
MINI —Making MIDI fit for Real-time Musical Interaction over the Internet

Michael Welzl
Institute for Computer Science
University of Innsbruck
Innsbruck, Austria

michael.welzl@uibk.ac.at

Max Mühlhäuser
Department of Computer Science, Telecooperation

Darmstadt University of Technology
Darmstadt, Germany

max@tk.informatik.tu-darmstadt.de
Jan Borchers

Media Computing Group
RWTH Aachen University

Aachen, Germany
jan@rwth-aachen.de

Abstract

Distributed live music performances over the Internet
have become rather popular. For true real time exchange
of electronic instrument output, the classical MIDI format
is still the only viable choice — but MIDI is inappropri-
ate for the Internet. We propose a MIDI compatible net-
work data format called MINI. MINI eliminates the very
disturbing arpeggio effect caused by packet delay jitter in
the Internet. Moreover, MINI yields smaller packets and the
data size can be further reduced by trading in musical fea-
tures of marginal interest. Standard MIDI instruments can
be used since MIDI-MINI transcoding can be transparently
introduced. The paper introduces the design rationale and
details of MINI and presents performance results from real-
istic experiments.

1. Introduction

Musicians have played together over the Internet and
other long-distance networks on several occasions. If such
an interaction should feel like a “jamsession”, i.e. with the
spontaneous real-time interaction that is the most essential
ingredient of jazz music for example, it is probably safe to
say that there are no side effects except for total communi-
cation breakdown that are as unpleasant and undesirable as
delay and jitter.
On the Internet, however, users typically obtain a so-

called “best effort” service — that is, the network does its
best to forward data packets from the source to the destina-
tion as quickly and efficiently as possible, but provides no

guarantees whatsoever. This includes the potential for delay
and jitter, both of which is known to be mainly attributed to
the queue at the bottleneck router, which grows in the pres-
ence of congestion (i.e. when more traffic is arriving than
can immediately be delivered).
Bearing this in mind, the best way for applications to

reduce delay is therefore to reduce the likelihood of of con-
gestion to occur and hence send as little as possible. While
it is always possible that other applications send enough
data for the bottleneck queue to grow, it is an obvious strat-
egy for a delay-sensitive application to itself avoid being
the cause of congestion. One way to do this is to send a
small number of packets. Another method is to keep pack-
ets small — since a sender has to wait until all the data that
should fit in a packet are available before it can send the
packet, the use of large packets causes delay on the sender
side. Common VoIP applications like Skype, which need
to minimize the impact of delay and jitter, address both of
these problems at the same time: they send extremely small
packets at a very low rate.
While MIDI is quite small by nature, it is not as small

as it could be, and any unnecessary waste of bandwidth in-
creases the chance of congestion; it should therefore be the
foremost goal of any MIDI based real-time communication
system to reduce the amount of data even further, even if it
may be at the cost of some of the features that the format
offers. Since most public networks are typically overpro-
visioned, a user would usually not experience congestion
when sending MIDI data via a standard desktop PC that is
connected to the Internet, but this can be entirely different
in WiFi environments, for instance, and in situations with a
large number of interacting musicians.
We present a new format,MINI (Musical Instrument Net-

work Interface), which addresses the problems with MIDI
across long-distance networks in three ways:

1. It is smaller than MIDI

2. It encodes chords as what they are, instead of simply
encoding them as a series of individual notes as MIDI
does; this way, it avoids the arpeggio effect that occurs
with MIDI (we will elaborate on this in section 2.1)

3. It provides the necessary flexibility for making a trade-
off between feature richness and having a low sending
rate

The idea of sacrificing features for the sake of preserv-
ing little delay is in line with the wealth of work on adaptive
multimedia applications for the Internet, where it was, for
example, suggested to reduce the quality of video frames in
the presence of congestion in the network [16]. This would
be done because the quality reduction also reduces the send-
ing rate, and hence reduces packet loss, which may lead to
a generally more agreeable result at the receiver. Conges-
tion being a dynamic effect, one might be tempted to be-
lieve that such quality adaptations should permanently re-
act to the current state of the network, but such behavior
can lead to quality fluctuations which are quite undesirable
— in fact, users have been found to prefer a continuously
poor quality over frequent changes [12, 20]. One way to
handle the discrepancy between the dynamic network and
its not-so-dynamic user is to give the user the choice, i.e. let
the user switch between quality levels; this was successfully
done by the authors of [2], and it is the strategy that we have
foreseen for MINI.
The MINI encoding scheme is described in the next sec-

tion. We elaborate on an implementation of MINI in a GUI
supported application in section 3, explain our test setup
and present results in section 4. Section 5 concludes with
an overview of related work.

