and is therefore unable
to use Rendezvous or property list files, it needs a way to communicate with user space helper
applications. The kernel APIs offer a communication method for IOKit drivers that could have
been used here, but there is another API available, especially for audio drivers: AudioDriverPlugin.

Unfortunately, just like the AudioHardwarePlugin API, no documentation for the AudioDriverPlu-
gin API is available except for a few comments in the header file. Luckily, a third party developer1

published some sample code implementing an AudioHardwarePlugin that was used as a reference.

The AudioDriverPlugin allows to implement custom properties for a driver that can be accessed by
any user space application through the HAL. The HAL then calls the respective functions of the
kernel driver to pass the information it got from the User space applications. For the AudioSpace
driver, two properties were implemented: One for the IP address of the server, one for the UDP
port.

6.2 Networking

6.2.1 Protocol

The AudioSpace protocol was kept as simple as possible: Before sending a stream, the client
announces it with a header packet, containing information about the sample rate, the number of
channels, the channel to speaker association and the size of the audio buffers it’s about to send.
After that, the client starts sending packets of 16bit interleaved PCM samples.

To allow an interactive association of the channels the client is sending to the speakers of the server,
the initial packet can be resent at any time with new values for the channel/speaker association.

The protocol does not include a disconnect event: Instead, the server is monitoring the time between
incoming packets and considers clients from which it hasn’t received packets for more than 500 ms
as disconnected.

Note that the client is not waiting for any confirmation from the server: As Apple recommends to
keep networking code out of the kernel whenever possible, it was decided that sending packets is
bending this rule far enough already. Trying to receive network packets in the kernel using almost
undocumented functions was considered not worth it.

1http://acretet.free.fr

6.3. SERVER 29

6.2.2 Rendezvous

Implementing Rendezvous in was straightforward and very easy using the examples from Apple’s
developer tools as reference. As Rendezvous is not available in the kernel, the client is using
Rendezvous in the AudioSpace PreferencePane and is passing the IP address and the UDP of the
selected server to the kernel driver through its custom device properties.

6.3 Server

6.3.1 Application

The server side application was developed in the Objective-C language using the Cocoa framework,
which allowed using Apple’s InterfaceBuilder tool for rapid UI development. The network program-
ming was done using the BSD sockets API as that is better documented than the Cocoa network
classes. The server is split in several classes (figure 6.1):

ASControllerASNetwork

ASAudio

ASChannel 1 * 0..11
0..1

1
<<use>>

Figure 6.1: The AudioServer

ASController is responsible for the UI and maintaining the persistence of the user’s preferences.

ASNetwork opens the UDP sockets, receives incoming packets and delegates them to the respective
channels. In addition, ASNetwork is publishing a Rendezvous announcement making the server
known in the local network. ASNetwork is keeping track of all the clients connected to the server
and is automatically creating and deleting ASChannel objects when required.

ASChannel is being instantiated for every client connecting to the server. ASChannel holds some
information about the channel (IP address, stream format), creates a ringbuffer for the packets,
implements an audio callback to play sound from the ringbuffer and compensates the client’s jitter
and clock deviation.

ASAudio is the central audio class that creates and manages the AudioUnits required for mixing
and playing audio on the hardware. It also provides a list of the available hardware devices in the
system that ASController can query to allow the user to select the output device.

30 CHAPTER 6. IMPLEMENTATION

6.4 Audio

6.4.1 Audio mixing and output

The AudioSpace server is using CoreAudio’s AudioUnits for the audio related tasks. They provide
solid implementations of common services and are most likely well optimized for the G5 and Mac
OS X. Also, the AudioSpace server could then profit from improvements and optimizations of these
AudioUnits in future releases of Mac OS X.

CoreAudio comes with three mixing units, StereoMixer, 3DMixer and MatrixMixer. StereoMixer
works, as the name suggests, only with 2 channels while the AudioSpace requires at least nine
channels. The 3DMixer has support for more than two channels and a number of other interesting
features like three-dimensional positioning of stereo sounds with a simulation of all real effects
involved, like phase shifting, delays and the Doppler effect. Unfortunately, the 3DMixer does not
treat all output channels equally but is restricted to a number of predefined speaker configurations
like quadrophony or a 5.1 set with two front speakers, two rear speakers, a center speaker and a
subwoofer. The MatrixMixer is the most flexible of all these mixers, allowing any number of input
streams to be routed to any number of outputs. The MatrixMixer requires that the input streams
have the same number of channels as the output stream of the MatrixMixer. Also, the MatrixMixer
works only with a static number of inputs that cannot be changed when streams are playing. Since
one can disable unused inputs and disabled inputs use hardly any system resources, this is not
too much of a restriction when one sets the MatrixMixer to a sufficient number of channels before
initializing and then enables and disables the required channels on the fly.

The HAL output is present as two AudioUnits, the HALOutputUnit and the DefaultOutputUnit.
These Units are the same except for one detail: The HALOutputUnit allows the program to choose
the audio device it wants to use where the DefaultOutputUnit uses whatever device was set in the
system’s preferences.

