
by
Noriyasu Vontin

WIDE
Workstation

Independent
Desktop

Environment

Diploma Thesis at the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Dr. Klaus Wehrle

 Registration date: Feb 28th, 2008
Submission date: Aug 14th, 2008

I hereby declare that I have created this work completely on
my own and used no other sources or tools than the ones
listed, and that I have marked any citations accordingly.

Hiermit versichere ich, dass ich die vorliegende Arbeit
selbsta”ndig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich
gemacht habe.

Aachen, August 14th, 2008

iii

Contents

Abstract xv

Überblick xvii

Acknowledgements xix

Conventions xxi

1 Introduction 1

1.1 Mobility . 2

1.2 Challenges of web applications 3

1.3 Chapter overview 5

2 Related work 7

2.1 Classifications 8

2.1.1 Web and Desktop Applications 8

User Perception-based Definition . . . 8

2.1.2 Non Web-based Remote Applications 9

2.2 Information Spaces 10

iv Contents

2.2.1 Online Storage Services 11

Amazon S3 12

AOL Xdrive 13

2.2.2 Web Applications 13

Google Docs 14

2.2.3 Web Desktops 15

EyeOS 16

G.ho.st 17

Stoneware webOS 18

Conclusion 19

2.3 Hybrid applications 19

2.3.1 Desktop Integration 20

Adobe AIR 20

Prism 21

Gears 22

2.4 Desktop Applications over the Network . . . 23

2.4.1 X Window System 23

2.4.2 Virtual Network Computing 24

2.4.3 Citrix XenApp 25

2.5 Development of Web Applications 25

GWT 26

XML11 26

Contents v

2.6 Comparison Table 28

3 Initial study 29

3.1 Theory . 29

3.1.1 General Trust Model 30

3.1.2 Online Trust 31

3.1.3 Implication 33

3.2 Survey . 34

3.2.1 Participants 34

3.2.2 Online Behaviour 34

3.2.3 Trust 35

3.2.4 Data online 36

3.3 Conclusion . 36

4 Architecture 39

4.1 General Architecture 40

4.1.1 WIDE Server 41

4.1.2 Application Client 43

4.1.3 Transactions 43

4.2 Authentication 44

4.3 Authorization 47

4.3.1 Example 50

5 Implementation 53

vi Contents

5.1 Server Implementation 53

5.1.1 Data Browser 54

5.1.2 Application Manager 54

5.2 Native Client: Wordpresser 55

5.2.1 Design 56

5.2.2 Implementation 56

5.2.3 Interaction 56

5.2.4 Conclusion 57

5.3 JavaScript Client Framework 57

5.3.1 Design 58

5.3.2 Implementation 59

Prototype: JS Editor 62

Implementation 62

5.4 ActionScript Client Framework 64

5.4.1 Design 64

5.4.2 Implementation 64

5.4.3 Prototype: Flex Spreadsheet 66

5.5 Conclusion . 67

6 Integration 69

6.1 WIDE Support for Existing Applications . . . 69

6.1.1 API . 70

6.1.2 Plug-Ins 70

Contents vii

6.1.3 Adapters 71

6.2 Prototype Implementation 73

6.2.1 Flickr Adapter 73

6.2.2 gDoc Picture Insertion Adapter 74

6.3 Conclusion . 75

7 Validation 77

7.1 Design Rationale 78

7.1.1 Challenge 78

7.1.2 Solution 79

7.1.3 Decisions 80

Server Rendered Requests 80

External Window Manager 81

7.1.4 Lessons Learned 81

7.1.5 Expected Problems 82

7.1.6 Context and Vision 82

8 Summary and Future Work 85

8.1 Summary . 85

8.2 Future Work 86

8.2.1 Notifications for Reactive Transactions 87

8.2.2 External Storage Space Integration . . 87

8.2.3 Exchanging WIDE 88

viii Contents

A Preliminiary Study: Online Survey 89

A.1 General Information 89

A.2 Computer Usage 91

A.3 Internet Usage 91

A.4 Data on the web 93

A.5 Web applications 95

A.6 Trust . 96

B TITLE OF THE SECOND APPENDIX 99

Bibliography 101

Index 105

ix

List of Figures

2.1 Google Docs, a Unified Information Space
for its applications 14

2.2 EyeOS, a Web Desktop System. 16

2.3 G.ho.st, a web desktop system providing
hosted web applications. 17

2.4 G.ho.st: Specific applications to access online
content, such as YouTube 18

2.5 Stoneware’s webOS, a web desktop virtual-
ization system. 19

2.6 Prism hides the browser window’s naviga-
tion to mimic an usual application window
(left) and can be started over a desktop link
(right) . 21

2.7 Gears separates the data layer from the user
interface. A Data switch communicates with
the offline local data layer and the online
server data layer. 22

