
by
Felix Wehnert

Pen-based 
Drawing in 
Augmented 
Reality on 
Mobile Phones

Bachelor’s Thesis
submitted to the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Dr. Bastian Leibe

Registration date: 2018-01-16
Submission date: 2018-04-09





Zentrales Prüfungsamt/Central Examination Office 

 

 

Eidesstattliche Versicherung  
Statutory Declaration in Lieu of an Oath 
 

___________________________   ___________________________ 

Name, Vorname/Last Name, First Name  Matrikelnummer (freiwillige Angabe) 
Matriculation No. (optional) 

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/ 

Masterarbeit* mit dem Titel 
I hereby declare in lieu of an oath that I have completed the present paper/Bachelor thesis/Master thesis* entitled 

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________ 

selbstständig und ohne unzulässige fremde Hilfe (insbes. akademisches Ghostwriting) 

erbracht habe. Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel benutzt. 

Für den Fall, dass die Arbeit zusätzlich auf einem Datenträger eingereicht wird, erkläre ich, 

dass die schriftliche und die elektronische Form vollständig übereinstimmen. Die Arbeit hat in 

gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen. 
independently and without illegitimate assistance from third parties (such as academic ghostwriters). I have used no other than 

the specified sources and aids. In case that the thesis is additionally submitted in an electronic format, I declare that the written 

and electronic versions are fully identical. The thesis has not been submitted to any examination body in this, or similar, form. 

 

___________________________    ___________________________ 

Ort, Datum/City, Date      Unterschrift/Signature  

        *Nichtzutreffendes bitte streichen 

*Please delete as appropriate 

Belehrung: 
Official Notification:  

§ 156 StGB: Falsche Versicherung an Eides Statt 

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung 

falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei 

Jahren oder mit Geldstrafe bestraft. 

Para. 156 StGB (German Criminal Code): False Statutory Declarations 

Whoever before a public authority competent to administer statutory declarations falsely makes such a declaration or falsely 

testifies while referring to such a declaration shall be liable to imprisonment not exceeding three years or a fine. 
§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt 

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so 

tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein. 

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158 

Abs. 2 und 3 gelten entsprechend.  

Para. 161 StGB (German Criminal Code): False Statutory Declarations Due to Negligence 

(1) If a person commits one of the offences listed in sections 154 through 156 negligently the penalty shall be imprisonment not 
exceeding one year or a fine. 
(2) The offender shall be exempt from liability if he or she corrects their false testimony in time. The provisions of section 158 (2) 
and (3) shall apply accordingly. 

 
Die vorstehende Belehrung habe ich zur Kenntnis genommen: 
I have read and understood the above official notification: 

___________________________    ___________________________ 

Ort, Datum/City, Date      Unterschrift/Signature 





v

Contents

Abstract xi

Überblick xiii

Acknowledgements xv

1 Introduction 1

2 Background 3

2.1 Augmented Reality . . . . . . . . . . . . . . . 3

2.2 Marker Tracking Frameworks . . . . . . . . . 4

2.3 ARKit . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Personal Fabrication . . . . . . . . . . . . . . 6

3 Related work 7

4 Design 9

4.1 Software Design . . . . . . . . . . . . . . . . . 10

4.2 Hardware Design . . . . . . . . . . . . . . . . 13



vi Contents

5 Implementation 17

5.1 ARKit . . . . . . . . . . . . . . . . . . . . . . . 17

5.2 arUco . . . . . . . . . . . . . . . . . . . . . . . 19

5.3 Fusion of ARKit and arUco . . . . . . . . . . 20

5.4 Marker Box . . . . . . . . . . . . . . . . . . . . 22

5.5 Bluetooth Chip . . . . . . . . . . . . . . . . . 25

5.6 App Architecture . . . . . . . . . . . . . . . . 27

6 Evaluation 31

7 Conclusion 37

7.1 Summary . . . . . . . . . . . . . . . . . . . . . 37

7.2 Future work . . . . . . . . . . . . . . . . . . . 39

A Questionnaire 43

Bibliography 49

Index 53



vii

List of Figures

4.1 First version of the ARPen . . . . . . . . . . . 14

4.2 The improved version of the ARPen . . . . . 15

5.1 Architectural overview of ARKit . . . . . . . 18

5.2 Three arUco markers . . . . . . . . . . . . . . 19

5.3 Technical drawing of the ARPen . . . . . . . 23

5.4 The Bluetooth chip and its cabling . . . . . . 26

5.5 Architectural overview of our app . . . . . . 29

6.1 Result of the evaluation . . . . . . . . . . . . 32





ix

List of Tables

4.1 Evaluation results of marker tracking frame-
works . . . . . . . . . . . . . . . . . . . . . . . 11





xi

Abstract

In 2017, ARKit and ARCore arrived on mobile devices, enabling markerless aug-
mented reality experiences on everyday smartphones. However, the potential for
creating new input methods offered by this has not yet been fully realized. For this
Bachelor’s thesis we will examine the viability of creating an input device capable
of capturing movements in a three-dimensional space, which works in conjunction
with every ARKit-capable device.

Our first step will consist of designing the input device. For this we have decided
on a pen due to its intuitive use. The pen will be designed in a 3D modeling pro-
gram and produced using a 3D printer. Due to the fact that we are going to use
a low-cost production method and will require no special hardware our approach
will be affordable to most consumers.

To facilitate the tracking functionality the pen must include surface areas on which
markers can be affixed, as these are required to determine the pen tip’s position and
orientation. In addition the pen will contain buttons to perform custom actions.
Combining the proven and well-known technology of marker detection with the
innovative ARKit framework, we will implement an application to determine the
pen’s position and orientation, and compute the pen tip’s location from this data.

Once we have completed the implementation and have a working pen, we will
start evaluating this prototype by conducting a user study. From the participants
we want to know how the pen behaves in terms of tracking and ergonomics.



xii Abstract



xiii

Überblick

Im Jahr 2017 kamen ARKit und ARCore auf mobile Endgeräte, wodurch marker-
lose Augmented Reality-Erlebnisse auf alltäglichen Smartphones ermöglicht wur-
den. Das damit verbundene Potenzial zur Schaffung neuer Eingabemethoden ist
jedoch noch nicht voll ausgeschöpft. Für diese Bachelorarbeit werden wir die
Machbarkeit eines Eingabegerätes untersuchen, das Bewegungen in einem dreidi-
mensionalen Raum erfasst und mit jedem ARKit-fähigen Gerät zusammenarbeiten
kann.

Unser erster Schritt besteht darin, das Eingabegerät zu entwerfen. Hierfür haben
wir uns aufgrund der intuitiven Bedienung für einen Stift entschieden. Der Stift
wird in einem 3D-Modellierungsprogramm entworfen und mit einem 3D-Drucker
gedruckt. Aufgrund der Tatsache, dass wir eine kostengünstige Produktionsmeth-
ode verwenden und keine spezielle Hardware benötigen, wird unser Ansatz für
die meisten Verbraucher bezahlbar sein.

Um die Tracking-Funktionalität zu erleichtern, muss der Stift Flächen besitzen, auf
denen Marker angebracht werden können, da diese zur Bestimmung der Position
und Orientierung des Stiftes benötigt werden. Zusätzlich enthält der Stift Knöpfe,
um eigene Aktionen durchzuführen. Durch die Kombination der bereits bewährten
Technologie der Markererkennung mit dem ARKit-Framework werden wir eine
Anwendung zur Bestimmung der Position und Orientierung des Stiftes implemen-
tieren und aus diesen Daten die Position der Stiftspitze berechnen.

Sobald wir mit der Implementierung fertig sind und einen funktionierenden Stift
haben, werden wir mit der Evaluierung dieses Prototyps beginnen, indem wir eine
Anwenderstudie durchführen. Von den Teilnehmern wollen wir wissen, wie sich
der Stift in Bezug auf Tracking und Ergonomie verhält.





xv

Acknowledgements

First I want to thank the chair Media Computing Group and professor Jan Borchers
who give me the opportunity and the support to make this thesis possible.

Furthermore I want to thank my advisor Philipp Wacker who supported me during
this thesis.

I would like to thank Prof. Dr. Leibe for agreeing to be the second examiner.

Last but not least I want to thank Jan Thar, Christian Schmidt and Oliver Novak
who helped me operating the 3D printers in the FabLab.





1

Chapter 1

Introduction

With the release of the new Augmented Reality (AR) frame-
works “ARKit” for iOS and “ARCore” for Android in 2017,
new ways of interaction with the mobile phone have arisen
[Apple][Google, a]. Instead of displaying content flat on
the screen, three-dimensional content can now be placed
in the user’s direct environment. The created virtual ob-
jects can then be inserted into a live camera feed. Creating
a user-friendly interface that works well with augmented
reality is definitely a challenge. We take up this challenge
and would like to go one step further by creating an inter-
action device that not only allows the user to interact with
the existing augmented reality but even to create new three-
dimensional content.

In Virtual Reality (VR) systems like the HTC Vive or the
Oculus Rift, controllers that are tracked and with which a
user can interact in space are an integral part of the sys-
tem. This technology cannot simply be transferred to mo-
bile augmented reality systems because special sensors are
required to track the controllers, which are not available in
mobile phones. Our vision is to develop an input device for
mobile augmented reality, which is qualitatively compara-
ble with the existing ones from VR.