2 MINI

MIDI encodes any musical note that is played with a
Note-On message, and it encodes the termination of a note
with a Note-Off message. A chord that is played or muted
is encoded via multiple Note-On and Note-Off messages,
respectively — one for each note that the chord consists of.
As the MIDI standard [1] assumes an interconnection tech-
nology that will not yield audible delays, and has a fixed
bandwidth, sending MIDI data across the Internet actually
violates the specification. The unexpected delay that such
usage can interject between packets containing notes that
belong to a chord can effectively turn a chord into an arpeg-
gio. This is of course highly undesirable as it is entirely
different from what the musician who originally played the

chord wanted it to sound like. We term this effect intra-
chord jitter; clearly, delay fluctuations can also occur be-
tween chords or single notes (inter-chord jitter), and these
should also be avoided. MINI provides mechanisms that
address both of these issues.
The MINI format is restricted in scope to the transport of

MIDI musical data. Distributed musical performances will
usually require additional agreements between the partici-
pating distributed software components (MINI-MIDI trans-
coders, user interface, etc.). These additional agreements
must be exchanged in an application specific protocol and
format which we refer to as SETUP. A SETUP phase is
supposed to precede the exchange of MINI messages, ad-
ditional SETUP messages may be intertwined with MINI
messages during the performance. As we will show later in
the paper, MINI offers a number of choices in the trade-off
between expressiveness and message size. Some of them
can be changed from one message to another one; these
choices are encoded as part of the MINI format. Other
choices are supposed to change rarely or to be fixed for an
entire musical performance; these choices must be negoti-
ated between the distributed application components using
SETUP messages. As argued above, SETUP is out of scope
of MINI since it is supposed to be largely application spe-
cific.

2.1 Chord encoding

As a solution to the intra-chord jitter problem, MINI en-
codes chords via a single code as opposed to encoding them
as individual musical notes. While a musician can start and
stop to play the notes that make up a chord at any time,
it is often the case that several of them are simultaneously
played or muted (as perceived by a listener, i.e. the events
happen within a period of time that is short enough to yield
the impression of concurrence). Thus, in addition to solving
the arpeggio problem mentioned above, space can be saved
by encoding the beginning or end of multiple notes in a sin-
gle message; in an implementation, the decision whether
notes are to be considered as being played at the same time
or not can simply be based on a fixed delay threshold.
The chord encoding scheme in MINI is based on regard-

ing the set M of all possible chords with k notes within a
given range of n notes as a k

th order combination of n ele-
ments without repetition and without ordering:

M =

(

n

k

)

=
n!

k!(n − k)!
(1)

For example, by setting n = 15 and k = 3, it can be calcu-
lated that there are 455 different possible triads in a range
of 15 notes. Thus, by unambiguously mapping each of the
numbers from 1 to 455 to a chord in a table, it would theo-
retically be possible to encode any such chord combination
with only 9 bits.

0 00 1 1 00 0 1 00 1 1 11 0

1.�Byte (Size-Code – 1)�Byte

V
e

lo
ci

ty

C
h
o

rd
-C

o
d

e

V
o

ic
e

-C
o

d
e

S
iz

e
-C

o
d

e

0 00 1 1 00 0 1 00 1 1 11 0

1.�Byte (Size-Code – 1)�Bytes

V
e

lo
ci

ty

C
h
o

rd
-C

o
d

e

V
o

ic
e

-C
o

d
e

N
o

te
-O

ff
-C

o
d
e

N
o

te
-O

ff
-C

o
d
e

S
iz

e
-C

o
d

e

Figure 1. MINI Note-Onmessage with Velocity

Encoding and decoding MINI chords with tables would
be straightforward, but it would require significant mem-
ory space. Fortunately, there is no need to maintain tables,
as the desired mapping is merely a combinatorial problem
— consider, for example, the unambiguous mapping be-
tween arrays of higher dimensions and unidimensional ar-
rays that the C programming language implicitly provides.
For MINI, we use an algorithm from [15] which provides
a bijective mapping between an array representing a unique
subset of size K from a set of size N , and an integer num-
ber, which is called the “rank” (or order) of the subset.1 No-
tably, this algorithm does not need N as input; again, con-
sider the mapping in the C programming language, which
also works without knowing the size of the array that it op-
erates on.
One degree of freedom for adaptingMINI to the network

capacity is given by the arbitrary choice of n and k — for
instance, if MINI is used to connect instruments that have a
small tonal range, n can be small, and the instrument usu-
ally also imposes an upper limit on k (e.g., k > 10 would
normally not make much sense when the instrument is a
keyboard). The smaller these two variables are, the smaller
the data format becomes; this is therefore one of the factors
that can be used to trade comfort against sending rate when
bandwidth becomes scarce.