For the AudioSpace server, the HALOutputUnit and the MatrixMixer unit proved to be flexible
enough. The restrictions of the MatrixMixer could be worked around: The user is allowed to set
a maximum number of clients that are allowed to connect to the server and the MatrixMixer unit
is initialized with that as the number of inputs. The server keeps track of the occupied inputs in
a one-dimensional array with one entry for each input, containing an ID of the client connected
to it or a value indicating that the channel is not occupied. When a client connects, the server
goes through the list and searches for a free input. If it finds one, it writes the ID of the client
to the array, connects the client to the input and enables it. If it doesn’t find a free channel, no
connection is made. When a client disconnects, the server disconnects it from the mixer, disables
the input and clears the ID in the array.

6.4.2 Jitter

The travel time of network packets is not constant: On the sending computer, the application has to
share the CPU with other applications and may have to wait, other network traffic on the computer
may delay the time the packet takes until it is being sent on the physical network. On the network
cable, collisions may occur, networking devices like switches and routers can impose another non-

6.4. AUDIO 31

constant delay, and the receiver’s networking software’s response time is again restricted by the
operating system’s scheduler. As a result, when a sender is sending packets at regular intervals 4t
with tn = tn−1 +4t over a network with a latency of l the receiver will receive these at irregular
intervals 4t′ = 4t+ l± j. This variation j is referred to as jitter. Usually, the jitter increases with
more devices between the network peers.

Jitter has no implications for non-time constrained data, but audio and video streaming appli-
cations have problems with jitter: Since they require data at constant rates in order to play a
non-interrupted stream, jitter can cause drop-outs. In order to compensate jitter, the common
practice is to insert a FIFO (first in, first out) buffer between the network and the playback appli-
cation and to collect a few incoming packets before starting the playback. This emphprebuffering
introduces additional latency, but makes the system more resistant to jitter. Note that it is im-
possible to make the system completely resistant to jitter, it will always be a compromise between
maximum tolerable jitter and buffer size. The additional latency is at least twice the size of the
maximum tolerated jitter, as it needs to be able to cover the gap of 2 ∗ j between packet n arriving
at 4t′ = 4t + l − j and packet n + 1 arriving at 4t′ = 4t + l + j.

To compensate the jitter in the AudioServer, each ASClient class has its own ringbuffer in which
it stores the incoming samples and from which the audio thread reads from. To deal with different
network and computer environments, the user can adjust the buffer size to the requirements of the
situation.

6.4.3 Clock skew

A major problem in distributed systems is that the nodes usually have no common clock source.
In the case of AudioSpace, each of the computers is calculating its sample rate from its internal
clock. These clocks are not infinitely precise, usual clock speed deviations are quoted to be between
10−5 and 10−7 percent. While this is not a problem for an isolated system it is one for networked
audio: Assuming a client sends at a sample rate of 48,000Hz to a server that runs 0.01% faster,
playing the stream at 48,004.8Hz, the server receives 288 samples per minute less than it requires.
When playing the soundtrack of a movie over the network, this will over time lead to a loss of
synchronization between audio and video. When the difference becomes larger than the receiver’s
buffer size, the receiver will drop or repeat buffers, resulting in audible artifacts like skipping,
stutter and cracks. Increasing the buffer size will not eliminate the problem, it’ll only increase the
time before dropouts happen, at the expense of latency.

How do existing systems deal with this problem? It turns out that hardware-based solutions like
MaGICdeclare a master device that is sending a master clock over the network cable and all the
other devices synchronize their clocks to that.[20] This works well for these dedicated hardware
devices, but is not feasible for the AudioSpace: Since the server’s timing depends on its audio
hardware which usually has a fixed sample rate, it cannot synchronize to an incoming stream, even
less to multiple streams. Remote effects systems like FX Teleport don’t have to worry about this
either: While there is no master clock in the network, the sound stream ends on the same computer
it started. The remote node doesn’t have to worry about timing at all, it is simply processing the
sound data as quickly as possible and sends it back to its origin.

After an evaluation of existing solutions to clock skew compensation, a new algorithm was designed

32 CHAPTER 6. IMPLEMENTATION

for the AudioSpace system: It provides a robust compensation of clock skew up to 0.1 % without
any audible artifacts and is suitable for low latency applications. A detailed description of the
algorithm is given in Appendix B.

AudioSpace’s implementation is using CoreAudio’s Varispeed AudioUnit. It is a high-quality
sample-rate converter that is able to switch between different sample rates on the fly. The Varispeed
AU is expecting float32 non-interleaved streams and requires that the number of input channels
equals the number of output channels. As the incoming streams from the client are in 16 Bit integer
format with interleaved samples and a number of channels that does not need to match the number
of channels of the MatrixMixer, additional AUConverters are put before and after the Varispeed
unit.

ASAudio

HALOutput

MatrixMixer

ASChannel

AUConverter

Varispeed

AUConverter

buffer

ASNetwork

ASChannel ASChannel ...

