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Abstract

Textile interfaces are a promising possibility for integrating controls of digital de-
vices into the environment. Textiles have the advantage of being deformable and
stretchable, which allows for more complex interactions than just touching. We
present Grablets, graspable icons embedded into textiles that allow folding and
twisting input. We integrated an Inertial Measurement Unit (IMU) into an icon
and encompassed the icon into a stretchable fabric. Utilizing a neural network
we trained, we then developed a data pipeline to detect which gestures were per-
formed. Our user study showed that users generally like the Grablet but are con-
fused about the exact interaction with our current prototype. The study provided
many ideas for improving the interaction’s affordance and comfort. We also present
some ideas about why the performance of our machine-learning model was insuf-
ficient for actual use and how to enhance it in the future.





ix

Überblick

Textile Interfaces stellen eine vielversprechende Möglichkeit dar, Steuerungen von
digitalen Geräten in die Umgebung zu integrieren. Textilien haben den Vorteil,
verformbar und dehnbar zu sein, was komplexere Interaktionen erlaubt als bloßes
Berühren. Wir präsentieren Grablets, greifbare Icons, die in Stoff eingebettet sind
und Falt- und Dreheingaben erlauben. Wir integrierten eine inertiale Messeinheit
in ein Icon und fassten dieses Icon in dehnbaren Stoff ein. Mithilfe eines von uns
trainierten neuronalen Netzwerkes entwickelten wir dann eine Datenpipeline, um
zu erkennen, welche Gesten ausgeführt wurden. Unsere Studie zeigte, dass Nutzer
generell das Grablet mögen, es aber Verwirrung über die genaue Interaktion mit
unserem aktuellen Prototyp gibt. Die Studie hat viele Ideen hervorgebracht, wie
die Interaktion komfortabler gestaltet und die Möglichkeit der Interaktion besser
hervorgehoben werden kann. Wir präsentieren außerdem einige Ideen, warum die
Leistung des auf maschinellem Lernen beruhenden Modells nicht für den realen
Gebrauch ausreichend war und wie diese in Zukunft verbessert werden kann.
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Conventions

Throughout this thesis, we use the following conventions:

• The thesis is written in American English.

• The first person is written in plural form.

• For unidentified third persons, we use they/their.

Short excursuses are set off in colored boxes.

EXCURSUS:
Excursuses are set off in orange boxes.

Where appropriate, paragraphs are summarized by one or This is a summary of a

paragraph.two sentences that are positioned at the margin of the page.

Statistical measures like the standard deviation and accu-
racy are rounded to two decimal places.
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Chapter 1

Introduction

Since technology surrounds us everywhere, the search for
new interaction types and ways to control it becomes in-
creasingly important. Having the controls on the device it- We aim to integrate

controls for devices into

the environment.

self raises a reachability problem since the user must get
to the device. While remote controllers try to solve this
problem, they can also be out of reach or misplaced. In-
stead, integrating controls into everyday objects and the en-
vironment, making them disappear from the foreground of
the surroundings, is a better solution. Substituting a dedi-
cated controlling device with such a controller removes an
avoidable device and solves the problem of misplacement.
Voice assistants, for example, allow interaction from every-
where within a certain radius but also introduce new hur-
dles. Since there is no physical user interface, there is no
knowledge in the world, following the division by Nor-
man [2013]. Instead, all knowledge is in the user’s head,
requiring them to remember which commands exist and
what they do. Furthermore, the necessity of speaking out
loud to control something can be inappropriate or disrup-
tive, even in a smart home environment, for instance, when
watching a quiet movie.

The idea remains of integrating the controller into the envi- Textiles are a promising

surface candidate for

interfaces.

ronment without significantly changing its appearance or,
in other words, enhancing a surface by allowing interaction
with it to control the surrounding technology. Because of
their ubiquity, textiles have a lot of potential when consid-
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ering different surface candidates and have been a promis-
ing part of the field of Human-Computer Interaction. The
application cases for textile interfaces range from furniture
(chairs, couches, curtains, and table runners) to wearables
(clothes, accessories, and bags) and most other textile sur-
face. Another advantage of textiles from most other sur-The deformable

characteristic of textiles

is an opportunity for

new ways of interaction.

faces is that they allow more ways of interaction with the
user than just touching. Depending on the chosen fabric,
textiles can be grasped and deformed, leading to many dif-
ferent ways of interaction. For example, Parzer et al. [2017]
developed a sleeve that can detect multiple touch and
swipe gestures and the textile being twisted, folded, bent,
grasped, twirled, stretched, pushed, or shaken.

To solve the problem of voice assistants requiring the userIcons are good

signifiers for textile

interfaces.

to know all commands, the interface should give cues to
the user. Particularly when a surface that has had noth-
ing to do with controlling technology becomes interactive,
something needs to signal the user how to interact with it.
Icons are well-suited for signifying the possibility of inter-
action since they are language-independent, take up little
space, and create an easy-to-understand user interface. For
example, a plus and a minus sign can be used to adjust the
volume of music or the brightness of lighting. Instead ofThe haptic component

of textile icons enables

eyes-free interaction.

only having a visual component, making the icon percepti-
ble and distinguishable from others by touch enables eyes-
free interaction. Additionally, users can explore the inter-
face and search for the right element, eyes-free, without ac-
cidentally triggering the touch sensor.

In this thesis, we present Grablets, graspable icons embed-We present Grablets,

graspable textile icons

for fold and twist

interactions.

ded into textiles that allow folding and twisting input. With
twisting, we refer to rotating the icon around the axis or-
thogonal to the plane of the textile, either clockwise or anti-
clockwise. Accordingly, with folding we mean rotating the
icon around the two axes parallel to the textile, thus creat-
ing a fold in the fabric. We chose to pick the four directions
right, left, front, and back for the folding gesture. All ges-
tures have in common that they start with grasping the icon
with at least two fingers. We describe how we integrated a
sensor into a textile icon and what the data pipeline looks
like. For gesture detection, we will present how we trained
a neural network model to determine which gesture the
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user performed. Finally, we will evaluate our work with
a small user study.

In the following of this thesis, we will discuss the related
work regarding textile interfaces in Chapter 2. In Chap-
ter 3, we present the sensor we chose, the printed circuit
board we designed, and how we fabricated the textile icon
with the sensor inside. The data pipeline is divided into
two chapters: The first one, Chapter 4, focuses on how we
communicate with the sensor, obtain data from it, and how
the data is preprocessed before classification. Subsequently,
we present the neural network we developed and trained
and how we use it for continuous gesture classification in
Chapter 5. We evaluated our prototype by conducting a
user study, the procedure and results of which are the fo-
cus of Chapter 6. Finally, we talk about the limitations of
our prototype and the study and what future work can be
done to build upon our findings in Chapter 7. In the end,
Chapter 8 concludes our thesis.
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Chapter 2

Related Work

Many research approaches aim to add interactability to tex-
tiles. First, we want to examine the design aspect of tex-
tile interfaces to enable optimal user interaction. Mlakar Some research aims at

defining design

guidelines for textile

interfaces.

and Haller [2020] developed some general design recom-
mendations for textile interfaces, such as using height to
differentiate between elements. Nowak et al. [2022] ex-
plored the design and fabrication of textile sliders. In ad-
dition to the placement of tick marks, they focused primar-
ily on different shapes and height profiles of sliders to de-
termine the best way to support the sliding gesture. Sim-
ilarly, Schäfer et al. [2023] investigated the design of tex-
tile icons by producing fourteen different shapes in six dif-
ferent fabrication variants (varying in height and affected
area) and measuring how well users could haptically rec-
ognize these types. Besides discovering confusion patterns
for textile icons, they concluded design guidelines, such as
using raised icons if possible, and described the fabrication
process. Challis and Edwards [2001] developed guidelines
for tactile interfaces also applicable to textile interfaces, like
avoiding an excess of empty space and that tactile objects
should be simple.

Many research projects focus on detecting touch and simi-
lar gestures on textile interfaces. Rekimoto [2001] built the
early GesturePad prototype and integrated capacitive sens-
ing into clothing. In recent years, Heller et al. [2014] devel-
oped pads for the upper thigh that the user can draw sim-
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ple gestures on. The prototype layers a pressure-sensitive,
resistive fabric between two sheets of conductive fabric.
When pressure is applied, the outer layers get closer to each
other, resulting in a measurable change in current. This is
a pretty common type of sensor for touch detection in tex-
tiles. Xu et al. [2022] use a similar system for human activ-
ity recognition instead of a user interface. Having stripes
of conductive fabric stacked on each other results in a ma-
trix of pressure measurements. With an extensive data-
processing pipeline and a machine-learning classifier, the
prototype can differentiate between 18 activities.
Another system utilizing this type of textile sensor for
something different than a user interface is the Sen-
sorSleeve by Randell et al. [2005] that can detect affectionate
gestures like stroking the arm. More projects with this sen-
sor are the GestureSleeve by Schneegass and Voit [2016],
where the user can draw simple gestures on their lower
arm to control their smartwatch, expanding its input sur-
face, or FlexTiles by Parzer et al. [2016], a stretchable tex-
tile cover that can be used both for wearables and for
furniture. ZebraSense is a slightly different, dual-sided
touch sensor by Wu et al. [2020] inside a cuff that can de-
tect the touch input on both sides of the fabric. Further
projects to mention regarding conductive yarn are Post and
Orth [1997] with early developments for clothing, in more
recent years Poupyrev et al. [2016] with Project Jacquard,
and Aigner et al. [2020] who further investigated embroi-
dering pressure sensitive sensors. ClothTiles by Muthuku-
marana et al. [2021] takes a different approach. It is a proto-
typing framework that uses 3D printing on fabric to create
simple shape-shifting interfaces.

