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Abstract

In the last 25 years optical flow has become more and more important in the field
of Computer Vision. Many algorithms have been published since the first paper
in 1981 and a lot of concepts have been introduced facing problems which occur
when the pixel displacements between frames are determined. Even though to-
days algorithms explicitly consider violations of their model assumptions, they
still suffer from two main issues: an imprecise estimation of motion discontinu-
ities, which often causes flow algorithms to oversmooth these boundaries, and
the inability to find correct displacements if an object in the scene is weakly
textured, for example with a repetitive texture pattern.

We show that the computation of optical flow can be strongly improved if ad-
ditional geometric information about the respective frames is incorporated: the
surface normals of the objects in the scene and the depth discontinuities. The
former provides a larger feature vector in order to find more unique displace-
ments, whereas the latter allows the estimation of a piecewise smooth flow field,
which preserves discontinuities between object boundaries. Both inputs do not
require a 3D representation of the scene but retrieve the information channels
by illuminating the scene under different lighting conditions.

This thesis explains how the surface normals and the depth discontinuities of
a scene can be obtained using specific lighting conditions and how they are
incorporated into an existing optical flow framework. We focus on human per-
formances in the context of Image Based Relighting.
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Chapter 1

Introduction

In 1979 James J. Gibson (1904-1979), an American psychologist for visual per-
ception, introduced the so-called “Ecological Approach to Visual Perception”
[Gib79]. Unlike other theorists, he argued that the visual perception of a human-
being or an animal is the result of an active exploration of the environment. He
focused on the stimuli which subjects perceive instead of the explanation of
the mechanism which performs the visual cognition. Gibson investigated how
fighter pilots in the Second World War were able to successfully perform landing
operations while estimating the correct distances between the aircraft and the
runways. In this context he introduced the term optical flow : if a human-being
moves through the world, the stimulating patterns on the retina in the eyes are
permanently moving.

These movements yield a field of so-called flow vectors, the optical flow field,
which gives clear clues about the depth, the orientation and the locomotion of
objects in the environment. When pilots are landing an aircraft they proba-
bly focus on a specific point on the runway. This point is always projected
onto the same position on the retina. However, the surrounding points change
their projected areas in the eye while the aircraft approaches the airport. The
speed at which these points change their positions on the retina yields precise
information about the distances to the airstrip. Gibson strongly influenced the
comprehension of visual perception and proved that optical flow is an important
element of it.

The pioneer work of Berthold K. P. Horn and Brian G. Schunck in 1981 [HS81]
brought optical flow to Computer Science, and since then the estimation of op-
tical flow has become more and more important in the field of Computer Vision.
Informally spoken, given a sequence of two-dimensional images, e.g. a video,
the optical flow describes where the pixels move from one frame to the next.
The knowledge of this information provides a vast application range like video
compression, motion segmentation, feature tracking, matting, extraction of ge-
ometry, etc.

1



2 CHAPTER 1. INTRODUCTION

In the field of Computer Vision the term optical flow is derived from the mo-
tion field, which has been defined by Horn & Schunck [HS94]. The motion field
describes the movements of objects in a three-dimensional scene projected onto
the image plane (see figure 1.1). Given two frames of an image sequence, the
motion field maps each pixel in the first frame to its new position in the second
frame by adding a displacement vector. Therefore the motion field is a strictly
geometric concept.

3D space

Image plane

Viewer

Position 1 Position 2

Figure 1.1: The motion field represents the movement of objects in a 3D scene
(red arrow) projected onto the image plane (blue arrow).

According to the psychology of visual perception the optical flow denotes the
projection of the apparent motion onto the image plane. Usually, the optical
flow is desired to match the motion field but the fields are not necessarily the
same. This can be illustrated with the example of a Barber’s pole (see figure
1.2). The motion field is unique but there is an infinite number of optical flow
fields describing the apparent motion.

1.1 Assumptions

All optical flow algorithms that have been developed since the publication of
Horn & Schunck’s first optical flow paper introduce model assumptions, which
must hold to find the displacement of a pixel from one frame to the next. The
three most important assumptions are:

Data conservation constraint All optical flow algorithms presume the data
conservation: “Image measurements (e.g. image intensity) corresponding to a
small image region remain the same, although the location of the region may
change over time.” [Bla92] Given a sequence of images I : R3 → R, where
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Figure 1.2: Ambiguous optical flow. Left: Rotating Barber’s pole. Middle:
Motion field. Right: One alternative optical flow field.

I(x, y, t) denotes the image intensity of a pixel (x, y) at time t, the prevalent
formulation of this constraint is

I(x, y, t) = I(x + δx, y + δy, t + δt)
= I(x + uδt, y + vδt, t + δt) (1.1)

u = (u, v) designates the displacement, the flow vector, where u and v are the
velocity of the pixel in horizontal and vertical direction respectively. δt is a small
time-difference. Therefore, the intensity of a pixel does not change over time
due to motion, which is normally referred to as brightness constancy assumption.

Usually, optical flow is computed between two subsequent frames in a sequence.
Therefore the time parameter t commonly corresponds to the t-th frame in the
sequence and δt = 1 denotes a single step from one frame to the next.

Spatial coherence constraint Since the incorporation of a single pixel is
usually not sufficient to determine its flow vector, most algorithms state that
flow vectors are spatially coherent : “Neighboring points in the scene typically
belong to the same surface and hence have similar velocities. Since neighboring
points in the scene project to neighboring points in the image plane, we expect
optical flow to vary smoothly.” [Bla92] This is also known as the smoothness
constraint.

Temporal coherence constraint Finally, a lot of algorithms assume that a
flow field does not change much over time, i.e. the flow field between the frames
t and t + 1 in a sequence of images is similar to the field between the frames
t− 1 and t. This constraint is often called the temporal smoothness constraint.
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1.2 Requirements

Finding the optical flow between two frames is a non-trivial task. Until today
no algorithm has been developed that can handle all potential problems. The
most common issues optical flow algorithms face are:

Complex material properties Most of the existing optical flow algorithms
presume that all materials in the scene reflect light in a diffuse way. But spec-
ularities on object surfaces can cause ambiguous flow fields. Imagine a scene
containing a rotating sphere with a diffuse texture and a specular highlight.
If only a simple data conservation constraint is assumed, the rotation of the
sphere will not be detected within the area of the specular highlight, because
despite the rotation its position remains static in the image plane. The situation
becomes even more complicated if translucency is involved. If two translucent
surfaces move in opposed directions, there are two apparent motions interfering
with each other.

Occlusion and appearance A flow field between two frames of a sequence
should be dense. It should contain a displacement for each pixel in the first
frame in order to map it to the second one. However, it is common in natural
images that parts of objects disappear, because they are occluded by other
objects, move out of the image rectangle, or are just transformed in a way that
surface points which were visible before face back from the viewer. Let us look
at an even worse situation where a rectangle simply appears in the second frame
that has not been visible in the first one. The flow vectors should be zero in
that area, even though the data conservation constraint is strongly violated.
Analogously, an approach should be able to cope with pixels that disappear in
the second frame.
A robust optical flow algorithm must be capable to deal with the following ques-
tion: How to assign a flow vector to a pixel if there is no visible correspondence
between both frames? It should be able to identify these pixels and treat them
in a special way.

Motion discontinuities The two coherence constraints are often violated in
common image sequences as well. For instance, if two objects move next to
each other in opposite directions, the spatial coherence constraint is violated
at the boundaries between them because the optical flow field does not vary
smoothly at these places. While preserving coherences in areas that move rigidly,
optical flow algorithms should allow discontinuities in the flow field at motion
boundaries.

Brightness changes When objects move in natural or even synthetic images
the apparent brightness of their surface points usually changes from frame to
frame. The reasons are manifold: changing illumination, interreflections, non-
diffuse materials, etc. The data conservation constraint should consider these
brightness changes.
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Noise Optical flow is primarily intended to be used for natural images since
it can be calculated for synthetic ones in an analytical way (see section 5.1.2).
The acquisition of pictures with photo or video cameras naturally adds noise
to the resulting images. This becomes even worse if the images are compressed
as a postprocessing step. The detection of the optical flow vectors should be
robust against noise and compression artifacts.

Complex motion Finally, an optical flow algorithm should be capable to
deal with different kinds of motion (translation, rotation, sheering, perspective
foreshortening etc.) in the same scene while avoiding the interference of these.

1.3 Contribution

The general difficulty that optical flow algorithms face is the lack of knowledge
about the scene geometry. Most of today’s optical flow approaches rely on two-
dimensional information, which is provided by the input images. This tends to
be scanty if the model assumptions are violated. We believe that the optical
flow estimation can be strongly improved by the introduction of additional ge-
ometric information about the scene, in which optical flow fields are computed.
Thus, we try to approach the optical flow nearer to the motion field.

We implement an existing highly accurate optical flow algorithm and incorporate
two types of geometric information:

• Depth discontinuities Motion discontinuities usually appear at bound-
aries between objects. We follow the idea of discontinuity preserving stereo
by Feris et al. [FRC+05] and assume that motion discontinuities match
discontinuities in the depth map of a frame. With the knowledge of these
discontinuities, our basic optical flow algorithm can be modified to specifi-
cally regard these locations. Furthermore, we extend the approach of Feris
et al. to dynamic scenes.

• Surface normal maps The knowledge about the surface normals of
objects in the scene might provide better clues for the detection of corre-
spondences than just the color information in the image sequences. This
is especially the case if objects contain repetitive texture patterns which
make it harder to find a unique displacement. We will extend our algo-
rithm in order to regard an extended feature vector for a more accurate
flow estimation: the texture information and the normal information.

We detect these two information channels without the use of a 3D model but
by capturing the scene multiple times under different lighting conditions. Even
though this approach can only be generalized to a limited extent, since an addi-
tional capturing process is required, we assume that the optical flow estimation
is strongly improved and the effort is worthwhile. We focus our work on the
acquisition of human performances and intend to use it in the context of Image
Based Relighting.
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1.4 Notations

In this section we briefly explain the notations in this thesis. We consider
a rectangular image as a function I : Ω → Ri which maps a pixel position
(x, y) = x ∈ Ω to an intensity (i = 1) or RGB color value (i = 3). Each pixel is
mapped to a real scalar or a real-valued vector, since we process high-dynamic
range (HDR) images. If a low dynamic range image is loaded, the discrete range
of [0, 255] is mapped to [0, 1]. We assume that images are continuous functions.
The values of intermediate pixels are computed by means of bilinear interpola-
tion of the four nearest neighbors.

A sequence of images is defined by I : Θ → Ri which maps a temporal pixel
position (x, y, t) ∈ Θ to an intensity or color value. The parameter t refers to
the integer frame index in the sequence as mentioned above.

A flow field is a two-dimensional function I : Ω → R2 which maps pixel positions
x to flow vectors u. The flow vector describes the displacement, i.e. the offset
(u, v), which is added to a pixel position in one frame to retrieve the correspond-
ing position in the second frame. Most of the authors in the literature represent
an optical flow field by a subsampled vector field. Figure 1.3a shows the flow
field of the camera movement through a canyon (see section 5.3.1.2) in that
representation. We work with images in high resolutions and want to examine
the entire flow field, especially at the boundaries between objects. Therefore,
we follow Xiao et al. [XCS+06] and visualize the flow fields by a color circle, in
which complementary colors are located opposite from each other (see circle in
figure 1.3b).

(a) (b)

Figure 1.3: Encoding flow fields. (a) Vector field representation. (b) Color
encoded representation.

The color in the circle encodes the direction of the flow vector, where the bright-
ness refers to the magnitude. Figure 1.3b illustrates the flow field of the same
scene using our color encoding. Apparently, this representation is more appro-
priate for our purposes.
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1.5 Structure

This diploma thesis is structured as follows. In the next chapter we give a short
overview over the most common techniques to determine optical flow. In chapter
3 we explain our basic optical flow algorithm in detail, which we enrich with
depth discontinuities and surface normals. We introduce the detection of these
two information channels in chapter 4. In chapter 5 we give a detailed evaluation
of our approach according to synthetic and natural images. Furthermore, we
present how our extended optical flow estimation can be incorporated into the
field of Image Based Relighting. The thesis closes with a summary and an
outlook to future work.
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Chapter 2

Optical Flow

In the last 25 years lots of algorithms have been developed which compute optical
flow fields in different ways and intend to cope with the issues explained before.
In this chapter we present established techniques to determine the optical flow.

2.1 Regression Approaches

First, we introduce the regression approaches which determine the flow vector
for a particular pixel by fitting a parametric motion model to a small spatial
neighborhood.

Since this usually yields a linear system, which can easily be solved, it is common
to approximate equation 1.1 by the first order Taylor expansion [HS81]:

I(x, y, t) = I(x, y, t) + Ixδx + Iyδy + Itδt + ε (2.1)

Ignoring the high-order terms ε, subtracting I(x, y, t) on both sides and dividing
by δt yield the famous optical flow constraint :

0 = Ix · u + Iy · v + It

⇔ 0 = ∇ITu + It (2.2)

where u = (u v)T . The image derivatives can be computed using a standard
discretization

∇I(x, y, t) :=
[
I(x + 1, y, t)− I(x, y, t)
I(x, y + 1, t)− I(x, y, t)

]
It(x, y, t) := I(x, y, t + 1)− I(x, y, t)

The problem is ill-posed at this point, because equation 2.2 has two unknowns,
which constrain the vector to lie on a line. As illustrated in figure 2.1a, only
the component of the flow vector in the direction of the image gradient can be
determined:

u⊥ =
−It

‖∇I‖
· ∇I (2.3)

9
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However, the flow vector component along the image contours, i.e. perpendicu-
lar to the gradient, can not be computed. This results in the aperture problem
[Hor86] as shown in figure 2.1b. The issue becomes even worse if the intensity
gradient vanishes somewhere. In this case no flow vector can be determined.
Therefore, more constraints are necessary to retrieve a unique solution.

u

v

Ix u + Iy v + It =0 

-It

║∇I║

1 2

3

uu
┴

u
┴

(a) (b)

Figure 2.1: (a) The linearized brightness constancy assumption constrains the
flow vector to lie on a line perpendicular to the image gradient. (b) The aperture
problem: A rectangle (blue) is moving to the top right. Using the linearized
brightness constraint, the flow vectors can only be determined in the direction
of the image gradient (1 and 3) as viewed through small apertures (red circles).
Only in situation 2 the flow vector can fully be determined, since its direction
matches the image gradient.

The approach by Lucas & Kanade [LK81] regards more surrounding pixels by
assuming that the flow vectors are constant within a local neighborhood. The
authors retrieve the flow vector for a pixel by minimizing

E(u, v) =
∑
x∈R

W (x) · ρ
(
∇I(x)T · u + It(x)

)
(2.4)

where R denotes a spatial neighborhood around the pixel and W (x) is a window
function that weights the influence of each pixel. Usually one applies a Gaussian
to give central constraints a stronger influence. ρ(s) := s2 is a least-squares
estimator, i.e. deviations from the brightness constancy model are squared. We
generalize our problem to a more complex motion model:

u(x, y) = u(x, y;a)

where finding the solution corresponds to determining the motion parameters a
for a given pixel.
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The generalized version of equation 2.4 then reads:

E(u, v) =
∑
x∈R

W (x) · ρ
(
∇IT (x) · u(x;a) + It(x)

)
(2.5)

If we assume a constant motion

u(x, y;a) :=
(

u
v

)
=

(
a1

a2

)
then the minimum of equation 2.5 is found by setting the derivatives with respect
to u and v to zero:

δE(u, v)
δu

=
∑
x∈R

W (x) · (uI2
x + vIxIy + IxIt) = 0

δE(u, v)
δv

=
∑
x∈R

W (x) · (vI2
y + uIxIy + IyIt) = 0

These equations can furthermore be written as a linear map:

Mu = b

where

M =

 ∑
x∈R

W (x)I2
x

∑
x∈R

W (x)IxIy∑
x∈R

W (x)IxIy
∑
x∈R

W (x)I2
y

 (2.6)

b = −

 ∑
x∈R

W (x)IxIt∑
x∈R

W (x)IyIt


If M is invertible (has rank 2), the flow vector is obtained by u = M−1b. Oth-
erwise, the flow vector can not be uniquely determined, which is just another
occurrence of the aperture problem.

An advantage of this approach is that it provides a confidence measurement :
The smallest eigenvalue λ1 of M determines the quality of the flow vector es-
timation. If λ1 is small, then the local structure within the search window is
insufficient to determine the 2D flow vector (aperture problem). A high eigen-
value identifies a more reliable flow vector. Confidence measurements are very
helpful for refinement techniques, e.g. if a flow field is used as an initial estimate
for a subsequent flow field.

More complex motion models like the affine model

u(x, y;a) :=
(

a1 + a2 · x + a3 · y
a4 + a5 · x + a6 · y

)
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induce more unknowns which need to be determined and, therefore, a bigger
spatial neighborhood is required to constrain the solution sufficiently.

Other authors added the second order derivatives to extend equation 1.1 in
order to retrieve a clearly constrained solution. Uras et al. [UGVT89] and
Nagel [Nag83b] introduced the constraint:

0 = (∇∇I)Tu +∇It (2.7)

Nagel pointed out that the aperture problem completely disappears at image
corners if second-order derivatives are used. A drawback of high-order deriva-
tives is that they are usually very sensitive to noise.

We refer to equations like 2.4 as energy functions: the stronger a flow vec-
tor deviates from a model assumption (in this case the brightness constancy
assumption), the more energy it adds. One normally says that one penalizes
deviations from the model constraints with a higher energy. Therefore, the best
solution is the minimum of the energy function.

As all approaches, which incorporate a local neighborhood R, do, the regression
approaches suffer from the same problem: if R is too small, the correct solution
is under-constrained, more sensitive to noise, or the aperture problem occurs.
But the bigger the included neighborhood is, the more likely the model assump-
tions are violated. This is especially the case if the image sequence contains
multiple opposed motions. If we try to find the flow vector at a motion disconti-
nuity, i.e. at the boundary between two differently moving objects, using a large
spatial neighborhood of pixels produces wrong results if these discontinuities are
not explicitly taken into account.

Schunck [Sch89] developed a method called Constraint Line Clustering,
which intends to allow motion discontinuities. As mentioned earlier equation 2.2
constrains the solution to lie on a line. For a given pixel x, Schunck calculates
all constraint lines within a local neighborhood R. These lines are intersected
with the constraint line at the center x. The authors then statistically determine
the smallest cluster which contains at least half of the intersection points. This
cluster represents the dominant motion. The approach is illustrated in figure 2.2.

Similar to our idea, Woodham [Woo92] published an optical flow algorithm,
which detects the optical flow field by the use of multiple lighting conditions.
He captures the scene lit with a light source from (at least) three directions,
and then obtains an overconstraint system of equations containing a linearized
optical flow constraint for each lighting condition:

0 = I1
x · u + I1

y · v + I1
t

0 = I2
x · u + I2

y · v + I2
t

0 = I3
x · u + I3

y · v + I3
t
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u

v

Figure 2.2: Constraint line clustering. Firstly all constraint lines in a local neigh-
borhood are calculated (gray lines). These lines are then intersected with the
constraint line in the center of the neighborhood (blue). The intersections are
marked as red dots. The dominant motion (cross) is then found by a clustering
strategy.

where Ii
∗ refers to the image sequence taken under the i-th lighting condition.

The system of equations is solved with the standard least-squares technique.
Even though the approach provides a convenient analytic solution for each pixel,
it is not reliable enough for practical use: if a pixel lies on a surface disconti-
nuity or a surface marking, all lighting conditions create a similar pixel value,
which “is dominated by the scene features largely independent of the direction
of illumination” [Woo92].

2.2 Global Smoothness Approaches

The approaches, which are presented in this section, explicitly demand an ex-
plicit smoothness constraint as explained in the introduction. In their pioneer
paper Horn & Schunck [HS81] solved the aperture problem by including a global
smoothness constraint, a so-called regularizer, which demands that the flow field
varies smoothly. The energy which has to be minimized to obtain the final flow
field reads:

E(u, v) =
∫

x∈Ω

ρ
(
∇ITu + It

)︸ ︷︷ ︸
data

+α · ρ
(
|∇u|2 + |∇v|2

)︸ ︷︷ ︸
smoothness

dx (2.8)

The left term, the data energy, is known from above and represents the linearized
brightness constancy assumption. The right term, the global smoothness con-
straint, penalizes the gradient of the flow field and represents the smoothness
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energy : the greater the flow gradient at a particular pixel, the higher the re-
sulting energy. The smoothness weight α > 0 determines the importance of
the smoothness constraint. A higher smoothness weight yields a smoother flow
field. The closer this value is to zero, the less important becomes the smooth-
ness. The statistic ρ(s) := s2 squares all deviations from the model assumption.
Therefore, again we search for the least-squares solution of the problem.