3.1 Trust model by Corritore et al. [2003] 32

3.2 Results regarding the awareness of applica-
tion’s abilities 35

x List of Figures

3.3 Results regarding password storage be-
haviour (left) and reasons for offline copies
of online data. 36

4.1 Storage Space Solutions for Applications . . 41

4.2 General Structure 42

4.3 Authentication process at start of client ap-
plication . 46

4.4 Request Based Authorization: The User
Stays in Control. 48

4.5 Authorization Prompts 49

4.6 Message exchange for transaction request
and authorization by the user. 51

5.1 Data Browser 54

5.2 Application Manager 55

5.3 Wordpresser is a Simple Publishing Tool
That Posts Text Files. 57

5.4 Overview of WIDE’s JavaScript Framework . 61

5.5 JS Editor, a JavaScript-based editor that sup-
ports WIDE 63

5.6 Overview of WIDE’s ActionScript Frame-
work . 65

5.7 Spreadsheet, a Flex-based Spreadsheet Ap-
plication Supporting WIDE 67

6.1 Possible Architecture for Integration: Plug-
ins . 70

List of Figures xi

6.2 Possible Architecture for Integration: Tun-
nelling via a Proxy Server. 71

6.3 Possible architecture for integration: Code
injection via web browser plug-in. 72

6.4 Injected user Interface Manipulation in
Flickr by the WIDE Adapter. 74

6.5 The gDoc Picture Inserter Adjust the Google
Docs Insert Image menu to Support Images
Loaded from WIDE 75

xiii

List of Tables

2.1 Overview of some Terminologies Describing
Desktop and Web Related Applications, Ac-
cording to Moritz [2008] 9

2.2 Comparison of webtop systems 15

2.3 Comparison of the various systems 28

xv

Abstract

The convergence of the web and the desktop led to web applications that can be
considered almost on par with desktop applications. While many systems have
emerged in the field of web applications and remote computing, none of them
succeeds in creating a single information space for web applications.

WIDE, a Workstation Independent Desktop Environment, is a framework for web
applications that connects the user, his data, and his applications. It poses as a
single information space that allows sharing of data across applications.

To gain further insight of the user’s behaviour and concerns when interacting with
online information and applications, we conducted a survey. The results of the sur-
vey and literature in the field of online trust highlight that trust in web applications
is likely to be lower than in desktop applications. Therefore, to strengthen trust and
ensure privacy of the user’s data, WIDE uses a request-based access control mech-
anism. To minimize bothersome interruptions in the work flow it also provides a
single sign-on mechanism that allows users to seamlessly move between web ap-
plications, similar to changing from one application to another on desktop systems.

Through different client prototypes of potential web applications for WIDE, we
reconsidered the design resulting in adding support for Flash and JavaScript-based
applications. Adding support for these application effectively enhanced their
functionality and improved the range of applications.

Another aspect of refinement considers the integration of existing applications.
A review of alternative approaches highlighted benefits and deficits of each a
method. A method for external integration of existing web application was
developed and is demonstrated successfully by working prototypes.

Further, we critique our design decision’s in a design rationale and criticize our ex-
plore context, expected problem, and unsolved obstacles that should be addressed
in future designs.

xvi Abstract

xvii

Überblick

Das Verschmelzen von Web und Desktop führte zu Webanwendungen, die man
als nahezu gleichwertig mit Desktopanwendungen betrachen kann. Während
viele Systeme im Bereich der Webanwendungen und des Remote Computings
entstanden sind, hat kein System erfolgreich einen einzelnen einheitlichen Infor-
mationsraum umsetzen können.

WIDE, ein Arbeitsplatz unabhängige Desktop-Umgebung, ist ein Framework
fü Webanwendungen, die den Nutzer, seine Daten und seine Anwendungen
verbindet zu einem einzigen Informationsraum, der die Mitbenutzung der
Daten von verschiedenen Anwendugen erlaubt. Um weitere Kenntnisse über
das Nutzerverhalten und die Bedenken der Nutzern beim interagieren mit In-
formationen und Anwendungen online zu erhalten, haben wir eine Befragung
durchgeführt. Die Ergebnisse der Befragung und die Literatur, die sich mit
Vertrauen in Online-Umgebungen befasst, heben hervor, dass das Vertrauen in
Webanwendungen dazu tendiert, niedriger zu sein, als das in Desktopanwendun-
gen. Zur Vertrauensstärung und zum Schutz der Benutzerdaten verwendet WIDE
deshalb ein Anfragen basierte Zugriffskontrolle. Zum Minimieren von lästigen
Unterbrechungen des Arbeitsflusses durch Passwortabfragen hat WIDE einen Sin-
gle Sign-On Mechanismus implementiert, der es Nutern erlaubt nahtlos zwischen
Webanwendungen zu wechseln, ähnlich wie bei einer Desktopumgebung.

Durch das Ausarbeiten von verschiedenen Client-Prototypen von poten-
ziellen Webanwendungen für WIDE haben wir das Design überdacht. Diese
Überlegungen führten zur Unterstützung von Flash und JavaScript basierten
Anwendungen. Diese Unterstützung erweiterte ihre Funktionalität und erweit-
erte die Anwendungen um mögliche Einsatzgebiete. Ein andere Verbesserung
behandelt die Integration von bereits existierenden Webanwendungen. Nach
einer Untersuchung von verschiedenen Durchführungsmöglichkeiten, die ihre
jeweiligen Vor- und Nachteile bei der Integration von Anwendungen aufzeigte,
wurde eine Methode gewählt und erfolgreich durch funktionierende Prototypen
demonstriert.

Desweiteren erörtern wir krtisch unsere Designentscheidungen in einer Design-
Begründung und untersuchen den Kontext der Arbeit, die zu erwartenden Prob-
leme und ungelöste Probleme, die im Fokus einer Weiterentwicklungen liegen soll-
ten.

xix

Acknowledgements

First, I would like to thank Prof. Dr. Jan Borchers for making my studies and
this research possible. It was him who seeded my interest in human computer
interaction. I also especially want to say thank you to my advisor Jonathan Diehl
for his open-minded support and ideas he shared with me.