Figure 6.2: The use of AudioUnits

6.4.4 Performance optimization

One source of latency is the scheduler. In a timesharing multitasking operating system, a process
that is waiting for an event (like a mouse click or a key press) is not necessarily getting called
right after the event happens but will have to wait until the operating system’s scheduler calls
it. The time between the event and the scheduler calling the responsible thread can take several
milliseconds and in common non-real-time desktop systems, there is no guarantee whatsoever about
what the maximum delay is.

In the case of the AudioSpace, it pretty quickly became apparent that the AudioServer was fre-

6.5. USER EXPERIENCE 33

quently getting buffer-underruns because the AudioServer application was not called quickly enough
after a network packet for it arrived. This could be fixed by setting the priority of the network
receiving thread to real-time priority.

6.5 User experience

The AudioSpace was designed to deliver a user experience that fits into the behavior that users
expect from Mac OS X applications, following the Apple guidelines for the user experience2.

An illustrated walk-through of a typical use case is provided in Appendix C.

6.5.1 Server

The server application is a self-contained bundle that can be installed simply via drag and drop
and launched by double-clicking it’s icon. The server’s settings dialog is available through the
application menu, the settings are saved in a property list3 file in the users’ home directory. The
preferences dialog itself is using help tags to give the user additional information about the controls.

6.5.2 Client

Since the client software consists of several files, it comes as an installer package. Launched by
a double-click, it will install the AudioSpace driver, a PrefernecePane and a Startup Item. The
installer recommends a reboot to load the kernel driver, but does not force the user to reboot the
computer immediately.

For the configuration of the driver, the regular Mac OS X tools can be used: The AudioMIDISetup
tool lists the AudioSpace device like any other audio device and lets the user set the desired sample
rate and number of channels.

The configuration options that exceed the capabilities of regular audio devices, a separate applica-
tion had to be used: It is not possible to add custom controls to the AudioMIDISetup application.
Apple is recommending to use a plug-in for the system’s preference application, a so-called Pref-
erencePane[24]. In the AudioSpace’s PreferencePane, the user can locate and select AudioSpace
servers and assign output channels on the client side to speakers on the server side.

2http://developer.apple.com/ue/
3Property Lists are XML files using a predefined DTD and are the Mac OS X standard for storing preference

settings.

34 CHAPTER 6. IMPLEMENTATION

Chapter 7

Results

7.1 Performance of the System

The performance of the implementation was tested on various computer configurations running
Mac OS X 10.3.2 with all the system updates available on Jan 19th 2004.

7.1.1 Localhost

The first test was performed on an iBook with a 800MHz G3 processor using the built-in sound
device. The iBook was both client and server at the same time, sending 2 channels of audio at
48kHz sample rate over the local loopback IP device. The buffer size of the kernel driver had to
be at least at 128 samples, buffer sizes lower than that resulted in dropouts. The receiver had to
prebuffer at least 512 samples, using less samples caused buffer over- and underruns to happen.
Also, the server application had to be the front-most application or be set at a higher priority
than the other applications. If an other application got the system’s focus, over- and underruns
occurred. Also, the server was very likely to drop buffers when other processes were using a lot of
CPU. The average CPU load of the server application was around 25%.

7.1.2 Small wired setups

Transmitting six channels of audio were the maximum the iBook was able to handle: The server
application occupied 60% of the computer’s CPU and the slightest use of other applications on that
systems caused dropouts in the sound. The high CPU load made the system also very unresponsive.

Testing the system with two channels of 48kHz audio on two PowerMac computers with a 1.6GHz
G5 CPU each over a switched 100MBit Ethernet, the sender’s buffers could also not be set lower
than 128 samples. This may indicate that the limit for the lowest possible driver buffer size does
not depend on the CPU of the host but is rather a limit of the system’s scheduler or the precision
of the IOKit timers.

35

36 CHAPTER 7. RESULTS

The receivers buffer size could be set lower than with the iBook - prebuffering 256 samples was
sufficient to not cause any over- or underruns when the server was the front-most application.
However, some system events like the start of the screen-saver or the power manager turning off
the screen caused over/underruns, and with it dropouts. Network transactions on the receiving
computer like using a web browser or an email application would also cause dropouts. The sender
on the other hand had a much higher resistance, and it was well possible to use other applications
on it, even those requiring lots of CPU. Rendering 3d images or playing DVD movies did not
interrupt the sound stream.

No interruptions could be attributed to clock skew: A continuous sound stream could be played
through the system for over an hour without any dropouts.

7.1.3 Large wired setup

A stress-test was then performed on a couple of dual 2GHz G5 computers at the RWTH Aachen.
Each of these computers was running 10.3.2 with all the system updates available on Feb 2nd
2004. The computers were connected to each other over a 100MBit Ethernet hub, and one of the
computers had a MOTU 828mkII FireWire audio interface connected to it.

The computer with the MOTU card acted as the server, sharing 6 channels out of the 14 output
channels the MOTU offers. Then clients connected to it, playing audio streams with 6 channels
each. The sampling rate was set to 48kHz on all the computers.