3D content is nowadays created on computers with 2D
screens. Even if there are some approaches to create 3D
content in AR and VR that we will discuss in more detail



2 1 Introduction

later, there is definitely still a need for research in this area
[Billinghurst et al., 2009]. This is where we want to start and
develop a technique with which three-dimensional objects
can also be created or modified using three dimensions. In
the context of this Bachelor’s thesis we create a pen with
which the user can freely draw in her Augmented Reality.
We develop an iOS app that tracks this pen accordingly, so
that the pen is directly connected to ARKit. Unfortunately,
ARKit alone is not able to track small objects in space. To do
this we need an additional framework that works together
with ARKit to achieve our goal. In order to track the pen,
we need identifiable markers on the pen, which can be used
to calculate the pen’s location and orientation. Since such
a pen does not yet exist, we first have to model it and then
have it printed by a 3D printer. In this work we first design
the pen and set up requirements for our app. To track our
pen we connect ARKit and another framework so that it is
possible to recognize it and paint with its tip, the position
of which has to be calculated from the markers. To let the
pen communicate with the app via Bluetooth we embed a
chip and some push buttons into the pen, to allow further
input possibilities. After we have met all the objectives, we
carry out a user study in which we ask the participants how
they rate the pen in relation to various criteria.



3

Chapter 2

Background

In this chapter we give a brief overview about topics that
will be mandatory to understand for this thesis. We will be-
gin with the theory of Augmented Reality and follow with
implementations that will make Augmented Reality possi-
ble on mobile phones. We close this chapter with an intro-
duction to personal fabrication.

2.1 Augmented Reality

In Augmented Reality, a live view of a real-world environ- Augmented reality is
a view of reality
which is enriched
with
computer-generated
content

ment is enriched with computer-generated content [Schu-
effel, 2017]. This view may then be enhanced using sound,
video or haptics. The first development of an AR-like sys-
tem happened in the early 1990s at the U.S. Air Force’s
Armstrong Labs [Rosenberg, 1993]. They created Virtual
Fixtures, which consisted of a helmet with an integrated
display and two controllers, each of which was connected
to a robot arm. Their purpose was to allow operators to
remotely perform tasks with better spatial understanding.
Not long after that, AR also became interesting for the gam-
ing and entertainment industry who hoped for a deeper
user experience [Molla and Lepetit, 2010] [Oda et al., 2008].

The first release of an open-source AR framework that



4 2 Background

could be used to develop an arbitrary AR application was
ARToolKit in 1999 [ARToolKit]. This framework couldAR on mobile

phones already
existed in 1999

detect the position and orientation of computer-readable
markers or planar images and was used for real-time aug-
mented reality applications.

2.2 Marker Tracking Frameworks

In the early 2000s, ARToolKit and other frameworks were
adapted to make AR on smartphones possible [ARToolKit].
ARToolKit was ported in 2005 to Nokia’s Symbian OS,
which is a mobile operating system and the AR gaming in-
dustry made their first mobile AR games.

Multiple tracking frameworks with different focuses were
developed. In addition to markers and other computer-
readable patterns, images of any kind can now also be used
for tracking [Sörös et al., 2011].

To calculate the position and orientation of any marker theMarker tracking
frameworks perform
a graphical analysis

of the camera image
to detect the marker

framework has to perform a graphical analysis of the cam-
era feed or input image [Garrido-Jurado et al., 2014]. The
framework first begins with an adaptive thresholding to
separate the markers from other striking objects in the field
of vision. Then those markers which are not rectangular,
too small or too big are filtered out. After all candidates are
determined, the framework tries to decode the information
that is encoded in the marker. This information may con-
sist of a simple ID, but may also include additional data
[Garrido-Jurado et al., 2014].

If the decoding was erroneous, it is likely that the candi-
date was not a marker but only a falsely recognized object.
From a successfully recognized marker one can easily com-
pute the direction of the object relative to the camera byIn contrast to

detecting the
marker’s position,

detecting the
orientation in space

is more complex

calculating the mid point of the rectangle. However, com-
pared to determining the position of a marker, it is more
difficult to calculate its orientation. To do so, the frame-
work has to know the position of the marker’s corners and
the optical parameters of the user’s camera. With this infor-
mation, it is possible to estimate the object pose given a set



2.3 ARKit 5

of object points. At this point, we still do not know the dis-
tance of the object from the camera. For this, the real-world
size of the marker must also be included in the calculation
[Garrido-Jurado et al., 2014].

The limitations of marker tracking is that the tracking is Marker tracking
alone does not meet
our requirements

only relative to the camera. With marker tracking it is
only possible to detect movement of the camera when the
marker is stationary or vice versa. It is not possible to de-
tect any movement when the marker and the camera are
both moving. For this reason marker tracking alone is not
suitable for our needs. We need a system that can handle a
moving camera and a moving marker.

2.3 ARKit

In 2017 Apple introduced ARKit for iOS [Apple]. It is a ARKit is a new
markerless
augmented reality by
Apple. The lack of
any markers enables
new AR experiences

markerless AR framework which can render virtual objects
live into the camera feed. Markerless means that ARKit can
detect a world environment without the need for specific
markers. This opens new possibilities for AR experiences
because there is no need for a marker that previously had
to be printed out or produced in another way. A flat object
like a table can be detected automatically and virtual ob-
jects can be placed onto the table. Furthermore, ARKit can
track the camera’s point of view in relation to a fixed world
point. ARKit sets the world origin to the point the camera
was at during the initialization process. After that, ARKit
will calculate the position relative to this origin. One ad-
vantage of ARKit is that the internal coordinate system is
metric, so measurements and distance calculation is very
easy. To create a fluent AR experience ARKit uses various
sensors and fuses this motion data with the camera feed
[Apple]. This fusion is called Visual Inertial Odometry (VIO)
which allows the device to sense how it moves through a
real-world coordinate system.

In addition, ARKit is able to perform Scene Understanding ARKit can do even
more than marker
frameworks

and Light Estimation. With Scene Understanding, ARKit can
detect horizontal and vertical planes in the camera view. A
developer can use this information, for example, to place



6 2 Background

objects directly on a table and thus create even more im-
mersive AR experiences. Light Estimation is used to render
virtual objects with a shadow that fits into the real-world
environment. ARKit tries to determine the location of the
light source responsible for the shadowing. This location
is given to the renderer to be applied to the virtual objects.
Sugano et al. proved that shadows help embed virtual ob-
jects better in the real environment.

In contrast to marker tracking frameworks, the current ver-
sion of ARKit is not able to detect any kind of markers. As
ARKit is not able to read markers, it is not able to do a high
precision tracking of objects in the real-world environment.
To provide this functionality, other frameworks have to be
used in conjunction with ARKit.

2.4 Personal Fabrication

Personal fabrication is a new social trend to produce prod-
ucts independently that normally are only produced in an
industrial environment. With consumer-ready production
machines like 3D printers, CNC machines or laser cutters,
everyone is now able to manufacture a product. Not onlyWith personal

fabrication, anyone
can manufacture

products that were
previously only

available to the mass
industry

easy-to-use materials like wood and leather, but also mate-
rials that need more advanced hardware like metal, acrylic
glass or plastic can be used. These materials were formerly
only present in a professional production environment, e.g.
mass production [Mota, 2011]. At the moment these ma-
chines are too expensive for individual users, so they can
be found in shared maker hubs. These hubs are present all
over the world and offer interested makers hardware and a
place to work. For a small fee everyone can use the offered
machines. These hubs are often called FabLabs, an abbrevi-
ation of fabrication laboratory [Mota, 2011].

During this thesis we use the 3D printers offered by the
FabLab of the RWTH Aachen University. 3D printers are
able to print an arbitrary object of nearly any shape. With
new 3D printers it is even possible to print with multiple
materials in one object, allowing for the printing of multi-
colored objects.



7

Chapter 3

Related work

Two larger research areas that are related to this thesis
are immersive modeling and sketching in 3D. Immersive
modeling describes the creation of 3D objects in free space,
where sketching creates 3D models using 2D graphics. One
example for immersive modeling is TiltBrush by Google
[b]. With TiltBrush and a VR setting like an Oculus Rift Most immersive

modeling
approaches were
implemented in VR

or HTC Vive users can draw 3D artwork directly in the en-
vironment. The focus of TiltBrush is much more consumer-
focused. The concept of the final product is similar, but the
TiltBrush developers themselves did not have to integrate
any kind of tracking, as this is part of the used VR hard-
ware. Another approach is CavePainting by Keefe et al.
[2001]. This system, however, only works inside of a spe-
cially configured VR cave, where many different sensors
are available for tracking purposes.

In AR there are also approaches to immersive modeling,
such as HoloSketch [Hol], an app for the HoloLens, which
can display 3D objects in augmented reality. However, a
user is not able to draw freely in space, only some basic
objects can be created.

One example of sketching in 3D is Lift-Off by Jackson and
Keefe [2016] who have developed a pen whose special
strength is to draw freehand in a VR environment. To make
it easy for the users, they first draw two-dimensionally and
extrude that drawing into the third dimension. The pen is



8 3 Related work

tracked by sensors mounted in a VR cave. The user can em-
ploy the pen to interact with the VR environment and e.g.
has access to virtual menus. Since the user can hold two of
these pens in her hands, she has significantly more options
to give input than in our solution.

Laviole and Hachet [2012] developed PapARt, which is ca-
pable of tracking a sheet of paper and projecting a 3D scene
onto it. To the user, it looks like the sheet of paper is a win-
dow to the virtual world behind it. To enable this function-
ality, markers have to be printed at certain locations on the
sheet. The AR framework can then detect a user rotating
the sheet, as well as touching it or placing objects on it.

Another example of editing an object was developed by
Magnenat et al. [2015], working at Disney. Instead of modi-
fying the 3D mesh, they developed a live texturing method
of 3D objects to modify their appearance. This system al-
lows the user to paint on a sheet of paper and a mobile de-
vice maps the painted area onto a 3D object.

PaintSpaceAR [Pai] is an app that uses ARKit to draw in
free space. Instead of creating an input device, they treat
the iPhone itself as an input device. The user can create
objects using the touchscreen while moving the iOS device
through the room. The object is drawn relative to the world
space, so it stays where it was created.