2.2 Layout of Note-On and Note-Off mes-
sages

Figure 1 shows an exampleMINI word. Since each word
can vary in size, it is necessary to encode the length of the
word itself; this is the purpose of the three-bit “Size Code”
field, which encodes the size of the word in bytes. The next
field, “Note-Off-Code”, is set to 1 when the word encodes a
MIDI “Note-Off” message (i.e. the encoded note or chord
ends), and 0 when it encodes a “Note-On” message (i.e. the
note or chord begins).

1We used the C implementation of the encod-
ing and decoding functions which are available from
http://people.scs.fsu.edu/∼burkardt/ by the names
of “KSUB RANK” and “KSUB UNRANK”, respectively.

The “Voice-Code” field indicates the number of musical
notes that the encoded chord contains (k in equation 1). The
four bits that this field consists of allow for a total number
of 16 voices. This choice was made with common instru-
ments such as electronic keyboards in mind, where it would
be unlikely that more bits would be required for real-time
musical interaction. Notably, this does not impose a true
limit on the voices in a chord, it only limits the number of
chords that can be encoded within a single MINI word. The
Chord-Code is the rank of the cord as explained above.
“Velocity” is the MINI representation of Velocity, which

is embedded in MIDI Note-On and Note-Off messages, rep-
resenting the speed at which (in case of a keyboard) a key is
hit or released, respectively. Since the encoding scheme in
MINI concerns chords as well as individual notes, it seemed
obvious to let a single Velocity value affect a whole chord
in our format. For most instruments, it is technically quite
challenging and therefore somewhat unusual to have differ-
ent velocity values for individual notes in a chord — on a
keyboard, this corresponds with hitting several keys simul-
taneously, albeit with different speeds. While this choice
can hide some musical nuances from the listener, we be-
lieve that this is a sacrifice that most musicians would be
willing to make in exchange for potentially reduced delay
(because the data set becomes smaller).
In MIDI, Velocity has a resolution of 7 bits, which may

be too much for most practical situations where musicians
jam over a network (some instruments may not even be able
to generate Velocity values with such a fine granularity; in
our experiments with electronic keyboards, the difference
between 3 and 7 bits was barely audible). Therefore, the
Velocity resolution is configurable with a range from 1 to
7 bits in MINI. The resolution choice must be negotiated
between the distribution application components by way of
SETUP messages.

2.3 Timestamp messages

Inter-chord jitter is caused by queuing delay between
MINI words, and can therefore only be counteracted by
restoring the correct timing after their reception. Since this
requires precise knowledge about the time at which notes
were played, the otherwise unused MINI Size-Code value
of “001” encodes a “Timestamp” message, which a MINI
sender can insert in front of a MINI Note-On or Note-Off
message in order to tell the receiver about the time which
has passed since the last MIDI event. This message is
shown in Figure 2. As the Timestamp field consists of 13
bits, and the time is given in milliseconds, a maximumdelay
of approximately 8 seconds can be encoded with one such
message; in order to encode longer durations, a Timestamp
message can be followed by another Timestamp message,
the value of which must be added to the value of the pre-

1 00 0 1 00 0

1.�Byte

Timestamp
(delay in msec since last message)

S
ize

-C
o
d

e

0 00 0 1 00 1

2.�Byte

Figure 2. MINI Timestamp message

ceding one by the receiver.
A MINI receiver can restore the correct timing by means

of a playout buffer. Arriving MINI words are immediately
placed in this buffer, and they are played from the buffer at
the right time. The length of this buffer is another trade-
off for users of MINI: a long buffer can compensate for se-
vere timing fluctuations, but it adds significant delay before
incoming messages can be played, whereas a short buffer
makes the system feel more interactive but may not always
be able to compensate for inter-chord jitter. If the goal is to
make the system feel as interactive as possible, and inter-
chord jitter is more acceptable than some fixed additional
delay, this feature should not be used.