This thesis would not be possible without all the people who supported me
during my studies. I appreciated the exchange of ideas with a lot of people of the
chair. I especially would like to thank Leonhard Lichtschlag with whom I spent lots
of late hours in the lab, Moritz Wittenhagen and Mei Fang Liau for the weekend
cooking that kept motivation at a high level even on sundays. Also, I appreciate
the time I spent with my “sports” buddies Dieter Drobny and Christopher Gretzki.

Of course, I would like to thank those who helped me to realize the survey
by helping me to translate it: Ai, Akiko, Aoi, and Reina, and all the participants
of the survey. The whole implementation would have been a lot more difficult
without the advise of Ralph who helped whenever I was in trouble.

I especially would like to thank those who accompanied me from the very
first day at RWTH Aachen and since then I had a lot of fun with and shared many
valuable experience with.

Thank you, Sarah, Kai, Jens, David, and Christian!

A very special thanks goes to Gyan who had to bear with me during my
stressful time and of course, my family who made my studies possible and
supported me all the time.

xxi

Conventions

Throughout this thesis we use the following conventions.

Source code and implementation symbols are written in
typewriter-style text.

myClass

The plural “we” will be used throughout this thesis instead
of the singular “I”, even when referring to work that was
primarily or solely done by the author.

The whole thesis is written in British English.

Unidentified third persons are always described in male
form. This is only done for purposes of readability.

1

Chapter 1

Introduction

“The Internet? Is that thing still around?”

—Homer Simpson

The world wide web was initially a pure information-
gathering service with limited interactions, in which users
consumed web pages one after another. Through typing
in a new address or following a hyperlink, the user could
request a page from a web server.

This page-based consumption, rather than interaction with
online contents, has changed to a more interactive con-
sumption, such as guest books and billboards where users
generate additional content by leaving comments and
posts. However, interaction was still page-based. Along
with web 2.0, a term coined by O’Reilly [2005], web sites
have become more responsive and interactive. Thus, they
have developed to resemble applications rather than pages.
Some of these web applications, such as the online word
processing application Zoho Writer1, can be considered on
a par with simple desktop applications.

In addition, they provide benefits that stems from the fact
that they are online, such as workstation independence due
to web browsers being installed on almost every internet

1http://writer.zoho.com

http://writer.zoho.com

2 1 Introduction

enabled computer. Instead of being only able to use an ap-
plication on a single computer, this property has now al-
lowed users to access their application from any connected
computer.

1.1 Mobility

Although these new web applications have enabled the
user to work online , Weiss [2005] asserts that the idea ofThe idea of working

online is not novel working online is not novel but points out that the reasons
for the failing of earlier approaches was that not only the
hardware performance was weak but the lack of mobility.
However, with computers becoming more mobile in recent
years, web applications for working online are likely to es-
tablish as an alternative to desktop applications.

Notebook computer sales surpassing the number of desk-
top computers sold in the U.S retail segment for the first
time in 20052 are indicating such trend to more mobil-
ity in computing. Furthermore, many new classes of mo-More mobile

computers sold than
desktop computers

bile internet-enabled devices have emerged, such as mobile
phones, Personal Digital Assistants (PDA), ultra-mobile
personal computers (UMPC)3, and mobile internet devices
(MID)4.

The Eee PC5, for example, is a notebook that, despite its low
hardware specifications, such as its reduced screen size, is
very popular. Between January 1st and February 21st 2008
the 4G Surf model of the Eee PC was the most popular lap-
top among the laptop brands that consumer bought, ac-
cording to the Consumer Behavior Report6 from PriceGrab-
ber.com. The Eee PC introduced a new class of low-costA new mobile

computer class: the
Netbook

mobile devices, the so-called Netbooks, for which Bergevin
[2008] despite their low hardware specifications suspects a
general high demand around the world. It indicates a new

2http://news.zdnet.com/2100-9584_22-146603.html
3http://www.microsoft.com/windows/products/

winfamily/umpc/default.mspx
4http://www.intel.com/products/mid/
5http://eeepc.asus.com
6https://mr.pricegrabber.com/March_CBR_Portable_

Laptop_Trends_v9_FINAL.pdf

http://news.zdnet.com/2100-9584_22-146603.html
http://www.microsoft.com/windows/products/winfamily/umpc/default.mspx
http://www.microsoft.com/windows/products/winfamily/umpc/default.mspx
http://www.intel.com/products/mid/
http://eeepc.asus.com
https://mr.pricegrabber.com/March_CBR_Portable_Laptop_Trends_v9_FINAL.pdf
https://mr.pricegrabber.com/March_CBR_Portable_Laptop_Trends_v9_FINAL.pdf

1.2 Challenges of web applications 3

direction to less hardware oriented computing which due
to hardware limitations relies on services of distant remote
servers, such as Wikipedia7 that can be directly accessed
from the Eee PC’s desktop environment like a regular pro-
gram.

Furthermore, small affordable online connected devices ap-
proaches to what has been envisioned by Weiser [1991] at
PARC. He imagined devices called tabs, “inch-scale ma- Cheap mobile

hardware favours
ubiquitous computing

chines that approximate active Post-It notes”, which to-
gether with other devices, pads and boards, will count
“hundreds of computers per room”.