An upper limit was determined at 4 computers sending 6 channels each. At this setup, buffer over-
or underruns would happen on the server side, although they were hardly audible. With only 3
clients with 6 channels, no dropouts could be detected. It is not clear where exactly the bottleneck
was: The load of the application was not evenly spread over the two CPUs of the server but kept
one of the CPUs busy at 80%, while the other CPU was idle. It is quite possible that spikes in
the CPU load caused dropouts here. On the other hand, the data rate of 4*6 channels at 48kHz
excluding UDP and IP headers is 2.2MB/s. While this is far from the theoretical bandwidth limits
of Fast Ethernet, it could still be that this was a result of occasional collisions on the non-switched
Ethernet. If this was a network related bottleneck, it could be solved with the use of a switch
instead of a hub.

To clearly determine the bottleneck, this test should be repeated with a switched GBit Ethernet.
If the same limit showed up then, it’s clearly a CPU limitation, otherwise the network was the
limiting factor. Unfortunately, no such test environment was available in time.

In contrast to the single G5, the dual G5 server proved to have much less problems when other
applications were used while the AudioServer was running. However, the screen saver or power
management turning off the display also caused dropouts in the sound stream.

7.1.4 Wireless setups

Two tests were done in wireless setups: In both tests, the computers were PowerMac G5s with two
2.0GHz CPUs each, connected over a 802.11g wireless Ehternet. The tests showed that the transfer

7.2. COMPATIBILITY 37

over wireless networks is highly sensible to the presence of other traffic on the same network. Where
an otherwise unused wireless network showed no dropouts when using the AudioSpace, a very busy
wireless network caused many dropouts, resulting in unacceptable sound quality.

7.1.5 Latency

To determine the latency, the sound played by the server was routed back into the client computer
and recorded there. The time between an event in the original signal and the recorded signal then
equals the total time an audio signal takes through the signal chain. To isolate the latency of the
AudioSpace itself, a second experiment was made using a similar setup without the AudioSpace
software, playing the sound through a local audio device instead.

In both tests, the sending and recording computer was PowerMac G5 1.6GHz. The recording
interface was the built-in audio device of the G5, and the playback interface was an AudioTrak
Maya EX1 USB interface. The output of the Maya EX was plugged in the audio input of the G5.
For the first test, an iBook G3 800MHz was used as the server, connected directly to the G5 with
a Cat5 Fast Ethernet cable. The software used for creating the test signal, playing and recording
was Audacity2. The client and the server were set to use 48kHz as sample rate, which is also the
native sample rate of the Maya EX. The server was set to the smallest buffer size, prebuffering 384
samples. With each setup, the test was run four times and the results were averaged.

The results attributed the AudioSpace system a maximum latency of 12.5ms. As the server buffer
(384 samples) and the clients’ driver buffer (128 samples) cause a latency of 9.4ms (512 samples
at 48kHz), the remaining 3.1ms latency must come from the network, the UDP/IP stack and the
mixing/resampling AudioUnit chain of the server.

7.2 Compatibility

The AudioSpace client driver was tested with a variety of software titles. No compatibility issues
were noticed.

7.3 Limitations and problems

Some limits are present in the specifications and do not need to be tested: The AudioSpace software
runs only on computer running Mac OS X version 10.3, leaving computers running Windows or
previous versions of Mac OS behind.

The tests revealed further limitations: The constant resampling of multiple audio channels in high-
quality formats puts high stress on the server’s CPU. This turned out to be a potential performance
bottleneck when handling a larger number of clients sending audio streams simultaneously.

1http://www.audiotrak.de/eng/maya51u.html
2http://audacity.sourceforge.net/

38 CHAPTER 7. RESULTS

The fact that system services like the screen saver and power management or competing networking
operations could interrupt the stream on the server side puts some limitations to the system: In
order to run the AudioSpace reliable with low latencies, it is necessary to set up the server in a
way that the server application does not get interrupted. Measurements would include disabling
unused system services like file sharing, web serving, remote login or screen savers. Furthermore,
no other user applications should run on the server at the same time, especially not applications
that use networking.

Overall, the tests revealed that for the current implementation, the network bandwidth is not the
limit. Rather, the major limitations seem to be the CPU power of the server and the scheduling
on the server side.

7.4 Future Work

One future enhancement would be to implement the driver for platforms other than Mac OS X.
That would allow users with Windows or Linux notebooks to connect to the AudioSpace. Since
the protocol itself does not depend on any Mac OS X exclusive APIs, this should be an easy task
for anyone familiar with driver programming on the respective host OS.

The high CPU usage on the server side is also offering room for improvements: The Varispeed
resampling AU could be replaced with a less complex resampling algorithm. This could result in
a lower quality and it is probably necessary to compare different algorithms to find an optimal
compromise between performance and quality.

The fact that CoreAudio is executing the whole graph of AudioUnits in one single thread does not
take full advantage of a dual-CPU computer like the G5s used in the Media Space. If one improved
the AudioSpace by splitting the graph in subgraphs that run in separate threads, the load would
be better divided across the CPUs and allow for more simultaneous channels. A problem that
needs to be solved then is the synchronization, as the CoreAudio documentation explicitly forbids
blocking in an AudioUnit’s callback, which makes it difficult to use the usual thread synchronization
mechanisms like semaphores.