An equation like 2.8 is called an energy functional, since it is a function (energy)
over a function (flow field which maps pixel positions to flow vectors). Rather
than independently finding a flow vector for each pixel, we optimize this equation
in order to obtain the entire flow field function. In general, solving an energy
functional is non-trivial, since neighbored flow vectors depend on each other and
the functional may contain non-linear terms. Due to the calculus of variations
[Arf85], a functional as in equation 2.8 in the form of E(u) =

∫
F (x,u,∇u)dx

is minimized by solving the Euler-Lagrange equations:

δF

δu
− d

dx
· δF

δ∇u
= 0 (2.9)

Therefore, optical flow approaches which are based on minimizing an energy
functional are classified as variational approaches. In the last years these ap-
proaches became very popular for two reasons. First, they allow a transparent
modelling of the flow constraints by construction: all assumptions are incorpo-
rated in the energy functional and no intermediate or post processing, which
could bias the consistency of the whole approach, is required. Second, they
yield a dense flow field: even if insufficient local structure is available around a
particular pixel, the global smoothness allows the estimation of a displacement
by propagating the flow vectors from nearby pixels.

Due to the linearization of the data term and the choice of ρ(s) := s2, Horn
& Schunck reduce the minimization process to a linear system, which can be
solved by the Gauss-Seidl or SOR algorithm (see appendix A). The approach
provides a compromise between the matching of intensity values (data) and a
spatial coherent flow field (smoothness). Hence it solves the aperture problem,
because flow vectors are propagated to their neighbors. Moreover, the smooth-
ing reduces the impact of noise.

A major drawback of the approach by [HS81] is that it generally ignores motion
discontinuities in the image sequence. The homogeneous smoothness regularizer
is applied everywhere regardless of the local geometric structure. Therefore, the
flow field is oversmoothed at motion boundaries resulting in noticeable errors in
these areas. Apart from this issue, violations of the data constraint like occlu-
sions, (dis)appearances, etc. are not taken into account. The original approach
just expects one dominant motion and does not allow any violations of the
model assumptions.

There are basically two ways to deal with model violations. Either the deviations
are explicitly modeled, or the existing model is modified in a way that outliers,
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e.g. two adjacent discontinuous flow vectors at a motion boundary, are tolerated.
There are many approaches which face the problems of violations. Some of the
most important ones are presented in the following.

2.2.1 Image-Driven Regularizers

The image-driven regularizers extend the global smoothness term of the energy
functional by the consideration of the local image structure: the smoothness
is lowered at intensity edges. Two different regularizers are explained in this
section. Figure 2.3 illustrates these approaches.

The isotropic image-driven regularizer adapts the smoothness term to the
intensity images. The higher the intensity gradient is at a specific position, the
lower the smoothness is demanded. Figure 2.3c visualizes this idea. A common
regularizer of this type is∫

x∈Ω

α (ρ(‖∇I‖)) · ρ
(
|∇u|2 + |∇v|2

)
dx

where α(x) denotes a decreasing, strictly positive function that weights the
smoothness term according to the magnitude of the image gradient ‖∇I‖. The
simplest weighting function is α(x) := 1

x . Sand et al. [ST06] introduced the
concept of local smoothness, which is explained in section 3.4 and follows the
same idea.

Nagel [Nag83a] introduced the first anisotropic image-driven regularizer.
Rather than reducing the weight of smoothness at intensity edges they apply
an orientated smoothness regularizer, where non-smoothness is penalized along-
side, but not over edges (see figure 2.3d). Therefore the smoothness constraint
is aligned to the intensity edge: the smaller the angle between the image gra-
dient and a flow vector, the higher the corresponding smoothness energy. The
regularizer by Nagel reads:∫

x∈Ω

ρ
(
(∇u)T D(∇I)∇u

)
dx

where ∇u is the gradient of the flow vector and D is the anisotropic diffusion
tensor defined as:

D(∇I) =
1

‖∇I‖2 + 2υ2

(
∇I⊥∇I⊥

T
+ υ21

)
∇I⊥ is the vector perpendicular to the image gradient, 1 denotes the unity ma-
trix and υ controls the degree of isotropy.

The basic issue of image-driven regularizers is the assumption that intensity
edges correspond to object boundaries, which is hardly the case in general.
This is explained in section 3.4 in more detail.
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(a) (b)

(c) (d)

Figure 2.3: Image driven regularizers. (a) Given an image with two distinct areas
we illustrate the filter kernel at particular points. (b) The approach by Horn &
Schunck applies the same homogeneous smoothing for all points and therefore
oversmooths boundaries. (c) An isotropic image-driven regularizer decreases the
smoothing at image gradients but still oversmooths edges. (d) The anisotropic
image-driven regularizer aligns the smoothing kernel to the image gradient. At
intensity boundaries smoothing is large alongside the edges but small over the
edges.

2.2.2 Robust Statistics

Most optical flow algorithms apply the quadratic statistic ρ(s) := s2 to their
model deviations in order to find a least-squares solution for the flow errors.
This is convenient since ρ(s) is convex and the minimization of the energy func-
tionals can usually be reduced to a linear system of equations, which can easily
be solved by standard techniques. The downside of the least-squares approach
is the requirement that all deviations from the model assumption are Gaussian
distributed. This is nearly never the case. The quadratic penalizer gives outliers
being far away from the solution a strong impact. Thus, the solution is adapted
to be closer to these extreme deviations. Least-squares approaches simply do
not accept that the model assumptions may be violated by outliers [Bro05].
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Unfortunately, outliers are very common in video sequences. Motion disconti-
nuities are one example: flow vectors at motion boundaries of two oppositely
moving objects have a high gradient and violate all smoothness constraints, as
explained above. In these cases it would be helpful to identify and exclude these
outliers from the minimization process. The problem can be compared to fit-
ting a line to a set of points (see figure 2.4). If the set contains two distinct
clusters, the least-squares fit produces a line that finds a compromise between
the dominant cluster and the smaller cluster of outliers. In our example the line
models none of the two point aggregations. The right solution would ignore the
outliers (top left) and only take the dominate bulk into account.

Black & Anandan [BA93] replace the quadratic penalizer with a robust statistic.
One of the possible functions is shown in figure 2.5b. Where the influence of
outliers increases linearly and without bound with the size of the deviation using
a least-squares estimator (figure 2.5a), robust estimators decrease the weight of
outliers beyond a given threshold. A common robust estimator is the Lorentzian
function: deviations from the model are squared up to a certain point. Beyond
that, their impact is reduced (figure 2.5b).

The robust statistic penalizers allow outliers in the data term like occlusions,
disappearances and brightness changes as well as outliers in the smoothness
assumptions like motion discontinuities. Although the introduction of robust
statistics to the energy functionals highly improves the flow estimation, min-
imizing the Euler-Lagrange equations becomes much harder due to the non-
linearity of these functions.

x

y

Figure 2.4: Fitting a line through a set of points. The least-squares fit gives
outliers a strong influence. The resulting line (red) does not model the bulk
of data. The solution should fit the dominant cluster of points and ignore the
outliers (green line).
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Global smoothness constraints using a robust statistic are often referred to as
isotropic flow-driven regularizers. However, robust statistics are not limited
to global smoothness approaches. They can be applied to all techniques which
penalize deviations from the model assumptions.

2.2.3 Explicit Discontinuities

Line processes explicitly model discontinuities in the flow field and consider
images as dual n × n-lattices using the following notation. Let Ω be a the set
of pixels, then G := {(s, t)|s, t ∈ Ω} denotes all pairs of adjacent pixels and
R(s) := {t|(s, t) ∈ G} contains all neighbors (adjacent pixels) of s. The line
process l := {ls,t|(s, t) ∈ G } with ls,t ∈ {0, 1} describes whether there is a
motion discontinuity between pixel s and t (ls,t = 1) or not (ls,t = 0) [GG88].
See figure 2.6 for an illustration.

(a) (b)

Figure 2.5: Comparison of least-squares with robust Lorentzian estimator. Top:
Estimator function. Bottom: Derivation. (a) The least-squares estimator
ρ(x) := x2. Errors are squared (top) and the influence of outliers increases
linearly with the deviation from the model assumption (bottom). (b) The ro-
bust Lorentzian estimator ρ(x) := log

(
1 + 1

2

(
x
σ

)2
)

(top). The influence of
model deviations increases up to a certain threshold. Beyond this threshold de-
viations are considered as outliers and their contribution to the error is reduced
(bottom).
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Figure 2.6: Line processes. The image is considered as lattice of pixels, where
the edges correspond to direct neighborhoods. The line processes (red lines)
determine if there is a discontinuity between two adjacent pixels.

According to German & German [GG88] the energy that is to be minimized
reads:

E(u, l) =
∑
s∈Ω

(ED(us)︸ ︷︷ ︸
data

+
∑

t∈R(s)

[
(1− ls,t)‖us − ut‖2 + α · ls,t

]
︸ ︷︷ ︸

smoothness

) (2.10)

The energy is summed over all pixels (s ∈ Ω). For each pixel, the data and the
smoothness energy is accumulated. Again ED(us) represents the data conserva-
tion constraint, i.e. the less the intensity of pixels match, the higher the energy
is. The smoothness term is more complex. For each neighbor t of the current
pixel s, the authors compute the corresponding energy as follows. If there is
no discontinuity between s and t (i.e. 1 − ls,t = 1), the magnitude of the flow
gradient is penalized, as explained before. Otherwise, the flow gradient at the
potential discontinuity between the two pixels is ignored (1− ls,t = 0). The last
expression in the smoothness term penalizes the occurrence of a discontinuity
because discontinuities are considered rare. Note that equation 2.10 is unknown
in the field and in the line processes (the discontinuities), which complicates the
minimization process.

Xiao et al. [XCS+06] incorporate an explicit occlusion term into the data
energy and apply a novel adaptive bilateral regularizer. The first version of
their energy functional reads:

E(u) =
∑
x∈Ω

(Ed(u) + Es(∇u)) ·O(u) + Eoc · (1−O(u)) dx (2.11)
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Ed(u) = (∇IT + It)2 is the common optical flow constraint, i.e. the linearized
version of the brightness constancy assumption, and Es(u) =

(
(∇u)T D(∇I)∇u

)
refers to the anisotropic image-driven regularizer by Nagel explained above.
O(u) determines whether a particular pixel x is occluded or not:

O(u) :=

{
0 if (I1(x)− I2(x + u))2 > εO

1 otherwise

A pixel in the first image is declared as “occluded” if the intensity difference
to the corresponding pixel in the second image exceeds a given threshold εO.
Equation 2.11 splits the energy in occluded and non-occluded energy. If a pixel
is not occluded (O(u) = 1), its flow vector is penalized according to the men-
tioned data and smoothness constraints. Otherwise, just a constant value Eoc

is added to penalize the occurrence of an occlusion.

Unlike other authors, Xiao et al. split up the minimization process into a strict
two-stage loop: first, the data energy is minimized, then the optical flow field
is smoothed. Furthermore, they replace the smoothness term of Nagel with a
bilateral filter, which preserves intensity and motion discontinuities and excludes
occluded pixels from the smoothing operation. Each flow vector is a weighted
average of its neighbors, where the weights are determined by the convolution
of several Gaussians. The filtered flow vector u′ of u at pixel x is computed by:

u′(x) :=
1
ω

∫
x′∈Ω

u(x′) · Ns(x− x′;σs) · NI(I1(x)− I2(x′);σI) · Nu(u(x)− u(x′);σu) ·O(x′)

Ns is the Gaussian that weights nearer flow vectors stronger than farther ones.
The support of Ns is adaptive to make sure that always non-occluded pixels are
taken into account. NI reduces the influence of intensity-dissimilar pixels. Nu

preserve motion discontinuities, i.e. it reduces the influence of an adjacent flow
vector if it strongly differs from the central one. Finally O excepts all neighbors
which are occluded. σs, σI, σu refer to the variances of the Gaussians, which
need to be chosen carefully. Figure 2.7 illustrates the idea of this adaptive filter,
which is both image and flow-driven.

Even though Xiao et al. seem to respect most of the issues of optical flow, we
consider the strict separation of data and smoothness minimization as a major
issue: if the data minimization creates a wrong initial guess of the flow vectors,
these errors might be kept or even amplified by the bilateral filter due to the
intensity and motion discontinuity preserving filter. As an example, we assume
two adjacent flow vectors on a rigid, but high-frequency textured model. The
data minimization could find a “match” of both pixels in opposite directions,
although they should move in the same direction. The bilateral filter will not
effectively smooth out this mistake since it preserves motion discontinuities. Un-
fortunately, the authors of the paper do not point out how they weight between
the data and the smoothness constraint. Sand et al. [ST06] use this bilateral
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Figure 2.7: Bilateral adaptive filter by Xiao et al. [XCS+06]. A rectangle
(cyan) moves from the left to the right and occludes a strip of pixels (red). The
green areas illustrate the pixels which are taken into account for smoothing.
(a) Two typical situations where anisotropic image driven filters fail. The shear
boundary is oversmoothed at x1. Moreover, the filter does only take occluded
pixels into account at x2 and therefore produces a wrong regularization. (b) The
adaptive filter excludes all pixels at x1 from the filter kernel, which intensities
are dissimilar from the center pixel. The kernel of x2 is increased in order to
include enough non-occluded pixels for a correct estimated. Again intensity
dissimilar pixels are omitted. (c)-(d) 3D plot of the filter kernels. The Gaussian
shape results from the spatial filter.

filter as a post-process but limit its application to flow boundaries, which they
identify by the magnitude of the flow gradients.

2.2.4 Multi-Scale Approaches

An implicit assumption of the optical flow constraint (equation 2.2) is that the
displacements are small, strictly speaking, less than one pixel. Energy func-
tionals, as explained in this chapter, are multi-modal functional, i.e. they have
more than one local minimum. Common iterative solvers, like the gradient de-
scent method or fixed point iterations, run the risk of being trapped into a local
minimum rather than finding the global one (see figure 2.8a). Therefore, these
solvers would not be able to cope with large displacements.

A common technique to avoid that problem is the use of continuation or gradu-
ated non-convexity (GNC) methods [BZ87]: Instead of searching the minimum
for the original functional, it is smoothed several times in order to create a series
of functionals, in which each functional is smoother than its predecessor.
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High-frequent content is removed from the signal and after several iterations a
version is reached, which only contains one unique minimum. In this version the
minimum is easily detected by an iterative solver. The approach continues with
the prior, less smoothed functional and takes the previously found minimum as
an initial estimate. This process is continued until the global minimum is found
in the original functional. The figures 2.8b-c illustrate this technique. These
methods usually work quite well, even though there are cases where they fail
(see figure 2.8d).

In case of finding the global minimum of an energy functional, applying the
GNC method implies that smoother versions of the intensity function, i.e. of
the input images, need to be created. One way to do that is to apply Gaussian
filters for each smoothing step. Thereafter we would start the flow determina-
tion between the most smoothed images and take the resulting flow field as an
initial guess for the next less smoothed versions.

Since filtering the original images is expensive concerning run-time and memory,
it is common to use a downsampling strategy by creating a Laplacian pyramid
[BA87]. Rather than filtering the intensity images, they are scaled down multi-
ple times. First, an image pyramid is created for all input images containing n

0
1 23

0123

(a) (b)

3 4

(c) (d)

Figure 2.8: Idea of graduated non-convexity (GNC). (a) A simple iterative solver
can easily trap into a local minimum when starting with an inappropriate initial
estimate (0). (b) GNC firstly searches for the minimum for a smoothed version
(blue) of the original function (gray). (c) Accordingly, the minimum of the
smoothed function is used as an initial estimate (3) for the finer version. The
global minimum (4) is found. (d) Bad case where GNC fails.
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levels, where each level represents a downsampled version of the previous one.
Then the flow field at the coarsest level 0 is detected, i.e. the energy functional
between the images of the lowest resolution is minimized. After this the result-
ing flow field is scaled up to the next finer resolution, where it gives the initial
estimate for the flow field on the next level. This process is repeated until the
flow field for the finest level n− 1 is obtained.

Multi-scale approaches are very common in todays optical flow algorithms and
effectively help to cope with large displacements in image sequences.

2.2.5 Minimization via Fixed Point Iterations

In 2004 Brox et al. [BBPW04] developed an optical flow algorithm which com-
bined an energy functional like [HS81] with a robust statistic and a multi-scale
approach. The actual contribution of their approach is a novel minimization
process, which completely refrains from a linearization of the brightness con-
straint as in equation 2.2, but minimizes the energy functional using two nested
fixed point iterations. The approach currently represents one of the most accu-
rate optical flow algorithms known in literature. We explain this technique in
chapter 3 in detail.

Slesareva et al. [SBW05] extended the paper to stereo matching by adding an
epipolar constraint to the energy functional and Bruhn et al. [BW05] ported
the algorithm to the GPU in order to yield real-time performance. Amiaz et
al. [AK06] combined the data and the smoothness constraint in the energy
functional with a level-set approach, which segments the optical flow into two
distinct fields while minimizing the data and smoothness energy. Later, Brox
at al. [BBW06] extended that approach by providing an arbitrary number of
segments.

2.3 Region-Based Matching

Another class of local optical flow algorithms are named region-based match-
ing approaches. They are similar to the regression-based approaches. However,
rather than setting up a system of equations they match search windows in order
to find the correct flow vector for a particular pixel. This avoids the imprecise
calculation of image derivatives.

Let I1, I2 be two frames between which the flow field is to be determined. For a
given pixel x Anandan [Ana89] finds the integer displacement d = (dx,dy) by
minimizing

SSD(x;d) :=
n∑

j=−n

n∑
i=−n

W (i, j) · ρ [I1(x + (i, j))− I2(x + d + (i, j))]

= W (x) ∗ ρ [I1(x)− I2(x + d)] (2.12)
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Again W is a weighting function for a window of size n, which usually weights
central points stronger. Evaluating SSD(x;d) in the local neighborhood results
in a so-called sum-of-squared differences (SSD) surface which maps displace-
ments to deviation errors (see figure 2.9). The optimal solution is found at the
minimum of the surface.

Anandan utilizes a multi-scale approach (see section 2.2.4). He first starts to
search for the flow vectors at a coarse scale of the input images, where displace-
ments are assumed to cover one pixel or less. The results are used as initial
estimates for the next finer scale. This is repeated until the finest image version
is reached. In order to allow sub-pixel displacements as well, the SSD surface
around the resulting integer displacement d is approximated by a quadratic
function. Then the final flow vector u0 is obtained by the minimum of this
approximation.

The approach derives confidence measurements from the principal curvatures
cmin and cmax of the SSD surface, i.e. a high curvature corresponds to a high
confidence. Thereafter these are used to perform a post-smoothing of the en-
tire flow field. The smoothed flow field is obtained by minimizing the energy
functional in order to find the final displacements u:

E(u, v) =
∫

x∈Ω

ρ
(
|∇u|2 + |∇v|2

)
+ cmax · ρ (u · cmax − u0 · cmax)
+ cmin · ρ (u · cmin − u0 · cmin) dx

Frame 1 Frame 2 SSD

Figure 2.9: For a given pixel (red dot) in the first image a SSD surface is obtained
by finding a match for a source area around the pixel (green rectangle). In
the second frame the distances between the source area and destination areas
within a certain search window (blue frame) are computed. For each center
position of the destination areas a value is obtained characterizing the error of
the match. This yields a two-dimensional image which maps displacements to
error distances (right plot). The best displacement is the minimum of that map.
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Anandan apparently combines the homogeneous smoothness term of Horn &
Schunck [HS81] (equation 2.8) with a term that penalizes deviations from the
principal curvatures of the SSD surface. Note that there is no user-defined
smoothness factor in these equations. The weighting of the terms directly de-
pends on the confidence measurements cmin and cmax.

Singh and Allen [SA92] proposed a two-stage technique. In the first step, given
three adjacent intensity images I−1, I0, I+1 a SSD distribution SSD0 for pixel
x is formed by:

SSD0(x,d) := SSD0,1(x,d) + SSD0,−1(x,d)

where SSDi,j(x,d) denotes the SSD surface at position x, when searching for
the flow vector from frame i to frame j. The authors retrieve a probability
distribution from SSD0:

Pc(d) := e−k·SSD0(x,d)

where k is a normalization constant. The sub-pixel flow estimates uc = (uc, vc)
are then obtained as mean of this distribution with respect to dx and dy:

uc =
∑

d Pc(d)dx∑
d Pc(d)

vc =
∑

d Pc(d)dy∑
d Pc(d)

Using these estimates a covariance matrix S is created:

Sc =
1∑

d Pc(d)

( ∑
d Pc(d)(dx − uc)2

∑
d Pc(d)(dx − uc)(dy − vc)∑

d Pc(d)(dx − uc)(dy − vc)
∑

d Pc(d)(dy − vc)2

)
Singh and Allen use the eigenvalues of (Sc)−1 as confidence measures. After
obtaining all flow vectors uc = (uc, vc) they are propagated to their neighbors
in order to smooth the flow field.

Given a flow field ui = (ui, vi) the average flow vector un = (un, vn) is computed
again as a mean of the probability distribution in the local neighborhood:

un =
∑

d Pc(ui(d)) · ui(d)u∑
d Pc(ui(d))

vn =
∑

d Pc(ui(d)) · ui(d)v∑
d Pc(ui(d))

where ui(d) denotes the precomputed flow vector at the displacement d and the
subscripts u and v refer to the horizontal and vertical component respectively.
In the next step a covariance matrix Sn is calculated for un = (un, vn) in the
same manner as above. The final flow field is then obtained by minimizing the
smoothness functional:∫

x∈Ω

(u− un)(Sn)−1(u− un) + (u− uc)(Sc)−1(u− uc)dx
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The final flow vector is a weighted average between the precomputed displace-
ment uc and the average flow vector un. The weighting is determined by the
respective confidences measures. Singh and Allen use a multi-scale approach
similar to Anandan to enable the computation of large displacements.