For such ubiquitousness, hardware must be affordable and
to provide a small form factor, power is limited. Since high
performance results in high power consumption, such de-
vices are likely to have low hardware performance. More-
over, already today falling hardware costs lead to people
have multiple computers, in form of mobile phones, digi-
tal music players, and personal computers. As purposes of
these overlap, same data is shared across devices, such as
contact information stored on the user’s mobile phone, his
mobile computer, and his personal digital assistant. Chang-
ing contact information in one device requires synchroniza-
tion for consistency of the data. To overcome both prob-
lems, people, instead of working on the actual physical ma-
chine, can simply log into their virtual computer that is dis-
tributed over the internet. Data does not exist in multiple
instances but can be accessed online avoiding the problem
of synchronization.

1.2 Challenges of web applications

Web applications, such as web mail, are already used by
many people on a daily basis as they are convenient to use
and can be accessed from any computer with internet con-
nection and yet, web applications still do not give the user
a unified user experience. Quite to the contrary, working Web applications do

not provide a unified
user experience

with a multitude of separated web applications is trouble-
some to the user as explored as follows.

Working with two
web applications on
one document is not
possible

7http://www.wikipedia.org

http://www.wikipedia.org

4 1 Introduction

While in a desktop system documents can be easily shared
across applications, benefiting the user with the use of a
wide range of applications, web applications are isolated
and sharing across applications is in general not possible.
This is because documents on the desktop computer are
stored on a common information space, the shared hard
disk. Such a common information space, however, does
not exists for web applications. Currently, documents are
transferred from one web application to another by down-
loading and uploading. This is cumbersome and intervenes
with the user’s work flow. Moreover, web applications are
protected by log-in mechanisms, generally asking for a user
name and a password when using the application, which
furthers interruptions to the user.

The web also harbours risk, such as viruses infecting the
computer, phishing sites8 and identity theft. For these rea-The web is

untrustworthy sons, the web is considered rather untrustworthy which has
has prevented people from further embracing web applica-
tions as an alternative to desktop applications.

In this regard, we will present the design process of a
framework for web applications, we call WIDE, Work-
station Independent Desktop Environment, that addresses
these concerns.WIDE is a framework

for web applications
WIDE seeks to provide a single shared information space
with single sign-on mechanism to allow users to work with
various web applications in a more desktop-like manner.
Our goal is to demonstrate a working system with proto-
type applications that aims to offer a workstation indepen-
dent solution to the problems mentioned above:

• Single information space helps the user to organize
his documents by placing them in one location rather
than being distributed. Furthermore, it supports doc-
ument sharing across applications which allows effi-
cient and natural working with multiple applications.

• Single sign-on minimizes unwelcomed breaks in the
work flow and frees the user from password concerns
for the increasing number of online accounts

8sites that mimic other sites to obtain customers passwords

1.3 Chapter overview 5

• Direct access supports web applications best as many
of them are, too, directly accessible. Moreover, it
helps to engage users to work with it.

1.3 Chapter overview

The thesis is organized as follows:

• In Related Work, we describe works in the field of web
applications and remote computing and identify lack-
ing support for the features of WIDE.

• The Trust chapter introduces the theory regarding
general and online trust as well as a survey we con-
ducted to get further insight in user’s online be-
haviour.

• In Architecture we present the WIDE server and how it
interacts with the clients to realize authentication and
authorization.

• Implementation describes how we implemented the
proposed architecture and how through implement-
ing prototypes we developed support for JavaScript
and ActionScript-base applications.

• Integration explores ways to add support for WIDE to
existing web application and presents implemented
prototypes successfully demonstrating the integra-
tion.

• In Validation, we discuss the our choice of an appro-
priate evaluation methodology resulting in present-
ing the project’s context, the reasoning behind the de-
sign decisions made, and expected problems.

• In Summary and Future Work, we summarize our con-
clusions and explore how future work can further im-
prove our work.

7

Chapter 2

Related work

In this chapter, we first try to find a categorization for the
field we investigate to provide a further understanding of
the benefits and deficits in context of the respective ap-
proach under consideration. For a better comparison with
WIDE, we state features that we deem optimal for an envi-
ronment to support best working online:

• Single information space allow users to share data
across applications

• Single sign-on mechanism avoids work flow inter-
ruptions

• Access control mechanism protects the user’s data
from unwanted access

• Open system is extensible and flexible regarding to
the needs of the user

• Support any type of data to not restrict user’s in their
usage of such systems

• Workstation independence to not exclude existing
workstation independent online applications

• Instant access requires no installation and encourage
flexible usage

8 2 Related work

After the overview we give a comparison to show that the
presented systems do not fully support these features.

2.1 Classifications

In section tries to explain the different approaches and how
to they can be classified in the field of web and desktop
applications, and remote computing.

2.1.1 Web and Desktop Applications

It is difficult to grasp an exact definitions of web and desk-
top applications. Furthermore, emerging convergence of
the web and the desktop has led to various kinds of appli-
cations between these. As Moritz [2008] points out

“The terminology of Desktop and Web appli-
cations and everything between is difficult and
confusing. Finding unique and unambiguous
names seems to be difficult.”

Categorization of
web applications is
difficult The table 2.1 shows how the borders between the technolo-

gies of these terms are blurred and make a categorization
difficult.