The use of lossy compression would allow connections over lower-bandwidth media like Bluetooth
or IrDA. One algorithm worth looking into would be ogg vorbis3 as it has no licensing fees. Also
one would have to take a look at whether there is the possibility to use CoreAudio or Quicktime
to handle the de/encoding. This would however increase CPU load on both server and client and
add latency and would result in quality loss.

Another idea is to support the transfer of AC-3 encoded multichannel audio. This format is
commonly used for the audio tracks of DVD movies. The current AudioSpace requires that the
client decodes the AC-3 sound to discrete channels and sends them over the network. If the
protocol were extended to support non-PCM formats, the client could simply send the unencoded
AC-3 stream over the network, saving CPU and bandwidth, and let the server handle the decoding.
The AudioSpace server would then act like a digital amplifier for home cinemas.

3http://www.vorbis.com/

7.5. CONCLUSION 39

A larger project would be extending the applications and the protocol to a two-way communication,
allowing to share not only audio outputs but also audio inputs. Such a system could be used to
build distributed audio applications with each node in the network acting as an autonomous signal
processing unit. That way, complex signal processing that exceeds the power of a single computer
could be realized. Modular programs like MAX/MSP4, pd5 and jMax6 or a synthesis language like
SuperCollider7could be a good base for such applications.

7.5 Conclusion

Where previous systems for networked audio relied on specialized software and were unable to
provide low latencies and high audio quality, the AudioSpace software is able to deliver latencies
low enough for demanding interactive applications and is compatible with legacy software through
a tight integration in the host operating system. The use of system-standard configuration tools
that are familiar to the user and self-configuring networking does not require the user to learn new
concepts.

The use of system-provided audio components and a new skew compensation algorithm ensure high
sound quality, low latency and efficiency. By building on standard networking protocols, the system
is independent of the physical components of the network and is ready to be used with upcoming
network technologies.

CoreAudio has turned out to be a very comfortable and powerful environment for developing real-
time audio applications, supported by the good performance of the underlying operating system.
The Cocoa framework with the Interface Builder and XCode development tools as well as the rich
AudioUnit library in the CoreAudio framework allowed a rapid development process. While the
current AudioSpace software certainly has room for improvements, the performance is very pleasing
and encourages future work in that direction.

4http://www.cycling74.com/products/maxmsp.html
5http://www.pure-data.org/
6http://www.ircam.fr/produits/logiciels/jmax-e.html
7http://www.audiosynth.com/

40 CHAPTER 7. RESULTS

Appendix A

User space drivers in Mac OS X

The CoreAudio SDK contains a header file called “AudioHardwarePlugin.h” which describes itself
as an “API for the CFPlugIn that implements an audio driver for the HAL from user space”.
Outside the comments in this file, there is no documentation available and Apple did not provide
any sample code. As a user space driver could have been very useful for the AudioSpace, the
undocumented AudioHardwarePlugin API was examined closer. In order to provide some guid-
ance for readers that are interested in implementing an AudioHardwarePlugin, the results of that
investigations are printed here.

The AudioHardwarePlugin contains an interface specification for a CFPlugin, OS X’ API for appli-
cation plug-ins. The HAL will load plug-in bundles that implement the AudioHardware interface
when they are placed in the /Library/Plug-ins/Audio/HAL directory. Mac OS X 10.3 by default
installs a driver for the iSight camera’s sound hardware in that folder, which provides a good
reference for how an AudioHardwarePlugin’s Info.plist file should look like.

The interface contains a number of calls of which most are also present in the HAL’s Audio-
Hardware.h header file. In fact, an AudioHardwarePlugin looks like the HAL to applications and
applications will be using it as if it were the HAL. The HAL documentation serves as a good
reference for how exactly the AudioHardwarePlugin will be accessed by applications.

In contrast to kernel space drivers, AudioHardwarePlugins cannot take advantage of the HAL’s
conversion or mixing services. They will need to implement these services by themselves, which
makes them more complex than kernel space drivers.

AudioHardwarePlugins are instanced for every application using the HAL and are being run in
the respective application’s address space. Improper AudioHardwarePlugins therefore can easily
irritate applications. Also, many applications respond with crashes to incomplete implementations
of the AudioHardwarePlugin interface. It appears that many applications make assumptions about
how the HAL will behave and were not programmed to cope with other implementations of the
AudioHardware API than the HAL.

Running as user space applications, AudioHardwarePlugins don’t have nearly as precise timing
as real hardware or kernel drivers have. Especially under heavy CPU load, timers inside the
AudioHardwarePlugin can become very unreliable.

41

42 APPENDIX A. USER SPACE DRIVERS IN MAC OS X

It turns out that the AudioHardwarePlugin API is not well-suited for the AudioSpace: The timing
problems were a serious issue when using more complex applications on less powerful computers.
Comparable kernel audio drivers were much more reliable in these situations. Also, the lack of the
HAL’s mixing services would either require extra efforts to implement one’s own mixing routines
which then would need to communicate with all the instances of the AudioHardwarePlugin or each
AudioHardwarePlugin would send a separate audio stream to the network, resulting in high traffic
and high load on the server side. An additional problem would be the application compatibility:
Since each application would then talk to the AudioHardwarePlugin directly, the AudioHardware-
Plugin would need to be tested with a lot of software titles and even after passing all these tests
full compatibility with future applications could not be guaranteed.