Another related project was developed by Wacker et al.
[2018], who developed a system that tracks a pen with spe-
cial hardware. The aim of this paper was to find out to
what extent physical or virtual guidance improves users’
3D drawings. The used hardware includes an expensive 3D
tracking system named VICON and a HoloLens that must
be worn by the user. We are very much inspired by this
work, although with a different focus. Thus, we are more
interested in using simple hardware to reach a wider target
audience than the existing systems do.

In contrast to related work, our goal is to offer a user an op-We want to create a
solution without

expensive hardware
portunity to interact precisely in augmented reality without
the need for expensive hardware.



9

Chapter 4

Design

Our goal was to design and create an input device with
which users can make inputs in AR and see the result di-
rectly on their mobile phone. A proven input device is
the pen, capable of performing particularly detailed move-
ments, but limited to a 2D surface. Inspired by the pen,
we wanted to develop a 3D pen that offers the same func-
tions for AR. We also defined our goal as having a button to We want to create a

pen that enables the
user to interact with
virtual 3D content

start and stop the drawing functionality. Besides the pen,
we also need an app that tracks the pen, detects the pen
tip, communicates with the pen button, and then displays
the drawing. The user should be able to move the mobile
phone around the drawing so that she can enjoy the full
AR experience. Another goal was that the user can use the
pen and app anywhere, regardless of their environment. In
addition, the app should be easily expandable so that fu-
ture studies, developments or other research work can also
build on this foundation. Another requirement was to ex-
port the drawing so that the user can print or save it.

Even if the title of this thesis states “on Mobile Phones”, we Since our
competences are in
the area of iOS, we
will first focus on this
platform

first put our focus on the iOS platform with ARKit as an
AR framework because we have a better knowledge there.
Google, the developer of the mobile operating system An-
droid, released their world tracking AR framework “AR-
Core”[Google, a] two months after ARKit in August 2017.
Its features are comparable with ARKit’s features. Thus, the
problems we had to solve on iOS with the help of ARKit



10 4 Design

could be solved on Android with ARCore. Although we
built our app for iOS, apart from ARKit, none of what we
use is iOS-exclusive.

Thus, the design can be divided into two major parts: the
pen that the user holds in her hand, as well as the app,
which must communicate with the pen. The first part con-
tains the detailed software design and the second the hard-
ware design.

4.1 Software Design

We already evaluated ARKit and determined that it does aWe want to use
ARKit because it

works in a very high
quality

very good job in terms of world tracking. The object posi-
tioning is very precise and the object stays exactly in place
even during excessive movement. In case ARKit misses the
position of the object, it often repositions the object after a
short delay. This is due to VIO, which does not only use the
motion sensor but also the camera feed as sensory input.

Furthermore, ARKit gives access to the raw feature point
cloud it is working on that could be used to track objects
in the real-world environment. A feature point is a three-
dimensional point in the real world that is located at a solid
object’s surface. The feature point cloud thus is the set of
all detected feature points in the current frame. Using this
point cloud allowed us to get a basic 3D view of the envi-
ronment. While this could be used to track larger objects,
in the evaluation it turned out to be too complicated and
computationally expensive.

As already stated ARKit alone did not meet our require-We need a
framework that works

with ARKit
ments of a world tracking system with a high precision ob-
ject or marker tracking. Currently ARKit is the only frame-
work with world tracking in this quality, so we needed
to find a solution that works with ARKit. We searched
for other frameworks that are specialized in the mentioned
marker tracking and evaluated them in different categories.

There are multiple frameworks that differ in quality, costs,
feature richness and more. Before we decided on a frame-



4.1 Software Design 11

Name Tracking Cost Marker OS iOS
EasyAR + free + 7 3

Vuforia + 500$ + 7 3

OpenCV ArUco o free o 3 7

ArUco 3 + free o 3 7

ARToolKit 5 - free + 3 3

ARToolKit 6 + free + 76 3

Table 4.1: This table contains the results of our analysis
of marker tracking frameworks. In the “Tracking” column
we evaluated how we liked the tracking in terms of qual-
ity and speed. The “Cost” column indicates how much we
have to pay for the use. “Marker” means which marker
variations are possible. The more markers are recogniz-
able, the more freedom we have in designing the pen. “OS”
means whether the library is open source and we can make
changes to the source code. The last column “iOS” means
if there is a ready-to-use iOS binary we can use.

work we needed to specify what we expect from the marker
tracking framework. Our most important decision factor
was quality of tracking as we wanted to create a high pre-
cision input device. Other decision factors were cost to use We evaluated some

frameworks and
evaluated them in
different categories

the framework, size and appearance of the markers, detec-
tion speed, open-source code base, a ready-to-use iOS bi-
nary and some minor factors like a good documentation.
We looked at several libraries, namely EasyAR1, Vuforia2,
arUco as an OpenCV contrib module3, ARToolKit4 in ver-
sion 5 and 6 and ArUco 35, which was published as an im-
proved standalone framework.

Table 4.1 presents the results of our evaluation. Although
Vuforia is a high-quality AR framework, we unfortunately
could not use it due to the high price. ARToolKit 5 did
not satisfy our demands in terms of tracking quality. All
other frameworks met our requirements and proved to be

1https://www.easyar.com
2https://www.vuforia.com
3https://docs.opencv.org/3.3.0/d5/dae/

tutorial aruco detection.html
4https://artoolkit.org
5https://www.uco.es/investiga/grupos/ava/node/26
6Because ARToolKit 6 was in beta version the sources are not yet pub-

licly available

https://www.easyar.com
https://www.vuforia.com
https://docs.opencv.org/3.3.0/d5/dae/tutorial_aruco_detection.html
https://artoolkit.org
https://www.uco.es/investiga/grupos/ava/node/26
https://www.easyar.com
https://www.vuforia.com
https://docs.opencv.org/3.3.0/d5/dae/tutorial_aruco_detection.html
https://docs.opencv.org/3.3.0/d5/dae/tutorial_aruco_detection.html
https://artoolkit.org
https://www.uco.es/investiga/grupos/ava/node/26


12 4 Design

very promising during the evaluation. We started to build
proof of concept-implementations with EasyAR, ARToolKit
6 and OpenCV ArUco. Very early in development we faced
a major problem: ARKit and the chosen frameworks bothTo use a marker

framework it must
not require exclusive

access to the camera

require exclusive access to the camera. Fortunately it was
possible to attach a second framework behind ARKit, be-
cause ARKit gives access to the raw image data of the last
frame. For this reason the framework we chose had to sup-
port a frame-by-frame input instead of a camera stream.

Unfortunately, ARToolKit 6 and EasyAR did not support
frame-by-frame input, although EasyAR plans to add sup-
port for this mode of input in future versions [Eas]. As both
ARToolKit 6 and EasyAR are closed source it was not pos-
sible for us to implement this functionality by ourselves.We decided to use

arUco, as it fulfill the
most important
requirement of

providing a
frame-by-frame input

Therefore the only option that remained is arUco, even
though its tracking quality is not the best. Furthermore,
we had to manually build the iOS binary, as arUco bina-
ries are only available in x64 architecture. Mobile operating
systems like iOS or Android on the other hand run on an
arm64 architecture. Thus, we had to modify the framework
and its dependencies by adjusting the build configuration
files in such a way that they are compatible with arm64.
This results in an iOS-ready framework.

After the framework was built, we could grab the frame in-
put from ARKit and give it to the detection class of arUco.
We developed a proof of concept application which uses
arUco in combination with ARKit. At this point we started
to work on the main app. Fortunately, some days after weThe developers of

arUco released a
major update that we

use now

got OpenCV arUco working, Garrido-Jurado et al. [2014]
released the third version of arUco as a standalone version.
The update promised improvements in speed and track-
ing quality and we verified this claim with another proof
of concept-implementation. With arUco 3 we finally found
the framework that we can use to develop our app.

Our app should be very simple and easy to use. For theThe app should be
able to draw a path in

3D space
first version it sufficed to have visualization whether the
pen is currently being tracked, and what its location is. In
addition, it should be possible to draw a path in 3D space.
Furthermore, we wanted the user to be able to export her
drawing so that she is able to send it to a 3D printer and



4.2 Hardware Design 13

print it there. In a settings area the user should be able to
set the length of her pen or connect to the pen via Bluetooth.

4.2 Hardware Design

The hardware design mainly involved designing the pen in
our 3D CAD application Autodesk Fusion 3601. The chal-
lenge with the pen was to ensure that it is large enough
to offer enough space for computer readable markers as
well as the hardware, while making sure not to neglect er-
gonomics. The pen should be detectable from any angle, so For this thesis we

have to design a pen
from scratch

at least one marker should always be visible. We designed a
first prototype that basically looked like a cube with a cylin-
drical extrusion on top, as can be seen in Figure 4.1. The
six sides of this cube offer space for up to five detectable
markers and the holder, which is attached on the last side. We named our pen

”ARPen”Furthermore, we named the pen ”ARPen”.

Although we could have worked with this version, we
were not completely satisfied and made further adjust-
ments. We have sharpened the pen tip so that the pen looks
more like a real pen and it becomes clear that this tip is
intended for drawing. Furthermore, we did not make the After a first version

we did some major
improvements

holder round but triangular in order to better embed but-
tons in the pen. In addition, we were of the opinion that this
resulted in a more comfortable grip. The most significant
change, however, was a realignment of the marker cube.
This not only further improved the holding sensation, but
also enabled six markers to be attached, which significantly
increased precision and viewing angle stability.