User Perception-based Definition

A clear technical differentiation seems difficult, as terms
like rich internet application seems in some cases to apply for
desktop applications that need to be installed and in some
other cases to apply for specific web sites. Therefore, weBorders between

categories are blurry propose a user perception-base definition of what a web
application is.

An application that runs in the web browser and is per-
ceived by the user to relate to the web, such as for exam-
ple, having a server back-end, being originated from a web

2.1 Classifications 9

Term Properties Examples
Desktop application Need installation on the com-

puter
Microsoft Word,
Adobe Photoshop

Internet-enabled
desktop application

Uses network support, can also
run offline, perhaps with limited
functionality

Outlook, Thunder-
bird

Rich internet appli-
cation (RIA)

Located in between, combination
of desktop application and web
application

Web browser-based
RIA

Web sites with more richness of
user experience, more response
and personalization facilities

social network sites,
calendars, online
email services

Desktop-related RIA Look and feel of desktop applica-
tion but strong focus on web

Apple iTunes

Smart client Very related to RIA, technology
between thin and rich client

Web 2.0 Applications providing classical
desktop and web features

Web site, web appli-
cation, thin client

Rarely need to be installed,
started and loaded via network,
personalized log-in, running
connection, often run in a web
browser

Table 2.1: Overview of some Terminologies Describing Desktop and Web Related
Applications, According to Moritz [2008]

page, or resembling another web site, we consider a web
application.

Although this definition still leaves some space for inter-
pretation, it will more likely reflect the user’s view on web
applications.

2.1.2 Non Web-based Remote Applications

There are also other ways to realise working remotely with
applications as follows:

• Distributed Window System

10 2 Related work

• Remote Computing

• Application Virtualization

Distributed window systems allow the separation of inter-
face and applications, some particular kind of remote ac-
cess to application. In section 2.4.1 we explore it exempli-Distributed window

system: separation
of interface and
application

fied by the X window system.

Remote computing refers to the concept of remotely con-
trolling a computer through software. This is, for example,
used to maintain distant computers. Section 2.4.2 will giveRemote computing:

maintenance of
distant computers

an overview of such a system by examining Virtual Net-
work Computing.

Application virtualization refers to encapsulating the appli-
cation in an virtual environment and separate it from the
operating system, according to Amir [2008]. The applica-
tion however, is acting as if it is running directly on the
operating system. The encapsulating layer is the so-calledVirtualization

encapsulates
applications and
hides the actual
enviromment

virtualization layer which intercepts all operating system
related operations and redirects them into a virtualised lo-
cation, such as a single file. An example of such virtual-
ization is given in section 2.4.3. In contrast to application
virtualization, desktop virtualization encapsulates the en-
tire desktop, an example can be found in chapter 2.2.3

2.2 Information Spaces

According to Newby [2002] information space is defined as
the set of concepts and relations among these held by an
information system. Guarino [1998] states resources, user
interfaces, and application programs as the main compo-
nents of such an information system.

On workstations for example, the desktop environment is
such an information space that usually consists of concepts
- files, file systems, applications, and the user - and their
relationship to each other - e.g. folder hierarchies, access
rights, and installation of applications.

2.2 Information Spaces 11

On the web various kinds of online accessible information
spaces exist. Therefore we define the following types for a
better categorization:

• Online Storage Services focuses on storage and access
of information in form of files in a file system and as
databases.

• Web Applications form their own information spaces
containing their data, such as documents for office
applications or personal information for a social net-
work site. Application spaces differ in their presen-
tation as they depend on the domain and type of the
application. The focus of application spaces is how to
best support the service provided by the application.

• Web Desktops are a specific type of web applications
similar to the traditional desktop systems on local
workstations.

Working in an environment, such as the world wide web, in
which services are widely distributed poses the question of
to whom or what the information belongs. The statement
that a piece of information belongs to an application be-
cause the user created it with the help of the application is
untenable as this does also not hold true for the real world.
Furthermore, applications are tools that, without the user, Information created

by a user should
belong to that user

do not access information. Information should be, there-
fore, owned by the user and belong to a space that is con-
trolled by the user and not by the applications.

2.2.1 Online Storage Services

Online storage spaces are information spaces that allow a
user to store and organize information so that it is accessi-
ble online. In the beginning, these types of services were
rather simple, giving the user online accessible web stor-
age with a file system where files were either public, that is
accessible to all, or not visible, being only accessible when
logged in. Recent storage systems offer additional value Storage services add

value to their service

12 2 Related work

like different interfaces for applications the files can be ac-
cessed through. The approach of storage spaces is docu-
ment centric as storing and accessing to data remains the
main focus. However, to increase its usefulness some web
storage have provided additional services, such as adding
meta-data, being information about information, through
the tagging of files or built-in applications that can directly
use the stored data.

Amazon S3

Amazon Simple Storage Service1 (S3) is an online storage
service offered by Amazon. The customers pay for the
amount of stored data and for data transfer.

Data and their meta-data together form so-called objects.
Objects are stored in buckets and each has one unique key
with which to address it within the bucket. Thus, the
bucket and the key of an object identify the object which
can be accessed by other applications and users. The access
control policy is defined by each object’s access control list
(ACL). When an object is accessed it is checked to deter-Access control lists

define access control
policy

mined whether the object is allowed to be read or written
depending on the rights stated in the ACL. With sufficient
rights even the ACL can be accessed and modified.