Due to this shortcomings, it was decided that the AudioSpace software will not use the AudioHard-
warePlugin API but instead use the traditional API for kernel space audio drivers.

Appendix B

Clock skew compensation

Many suggested solutions for the problem of clock skew compensation, like [25] and [26], rely on
timestamped network packets. Each audio packet gets a sending timestamp si in the sender’s local
time and the receiver takes timestamps ai on every packet’s arrival. A comparison of both local
and remote timestamps to the corresponding previous timestamps si−1 and ai−1 is being used to
calculate an estimate of the clock deviation [26]1:

ei =
ai − ai−1

si − si−1
(B.1)

Since network latencies and operating system schedulers add jitter, the estimate is being smoothed
by taking the mean average ê[26]:

êi = êi−1 +
ei + êi−1

a
(B.2)

with a being the smoothing factor. The smoothing factor directly impacts the speed in which the
average reacts to fluctuations: Low values reduce the filtering effect, letting jitter influence the
averaged value where large values stabilize the average but make it less reactive. The smoothing
factor depends on jitter and the buffer size and needs to be determined by experiments2. The
resulting smoothed average gives an estimation of the clock skew, with a value < 1 indicating that
the sender’s clock runs faster than the receiver’s clock, a value > 1 indicating that it’s slower and a
value equal to 1 suggesting equal clock speed. Based on this estimated clock skew, the receiver has
to insert or remove frames to avoid a buffer under- or overflow. The number of frames that needs
to be inserted or removed per second depends on the sample rate:

n = samplerate ∗ (1− êi) (B.3)

The simplest way of doing that is dropping or repeating random packets with undesirable con-
sequences: Repeating or dropping buffers in a continuous audio signal will be audible as stutter,
the loss of continuity in the modified signal creates audible cracks. According to [25], insert-
ing/removing single frames at regular or irregular intervals creates audible artifacts attributable
to phase discontinuity. The alternate approach suggested in [25] is scanning the buffer for similar

1The formulas are derived from the C source code in the original source.
2is using a smoothing factor of 16 for a packet rate of 26ms-1 and additionally applies a clamping function to

restrict the change from one iteration to the next to a maximum of 10%.

43

44 APPENDIX B. CLOCK SKEW COMPENSATION

passages which then are duplicated or dropped without strong discontinuities. This algorithm re-
quires buffers that are large enough to ensure that such stationary fragments can be found in the
buffer. The authors used a buffer of 200ms for their implementation that according to their paper
worked well for compensating large clock skews in streams of voice recordings or pop music, but
had audible artifacts with classical music. I chose not to use this algorithm for the AudioSpace
as the goal of achieving latencies < 20ms while retaining high quality on complex signals is not
possible.

In [26], sampling rate conversion is being used to compensate clock skew: The clock skew is es-
timated using formula B.1 and formula B.2 and used as the conversion rate for a sample rate
converter that gets its input from the stream buffer and sends its output to the audio hardware.
Given the case that calculated clock skew equals the real clock skew, the sample rate converter will
prevent buffer over- and underflows and the number of frames the sample rate converter reads from
the buffer will be equal to the number of frames that are received over the network. As long as the
sample rate variations are low enough, the change in pitch produced by the sample rate conversion
will not be audible, and with a sample rate converter that is using a good enough algorithm, no
audible aliasing will be present. Unlike the previous algorithm, this will not depend on the buffer
length or the signal complexity, making it much more universally applicable.

Unfortunately, there are two points where I see flaws in this approach: First, there is the assumption
that the estimated clock skew will eventually converge precisely to the real clock skew. Since both
the timestamps that go into the equations nor the the math unit of the computers processor are
limited in their precision, the estimated clock skew may be slightly off the real clock skew, causing
the sample rate converter to be slightly off by a few frames. The magnitude of the imprecision will
be insignificant in most situations, but since the difference between estimated and real clock skew
adds up over time one cannot rule out that a buffer under- or overflow may eventually happen over
long periods. The second flaw I see in that approach is the lack of feedback: The estimated clock
skew is the only input variable of the process, and any variations or errors of that will directly
affect the result. The proposed method does its best to compensate the cause of buffer over- or
underflow, but is unable to detect if it does actually prevent the symptoms.

The general idea of the algorithm that was finally developed for the AudioSpace originates in a
different view on the whole problem: While the clock skew is the initial source of the problem, it
is not directly the (usually inaudible) timing differences that bothers us but the consequence, the
eventual buffer over- and underflows. If once can keep the buffer queue length at a constant level
without audible artifacts, the problem is solved, without knowing the exact clock skew.