Region-matching algorithms suffer from the same problems as correlation-based
approaches. An increased window size normally improves the estimates, but
it also runs the risk of overlapping motion discontinuities, which leads to false
results. Okutomi et al. [OK92] propose an algorithm using an adaptive search
window, whose size is dynamically adjusted to allow motion discontinuities.
However, since their approach restricts the window to a rectangular area, motion
discontinuities and non-rectangular occlusions avoid a correct motion detection.

2.4 Frequency-Based Techniques

Frequency-based techniques compute the optical flow between subsequent frames
in the frequency domain. The main idea behind these techniques is that veloc-
ities can be retrieved by analyzing the response of filters in frequency domain,
as edges in images can be detected by applying edge detection filters. Usually
several filters are applied to an input signal (i.e. an image sequence), which
decomposes that signal according to scale, speed and orientation.

Firstly, an image is hierarchically transformed into the frequency domain. The
3D Fourier transformation of an image I(x, y, t) is:

Î(fx, fy, ft) =
∫ ∫ ∫

I(x, y, t)e−2πi(fxx+fyy+ftt)dxdydt

where fx, fy denote the spatial and ft the temporal frequency. By using the
derivative property of Fourier transforms∫

δI(v)
δv

e−2πifvdv = −2πif

∫
I(v)e−2πifvdv

equation 2.2 can be written as:

−2πi(u · fx + v · fy + ft)Î(fx, fy, ft) = 0

This yields the optical flow constraint in the frequency domain:

u · fx + v · fy + ft = 0 (2.13)

The equation implies that the flow vector is a function of the spatio-temporal
frequency, which forms a plane in frequency space.

Energy-based matching Heeger [Hee88] apply twelve so-called Gabor filters
to the input signal at different spatial scales, tuned for different spatial ori-
entation and temporal frequencies. The final flow vector for a local patch is
determined by finding a plane that best fits the filter response for that patch in
frequency domain.
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Phase-based matching Fleet & Jepson [FJ90] assume that a flow vector can
be derived from the motion of level phase contours in the response of band-pass
filters. Firstly, the input signal is decomposed using bandpass-filters tuned for
scale, speed and orientation. Then the filter responses are separated into ampli-
tude and phase (see figure 2.10 for an 1D-example). Phase-based matching ap-
proaches assume that the phase is conserved under motion. For each of the filter
responses the component velocity for a given pixel is determined by analysing
the motion of the respective phase contour. The final velocity is eventually
determined by a least-squares fit of the component velocities to a parametric
motion model. The assumption of phase conservation is motivated by the fact
that phase is independent from amplitude. Therefore, phase-based matching
approaches are less sensitive to small brightness changes between frames.

Figure 2.10: Composition of a 1D-signal into phase and amplitude.

Frequency-based techniques allow the determination of flow vectors in situa-
tions where all previous approaches tend to fail. For instance, if two random
dot patterns move in opposed directions, the responses of the velocity-tuned fil-
ters might detect these discontinuous motions, where other approaches fail only
incorporating spatial neighborhoods.

2.5 Conclusions

In this chapter we described several optical flow algorithms. We decided to
implement the approach by Brox et al. [BBPW04] as our basic optical flow al-
gorithm, since it produces very accurate flow fields and already allows violations
of the model assumptions due to the robust statistic. Moreover, it provides an
easy way to incorporate our additional information channels: the surface nor-
mals and the depth discontinuities.
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Chapter 3

Basic Optical Flow Algorithm

This chapter deals with our basic algorithm, the variational optical flow algo-
rithm by Brox et al. [BBPW04]. The approach combines the following ideas:

• A variational model that includes a gradient constancy constraint and a
robust statistic in order to allow violations of the model assumptions.

• An elaborated minimization of the energy functional using two nested fixed
point iterations instead of linearizing the data conservation constraint.

• A multi-scale approach that prevents the minimization process to trap
into a local minimum.

In the following the algorithm and its underlying theory is explained in detail.

3.1 Variational Model

The variational model of Brox et al. includes three assumptions. Let I : R3 → R
be a sequence of intensity images.

Gray value constancy assumption As already introduced by the first op-
tical flow algorithm [HS81], the approach assumes that the intensity of a pixel
does not change due to its displacement from one frame to the next:

I(x, y, t) = I(x + u, y + v, t + 1) (3.1)

Many algorithms linearize this constraint by the first order Taylor expansion (see
equation 2.2). This is consciously avoided by Brox et al. since a linearization
requires that the image intensity changes linearly along the displacement which
is usually not the case. Hence, approaches using a linearized intensity constraint
cannot deal well with large displacements.

Gradient constancy assumption Natural image sequences usually contain
slight changes in illumination, which violate the gray value constancy assump-
tion. Therefore, another constraint is added which assumes that the first deriva-
tive of the intensity is constant:

∇I(x, y, t) = ∇I(x + u, y + v, t + 1) (3.2)

29
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where ∇ denominates the spatial gradient. The constraint is invariant under
the gray value constancy assumption and tolerates intensity changes. However,
it is only helpful if the motion of a pixel is translatory. If an object in the scene
is rotated or perspectively foreshortened, the assumption is violated.

Smoothness assumption As stated in the previous chapter, the last two
constraints are insufficient for a flow estimation which is supposed to be robust
against noise and reliably solves the aperture problem. Therefore, as a third
constraint we assume that the flow field varies smoothly, i.e. that flow vec-
tors of adjacent pixels are similar. Since a sequence can also contain opposing
movements, e.g. if adjacent objects move in different directions, we demand
a piecewise smooth flow field. The smoothness assumption can refer to the
spatial domain only, when the flow between two frames is computed, or can
be extended to a spatio-temporal smoothness assumption, which postulates that
the flow field also varies smoothly over time, i.e. over the entire image sequence.

Brox et al. compose the three assumptions in an energy functional that penalizes
all deviations from the model assumptions. Let x := (x, y, t)T be the spatio-
temporal position in the image sequence. Furthermore, w := (u, v, 1)T denotes
the searched flow vector which maps a pixel from frame t in the sequence to
its successor at index t + 1. Since the gray value constancy and the gradient
constancy assumption regard the actual content of the images, we refer to these
as data constraints. The global deviations from these assumptions are measured
by the energy functional

EData(u, v) :=
∫
Ω

Ψ
(
|I(x + w)− I(x)|2 + γ|∇I(x + w)−∇I(x)|2

)
dx (3.3)

where Ψ is a robust statistic which is defined below. γ denotes the weight
between the gray value constancy and the gradient constancy constraint. Similar
to Horn & Schunck [HS81] our smoothness assumption assigns a high energy to
all flow vectors which strongly differ from the displacements of their neighbors.
This yields the energy functional

ESmooth(u, v) := α ·
∫
Ω

Ψ
(
|∇3u|2 + |∇3v|2

)
dx (3.4)

where ∇3 := (δx δy δt)T is the spatial-temporal gradient operator, i.e. the
derivatives in spatial and temporal domain. If the flow is only calculated be-
tween two frames, it is replaced with the spatial gradient ∇ := (δx δy)T .

The final energy of the flow field from a frame t to its successor t+1, which has
to be minimized, reads

E(u, v) = EData(u, v) + ESmooth(u, v) (3.5)

where α in equation 3.4 weights the impact of the smoothness term. The higher
the value of α is, the smoother is the resulting flow field. If α = 0, smoothness is
not demanded and the flow computation is based on the data constraints only.



3.2. MINIMIZATION 31

Robust statistic As introduced in section 2.2.2, Brox et al. apply a robust
statistic to the energy deviations in order to reduce the influence of outliers.
They apply a modified L1 norm Ψ(s2) :=

√
s2 + ε2 ≈ |s| as a penalizer. ε

is a small constant that ensures that the function is differentiable. We used
ε = 0.0001 in our implementation. The fact that Ψ(s2) is a convex function is
helpful for the minimization process.

3.2 Minimization

This section treats the minimization of the energy functional E(u, v).

3.2.1 Multi-Scale Approach

Brox et al. apply a multi-scale approach as explained in section 2.2.4 in order
to allow large displacements by avoiding the minimization process to trap into
a local minimum. Our implementation uses a bilinear interpolation strategy to
scale images down. Let Jk : R2 → R be an intensity image of size cx× cy at a
certain level k > 0. Furthermore, let η be the scale factor with 0 < η < 1. Then
the next coarser image Jk−1 : R2 → R with size (η · cx) × (η · cy) is computed
as:

Jk−1(x, y) := Jk

(
1
η
· x,

1
η
· y

)
As mentioned in section 1.4 we retrieve intermediate image values by means of
bilinear interpolation.

When a flow field has been computed for a particular level, it is scaled up to the
next finer scale, where it acts as initial estimate. The upscaling operation works
similarly but with the inverse scale factor η−1, of course. Additionally, the flow
vectors need to be scaled by η−1 as well, since they span a greater displacement
on the new level.

Although η = 0.5 is a commonly used scale factor in recent optical flow algo-
rithms, Brox et al. propose to use a higher value in order to prevent the initial
estimate of a particular level to trap directly into a local minimum. Our imple-
mentation allows an arbitrary scale factor. In section 3.6 we demonstrate that
the accuracy of the final flow field strongly depends on this value.

3.2.2 Euler-Lagrange Equation

According to the calculus of variations the minimum of the energy functional
3.5 must fulfill the Euler-Lagrange equations. Similar to Brox et al. [BBPW04]
we use the following notation:

Ix := δxI(x + w)
Iy := δyI(x + w)
Iz := I(x + w)− I(x)
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Ixx := δxxI(x + w)
Ixy := δxyI(x + w)
Iyy := δyyI(x + w)
Ixz := δxI(x + w)− δxI(x)
Iyz := δyI(x + w)− δyI(x) (3.6)

With this notation the Euler-Lagrange equations can be written as:

Ψ′(I2
z + γ(I2

xz + I2
yz)) · (IxIz + γ(IxxIxz + IxyIyz)

−α · div(Ψ′|∇3u|2 + |∇3v|2)∇3u) = 0
Ψ′(I2

z + γ(I2
xz + I2

yz)) · (IyIz + γ(IyyIyz + IxyIxz)

−α · div(Ψ′|∇3u|2 + |∇3v|2)∇3v) = 0 (3.7)

with reflecting Neumann boundary conditions, i.e. the derivatives at the image
boundaries are zero. Ψ′(s2) = 1

2
√

s2+ε2
is the derivative of the robust statistic

Ψ(s2) with respect to its argument s2.

3.2.3 Numerical Approximation

Solving the Euler-Lagrange equations is a hard task since it is highly non-linear
in the terms u and v. Rather than linearizing equations 3.7, Brox et al. find
the minimum by two nested fixed point iterations. They transform the solution
into a series of linear systems.

3.2.3.1 Outer Fixed Point Iteration

Brox et al. combine the multi-scale approach with a fixed point iteration. The
flow vectors at the coarsest level are initialized with w = (0, 0, 1). As soon as a
fixed point is found for one level in the image pyramid, the flow field is scaled
up and taken as an initial guess to the next level. Let wk := (uk, vk, 1) be the
fixed point of level k. Then the fixed point wk+1 of the next finer level is the
solution of:

Ψ′((Ik+1
z )2 + γ((Ik+1

xz )2 + (Ik+1
yz )2)) · (Ik

xI
k+1
z + γ(Ik

xxI
k+1
xz + Ik

xyI
k+1
yz )

−α · div(Ψ′|∇3u
k+1|2 + |∇3v

k+1|2)∇3u
k+1) = 0

Ψ′((Ik+1
z )2 + γ((Ik+1

xz )2 + (Ik+1
yz )2)) · (Ik

yI
k+1
z + γ(Ik

yyI
k+1
yz + Ik

xyI
k+1
xz )

−α · div(Ψ′|∇3u
k+1|2 + |∇3v

k+1|2)∇3v
k+1) = 0

(3.8)

where Ik
∗ correspond to the notations in equations 3.6, in which w has been

replaced by wk. The equations 3.8 use a fully implicit scheme for the smoothness
term and a semi-implicit scheme for the data term. Implicit schemes usually
yield higher stability and faster convergence [BBPW04]. The system is still
non-linear due to the non-linear penalizer function Ψ′ and the symbols Ik+1

∗ .
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As a next step towards a linear system the terms Ik+1
∗z are linearized using the

first order Taylor expansion:

Ik+1
z ≈ Ik

z + Ik
xduk + Ik

ydvk

Ik+1
xz ≈ Ik

xz + Ik
xxduk + Ik

xydvk

Ik+1
yz ≈ Ik

yz + Ik
xyduk + Ik

yydvk

where uk+1 = uk +duk and vk+1 = vk +dvk. Therefore, the system of equations
does not depend on the current flow vectors uk+1 and vk+1 anymore, but on the
previous solutions uk and vk and unknown increments duk and dvk. Replacing
Ik+1
∗z with their linear approximations results in:

0 = (Ψ′)k
Data ·

(
Ik
x(Ik

z + Ik
xduk + Ik

ydvk)
)

+ γ(Ψ′)k
Data ·

(
Ik
xx(Ik

xz + Ik
xxduk + Ik

xydvk) + Ik
xy(I

k
yz + Ik

xyduk + Ik
yydvk)

)
− α · div

(
(Ψ′)k

Smooth∇3(uk + duk)
)

0 = (Ψ′)k
Data ·

(
Ik
y(I

k
z + Ik

xduk + Ik
ydvk)

)
+ γ(Ψ′)k

Data ·
(
Ik
yy(I

k
yz + Ik

xyduk + Ik
yydvk) + Ik

xy(I
k
xz + Ik

xxduk + Ik
xydvk)

)
− α · div

(
(Ψ′)k

Smooth∇3(vk + dvk)
)

where

(Ψ′)k
Data := Ψ′( (Ik

z + Ik
xduk + Ik

ydvk)2

+ γ(Ik
xz + Ik

xxduk + Ik
xydvk)2 + γ(Ik

yz + Ik
xyduk + Ik

yydvk)2 )

(Ψ′)k
Smooth := Ψ′

(
|∇3(uk + duk)|2 + |∇3(vk + dvk)|2

)
(3.9)

3.2.3.2 Inner Fixed Point Iteration

Due to the non-linear function Ψ, the system is still non-linear in the unknown
increments duk and dvk. Since Ψ is a convex function the remaining optimiza-
tion problem has a unique minimum. The leftover non-linearity in Ψ′ is removed
by applying another inner fixed point iteration. Let duk,0 = 0 and dvk,0 = 0
be the initial increment for a given level k. Moreover, (Ψ′)k,l

Data and (Ψ′)k,l
Smooth

equal equations 3.9 for iteration step l. Then the final linear system for duk,l+1

and dvk,l+1 is:

0 = (Ψ′)k,l
Data ·

(
Ik
x(Ik

z + Ik
xduk,l+1 + Ik

ydvk,l+1)
)

+ γ(Ψ′)k,l
Data ·

(
Ik
xx(Ik

xz + Ik
xxduk,l+1 + Ik

xydvk,l+1) + Ik
xy(Ik

yz + Ik
xyduk,l+1 + Ik

yydvk,l+1)
)

− α · div
(
(Ψ′)k,l

Smooth∇3(uk + duk,l+1)
)

0 = (Ψ′)k,l
Data ·

(
Ik
y(Ik

z + Ik
xduk,l+1 + Ik

ydvk,l+1)
)

+ γ(Ψ′)k,l
Data ·

(
Ik
yy(Ik

yz + Ik
xyduk,l+1 + Ik

yydvk,l+1) + Ik
xy(Ik

xz + Ik
xxduk,l+1 + Ik

xydvk,l+1)
)

− α · div
(
(Ψ′)k,l

Smooth∇3(vk + dvk,l+1)
)
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After discretizing the gradient and the divergence operators this sparse linear
system can be solved using the Gauss-Seidl or the Successive Overrelaxation
(SOR) method.

It is important to emphasize that only the single fixed point iterations are lin-
earized, not the energy functional itself. The entire numerical process minimizes
the non-linear energy functional using a set of linear systems.

3.3 Multi-Channel Flow

We follow the idea of Sand et al. [ST06] and allow our algorithm to run on
multiple images at once. The intention is to force the optical flow algorithm to
match the pixels of multiple channels not just the intensity values. The new
version of the data energy functional 3.3 reads:

EData(u, v) :=
1
γΣ

∑
i

γi

∫
Ω

Ψ
(
|Ii(x + w)− Ii(x)|2

)
dx (3.10)

Ii denotes the i-th one-dimensional input channel, which is weighted by γi. We
normalize the channels by dividing by γΣ =

∑
i γi for usability reasons: when

users decide to exclude one or more channels, they are not required to adapt the
smoothing weight α in equation 3.4. The better all image channels match, the
lower is the data energy. Brox et al. analytically enforce the gradient constancy
constraint. We just take the gradient of the intensity image as another input
channel.

3.4 Local Smoothness

Sand et al. [ST06] introduce an isotropic image-driven regularizer by adding a
local smoothness term into the energy functional in order to “discourage flow dis-
continuities at locations with small image gradients”. Moreover, their approach
avoids smoothing over intensity discontinuities. If a bright object moves in front
of a darker one, smoothing should be lowered at the object boundaries, which
can easily be detected by the intensity gradient in this case. Furthermore, the
smoothness should be high inside solid regions of the image.

Rather than using one global smoothness weight α as in equation 3.4, the authors
replace this constant with a local smoothness function, which computes the
smoothness factor depending on the image position x ∈ Ω. Thus, we obtain a
new energy functional for the smoothness constraint:

ESmooth(u, v) :=
∫
Ω

α(x) ·Ψ
(
|∇3u|2 + |∇3v|2

)
dx (3.11)
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Let I be the intensity images of frame t. Then the local smoothness function
for the flow computation between t and t + 1 is calculated as follows:

α(x) := αGl + αL · N
(√

(255 · Ix(x))2 + (255 · Iy(x))2;σl

)
(3.12)

N is the zero-mean non-normalized Gaussian N (x;σl) = e
− 1

2
x2

σ2
l with σl = 2.0.

The factor 255 results from the conversion from low to high dynamic range im-
ages.

We precompute this term for the entire image and name the result the local
smoothness map. An example is shown in figure 3.1. αGl is the global smooth-
ness factor as in equation 3.4. The scalar αL weights the influence of the local
smoothness map. If the intensity gradient is high, e.g. on a boundary between
two differently bright objects, the resulting smoothness value is low. Conversely
a low gradient yields a high smoothness, e.g. inside solid regions. Therefore,
the algorithm allows flow discontinuities by reducing the smoothness energy on
gradient borders. Local smoothness is disabled for αL = 0.

(a) (b)

Figure 3.1: Local smoothness. (a) Intensity image of a mannequin. (b) Corre-
sponding local smoothness map. The map successfully reduces the smoothness
at the boundary between the shirt and the background (black lines), but the
image also exposes some issues. Due to the stripes in the shirt the smoothness
is lowered in rigid areas as well. Moreover, the critical discontinuity between
the right arm and the chest is not detected at all. Therefore, this boundary
would be oversmoothed. Intensity differences are apparently not the right way
to ensure a piecewise smooth flow field.
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The approach works quite well if the motion discontinuities and the high in-
tensity gradients match. However, since this technique only regards intensity
values it fails if an object has a high-frequency texture. This is often the case
in natural images, especially, when the clothes of human-beings are involved.
Figure 3.1 also illustrates this issue.

3.5 Implementation

This section explains our implementation of the optical flow algorithm in detail.
Given a sequence of image, we describe how the flow field from a frame at
time t to the next frame at time t + 1 is computed. We implemented both, a
spatial and a spatio-temporal regularizer. For reasons of simplicity, we present
the minimization process using spatial smoothness term only. The extension to
temporal smoothing is briefly explained below (section 3.5.3).

3.5.1 Discretization

We store the flow vectors u, v and the increments du, dv in rectangular arrays.
Moreover, we precompute the terms (Ψ′)k,l

Data and (Ψ′)k,l
Smooth for all pixels and

store them in rectangular arrays, too. In the following f(x, y) denotes the
content of such an array f at the coordinate (x, y). Based on the modifications
of the energy functional in sections 3.3 and 3.4 we obtain two equations for a
particular pixel (x, y):

0 =
1
γΣ

∑
i

(Ψ′)k,l
i,Data(x, y) ·

(
Ik
i,x(Ik

i,z + Ik
i,xduk,l+1(x, y) + Ik

i,ydvk,l+1(x, y))
)

− α(x) · div
(
(Ψ′)k,l

Smooth(x, y)∇(uk(x, y) + duk,l+1(x, y))
)

(3.13)

0 =
1
γΣ

∑
i

(Ψ′)k,l
i,Data(x, y) ·

(
Ik
i,y(I

k
i,z + Ik

i,xduk,l+1(x, y) + Ik
i,ydvk,l+1(x, y))

)
− α(x) · div

(
(Ψ′)k,l

Smooth(x, y)∇(vk(x, y) + dvk,l+1(x, y))
)

(3.14)

We omitted the subscripts (x, y, t) of the expressions Ik
i,∗ in the data term for

reasons of readability. These expressions correspond to the notations in equation
3.6 according to the i-th color channel. We discretize them by

Ik
i,x(x, y, t) := Ii(x + uk(x, y) + 1, y + vk(x, y), t + 1)− Ii(x + uk(x, y)− 1, y + vk(x, y), t + 1)

Ik
i,y(x, y, t) := Ii(x + uk(x, y), y + vk(x, y) + 1, t + 1)− Ii(x + uk(x, y), y + vk(x, y)− 1, t + 1)

Ik
i,z(x, y, t) := Ii(x + uk(x, y), y + vk(x, y), t + 1)− Ii(x, y, t).