With the ACL a dynamically adjustable fine-grained access
control is offered. However, for applications that have only
rights to read certain files due to limited trust, it is not pos-
sible to easily set an exception granting one time object ac-
cess. Furthermore, although other applications can access
S3 and S3 has knowledge about the users through the ACL,
on the other hand S3 cannot call the applications. Thus, un-
less the user only wants to organize his data into buckets,
S3 provides an infrastructural service to other applications
rather than a framework for working online.

In contrast WIDE offers an entry point for both data and
applications. With WIDE, documents can also be opened
directly from the information space. Access to files for un-

1http://aws.amazon.com/s3

2.2 Information Spaces 13

trusted application can be easily granted through the re-
quest based access control without concern for unwanted
access (see 4.3).

AOL Xdrive

AOL provides an online storage service called Xdrive2. Be-
side a web front end for uploading data, unlike S3, Xdrive
does not offer an interface for other applications to access
its storage. However, AOL provides stand alone software
such as Xdrive Desktop Lite and built-in functionalities to
add value to the service.

Xdrive Desktop Lite is a Flash based desktop application
that runs in Adobe AIR (see 2.3.1) that allows drag and
drop interaction to upload data to and download from the
storage. Furthermore, its web interface includes basic func- Added value through

integrated
applications

tionalities, such as displaying pictures and playing music
with its integrated music player. This added value actually
shifts Xdrive from an purely storage focussed approach to
a more general information space that provides, to a cer-
tain degree, integration into the desktop and offers further
interaction over and above simple organization.

However, in contrast to the prior example Xdrive is a closed
system that cannot be extended.

Instead of adding built-in functionalities, WIDE proposes
an information space that delegates document interaction
beyond organizing them to external applications that in
contrast focuses on processing the information rather than
managing them.

2.2.2 Web Applications

An example of how applications are also an information
space similar to the aforementioned storage services is web
mail. Web mail applications allow users to access their

2http://www.xdrive.com

14 2 Related work

mails and therefore, hosts their mails to present them over
the web for reading purposes. Mails can usually be filed
in folders, searched or can be filtered automatically as junk
mail.

Google Docs

Figure 2.1: Google Docs, a Unified Information Space for
its applications

Google Docs is a web-based office suite providing word
processing, spreadsheet, and presentation application ser-
vices. Documents are saved on the shared web storage sys-
tem which can then be tagged, placed in folders, and shared
with other users.

Although Google Docs was initially developed as an ap-
plication providing attached storage space, stored docu-
ments can now be directly accessed through several in-
terfaces Google offers. Through the interfaces, applica-
tions can retrieve documents, upload documents to Google
Docs. Spreadsheets can also be used as a simple databaseInterfaces provide

access to documents for applications. Furthermore, it can be used offline with
Gears(see 2.3.1) that also provides additional desktop in-
teractions.

The provided interfaces focus on information retrieval and

2.2 Information Spaces 15

Webtop Open
source

Engine Own
server

Free

EyeOS yes PHP+AJAX yes yes
G.ho.st no Flash no yes
Stoneware webOS no AJAX no no

Table 2.2: Comparison of webtop systems

meet the needs of application that solely consumes the
contents of stored information. It is however, not pow-
erful enough to satisfy those applications that require bi-
directional transactions which allows the application to
store arbitrary data on their storage space.

WIDE, in comparison, does provide transactions for both
receiving and sending of arbitrary data and thus, supports
more versatile applications that require more complex in-
formation exchange mechanisms.

2.2.3 Web Desktops

Currently available Webtop systems are usually online
desktop environments that mimic traditional desktop sys-
tem’s user interfaces, such as MacOS or Windows, on re-
mote servers. Also file systems and application manage-
ment systems resemble those of commonly known desktop
systems. Webtops are offered as a internet service for which Mimic traditional

desktop systemsthe user sets up an user account. This service itself is a web
application and as such, it runs workstation and operating
system independently in the web browser’s environment.
The different realisations of webtop systems exemplified by
EyeOS, G.ho.st and Stoneware webOS are presented in ta-
ble 2.2. In the following the differences of these will be fur-
ther explored.

16 2 Related work

Figure 2.2: EyeOS, a Web Desktop System.

EyeOS

EyeOS3, one of many Webtop systems, will present itself to
the user just like an ordinary desktop system. After the user
logs in, a desktop environment is presented, with icons, ap-
plications running in windows etc.. For visualization of the
user interface HTML and JavaScript are used, while some
other Webtop Systems use Flash instead. In that desktop
environment, the user can start programs that are stored
on the server on which the system is running. It is possi-
ble to extend the range of application by developing new
applications with the provided eyeOS API. External appli-EyeOs can be

extended by third
party applications

cations (written by a third party developer) can be submit-
ted to a repository. Alternatively applications can be down-
loaded in so-called eyePackages that can be uploaded to the
eyeOS. Similar to the traditional desktop applications need
to be installed. In EyeOs this is only possible for the root
user. That means that regular user cannot extend the set of
application. However, EyeOS can be downloaded and run

3http://www.eyeos.com

2.2 Information Spaces 17

on a separate server and user can create their own EyeOS
server which then can be modified.