Instead of trying to quantify the timing differences, it was chosen to simply monitor the buffer
queue length and change the playback speed in a way that’d drive the queue length towards a
predefined length. If the queue is too short, the playback must slow down to remove less samples
from the buffer than are received during the same time. If the queue is too long, the playback must
accelerate to take more samples from the buffer than are received (figure B.1). This can be achieved
with a resampling component between the buffer and the audio hardware, similar to [26], resulting
in minimal artifacts regardless of the buffer size or the complexity of the signal. In experiments, it
was found that simply switching back and forth between two playback speeds, one below the actual
sample rate and one above the actual sample rate, was sufficient to keep the buffer queue length in
a safe range. While momentarily, the playback speed would always be wrong, in the long run the
average speed would match the actual clock skew. Crucial is the difference between the two speed

45

changes: A too small difference would not compensate for much clock skew, where a too large one
results in audible pitch shifting.

occupation >
50%?

average buffer
occupation over

50 cycles

set sample rate
conversion to too

fast

set sample rate
conversion to too

slow

Yes

No

Figure B.1: skew compensation algorithm

In psychoacoustics exists the notion of the just noticeable difference or JND that describes how
large a pitch change can be until the human ear notices it.[9] The precise value depends on the
volume and frequency of the signal, but a rule of thumb says that changes of up to 0.25% are
unnoticeable[27]3 Experiments with the AudioSpace showed that an abrupt change of 0.3% could
still be noticed on some signals like a sine tone. Reducing the difference to 0.1% made that effect
disappear.

The algorithm was implemented in the AudioSpace server and tested with various iBook, Power-
Book and PowerMac computers. The algorithm was tested by monitoring the the buffer queue
length of the server while playing sound from a remote computer. Figure B.2 shows a transcript of
two tests over the duration of one minute. One test was conducted without any skew compensation,
the other was done with the compensation algorithm described above. The diagram shows how the
uncompensated buffer queue is steadily growing due to the sender sending faster than the receiver
is processing the signal. As a result, two buffer overflows occurred during the test period. In com-
parison, the compensated buffer stays at a constant buffer length over the whole duration. Since
the skew is completely compensated, the implementation is invulnerable to long term deviations.

3Usually, the JND is quoted as 4-5 cents[27]. Cents are a unit used in music and psychoacoustics where 100 cents

equal one semitone or f2
f1

= 2
cents
1200 .

46 APPENDIX B. CLOCK SKEW COMPENSATION

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000

No compensation
With compensation

time

bu
ffe

r q
ue

ue
 le

ng
th

 in
 b

yt
es

Figure B.2: buffer queue length

Appendix C

An illustrated walk-through

The AudioSpace distribution contains two files: One is the server application, the other is the
installer package for the client(s). The server application can be copied anywhere on the server’s
hard drive, where the client is installed by double-clicking the package.

After launching the server application, the main window appears. In its default state it offers a
text field to enter a name for the server and a button to start the server.

47

48 APPENDIX C. AN ILLUSTRATED WALK-THROUGH

The user can access the AudioSever’s preferences through the application menu. The preference
dialog offers controls to set network and audio options. The network options are:

UDP Port This is the port on which the AudioServer will listen for incoming connections. Unless
there are other network services running on that computer that use the default port, this
does not need to be changed.

Max clients As the CPU load on the server increases with every client that connects, the user
has the ability to set a limit on the number of connections that the server accepts.

latency/reliability slider This slider controls the size of the network buffer. As one cannot
expect that the user knows about the technical details behind the buffer size, the slider is
labeled with the actual consequences of the buffer size. A smaller buffer size leads to a shorter
latency but a higher probability of drop-outs on busy networks, where a higher buffer makes
the stream more tolerant for other network traffic, but increases latency.

The audio settings are:

Device This pop-up menu offers a list of the audio output devices that were detected in the system.
The user can choose here which she wants to use for output.

Number Of Channels This value sets the number of channels that the server is sharing over the
network. This is useful if not all of the output channels of the selected device are connected
to speakers. The maximum number of channels that can be shared is 16.

On the client, double-clicking the package launches the Mac OS X installer which will install the
necessary files.

49

To installer requires an administrator’s password in order to install the kernel drivers. After the
installation, a reboot is required.

After the reboot, an additional AudioSpace device is available in the system’s audio preferences.

50 APPENDIX C. AN ILLUSTRATED WALK-THROUGH

Using the AudioMIDISetup, the user can set the number of channels that she wants to stream to
an AudioSpace server and the sample rate of the AudioSpace device. Higher values cause higher
CPU load on both the client and the server as well as a higher network traffic. Therefore, it’s
recommended to set this to conservative values.

The system preferences now include an extra icon for the AudioSpace driver configuration.

51

After clicking it, the AudioSpace preferences panel launches. The panel lists all the AudioSpace
servers it could find on the network and allow the user to select one.

After selecting a server, the user can assign local channels to remote speakers.

52 APPENDIX C. AN ILLUSTRATED WALK-THROUGH

Any audio application on the client will now be able to use the AudioSpace.

The server will list all the connected streams with their IP address, sample rate and number of
channels. Once running, the server now offers controls to set the global volume and to stop the
server. Note that it’s not possible to change the name of a running server.