Furthermore, we need to discretize the gradient and the divergence operator of
the smoothness term for both equations. We demonstrate this according to the
first of the two Euler-Lagrange equations (3.13):
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α(x) · div
(
(Ψ′)k,l

Smooth(x, y)∇(uk(x, y) + duk,l+1(x, y))
)

= α(x) · div
(

(Ψ′)k,l
Smooth(x, y)

[
uk(x, y)− uk(x− 1, y) + duk,l+1(x, y)− duk,l+1(x− 1, y)
uk(x, y)− uk(x, y − 1) + duk,l+1(x, y)− duk,l+1(x, y − 1)

])
= α(x) · (Ψ′)k,l

Smooth(x + 1, y) ·
(
uk(x + 1, y)− uk(x, y) + duk,l+1(x + 1, y)− duk,l+1(x, y)

)
−

α(x) · (Ψ′)k,l
Smooth(x, y) ·

(
uk(x, y)− uk(x− 1, y) + duk,l+1(x, y)− duk,l+1(x− 1, y)

)
+

α(x) · (Ψ′)k,l
Smooth(x, y + 1) ·

(
uk(x, y + 1)− uk(x, y) + duk,l+1(x, y + 1)− duk,l+1(x, y)

)
−

α(x) · (Ψ′)k,l
Smooth(x, y) ·

(
uk(x, y)− uk(x, y − 1) + duk,l+1(x, y)− duk,l+1(x, y − 1)

)
As Sand et al. [ST06], we use the pattern [−1 1 0] for the derivatives in the
gradient, but the pattern [0 − 1 1] for the discretization of the divergence
operator in order to center the second derivative [1 − 2 1] at the position
(x, y). The discretization of the smoothness term in the second equation (3.14)
works analogously:

α(x) · div
(
(Ψ′)k,l

Smooth(x, y)∇(vk(x, y) + dvk,l+1(x, y))
)

= α(x) · (Ψ′)k,l
Smooth(x + 1, y) ·

(
vk(x + 1, y)− vk(x, y) + dvk,l+1(x + 1, y)− dvk,l+1(x, y)

)
−

α(x) · (Ψ′)k,l
Smooth(x, y) ·

(
vk(x, y)− vk(x− 1, y) + dvk,l+1(x, y)− dvk,l+1(x− 1, y)

)
+

α(x) · (Ψ′)k,l
Smooth(x, y + 1) ·

(
vk(x, y + 1)− vk(x, y) + dvk,l+1(x, y + 1)− dvk,l+1(x, y)

)
−

α(x) · (Ψ′)k,l
Smooth(x, y) ·

(
vk(x, y)− vk(x, y − 1) + dvk,l+1(x, y)− dvk,l+1(x, y − 1)

)
Due to our discretizations, we obtain two equations for each pixel with 10 un-
knowns du(x, y), dv(x, y), du(x + 1, y), dv(x + 1, y), du(x − 1, y), dv(x − 1, y),
du(x, y + 1), dv(x, y + 1), du(x, y − 1) and dv(x, y − 1).

3.5.2 Algorithm

Initialization Before the start of the flow computation, our algorithm creates
the image pyramids for all input channels and the local smoothness map if
specified. After that the flow field in horizontal and vertical direction u, v is
initialized with 0 at the coarsest-level.

Outer fixed point iteration (coarse-to-fine) At the beginning of each
outer iteration we reset the incrementals du, dv to 0. After du, dv have been
calculated within the inner fixed point iterations, the flow field is updated by
u′ = u+du, v′ = v+dv and scaled up to the next level. The iteration is repeated
until the finest level is reached. For each level we precompute the values Ik

i,∗ for
all image channels, since they remain invariant for the whole inner loop.
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Inner fixed point iteration At the beginning of each inner fixed point iter-
ation we precompute the values (Ψ′)k,l

Data(x, y) and (Ψ′)k,l
Smooth(x, y). We use the

same discretizations for the gradients in the smoothness value as described in
section 3.5.1. In order to reduce the number of operations we precompute

(Ψ̄′)k,l
Smooth(x, y) := α(x) · (Ψ′)k,l

Smooth(x, y)

Linear system Then the inner linear system is solved. We repeat the Suc-
cessive Overrelaxation (SOR) method for a user-defined number of times. The
method is an extension of the Gauss-Seidel method and speeds up its conver-
gence by extrapolating the solution (see appendix A for more information). In
each step we obtain new estimates du(x, y), dv(x, y) for all pixels. Since the
SOR solver always uses the most recent results to compute the next solution,
no further arrays are needed to store intermediate results.

For a particular pixel (x, y) we obtain du(x, y) by:

A := 2 · (Ψ̄′)k,l
Smooth(x, y) + (Ψ̄′)k,l

Smooth(x + 1, y) + (Ψ̄′)k,l
Smooth(x, y + 1)

+
∑

i

(Ψ̄′)k,l
i,Data(x, y) · (Ik

i,x(x, y, t))2

B :=
∑

i

(Ψ̄′)k,l
i,Data(x, y) · Ik

i,y(x, y, t) · Ik
i,x(x, y, t)

C := −(Ψ̄′)k,l
i,Smooth(x + 1, y)

D := −(Ψ̄′)k,l
i,Smooth(x, y)

E := −(Ψ̄′)k,l
i,Smooth(x, y + 1)

Const := −(Ψ̄′)k,l
i,Smooth(x, y) · (2 · u(x, y)− u(x− 1, y)− u(x, y − 1))

+(Ψ̄′)k,l
i,Smooth(x + 1, y) · (u(x + 1, y)− u(x, y))

+(Ψ̄′)k,l
i,Smooth(x, y + 1) · (u(x, y + 1)− u(x, y))

−
∑

i

(Ψ̄′)k,l
i,Data(x, y) · Ik

i,x(x, y, t) · Ik
i,z(x, y, t)

du(x, y) = ω · (Const−B · dv(x, y)− C · du(x + 1, y)−D · du(x− 1, y)
−E · du(x, y + 1)−D · du(x, y − 1))/A ·

(1− ω) · du(x, y)

where ω ∈ [1, 2] is the extrapolation factor of the SOR method, which we usually
set to 1.9 for our optimizations. dv(x, y) is retrieved analogously:

A :=
∑

i

(Ψ̄′)k,l
i,Data(x, y) · Ik

i,x(x, y, t) · Ik
i,y(x, y, t)

B := 2 · (Ψ̄′)k,l
Smooth(x, y) + (Ψ̄′)k,l

Smooth(x + 1, y) + (Ψ̄′)k,l
Smooth(x, y + 1)

+
∑

i

(Ψ̄′)k,l
i,Data(x, y) · (Ik

i,y(x, y, t))2

C := −(Ψ̄′)k,l
i,Smooth(x + 1, y)
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D := −(Ψ̄′)k,l
i,Smooth(x, y)

E := −(Ψ̄′)k,l
i,Smooth(x, y + 1)

Const := −(Ψ̄′)k,l
i,Smooth(x, y) · (2 · v(x, y)− v(x− 1, y)− v(x, y − 1))

+(Ψ̄′)k,l
i,Smooth(x + 1, y) · (v(x + 1, y)− v(x, y))

+(Ψ̄′)k,l
i,Smooth(x, y + 1) · (v(x, y + 1)− v(x, y))

−
∑

i

(Ψ̄′)k,l
i,Data(x, y) · Ik

i,y(x, y, t) · Ik
i,z(x, y, t)

dv(x, y) = ω · (Const−A · du(x, y)− C · dv(x + 1, y)−D · dv(x− 1, y)
−E · dv(x, y + 1)−D · dv(x, y − 1))/B ·

(1− ω) · dv(x, y)

3.5.3 Spatio-Temporal Smoothing

The extension to a spatio-temporal regularizer is straight forward: instead of the
2D gradient a 3D gradient is used in the smoothness term, which includes the
spatial and temporal neighbors of each flow vector. Again, reflected boundary
conditions are applied, i.e. the temporal derivatives in the first frame and the
last frame are zero. A drawback of the spatio-temporal smoothness regularizer
is that it requires to solve the linear systems for all flow fields in a sequence
in parallel. This might result in a memory issue when big images and/or long
sequences are processed.

3.6 Parameter Dependence

The optical flow algorithm provides several tuning parameters that influence
the quality of the flow field and the runtime of the computation. These are
the scale factor of the image pyramid (η), the number of coarse-to-fine levels,
the number of inner fixed point iterations and the number of SOR iterations to
solve the inner linear system. In this section we illustrate the relation of these
parameters to the error of the results and the runtime of the algorithm with
several experiments. We tested the algorithm for the two frames of the scene in
section 5.3.1.1: a motionless synthetic human model captured under a changing
viewpoint. We used the three color channels of the 336 × 477 pixel images as
input channels and applied a uniform weight (γi = 1). In this experiment we
did not take local smoothness into account. Moreover, we limited the minimum
extension of an image in the image pyramid to 12.

After each calculation we compared the quality of the obtained flow field with
the ground truth flow field of the scene. In our case the term “quality” denotes
the average L2-error, which is introduced in section 5.2.1. We refer to section
5.1.2 for a detailed description of ground truth optical flow. All flow fields
have been computed on a notebook with an Intel T2400 dual-core processor at
1.83GHz and 1GB RAM.



40 CHAPTER 3. BASIC OPTICAL FLOW ALGORITHM

The quality of the flow field strongly depends on the chosen global smoothness
value αGl. Figure 3.2 relates the global smoothness value to the L2 error of the
flow field. On the one hand, if αGl is too high the flow field is oversmoothed
and discontinuous motions are not detected. On the other hand, a very low
smoothness value yields a computation that is more sensitive to noise and creates
non-rigid flow fields. Moreover, the function seems to be roughly convex. We
used a binary search algorithm to find the approximatively best smoothness
value for a given scene. In this case αGl = 0.011758 turned out to be the best
smoothness value.
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Error depending on global smoothness
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Figure 3.2: Performance of our experiment depending on the global smoothness
factor.

In the following we discuss the parameters for the numerical approximation.
Brox points out that solving the linear systems until convergence induces high
computational costs [Bro05]. Moreover, he proposes to iterate the SOR several
times and then continue with the next inner fixed point iteration. Brox – and
most of the subsequent papers using the same fixed point iteration scheme –
fix the number of iterations without checking for convergence. In general, more
iterations give rise to a more precise result, but since each iteration increase the
runtime of the algorithm, the parameters should be chosen carefully in order to
ensure the efficiency of the computation.

As stated before, the scale factor for the creation of the image pyramid is
crucial. Table 3.1 relates the used scale factor to the L2-error and to the run-
time of the algorithm. The data are plotted in the top row of figure 3.3. The
scale factor directly corresponds to the number of outer fixed point iterations,
which equal the number of levels in the image pyramid. The quality of the flow
computation highly depends on the scale factor and we investigated that a scale
factor below 0.9 is inappropriate.
We compared our implementation with an implementation of the older Black &
Anandan’s algorithm [BA93], which assumes similar constraints as Brox et al.:
a linearized brightness constancy assumption, global regularization combined



3.7. DISCUSSION 41

with a robust statistic and a multi-scale approach. We modified the latter to
allow arbitrary scale factors.
Our modified Brox-algorithm outperforms the implementation of Black & Anan-
dan’s technique firstly at the scale factor 0.7. More interestingly a higher scale
factor does not seem to help the technique of Black & Anandan significantly.
Due to the minimization via fixed point iterations the algorithm by Brox et al.
requires a longer runtime than its older pendant, which is justified by a higher
accuracy in the flow estimation.
The scale factor also has a strong impact on the runtime. Let us assume an
input image of size cx× cy. If the extensions of the smallest image in the image
pyramids are limited to Smin and the scale factor is set to η, then the number
of outer fixed point iterations equals n = log 1

η

Smin
min{cx,cy} . Therefore, the number

of these iterations grows with O( 1
log η ). The curve of the runtime (see top right

of figure 3.3) depicts this thought.

Scale factor Levels L2-Error Runtime [ms] L2-Error Runtime [ms]
Our Our B & A B & A

0.50 5 7.655 9.667 3.456 6.922
0.55 6 5.473 10.294 3.386 7.406
0.60 7 5.034 11.228 3.048 8.063
0.65 8 4.873 12.738 3.069 8.953
0.70 10 2.553 14.132 2.969 10.016
0.75 12 2.486 16.440 2.947 11.640
0.80 15 1.852 19.795 2.927 14.000
0.85 20 1.171 25.560 2.919 18.047
0.90 29 0.924 37.179 2.916 25.906
0.95 55 0.792 70.836 2.905 49.906

Table 3.1: Performance of our algorithm depending on scale factor (number of
outer iterations) using five inner fixed point and 100 SOR iterations, compared
to the performance of the implementation of Black & Anandan (B & A).

Table 3.2 illustrates the contribution of the number of inner fixed point
iteration and the number of SOR iterations to the quality of the flow
fields in our example. We investigated that five inner fixed point iterations and
100 SOR iterations result in an appropriate compromise between quality and
runtime. Both number of iterations raise the runtime linearly as shown in the
middle and bottom row of figure 3.3.

3.7 Discussion

The algorithm of Brox et al. produces highly accurate results at the expense of
runtime. On the one hand, the runtime of the algorithm is higher than that of
most previous algorithms, mostly due to the fixed point iteration scheme and
the high scale factor. On the other hand, the results are accurate and the robust
statistic already allows motion discontinuities in the flow field. However, motion
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boundaries are still noticeably oversmoothed. Moreover, it does not find correct
correspondences if the textures of objects in the scene contain high-frequency
patterns. These issues are visualized in chapter 5 and motivate the extensions,
which we present in the next chapter.

Inner L2-Error Runtime [ms]
iterations

1 1.314 9.765
2 1.131 15.657
3 1.020 22.610
4 0.952 29.156
5 0.924 36.047
6 0.921 42.593
7 0.907 50.597
8 0.904 58.211
9 0.898 65.412
10 0.898 72.352
11 0.889 78.082
12 0.896 88.834
13 0.889 94.230
14 0.893 102.572
15 0.889 110.275

SOR L2-Error Runtime [ms]
iterations

25 1.253 12.891
50 1.000 21.373
75 0.945 29.642
100 0.924 38.028
125 0.901 45.574
150 0.876 53.495
175 0.857 62.228
200 0.843 70.495
225 0.836 78.556
250 0.830 85.529
275 0.827 93.168
300 0.825 101.525
325 0.824 110.399
350 0.823 117.041

Table 3.2: Left: Performance of our algorithm depending on the number of
inner fixed point iterations using 100 SOR iterations. Right: Performance of
the algorithm depending on the number of SOR iterations using five inner fixed
point iterations. We applied a scale factor of 0.9 in both cases.
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Figure 3.3: Performance of our implementation depending on parameters for numerical minimization.
Blue lines: L2-error produced by our algorithm, red lines: runtime in milliseconds, violet line: L2-
error/runtime produced by Black & Anandan’s algorithm.
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Chapter 4

Extensions

This chapter treats the acquisition of the two information channels, with which
we enrich our optical flow estimation: the surface normals and the depth discon-
tinuities. After the introduction of each technique we show how it is incorporated
into the optical flow algorithm.

4.1 Surface Normals

The surface normal at a particular point p on an object is the vector, which is
perpendicular to the tangent plane to the surface at p. This section explains
how this information can be extracted from a set of two-dimensional images
which are illuminated under different lighting conditions.

4.1.1 Photometric Stereo

The technique Photometric Stereo was published by Woodham [Woo89]. If an
object is frequently captured with a (perfectly) Lambertian material from a
static viewpoint, but illuminated from different lighting directions, the surface
normal can be analytically computed.

Let S be a point on a surface, N is its normal (see figure 4.1a). If L1 is the
direction of the only point light source in the scene, then, under the assumption
of Lambertian reflection, the intensity i1 is calculated as follows:

i1 = ρ · L1 ·N

where ρ denotes the albedo of the surface at point S. If we capture the scene un-
der three lighting conditions, using a point light source from a different direction
each time (Lj for j ∈ {1, 2, 3}, see figure 4.1b), we can write the transformation
as a linear map:i1

i2
i3

 = ρ ·

L1
x L1

y L1
z

L2
x L2

y L2
z

L3
x L3

y L3
z

 ·

Nx

Ny

Nz


⇔ I = ρ · L ·N

45
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S

N

L1

S

L1
N

L2

L3

S

N

L1

(a) (b)

Figure 4.1: (a) The intensity of point S on a surface with Lambertian reflection
is determined by the albedo at S and the dot product of the lighting direction
L1 with the surface normal N . (b) If we add two more light sources, the normal
N and the albedo can be easily computed by the three lighting directions and
the resulting intensity values at S.

where
(
Li

x Li
y Li

z

)T represents the lighting direction that corresponds to inten-
sity ii. If the intensity values and the lighting directions are known, we retrieve
the surface normal and the albedo by solving the linear system:

M = L−1 · I = ρ ·N (4.1)

⇒ N =
M

‖M‖
∧ ρ = ‖M‖ (4.2)

L is invertible if the three lighting directions are linearly independent. If we
have captured three images of a scene from a static viewpoint, but illuminated
from different lighting directions, we can compute a normal map by applying
the above formulas to each pixel, i.e. we setup the vector I for the surface point
under a particular pixel by extracting the intensity values from the pixel values
(e.g. by taking the average of all color components). The lighting direction
matrix is the same for all pixels and needs to be initialized once only. In the
following we call a pair of an intensity value and its respective lighting direction
a photometric sample.

The above formulas require that all light sources irradiate with the same inten-
sity. If this is not the case, the intensity values of each pixel must be normalized
by dividing through the intensity of the light source.

Real images Real images usually introduce noise, self-shadowing, interreflec-
tions and specular reflections. Hence, the normal maps usually contain errors
or at least noise if only three images are taken into account. Therefore, more
photometric samples per pixel are needed to retrieve a good approximation of
the normal map. If we acquire n images for n > 3, I becomes a n-dimensional
vector and L a non-quadratic n × 3 matrix, i.e. we process n intensity values
per pixel from n different lighting conditions.



4.1. SURFACE NORMALS 47


i1
i2
...
in

 = ρ ·


L1

x L1
y L1

z

L2
x L2

y L2
z

...
...

...
Ln

x Ln
y Ln

z

 ·

Nx

Ny

Nz


⇔ I = ρ · L ·N

Now the linear system is over-constrained and cannot be solved directly. We
apply a least-squares approach by computing the pseudo-inverse of L. Therefore,
we perform a Singular Value Decomposition (SVD) on L:

L = U · Σ · V ∗

where U is a n × n matrix, Σ is a n × 3 matrix, whose diagonal elements are
non-zero only, and V ∗ is a 3×3 matrix. This representation is used to calculate
the pseudo-inverse L+:

L+ = V · Σ+ · U∗

where Σ+ denotes the transpose of Σ, whose diagonal elements are replaced by
their reciprocal, and U∗ is the conjugate transpose of U . Since U is a real-valued
matrix, U∗ = UT . Now M , the albedo and the normal can be calculated as in
equations 4.1 and 4.2 by replacing L−1 with L+.

In our implementation we usually drop all samples, whose intensity value falls
under a certain threshold in order to remove noisy pixels. Additionally, we drop
samples which exceed a specific threshold in order to remove all samples which
could be the part of specular highlights.

Example In this example we calculate the surface normals of a plant that
has been captured from multiple lighting directions1 (see figure 4.2a). All input
images have been normalized using the measured intensities of the light sources.
The scene contains a lot of self-shadowing and specular reflections. Moreover,
the camera introduced noise that is noticeable in dark regions. We encode the
resulting normal map as an RGB image, where red represents the x-component,
green the y-component and blue the z-component of the normal for each pixel.
For a better visualization we store the normal maps in offset gray mode, i.e. we
map all color components from [−1, 1] to [0, 1] in order to avoid negative values.
As shown in figure 4.2b, it is not sufficient to regard only three lighting directions
in order to compute the normal map. 253 lighting directions have been taken
into account for figure 4.2c, where we have dropped all samples with an intensity
below 0.1 in order to remove noise. Apparently, this result is more accurate.

1This dataset including the directions and intensities of the light sources is available at
http://gl.ict.usc.edu/Data/LightStage/
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(a) (b) (c)

Figure 4.2: (a) The captured plant. The red frame indicates the area of the
image that is shown in the other two figures. (b) Normal map using three
distinct lighting directions. The results are imprecise and lack of details in
regions, where at least one of the lighting conditions casts a shadow. (c) Normal
map using 263 lighting directions. The normal map is more accurate and also
contains normals in regions that are shadowed under some lighting conditions.