G.ho.st

In contrast to EyeOS, G.ho.st is a Flash-based webtop sys-
tem and partly does rely on hosted web applications, that
are web applications that have been integrated into the sys-
tem. For example, Zoho Writer, an online word processing
application similar to GoogleDocs (see 2.2.2), is integrated
into G.ho.st as a hosted web application. Instead of access- Flash-based webtop

with hosted web
applications

ing the service via web browser, the user in G.ho.st starts it
like any other application directly from the desktop. The
window in which Zoho Writer is loaded, provides addi-
tional options, as it is shown in figure 2.3. As a G.ho.st
user the edited document can be directly saved to the desk-
top. On the other hand, options, such as for sharing and
publishing, that usually are included are omitted. In ad-

Figure 2.3: G.ho.st, a web desktop system providing hosted
web applications.

dition, it also provides some specific applications to access
other web services, such as YouTube or Flickr. These ap-
plications are consuming the data of the services and do
not provide full functionality of the services the data is
consumed from. Such an application is depicted in figure

18 2 Related work

Figure 2.4: G.ho.st: Specific applications to access online
content, such as YouTube

2.4. Another difference to EyeOS is that G.ho.st is still not
open-source but, according to the website4, the developers
are currently working on opening their webtop system and
developing their API. Open-source increases transparency
and thus, lessens uncertainty resulting in more trust in the
application (see 3.1).

Stoneware webOS

Stoneware’s webOS is different to the prior examples since
its focus lies on desktop virtualization. It provides desk-
top virtualization over the web and as such is independent
of the underlying operating system and hardware. It pro-
vides virtualized desktop applications, such as windows
programs through utilization of Microsoft terminal server,
and also access to web applications as hosted applications.
It is designed as a single access point to all corporate com-Focus on corporate

computing puting resources. With its access to corporate web applica-
tions, they can be located securely in the corporate network,
reducing the vulnerability of the corporate computing re-
sources.

4http://g.ho.st

http://g.ho.st

2.3 Hybrid applications 19

Figure 2.5: Stoneware’s webOS, a web desktop virtualiza-
tion system.

Conclusion

In summary, webtop systems succeed in moving the desk-
top environment to the web. This is adding value to the
desktop computing experience as it can be accessed in-
dependently from the workstation. Extending of open
webtop systems is difficult as APIs include new widget
toolkits the potential developers have to familiarize with
and existing source code, e.g. based on standard HTML
widgets, cannot be re-used easily. Contrary, WIDE en- Existing web

applications cannot
easily adjusted for
webtop systems

hances web applications with new functionality and fo-
cusses on transaction instead of dictate a user interface
toolkit.

2.3 Hybrid applications

Despite the convergence of web and desktop applications
(see also 2.1.1), there are still gaps between these two
worlds, such as sharing of documents between applications
and trust in online applications (see 3.1).

20 2 Related work

2.3.1 Desktop Integration

In this section three approaches are shown to integrate web
applications into the desktop environment that offers more
sophisticated interactions, such as drag and drop, and to
provide support for working offline and direct access to ap-
plications through the desktop. This is similar to the goals
of WIDE to support working with multiple applications in
one single information space.

Adobe AIR

Adobe Integrated Runtime (AIR)5 is a runtime environ-
ment for internet applications similar to the web browser. It
provides a virtual machine for JavaScript and ActionScript.
In AIR the applications run similarly to traditional desktop
applications as AIR, unlike a web browser, does not have
any visible controls and thus, is invisible to the user.A cross-platform

runtime for web
applications The cross-platform environment of AIR adds an abstrac-

tion layer to the operating system. It hides operating sys-
tem specific behaviour from the applications and provides
the same runtime on different operating systems, such as
Mac OS X or Windows Vista. Thus, developers only need
to write code once without modifying it for each operating
system. To run in AIR, applications need to be installed on
the workstation.

AIR is also adding desktop functionality to the applica-
tions. While web browsers are restrictive due to security
reasons, AIR provides more interaction with the desktop as
they run locally. This also provides applications with bene-
fits, such as access to the local file system and in the case of
Flash based applications, freeing the application from very
limited assigned local storage. This allows the application
to integrate further into the desktop system because of a
more direct interaction, in which functions such as drag-
ging a file and dropping it on a running application, are
now possible. Furthermore, with the support of popular

5http://www.adobe.com/products/air/

2.3 Hybrid applications 21

web programming languages it is possible to re-use source
code when an online version already exists.

Installing AIR applications locally take away some advan-
tages of web applications, such as applications not being
instantly available to all computers but must be installed
locally on each computer. In other words making a previ-
ously directly accessible workstation independent applica-
tion inaccessible on other workstations if it is not installed.

Prism

Prism6 is an add-on for the Mozilla Firefox web browser
that allows the user to “save” a web site as an desktop ap-
plication. As such the user can start the application from
the desktop directly in the same manner as other desktop
applications. Disguises web

applications as
desktop applications

Figure 2.6: Prism hides the browser window’s navigation
to mimic an usual application window (left) and can be
started over a desktop link (right)

The transformation to a “desktop application” however is
achieved by removing the browser user interface, such as
the page navigations or the location bar, from the window
and wrapping it into an executable link. Although with
Prism, web sites appear as desktop application, unlike AIR,

6http://developer.mozilla.org/en/docs/Prism

22 2 Related work

desktop interactions other than starting the applications di-
rectly from the desktop are not possible. Furthermore, the
application is still a web application and is actually exe-
cuted from the web despite the direct start through the link.

In contrast to Prism WIDE does not focus on merging off-
line and online applications but rather on shifting the desk-
top experience online. WIDE enhances the online experi-
ence by integrating desktop-like interaction processes.