We also needed a lid so that it is possible to reach the in-
side of the cube, where our hardware is contained. Closing We designed a

closing mechanism
for the cube that
works well with 3D
printing

mechanisms for 3D printed objects are particularly tricky,
as they are usually very delicate and exceed the existing
print resolution. Since the printed material is not flexible,
we had to develop a mechanism that does not require parts
of the object to be bent. We printed a small block in each

1https://www.autodesk.com/products/fusion-360

https://www.autodesk.com/products/fusion-360
https://www.autodesk.com/products/fusion-360


14 4 Design

Figure 4.1: For the first version we took a pen and created
an area where five markers can be attached.

corner of the lid so that it contacts the wall of the cube when
one attaches the lid onto the cube. Since 3D printers print
in many layers, tiny grooves are created in the walls of the
cube and at the edge of the blocks on the lid. These grooves
snap into each other so that the lid holds firmly to the cube.
This makes it very easy to attach and detach the lid.

To hold the ARPen in our hands we need to 3D print it. We
used the printers kindly offered by RWTH Aachen Univer-
sity’s FabLab. Because the ARPen would fall over duringPrinting the markers

directly into the pen
improves the tracking

quality significantly

the printing process, we needed to print the ARPen in mul-
tiple parts. We worked a lot with this improved version
but it still had one major issue. The markers are printed on
paper and glued around the box and inaccuracies in glu-
ing have extremely degraded the precision. Therefore, we
needed to attach the markers in a more stable way with less
room for inaccuracies. Fortunately, the FabLab also offers



4.2 Hardware Design 15

Figure 4.2: The improved version of the ARPen

multi-material 3D printers, so we printed the marker with
black material right into the white box. The result of these
various changes to our design can be seen in Figure 4.2.

To enable the user to decide whether she wants to draw a
line or not, we have attached three buttons to the ARPen. We embedded

buttons in the pen
and connected them
to a Bluetooth chip

The drawing shows the corresponding openings. These
three buttons are connected to a Bluetooth chip which
transmits the current button state to the iOS device. The
buttons must be soldered to a cable that runs through the
holder right into the cube. The cube contains the Bluetooth
chip, the cabling and a battery.

As a Bluetooth chip we chose a small, low budget and
power saving chip. We had no requirements concerning
the computing power of the chip as the chip’s only job is to



16 4 Design

transmit the state of the buttons. After some research we
decided on the RedBear Nano v21, because this chip sup-We used a cheap,

power saving and low
cost Bluetooth chip

ports Bluetooth low energy, has 11 digital I/O pins that can
be used for buttons or other accessories and works with a
common 3.7V LiPo battery. We used an inexpensive bat-
tery with a capacity of 150mAh, which is enough to power
the ARPen for multiple hours.

1https://redbear.cc

https://redbear.cc
https://redbear.cc


17

Chapter 5

Implementation

In this chapter we will describe in detail how we imple-
mented the app, the tracking, the integration of the tracking
into ARKit and the implementation of the chip.

5.1 ARKit

We created the app using the boilerplate code that is pro-
vided by Xcode. For ARKit there are multiple starter
projects that we could build upon. There is one project
for every supported rendering engine: Metal, SceneKit and
SpriteKit. SpriteKit was not suitable for us because it is a Setting up ARKit is

very easy as Xcode
provides
ready-to-use
example and
boilerplate code

2D rendering engine. Metal and SceneKit are 3D rendering
engines that can be used in conjunction with ARKit. Metal
is a low-level hardware-near interface to the graphics pro-
cessor and SceneKit is a high level engine that is built on
top of Metal. Next to the rendering engine we also speci-
fied the programming language of the project. The choices
were Objective-C1 and Swift2, a new and modern program-
ming language.

1https://developer.apple.com/library/
content/documentation/Cocoa/Conceptual/
ProgrammingWithObjectiveC/Introduction/
Introduction.html

2https://swift.org

https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://swift.org
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://swift.org


18 5 Implementation

ViewController

ARSCNView AR Scene

ARSession

ARCamera

ARFrame

ARConfiguration

holds

holds

holds the newest

holds

holds

holds

delegate to

Figure 5.1: A brief architectural overview of the ARKit
framework. The ARSession is the most important object
as it controls the behavior of ARKit and other important in-
formation can be accessed. ARKit contains other classes,
but since we do not use them, they are not shown in the
diagram.

Furthermore, all ARKit-related objects were already initial-
ized and the project contained a simple AR scene that was
displayed on app startup.

We chose the SceneKit project as there is no need for the
low-level API from Metal. As main programming language
we chose Swift. In order to import external C++ frame-
works, Objective-C and Objective-C++ must later be used.

To start developing we needed to understand how ARKit is
built and how a developer can use it. Figure 5.1 shows an
architectural overview of the important parts of ARKit.

All classes with the “AR” prefix are implemented by ARKit
so our job was to implement the ViewController. In the
boilerplate code provided by Xcode this was already done.
However, we chose to disable some features we did not
need in order to be more performant, e.g. plane detection
and light estimation.



5.2 arUco 19

Figure 5.2: Three arUco markers. From left to right, the
patterns in the markers encode the numbers zero, one and
two, respectively.

5.2 arUco

The integration of arUco into an iOS app was not easy at all.
First we needed to compile the framework for the arm64
architecture as all ARKit-ready iOS devices run on arm64. arUco must be

compiled manually,
as no binary for iOS
is available

For this we also needed to compile arUco’s dependencies
for arm64. Fortunately, arUco has only two of them: Eigen,
a library for linear algebra, and OpenCV, a computer vision
library. OpenCV offered a compiled iOS version that we
can use but Eigen had to be manually compiled for arm64.
It was also important to compile it into a static rather than a
dynamic framework as a static one did cause fewer linking
problems. As arUco is written in C++ we needed to write We need to use

Objective-C++ to link
to arUco

an Objective-C++ wrapper around the framework because
Swift was not able to link to C++ written binaries directly.
To do this we should understand how arUco works.

To use arUco we only had to initialize the main class
aruco::MarkerDetector. To do so we had to provide
the camera parameters, which could be partly taken from
the ARCamera’s property intrinsics. For the other part
we needed to use the camera calibrator, provided by arUco.

Furthermore, we specified the marker dictionary. That dic-
tionary defines which types of markers are used in our pro-
gram. We used ARUCO MIP 36h12 which is recommended We used a

recommended
marker dictionary

by the developers and offers a good tradeoff between ro-
bustness and size. These markers have a simple design of
6×6 white or black squares, surrounded by a black line.
Moreover, they are never symmetrical to avoid problems



20 5 Implementation

in calculation [Garrido-Jurado et al., 2016]. An example of
an arUco marker can be seen in Figure 5.2.

We fed the detector with an image by calling
detector.detect(image, markers, camera
Parameters, markerSize). In addition, the al-Detecting a marker

from an image was
quite easy with

arUco

ready mentioned cameraParameters and the real-world
markerSize was needed for the calculation. The resulting
markers appeared in the markers vector. We then got
the ID of all detected markers and their three-dimensional
relative position to the camera.

To feed the detector we needed to get the image from
ARKit to arUco. The only point where we could get the
raw image is the session( :didUpdate:) method from
the ARSessionDelegate. This method provided the
newest captured camera image that we can use to convert
to an arUco friendly format. The type of the image wasARKit outputs an

image that we used
as an input for arUco

a CVPixelBufferRef that could easily be converted to a
cv::Mat, the image format from OpenCV that arUco uses
for its inputs. Both types were a simple representation of
an image. In ARKit each pixel is encoded as an unsigned
8-bit integer with one channel, so we used the cv::Mat
initializer with the argument CV 8UC1, which specifies ex-
actly this pixel encoding. The initializer does not copy the
image but uses the same reference to the image, thus this
process is very fast.

We were then able to get the newest image from ARKit to
OpenCV. To make the detection even faster we decided toUsing multi-threading

increased the
performance

run the detection process in a separate thread. For this
we used the NSOperationQueue abstraction that made
threading significantly easier. Additionally, we ensured
that only one detection process runs at once.

5.3 Fusion of ARKit and arUco

Listing 5.1 shows our definition of the wrapper between
ARKit and arUco. The wrapper needs to be initialized
and the delegate needs to be set. The delegate must con-
form to the OpenCVWrapperDelegate protocol to receive



5.3 Fusion of ARKit and arUco 21

@protocol OpenCVWrapperDelegate
-(void)markerPosition:(NSArray<NSValue*>*) pos

ids:(NSArray<NSNumber*>*) ids;
-(void)noMarkerFound;

@end

@interface OpenCVWrapper : NSObject
@property id<OpenCVWrapperDelegate> delegate;
-(void)findMarker:(CVPixelBufferRef)pixelBuffer;

@end

Listing 5.1: Definition of our arUco wrapper

the result from the calculation in a defined manner. After
that, the ARKit delegate can call the findMarker: method
and after successful computation the wrapper’s delegate is
called with an array of markers and the respective IDs. In
case no marker was detected, the noMarkerFoundmethod
is called by the wrapper.

We called the wrapper in the already mentioned delegate
method session( :didUpdate:) and waited for the
delegate method to be called. In the callback method we
could display e.g. a red dot at the position were the marker
was found. For this we created a SCNNode and added it to We introduce a red

dot indicating the
position of the
marker in the AR
space

our AR Scene. We had to take into account that the node
was positioned relative to the world origin point, which
did not move. However, the positions given by the wrap-
per were relative to the camera, which moves through the
room. Thus, we needed to link the position of the markers
in some way to the camera’s position and rotation. Fortu-
nately, a camera is also a SCNNode which can have chil-
dren. The transformation, including the position, rotation
and scale, is also applied to every child node. The red dot
representing the position of the marker could be attached
to the camera as a child node and was therefore positioned
correctly.

When we wanted to draw a path through three- We converted the
marker position to
the world space to
made it independent
of the camera
position

dimensional space with the marker, we had to
convert the marker position back into space, oth-
erwise the marker would still have moved with
the camera. For this, SceneKit provided the handy
method SCNNode.convertPosition( position:



22 5 Implementation

class MarkerBox : SCNNode {
init(length: Double)
func set(position: SCNVector3,

orientation: SCNVector3,
forID id: Int)

func posititonWith(ids: [Int]) -> SCNVector3
}

Listing 5.2: The Swift interface of the MarkerBox class that
will take care of all calculation related operations

SCNVector3, to node: SCNNode?) that is able to
convert vectors between local and global space. This could
be used to create a path in world space.