There are also many textile interface approaches designedThe smart home offers

many applications for

textile interfaces.

for smart homes. Brauner et al. [2017] developed an ad-
justable recliner armchair with a textile interface in the arm-
rest to control its state. Another application is a cushion,
developed by Suzuki et al. [2020], that can detect different
gestures the user performs with it. Heller et al. [2016] built
a functioning curtain prototype that automatically opens
when touching it in certain spots.

Also, some approaches utilize the deformable properties of
the textiles. This is particularly interesting for us since the
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Grablet is meant to be moved around in the fabric. Prob- The deformability of

textiles can be used for

many interactions.

ably the most extensive set of different interactions is the
SmartSleeve system by Parzer et al. [2017]. Apart from
twelve different surface gestures, which usually consist of
touching and swiping, their smart sleeve can also detect the
user twisting, pushing, bending, twirling, stretching, fold-
ing, grasping, and shaking the textile. It uses a pressure-
sensitive textile sensor integrated into the fabric similar to
Heller et al. [2014]. The matrix of pressure readings result-
ing from this sensor gets further processed and is finally
classified into one of the gestures above with a support
vector machine. Running the gesture detection continu-
ously allows a real-time estimation of which gestures are
performed.

Karrer et al. [2011] built a textile user interface element for
clothing called Pinstripe. It utilizes the deformable nature
of the textile to detect pinching the fabric and rolling it
between two fingers. It is designed to be operated one-
handed and is hardly activated by accident because it does
not detect touch at all. The interaction includes grasping
the fabric, creating a fold, and moving it around. This
change in the size of the fold generates a continuous output
that, for example, can be used to controll the volume of mu-
sic. The prototype was realized by sewing parallel lines of
conductive thread into the sleeve of a T-shirt. These threads
would contact each other when the fabric was pinched.

Hamdan et al. [2016] present another approach that uses
fold-based interaction with textiles. It measures at which
angle the user creates a fold and is meant to be worn as
a sleeve on the forearm. It was discovered, however, that
users can only reliably grab at a set angle if the step be-
tween two angles is at least 30◦ to 45◦. In addition to that
study, they also built a prototype to detect grabbing similar
to the sensor used for Pinstripe. Instead of parallel lines,
hexagonal pads of conductive thread were integrated into
the textile and distributed evenly over a small area to detect
folds in any direction.

Lastly, Gioberto et al. [2013] developed a system that al-
lows the detection of fabric bends only with a stitched sen-
sor using a conductive thread. When the stitch is bent or
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folded far enough to contact itself, again the change in resis-
tance can be measured. In testing with an animatronic man-
nequin and a human, the sensor performed well in terms of
detection consistency.
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Chapter 3

Fabrication

The choice of sensor type is crucial since it significantly in-
fluences the data processing pipeline and the way of fab-
ricating the icon. As presented in Chapter 2, most ap-
proaches to adding interactability to textiles utilize a touch
or pressure sensor. To use the strategy of making the de-
tection of pressure on the whole fabric possible, like Parzer
et al. [2017] did for SmartSleeve, would require creating the
whole fabric around the icon instead of only adding the
icon itself.
For this project, we want to detect the orientation and We chose a 9-DOF IMU

to detect the orientation

of the Grablet.

movement of the icon, so we use a nine-degrees-of-freedom
inertial measurement unit (9-DOF IMU). It combines three
sensors: an accelerometer to measure acceleration, a gyro-
scope to measure rotational motion, and a magnetometer to
measure the strength of the Earth’s magnetic field. In con-
trast to SmartSleeve, we now measure the icon’s orientation
rather than the fabric’s deformation. However, the down-
side is that we must integrate an electrical component into
the fabric instead of relying on conductive yarn. We will
explain how we use the data from these sensors to detect
the interactions in Chapter 4 and Chapter 5. Here, we fo-
cus on the process of fabricating such a textile icon, which
can be divided into two steps: We first manufactured a cus-
tom printed circuit board (PCB) with the sensor and then
integrated it into a textile icon.
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3.1 The Circuit Board

We selected the ICM-20948 from Invensense1 as our sen-The development board

with the sensor is too

big to be integrated into

a textile icon.

sor of choice. It is an affordable, small, and low-
power sensor that is also available on a development
board by Adafruit2, which allowed us to prototype eas-
ily and quickly. The development board has a size of
25.7 mm × 17.7 mm × 4.6 mm, while the sensor itself is
only 3 mm × 3 mm × 1 mm big. Mlakar and Haller [2020]
concluded that the optimal shape size for textile interfaces
is 13 mm or bigger. In their recognition experiments, they
used a size of 18 mm, just like Schäfer et al. [2023] did in
their extensive study of different fabrication variants. It be-
comes clear that integrating the development board into a
reasonable-sized textile icon would not work.

We, therefore, wanted to redesign Adafruit’s board by elim-We use the Adafruit

development board as a

basis for our PCB

design.

inating unused features to decrease its size. Adafruit pro-
vides their PCB files on GitHub3 for the Autodesk Eagle
software4. For modification, we imported them into the Ki-
CAD program5, version 8.0.4. Since the sensor is also avail-
able as a surface-mount device (SMD), we can put it onto a
custom PCB ourselves.

The first things we removed from the Adafruit board wereWe removed the

unnecessary pins and

features of the Adafruit

board.

eight of the twelve pins and the connectors that allow it
to be connected to other Adafruit boards. We will com-
municate with the sensor via the I2C bus, which only re-
quires two wires: serial clock (SCL) and serial data (SDA).
Together with ground (GND) and supply voltage (VCC)
for power, we arrive at a minimum of four wires needed
for communication. This led to removing many electrical
components regarding the features connected to these pins,
such as the support for communicating with the sensor via
the SPI bus.

1 https://invensense.tdk.com/products/motion-tracking/9-
axis/icm-20948/ as of 09.2024

2 https://www.adafruit.com/product/4554 as of 09.2024
3 https://github.com/adafruit/Adafruit-ICM20948-PCB as of

09.2024
4 http://eagle.autodesk.com/ as of 09.2024
5 https://www.kicad.org/ as of 09.2024

https://invensense.tdk.com/products/motion-tracking/9-axis/icm-20948/
https://invensense.tdk.com/products/motion-tracking/9-axis/icm-20948/
https://www.adafruit.com/product/4554
https://github.com/adafruit/Adafruit-ICM20948-PCB
http://eagle.autodesk.com/
https://www.kicad.org/
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Micro-
controller

Secondary 
Board Primary 

Board

USB
to PC

SDA

SCL

VCC

GND

SDA 1.8V

SCL 1.8V

VCC 1.8V

Figure 3.1: The wiring between the microcontroller, the sec-
ondary PCB that handles the voltage conversion, and the
primary PCB with the sensor.

The main aspects our board retains from the original are Our PCB keeps the

circuits for a steady

power supply and

voltage conversion.

guaranteeing a steady power supply with capacitors and
converting the voltage. The ICM-20948 chip runs on 1.71V
to 3.6V, while its digital in- and output voltage is in the
range of 1.71V to 1.95V. Since most microcontroller boards
do not use a voltage of about 1.8V for communication, and
only some can provide a supply voltage in the required
range, we kept the voltage converter and the system that
shifts the SCL and SDA signals to 1.8V for the sensor. By
that, the microcontroller can provide the board with sup-
ply voltage and communicate via the I2C with it, but can
use whatever reasonable operating and output voltage it
has. The most common are 3.3V or 5V.

We decided to split the board into two because we wanted We split the PCB into

two to make the main

one smaller.

to make the PCB in the icon as small as possible: The
primary board holds the sensor and only a few manda-
tory electrical components to integrate into the icon. The
secondary board has all the voltage conversion circuits.
The VCC, SDA, and SCL lines from the microcontroller
are then connected to the secondary board, and the con-
verted results are connected to the primary board. How
the boards and the microcontroller connect can also be seen
in Figure 3.1. Apart from making the board that needs to
be integrated into the icon smaller, fabrication is also easier
since both boards only require one layer. This enabled us
to make the boards ourselves using a PCB mill and SMD
soldering. A comparison between the original board by
Adafruit and our boards can be seen in Figure 3.2.
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Figure 3.2: Comparison between our PCBs (left) and the
original Adafruit PCB (right). It can be seen that many com-
ponents, as well as the backside (blue), could be removed
and the board size minimized.