4.1.2 Gradient Patterns

A major drawback of the method just mentioned is the demand for lots of light-
ing conditions in order to obtain a correct result. This is especially a problem if
a moving subject is captured. Ma et al. [MHP+07] propose a technique which
only uses four different lighting conditions. The approach firstly illuminates the
scene by the environment maps of the first two bands of the Spherical Harmonic
(SH) basis. Therefore, for each lighting condition we need to sample the incident
illumination from an entire surrounding sphere.

Let n be the number of light sources which we have been uniformly distributed
on a (infinitely far away) sphere around the object. Lj is the direction of the
j-th light source that points to the center of the scene. ĩxj is the intensity of that
light source for lighting condition x. For the only SH basis vector in the first
band the scene is uniformly illuminated from all directions. We call this the
uniform lighting condition (̃iuniform

j := 1). The intensities for the second band
of the SH basis result from the dot product of the unit vectors with the lighting
direction:

ĩleftj := Li ·
[
1 0 0

]T

ĩtop
j := Li ·

[
0 1 0

]T

ĩfront
j := Li ·

[
0 0 1

]T

Since we cannot radiate negative light, we map all intensities from [−1, 1]
to [0, 1]:

ixj := 0.5 · (̃ixj + 1)

In figures 4.3a-h you can see these four lighting patterns and the plant of the
above example (figure 4.2a) illuminated under these conditions. If we have
captured a scene using these so-called gradient patterns, we calculate the ratio
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.3: Spherical Harmonic patterns viewed through a mirrored ball. (a)-(c)
Left, top and front gradient pattern (second SH band). (d) Full lit pattern (first
SH band). (e)-(h) Plant captured under the four patterns. (i)-(k) Ratio images
for left, top and front pattern. (l) Final normal map.

between the second band SH lighting conditions (left, top, front) and the uni-
form condition. Let Ileft, Itop, Ifront, Iuniform be the intensity images that have
been taken under the respective lighting conditions, then the ratio images are
calculated as follows.

Rleft(x) := Ileft(x)/Iuniform(x) (4.3)
Rtop(x) := Itop(x)/Iuniform(x) (4.4)

Rfront(x) := Ifront(x)/Iuniform(x) (4.5)

Ma et al. show that the intensity values of the ratio images lie between 1
6 and 5

6
and that they are linearly related to the normal components. For a given pixel
x ∈ Ω we compute the normal N ′(x) by mapping the ratio values to [−1, 1]:

N ′(x) :=

 (Rleft(x)− 1
2) · 3

(Rtop(x)− 1
2) · 3

(Rfront(x)− 1
2) · 3

 (4.6)

Normalization (N(x) := N ′(x)/‖N ′(x)‖) yields the final normal vector. The
final normal map of our example is shown in figure 4.3l.

A big advantage of this approach is that it only needs four images to produce
good normal maps, which do not suffer from noise that much. Moreover, this
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technique works equally well for an arbitrary number of viewpoints. The normals
are estimated in world space (since we used unit vectors for the light intensities),
but, due to the usage of a Spherical Harmonic basis, the four images can be
transformed into any coordinate system by a rotation matrix [RH02]. However,
sampling the incident light of an environment map is not a simple task. The
light source should be sufficiently far away from the center of the scene, since we
assume directional lighting. In addition, the sampling of light sources must be
dense enough to obtain a good approximation of incident environmental lighting.
One device that might fullfil this requirement is explained in appendix C.

4.1.3 Incorporation into the Optical Flow Framework

As described above, we encode normal maps as RGB color images. The nor-
mal maps are simply incorporated into the existing optical flow framework by
interpreting them as additional input channels. We just add the red, green and
blue data channel to the multi-channel data functional in equation 3.10 (section
3.3).

4.2 Depth Discontinuities

A depth discontinuity is a C0 discontinuity in the depth map of a scene. We
assume that the knowledge of these discontinuities helps to provide a piecewise
smooth flow field. Let I : N2 → R3 be a rectangular RGB color image and
d : N2 → R the corresponding depth function, that maps each pixel position
to a depth value between 0 and 1. In our implementation we encode the depth
discontinuity map D : N2 → {0, 1}3 as an RGB image in order to distinguish
between horizontal and vertical depth discontinuities:

D(x, y)r :=

{
1 |d(x, y)− d(x + 1, y)| > εD

0 otherwise

D(x, y)g :=

{
1 |d(x, y)− d(x, y + 1)| > εD

0 otherwise

The red channel D(x, y)r corresponds to horizontal and the green channel
D(x, y)g to vertical depth discontinuities. The blue channel D(x, y)b is al-
ways set to zero. εD denotes the threshold that differentiates between normal
transitions in the depth map and discontinuities, which separate objects from
each other.

4.2.1 Based on Normal Maps

The normal maps, which have been presented in section 4.1, build a potential
source to derive discontinuities from. As a first simple approach, we consider
all pixels in a normal map which strongly differ from their neighbors as part of
depth discontinuity borders. Let N : N2 → R3 be a normal map as shown in
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figure 4.4a, where normals are encoded as RGB colors. Based on this map we
compute a threshold map T as follows:

D(x, y)r :=

{
1 if ‖N(x + 1, y)−N(x, y)‖ > εN

0 otherwise
(4.7)

D(x, y)g :=

{
1 if ‖N(x, y + 1)−N(x, y)‖ > εN

0 otherwise
(4.8)

where ‖ · ‖ denotes the L2 norm in color space. εN > 0 is a threshold, which
distinguishes between regular surface normal transitions and normal disconti-
nuities caused by presumable object boundaries.

We found out that the surface normal map is not a reliable basis for the detection
of depth discontinuities as shown in figure 4.4b. Crucial depth discontinuities
are often not detected because the normals between two pixels are too similar,
although they lie on a discontinuity border. There are two reason for this issue:
Firstly, two parallel surfaces can never be detected as discontinuous (the shirt
and the trousers are nearly parallel at the discontinuity border), even if they are
very far from each other. Secondly, if the normal map is not perfect (e.g. due to
noise or self-shadowing), the derivative of the normals can be strongly biased.
Moreover, we found out that depth discontinuities based on normal maps often
contain many false positives, e.g. on surfaces with a rough material.

4.2.2 Based on Shadow Images

Raskar et al. [RTF+05] developed a robust algorithm to find depth discontinu-
ities. The paper bases on the idea that a single light source being placed next
to the camera in a scene casts shadows at depth discontinuities. The wider a

Figure 4.4: Discontinuities by normals. (a) Normal map. (b) Discontinuity map
created by thresholding the normals.
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shadow is, the deeper are the depth discontinuities. Formally spoken, let Pk be
a point light source next to the camera and ek the image of this light source in
the image plane, the so-called light epipole. The pencil rays originating at Pk

are called epipolar rays (see figure 4.5a). The author made three observations:

• The shadow of a depth edge pixel lies along the epipolar ray.

• The shadow at a depth edge always lies on the opposite side of the light
epipole along the epipolar rays.

• If two epipoles lie on opposite sides of an edge in different images, a shadow
will be observed in one image but not in the other one (see figure 4.5a).

(a) (b)

Figure 4.5: (a) Idea of the algorithm: Shadows are cast along epipolar rays.
Light sources are chosen that shadows which appear in one image are lit at least
in one different image. (b) Camera that produces images under four different
lighting conditions. Source of images: [RTF+05]

In order to obtain a depth discontinuity map, the image needs to be traversed
along the epipolar rays to detect the shadows. At least four images with four
different light source positions are required to find all depth discontinuities. The
authors simplify this process by putting the light sources directly left, top, right
and bottom to the camera respectively. Thus, the epipolar rays are orientated
corresponding to the image-space. The algorithm is explained in detail in the
next section.

4.2.2.1 Algorithm

This paragraph explains the algorithm that finds depth discontinuities using the
approach by [RTF+05]. In order to illustrate this approach, we apply all steps
to a sample scene using our implementation. The algorithm is structured as
follows:

1. Image acquisition

(a) Take ambient images without any additional lighting.

(b) Take images where light sources are placed at left, top, right and
bottom of the camera respectively (so-called Raskar images).
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2. Convert input images to gray scale and normalize them.

3. Remove ambient light from Raskar images.

4. Compute maximum intensity image.

5. Create ratio images.

6. Intensity step detection

(a) Apply edge detection filter on ratio images.

(b) Perform hysteresis thresholding on all ratio images.

(c) Merge all threshold maps to create final depth discontinuity image.

First of all, we need four Raskar images in which a light source is place at the left,
top, right and bottom side of the camera respectively. Raskar et al. [RTF+05]
use a modified camera with four attached flashes at the respective positions (see
figure 4.5b). In our example we use a spotlight, which is manually placed about
10 cm next to the camera in all directions in order to simulate these flashes. You
find the resulting images in figure 4.6. Moreover, the original approach needs
an ambient image, which captures the lighting of the scene without any flashes.
We assume that we do not have any ambient light. Thus, our ambient image
contains black pixels only.

Figure 4.6: Pictures of mannequin where light source is placed left, top, right
and bottom from camera respectively.

Intensity images First, all RGB input pictures are converted to intensity
images by taking the average value of all color channels (figure 4.7). In the
following procedure we remove the ambient light from all Raskar images by
subtracting the ambient image (which does not make any difference in our ex-
ample). Finally, the intensity images are normalized: each image is scaled by
the average intensity value of all images divided by its own mean intensity value.

Maximum intensity images Then the maximum intensity image M is cre-
ated which takes the maximum intensity value of all Raskar images (figure 4.8).
Let Ileft, Itop, Iright, Ibottom : N2 → R be the Raskar intensity images where a
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Figure 4.7: Original images after conversion to gray scale and normalization.

Figure 4.8: Maximum intensity image.

light source is located left, top, right or bottom to the camera respectively, then
M : N2 → R is defined as follows:

M(x) := max(Ileft(x), Itop(x), Iright(x), Ibottom(x)) (4.9)

This image approximates a light source that is placed at the center of projec-
tion. It does not contain any shadows, because if one flash causes a shadow
at a particular pixel position, at least the image of the opposite flash position
normally produces a lit pixel (figure 4.5a).

Ratio images Now ratio images can be calculated by dividing each of the
Raskar intensity images by the maximum image M . These ratio images RD for
D ∈ {left, top, right, bottom} are calculated as follows:

RD(x) :=

{
ID(x)
M(x) for M(x) 6= 0

0 otherwise
(4.10)

We calculate the ratio image because we need to distinguish between texture
discontinuities and real depth discontinuities caused by shadows. If we assume
a Lambertian material the ratio image can also be expressed as:

RD(x) =
µD · ρD · (LD ·N(x))

maxE{µE · ρE · (LE ·N(x))}
(4.11)

where µD denotes the magnitude of the light intensity of image D at pixel x,
ρD is the respective albedo, N(x) is the surface normal at pixel x and LD is
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Figure 4.9: Ratio images.

the direction of the light source of image D. Since the albedo is the same for all
images, ρD cancels out due to the division. Furthermore, since the light flashes
are close to the camera (LD ·N(x) ≈ LE ·N(x) for D 6= E) the ratio image can
be approximated by RD(x) = µD/ maxE{µE}. Therefore, our ratio images are
independent from texture under the assumption of diffuse reflection.

Shadowed pixels in Raskar images correspond to values near 0 in the ratio im-
ages, where pixels in non-shadowed areas are mapped to higher values. Detect-
ing the depth discontinuities in the acquired images is now reduced to finding
large intensity steps in the ratio images. You find the ratio images for our
example in figure 4.9.

Edge detection We detect intensity steps by applying simple edge detection
filters to the ratio images. If the light source is placed on the left or the right
side of the camera, shadows are cast in horizontal directions. Consequently, we
apply a horizontal Sobel filter to Rleft and Rright:

SHor :=

+1 0 −1
+2 0 −2
+1 0 −1

 (4.12)

Since we are only interested in positive intensity steps for the left image (from
non-shadowed to shadowed areas), we clamp all negative values to zero. Anal-
ogously, we clamp the positive values for the right image to zero. Taking the
absolute value for all values results in the confidence images.

The top and bottom Raskar images cast shadows in the vertical direction. Thus,
we apply the vertical Sobel filter to Rtop and Rbottom:

SVer :=

+1 +2 +1
0 0 0
−1 −2 −1

 (4.13)

and clamp negative values for the top image and positive values for the bottom
image to zero. Again we receive confidence images by taking the absolute value.
You can find the confidence images for our example in figure 4.10.
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Figure 4.10: Filtered images. Depth discontinuities appear as highlighted lines.

(a) (b) (c)

Figure 4.11: Threshold maps. (a) The high threshold map contains the major
discontinuities, but a couple of contours are incomplete or dashed. (b) The low
threshold map contains the complete discontinuities, however also introduces
noise (“false positives”). (c) The result of the hysteresis thresholding.

Hysteresis thresholding Finally, we obtain binary discontinuity maps from
each of the four confidence images. The easiest way to do that is a thresholding
approach. Let C : N2 → R be a confidence image. The high threshold map
THigh : N2 → {0, 1} is defined as:

THigh(x) :=

{
1 if C(x) > εHigh

0 otherwise
(4.14)

where εHigh denominates the user-defined threshold which distinguishes between
discontinuities and regular intensity steps. You can see the threshold map for
the right Raskar image of our example in figure 4.11a. As a major drawback this
approach either produces interleaved lines, when εHigh is too high and values
alongside a discontinuity border jump below and beyond the threshold, or cre-
ates noisy regions if the threshold is too low (see figure 4.11b). Hence, we apply
a technique called hysteresis thresholding.

We create an additional low threshold map TLow : N2 → {0, 1}:

TLow(x) :=

{
1 if C(x) > εLow

0 otherwise
(4.15)
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Figure 4.12: Threshold maps of all four views.

where εLow < εHigh. The final threshold map TFinal : N2 → {0, 1} is then
calculated as follows.

1. For all values with C(x) ≥ εHigh set TFinal(x) = 1.

2. For all values with C(x) < εLow set TFinal(x) = 0.

3. For all values εLow ≤ C(x) < εHigh:

• TFinal(x) = 1 if C(x) can be connected to any pixel x̄ ∈ Ω with
C(x̄) > εHigh through a chain where all values are > εLow.

• TFinal(x) = 0 otherwise

Informally spoken, TFinal contains all connected lines of the low threshold map
that includes at least one pixel, which also appears in the high threshold map.
The pseudocode of the algorithm can be found in appendix B. The result of the
hysteresis thresholding of the right sample image is shown in figure 4.11c. The
thresholds should be chosen carefully. We set εHigh = 1.5 and εLow = 0.6 in our
example.

Final discontinuity map Let TLeft, TTop, TRight and TBottom be the threshold
maps that have been created from the four confidence images (see figure 4.12). In
order to obtain the final discontinuity map D we apply the binary OR-operator
between the horizontal and vertical threshold maps respectively:

D(x)r :=

{
1 if TLeft(x) = 1 or TRight(x) = 1
0 otherwise

(4.16)

D(x)g :=

{
1 if TTop(x) = 1 or TBottom(x) = 1
0 otherwise

(4.17)

You find the final depth discontinuity map for our example in figure 4.13.

4.2.3 Incorporation into the Optical Flow Framework

The local smoothness approach in section 3.4 already represents a first way
to deal with discontinuities. We replace the local smoothness function (see
equation 3.12), that only regards intensity values, with a new function that takes
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Figure 4.13: Final depth discontinuity map.

the discrete discontinuities into account, which we obtained by the approach of
Raskar et al.:

α(x) :=

{
αB if x lies on a discontinuity border
αG if x lies inside a rigid region

where αB � αG. We apply a low boundary smoothness value αB for pixels on
depth discontinuities, because we want to allow the flow to be discontinuous
at these places. Conversely, we use a high general smoothness values αG for
the regions between discontinuities, because we assume that the flow is rigid
in those areas. The function B : N2 → {0, 1} describes for each pixel in the
image whether it is located on a depth discontinuity border or not in terms of
the depth discontinuity map D:

B(x) :=

{
1 if D(x, y) = 1 or D(x− 1, y) = 1 or D(x, y − 1) = 1
0 otherwise

Coarse-to-fine Since the depth discontinuity maps are component-wisely bi-
nary maps, they cannot be scaled down for the coarse-to-fine iterations using
bilinear interpolation as the other input channels. We scale these maps down as
follows: Let D be the original depth discontinuity map. D∗ will be the smaller
version of it.

• Set all pixels in D∗ to black (no discontinuities).

• For all pixel positions x = (x, y) in D with D(x)r = 1 (horizontal discon-
tinuity):

1. We assume that the discontinuity lies exactly in the middle of (x, y)
and (x + 1, y), i.e. on (x + 0.5, y).

2. Map (x + 0.5, y) to the position in the downscaled image (x∗, y).
3. Set D∗(bx∗c, y)r = 1.

• Proceed analogously for vertical discontinuities.
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Figure 4.14: Downscaling discontinuity maps. The mannequin at the coarsest
level mainly consists of discontinuities.

We map all discontinuity labels of a certain level to new positions on the coarser
level. If we scaled the discontinuity maps down by performing a nearest neighbor
search instead, it would be very likely that closed discontinuity borders would
become interleaved. But the method presented also introduces a problem: If
the original normal-sized discontinuity map contains a lot of discontinuity labels,
the downscaled versions of this maps may only consist of discontinuities at the
coarsest levels (see figure 4.14). Therefore, a too low smoothness value might
be applied in the first outer fixed point iterations to most pixels. This could
seed large errors in the first estimations of the flow field and impair the final
result. We circumvent this issue by applying the discontinuity preserving flow
estimation at first when the image has reached a certain size. If an image of the
current level in the image pyramid is smaller than a certain percentage of the
original size, the general smoothness value αG is used for all pixels.

4.3 Conclusions

In this chapter we explained two techniques, which retrieve surface normals from
captured images under different illumination patterns. Both photometric stereo
and the gradient patterns produce accurate normal maps, whereas the latter
approach requires only four lighting conditions but a special lighting apparatus.
Moreover, we introduced the algorithm of Raskar et al. which extracts depth
discontinuities from shadow map images. Both information channels were easily
incorporated into our basic optical flow framework.
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If the objects in a scene do not move, the computation of surface normals and
depth discontinuity maps is rather simple. In the context of dynamic human
performances the acquisition becomes an issue because the differently lit images
can not be captured simultaneously. This and other results are discussed in the
following chapter.



Chapter 5

Evaluation

This chapter judges our hypothesis by comparing the flow fields created with
our extensions to the flow fields computed without the additional information
channels. The evaluation of an optical flow algorithm is not a trivial task. The
majority of the papers in recent literature evaluate the quality of their algo-
rithms by applying it to well-known synthetic test cases, whose ground truth
optical flows (see section 5.1.2) are known. This allows a convenient quantita-
tive analysis of the algorithms but these synthetic cases are usually too artificial.
Most of them are created in a way that many of the model assumptions (bright-
ness constancy assumption, etc.) hold, that displacements are small, or that
objects only underlie simple motion models. Since the application of optical
flow usually aims at processing real images the test cases should be as realistic
as possible. We created our own synthetic test cases and tried to focus on more
real situations containing a virtual subject.

Real images are more interesting for the evaluation since they introduce a lot
of problems. Beside the violations of the standard optical flow constraints (due
to specular materials, transparency, shadows, interreflections, etc.), they intro-
duce camera noise and/or compression artifacts. Unfortunately, one is usually
restricted to a qualitative analysis of the flow fields since no ground truth is
available and since there is no established metric to judge a flow field without a
ground truth. This makes it difficult or even impossible to compare algorithms
based on real images, which is just another reason why synthetic cases should
be close to reality.

The next section describes the algorithms which we use to render synthetic test
cases and to create a ground truth optical flow estimation. Section 5.2 explains
the error metrics for the quantitative analysis between the computed and the
ground truth flow fields. We evaluate our extensions on synthetic data in section
5.3. Section 5.4 judges our hypothesis on real images. Furthermore, we show
how our extended flow estimation can be incorporated into the context of Image
Based Relighting. A conclusion follows in section 5.5.

61
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As in section 3.6, we use a notebook with an Intel T2400 dual-core processor at
1.83GHz and 1GB working memory for our experiments.

5.1 Synthetic data

We developed a Win32 GUI application called GroundTruthRenderer, which pro-
vides the rendering of two subsequent frames of a sequence and the respective
ground truth optical flow between them. The user can load 3D models, which
may contain diffuse, specular and textured materials, and set them up in a scene
in two different poses and/or from two different camera viewpoints. After ar-
ranging both scenes the user triggers the creation of the synthetic data which
is explained in the following.

5.1.1 Renderings

This section describes the types of renderings which GroundTruthRenderer pro-
duces.

5.1.1.1 OpenGL standard and normal view

First of all GroundTruthRenderer outputs a standard OpenGL rendering of both
textured scenes in a user-selected resolution, where no lighting is used. More-
over, it creates the normal map of both views. Since the output of accurate
normal maps requires high precision the program renders all frames to a floating-
point texture, which is read out by the OpenGL function glReadPixels. Some
older graphic card drivers clamp negative values. Therefore, the components of
the normals are firstly rendered to the range of [0, 1] and then mapped to [−1, 1]
after extracting the respective color values.

5.1.1.2 Matte

GroundTruthRenderer also creates a matte for both frames, which separates the
foreground from the background. It is simply drawn by clearing the background
with black color and rendering all polygons of the model in white color without
lighting and textures.