Milestone. We reached our first major milestone as we are able
to draw a path with the marker relative to the world space.

5.4 Marker Box

One of our goal was to draw with the pen tip and not with
the marker itself. We had not only one marker but rather
six markers placed on the faces of a cube. Therefore, we
needed to calculate the pen tip position from the marker
box. To do this we needed to know the position and ID
of the marker we could detect in the camera image. Fur-
thermore, we also needed to calculate the orientation of the
marker, the calculation of which arUco provides a method
for. We adjusted the OpenCVWrapper and the associatedTo calculate the pen

tip we had to
calculate the

orientation of the
marker

protocol to execute this method and provided the result of
the calculation next to the position of the marker, so the
OpenCVWrapperDelegate then received the ID, the posi-
tion, and the orientation. To centralize this calculation we
introduced another class named MarkerBox. The Swift in-
terface of this class is shown in Listing 5.2.

To clarify how the calculation works, Figure 5.3 shows a
technical drawing of the ARPen. Line b in the drawing
represents the length of the pen which the MarkerBox
must be initalized with. For each marker we call the
set(position:rotation:id:) method and with this



5.4 Marker Box 23

Figure 5.3: A technical drawing of the ARPen that shows
how the pen tip is calculated from the markers. A is the
middle of the side,A′ is the detected position of the marker,
B is the center of the box and C is the pen tip. The vector
a describes the vector from the marker to the middle point
and b from the middle point the pen tip.

information the MarkerBox object is able to calculate the
pen tip point, C in the drawing. This calculation is run by
calling positionWith(ids:).

In theory, we have to calculate B from all possible As and
then applying the vector b so we result at C. However, not Some markers are

displaced a little bit to
support tracking from
some view angles

all markers were exactly positioned in the middle of their
side. The markers on the faces adjacent to the holder have
the special feature of being displaced 5 mm away from the
holder. By doing this we ensured that the space between
the markers and the holder was large enough to not influ-
ence the detection of the markers’ edges. The middle point
of the marker is A, but the middle point of this face is A′.
The marker on the other sides are exactly positioned in the
middle, thus A = A′.

To simplify the calculation, we worked intensively with the
fact that SCNNodes inherit the transformation to their child
nodes. We created separate nodes for each marker and
added a new child node. This child node got a fixed trans-



24 5 Implementation

formation, so that it always pointed from the marker to theWe took advantage
of SceneKits internal

node structure to
simplify the pen tip

calculation

tip of the pen. Only the position and rotation of the node
representing the marker was set. The child node then auto-
matically aligns itself with the pen tip. As we had multiple
markers we did this for every marker that was detected and
calculate the average point of all pen tips.

To calculate C from A we used the following vector:

~b =


cos(180◦−α)∗b√

2
cos(180◦−α)∗b√

2

sin(35.3◦ ∗ b)− 0.02


In the case A 6= A′, i.e. for the translated markers, we used
a modified vector:

~b =


cos(180◦−α)∗b−0.005√

2
cos(180◦−α)∗b−0.005√

2

sin(35.3◦ ∗ b)− 0.02


These vectors were formed by the addition of the vectors
~a and ~b in the drawing. b is the length of the pen that was
previously given to the MarkerBox and α was measured
in our CAD application, where we designed the ARPen, to
be 144.7◦.

This calculation is only performed during the initializa-
tion. It is only performed again if the length of the
ARPen is adjusted in the settings. As already mentioned
the child nodes have a fixed position (the result of the
calculation above) and only the parent nodes are chang-
ing their position and orientation. These characteristics
are updated by the set(position:orientation:id:)
method. After all positions and orientations have
been set, the positionWith(ids:) method can beWe calculated the

pen tip and
converted this

position to the world
space

called, which calculates a pen tip position for every de-
tected marker. This is done by converting the posi-
tion (0, 0, 0) in relation to the child node to world space
by calling SceneKit’s convertPosition(position:
SCNVector3, to node: SCNNode?) method with
position as (0, 0, 0) and node as nil. If node is nil,
SceneKit converts the position (0, 0, 0) of the child node,
representing the pen tip, to the world space. All positions



5.5 Bluetooth Chip 25

are taken to calculate the average point, which results in
a very good approximation of the pen tip’s position in the
real world space. Any objects that are placed at that lo-
cation are not anymore in relation to the camera, like the
marker, but in relation to ARKit’s world space. When the
camera moves, the generated object does not move with the
camera, as is always the case with marker tracking frame-
works, but remains in place.

Milestone. We reached our second milestone as we were able to
draw with the pen tip. We calculated the pen tip to a world space,
so the objects did not move with the camera. Furthermore, we
supported an adjustable pen length.

To draw a path, we created very small cylinders between
the positions we calculated at each frame. From a distance,
this looked like a coherent path. While this was not the
most efficient method of accomplishing our goal, it was suf-
ficient for our purposes.

5.5 Bluetooth Chip

One problem we had is that the pen was drawing a path
when it is visible in the viewport and the user could not
control whether the pen should draw a path or not. We
decided to add a button to the ARPen that controls this be-
havior. This implicated that we needed a chip that detects As a Bluetooth chip

we use the RedBear
Nano v2

the state of the button and is capable of transmitting this
information to the iOS device. We already evaluated that a
RedBear Nano v2 fit exactly our needs, as it is inexpensive
and has low power consumption. The chip could be pro-
grammed using the Arduino toolchain and a special pro-
gramming device which was included with the purchase of
the chip. This toolchain includes an IDE, an SDK for Blue-
tooth communication and a compiler.

To read the button state we used the functions provided by
the SDK. Furthermore, we had to design a proper cabling.
This cabling is shown in Figure 5.4. It should be noted that
no further resistors are needed as the chip includes pull-
up resistors, which are used. To read the button state we



26 5 Implementation

Battery

Figure 5.4: The Bluetooth chip and its cabling. Three but-
tons are connected to the I/O ports of the Bluetooth chip.
In addition, we have attached a 3.7V battery to the corre-
sponding pins.

applied current to the respective line and read the logicalWe used the internal
pull-up resistors to

keep the cabling
simple

value behind the pull-up resistor. When the button is not
pressed the current flows out via the pull-up resistor and
we a read a logical one. When the button is pressed, the
current flows directly to ground through it, and we read a
logical zero.

A Bluetooth device connected to an iPhone is called periph-In Bluetooth every
device is an

peripheral that
contains any number

of services

eral. Each peripheral has a name and a UUID. A periph-
eral can have any number of services and each service says
that this peripheral supports a certain function. Further-
more, a service is also specified by a UUID. For example, if
the peripheral could measure heartbeat data, it would of-
fer the ”heartbeat” service. Every device that connects to
the peripheral knows which functions the corresponding
peripheral supports thanks to the services. For some ser-
vices, such as heart rate, the UUID is standardized, so all
Bluetooth heart rate monitors should have the same service
UUID.

A service is divided into several characteristics. Each char-



5.6 App Architecture 27

acteristic is an endpoint at which data can be read and writ-
ten. In the case of the heartbeat service, the standard pro- Services are divided

into characteristicsvides that there is one characteristic for the heartbeat in
beats per minute and another for the position of the sen-
sor on the body.

For the ARPen we defined that there is only one service
and under it only one characteristic. This characteristic
changes whenever one of the 3 buttons is pressed. The
iPhone can now say it wants to be informed when this end-
point changes. This allowed us to transfer the states of the
buttons.

Our Bluetooth application is based on an example project
provided by RedBear as part of their Arduino toolchain. To
be able to read out the button states, we switched on the
pull-up resistors at the corresponding pins. Furthermore,
we created a ticker which excludes the button states every
100ms and changes the value of the Bluetooth characteristic
if the state has changed.

If the app now wants to connect to the pen, it searches for The app connects to
the pen by searching
for a predefined
service UUID

all Bluetooth peripherals that support the corresponding
service and connects to the first one found. If this is not
the correct one, the user can call up a list of all peripherals
in the settings and connect specifically to one.

The characteristic we have defined contains only ASCII
data. This data is limited to values such as, for exam-
ple, B1:UP or B2:DOWN, which indicate that Button 1 has
been released or Button 2 has been pressed. The app reads
the data and can perform actions depending on the button
number and state. In our case a path is drawn by pressing
the button B1 and drawing stops by releasing it.

5.6 App Architecture

The system we developed here could be used for multiple
scenarios. Any idea that went in the direction of AR could
use the ARPen and build on it. To support this we designed
a PluginManager and a Plugin protocol to make it very



28 5 Implementation

protocol Plugin {
func didUpdateFrame(scene: PenScene,

buttons: [Button: Bool])
}

Listing 5.3: The Plugin protocol

easy for future developers, who want to add their own
functionality to the app. As long as their code conforms toThe app uses a

plugin architecture
that makes further
development easy

the Plugin protocol, as shown in Listing 5.3, their plugin
can be seamlessly integrated into our app, which only re-
quires registering at the PluginManager. At every frame,
the plugin is called by the PluginManager, and is given
information such as the current button states as well as the
scene object. With the buttons object the plugin is able to
interact with all buttons and the scene object is needed to
add or remove visual nodes from the current AR scene and
to read the current pen tip position. To make the app even
more modular, we have also made the basic functionality
of drawing a line with the pen into a plugin. This makes
it possible to switch this function on or off as desired. It
is also a good example for developers who want to write a
new plugin.

Our long-term goal is to develop an app with which the
user can create and edit 3D objects. It is therefore particu-
larly important that the 3D object created by the user can
also be exported. Therefore, we have written a functionThe user can export

the drawing directly
to a 3D printer

which allows to export the whole scene to an STL file. STL
is a very common format for 3D printing [Hiller and Lip-
son, 2009].