The primary board now comes to a size of
10 mm × 10 mm × 3 mm. With this size, it can fitThe primary board has

a greatly reduced size

compared to the board

of Adafruit.

into some textile icons Mlakar and Haller [2020] and
Schäfer et al. [2023] described. Of course, that depends
on the shape of the icon. While icons like a square, circle,
house, or plus might work, icons like a minus, telephone,
or question mark are probably not feasible. It would
be possible to change the board’s shape to an elongated
rectangle to some extent to integrate it into narrower
icons. A professional production of the PCB may also
lead to a reduced size. The secondary board has a size of
13 mm × 17 mm × 3 mm. We did not prioritize minimizing
its size in the design process since it will not be integrated
into the icon. The CAD files can be found in our Git
repository6.

Also, since our modification of the original Adafruit boardWe can still use the

Adafruit libraries with

our modified board.

does not change anything about the communication with
the sensor itself, all of the software presented with this
work also functions with their board. Conversely, we can
also use all the libraries that Adafruit created for their
board. How we receive data from the sensor will be the
focus of Chapter 4.

6 https://git.rwth-aachen.de/i10/thesis/thesis-julian-
wallerius-grablets

https://git.rwth-aachen.de/i10/thesis/thesis-julian-wallerius-grablets
https://git.rwth-aachen.de/i10/thesis/thesis-julian-wallerius-grablets
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3.2 Integration into Textile Icons

Now that we have a small PCB with the sensor, we need to We chose a raised

textile icon for the

Grablet.

integrate it into a textile icon. For a type of textile icon, we
chose what Schäfer et al. [2023] called a Raised Filled fabrica-
tion variant: The whole icon is raised from the base surface.
Since they found that this type of icon is the easiest to rec-
ognize eyes-free, matching with the findings of Mlakar and
Haller [2020] that height is the easiest contrast to recognize
on textile interfaces, and we need a bit of space to put our
PCB into, this was an easy choice. We will now explain all
the different parts and layers of the prototype, as shown in
Figure 3.3.

We 3D-printed a case in the shape of an icon with an in- We 3D-printed a case

for the PCB in the

shape of a plus.

let as deep as possible for the sensor. The model for it
can be found in our Git repository7. This cavity dictates
a minimum size for the case and again excludes narrow
shapes. The case is meant to give the icon its shape and
protect the PCB with the sensor from excessive user pres-
sure. We chose a plus icon because it seemed the most in-
tuitive way to signify the affordance of folding it in four
directions. Because of its many corners, it is also easy to
grab and twist, unlike a circle. Our case has the size of
2.4 cm × 2.4 cm × 0.7 cm. While 7 mm seems a bit high, es-
pecially compared to the 1.6 mm Schäfer et al. [2023] used
for their icons of this type, we found that a more consid-
erable height leads to a better grip on the sides of the icon
for all gestures. It also allows us to comfortably fixate the We fixated the PCB

with hot glue inside the

case.

PCB and the wires from it with hot glue to the inside of the
case. Additionally, the hot glue helps to stabilize the wires
on the bottom of the PCB so they are less prone to break
when moving the icon.

Since the fabric needs to be stretchable to allow the fold The icon was inserted

into a pocket of

stretchable fabric.

and twist interactions we want to enable, we chose a fabric
with high flexibility.8 It consists of 78% polyester and 22%
elastane and has a weight of 250 g/m2. We layered two

7 https://git.rwth-aachen.de/i10/thesis/thesis-julian-
wallerius-grablets

8 https://www.stoffe-hemmers.de/sportjersey-altrosa as of
09.2024

https://git.rwth-aachen.de/i10/thesis/thesis-julian-wallerius-grablets
https://git.rwth-aachen.de/i10/thesis/thesis-julian-wallerius-grablets
https://www.stoffe-hemmers.de/sportjersey-altrosa
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Figure 3.3: A true-to-scale cross-section of the final proto-
type: The custom PCB with the IMU on it (a) is fixed inside
the 3D-printed icon shape (b) with hot glue (c). That is en-
closed in two layers of stretchable fabric (d), the bottom of
which has a small hole in the center, sewn together (e) in
the form of the icon. All of that is placed on top of a sheet
of upholstery foam (f) and a wooden board (g), both with a
hole in the middle for the wires (h) to escape to the bottom,
from where they are connected to the secondary board or
the microcontroller.

pieces of this fabric and sewed them together in the form of
the 3D-printed icon using an automated sewing machine.
This effectively created a little sealed pocket in the fabric
in the shape of the icon. We did, however, put a 2 mm of
offset on all sides of the stitch to give the fabric some space
to wrap around the icon. To insert the icon into this pocket,
we made a small hole in the bottom sheet in the middle of
the pocket. Since the fabric is very stretchable, the hole did
not have to be very big to fit the whole icon through, so the
icon is also improbable to fall out by accident. After that,
the hole in the fabric can be used to insert and glue the PCB
into its case and let the wires escape through it.

The fabric with the embedded icon was then put onto aThe icon and the fabric

were layered on top of

upholstery foam.

15 cm × 15 cm big, 2 cm thick sheet of upholstery foam
to create a soft surface resembling, for example, an armrest
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Figure 3.4: The final Grablet prototype

of a couch. It is also beneficial to be able to press one side
of the icon a bit into the surface for the folding interaction.
All of this was put on top of a wooden board of the same
size to have a solid base plate. The foam and the base plate
have a small hole through which all wires are led to the
bottom, from where they are connected to the secondary
PCB and the microcontroller. A square of this size, with a
considerable amount of fabric on all sides of the icon, guar-
antees that the icon can be moved with relative ease. We We fixated the fabric on

the edges.folded the fabric tightly around the edges of the foam and
the board and tacked it onto the backside of the wooden
board. We were careful not to stretch the fabric too much in
this process to keep as much potential for stretching for the
gestures. Figure 3.4 shows the final prototype.
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Chapter 4

Obtaining and
Preprocessing the Sensor
Data

As presented in Chapter 3, where we show how we in-
tegrate this sensor into a textile icon, the exact sensor we
chose is the ICM-20948 from InvenSense1. Here, we want
to concentrate on the software that deals with its data. We
divide this Chapter into two sections: Firstly, how we re-
trieve data from the sensor, and second, how we preprocess
it with a sensor fusion algorithm.

4.1 Communication with the Sensor

Since the IMU combines three sensors — an accelerometer, We fetch data from the

sensor at 100 Hz.a gyroscope, and a magnetometer — we can treat it as three
separate sensors. Each of these three sub-sensors is mea-
sured on three axes, resulting in nine degrees of freedom
for the whole IMU or nine values to retrieve each time it
updates. We fetch data from the sensor at 100 Hz, which is
limited by the maximum data rate of the slowest sensor, the

1 https://invensense.tdk.com/products/motion-tracking/9-
axis/icm-20948/ as of 09.2024

https://invensense.tdk.com/products/motion-tracking/9-axis/icm-20948/
https://invensense.tdk.com/products/motion-tracking/9-axis/icm-20948/
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magnetometer. That means we receive a new measurement
from each sub-sensor every hundredth of a second.

While the sensor allows the measuring ranges of each par-The measuring ranges

of the sensor were not

changed.

tial sensor to be adjusted, we did not notice any signifi-
cant changes in its accuracy for our use case, so we did not
modify any of the settings. All ranges are, therefore, set
to the biggest value possible by default. However, we ad-
justed the speed of the I2C bus connection to 400 kHz, the
fastest the sensor supports, to ensure problem-free commu-
nication between the sensor and the microcontroller. Please
note that this setting does not change anything about fetch-
ing new measurements at 100 Hz.

In general, the sensor can be used with any microcontrollerThe microcontroller

should have a decent

processing speed and

some non-volatile

memory.

that can communicate via serial with a PC and via I2C with
the sensor, but there is a requirement for processing speed.
Since the sensor and the microcontroller communicate at a
frequency of 100 Hz and the sensor fusion algorithm needs
to be executed for each new batch of data (more on that in
the next chapter), we concluded that slow microcontrollers
like the Arduino Uno are not suitable. Also, the existence
of FLASH, EEPROM, or any comparable non-volatile mem-
ory helps save the sensor’s calibration information. The ex-
act microcontroller we use is the NodeMCU ESP322, but
any comparable will work.