2.4 Controller messages

In MIDI, Note-On and Note-Off belong to the class of
“Channel Voice Messages”. These messages are bound to
a logical Channel, of which there are up to 16. The con-
cept of Channels was not included in MINI, as it takes up
space in the format, which we considered unnecessary be-
cause multiplexing is already provided by underlying pro-
tocols (e.g. via ports in UDP, onto which Channel num-
bers could be mapped). In other words, it is assumed that
one MINI stream represents one logical channel. The MIDI
standard also foresees the class of “System Common Mes-
sages” — these include “Song Select” (only relevant for se-
quencers), “Tune Request” (irrelevant when musicians do
not truly hear each other) and system exclusive messages
which are device dependent— and “System Realtime Mes-
sages”, which are mainly designed for sequencers. These
messages provide functionality similar to the “ping” com-
mand in order to check whether a device is still reachable.
The goal being a data format which is as slim as possible,
we decided that none of these messages need to be incorpo-
rated in MINI.
Unlike System Common and Realtime Messages, con-

troller messages are relevant for MINI because they con-
cern real-time musical interaction. They are used to encode
changes to the sound which are typically generated via a
mechanical device such as a knob, slider or pedal. Other
than Velocity, these messages are not embedded in Note-

0 00 0 0 11 0

U
n
u

se
d

B
it

C
o
n

tr
o

lle
r-

C
.

S
iz

e
-C

o
d

e

C
o
n

tr
o

lle
rv

a
l.

Figure 3. MINI pedal-message when 8 possi-
ble controllers were initially selected

On or Note-Off messages in MIDI. For MINI, we followed
the same method — that is, a MINI word is either a Note-
(On or Off) message or a controller message, the latter of
which is detected by checking whether all initial three bits
(the Size Code) are zero, which is a previously undefined
value of this field. If that test succeeds, the rest of the word
is interpreted as follows:

• The Size-Code is followed by n “Controller-Code”
bits, where n is initially negotiated in the range from 1
to 3. These bits are used to identify the controller.

• The m rightmost bits of the MINI word encode the
value of the controller;m depends on the controller.

• Since the size of MINI words are a multiple of 8 bits,
unused (“padding”) bits are inserted between the Con-
troller-Code and the value of the controller as needed
in order to fill up the space.

As an example of this layout, Figure 3 depicts a MINI con-
troller message where n = 3 andm = 1.
MIDI allows for up to 128 different controller types.

Several of these numbers are still undefined, and some con-
trollers are quite exotic, and hence not available on most
devices or soundcards. We decided to include only the fol-
lowing subset of controllers:

Program Change: 7 bits are used to select an instrument
(a so-called “patch”), and they are encoded in MINI as
they are in MIDI.

Pitch Bend, Modulation, Volume, Reverb, Chorus:
some of these controllers can have a 14- or 7-bit
resolution, and pitch bend only has a 14-bit resolution.
We decided not to support the 14-bit resolution in
MINI and always map any such value onto a 7-bit
value.

Sustain Pedal, Sostenuto Pedal: here, in MIDI, 7 bits are
used to encode a binary value (a value in the range 0-63
means “off”, while a value in the range 64-127 means
“on”). We use a single bit to encode the state of the
pedal.

Strictly speaking, Program Change and Pitch Bend are not
controller messages because they are defined as “Channel
Voice Messages” in MIDI; we decided to group them to-
gether with controller messages in MINI for the sake of
simplicity.

3 Implementation

Equipped with a format for efficiently transmittingMIDI
data across long-distance networks, we were able to build
a comprehensive application for real-time music playing
over the Internet, which we called “Netmusic”.2 The de-
sign goals of this software were clear: it had to be a fun tool
which enables musicians to jam together over the Internet,
and it had to have all the features that would allow its users
to fully exploit the capabilities of MINI. Netmusic consists
of code which is written in C (the core components, for effi-
ciency reasons) and Java (the user interface), was designed
for Linux and tested with a Fedora Core 4 system with ker-
nel version 2.6.17.1-2142. Here is a rough overview of its
functionality:

• It connects to another host and maintains a TCP con-
nection for exchanging parameters as well as starting
and ending the session. MINI data are exchanged via
UDP.

• It captures MIDI via the ALSA3 library; if the delay
between notes is less than a defined threshold (under
control of the user), they are regarded as chords. Then,
it converts them to MINI and sends them to the other
host.