Within this goal we have also developed an
ObjectCreation plugin, which allows the user to
create an object in space. With the pen a user can define
points in the room and the plugin creates an object between
these points.

Furthermore, the user should have the possibility to editThe length of the pen
can be adjusted the length of the ARPen. We have created a settings view

where the user can adjust the length of the ARPen, as well
as disconnect, connect via Bluetooth and export the scene
as mentioned above.



5.6 App Architecture 29

ViewController

PluginManager PluginsARSceneView

PenManagerARManagerPenScene

MarkerBox OpenCVWrapper

ARPenarUco

holdsholds

holds allholdsholds

holds holds

uses

communicates via
Bluetooth with

holds various

Figure 5.5: A brief architectural overview of our app. Ev-
ery class has its own responsibility. Furthermore, it is im-
portant that every class is held by only one other class to
reduce the risk of memory leaks.

To keep the code clean and to ensure that no class has mul-
tiple responsibilities, we split the ViewController into
the PenManager class dedicated to the Bluetooth commu-
nication and the ARManager dedicated to all ARKit related
functions. To encapsulate these classes even more from
each other and to give the plugins access to information
that these two classes hold, they are not held directly by
the ViewController but by the PluginManager. The The architecture of

the app is designed
so that each class
has its own
responsibility

PluginManager also holds all active plugins. However,
the ViewController holds the ARSceneView, which is
prominently displayed to the user after the app starts. In
order for the ARManager to have easy access to the scene
that is needed to display the pen position, for example, a
pointer to the PenScene is given to the PluginManager
and through it to the ARManager. Since the PenScene
holds the MarkerBox, the ARManager is able to pass the
marker detection results to the MarkerBox object. Fig-
ure 5.5 visualizes the app architecture.





31

Chapter 6

Evaluation

One of the big advantages of our system is that it only
needs the ARPen and an iPhone 6s or newer. Unfortu-
nately, Apple does not publish exact iPhone sales figures,
therefore the number of ARKit-capable devices can only be
estimated. Most estimates currently range from 250 million
to 500 million ARKit capable devices [van Dijk] [Boland].
This gives us a very large potential user base.

Therefore, we conducted a study in which a user was asked
to use the ARPen for some tasks and then was asked to give 20 people

participated in the
study

a short feedback on the ARPen. We interviewed 20 people
and asked various questions. Of the participants, 16 were
male, two were female and two chose not to provide any
information. 19 right-handers and one left-hander partici-
pated. On average, our participants were 22.06 years old.

Participation in the study consisted of three phases. In the
first phase, participants used the ARPen to draw whatever
they like in order to get a general impression of the ARPen.
In the second phase the participants are asked to follow a
two-dimensional form with the ARPen. In the last phase,
they are asked to draw a three-dimensional object. The
study took roughly 15 minutes.

Unfortunately, our study also had some limitations. At that At the time of the
study, only landscape
mode could be used

time, the implementation was not yet designed to support
different orientations, so participants had to use the iPhone



32 6 Evaluation

1 2 3 4 5 6 7

Accuracy

2D Drawing

3D Drawing

Shape & CoM

Handling

Intuitiveness

Screen size
Too large Perfect Too small

0 % 40 % 60 %

3D modeling experience
None Little Much
70 % 15 % 15 %

Figure 6.1: Result of the evaluation

in ”Landscape Left” mode, so the camera was on the left
side. Right-handed people sometimes found this annoying
because they wanted to hold the iPhone with their left hand
which resulted in their hand covering the camera.

After the study, the participants completed a questionnaire.
In this questionnaire, participants were asked to rate 6
questions on a scale of 1 to 7, with 1 being the best result.
Additionally, they were given the opportunity to leave a
free text. The questionnaire is attached in the appendix
A “Questionnaire”.

The evaluation of the questionnaire is shown in Figure 6.1.
Some strengths and weaknesses can be quickly identified.
The pen achieved the best results in 2D drawing and in
operability. Since the pen is tracked directly, even with-The best result was

achieved in the area
of intuitiveness

out a Bluetooth connection, and this is also indicated by a
small red dot at the tip of the pen, every participant quickly



33

adapted to drawing with the ARPen. In addition, the inter-
action carried out in the study is kept simple, as only the
button responsible for drawing has to be used. These cir-
cumstances certainly had an influence on the good rating.

The good marks in the area of two-dimensional drawing
could be traced back to the fact that everyone has exist-
ing experience of drawing with “normal” pens [Yang and
Cham, 2007] which can easily be transferred to the ARPen. Two-dimensional

drawing worked
much better than
three-dimensional
drawing

However, very few users had significant experience in 3D
modeling. 15% of the participants said they had a little
experience in this area and another 15% said they had a
lot of experience. The lack of experience could influence
the lower grade in three-dimensional drawing. In order to
make a statement whether experienced participants eval-
uate the ARPen better in three-dimensional drawing, we
need to gather more data.

The worst results were achieved in the categories ”Shape &
CoM”, where ”CoM” refers to Center of Mass, and ”Han- The worst result

achieved the pen in
the area of handling
and the position of
the center of mass

dling”, where we asked how it feels to hold the iPhone and
the ARPen simultaneously. Since the battery and Bluetooth
devices are located in the back of the ARPen, the center of
mass of the pen is very far back, unlike a conventional pen.
This makes the ARPen a little more difficult to hold than a
regular pen.

Most participants had constant problems simultaneously
holding the ARPen and the iPhone in their hands. It of-
ten happened that the participant concentrated too much
on the tip of the pen and the marker left the camera im-
age. This stopped the tracking of the ARPen while draw-
ing. Since a certain distance between the camera and the
ARPen is needed to be able to use it well, participants with
a smaller arm length had bigger problems.

The accuracy of the ARPen was assessed by the participants
in the middle range. Things that affect tracking are usually
the lighting conditions, the speed with which the partic-
ipant moves the pen and the texture of the environment.
In highly textured environment with good light, the par-
ticipants had fewer problems with tracking. In addition,
smaller things are more difficult to draw with ARPen than



34 6 Evaluation

larger ones due to the limited accuracy of the ARPen. It alsoSometimes ARKit
oriented the scene to
the ARPen and not to

the environment

happened more often that ARKit was not oriented to the
environment but to the pen, which led to particularly dis-
turbing effects. This occurred especially when drawing 2D
objects when the participant made particularly slow move-
ments. ARKit assumes that the observed scene is static
and does not move, because the observed movements in
the scene are used for tracking. When the participant holds
her device still while slowly moving the pen, ARKit can no
longer distinguish accurately enough whether the iPhone
is moving or not. The camera image showing the pen indi-
cates that the iPhone is moving, but the motion sensors do
not indicate this. ARKit decides to give more weight to theThis has caused

problems in slow
drawing

camera image compared to the motion sensors. This causes
the scene to move with the pen, so the participant is no
longer able to draw. This problem always occurred when
the pen was a large part of the visible area and the pen was
moving slowly. Some participants recognized the problem,
and were able to make ARKit understand the scene cor-
rectly by moving the iPhone simultaneously, by increasing
the distance between camera and pen, or by moving the
pen faster.

On the back of the questionnaire the participants could
comment on the categories ”What do you like”, ”What do
you not like” and ”What changes would you suggest” re-
garding the ARPen. In the category ”What do you like”
we often read that the participants liked the idea and the
concept of the pen. The participants also wrote that theMany parallels could

be found in the free
text area

triangular shape of the pencil made it particularly pleas-
ant to hold. In the category ”What do you not like” we
often read that the center of mass and the field of vision
needed improvement. Since these participants were dissat-
isfied with the field of vision, they often wished for an en-
largement of the field of vision when making suggestions
for improvement. In the field ”What changes would you
suggest” many participants wished to have the possibil-
ity to draw a straight line, for example by smoothing the
drawn line. Inaccuracies in the measurement, paired with
recalibrations by ARKit lead to jittery lines.

We also asked how the participants felt about the screen
size. All participants conducted the study with an iPhone



35

7. This has a screen diagonal of 4.7 inches. 60% of the par-
ticipants thought the screen was too small. In connection
with the feedback in the free text field we come to the con-
clusion that most participants desire a larger field-of-view.
This was especially prevalent among participants who held
the iPhone close to the ARPen.

In addition to the questionnaire, we also observed the par-
ticipants during the use of the pen and identified similar-
ities between different participants. Especially the three-
dimensional drawing was a huge challenge for some par-
ticipants. Some did not draw the given 3D object three- We learned a lot by

observing how the
participant use the
ARPen

dimensionally, but rather had their attention fixed on the
two-dimensional display of the iPhone while drawing.
They drew the object so that it looked fine on the dis-
play, but looked at from other perspectives in the three-
dimensional space the object was malformed. After the
participants moved the iPhone around their object, they no-
ticed their mistake and were surprised. Three-dimensional
drawing does not seem to be as intuitive for many partici-
pants as two-dimensional drawing.

Almost all participants enjoyed participating in the study
and were quite satisfied with the idea and its implementa-
tion. Many of the suggestions for improvement noted can
certainly be addressed in the future in order to further in-
crease the acceptance of ARPen.





37

Chapter 7

Conclusion

In this chapter we will summarize the content of this work.
We will briefly discuss the last chapters and give an out-
look on what can still be improved about ARPen and which
ideas can be built on it.

7.1 Summary

In this Bachelor’s thesis we presented how to build an
app that recognizes and tracks a pen in three-dimensional
space. First, in the chapter 2 “Background” we built up
the necessary previous knowledge on the topics ”ARKit”,
”Marker Tracking Frameworks” and ”Personal Fabrica-
tion” and briefly described how these technologies work.

Afterwards, in the chapter 3 “Related work” we dealt with
other research in the field of Augmented Reality.