Adafruit provides the Adafruit_Sensor_Lab library to accessWe use several libraries

to obtain and process

data from the sensor.

sensors with a microcontroller effortlessly. With the help
of Adafruit_Unified_Sensor, it generalizes all kinds of dif-
ferent sensor models. Unfortunately, Adafruit_Sensor_Lab
does not support the ICM-20948. We, therefore, modi-
fied the library by adding the ICM20948 with the help
of Adafruit_ICM20X, a library for our sensor model,
and removing all other sensors from the library to
minimize the code overhead and save storage space
on the microcontroller. This allowed us to use the
Adafruit_Sensor_Calibration to calibrate our sensor and
Adafruit_AHRS for sensor fusion. The other libraries we use
are Adafruit_BusIO for I2C support and the Arduino library.

2 https://joy-it.net/de/products/SBC-NodeMCU-ESP32 as of
09.2024

https://joy-it.net/de/products/SBC-NodeMCU-ESP32
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Magnetic calibration of the sensor is critical because it can The sensor requires

magnetic calibration

with the MotionCal

software.

not be performed in runtime but needs to be performed
once before use. Following Adafruit’s guide3, we used the
MotionCal software4 to obtain the measurements needed.
While the software can send them directly to the micro-
controller, we have had some problems with this feature.
Instead, we copy the measurements from the MotionCal
software into a script and execute it once to write the cal-
ibration information to the local EEPROM storage. We
save it onto non-volatile memory so the microcontroller
can lose power and the calibration is still available. Also,
the Adafruit_Sensor_Calibration library assumes this infor-
mation is saved on FLASH or EEPROM memory. We use
the sensor_calibration_read example script to check if the cal-
ibration was written correctly to the memory.

4.2 Sensor Fusion

The data we receive from the sensor should be prepro- The Madgwick sensor

fusion algorithm

combines the sensor

data into an absolute

rotation.

cessed before using it for classification since it is noisy and
has high dimensionality. We use a sensor fusion algorithm
to combine all nine values each update of the sensor pro-
vides. It combines the raw data of sensors into more useful,
cleaned data. We chose the Madgwick filter to combine the
measurements into an absolute rotation. The icon’s rota-
tion is the only measurement needed to decide which ges-
tures the user performs since folding and twisting are both
only rotations of the icon around different axes. The filter
also provides data regarding the sensor’s movement, such
as gravity or linear acceleration, that we do not need for our
prototype but could be helpful in detecting further gestures
unrelated to rotation. We used the implementation from the
Adafruit_AHRS library. Even though this library provides
two more sensor fusion algorithms, supposedly one more
accurate and one less accurate than Madgwick, we did not
choose the most accurate algorithm because, in our testing,
it showed more drift in its calculations than the Madgwick

3 https://learn.adafruit.com/how-to-fuse-motion-sensor-
data-into-ahrs-orientation-euler-quaternions/magnetic-
calibration-with-motioncal as of 09.2024

4 https://www.pjrc.com/store/prop_shield.html as of 09.2024

https://learn.adafruit.com/how-to-fuse-motion-sensor-data-into-ahrs-orientation-euler-quaternions/magnetic-calibration-with-motioncal
https://learn.adafruit.com/how-to-fuse-motion-sensor-data-into-ahrs-orientation-euler-quaternions/magnetic-calibration-with-motioncal
https://learn.adafruit.com/how-to-fuse-motion-sensor-data-into-ahrs-orientation-euler-quaternions/magnetic-calibration-with-motioncal
https://www.pjrc.com/store/prop_shield.html
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filter. This algorithm needs to run at 100 Hz since it mustWe execute the

algorithm at 100 Hz. be executed for each new batch of sensor data. Of course,
one could lower the frequency, for example, to reduce the
computational load on the microcontroller, but that would
most likely lead to a loss of accuracy.

The filter provides the rotation as a triple of yaw, pitch, and
roll angles or as a quaternion. The yaw, pitch, and roll sys-
tem describes an object’s orientation by giving three angles
corresponding to rotations around three fixed axes. How-
ever, this variant of Euler angles is susceptible to the prob-
lem of gimbal lock. When two axes align, which could eas-
ily happen when the icon is rotated by 90 degrees around
one axis, they become locked. From then on, they behave
exactly the same, effectively downgrading the system to
two dimensions, as Dam et al. [1998] described.
Quaternions, on the other hand, do not suffer from theWe chose quaternions

to represent the icon’s

rotation.

problem of gimbal lock. We, therefore, choose quaternions
to represent the icon’s rotation, giving us four numbers
available each time we run the sensor fusion algorithm.

ROTATION QUATERNIONS:
Euler’s rotation theorem states that every rotation can
be represented as a single rotation by some angle about
some axis (the Euler axis) going through a fixed point,
called the axis-angle representation. Quaternions ex-
tend the complex numbers and are generally of the form
𝑎 + 𝑏𝑖 + 𝑐 𝑗 + 𝑑𝑘, where a, b, c, d are real numbers and i, j,
k are the three basis elements. The axis-angle represen-
tation of a rotation, consisting of a three-dimensional
unit vector for the Euler axis and an angle, can be repre-
sented by unit quaternions, that means by quaternions
with a norm of 1. Because of their numerical properties
and compactness, quaternions are a robust, effective,
and common way of representing a rotation compared
to matrices. See Dam et al. [1998] for more information.

Excursus:

Rotation Quaternions

The microcontroller sends the newest quaternion to a con-The microcontroller

sends the absolute

rotation to the computer

at 10 Hz.

nected computer via USB serial communication with a fre-
quency of 10 Hz. This frequency proved sufficient for the
classification, which we will elaborate on in the next chap-
ter. The sensor fusion algorithm should still run at 100 Hz,
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even if we only use every tenth output since its outputs
are based on all previous observations. So, lowering the
algorithm’s frequency would negatively influence its accu-
racy. The algorithm always corrects its previous rotation
estimate, which is also why the outputs in the first approx-
imately ten seconds are very inaccurate and should be ig-
nored: The algorithm still has to figure out the initial rota-
tion. We found that it works the fastest if the sensor does
not move in that time. Since the sensor and the microcon-
troller do not use much power, the computer can provide
the power via USB. All of the different scripts for the mi-
crocontroller can be found in our Git repository5.

5 https://git.rwth-aachen.de/i10/thesis/thesis-julian-
wallerius-grablets

https://git.rwth-aachen.de/i10/thesis/thesis-julian-wallerius-grablets
https://git.rwth-aachen.de/i10/thesis/thesis-julian-wallerius-grablets
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Chapter 5

Classification

Supplied with a constant flow of orientations of the Grablet, We experimented with

the $1 Recognizer and

DTW for gesture

classification.

we now want to detect which gestures were performed.
We experimented with different systems to do the classi-
fication. For all the models, we would record the last few
orientations of the Grablet and use them as input. For ex-
ample, for prototyping, we converted the orientation into
multiple two-dimensional images and used the $1 Recog-
nizer by Wobbrock et al. [2007] to find a matching prere-
corded gesture. In a similar way, we tried using dynamic
time warping (DTW). DTW is a technique to find a map-
ping between two sequences and obtain a measure of how
similar they are. We used it to map the recorded series of
orientations to multiple prerecorded ones, each represent-
ing one gesture. We would then receive a measure of how
close they are and choose the one with the highest similar-
ity. These two systems do not require much training data
but use only one template for each gesture. However, that
also means that it is very hard to have multiple, slightly
different templates for each gesture, considering that users
perform the interaction differently from each other.

In the end, we chose a neural network for the classifica- We chose a neural

network.tion task. It allows for a lot of configuration and can be
trained with a wide range of data that can include some de-
viation in the performance of the gesture. The only down- A neural network

requires a training data

set.

side is that we now must collect a set of training data. The
model classifies the input sequence into one of the six ges-
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tures of folding right/left/front/back and twisting clock-
wise/anticlockwise or a resting class. We added the resting
class to give the model the possibility to clearly classify the
input, even when no gesture is currently performed. With-
out such a class, the model would classify the input, whenWe added a resting

class for the model to

predict when no gesture

happens.

the Grablet does not move, into the gesture class that is clos-
est to it. While we could rely on none of the classes being
close enough to the resting input for the model to make a
confident classification, adding resting solves the problem
in what we believe to be a more robust manner. For imple-
mentation, we used the Keras API1 with TensorFlow. All of
the code regarding the neural network can be found in our
Git repository2.

5.1 Structure of the Neural Network

Our neural network is a sequential model. That means itOur model is a

sequential neural

network.

consists of different layers, with the first layer being the in-
put and the last layer being the output. The structure of
the model can be seen in Table 5.1. In the following section,
we want to explain why we chose these layers and settings.
For clarity, we will not go through the layers from top to
bottom but jump a bit in our explanation.

Layer Name Output Shape Activation Function
Input 20 × 4 none
Dense 20 × 50 relu
LSTM 100 tanh
Dropout 100 none
Dense 50 relu
Dense 7 softmax

Table 5.1: Layers of the neural network with their shapes
and activation functions. relu stands for the Rectified linear
unit activation function and tanh for the Hyperbolic tangent
activation function.