• Whenever a MINI message arrives, it is immediately
converted to MIDI and played via ALSA (i.e. no
buffering is used, and there are no Timestamp mes-
sages). With the standard interface that ALSA pro-
vides, a user can map readable MIDI ports onto write-
able ones, including software-based input/output sys-
tems — that is, the newly generated MIDI messages
can either be played on a connected MIDI device or on
a software synthesizer, and this choice is not visible to
our Netmusic application.

• The user can use the GUI to gage the inherent fea-
ture richness vs. sending rate trade-off of MINI; the
number of controllers to be used is determined by first
showing a window which asks the user to activate all
of them (shown in Figure 4). In this window, the num-
ber of visible controllers grows with every one that was
operated. Then, the existing controllers and some ad-
ditional features can be selected and tuned in a separate

2This application is available from
http://www.welzl.at/research/projects/netmusic/

3http://www.alsa-project.org

Figure 4. Controller detection window

Figure 5. Options window

window, which is shown in Figure 5. Here, the slider
on the right controls the resolution. Figure 5 shows an-
other feature of the Netmusic application: its ability to
save even more space by sending Note-On messages
without ensuing Note-Off messages. This mechanism
makes sense for a few sounds (“patches”) such as a
xylophone or vibes, where the duration of the sound is
fixed; here, no harm will come from simply omitting
Note-Off messages. This application-specific mecha-
nism is negotiated between the hosts via SETUP mes-
sages, using the TCP connection.

The GUI contains four different panels which provide
visual feedback to the user: the “property window” shows
all the relevant network details, such as the duration of the
connection, IP-addresses and port numbers. There is a vir-
tual keyboard, which always shows all notes that are played.

Hub�1 Hub 2

Linux

Router

Sender Monitor 1 Monitor�2 Receiver

Figure 6. The testbed

All of the selected controllers are shown in the “controller
window”, and there is a “log window” which provides sta-
tus information regarding connection setup and informs the
user about parameter changes as well as error messages.

4 Test setup and results

In order to judge the benefits of MINI under assess-
able conditions, we tested it using our real implementation
within the Netmusic application. Since Internet based tests
do not always exhibit the full spectrum of adverse effects
that one might encounter, we followed a typical approach
for network tests where the impact of congestion is of con-
cern: we constructed a local testbed. Our setup was success-
fully used on several occasions before, e.g. in [14] and [4].
For the sake of simplicity, we only consider a unidirectional
flow — that is, our scenario is the same as if only one mu-
sician plays and the other one listens. This does not impair
the validity of our results, as a flow in the other direction is
completely independent of the flow under consideration.
Our testbed, shown in Figure 6, consists of five machines

which are interconnected using 100 Mbps Ethernet links.
Since we wanted to be absolutely sure that this activity does
not interfere with the timing of our Netmusic process, we
used two separate machines to generate and receive back-
ground traffic (Monitor 1 and Monitor 2 in Figure 6). The
same machines were also used to log traffic; Monitor 1
would see traffic that is sent by the sender, i.e. before it
experiences congestion, whereas Monitor 2 would see the
same traffic pattern as the receiver. This way, it is easy to
notice packet drops, as they are represented by the gap be-
tween the two lines if one plots the rates perceived by the
twoMonitors; it is howeverworth pointing out that peaks on
the two lines can sometimes differ due to the delay that is
caused by the router’s queue in the presence of congestion.
In order to cause any congestion at all, the maximum

traffic rate had to be limited by using the tc (Traffic Con-
trol) Linux command and Class Based Queuing with only
one class for the receiver-side link of the router, which is

 0

 200

 400

 600

 800

 1000

 100BG traffic ends at 75 50BG traffic starts at 25 0

Ra
te

(by
te

/ s
)

Time (s)

MINI (Monitor 1)
MINI (Monitor 2)
MIDI (Monitor 1)
MIDI (Monitor 2)

Figure 7. Rates of MINI and MIDI perceived by
Monitors 1 and 2 (background traffic 80 pack-
ets per second)

a PC running Linux (Fedora Core 4, kernel 2.6.17.1-2142).
We did not use Token Buckets due to their influence on traf-
fic characteristics (cf. [5]). The monitors used tcpdump4 to
measure the traffic that traversed Hub 1 and Hub 2, respec-
tively. Loss was calculated as the difference between the
bytes sent (logged byMonitor 1) and the throughput (logged
by Monitor 2).
Background traffic was generated as a Constant Bit Rate