In the chapter 4 “Design” we have defined which goals we
want to achieve. We decided to build a pen as well as an
app that tracks the pen in an augmented reality environ-
ment. ARKit is a framework that offers markerless world
tracking, but it’s not good at tracking a small object like a
pen. Therefore, we need another framework besides ARKit
to follow the pen in space. We have tried out various frame-



38 7 Conclusion

works for this. After our analysis, we chose arUco 3 be-
cause it meets our most important requirement of not re-
quiring exclusive access to the camera, as ARKit also re-
quires exclusive access. A proof of concept has shown that
the interaction of ARKit and arUco 3 not only works in the-
ory but also in practice.

Now that we know what the app must be able to do, we
have described what features the pen should have. This
of course includes the look, which differs from a conven-
tional pen only in the large box on which the markers are
attached. After we presented a first simple version, we con-
sidered further and found some possibilities for improve-
ment which we also implemented. Finally, we designed an
improved version which we still use as of this time. It dif-
fers fundamentally from the first version in its design; one
more marker can now be attached and there is space for
buttons.

In the Implementation chapter we described how we de-
veloped the app, starting with chapter 5.1 “ARKit”. For-
tunately, ARKit is very easy to use and the configuration
effort is low.

In the chapter 5.2 “arUco” we built the arUco library for
iOS and integrated it into our project. Parts of arUco had to
be made compatible with ARKit before they could be used
together. From this point on, the app was able to recognize
markers.

The connection between ARKit and arUco was then made
in the chapter 5.3 “Fusion of ARKit and arUco”. There we
transferred the images that ARKit delivers after each pro-
cessing to arUco which searches for markers in these im-
ages. We transferred the position of the markers to world
space and were thus able to draw in world space with a
marker. However, drawing with the marker directly does
not yet fulfill our requirements.

In the chapter 5.4 “Marker Box” it was our goal to draw
with the pen tip, for which we had to calculate the position
of the tip relative to the marker. SceneKit helped us make
the calculation as efficient and simple as possible, because



7.2 Future work 39

we made particularly intensive use of SceneKit’s structure.
In addition, we exploited the way how node translation are
applied to children nodes. Now we could paint with the
pencil tip, a milestone was reached. To make the painting
experience even more realistic we had to integrate a button
into the pen with which the user decides when she wants
to draw a path.

In 5.5 “Bluetooth Chip” we explained how Bluetooth works
and what must be done to create a simple Bluetooth device.
The buttons are connected to a Bluetooth chip placed in the
box of the pen. The app establishes a connection with the
pen and can now recognize a button being pressed and re-
act accordingly.

In chapter 5.6 “App Architecture” we described how we
built an architecture that can be extended by anyone to al-
low other developers, researchers or other interested par-
ties to easily add features to the app without having to un-
derstand the entire app and familiarize themselves with the
more complicated tracking. Therefore, we have designed a
plugin architecture that accepts plugins and provides them
with all necessary information to add any features to the
app. In case a plugin needs more information than it is
given, we have also described the rest of the architecture
in detail to make subsequent changes as easy as possible.

In chapter 6 “Evaluation” we presented our user study,
which we conducted to test how users handle ARPen and
especially how satisfied they are with it. The results were
satisfactory. Users found the ARPen very intuitive and
were also able to draw in two dimensions. However,
the ARPen still has weaknesses in handling and three-
dimensional drawing.

7.2 Future work

We have some suggestions that can further improve the
ARPen. In the study the user noticed that they want an
extended field of view to be able to use the ARPen closer to
the camera. To achieve this we would like to try to clamp



40 7 Conclusion

a fisheye lens in front of the iPhone lens. Certainly this
would affect ARKit’s tracking, but we do not yet know how
strong these effects are. Another way to increase the field of
view is to build a holder that holds the device on its own,
for example a holder that holds the device in front of the
body, to extend the distance between the camera and the
ARPen. Furthermore, the user does not have to use both
hands, which allows her to concentrate on the ARPen.

Another problem is the marker box, which often leaves the
iPhone’s field of view, causing the user to be unable to con-
tinue drawing. Enlarging the field of view can help, ofFor a better user

experience we need
to enlarge the field of

view

course, but we want to find a more effective method. One
approach is to place a marker near the tip of the ARPen
that allows further tracking even when the marker box has
left the field of view. Furthermore, even though this is very
complex, the pen could be equipped with a gyroscope and
an accelerometer, so that it is able to track its position in
space independently.

Shortly before the completion of this thesis Apple has re-
leased ARKit 1.5. Some new features are interesting for
us, such as the increased resolution of the ARKit. Instead
of a 720p video stream at 30 fps, a 1080p at 60 fps stream
is now possible. Due to the increased resolution, marker
tracking could provide better results. The increased fps can
help track the pen while it is moving, but also increases the
requirement on arUco which has to recognize the marker
in half the time to keep the live view fluid. Another feature
of ARKit are so-called ”Reference Images”. ARKit can useThe new ARKit 1.5

could help us to
solve some problems

these images to orientate an AR scene to a known image in
the real world. Unfortunately ARKit cannot track the ref-
erence images in the room, so it is not a replacement for
arUco. However, the images could be used to improve the
stability of tracking. If a reference image is placed in the
real world so that it is captured by the camera from time
to time, ARKit could easily calibrate the scene on this an-
chor image over and over again. ARKit’s deviations and
recalibrations that the participants of the study experienced
could be reduced.

The plugin system makes it particularly easy to extend the
software. Other developers have already written plugins to



7.2 Future work 41

add more functions to the app. It is possible to implement
extensive methods for the creation and editing of 3D ob-
jects. With good tracking it also makes sense to create bet-
ter editing possibilities for 3D objects, such as inserting new
objects into the scene or boolean operations between ob-
jects. Sharing the created 3D content with other app users
is also conceivable.

It would also make sense to offer an alternative to the
printed pen. 3D printers are still difficult to reach for many
people and should therefore not be a prerequisite for using
the pen. It is conceivable to fold the pen purely from pa-
per. All input methods should then be made via the touch
screen of the iPhone. With a pen printed on paper, the tech-
nology can be made available to an even wider audience.





43

Appendix A

Questionnaire

The following four pages contain the questionnaire in en-
glish and german language that we used to evaluate the
ARPen.



Evaluation ARPen 


Gender:	 	 Female	 	 Male	 	 Other	 	 	 	      left handed

	 	 

Age:	 	      ______	 	 	 	 	 	 	 	    right handed


Knowledge in 

3D modelling


How do you rate the accuracy of the ARPen?


very accurate	 	 	 	 	 	 	 	 	 	     very unprecise


What is it like to draw 2D objects with the ARPen?


       easy	 	 	 	 	 	 	 	      	 	  	  hard


What is it like to draw 3D objects with the ARPen?


      easy	 	 	 	 	 	 	 	 	      	 	  hard


How does the ARPen feel in terms of shape and center of gravity in the hand?


   very good	 	 	 	 	 	 	 	 	 	           very bad


How is it for you to hold the iPhone and ARPen in your hands at the same time?


       easy 	 	 	 	 	 	 	 	 	      	        	  hard


How do you feel about the operation of the hardware?


    intuitive 	 	 	 	 	 	 	 	 	 	          unintuitive


How do you feel the screen size of the iPhone?



	 too large	 perfect		 too small


no 	 	 some	 	 a lot

Number: 



What do you like about the ARPen?




What do you not like about the ARPen?




What changes would you suggest that would improve the pen?


Thank you for the participation



Evaluation ARPen 


Geschlecht: 	 	 Weiblich 	 Männlich	 k.A.	 	 	 	   Linkshänder

	 	 

Alter:	 	      _______	 	 	 	 	 	 	 	 Rechtshänder


Erfahrung mit 

3D-Modellierung


Wie beurteilst du die Genauigkeit des ARPens?


 sehr genau	 	 	 	 	 	 	 	 	 	       sehr ungenau


Wie ist es, mit dem ARPen 2D Objekte zu zeichnen?


     einfach	 	 	 	 	 	 	 	 	      	          schwierig


Wie ist es, mit dem ARPen 3D Objekte zu zeichnen?


     einfach	 	 	 	 	 	 	 	 	      	          schwierig


Wie fühlt sich der ARPen im Bezug auf Form und Schwerpunkt in der Hand an?


    sehr gut	 	 	 	 	 	 	 	 	 	       sehr schlecht


Wie ist es für dich das iPhone und den ARPen gleichzeitig in den Händen zu halten?


     einfach 	 	 	 	 	 	 	 	 	      	          schwierig


Wie empfindest du die Bedienung der Hardware?


     intuitiv 	 	 	 	 	 	 	 	 	 	            unintuitiv


Wie empfindest du die Bildschirmgröße des iPhones?



	 zu groß	 genau richtig	 	 zu klein


keine 	 	 wenig	 	 viel

Nummer: 



Was gefällt dir am ARPen?




Was hat dir am ARPen nicht gefallen?




Welche Veränderungen würdest du vorschlagen, die den ARPen verbessern würden?


Vielen Dank für deine Teilnahme





49

Bibliography

CameraFrameStreamer Class - EasyAR docu-
mentation. URL https://www.easyar.com/
doc/EasyAR%20SDK/API%20Reference/2.0/
CameraFrameStreamer.html. Accessed on 2018-
04-02.

Get HoloSketch - Microsoft Store. URL https:
//www.microsoft.com/en-us/store/p/
holosketch/9p3br4t5m4tv. Accessed on 2018-
04-02.

Paint Space AR. URL https://
www.paintspacear.com/. Accessed on 2018-04-02.

Apple. ARKit - Apple Developer. URL https://
developer.apple.com/arkit/. Accessed on 2018-03-
10.

ARToolKit. About artoolkit’s history and team —
artoolkit.org. URL https://artoolkit.org/about-
artoolkit. Accessed on 2018-02-26.