5.1.1.3 OpenGL depth discontinuities

Our implementation provides the output of a precise depth discontinuity map.
Again OpenGL is used for that purpose. The scenes are normally rendered,
however this time the z-buffer is extracted. This is used to create a discontinuity
map as described in section 4.2: A pixel is marked as border of a discontinuity
if the difference of the z-buffer value between it and its adjacent neighbor is
beyond a certain threshold, which can be specified by the user.
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5.1.1.4 Noise

The user may optionally add Gaussian distributed noise to the output images
in order to simulate camera noise. Let I : N2 → R3 be an RGB image. The
noisy image I ′ : N2 → R3 is created by adding a Gaussian distributed random
variable to the color components:

I ′r(x) = Ir(x) + GaussianRandom(σR)
I ′g(x) = Ig(x) + GaussianRandom(σR)
I ′b(x) = Ib(x) + GaussianRandom(σR)

where the subscripts r, g, b refer to the red, green and blue color channel
respectively. GaussianRandom(σR) creates a random value depending on σR:
the larger σR the higher the amplitude of the noise. The function works as
follows, where n denotes the current number of calls to the function:

1. Generate two random numbers r1, r2 ∈ [0, 1) using the C function rand().

2. Compute the result:

GaussianRandom(σR) := σR ·

{√
−2 · ln(1− r2) · cos(2π · r1) if n is even√
−2 · ln(1− r2) · sin(2π · r1) if n is odd

5.1.1.5 PBRT

Beside OpenGL we support the external renderer from the book “Physically-
Based Rendering: From Theory to Application (PBRT)” [PH04] in order to
obtain more realistic renderings including global illumination. If desired by the
user, both frames are exported as so-called scene files and then sent to PBRT,
which creates the output images.

This feature is intended to render human models, which are placed in a vir-
tual lighting environment that samples the incident lighting of an environment
map. The program currently supports the simulation of Light Stage 6, which is
explained in appendix C, and Light Stage 5 (see [WGT+05] for further informa-
tion). We simulate the lighting apparatus by substituting each of the real light
sources with a virtual spotlight, which points to the center of the stage.

The user is requested to define the size and vertical offset of the human model.
Furthermore, one may choose between three different rendering techniques which
PBRT provides: Photon Mapping, Path Tracing and Irradiance Caching. We
preferred Irradiance Caching since it rendered faster than the other approaches
and created less noisy images. Our software allows to run multiple rendering
processes in parallel (in the case the used computer supports multi-processing).
PBRT outputs all images in a high-dynamic range (HDR) format.

GroundTruthRenderer supports the output of three types of PBRT renderings,
which are briefly explained in the following.
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Gradient normal maps The program supports the computation of normal
maps using the gradient pattern approach, which was described in section 4.1.2.
It produces the fully lit and the three gradient images, whereas the intensity
of the spotlights is adapted to the respective lighting pattern of the second
Spherical Harmonic band. Afterwards the output images are used to compute
the normal maps as described before.

Raskar depth discontinuities Finally GroundTruthRenderer provides a “less
synthetic” way to obtain depth discontinuities. It supports the creation of depth
discontinuity maps as elucidated in section 4.2.2. For this purpose the virtual
lighting environment is deactivated. Instead spotlights are set left, above, right
and below the camera in order to create the four “Raskar images”. After the
rendering the algorithm by Raskar et al. [RTF+05] is executed as explained
before. The user is asked to specify the low and the high threshold for the
hysteresis thresholding in advance.

5.1.2 Ground Truth Calculation

The term ground truth optical flow, which is often used in literature, denomi-
nates the motion field of a scene, i.e. the projection of scene motion onto the
image plane. The expression is contradictory since there might be multiple valid
optical flow fields in a scene, which we called apparent motion in the introduc-
tion. As stated before, optical flow is naturally ambiguous, whereas the motion
field is a strict geometric concept.

Nonetheless we need a way to quantify the accuracy of the flow algorithm.
In this section we present how GroundTruthRenderer generates a motion field
from the two synthetic scenes. We reduce the ambiguousness of our resulting
ground truth flow fields by using simple diffuse reflection in our scenes only.
Additionally, we label all ambiguous flow vectors as undefined and exclude them
from the evaluation. There are three situations in which the flow vector from
the first to the second frame is not defined at a particular position:

• The pixel is part of the solid background. We render our scenes on a black
background. The movement of a background pixel should be zero but all
other displacements leading to another background pixel are correct as
well.

• The pixel is occluded in the second frame.

• The pixel moves outside the image rectangle.

We want to point out again that in all cases it is possible to calculate the
motion field vector, however the optical flow vector is ambiguous and should
not be taken into account for the evaluation.
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5.1.3 The Idea

We follow a similar idea for the motion field computation as published by Galvin
et al. [GMN+98], whereas our approach additionally allows the deformation of
the objects in the scene. For each pixel P in the first frame the displacement to
the corresponding pixel in the second frame is calculated as follows:

1. Shoot a ray through pixel P in the scene and find the nearest intersection
P ′ with the surface of the model.

2. Find respective surface point Q′ in the second frame.

3. Project Q′ back onto the pixel coordinate Q in terms of the second view-
point.

4. The flow vector pixel at P is: u = Q− P

5. If pixel P is part of the (solid) background, occluded or moving out of the
frame, label it as undefined.

This principle is illustrated in figure 5.1. The object in the second frame may
be arbitrarily moved and deformed as long as the correspondences of the faces
are ensured, i.e. if the scene contains a mesh the topology of this mesh must be
the same in both frames.

P

P'

Q

Q'

Frame 1 Frame 2 u = Q - P

Figure 5.1: Principle of our ground truth estimation.

5.1.4 Implementation

Our algorithm follows the principle explained above but restricts the approach
to triangulated Wavefront OBJ models. As mentioned before, both models need
to have the same topology, which means that the model in the second view is
constrained to be a copy or deformed version of the model in the first one. We
retrieve the flow vector for a given pixel P = (x, y) as follows:
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Find viewing ray through P First the ray from the viewpoint through
the pixel P in the first scene is determined. The function gluUnProject of the
OpenGL Utility library (GLU)1 provides an easy way to calculate the unpro-
jected 3D point A on the near and B the far clip plane. The viewing ray is then
determined by x = A + λ(B −A).

Find surface intersection P ′ After that the nearest intersection of this ray
with the geometry is detected. In order to diminish the number of triangle-ray
intersection tests, an octree is used in our implementation. This reduces the
complexity of the search from O(n) to O(log n). P ′ is the intersection that is
closest to the viewer, i.e. its relative position λ on the viewing ray is smaller
(but larger than 0) than that of all other intersections.
The algorithm saves the index of the triangle n and the barycentric coordinates
α and β of the intersection P ′. If no intersection is found, this pixel is labeled
as undefined background pixel.

Find displacement Since the model in the second scene contains the same
topology as in the first one, the corresponding 3D position Q′ in the second view
can be easily determined by the triangle and the barycentric coordinates of the
intersection. Let TA, TB and TC be the points of n-th triangle of the second
model. Then Q′ = α·TA+β ·TB +(1−α−β)·TC . Using the view transformation
matrices of the second view and the GLU function gluProject Q′ is transformed
to the pixel coordinates Q. Now the displacement reads u = Q− P .

Check validity Finally, the algorithm checks if the flow vector at P is really
defined. First, it tests if Q is inside the image extension. If not, the pixel is only
visible in the first frame and, therefore, undefined.
Furthermore, our approach tests if the pixel is occluded. This is achieved by
shooting another ray through the pixel Q using the second view transformation.
Let R′ be the 3D intersection of this ray with the geometry. If the distance
‖R′−Q′‖ is beyond a certain threshold, Q is probably occluded and only visible
in the first frame. In this case it is also marked as undefined.

5.1.4.1 Speed optimization using face maps

The algorithm runs with a complexity of O(# of pixels·log(# of triangles)). We
support another way of computing ground truth, which lowers the complexity
to O(# of pixels + # of triangles) by modifying the ray-intersection tests. In-
stead of incorporating an octree we use OpenGL to render a face map for each
frame: each face is drawn with a unique color which encodes the face index.
Therefore, the face index n at a given pixel position P can easily be detected.
If a ray-intersection test is required for a given pixel P , we look up the face
index using the respective face map and obtain the barycentric coordinates of
the intersection by one ray-intersection test.

1See http://www.opengl.org/documentation/specs/ for more information.
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The use of face maps yields a significantly shorter runtime. But a major draw-
back of this approach is the limitation to a discrete pixel grid: we are only
able to look up faces at discrete pixel positions. When we shoot another ray
through pixel position Q, to determine whether the pixel is occluded or not,
we are limited to use the rounded pixel position Q̄. Even though Q′ is visible
in the second frame, it is possible that the intersection of the ray through Q̄
with the object is so far away from Q′ that it is considered as occluded. We
investigated that this causes aliasing effects: pixels at boundaries between faces
or on very small faces are incorrectly declared as occluded. In order to overcome
this problem we added an oversampling approach: The map of undefined pixels
is computed for a higher image resolution (usually about three times larger)
and then downsampled using a median filter. The median filter removes the
incorrect occlusion lines near boundaries, which are mostly one pixel in width.

The usage of face maps significantly increases the performance but the variant
which applies an octree is more precise and does not introduce aliasing artifacts
into the estimation of occlusions. Therefore, we use the octree technique in the
following chapters.

5.2 Error Metrics

This section explains quantitative and qualitative metrics, which are used for
optical flow evaluation. The former metrics are applied when a ground truth
flow field is available (synthetic images). The latter ones normally matter for
natural images.

5.2.1 Based on Ground Truth Flow

In case of synthetic data the ground truth flow is a good estimator for the quality
of the computed flow field. As described in section 5.1.2 the displacement of
some pixels is undefined due to occlusion, background or movement outside the
image area. We store this information in the void-map V : N2 → {0, 1} which
is defined as follows:

V (x) :=

{
1 flow vector at position x is undefined
0 otherwise

(5.1)

Let G : N2 → R2 be the ground truth flow field and F : N2 → R2 the flow field
that the optical flow algorithm generated from two synthetic renderings. The
ground truth error EGT (G, F ) is computed by first summing up the error of all
flow vectors between G and F . Afterwards the result is averaged by the number
of flow vectors that have been taken into account.

Thus, the ground truth error EGT (G, F ) is defined as

EGT (G, F ) :=
1
N

∑
x∈Ω

(1− V (x)) ·Θ(G(x), F (x)) (5.2)
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where Θ(g,u) detects the error between two vectors g and u. N =
∑

x∈Ω(1−
V (x)) represents the number of respected flow vectors. Additionally to the
ground truth error the standard deviation is obtained by

ẼGT (G, F ) :=

√
1

N − 1

∑
x∈Ω

(1− V (x)) · (EGT (G, F )−Θ(G(x), F (x)))2 (5.3)

In the following we present three ways to evaluate the error between two flow
vectors. Each metric assumes a third component t = 1 in the flow vectors, which
projects the vector one time step further.

5.2.1.1 Average Angular Error (AAE)

The function

ΘAE(g,u) := cos−1 g · u + 1√
((gu)2 + (gv)2 + 1) · ((uu)2 + (uv)2 + 1)

(5.4)

calculates the angular error between two flow vectors. This is the most com-
mon way to compare a calculated result with ground truth optical flow. As a
major drawback this measurement does not respect the magnitude of the flow
vectors. Even though this measurement is mostly applied in literature, the lack
of magnitude can create a false perception of quality, especially, if the ground
truth optical flow contains large displacements.

5.2.1.2 Average Magnitude Error (AME)

Analogous to the angular error

ΘME(g,u) :=
∣∣∣√(gu)2 + (gv)2 + 1−

√
(uu)2 + (uv)2 + 1

∣∣∣
1

(5.5)

determines the magnitude error between two flow vectors. Since the angle be-
tween the vectors is not respected, this measurement is apparently insufficient
as well.

5.2.1.3 Average L2 Error (AL2E)

The L2 norm between two vectors

ΘL2(g,u) := ‖uG − uF ‖ (5.6)

incorporates the angle and the magnitude of two vectors into the error esti-
mation. We will use this metric as primary estimator for evaluation based on
ground truth.

5.2.1.4 Conclusion

Ground truth evaluation is the best estimator for synthetic data. However, one
should keep in mind that ground truth is not the only correct flow in general.
If a surface is weakly textured, there are usually multiple solutions possible.
The L2 norm matches our needs the best way since it includes the angular and
magnitude information of the flow vectors.
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5.2.2 Based on Backwarped Image

If optical flow is computed on real images, ground truth optical flow is usu-
ally not available. Since in these cases the flow calculation mostly intends to
create a perceptually correct flow rather than a mathematically correct one,
the backwarped image is a potential way to determine the quality of a flow.
The backwarped image is created by warping the second frame onto the first
one by adding the computed displacements. Let I1 : R2 → R2 be the first and
I2 : R2 → R2 the second image. Furthermore, let F : N2 → R2 be the calculated
flow field. Then the backwarped image IB : N2 → R2 is defined as:

IB(x) := I2(x + F (x)) (5.7)

The difference between the first image I1 and the backwarped image IB de-
termines the size of the error based on the L2 norm. Similar to the ground
truth evaluation the backwarped image error EBW is computed by averaging
the errors of all pixels in the image:

EBW (I1, IB) :=
1
N

∑
x∈Ω

‖I1(x)− IB(x)‖ (5.8)

where N denotes the number of pixels. Furthermore, the standard deviation is
calculated:

ẼBW (I1, IB) :=

√
1

N − 1

∑
x∈Ω

(EBW (I1, IB)− ‖I1(x)− IB(x)‖)2 (5.9)

The backwarped image is an easy way to estimate the visual correctness of a
flow computation. Nevertheless, this estimator causes two issues which should
be borne in mind. Firstly, changes in illumination, occlusions, appearances
and disappearances between both frames increase the error value. Thus, even
if the flow field is perfectly correct, the error will hardly be zero. Secondly,
a small error value does not necessarily imply that the flow field is correct.
The error metric only states if the pixel values of both frames match. This
is easily obtained by applying a very small smoothness parameter to the flow
calculation. Obviously such a parameter would cause points to move more or
less independently from each other. Therefore, the user should make sure that
the flow field is adequately smooth before analysing this error value.

5.2.3 Based on Morph Sequence

In many cases optical flow is used to create intermediate images between two
frames, e.g. for motion compensation. Therefore, it is reasonable to judge the
quality of a flow field by the perceptual correctness of these intermediate images.
This chapter illustrates three different ways to compute them.

Let I0 be the first and I1 the second frame. The following algorithms create
intermediate frames =t, where t ∈ [0, 1] determines the interpolation factor. Let
F0→1 be the flow field from the first to the second and F1→0 the flow field from
the second to the first frame.
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5.2.3.1 Splatting

Splatting is the most intuitive way to render the transition between two frames
using optical flow. The pixels in the first frame are moved to their positions
in the second frame using their respective flow vectors. The intermediate po-
sition of a pixel x in the original image is easily computed in terms of linear
interpolation:

p(x, t) := x + t · F0→1(x) (5.10)

Moreover, the approach linearly blends the color of the pixel between the first
and the second frame:

c(x, t) := (1− t) · I0(x) + t · I1(x + F0→1(x)) (5.11)

The moving pixels are rendered as so-called splats in order to avoid holes in the
intermediate frames. The following function determines the final color at pixel
position x in the intermediate image.

=t(x) := ω ·
∑
xI∈Ω

ρ(‖x− p(xI , t)‖2) · c(xI , t) (5.12)

where ω = 1/(
∑

xI∈Ω

ρ(‖x− p(xI , t)‖2)) is a normalization factor.

In our implementation we use the quadratic filter kernel ρ(d) :=
(

1
0.2+d

)2
.

In order to increase the performance, we limit the kernel window to a small
quadratic area around the pixel. Additionally rather than searching for all
pixels in the neighborhood of x we go the other way round: First, we clear the
intermediate image = with black. Afterwards all pixels of the original images
are translated to their positions at time t and add their weighted color to the
pixels around that position within the kernel window. After normalization the
image represents the intermediate frame.

5.2.3.2 Bidirectional Splatting

If parts of objects appear in the second image, which were not visible before,
the splatting approach will probably produce holes since there is no pixel corre-
spondence between the two frames for these areas. Though, an increased kernel
window avoids the holes to be black, they are filled with wrong color values of
distant pixels. Bidirectional splatting fills holes due to appearance by incorpo-
rating the flow field in the opposite direction. Pixels which appear from the first
to the second frame disappear from the second to the first one. Accordingly, the
necessary color information is available.

Bidirectional splatting applies the simple splatting approach in both directions
and interpolates between them. Therefore, the flow field F1→0 is also required.
We generalize the position and the color interpolation function to arbitrary flow
fields from frame i to j:

p(x, t)i→j := x + t · Fi→j(x) (5.13)
c(x, t)i→j := (1− t) · Ii(x) + t · Ij(x + t · Fi→j(x)) (5.14)
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The intermediate image is then calculated by:

=t(x) := ωBD ·
∑

xI∈Ω

( ρ(‖x− p(xI , t)0→1‖2) · c(xI , t)0→1 +

ρ(‖x− p(xI , 1− t)1→0‖2) · c(xI , 1− t)1→0 )

where

ωBD = 1/

 ∑
xI∈Ω

ρ
(
‖x− p(xI , t)0→1‖2

)
+

∑
xI∈Ω

ρ
(
‖x− p(xI , 1− t)1→0‖2

)
again normalizes the color accumulation.

This approach avoids holes due to appearance. However, it only works satis-
fyingly if the flows in both directions are consistent. If the correspondences
are not correct, the respective bidirectional splats interfere with each other and
cause noisy intermediate images.

5.2.3.3 Sampling

Both of the previous approaches can still produce holes in the intermediate image
since splatting does not map the pixels in a bijective matter: multiple pixels
can be mapped to one position. The sampling approach produces intermediate
images which do not contain any holes by the following function:

=t(x) := (1− t) · I0(x− t · F0→1(x)) + t · I1(x− (1− t) · F1→0(x))

This approach assumes that the flow field is rigid. Strictly speaking, given a
flow field F the equation F (x) = F (x − F (x)) must hold. Even though its
assumption is never correct in practice, this approach produces visually good
results for small displacements.

The simple splatting approach is the best way to visually evaluate the correct-
ness of a flow field. The two other approaches produce visually better images,
which is particularly useful to align frames in a sequence (see section 5.4.2.1).
A drawback of all methods which are based on morphing is the lack of a mathe-
matical model to evaluate the intermediate images. Thus, it requires the viewer
to have a good conception of the correct flow.

5.3 Synthetic Data

In this section we judge the quality of our enriched optical flow algorithm based
on synthetic renderings and calculated ground truth optical flow. For each
frame of an experiment we produce three kinds of renderings: the standard
views, which exhibit the scene using texture maps and illumination, the normal
maps and the depth discontinuity maps.
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In each experiment we firstly compare three different input configurations.

1. Color: The three color channels of the standard views (red, green, blue)

2. Normal: The three channels of the normal map (x, y, z)

3. Color + Normal: The combination of the standard views and the normal
maps which results in six input channels.

Furthermore, we test the influence of our binary depth discontinuity maps to the
flow quality. We balance the input channels as a preprocessing step in order to
apply the same data weight for all channels (γi = 1, see equation 3.10 in section
3.3): The components of the normal maps are mapped to [0, 1] (offset gray).
Moreover, since PBRT creates HDR images, we normalize the standard views:
we divide each color channel by its maximum value in both views in order to
scale the high-dynamic range images down to [0, 1]. We found the approximately
“best” smoothness value for each input setting by binary search in the L2 error
function as the relation between smoothness and L2 error is roughly a convex
function (see section 3.6). All flow fields were computed by using the scale factor
η = 0.9, five inner fixed point iteration and 100 SOR iterations.

5.3.1 Static Scene

This subsection deals with synthetic static scenes where only the viewpoint
changes. The problem of finding the displacements in such a scene is known as
stereo matching.

5.3.1.1 Poser Model

First of all, we rendered a synthetic Poser Model in 336×477 pixels and slightly
rotated the camera from the first to the second frame. We used PBRT to create
two fully lit standard views and two normal maps using the gradient approach
as explained in sections 4.1.2 and 5.1.1.5. Next the color range of the standard
views and the normal maps are balanced as explained above. You can see the
resulting renderings in figures 5.2a-b.

Moreover, we obtain the depth discontinuities by the Raskar shadow images
as explained in section 5.1.1.5 with a low threshold of εLow = 1 and a high
threshold of εHigh = 1.5. Since the background is black and does not exhibit
any shadows, we enrich the depth discontinuity maps with the discontinuities
in the background mattes in order to obtain the external discontinuities (the
silhouette) as well. As mentioned before, we can easily render the mattes using
OpenGL (see figure 5.2c). We add a depth discontinuity wherever the discrete
derivative of the matte is non-zero. The final depth discontinuity maps are
shown in figure 5.2d. The ground truth estimation based on the ray-tracing
technique and the corresponding void-map, which excludes all undefined pixels,
can be viewed in figure 5.3.