(UDP) data flow of 100 byte packets using the mgen traffic
generator.5 It was sent from the router to Monitor 2, which
means that it could not cause collisions but only lead to con-
gestion in the queue of the router’s outgoing network inter-
face. We generated 11 classes of background traffic, which
always lasted for 50 seconds, starting from the 25th second,
and consisted of 10 to 100 (in steps of 10) and 120 packets
per second, respectively. These rates were customized ac-
cording to the Netmusic application and the network setup
so that the impact of increasing background traffic on the
application’s behavior could be investigated. Additionally,
initial mgen packets were used to synchronize the test ma-
chines. In order to obtain reproducible results, we transmit-
ted the piece “Préludes Nr. 4, Largo, Opus 28” by Frédéric
Chopin; chords occur frequently in this 1:46 minute piece.
With background traffic of 60, 70 and 80 packets per sec-
ond, the continuous qualitative degradation of MIDI is quite
clear to the listener, as the arpeggio effect becomes more
and more pronounced.
Figure 7 shows the rates perceived by Monitors 1 and 2

with a background traffic of 80 packets per second. Clearly,
for MIDI, the incoming rate is much higher than the outgo-

4http://www.tcpdump.org
5http://mgen.pf.itd.nrl.navy.mil/mgen.html

 11

 10

 9

 8

 7

 6

 5

 4

 3

 2

 1

 0
 120 100 90 80 70 60 50 40 30 20 10 0

De
lay

 (s
)

Background Traffic (packets / s)

MINI
MIDI

Figure 8. Average delay of MIDI and MINI

ing rate, and hence, packets were dropped. The outlier of
the rate perceived by Monitor 2 that coincides with the end
of background traffic after 75 seconds is the result of the
router’s queue emptying. The diagram also shows that the
rate of MINI is generally much lower, and that the MINI
lines corresponding with Monitors 1 and 2 are generally
close to each other, i.e. there is little or no queuing delay
and packet loss.
Figures 8 and 9 show cumulative results (average delay

and total loss) of all the measurement studies; the tests with
background traffic of 0 to 60 packets per second are not
included in Figure 9 as no packets were dropped in these
scenarios. The diagrams clearly show that we did not only
reach our primary goal of reducing the delay that a musician
can experience during a real-time jam over the Internet, but
also that packet loss could be reduced. Since a lost packet
means that either a note or a controller message was lost,
this is a notable improvement of the overall outcome. The
result is confirmed by the significantly enhanced quality that
is evident when listening to MINI and MIDI in our tests.

5 Conclusion

The idea of playing music together via some network,
or even the Internet, is far from new. We documented the
state of the art in this field in 1998 [19]; back then, a large
number of experiments were already conducted, ranging
from Frank Sinatra singing a duet with Bono of U2 via a
dedicated fiber connection to a system called “Res Rocket”
(later called “Rocket Power”). In the latter system, which
was even linked to the popular music tool “Cubase VST”
for a while, musicians actively worked together by editing
sequencer tracks in real-time, but the interactivity was lim-
ited, as musical updates were only disseminated when a but-
ton was clicked.

 600

 550

 500

 450

 400

 350

 300

 250

 200

 150

 100

 50

 0
 70 80 90 100 110 120

Lo
st

Pa
ck

ets

Background traffic (packets / s)

MINI
MIDI

Figure 9. Average loss of MIDI and MINI

Res Rocket is not available anymore6, and its place is
now taken by even less interactive portals for sharing music
such as [13], [18] and [7]. The existence of these portals, the
first of which claims to have more than 20000 members at
the time of writing, clearly indicates the continuing demand
for ways to cooperate between musicians who may not be
in the same place. There are, of course, also more recent
examples of related work, e.g. [3].
One particularly noteworthy system for true real-time

musical interaction via IP-based networks is “Networked
Musical Performance (NMP)” [8]; here, MIDI is transmit-
ted over IP using the “Real-Time Transport Protocol” (RTP)
[17] bymeans of a newRTP packetization format [9], which
is specified in [11, 10], and delayed or lost packets are com-
pensated for by adding timestamps on the sender side and
using them to properly handle problems on the receiver side.
For example, if a note is delayed, it may sometimes be bet-
ter not to play it at all, thereby making the outcome sound
closer to mistakes produced by imperfect musicians than to
the unpleasant effects that are produced by data-starved au-
dio codecs. MPEG-4 Structured Audio (SA) [6] is used for
music synthesis.
NMP tackles an interesting part of the design space:

on the one hand, it does not proactively reduce latency or
packet loss like MINI does; as a matter of fact, its additional
RTP header would slightly increase the chance of packet
loss in the presence of congestion. On the other hand,
MINI does not include retroactive compensation methods
like NMP does. By avoiding to prescribe such mechanisms,
we ensured that MINI stays flexible: one could, for in-
stance, implement a MINI based application that includes
these features of NMP. Indeed, this is the path that our next
steps will follow.