1 https://keras.io/ as of 09.2024
2 https://git.rwth-aachen.de/i10/thesis/thesis-julian-

wallerius-grablets

https://keras.io/
https://git.rwth-aachen.de/i10/thesis/thesis-julian-wallerius-grablets
https://git.rwth-aachen.de/i10/thesis/thesis-julian-wallerius-grablets
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The shape of the input layer comes from the length of our
time series. Since we use the data of the last two seconds
with 10 Hz, and a quaternion consists of four values, we
have an input shape of 20 × 4 values. Concerning data fre-
quency, we tried to find a balance between enough infor-
mation and keeping the network’s input layer small. In our
testing, 10 Hz proved to transport enough information to
convey the change in rotation accurately.

We have seven output nodes since we have seven differ-
ent classes the model can predict. The activation function
we chose is a softmax function. It converts the values it
receives from the layer above to a probability distribution,
where the sum of all seven values always equals 1. We can
interpret the probabilities to reflect the model’s confidence
in the prediction.

The main component of our network is the LSTM layer. The LSTM layer is the

main component of our

model.

LSTM stands for long short-term memory and is a system
for neural networks developed by Hochreiter [1997]. As
Van Houdt et al. [2020] described, the LSTM architecture
consists of memory blocks that can maintain their state over
time. Therefore, LSTMs are often used for tasks like time se-
ries prediction or time series classification. We selected the
hyperbolic tangent function because it is normally used as
the activation function.

The dropout layer in the network randomly sets values to
0 in the training stage to prevent overfitting. Since fight-
ing overfitting is important for our small data set, and ap-
proaches like by Karim et al. [2018], Karim et al. [2019], and
Tan et al. [2019] also use this layer behind an LSTM layer
for time series classification, we adopted the usage for our
model. Similarly, we chose the dense layers with their re-
spective activation functions, listed in Table 5.1, in front and
behind our LSTM layer, and followed the example of Tan
et al. [2019]. Dense layers are just regular, fully connected
feed-forward layers.
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5.2 Training the Model

The training process is a fundamental part of a neural net-We recorded us

performing the gestures

280 times.

work. The first hurdle we encountered was the need for
many data samples to train the model. To obtain these, we
wrote a script to record two seconds of sensor data every
five seconds. Using that script, we could record the same
gesture multiple times. We recorded each gesture 40 times
and tried to introduce some variation into the dataset, for
example, by varying the intensity of the interaction. Over-
all, we had 280 data points with which we trained our
model.

Since the task of the model is classification, we used theWe used a special

cross-entropy loss

function.

sparse categorical cross-entropy function as our loss function.
It computes the cross-entropy loss but is specialized for
classification with encoding the different classes as inte-
gers. When labeling the training data, we could decide be-
tween using integers (so using 0 for resting, 1 for folding
right, and so on) and a vector with seven numbers, each
representing one gesture, from which exactly one would be
1 and all others 0. We chose the first option. However, ex-
cept for the choice of loss function, this decision should not
have influenced the model’s structure or performance but
was more a question of personal preference.

We applied the Adam optimizer with the default parame-We used the Adam

optimizer. ters for our model. It is a very common optimization that is
based on stochastic gradient descent. It was first presented
by Kingma and Ba [2017], who described it as computation-
ally efficient and having little memory requirements.

We trained the model using k-fold cross-validation withThe model was trained

with k-fold

cross-validation.

𝑘 = 5. This method shuffles the data and trains five sep-
arate models. For the first one, the first 20% of the data
are used as validation data, and the other 80% are used for
training. For the second one, the second 20% are used for
validation, and so on. In the end, out of the five trained
models, we chose the one with the highest accuracy. We
picked that training method because it avoids overfitting,
which is usually a big problem for small sets.
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We trained the model for a maximum of 80 iterations Training lasted a

maximum of 80 epochs

but was always stopped

prematurely.

(epochs). However, we stopped the training process as
soon as there was no improvement in minimizing the loss
function for five epochs. The model never reached the
80th iteration in training but was always stopped by this
condition. By that, we avoided unnecessary training but
also never stopped training prematurely when improve-
ment still was possible.

Ultimately, we converted the model and saved it as a Ten- We converted the

model to a TensorFlow

Lite model to increase

its speed.

sorFlow Lite model. This is a more efficient and compact
way of saving a smaller model like ours and also speeds
up the inference. This is very important since we need to
perform the inference ten times a second and additionally
would like to display the output on a real-time bar chart.
Without the conversion, we had trouble reaching this per-
formance on our machine. The model achieved an accuracy
of 100% for the validation data.

5.3 Interpreting the Output

The output of the model is a probability distribution be- The probability output

needs to be processed

further.

tween all the different gestures and the resting state. How-
ever, this still does not give us a classification. We need to
interpret the model’s continuous output to detect when it
detected a gesture. Instead of a continuous data stream, we
want to output the type of gesture only once, as soon as it
is detected, and remain silent the rest of the time. In a fig-
urative sense, we handled the data as if it were an analog
data signal.

Firstly, we set a cutoff value at 0.8. A probability of a ges- We require a minimum

probability of 80% to

detect a gesture.

ture would need to surpass this value to be registered as a
predicted gesture. This ensures that the model is confident
in the prediction and does predict a gesture with slightly
higher probability than the others. Whether the model pre-
dicts resting or no class reaches a probability of more than
80%, is treated equally by not outputting anything.

We also applied the concept of debouncing to avoid a sin- We applied debouncing

to the signal.gle measurement triggering the detection of a gesture. To
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be accepted as a prediction, a gesture needs to be predicted
two consecutive times with a probability of more than 80%.
While this introduces a delay of 0.1 seconds into our predic-
tion since we need at least two measurements, the benefits
of removing noise outweigh this drawback.

Also, after the user has twisted the Grablet and let it go
again, the Grablet would move back to its current position,
triggering the detection of a twisting gesture in the oppo-
site direction. We implemented a system that, after detect-We ignore the

movement back to the

default position after

twisting.

ing a twist in one direction, ignores the expected twisting in
the opposite direction following it. So, after twisting clock-
wise is detected, the subsequent detection of anticlockwise
twisting is ignored, until the resting state is reached again,
and vice versa.

5.4 Attempts to Understand and Improve
the Performance

We had some additional ideas to improve the model’s per-
formance. Unfortunately, of the two we implemented, none
had a significant positive effect, so we did not make use of
them in our final prototype. However, it might be interest-
ing to investigate these approaches further for future work,
so we would like to present them anyway.

While the accuracy the model achieved during training isA discrepancy between

the training data and

the continuous use

might explain the

model’s behavior.

a good measure of how well the model was able to pick
up trends in the training data, it is necessary, especially for
our case of continuous classification, to test the model in a
more realistic scenario that is hard to capture in one num-
ber. When testing the model, we found that it can usually
pick up the gesture we performed. That means if we, for
example, fold the Grablet right and observe the stream of
outputs of the model, we will often see a peak in the proba-
bility of folding right. However, this peak is frequently ac-
companied by some peaks for other gestures. For example,
we noticed that sometimes, after we performed a folding
gesture and the output reflected this gesture, letting go of
the Grablet would lead to the detection of a twisting ges-
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ture. This may be related to how we train our model com-
pared to how we use it, which requires some further expla-
nation.

Let us look at a duration of six seconds, so 60 orientations
we call 𝑥0 to 𝑥59. In the middle two seconds of these, so
from 𝑥20 to 𝑥39, the user performs the folding right interac-
tion with the Grablet. The inputs to the model can be un-
derstood as a sliding window of size 20 over this range of
orientations. In the beginning, the model receives the ori-
entations of 𝑥0 to 𝑥19. These should be similar to the train-
ing data points of the class resting and should, therefore,
be classified as such. The next two seconds of input to the
model are 𝑥0+𝑖 to 𝑥19+𝑖 for 1 ≤ 𝑖 ≤ 20. Here, the model
receives a time series of orientations that consists of a "rest-
ing part" at the start of the window and the beginning of the
folding right gesture at the end. It would be optimal if the
model classifies this input most of these times as resting.
Only when nearly all points of the gesture are in the input
window should it start classifying them as folding right.
This is where a potential problem arises since the model
was never trained on such data. The same thing happens
when we consider the two seconds after that, where the in-
put is 𝑥20+𝑖 to 𝑥39+𝑖 for 1 ≤ 𝑖 ≤ 20, only that now the data
points regarding the gesture slowly get replaced by points
that are similar to resting. Or, even worse, the user lets go of
the Grablet, and it moves back to its normal position. Now,
the model is presented with a part of the gesture, a small
pause, and a movement it has never seen before.
Since the interaction does not always fill the whole two
seconds, this is an oversimplified example, but it never-
theless shows a problem that we believe to be responsible
for some of the errors in realistic use. It can be fixed by
training the model in a different way. Instead of only pro-
viding the model with the full gestures, we would need to
record data in a more realistic setting and label each step
the sliding window takes over this longer recording. This
set of labeled data points can then be used as training data.
We imagine this to be a very tedious task, especially when
still aiming at getting multiple instances of all gestures into
the training data set. Alternative solutions to this problem
should be the focus of further work on this model.
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An aspect of the model we experimented with was prepro-We tried transforming

the data before feeding

it to the model.

cessing the data even further before giving them as input to
the model. For example, we converted the rotation quater-
nions to only represent the change between two consecu-
tive measurements. For orientations 𝑥0 to 𝑥20 we created 𝑦0
to 𝑦19, where 𝑦𝑖 represents the rotation needed to get from
𝑥𝑖 to 𝑥𝑖+1. We then used these "delta-quaternions" to train
and test a new neural network. However, we could not see
any improvement in the model’s performance, so we chose
not to apply any preprocessing function to the data. Never-
theless, this is worth exploring further, potentially simpli-
fying the classification task for the model.