5.3. SYNTHETIC DATA 73

(a) (b) (c) (d)

Figure 5.2: Static scene with synthetic Poser model and changing viewpoint.
Top: First frame. Bottom: Second frame. (a) PBRT rendering after normal-
ization. (b) PBRT gradient normal maps in grayscale. (c) Mattes. (d) Depth
discontinuities created with Raskar’s shadow approach and the silhouette of the
matte.

(a) (b)

Figure 5.3: (a) Ground truth optical flow. (b) Void-map where white pixels
correspond to undefined pixels.

Table 5.1 compares the average angular errors in degree (AAE), the average
magnitude errors (AME) and the average L2 norm errors (AL2E) of the com-
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puted flow fields using the different input configurations. Apparently, running
the flow algorithm on the normal maps produces a better result than using the
standard views only. The normal map gives a better clue about the surface of
the model than the weak texture on the shirts and the trousers. Consequently,
the correspondence between the frames can be determined more precisely. The
combination of color and normal results in an even better flow. The six input
channels seem to complement each other: if the structure of the texture is weak,
the normal map might help. Vice versa, if the normal map information is in-
sufficient to find a reliable displacement, the texture information supports the
estimation.

Input Channel AAE AME AL2E Smoothness RT
Color 5.065 (0.280) 0.652 (1.432) 0.924 (2.036) 0.011758 36.1s
Normal 3.263 (0.206) 0.410 (0.935) 0.581 (1.373) 0.018124 36.3s
Color + Normal 3.195 (0.222) 0.337 (0.915) 0.514 (1.536) 0.013799 39.6s

Table 5.1: Results of the flow computation using different input channels at
static Poser scene. The brackets refer to the standard deviations.

Interestingly, the additional three image channels in the “Color + Normal” mode
just slightly increase the run-time (RT) by about 3.3 seconds. The creation of
the additional image pyramids for the extra channels takes about 0.8 seconds,
where the remaining 2.5 seconds are consumed by the minimization process.

Finally, we repeated the flow estimation using the depth discontinuity maps,
where we kept the global smoothness value as general smoothness (αG = αGl).
We used a lower boundary smoothness weight αB, which is at least half of the
global smoothness value. As in all following experiments we started to apply
the discontinuity maps up from 20% of the image resolution. Table 5.2 displays
the results.

Input Channel AAE AME AL2E αB RT
Color 4.527 (0.267) 0.486 (1.165) 0.747 (1.780) 0.002879 36.0s
Normal 3.209 (0.214) 0.373 (1.011) 0.552 (1.621) 0.009062 36.3s
Color + Normal 2.899 (0.201) 0.309 (0.874) 0.471 (1.381) 0.006899 39.5s

Table 5.2: Results of the flow computation using different input channels at
static Poser scene with depth discontinuities.

In all cases the knowledge about the depth discontinuity maps significantly re-
duces the L2 error, especially at the right arm of the model. Figure 5.4 illustrates
the impact of these maps. The error of the flow estimation is effectively reduced
at the boundaries but the runtime does not noticeably change due to the depth
discontinuity maps.
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Figure 5.4: Comparison between flow with and without discontinuities. (a) L2

error without discontinuities. (b) L2 error using discontinuities. (c) Binary
quality comparison map. Green: Flow without discontinuities yields lower L2

error. Blue: Flow with applied discontinuities produces lower error.

5.3.1.2 Grand Canyon Scene

We compared the influence of the input channels on a second static scene similar
to the popular “Yosemite sequence” 2. We refrained from testing that sequence,
which is commonly used in literature, because no normal maps were available.
In addition, the published ground truth field seemed to be erroneous [BBW06].

We created a 3D model of the Grand Canyon national park by using the high
map and texture map published in Hoppe [Hop98] 3. We rendered the canyon
and its normal maps from two viewpoints in 480 × 360 pixels using OpenGL.
The camera in the second view is moved forwards and slightly turned. We added
Gaussian noise with σR = 0.02 (see section 5.1.1.4) to the standard views and
the normal maps. We obtained the depth discontinuity map by evaluating the
z-buffer as described in section 5.1.1.3 using the depth discontinuity threshold
εD = 6 · 10−5. You can see all renderings in figure 5.5.

The quality measurement over the whole image is dominated by the large errors
in the bottom right part. Since we want to obtain a good impression of the qual-
ity difference induced by the different input channels, we restrict the calculation
of the flow errors to the top part of the image (see red rectangle in figure 5.6).
Table 5.3 shows the results of the quality estimation depending on the different
image channels. Figure 5.7 exhibits the corresponding error images, which map
each flow vector to its L2 error value. Even though running the optical flow
algorithm on the normal channels yields a worse average L2 error than on the
standard views, it finds better correspondences in the top left and the bottom
right part of the image (figures 5.7a-b). Figure 5.7c illustrates this difference:

2The Yosemite sequence can be downloaded at http://www.cs.brown.edu/ black/.
3You can find the source maps at ftp://ftp.research.microsoft.com/users/hhoppe/data/gcanyon/.
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(a) (b) (c)

Figure 5.5: Static scene with Grand Canyon model and changing viewpoint. (a)
Standard views. (b) Offset gray normal maps. (c) Depth discontinuities.

In all green areas the optical flow based on the color maps yields a better result.
Vice versa, in the blue areas the normal maps produce better results. Again
we obtain the best result by combining the standard views and normal maps.
Apparently, both channels complement each-other as shown in figures 5.7c-d.

Input Channel AAE AME AL2E Smoothness RT
Color 1.309 (0.045) 0.551 (1.617) 0.769 (1.907) 0.025536 39.2s
Normal 1.367 (0.091) 0.657 (2.890) 0.873 (3.374) 0.029663 39.2s
Color + Normal 0.960 (0.063) 0.393 (1.495) 0.548 (1.806) 0.042576 42.9s

Table 5.3: Results of the flow computation using different input channels at
static Grand Canyon scene.

Figure 5.6: Ground truth of Grand Canyon scene. Left: Ground truth optical
flow. Right: Void map. Our region of interest is marked by the red rectangle.
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Input Channel AAE AME AL2E αB RT
Color 1.281 (0.046) 0.532 (1.618) 0.746 (1.909) 0.012768 39.6s
Normal 1.276 (0.082) 0.617 (2.838) 0.819 (3.223) 0.021288 39.3s
Color + Normal 0.942 (0.063) 0.353 (1.276) 0.509 (1.619) 0.014831 42.9s

Table 5.4: Results of the flow computation at static Grand Canyon scene with
depth discontinuities.

(a) (b)

(c) (d)

Figure 5.7: L2 error maps of flow fields for Grand Canyon scene. Used image
channels: (a) Colors only. (b) Normals only. (c) Binary comparison map.
Green: L2 error using colors is lower. Blue: L2 error using normals is lower.
(d) Color and normals.

Again we applied the depth discontinuity maps in a second pass. As stated in
table 5.4, these maps slightly improve the flow estimation. The improvement is
not as strong as before: The discontinuity boundaries in flow fields are sharpened
but the robust statistic in our basis optical algorithm already preserves these
discontinuities quite well.

5.3.2 Dynamic Subject

We executed the same experiment as in section 5.3.1.1 using a Poser model but
this time we kept the viewpoint constant while deforming the model. We ren-
dered two intermediate frames of a running animation. Figure 5.8 exhibits the
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renderings. The corresponding ground truth optical flow and the void-map are
shown in figure 5.9.

(a) (b) (c) (d)

Figure 5.8: Dynamic scene with moving Poser model and static viewpoint. Top:
First frame. Bottom: Second frame. (a) PBRT rendering after normalization.
(b) PBRT normal maps in grayscale. (c) Gradients of normal maps. (d) Depth
discontinuities created with Raskar’s shadow approach and the silhouette of the
matte.

Table 5.5 compares the quality of the optical flow using different input chan-
nels. The flow calculation on the normal maps produces significantly worse
results than the computation on the standard views. This is not surprising
since the deformation of the model implies that the surface normal constancy
assumption is violated: the surface normals change from one frame to the next.
Consequently, the algorithm cannot find the right correspondences. A combi-
nation of the color and the normal images produces slightly better results but
probably because the color channels partly compensate the errors induced by
the normal map.

Input Channel AAE AME AL2E Smoothness RT
Color 8.188 (0.302) 0.643 (1.276) 1.082 (1.684) 0.014824 52.991s
Normal 13.414 (0.298) 1.117 (1.311) 2.056 (1.963) 0.036777 53.045s
Color + Normal 10.486 (0.315) 0.847 (1.140) 1.450 (1.760) 0.022383 58.291s
∇ Normal 7.399 (0.200) 0.662 (1.242) 1.374 (2.033) 0.004516 54.391s
Color + ∇ Normal 8.434 (0.315) 0.591 (1.154) 1.055 (1.634) 0.022383 58.259s

Table 5.5: Results of the flow computation using different input channels at
dynamic Poser scene.

Running optical flow just on the normal maps does not help if the subject
is deformed. However, a new constraint, which we call the surface gradient
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(a) (b)

Figure 5.9: Dynamic Poser model. (a) Ground truth optical flow. (b) Void-map.

constancy assumption, might hold: the derivative of the normals should be
invariant at parts of the object, which rigidly move. We tested this idea by
running the optical flow on the gradient images of the normals instead of on the
normals themselves. The gradient image encodes the magnitude of the image
gradients per color channel. The results are listed in table 5.5 as well.
The normal gradient maps yield better results than the normal maps but they
do not outperform the flow fields running on the standard views only (see figure
5.10). The flow field on the gradient images contains lower L2 errors at the hip
and the head but the normal derivatives strongly change on the legs and the
arm, which gives rise to high errors in these areas. Combining the color and the
normal gradient channels yield an slightly better average L2 error because the
displacements at the head are more precise (figure 5.10d).

There are some situations where the gradient of the surface normals can never
support the flow estimation. If a surface is deformed at some place the respective
normals and their derivatives change. The normal gradient may only improve
the result at rigidly moving parts. Moreover, the gradient of the normal is not
invariant under perspective foreshortening, e.g. when an object is turned away
from the user.

Input Channel AAE AME AL2E αB RT
Color 8.097 (0.302) 0.599 (1.201) 1.028 (1.613) 0.007412 52.9s
∇ Normal 7.435 (0.205) 0.651 (1.218) 1.350 (2.036) 0.001258 53.8s
Color + ∇ Normal 8.430 (0.316) 0.566 (1.111) 1.034 (1.609) 0.006201 57.7s

Table 5.6: Results of the flow computation using different input channels at
dynamic Poser scene with depth discontinuities.
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We finally applied the depth discontinuity maps. The results are shown in table
5.6. Although the average L2 error is just slightly lowered, the flow fields are
noticeably advanced on the right arm of the model of the running subject as
shown in figure 5.11. The flow field becomes piecewise smooth at the arm which
visibly improves the flow estimation.

5.4 Real Data

Synthetic test cases are usually very idealized and fulfill assumptions that are
commonly violated in natural images. This section deals with optical flow esti-

(a) (b)

(c) (d)

Figure 5.10: L2 error maps of flow fields for dynamic Poser model scene. Used
image channels: (a) Colors only. (b) ∇ Normals only. (c) Binary comparison
map. Green: L2 error using colors is lower. Blue: L2 error using normal
gradients is lower. (d) Color + ∇ Normals.
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Figure 5.11: Influence of discontinuity maps to the flow estimation based on
standard views (cropped area). Top: Flow fields. Bottom: L2 error maps. Left:
Without discontinuity maps. Right: With discontinuity maps.

mation on natural images. Again, we distinguish between static scenes (stereo
matching) and dynamic scenes.

5.4.1 Static Scene

We captured a static mannequin wearing street clothes from different view-
points using the Light Stage 6 apparatus (see appendix C) under different light-
ing conditions. From the first to the second frame the camera slightly rotates
counter-clockwise around the y-axis of the stage. We create the standard views
by activating all lights in the stage. The normal maps are created with the gra-
dient approach described in section 4.1.2. We cropped the resulting images to
a resolution of 603× 1201. Moreover, we manually matted out the background
because it varies strongly from one viewpoint to the next and could bias the
flow estimation. You find all images in figure 5.12. Since no ground truth is
available, the global smoothness value cannot be found using binary search. We
empirically determined an appropriate smoothness value (αGl = 0.05) by eval-
uation of the resulting splatting sequences (see section 5.2.3.1). Furthermore,
we chose a high scale factor of η = 0.95 and computed the flow fields with five
inner fixed point iteration and 200 SOR iterations.
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(a) (b) (c) (d)

Figure 5.12: (a)-(b) Standard views of both frames. (c)-(d) Normal maps of
both frames.

The flow computation on the standard views or the normal maps took about
ten minutes (606 seconds), where the estimation on the combination of all input
channels needed nearly 11.5 minutes (683 seconds).

The resulting flow fields are shown in figure 5.13. Both, the color and the nor-
mal channel, find roughly the correct displacements to the left but the flows
based on the color information produces serious errors on the right arm of the
mannequin. Due to the repetitive texture, the optical flow algorithm is not
capable to find the right correspondences on that limb (figure 5.13a). However,
the normal maps provide enough unique structural information to determine
the right displacement as shown in figure 5.13b: the bright green area indicates
the large flow vectors of the arm, which is nearer to the camera than the other
body parts and, therefore, moves faster due to the rotation. Furthermore, the
normal maps create a more rigid flow field on the back and at the legs of the
mannequin. The combination of both, color and normal maps, gives rise to a
rigid flow field in most body parts but the right arm still presents noticeable
issues due to the errors, which are introduced by the color map (figure 5.13c).

This experiment is an extreme case in which the repetitive texture structure –
the stripes on the shirt of the mannequin – irritates the optical flow estimation,
even though a high scale factor is chosen, which ensures a smooth transition
between the different scales of the coarse-to-fine approach. In this case the nor-
mal maps contain distinct clues for the displacements of the surface points and
should be preferred to the standard views. Of course, the opposite situation is
imaginable: a repetitive normal map structure in combination with a nonrecur-
rent texture pattern. Accordingly, the importance of the standard views and
the normal maps should be weighted depending on the objects in the scene.
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(a) (b) (c)

Figure 5.13: Flow fields depending on input channels. (a) Colors. (b) Normals.
(c) Colors + Normals.

(a) (b)

Figure 5.14: Application of depth discontinuities. (a) Depth discontinuity map.
(b) Flow using colors, normals and depth discontinuity map.



84 CHAPTER 5. EVALUATION

We manually created a simple depth discontinuity map for this dataset which is
shown in figure 5.14a. We then repeated the experiment using color and normal
information but applied this discontinuity map using the boundary smoothness
value αB = 0.001. The calculation needed 676 seconds, i.e. again there is no
significant run-time difference to the computation without depth discontinu-
ities. Figure 5.14b exhibits the result. The discontinuity maps yield a piecewise
smooth flow field and correct the errors at the arm introduced by the wrong
color matching. They avoid the area around rigidly moving objects to bias the
flow estimation.

5.4.2 Dynamic Subject

For a final evaluation, we treat natural images of moving subjects. This case is
non-trivial since the normal and discontinuity maps cannot be retrieved simul-
taneously. If the subject moves, the acquired standard views, the normal maps
and the depth discontinuity maps are shifted in time, i.e. we are working on
time demultiplexed data. In this section we firstly introduce a field of application
where optical flow crucially contributes to its success. Secondly, we explain our
test data, a shoot of a human performance captured with a high speed camera.
Afterwards we present an optical flow framework which processes this data and,
finally, we discuss the results.

5.4.2.1 Image Based Relighting and Optical Flow

Image Based Relighting (IBR) is a research field of Computer Graphics which
generates photo realistic images while refraining from the creation of 3D models.
Usually, a subject is illuminated and captured under a set of light conditions, the
so-called lighting basis. This basis samples the incident lighting from each direc-
tion of a (hemi)sphere. Due to the linear property of light the light conditions
can be weighted and added up in order to obtain an arbitrary illumination of the
subject. This technique is explained fundamentally in [DHT+00], [HWT+04],
and [WGT+05].

IBR can easily be applied to static scenes, which do not contain any motion at
all. The scene is captured under the whole lighting basis and a linear combina-
tion of the acquired images yields the relit result. This is illustrated in figure
5.15.

However, as soon as a subject moves the problem becomes complicated: The
subject changes the position from frame to frame, which means that the light-
ing conditions are not aligned. If the images are simply added up, the resulting
images look considerably blurred, even if the subject is shot at a high frame rate.

Optical flow helps to solve the problem of dynamic scenes as demonstrated in
figure 5.16. So-called tracking frames are added to the lighting conditions in a
certain interval. Tracking frames are images in which the subject is uniformly
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lit from all directions, and hardly contain any shadows. The latter is important
since brightness changes between tracking frames are undesirable for the next
step: The optical flow fields between the tracking frames are computed.

0 1 2 3 4 5 6 7

Figure 5.15: Principle of Image Based Relighting. A scene is captured under
different light conditions. The resulting images (yellow boxes) are then linearly
combined to obtain an arbitrary relit version of the scene (light blue box).

5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2

Figure 5.16: Tracking frames (red boxes) are added between the lighting basis.
The flows (red arrows) between these tracking frames are used to temporarily
align (blue arrows) all frames of the lighting basis (yellow boxes).

In the following procedure these flow fields are used to temporarily align the
neighbored frames to the tracking frame. Let Ii

T and Ii+s
T be two subsequent

tracking frames where s− 1 is the number of lighting conditions between these
frames. Furthermore, let Ii+k be a regular frame (0 < k < s). We linearly
interpolate the optical flow between the two tracking frames, i.e. we assume that
the flow from Ii+k to Ii+s

T equals k
s -th of the flow from the tracking frame Ii

T to
tracking frame Ii+s

T . This applies analogously to the flow in the other direction.
The idea is illustrated in figure 5.17. Apparently, the linear interpolation is only
valid if the motion between the tracking frames is linear. Thus, the tracking
frames should not be placed too far from each other. Using the interpolated flow
frame Ii+k can be aligned to the next tracking frame, e.g. using the backwarp
approach in section 5.2.2 in order to multiplex the frames to one point in time.
In the easiest case the tracking frames are placed in the beginning of each
lighting basis. If the basis contains a lot of lighting conditions, it is sensible
to add additional tracking frames within the basis vectors. Subsequently, a
two-stage alignment approach is applied as visualized in figure 5.18. Firstly, all
frames are aligned to their nearest tracking frames as just described. Then the
flow fields between the tracking frames and a particular output frame, which
exists once per lighting basis, are computed. These fields are finally used to
warp the prealigned frames to the output image.



86 CHAPTER 5. EVALUATION

i-2 i-1 i+1 i+2 i+k-1 i+k i+k+1 i+s-2 i+s+1 i+s+2i+s-1 i+si

k
s
⋅i is

i is

is i
1− k

s
⋅is i

Figure 5.17: A frame in the sequence, Ii+k, is aligned to the adjacent tracking
frames, Ii

T and Ii+s
T , using the linear interpolation (blue arrows) of the tracking

frame flows (red arrows).

13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2

Figure 5.18: Again, tracking frames (red boxes) are added within the lighting
basis. First the frames are aligned (blue arrows) to their next tracking frames.
Afterwards these prealigned frames are warped (brown arrows) to the final out-
put frames (hatched boxes).

5.4.2.2 The Idea

In this experiment we compare the tracking frame technique as explained above
with extended tracking frame alignment : we add auxiliary frames next to the
full-lit tracking frames which provide normal and depth discontinuity maps.
These frames are aligned to the tracking frame and used to improve the op-
tical flow estimation (see figure 5.19). Consequently, we compare the regular
flows between the tracking frames with the flows of the enriched tracking frames.

Figure 5.19: Extended tracking frame alignment. Additional frames (green) are
added next to the tracking frames to enrich the flow estimation.
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5.4.2.3 Data acquisition

We captured a moving subject in the Light Stage 6 (see appendix C) using
a Vision Research Phantom V10 high-speed camera. The subject is running
on a treadmill while being illuminated under different lighting conditions. Our
lighting basis consists of nine different illumination patterns as illustrated in
figure 5.20. Each lighting condition requires the activation of at least 15 light
sources to provide a sufficient exposure. The lighting basis contains:

• Four patterns in order to produce the Raskar discontinuity maps. The
patterns contain light sources directly left, above, right, and below the
camera respectively. Since one single light source is not bright enough,
we approximate the flash light sources next to the camera by strips of 15
activated light sources in each direction.

• One full-lit pattern, the tracking frame.

• Five photometric stereo patterns. Again, we need multiple light
sources to provide a sufficient brightness. We enable five distinct circles
of 15 light sources to simulate directional lights.

L R U D T 1 2 3 4 5

Raskar frames Photometric 
stereo frames

Tracking frame

jj-1 j+1

Figure 5.20: Lighting basis consisting of nine lighting conditions: four Raskar
frames, one full-lit frames and five photometric stereo frames.

Figure 5.21 visualizes which light sources are activated per lighting condition.
Furthermore, figure 5.22 exhibits one sample sequence taken under all lighting
conditions. We shoot the performance using a 28mm lens at the aperture of
f/2. The images are acquired at 300 frames per seconds. Each frame is exposed
for 3100µs, which results in an unused interval of 233µs (3100µs+233µs = 1s

300).