6Its somewhat sad history is documented at
http://www.jamwith.us/about us/rocket history.shtml

6 Acknowledgments

We would like to express our gratitude towards the fol-
lowing colleagues and students, all of whom contributed to
MINI in one way or another (in alphabetical order): Klaus
Hörmann, Georg Regensburger, Elmar Weiskopf.

References

[1] M. M. Association. The complete midi 1.0 detailed specifi-
cation, 1996.

[2] S. Boll, W. Klas, and J. Wandel. A cross-media adaptation
strategy for multimedia presentations. In MULTIMEDIA
’99: Proceedings of the seventh ACM international confer-
ence on Multimedia (Part 1), pages 37–46, New York, NY,
USA, 1999. ACM Press.

[3] C. Chafe. Distributed internet reverberation for audio col-
laboration. In AES 24th International Conference, 2003.

[4] S. Hessler and M. Welzl. An empirical study of the con-
gestion response of realplayer, windows mediaplayer and
quicktime. In Proceedings of 10th IEEE International Sym-
posium on Computers and Communications (ISCC 2005),
La Manga del Mar Menor, Cartagena, Spain, June 27-30
2005. IEEE Computer Society Press.

[5] G. Huston. Next steps for the ip qos architecture, November
2000. RFC 2990.

[6] ISO. Iso 14496 (mpeg-4), part 3 (audio), subpart 5 (struc-
tured audio), 1999.

[7] jamwith.us, http://www.jamwith.us.
[8] J. Lazzaro and J. Wawrzynek. A case for network musical

performance. In NOSSDAV ’01: Proceedings of the 11th
international workshop on Network and operating systems
support for digital audio and video, pages 157–166, New
York, NY, USA, 2001. ACM Press.

[9] J. Lazzaro and J. Wawrzynek. An RTP payload format for
midi. In The 117th Convention of the Audio Engineering
Society, Oct. 2004.

[10] J. Lazzaro and J. Wawrzynek. An Implementation Guide for
RTP MIDI. RFC 4696 (Informational), Nov. 2006.

[11] J. Lazzaro and J. Wawrzynek. RTP Payload Format for
MIDI. RFC 4695 (Proposed Standard), Nov. 2006.

[12] J. Mullin, L. Smallwood, A. Watson, and G. M. Wilson.
New techniques for assessing audio and video quality in
real-time interactive communication. In IHM-HCI, Lille,
France, September 2001.

[13] Netmusicmakers, http://www.netmusicmakers.com.
[14] J. Nichols, M. Claypool, R. Kinicki, and M. Li. Measure-

ments of the congestion responsiveness of windows stream-
ing media. In Proceedings of the 14th ACM International
Workshop on Network and Operating Systems Support for
Digital Audio and Video (NOSSDAV), June 2004.

[15] A. Nijenhuis and H. Wilf. Combinatorial Algorithms. Aca-
demic Press, Reading, Massachusetts, second edition, 1978.

[16] R. Rejaie, M. Handley, and D. Estrin. Quality adaptation
for congestion controlled video playback over the internet.
In SIGCOMM ’99: Proceedings of the conference on Appli-
cations, technologies, architectures, and protocols for com-
puter communication, pages 189–200. ACM Press, 1999.

[17] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacob-
son. RTP: A Transport Protocol for Real-Time Applications.
RFC 3550 (Standard), July 2003.

[18] v-band.de, http://www.v-band.de.
[19] M. Welzl. Netmusic: Echtzeitfähige konzepte und systeme

für den telekooperativen austausch musikalischer informa-
tion”. Master’s thesis, University of Linz, Linz, Austria,
1998.

[20] M.Welzl. User-centric evaluation of tcp-friendly congestion
control for real-time video transmission. Elektrotechnik und
Informationstechnik, 2005(6), June 2005.