Another thing we tested was to enlarge our dataset by mul-We tried to enlarge the

training set artificially. tiplying and slightly modifying our recorded data points.
Since the orientation on the z-axis during the interaction,
so whether the Grablet is facing south, north, or anything
in between, is irrelevant for the gesture classification, we
wanted to copy each sample we recorded and multiply it
by rotating it around the z-axis. To be more precise, for a
recorded data point 𝐴, we would compute the data points
𝐴1 to 𝐴120, where 𝐴𝑖 is rotated by 3 · 𝑖 degrees around the
z-axis. We imagined that by using this data, we could train
the model to ignore the initial orientation around the z-axis
instead of hoping that recording the training samples in
multiple directions would teach the model that this is irrel-
evant for gesture classification. We then trained our model
on this much more extensive dataset of 33,600 samples. It
achieved an accuracy of 99.00% for the validation data.
The result with this dataset, however, was not as expected.
The model did not become more accurate but became more
confident in its predictions. So, if one gesture’s probabil-
ity was higher than all others, it was most likely at nearly
100%. However, its classification jumped very quickly be-
tween different gestures, resulting in far too many gestures
being predicted. It is worth investigating why the model’s
accuracy in the testing environment did not improve, as
this would provide us with many more data points.
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Chapter 6

Evaluation

To evaluate the Grablet, we conducted a user study. On
the one hand, the study aimed to get an impression of how
users like the fold and twist interactions with the Grablet.
On the other hand, we wanted to record the sensor data to
evaluate our current machine-learning model and use it to
train a better one.

6.1 User Study Procedure

The main idea of our study was to have the participants
perform all six gestures five times, assess how they liked
the interaction, and record the sensor data. For that, we
sat the participant in front of a screen and the Grablet pro-
totype we had fixed to the table. The screen was used to
tell the participant which gesture to perform next with the
Grablet and when to start. The recording of the sensor data
and the text on the screen was controlled from the instruc-
tor’s laptop. The study setup can be seen in Figure 6.1.

After explaining the study’s purpose and procedure to the We explained the

gestures to the

participants and let

them familiarize

themselves with the

Grablet.

participant, we introduced them to the different gestures.
We did not interact with the Grablet when explaining the
gestures since we also wanted to observe how they grab
and interact with it in the study. Before the 30 repetitions
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Figure 6.1: The study setup: The Grablet prototype is fixed
onto the table before a screen, showing the next gesture the
participant is asked to perform.

started, we asked them to perform each gesture at least
three times to familiarize themselves with the Grablet and
how it behaves when interacting. We also offered the par-
ticipant more time to try the interface to minimize the learn-
ing effect during the 30 recorded gestures. Additionally,
this was an opportunity to correct mistakes since some par-
ticipants misunderstood the gestures we had explained be-
forehand. However, we were careful not to interfere much
with how they grabbed the icon. Only when the participantWe tried not to interfere

with the execution of

the gestures too much.

did not grab the icon at all but just tapped on it, we sug-
gested using at least two fingers to grasp the icon. As soon
as the participant confirmed they felt confident interacting
with the Grablet and we knew they had correctly under-
stood the gestures and the task, we started with recording
the 30 gesture performances.

After the participant had confirmed that they were readyThe screen prompted

the participant with the

gesture they had to

perform.

for the next gesture, a countdown from three started on the
screen. When the countdown hit zero, the word Start ap-
peared, and the participant was instructed to perform the
gesture. The sensor data for the following two seconds was
recorded. A quick confirmation message was shown on the
screen, and the next gesture was presented, again waiting
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for the participant’s confirmation that they were ready. This
was repeated 30 times, five times for each gesture, with the
gestures being in a random order.

After all interactions, we asked the participants to complete In the end, participants

filled out a

questionnaire.

a questionnaire about their experience. It consisted of ten
Likert scale statements and three open questions. The state-
ments primarily concerned the interaction’s comfort and
intuitiveness, while the open question asked what the par-
ticipant liked or disliked overall and if there were any fur-
ther comments. The questionnaire and all other forms re-
lated to the study can be found in the Appendix A.

6.2 Results and Discussion

We conducted our study with ten participants. The age
ranged from 21 to 28, with a mean of 23.4 and a standard
deviation of 2.54 years. One of them identified as female,
and the rest as male. Eight of our participants were of Ger-
man nationality; one was from Turkey and one from India.
Only one person was left-handed; all the others were right-
handed. While five people had much experience with tex-
tile interfaces, three had some, and two had no experience.
Eight participants had a computer science background, and
two came from other STEM fields.

We split our findings into two parts. The first part anal-
yses the overall interaction, the qualitative and quantita-
tive measures from the questionnaire, and the observa-
tions made while the participants performed the gestures.
The second part evaluates our machine-learning model and
trains a new one with all the obtained data. The code we
used to conduct and evaluate our study can be found in
our Git repository1.

1 https://git.rwth-aachen.de/i10/thesis/thesis-julian-
wallerius-grablets

https://git.rwth-aachen.de/i10/thesis/thesis-julian-wallerius-grablets
https://git.rwth-aachen.de/i10/thesis/thesis-julian-wallerius-grablets
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6.2.1 Evaluating the Interaction

The first and general impression of the Grablet was oftenThe concept and look of

the Grablet were mostly

perceived positively.

a positive one. The participants with less experience with
textile interfaces were especially amazed that they could in-
teract with a simple shape on a cushion in an unexpected
and new way. Also, most participants found the Grablet
visually pleasing, as can be seen in Table 6.2. The measure-
ment of willingness to use a Grablet in their own home is
still pretty high but we have no value to compare it to.

Mean SD
Visually pleasing 4.5 0.67
Could imagine to use 3.9 0.83

Table 6.2: Mean and Standard Deviation for Likert scale
questions concerning the overall impression of the Grablet.
The scale ranges from 1 to 5, where 1 indicates disagree-
ment and 5 agreement.

Many participants mentioned that they were scared toMany were insecure

about how strongly they

could interact with the

Grablet.

break the prototype. One participant described the Grablet
as "delicate", while another found that being able to put a
finger under the icon made it feel unstable. Often, during
the familiarization stage, we had to encourage the partici-
pants to increase the range of motion they performed with
the Grablet while still being reasonably careful, to which
many reacted with surprise. One participant wished for a
threshold limiting the interaction range to "safe zones" and
suggested adding a non-elastic piece to the bottom of the
fabric to stop too big movements. This insecurity presum-
ably negatively influenced the comfort of all gestures.

An interesting finding from the agreement statements isTwisting was more

comfortable than

folding.

that people seem to find the twisting interaction more com-
fortable than folding. When examining the mean and stan-
dard deviation for the questions regarding comfort in Ta-
ble 6.3, it is noticeable that the participants not only found
grasping the icon to twist it more comfortably but also
liked the overall interaction more. This is also reflected
in the answers given to the open questions. For the twist-
ing gestures, some participants remarked that grabbing the
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Grablet in the corners felt quite good, while holding it on
the long sides did not. We could observe that most tried
multiple ways of grasping the Grablet to twist it, but as the
study went on, they most often grasped at least two oppo-
site corners of the icon. However, twisting the Grablet was
not really an intuitive gesture for the participants. From all
the questions we asked, it received the lowest score.

Fold Twist
Mean SD Mean SD

Grasp Comfort 3.4 0.92 4.3 0.90
Overall Comfort 3.8 1.08 4.3 0.78
Fitting Resistance 4.1 1.14 4.2 0.98
Affordance for gesture 3.4 1.36 3.1 1.04

Table 6.3: Mean and standard deviation for Likert scale
questions differentiating between twist and fold interac-
tions. The scale ranges from 1 to 5, where 1 indicates dis-
agreement and 5 indicates agreement.