Before the subject begins to perform, we shoot a clean-plate by capturing the
scene without the subject. The clean-plate is used to obtain a matte, which dis-
tinguishes our subject from the background. Commonly, the matte is used to
remove the background when the subject is relit in the context of Image Based
Relighting. In our case we retrieve the external discontinuities from it in order
to avoid the background noise to distract the flow estimation.

The treadmill starts about one minute before the camera begins the data ac-
quisition. The subject may use this period to adapt himself to the running
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performance. Then the person is signaled by a special lighting pattern five
seconds before the recording.

5.4.2.4 Color correction

Beside the clean-plate we shot a session reference in advance. The lens is covered
by its cap and the resulting black level is recorded which the camera subtracts
from the output images in order to reduce noise effects and to map black pixels
to the origin of the RGB color space.

(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10)

Figure 5.21: Lighting basis. Each representation exhibits which light sources
are activated in each frame (red spheres) and which are not (gray spheres). The
lighting conditions are arranged around the camera (blue rectangle). (1)-(4)
Raskar pattern, (5) Tracking frame, (6)-(10) Photometric stereo frames.

Figure 5.22: Sample sequence captured under the entire lighting basis



5.4. REAL DATA 89

In addition, we perform a color correction using a MacBeth color chart, a palette
of colors whose ground truth color values are known. Figure 5.23b displays the
ground truth MacBeth color charts and figure 5.23a shows the chart as we
acquired it with a high speed camera. We compute a linear map between the
acquired and the ground truth color values by finding the least-squares match.
This results in a 3× 3-matrix MC :

MC =

 2.918764 −0.829588 −0.154388
−0.372775 1.441435 −0.055011
−0.010895 −1.125107 2.425955



All pixels in the image sequence are transformed with this matrix. Figures 5.23c
and 5.24 exhibit the difference between the raw and the color-corrected images.

(a) (b) (c)

Figure 5.23: MacBeth color charts. (a) Captured MacBeth chart. (b) Ground
truth. (c) Color-corrected version of acquired MacBeth chart.

Figure 5.24: Color correction. Left: Raw image. Right: Corrected image using
color matrix MC .
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5.4.2.5 Algorithm

This subsection explains the algorithm which we use to evaluate the flows on ex-
tended tracking frames. The procedure is sketched in figure 5.25. We computed
all flow fields using the scale factor η = 0.9, five inner fixed point iterations and
100 SOR iterations.

L R U D T 1 2 3 4 5 L R U D T 1 2 3 4 5

L R U D T 1 2 3 4 5 L R U D T 1 2 3 4 5

L R U D 1 2 3 4 5 L R U D 1 2 3 4 5T T

Figure 5.25: Extended flow estimation. Top: Basic flow estimation. Middle: All
frames are aligned to the tracking frame. Bottom: Flow is recomputed using
enriched tracking frame.

Basic flow estimation Firstly, all flows between subsequent frames of the
same type are computed in both directions using a global smoothness value of
αGl = 0.02. Formally spoken, for a given frame Ii we compute the flow fields
Fi→i+10, Fi+10→i, Fi−10→i, and Fi→i−10, where Fi→j denotes the flow field from
frame i to frame j.

Tracking frame alignment Consequently, all frames are warped to the track-
ing frame. Let Ii be the i-th frame in the sequence, and w.l.o.g. i mod 10 ≥ 5.
Ii is aligned to the tracking frame iT = i + 10 − (i mod 10) using the flow
fields Fi→i+10 and Fi+10→i. In order to warp the frame i to the iT , we apply
the interpolation factor t = (10−(i mod 10)) mod 10

10 to the bidirectional splatting
algorithm (section 5.2.3.2). Since the displacements in the sequence are rather
large, bidirectional splatting produces perspicuously better intermediate images
than the sampling approach (section 5.2.3.3).
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Background matte If a clean-plate C is available, the computation of a
matte from a given reference frame I is rather simple in theory: the color
differences between the pixels of C and I are computed, and all differences which
exceed a predefined magnitude correspond to foreground pixels. In practice we
face several issues: the first is sensor noise, which slightly changes the pixel value
in each frame. Secondly, the subject reflects light to the background, which
makes a simple pixel comparison inappropriate. Finally, we have a heuristic
problem according to the feet: the treadmill is slightly pushed down when a
subject stands on it. Moreover, its belt is permanently moving which makes it
impossible to detect a matte by thresholding color differences in these areas. Our
matting algorithm is illustrated in figure 5.26 and described in the following.
White pixels in the matte correspond to the foreground, black pixels to the
background.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.26: Our matting algorithm, (a) clean-plate and (b) reference image are
given. (c) Confidence map based on 3× 3 window comparison. (d) Confidence
map after removing pixels in hue of treadmill. (e) Low threshold map. (f) High
threshold map. (g) Matte after hysteresis thresholding. (h) Final result after
removing white spots and filling gaps.
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1. Confidence map At first we compute a confidence map, which represents
the magnitude of the color differences between the clean-plate and the
reference frame. We use the L2 distance between the corresponding RGB
color vectors as error metric. In order to reduce the impact of noise, we
compare the average error on a 3× 3 window rather than one single pixel.
You find the confidence map in figure 5.26c.

2. Treadmill belt We furthermore remove large parts of the belt by a simple
color analysis: we map the RGB color values to the HSV-format (hue,
saturation and value) and label all pixels as part of the background with
a hue value between 147.6◦ and 160.2◦. The confidence of these values is
set to 0 (see figure 5.26d).

3. Hysteresis threshold We apply a hysteresis thresholding (see section
4.2.2.1) approach to the confidence image in order to remove false positives
due to noise. We use a low threshold of 0.0005 and a high threshold of
0.1. Figures 5.26e-g exhibit the result of the hysteresis thresholding.

4. Remove small spots The foreground should consist of one large single
area, the subject itself. Therefore, we remove all remaining four-connected
white spots containing less than 105 pixels.

5. Fill gaps Finally, we fill small gaps inside the subject, which we consider
as false rejections. We apply the last step in the inverse way: we remove
all four-connected black spots which cover less than than 104 pixels. The
final matte is shown in figure 5.26h.

Even though the resulting mattes are not perfect they are still precise enough
to avoid most of the distraction from the noisy background.

Depth discontinuity map In the following the aligned Raskar frames are
used to create a discontinuity map. We investigated that the original Raskar
approach does not work really well for our purpose. On the one hand, it detects
all significant wrinkles in the clothing. On the other hand, it misses the im-
portant discontinuities between the hand and the body (see figure 5.27a). The
reason is that the shadows are slightly blurred due to the bilateral splatting in
the alignment process. The Sobel filter does not recognize the resulting smooth
intensity steps as discontinuities. Furthermore, the original approach detects a
lot of wrong discontinuities on the script pattern on the left shoulder.
We modify the algorithm by Raskar as follows: we use two rather small thresh-
olds for the depth discontinuity detection (εLow = 0.14, εHigh = 0.22) in order to
obtain the discontinuities at smoothed limb boundaries. Moreover, we reject all
depth discontinuities at shadows which are not dark enough. Thus, only depth
discontinuities at (nearly) black shadows are detected. This excludes shadows
caused by wrinkles, which are not of interest, but includes crucial discontinuities
between rigidly moving parts.
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Figure 5.27: Modification of Raskar algorithm. (a) Depth discontinuities de-
tected by original approach. (b) Discontinuity map after application of our
modifications.

We post-process the discontinuity map by incorporating the matte: all discon-
tinuities on background pixels are removed and discontinuity labels are added
alongside the silhouette. The result of our modified approach is shown in figure
5.27b.

Normal map We furthermore use the aligned five photometric stereo images
to obtain a normal map. We retrieve the approximated lighting directions for
each frame by taking the center of gravity (COG) of the positions of the active
light sources. The direction equals the difference of the COG with the center of
the stage.

Enriched flow estimation Next, we calculate the optical flow fields between
the tracking frames, however, this time enriched with the normal maps and
the depth discontinuities. Again, we map the normal maps to offset gray in
order to weight all input channels uniformly (γi = 1). According to the dis-
continuity maps, we adopt the global smoothness weight as the general one
(αG = αGl = 0.02) and determine a boundary smoothness of αB = 0.005. We
refrain from using a spatio-temporal regularizer since we investigated that a
simple spatial smoothness constraint yield better results.

Finally, we compare the quality of the basic flow fields between the tracking
frames with the enriched flow field. The results are presented in the following
section.
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5.4.2.6 Results

Figure 5.28 shows the aligned frames between index 1000 and 1060 of our shoot
sequence.

Our algorithm detects most of the important depth discontinuities, especially
the ones between the rigidly moving limbs. However, some minor problems oc-

1014 1024 1034 1044 1054

Figure 5.28: Aligned frames 1000 to 1060 of Light Stage shoot. Top: Standard views. Middle:
Depth discontinuities lain over standard views. Bottom: Normal maps in offset-gray mode.
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cur as well: The discontinuities which separated the arms from the body seem
to be shifted (see figure 5.29a). The reason is that the strips of light sources for
the Raskar approach are not near enough to the camera – in some cases the arm
simply casts a shadow on itself instead of on the upper body part. Moreover, in
some frames (e.g. frame 1044) the shadow of the arm is not directly attached
and a non-shadowed gap between the limb and the chest appears. The depth
discontinuity detection also suffers slightly from sensor noise.

The normal maps appear rather correct in most parts of the subject as illus-
trated in figure 5.29b-d. However, as usual for photometric stereo the results are
biased by self-shadowing effects and noise: in all places where the subject casts
a shadow on itself the resulting normals are wrong. We computed the gradient
of the normals maps (as in section 5.3.2) in order to obtain better flow fields.
As explained in section 4.1.1, better and less noisy normals could be retrieved
by using additional samples, i.e. more lighting conditions. Unfortunately, addi-
tional lighting conditions imply more motion within the particular photometric
stereo frames, which would lead to even more incorrect results. The imprint on
the shirt slightly appears in the normal maps, probably due to misalignment of
the basic flow.

(a) (b) (c) (d)

Figure 5.29: Close-up on upper part of the body in frame 1024. (a) Depth dis-
continuity map lain on standard view. (b)-(d) Absolute x-, y- and z-component
of normal maps.

Figure 5.31 exhibits all flow fields and the influence of our additional information
channels. First of all, the optical flow algorithm by T. Brox produces already
rather good results and allows discontinuous flow vectors which are blurred at
the motion discontinuity boundaries though (top row). Major errors only ap-
pear at the right leg of the subject, where the algorithm incorrectly assumes a
discontinuous flow field.

Even though the normal maps showed up some significant issues, they success-
fully support the flow estimation. Apparently, the basic optical flow algorithm
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Figure 5.30: Close-up on flow 1034 → 1044 using color and normal gradient
channels. Left: Standard flow. Right: Flow using depth discontinuity map.

by T. Brox is rather insensitive to noise. The flow fields based on the standard
views are more accurate in most cases, as we investigated by evaluation of the
bidirectional splatting sequence. But in some frames the flow estimation based
on the standard views introduce errors, which the computation on the normal
gradient maps do not produce. See for example the flow field between 1034 and
1044 (figure 5.31). The flows on the standard views produce an invalid discon-
tinuity on the left leg (red spot), which does not exist in the normal gradient
flows. The combined flow estimation based on standard views and normal maps
mostly produces the best flow fields, which contain more rigid areas.

The incorporation of our binary depth discontinuity maps sharpens the flow
fields at the detected boundaries and the flow field becomes piecewise smooth
(see figure 5.30). In some frames our extension corrects errors which were caused
by oversmoothing effects. The flow on the left arm is rigid due to the discon-
tinuity map but it is important to point out that wrong discontinuities might
worsen the result. For instance, since the discontinuity borders on the arm are
slightly shifted in some frames, the flow above the borders is erroneous. It is
crucial that the depth discontinuity maps are as accurate as possible. Due to
the added external discontinuities, the flow is not smoothed over the silhouette
of the subject. Figure 5.32 shows the flow fields using depth discontinuity maps.

5.5 Conclusions

This chapter discussed synthetic and natural test cases, primarily focused on
the motion of human subjects. In all cases the basic optical flow algorithm
turned out to be rather accurate and motion discontinuity preserving but it still
smoothes over the discontinuity borders. The incorporation of depth discon-
tinuities sharpens the boundaries between rigidly moving objects and yields a
piecewise smooth flow field. The knowledge about these discontinuities avoid
independently moving objects to distract the flow estimation of each other. It
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has also been shown that finding depth discontinuities is not an easy task and
requires a good setup and careful parameter tuning.

The additional geometry input channel, the normal maps, can highly improve
the flow computation. It is especially helpful in the static case (stereo) where
it helps to find the correct displacement vectors where flow estimation based
on (repetitive) texture information fails. In the dynamic cases we may add the
gradient of the normal maps as auxiliary input channel but we did not improve
our results on synthetic images with this additional information. However, they
supported our shoot sequence.

The evaluation of the shoot sequence showed that the combination of depth
discontinuities and a normal map can be helpful for improving the flow estima-
tion in realistic, dynamic cases, even though there is potential to improve both
input channels if time-multiplexed illumination is used. This is explained in the
following chapter.
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1024 → 1024 1024 → 1034 1034 → 1044 1044 → 1054 1054 → 1064

Figure 5.31: Flow fields between subsequent tracking frames from 1014 to 1064 without depth discon-
tinuity maps. Top: Based on standard views. Middle: Based on normal gradients. Bottom: Based
on standard views and normal gradients.
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Figure 5.32: Flow fields between subsequent tracking frames from 1014 to 1064 with depth discontinuity
maps. Top: Based on standard views. Middle: Based on normal gradients. Bottom: Based on standard
views and normal gradients.
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Chapter 6

Summary and Future Work

The tests of our algorithm on synthetic and realistic images show that the sur-
face normals support the estimation of optical flow especially in the static case
(stereo matching). Furthermore, they potentially yield a more accurate optical
flow when the subject is moving. Depth discontinuities help in all cases, as
they yield a piecewise smooth flow field: discontinuities between rigidly moving
objects were preserved by sharp boundaries.

The algorithm also produces promising results in the dynamic context of Image-
Based Relighting. Nonetheless, there is still potential to retrieve more precise
flow fields by tuning the lighting conditions. In future work the depth disconti-
nuity maps could be highly improved by the usage of bright flash lights, which
are supposed to be as close to the camera as possible, rather than groups of light
sources as in the case of the Light Stage 6 apparatus. The current setup using
groups of lights induced two drawbacks: on the one hand, the light sources are
further away from the camera and cause the objects in a scene to cast shadows
on theirselves (shifted depth discontinuities), and on the other hand, the shad-
ows appear more blurred because multiple lights in a spatial extension are used.
Blurred shadows make it harder to detect discontinuities because their intensity
gradient is smaller.

Accurate flow fields between the tracking frames yield a better frame alignment
and thereby a better visual composition of the light conditions. Contrariwise,
the auxiliary frames can usually not be employed for relighting, which means
that we are loosing potential lighting conditions. This might impair the quality
of the final linear combination. The producer must find a compromise between
the number of lighting conditions, which he sacrifices for the flow improvement,
and the number of frames, which represent lighting vectors for the relighting
process.

Rather than lighting conditions for photometric stereo normals, the gradient
patterns as explained in section 4.1.2 could be incorporated into the lighting
basis. We would take advantage from this patterns in two ways: firstly, the
normals would be more robust against noise and self-shadowing and secondly,

101
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the Spherical Harmonic patterns could be used for relighting purposes. In one
potential scenario the whole lighting basis could consist of the first n bands of
Spherical Harmonic patterns. The first two bands would be used for normal
estimation, but all frames could be used for the relighting process.

If the scene is static and only the viewpoint changes, the illumination under
additive lighting conditions is not critical and technically simple: the Raskar
shadow maps can be created with a simple spotlight as well as the photometric
stereo normal maps, whose number of samples per pixel is not limited as in
dynamic scenes. We showed that the incorporation of these input channels only
slightly increases the runtime.

In a dynamic scene we need a special lighting apparatus and the number of
lighting conditions in a lighting basis is limited. Even if the normal maps are
retrieved by only four gradient patterns, these additional frames should only be
added to the tracking frames if a precise flow field is necessary. The approach by
Brox et al. [BBPW04] already allows the creation of intermediate frames which
are “visually plausible” in most cases, although the flow fields are not completely
correct. However, if an accurate flow is required, our algorithm offers a powerful
tool to obtain this goal.



Appendix A

Successive Overrelaxation

The Gauss-Seidl method iteratively solves the n equations of linear systems
in the form Ax = b, where A is a strictly diagonally dominant or symmetric
positive definite matrix. The solution for x is found component by component,
where previous solutions are incorporated as soon as they are available. The
iterative formula for the k-th component in the solution vector x depending on
the k − 1 previously computed values reads:

xk
i =

bi −
∑
j<i

aijx
k
j −

∑
j>i

aijx
k−1
j

aii

The technique is repeated for the entire vector x several times until convergence.
Since the solution is found in a serial manner, the order in which the compo-
nents are calculated affects the progression of the solution.

The Successive Overrelaxation (SOR) method is an extension of this tech-
nique. It linearly extrapolates the solution of the Gauss-Seidl method. The new
k-th component of x then reads:

xk
i = ω · x̄k

i + (1− ω) · xk−1
i

where x̄k
i denotes the solution of the Gauss-Seidl method and ω ∈ (0, 2) de-

termines the extrapolation factor. ω = 1 reduces the equation to the simple
Gauss-Seidl method. It has been shown by Kahan [Kah58] that the technique
diverges for ω /∈ (0, 2). The SOR method usually provides a faster convergence,
but there is no heuristic to determine the optimal extrapolation factor.
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Appendix B

Hysteresis Thresholding

This appendix contains the pseudocode for the hysteresis thresholding as intro-
duced in section 4.2.2.1. Our function expects a confidence image as well as a
low and a high threshold. Consequently, the algorithm returns the produced
binary map.

FUNCTION HysteresisThreshold(imgConfidence : IMAGE of REAL,
fLowThreshold : REAL, fHighThreshold : REAL)

VAR cx, cy : INTEGER;
imgResult : IMAGE of BOOL;
listCoordinates : STACK;

BEGIN

(cx,cy) = GetImageSize(imgConfidence, cx, cy); // Retrieve image extensions

// Create low and high threshold map

imgLow = CreateBooleanImage(cx, cy);
imgHigh = CreateBooleanImage(cx, cy);

forall (x,y) with 0<=x<cx and 0<=y<cy
{

imgHigh(x,y) = (imgConfidence(x,y) > fHighThreshold) ? true : false;
imgLow(x,y) = (imgConfidence(x,y) > fLowThreshold) ? true : false;

}

imgResult = imgHigh; // Result contains high threshold map

empty( listCoordinates ); // Empty stack, which contains coordinates
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// Process the entire image
forall (x,y) with 0<=x<cx and 0<=y<cy
{

// If a pixel is part of the high map add all pixels,
// which can be connected via the low threshold map
if( imgHigh(x,y) == true )
{

// Put the pixel on the stack and mark it as processed
push( listCoordinates, (x,y) );
imgLow(x,y) = false;

// Process coordinate stack until it is emtpy
while( !isEmpty(listCoordinates) )
{

// Pop top coordinate from stack
(coordx,coordy) = pop( listCoordinates );

imgResult(coordx,coordy) = true; // Store this pixel in result map
imgHigh(coordx,coordy) = false; // Do not process it again

// Add the pixels in the neighborhood to the process list
// unless they are already processed
for(dy = -1; dy <= 1; dy++)
{

for(dx = -1; dx <= 1; dx++)
{

if( coordx+dx >= 0 and coordx+dx < cx and
coordy+dy >= 0 and coordy+dy < cy and
imgLow(coordx+dx, coordy+dy) = true )

{
// Add this pixel to the process list and
// avoid a repetitive processing
push( listCoordinates, (coordx+dx, coordy+dy) );
imgLow(coordx+dx, coordy+dy) = false;

}
}

}
}

}
}

return imgResult;
END



Appendix C

Light Stage 6

In the last years the Institute of Creative Technologies developed several lighting ap-
paratus which allowed to simulate arbitrary distant illumination [DHT+00, HWT+04,
WGT+05, CEJ+06]. Since this thesis intends to investigate the potential improvement
of optical flow on human performances, the so-called Light Stage 6 is the most appro-
priate apparatus for our purpose.

The Light Stage 6 dome was created in order to capture full-body performances under
arbitrary illumination. The design is illustrated in figure C.1. It is the top two-thirds of
an 8th-frequency geodesic sphere with a diameter of eight meters. Thus, the equator of
the dome is 1.5 meters above the ground. 901 uniformly distributed light sources cover
the dome which contain six LEDs in an 18cm-diameter hexagon each. Additionally,
the device contains 140 floor lights at the height of 85cm below the equator of the
dome, which also consist of six LEDs and simulate a Lambertian reflecting ground
plate. All lights are controlled by microcontroller boards, which synchronize the lights
and the camera. The subject is placed on a virtual floor 65cm above the ground. The
setup provides a turnable treadmill, which the subjects can run on. The cameras which
capture the performance can basically be placed everywhere, i.e. from an arbitrary 3D
position, either mounted on tripods or directly on the stage. For detailed information
we refer to the original paper [CEJ+06].

Figure C.1: Light Stage 6. Left: Technical drawing as shown in [CEJ+06].
Right: 3D model.
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