Bibliography

[1] Brad Johanson, Armando Fox, Terry Winograd: The Interactive Workspaces Project: Experi-
ences with Ubiquitous Computing Rooms (2002)

[2] Jan Borchers: The Aachen Media Space (2003)

[3] Jef Raskin: Das intelligente Interface (2001)

[4] Jeff Johnson: GUI Bloopers

[5] Wessel, D. and Wright, M.: Problems and Prospects for Intimate Musical Control of Comput-
ers. proceedings of CHI 2001

[6] K. MacMillan, M. Droettboom, I. Fujinaga: Audio Latency Measurements of Desktop Operat-
ing Systems (2001)

[7] Harold Nyquist: Certain topics in telegraph transmission theory (1928)

[8] Claude Shannon: Communications in the presence of noise (1949)

[9] Curtis Roads: The Computer Music Tutorial (1996)

[10] Horst M. Eidenberger: Medienverarbeitung in Java (2003)

[11] Dr. Franz-Joachim Kauffels: Lokale Netze, 11th edition (1999)

[12] RFC-791: Internet Protocol (1981)

[13] RFC-793: Transmission Control Protocol (1981)

[14] RFC-768: User Datagram Protocol (1980)

[15] RFC-1180: A TCP/IP Tutorial, (1991)

[16] Jörg Rech: Datenschalter - Die Technik von LAN-Switches, c’t magazine 18/2002 p.208-213

[17] Roman Beilharz: Im Netz der Klänge, c’t magazine 21/2003, p.188-191

[18] RFC-1122: Requirements for Internet Hosts – Communication Layers (1989)

[19] Apple Computer, Inc: http://developer.apple.com/macosx/rendezvous/ (2004)

[20] H. Juszkiewicz, N. Yeakel, S. Arora, A. Beliaev, R. Frantz and J. Flaks: Media-accelerated
Global Information Carrier Engineering Specification (2003)

53

54 BIBLIOGRAPHY

[21] Digigram: Digigram EtherSound - Audio Distribution over Standard Ethernet (2002)

[22] Apple Computer, Inc: Inside Mac OS X: System Overview (2002)

[23] Apple Computer, Inc: Audio and MIDI on Mac OS X (2001)

[24] Apple Computer, Inc: http://developer.apple.com/documentation/UserExperience/Conceptual/PreferencePanes/Concepts/Application.html
(2004)

[25] Orion Hodson, Colin Perkins, and Vicky Hardman: Skew detection and compensation for
internet audio applications (2000)

[26] R.Akester, S.Hailes: A new audio skew detection and correction algorithm (2002)

[27] J. O. Pickles: An Introduction to the Physiology of Hearing. (1982)

[28] Peak Audio, Inc: Audio Networks An Overview (2001)

Index

3DMixer, 30

AC-3, 38
Airport, 11
ALSA, 19
AltiVec, 25
Apple, 14
aRts, 19
AUConverter, 32
Audacity, 37
AudioDriverPlugin, 28
AudioHardwarePlugin, 27
AudioMIDISetup, 33
AudioTrak Maya EX, 37
AudioUnits, 16, 25, 30

bit depth, 7
Bluetooth, 38
BSD, 14

CD, 8
clock skew, 31, 43
CobraNet, 18
Cocoa, 14, 26, 29
CODEC, 8
collision, 10
compression, 8
converters

A/D, 8
D/A, 8

CoreAudio, 15
CSMA/CA, 11
CSMA/CD, 10

DefaultOutputUnit, 30
DigiGram, 18
DVD, 5
dynamic range, 7

Esound, 19
esound, 27

Ethernet, 10
Fast, 11
Gigabit, 11
Wireless, 11, 36

EtherSound, 18

FireWire, 13
frame, 8
FX Teleport, 20, 31

H.323, 19
HAL, 15, 28
HALOutputUnit, 30

IEEE1394, 13
iLounge, 3
Interactive Rooms, 3
InterfaceBuilder, 29
IP, 12
IrDA, 38
iRoom, 3

Jack, 21
Jitter, 30

latency, 37
Linux, 19
localhost, 12, 35

MAC, 10
Mac OS X, 14
Mach, 14
Macintosh, 14
MaGIC, 17, 31
MatrixMixer, 30
Media Space, 3
MIDI, 20
mLAN, 20
MOTU 828mkII, 36

NextStep, 14

55

56 INDEX

Objective-C, 14, 29
ogg vorbis, 38
OSI Reference Model, 9

PCM, 8
Peak Audio, 18
PreferencePane, 25
priority, 33
Propellerheads, 21
property list, 33

Quicktime, 18

Rendezvous, 13, 25, 29
resampling, 9
ReWire, 21
RTP/RTSP, 13
RWTH Aachen, 3

sampling, 7
frequency, 7
rate, 7

StereoMixer, 30

TCP, 12
TCP/IP reference model, 9

UDP, 12

Varispeed, 32
Voice over IP, 19

WEP, 11
Wormhole, 20

Yamaha, 20

Zeroconf, 13