For folding, the interactions differed more between partici- Many participants

wanted to just press the

Grablet to fold it.

pants than for twisting and significantly deviated from our
expectations. In the familiarization stage, six participants
were observed performing the fold gestures by pressing
with one finger on the side of the icon to which it should
be folded. For some of those, the instructor’s correction to
use at least two fingers so they could really grab the Grablet
led to them introducing a second finger on the opposite,
"higher" side of the icon that supported the pressing finger
by pulling a bit. However, this still did not really resemble
a grabbing interaction since the finger on the "lower" side
of the Grablet was mostly placed on the edge instead of on
the side, which is not the interaction we aimed for.

Instead, the open questions and comments that some par- For folding, the Grablet

was perceived more like

a D-pad than something

to grasp.

ticipants made during the study indicate that they per-
ceived the Grablet, in combination with the folding ges-
tures, more like a D-pad. With a D-pad, we refer to a control
pad in plus form, commonly found on game consoles. One
participant wrote about the folding interaction that "it felt
like something you shouldn’t do." The mean for whether
the icon looks and feels like it can be folded/twisted, in
other words, whether it affords the gestures, in Table 6.3
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shows that folding was slightly more intuitive than twist-
ing. The answers to this question might be biased since the
participants had just interacted with this icon in the pre-
sented ways. However, the shape of the Grablet seemed
to imply some interaction possibility in the four directions
correctly. The participants appeared to interpret this cue
differently from each other, as can be seen by the high SD
compared to the other questions.
To improve the perception of the Grablet, one participantIt was suggested to

modify the shape of the

Grablet towards a

joystick.

suggested modifying it to reflect the possibility of fold-
ing better by giving it the shape of a joystick. Having
the Grablet stand out significantly and giving it a bulb-like
shape might increase the impression of such a joystick and,
therefore, suggest moving it in ways similar to the folding
we now have with the Grablet. Another suggestion was to
add notches to the sides of the icon to improve the grip for
the folding gestures.

From the different folding directions, some participantsFolding left was most

uncomfortable. found folding back to be the most comfortable. Folding
left was described by multiple right-handed people as very
uncomfortable. This may be connected to another aspect
some participants addressed: Since we placed the GrabletThe placement of the

Grablet potentially

caused inconvenience.

directly in front of the participant, two participants sug-
gested sitting a bit more sideways, having the Grablet in
front of the shoulder of their dominant hand. To fold left,
most participants placed their thumb on the left side and
their index finger on the right side of the Grablet, requiring
them to put their right arm directly in front of their body,
which was uncomfortable. We need to explore the influ-
ence of the Grablet’s placement relative to the user’s body
on comfort further.

6.2.2 Evaluating the Machine-Learning Model

We recorded 300 data points during the study: 5 per ges-We can use 290

gestures recorded in

the study.

ture and participant, with 10 participants, comes to 50 per
gesture. We needed to remove 10 points from our set be-
cause of misreadings of our sensor, the participant perform-
ing the wrong gesture, or the Grablet slipping out of their
hands during the gesture. We removed folding back six
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times, folding right two times, and folding front and twist-
ing clockwise each one time. The high number of removed
folding back gestures originates from a hardware problem
the prototype developed during the study, where folding
the Grablet at a steep angle backward would lead to a con-
nection loss to the sensor.

We tested our machine-learning model by letting it predict We tested the model

with a cutoff percentage

of 50% and 80%.

the gestures of each recording. In Chapter 5.3, we described
that for normal use, we would use a cutoff percentage of
80%, so we require the predicted probability of a gesture
to be higher than 80% for it to count as the classified ges-
ture. However, for that value, 154 samples, so 53.10% of the
dataset, were not classified because no gesture had a prob-
ability of more than 80%. Therefore, we wanted to analyze
the data further and also computed the predicted gestures
for a cutoff percentage of 50%. The number of samples that
were not classified shrank to 20 (6.90%). Table 6.4 shows
the number of not classified data points and the accuracy
of our model.

50% 80%
Not classified 20 154
Classified 270 136
Correctly classified 110 79
Correctly classified (% of all) 37.93% 27.24%
Correctly classified (% of all classified) 40.74% 58.09%

Table 6.4: Accuracy of the model predictions for 50% and
80% cutoff value. We also provide the accuracy only con-
sidering data points classified into a gesture class, effec-
tively treating not classified points as non-existent.

Of course, lowering the cutoff value, apart from increas- While the model seems

to perform better for

50%.

ing the absolute number of classified data points, also in-
creased the number of correctly classified points. When we
look at the accuracy, one might conclude that our model
performs better with a lower cutoff value. However, when
we ignore all the unclassified data points, the higher cut-
off value leads to a higher accuracy. In other words, while
lowering the cutoff value leads to more correctly classified
gestures, all the additional data points that were previously
not classified are now classified with low accuracy. The ges-
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Fold Twist
Sum

Right Left Front Back CW ACW

Fold

Right 26(29) - 0(2) - - - 26(31)
Left - 15(21) - - - - 15(21)
Front - - 5(10) - - - 5(10)
Back - 0(1) - 2(6) - - 2(7)

Twist
CW 1(1) - 1(6) - 0(2) 1(1) 3(10)
ACW 12(16) - 5(17) 0(6) 3(18) 31(42) 51(99)

Resting - 12(19) 1(9) 6(30) 14(29) 1(5) 34(92)
None 9(2) 23(9) 37(5) 36(2) 32(0) 17(2) 154(20)
Sum 48 50 49 44 49 50 290

Table 6.5: Confusion Matrix for the study data and our machine-learning model.
The x-axis shows the gesture, and the y-axis shows the model’s prediction. The
first number refers to a cutoff rate of 80%, and the number in brackets to a cutoff
rate of 50%. When no gesture had a higher probability than 80% (50%), it is listed
as None. Correct predictions are underlined. For clarity, instead of writing 0(0) we
only wrote -.

tures predicted with a probability of at least 80% were cor-
rect in 58.09% of the cases, a significantly higher accuracy
than the same metric for a cutoff value of 50%. This re-
sult was expected since the probability the model assigns to
each gesture resembles its confidence in the classification.
However, it also puts the low initial accuracy of 27.24% intoAnyway, lowering the

cutoff percentage is not

a good solution.

perspective. Therefore, simply lowering the cutoff value to
get more classified gestures should not be the solution. In-
stead, we should focus on increasing the confidence and
overall performance of the model.

To gain more insight into the classification errors the modelMost errors are the

model predicting

twisting anticlockwise,

resting, or not

classifying it as any

gesture.

made, we can compare the predictions to the actual ges-
tures and create a confusion matrix. The matrix for both
cutoff values can be seen in Table 6.5. The first thing we
can notice is that most errors seem to be made in one of
three cases: When the model predicts twisting anticlock-
wise, resting, or does not classify the data point as any ges-
ture. The last case is, as discussed, less pronounced for a
cutoff value of 50%. On the other hand, when the model
predicts any other class, the probability of the prediction
being correct is quite high. The model seems to have a prob-
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lem with preferring some classes over others. This may be
a problem caused by our small training data set.

Even if we focus on the 58.09% from Table 6.4, the model
performance is definitely not sufficient for actual use. Also,
many were scared to break the prototype or unsure how big
the interaction range was, so they performed the gestures
carefully and generally not as far as we did when recording
the data. This may explain the large number of gestures
classified as resting. Without question, it is also a problem Our training data was

not diverse enough.that only one person recorded all the training data for our
model. While we did try to include variation in our data
set, the high deviation of interactions we observed during
the study was far more significant.

We used the data we obtained from the study to train a We trained a new model

with the recorded data.new model. Since it does not matter who interacted with
the Grablet when recording resting data because it is just
laying flat, and we did not record any data for it during
the study, we added 50 samples for the resting class from
our previously recorded data set. The model was trained
with a total of 330 data points and achieved an accuracy
of 94.12% on the validation part of the training dataset. To
answer whether this model performs better than our pre-
vious model requires further testing. On the one hand,
we now have a much more diverse dataset to train our
model with, which should greatly enhance its average per-
formance when used by many different users. On the other
hand, we collected only five data points per gesture and
participant, which might not be enough. The evaluation of
this model remains a task that needs further research.
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Chapter 7

Limitations and Future
Work

During the fabrication of our prototype and while conduct-
ing our study, we noticed some limitations of our work and
some areas that offer to be studied in more detail in the
future. For example, in our study, we placed the Grablet
directly in front of the participants. As discussed in Chap- We could vary the

position of the Grablet.ter 6.2.1, some participants found this interaction uncom-
fortable. Further studies could be conducted on the in-
fluence of the body position relative to the Grablet on the
comfort and accuracy of the interaction. Also, it would be
beneficial to have a more realistic study setting where the
Grablet is placed on the armrest of a couch and the partic-
ipants control a simple smart home environment. The re-
sults from our study might also be influenced by our small
and quite homogeneous group of participants. We mostly The study results might

be influenced by our

small participant group.

had young, male, and technically experienced participants,
most of which already had at least some experience with
textile interfaces. It is worth investigating if people with
other demographic backgrounds interact with the Grablet
differently.