Mark Billinghurst, Hirokazu Kato, and Seiko Myojin. Ad-
vanced Interaction Techniques for Augmented Reality
Applications. In Lecture Notes in Computer Science, pages
13–22. Springer Berlin Heidelberg, 2009. URL https:
//doi.org/10.1007/978-3-642-02771-0 2.

Mike Boland. ARtillry Intelligence: 380 Million iPhones
Are Compatible with ARKit ARTILLRY: A PUBLICA-
TION AND INTELLIGENCE FIRM FOR AR & VR. URL
http://artillry.co/2017/07/26/artillry-
intelligence-arkits-installed-base-is-
380-million-iphones/. Accessed on 2018-03-24.

https://www.easyar.com/doc/EasyAR%20SDK/API%20Reference/2.0/CameraFrameStreamer.html
https://www.easyar.com/doc/EasyAR%20SDK/API%20Reference/2.0/CameraFrameStreamer.html
https://www.easyar.com/doc/EasyAR%20SDK/API%20Reference/2.0/CameraFrameStreamer.html
https://www.microsoft.com/en-us/store/p/holosketch/9p3br4t5m4tv
https://www.microsoft.com/en-us/store/p/holosketch/9p3br4t5m4tv
https://www.microsoft.com/en-us/store/p/holosketch/9p3br4t5m4tv
https://www.paintspacear.com/
https://www.paintspacear.com/
https://developer.apple.com/arkit/
https://developer.apple.com/arkit/
https://artoolkit.org/about-artoolkit
https://artoolkit.org/about-artoolkit
https://doi.org/10.1007/978-3-642-02771-0_2
https://doi.org/10.1007/978-3-642-02771-0_2
http://artillry.co/2017/07/26/artillry-intelligence-arkits-installed-base-is-380-million-iphones/
http://artillry.co/2017/07/26/artillry-intelligence-arkits-installed-base-is-380-million-iphones/
http://artillry.co/2017/07/26/artillry-intelligence-arkits-installed-base-is-380-million-iphones/


50 Bibliography

S. Garrido-Jurado, R. Muñoz-Salinas, F.J. Madrid-Cuevas,
and M.J. Marı́n-Jiménez. Automatic generation and de-
tection of highly reliable fiducial markers under occlu-
sion. Pattern Recognition, 47(6):2280–2292, jun 2014. URL
https://doi.org/10.1016/j.patcog.2014.01.005.

S. Garrido-Jurado, R. Muñoz-Salinas, F.J. Madrid-Cuevas,
and R. Medina-Carnicer. Generation of fiducial marker
dictionaries using Mixed Integer Linear Programming.
Pattern Recognition, 51:481–491, mar 2016. URL https:
//doi.org/10.1016/j.patcog.2015.09.023.

Google. ARCore - Google Developer — AR-
Core — Google Developers, a. URL https:
//developers.google.com/ar/. Accessed on
2018-03-10.

Google. Tilt Brush by Google, b. URL https://
www.tiltbrush.com/. Accessed on 2018-03-18.

Jonathan D Hiller and Hod Lipson. STL 2.0: a proposal for
a universal multi-material Additive Manufacturing File
format. In Proceedings of the Solid Freeform Fabrication Sym-
posium, number 1, pages 266–278. Citeseer, 2009.

Bret Jackson and Daniel F. Keefe. Lift-Off: Using Refer-
ence Imagery and Freehand Sketching to Create 3D Mod-
els in VR. IEEE Transactions on Visualization and Com-
puter Graphics, 22(4):1442–1451, apr 2016. URL https:
//doi.org/10.1109/tvcg.2016.2518099.

Daniel F. Keefe, Daniel Acevedo Feliz, Tomer Moscovich,
David H. Laidlaw, and Joseph J. LaViola. CavePaint-
ing. In Proceedings of the 2001 symposium on Interactive
3D graphics - SI3D ’01. ACM Press, 2001. URL https:
//doi.org/10.1145/364338.364370.

J. Laviole and M. Hachet. PapARt: Interactive 3D graphics
and multi-touch augmented paper for artistic creation. In
2012 IEEE Symposium on 3D User Interfaces (3DUI). IEEE,
mar 2012. doi: 10.1109/3dui.2012.6184167.

Stephane Magnenat, Dat Tien Ngo, Fabio Zund, Mattia Ryf-
fel, Gioacchino Noris, Gerhard Rothlin, Alessia Marra,
Maurizio Nitti, Pascal Fua, Markus Gross, and Robert W.
Sumner. Live texturing of augmented reality characters

https://doi.org/10.1016/j.patcog.2014.01.005
https://doi.org/10.1016/j.patcog.2015.09.023
https://doi.org/10.1016/j.patcog.2015.09.023
https://developers.google.com/ar/
https://developers.google.com/ar/
https://www.tiltbrush.com/
https://www.tiltbrush.com/
https://doi.org/10.1109/tvcg.2016.2518099
https://doi.org/10.1109/tvcg.2016.2518099
https://doi.org/10.1145/364338.364370
https://doi.org/10.1145/364338.364370


Bibliography 51

from colored drawings. IEEE Transactions on Visualization
and Computer Graphics, 21(11):1201–1210, nov 2015. URL
https://doi.org/10.1109/tvcg.2015.2459871.

Eray Molla and Vincent Lepetit. Augmented reality for
board games. In 2010 IEEE International Symposium
on Mixed and Augmented Reality. IEEE, oct 2010. URL
https://doi.org/10.1109/ismar.2010.5643593.

Catarina Mota. The rise of personal fabrication. In Proceed-
ings of the 8th ACM conference on Creativity and cognition
- C&C ’11. ACM Press, 2011. URL https://doi.org/
10.1145/2069618.2069665.

Ohan Oda, Levi J. Lister, Sean White, and Steven
Feiner. Developing an Augmented Reality Racing
Game. In Proceedings of the 2nd International Confer-
ence on INtelligent TEchnologies for interactive enterTAIN-
ment. ICST, 2008. URL https://doi.org/10.4108/
icst.intetain2008.2472.

Louis B. Rosenberg. Virtual fixtures as tools to enhance
operator performance in telepresence environments. In
Won S. Kim, editor, Telemanipulator Technology and Space
Telerobotics. SPIE, dec 1993. URL https://doi.org/
10.1117/12.164901.

Patrick Schueffel. The Concise Fintech Compendium. School
of Management Fribourg, 2017.

Gábor Sörös, Hartmut Seichter, Peter Rautek, and Eduard
Gröller. Augmented visualization with natural feature
tracking. In Proceedings of the 10th International Con-
ference on Mobile and Ubiquitous Multimedia - MUM ’11.
ACM Press, 2011. URL https://doi.org/10.1145/
2107596.2107597.

N. Sugano, H. Kato, and K. Tachibana. The effects of
shadow representation of virtual objects in augmented
reality. In The Second IEEE and ACM International Sym-
posium on Mixed and Augmented Reality, 2003. Proceedings.
IEEE Comput. Soc. URL https://doi.org/10.1109/
ismar.2003.1240690.

Owen van Dijk. How many devices can run
ARKit? A lot. Owen van Dijk Medium. URL

https://doi.org/10.1109/tvcg.2015.2459871
https://doi.org/10.1109/ismar.2010.5643593
https://doi.org/10.1145/2069618.2069665
https://doi.org/10.1145/2069618.2069665
https://doi.org/10.4108/icst.intetain2008.2472
https://doi.org/10.4108/icst.intetain2008.2472
https://doi.org/10.1117/12.164901
https://doi.org/10.1117/12.164901
https://doi.org/10.1145/2107596.2107597
https://doi.org/10.1145/2107596.2107597
https://doi.org/10.1109/ismar.2003.1240690
https://doi.org/10.1109/ismar.2003.1240690


52 Bibliography

https://medium.com/@ohwhen/how-many-
devices-can-run-arkit-a-lot-f49f2f9675c8.
Accessed on 2018-03-24.

Philipp Wacker, Adrian Wagner, Simon Voelker, and Jan
Borchers. Physical Guides: An Analysis of 3D Sketching
Performance on Physical Objects in Augmented Reality.
In To appear in CHI ’18 EA: Proceedings of the 2018 CHI Con-
ference Extended Abstracts on Human Factors in Computing
Systems, New York, NY, USA, April 2018. ACM. URL
https://doi.org/10.1145/3170427.3188493.

Maria C. Yang and Jorge G. Cham. An Analysis of Sketch-
ing Skill and Its Role in Early Stage Engineering De-
sign. Journal of Mechanical Design, 129(5):476, 2007. URL
https://doi.org/10.1115/1.2712214.

https://medium.com/@ohwhen/how-many-devices-can-run-arkit-a-lot-f49f2f9675c8
https://medium.com/@ohwhen/how-many-devices-can-run-arkit-a-lot-f49f2f9675c8
https://doi.org/10.1145/3170427.3188493
https://doi.org/10.1115/1.2712214


53

Index

3D drawing, 9, 32–35
3D printing, 6, 12–15, 28, 41

AR, see Augmented Reality
ARKit, 5–6, 8–10, 17–18, 20–22, 31, 37–38, 40
ARPen, 13–15, 22–29, 31–35
arUco, 10–12, 19–22, 37–38
Augmented Reality, 1–4, 7–8

Bluetooth chip, 15–16, 25–27, 39

iOS, 8–10, 12, 15, 19

SCNNode, 22–25



Typeset April 6, 2018


	Abstract
	Überblick
	Acknowledgements
	Introduction
	Background
	Augmented Reality
	Marker Tracking Frameworks
	ARKit
	Personal Fabrication

	Related work
	Design
	Software Design
	Hardware Design

	Implementation
	ARKit
	arUco
	Fusion of ARKit and arUco
	Marker Box
	Bluetooth Chip
	App Architecture

	Evaluation
	Conclusion
	Summary
	Future work

	Questionnaire
	Bibliography
	Index