In its current form, our prototype has some connectivity is- There are some

modifications to

enhance the prototype’s

robustness and comfort.

sues, and the electrical components are quite fragile. Also,
as one participant noticed in the study, the wires leading to
the PCB sometimes can be felt, especially when folding the
Grablet. With a professionally produced PCB and thinner
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wires, improving the prototype’s robustness and durabil-
ity should be fairly easy. Another idea we learned from the
user study is that users might like feedback on how far they
can safely move the Grablet. This could be solved by inte-
grating some hidden, non-stretchable fabric into the proto-
type, which limits the range of motion. Giving the user con-
fidence in interacting might positively influence the com-
fort of the interaction and is something worth investigating
further.

An interesting property of our prototype is the icon shape.We could vary the icon

shape and properties of

the fabric.

We only produced a Grablet with the shape of a plus.
It would be interesting to investigate how different icon
shapes influence the interactions’ intuitiveness and com-
fort. Also, a different shape might not lead to the user con-
fusing the Grablet with a D-pad for the folding interactions,
as observed in our study. We can even consider entirely
different 3D shapes that stand out even more from the sur-
face, not limiting ourselves to icons. This might be the most
important research question for developing the Grablet fur-
ther since the participants’ misinterpretation of the interac-
tion was the main problem of our study. A similar aspect is
the type of fabric used. Our choice of fabric has certainly in-
fluenced the comfortability of the interaction. While some
participants did express their liking of the chosen fabric, it
is unclear how changing its elasticity and feel would influ-
ence the interaction.

Currently, we assume that the Grablet is on an object thatThe idea of a Grablet

can be applied to

wearables but would

require much further

research.

does not move constantly but is mostly motionless as long
as there is no interaction. This greatly simplifies the process
of determining which gesture was performed by not hav-
ing to consider movements that are caused by the whole
fabric moving rather than just the icon. While the Grablet
can be used for smart home applications with this assump-
tion, for example, on the armrest of a couch, it limits the
use cases, especially by excluding wearables. We think it
could be possible to train a machine-learning model to de-
tect whether or not somebody really interacted with the
Grablet, possibly by adding a touch sensor or more IMUs
in different parts of the fabric. However, further research
is needed on the user’s interaction with a Grablet on their
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clothes to estimate the potential of the interface, before it
makes sense to think about the technical implementation.

Even when staying in the smart home area, we can imag- A Grablet that can

handle a dynamic

resting position would

be good for more smart

home applications.

ine more applications for the Grablet. At the moment, the
Grablet’s default orientation is lying flat. We can also imag-
ine a Grablet on the side of a couch, in a similar position to
how Brauner et al. [2017] placed the control elements on
their armchair. Developing a Grablet only for this initial
orientation would require recording a whole new dataset
for training, but it would work with a data pipeline similar
to ours. However, developing a Grablet that can work in
any initial orientation would be interesting since it would
be one solution for every position instead of creating a new
model each time. This would, most likely, lead to an exten-
sive redesign of our data pipeline.

We could also use more of the data the sensor and the sen- We could use the

sensor data to detect

more gestures.

sor fusion algorithm provide us. Particularly interesting
is the linear acceleration, primarily coming from the ac-
celerometer. It would allow us to detect more interactions,
such as when the user pulls and presses the Grablet.

The machine-learning model is an important part of our We have many ideas to

improve the

machine-learning

model.

work and has much potential for improvement. In Chap-
ter 6.2.2, we already pointed out the importance of gather-
ing extensive and diverse training data for the model to en-
sure a better performance for many people. We presented
even more ideas for improving the model’s performance in
Chapter 5.4. However, all of our improvement ideas for
the model require accurate training data. Also, a change in
the structure of the Grablet might involve changes regard-
ing the position of the sensor or how exactly people interact
with it. This is why we would prioritize researching design
guidelines for the Grablet. Only after the physical proto- Refining the design

should be prioritized

over the model.

type is nearly finalized does it make sense to start collecting
more training data or testing changes in the data processing
pipeline.
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Chapter 8

Conclusion

The goal of this thesis was to combine textile icons with in-
teractions that make use of the fabric’s deformability. For
this, we developed Grablets, graspable icons embedded
into the textile that can be twisted and folded. We presented
our fabrication process and how we integrated an IMU into
the fabric. We also described our data pipeline, which uses
a neural network to detect which gesture a user performs
with the Grablet. In our study, we evaluated how people
liked interacting with the Grablet and how well our im-
plementation of gesture detection worked. We found that
users generally liked the Grablet, even though there was
some confusion about how to perform the interaction. We
acquired many ideas for refining the design of the Grablet
to better reflect the interactions of folding and twisting. Our
machine-learning model showed weaknesses both in the
study and in a more realistic setting. We proposed some
ideas about why the model’s performance was insufficient
and how it can be improved in the future, primarily by col-
lecting more training data and slightly adjusting the train-
ing process. All things considered, while Grablets show
promising results in enabling twist and fold interactions on
textile interfaces, both the design and implementation re-
quire some future work.
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Appendix A

Study Forms

On the following pages, you can find all the forms we
used during our study. This includes the two-page experi-
ence questionnaire, the consent form, and the demographic
questionnaire.
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ID =  

1/2 
 

Experience Questionnaire 
This questionnaire aims at understanding how your experience with the Grablets was. 

Please select how much you agree with each statement by ticking exactly one option per 
row. 

 Disagree Rather 
Disagree 

Neutral Rather 
Agree 

Agree 

For folding the icon, it was 
comfortable to grasp. 

☐ ☐ ☐ ☐ ☐ 

For twisting the icon, it was 
comfortable to grasp. 

☐ ☐ ☐ ☐ ☐ 

Folding the icon was overall 
comfortable. 

☐ ☐ ☐ ☐ ☐ 

Twisting the icon was overall 
comfortable. 

☐ ☐ ☐ ☐ ☐ 

The resistance of the fabric for 
folding the icon was fitting. 

☐ ☐ ☐ ☐ ☐ 

The resistance of the fabric for 
twisting the icon was fitting. 

☐ ☐ ☐ ☐ ☐ 

The icon looks and feels like it can 
be folded. 

☐ ☐ ☐ ☐ ☐ 

The icon looks and feels like it can 
be twisted. 

☐ ☐ ☐ ☐ ☐ 

The icon looks visually pleasing. ☐ ☐ ☐ ☐ ☐ 

I could imagine using a Grablet my 
own home. 

☐ ☐ ☐ ☐ ☐ 

 

What did you like about the interaction? 

 

 

Figure A.1: Study questionnaire page 1
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ID =  

2/2 
 

What did you not like about the interaction? 

 

Further comments  

 

 

 

Figure A.2: Study questionnaire page 1



50 A Study Forms

Consent Form 
Grablets: Enabling Twist and Fold Interactions with Textile Icons 

Principal Investigator: Julian Wallerius 

         RWTH Aachen University 

         julian.wallerius@rwth-aachen.de 

Purpose: We are doing research on the topic of textile user interfaces. For that, we built 
a prototype of textile icons called Grablet that can detect fold and twisting interactions. 
We want to discover how people interact with it, how they describe their experience, and 
use the data recorded to train a machine learning algorithm. 

Procedure: In front of you will be a monitor and a small cushion with a Grablet. On the 
monitor you will see the gesture you need to perform with the icon. The possible 
gestures are folding front/back/left/right and twisting clockwise/anticlockwise. After you 
have read the gesture and confirm you are ready, a countdown from 3 on the monitor will 
start. Please start performing the gesture at 0. We will repeat this 30 times. In the end, 
you will fill out a questionnaire regarding your experience. 

Risks: There are no known risks. You can stop the study at any time. 

Duration: The study should not take longer than 20 minutes. 

Recording: The motion data of the Grablet will be recorded. There will be no video or 
audio recording. The investigator will take notes. 

Confidentiality: All information collected during the study will be strictly confidential. 
You will be identified through numbers. No publications will contain any identifying 
information on the participant. 

Costs and Compensation: The participation is voluntary. Aside from snacks there will 
be no compensation. 

☐ I have read and understood the information on this form.  

☐ I have had the information on this form explained to me. 

 

                  

Participants Name                     Participants Signature             Date 

 

      

         Principal Investigator              Date  

Figure A.3: Informed Consent Form
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ID =   

Demographic Questions 

Age    ______________________________________ 

Gender Identity   ______________________________________ 

Occupation/Field of Study ______________________________________ 

Handedness    ______________________________________ 

Nationality   ______________________________________ 

Previous experience with textile interfaces: 

 

 

Figure A.4: Demographic Form
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