Gears

Gears7 is an open source project by Google that enhances
web applications by adding features to the web browser.
With Gears the data layer of an application can be separated
to add offline support as illustrated in figure 2.7 and also
to provide additional desktop interactions. It is realizedAdds offline support

and desktop
interaction

as an web browser add-on that provides a Database module
to store data offline, a LocalServer module for caching and
serving application resources, and a Desktop module that
provides the bridge between the browser and the desktop
for desktop interactions.

Figure 2.7: Gears separates the data layer from the user in-
terface. A Data switch communicates with the offline local
data layer and the online server data layer.

Gears stores data in the Database module and communi-
cates offline to the LocalServer module. The offline stored
data is synchronized with the online storage when online
connectivity is provided. If there is no internet access at
the time, synchronization is deferred during the period of-
fline. Gears is not only used by web applications to add

7http://gears.google.com

2.4 Desktop Applications over the Network 23

offline synchronization but also to speed up web applica-
tion by reducing network load on the servers because the
potentially slow, high latency internet connection is only
accessed for synchronization instead of each time the user
interacts with the web application. By doing so, Wordpress,
a weblog service, could reduce the number of request from
about 50 to two to three.8 Unlike AIR applications, Gears
supported applications are web applications and it is pos-
sible to use the applications without Gears. However, to
gain the benefits offered, Gears must be installed to the lo-
cal workstation.

Gears enhances the interaction on workstations. WIDE fo-
cuses solely on the online interaction rather than taking into
consideration also offline access and desktop integration.
This makes the two concepts complementary rather than
contrary.

2.4 Desktop Applications over the Net-
work

The opposite approach is to take offline desktop applica-
tions over the network and operated them from remote
computers.

2.4.1 X Window System

The X window system, proposed by Scheifler and Gettys
[1986], is a windowing system that was specifically de-
signed to be used over network connections. As such, it
does not imply the application, the X client, and the user’s
local computer to be at the same location. The X client
sends requests for graphical output over the network to the
X server. On the other hand the X server sends sends user
input events back to the X client.

However, X server software is not directly available on
all platforms although X terminal, a client software that

8http://trac.wordpress.org/ticket/6965

24 2 Related work

runs the X server, can be downloaded. In addition, theNot natively
supported by all
platforms

graphical output that is sent over the network requires high
bandwidth that for internet connections cannot be ensured.
Therefore, WIDE is based on web technology that sendsGraphical output

requires high
bandwidth

rather high level output, such as buttons and tables, to
the web browser rather than pixels. Furthermore, a web
browser is a software that many people use on a regular
day-to-day basis and thus, much more familiar than an X
terminal.

2.4.2 Virtual Network Computing

Virtual Network Computing (VNC) is a platform-
independent client/server-based protocol developed
by Olivetti & Oracle Research Laboratory (ORL) for re-
motely controlling a computer(see Richardson et al. [1998]).
The implemented display of the protocol allows the user
to connect a VNC client managed computer, the viewer,
to a computer managed by the VNC server, the so-called
desktop. Once a connection is established, the desktop sends
its screen content over the connection to the viewer and in
return the viewer sends its keyboard and mouse input to the
desktop. Hence, to the user it appears as if he is interacting
with the remote desktop. The server on the desktop side also
provides a web server offering a Java-applet, a small Java
program that can run in a web browser, posing as a VNC
client. This allows the user to access the VNC server withServer offers Java

applet for workstation
independent access

any Java capable web browser and therefore, can be, to a
certain degree, considered workstation independent.

Similar to X, VNC transports the screen contents over the
network connection requiring more bandwidth compared
to those of web applications. When the user logs into a
remote computer, VNC then will display it to the user as
if sitting in front of it. In contrast, WIDE can be used by
many people at a time and coordinate their work and inter-
action with external web applications. As WIDE is based
on web technology, file transfer, being download and up-
load, are supported. VNC, however, does not implement
file transfer, i.e. files of the remote computer cannot be di-
rectly downloaded to the local computer.

2.5 Development of Web Applications 25

2.4.3 Citrix XenApp

XenApp9 provides two types of application virtualiza-
tion technologies: client-side application virtualization and
server-side application virtualization. The two types refer
to the location where the application is actually executed.
Therefore, with server-side application virtualization ap-
plication can be used on hardware that does not satisfy the
application hardware requirements because the application
runs entirely on the server that indeed must meet the re-
quirements. The client handling the virtualization layer, ex-
ist for several platforms, such as Microsoft Windows, Mac
OS, and Linux.

Although the concept of virtualization relates to the con-
cept of thin clients in case of the web applications, virtu-
alization requires the client, similar to a runtime environ-
ment, that must be installed on the user’s local computer
preventing direct access. Moreover, Citrix focus lies on cor-
porate networks, relatively closed network environments
to which only particular users have access to in contrast to
web applications that can be basically accessed by everyone
through a web browser.

2.5 Development of Web Applications

The focus of the here presented works is to ease the de-
velopment of web applications by providing methods that
allow development that is similar to the of desktop applica-
tions. This can make source code of the existing offline ap-
plication re-usable when developing a corresponding web
application.

9http://www.citrix.com/English/ps2/products/
subfeature.asp?contentID=163987

http://www.citrix.com/English/ps2/products/subfeature.asp?contentID=163987
http://www.citrix.com/English/ps2/products/subfeature.asp?contentID=163987

26 2 Related work

GWT

Google Web Toolkit10 is an open source Java development
framework for web applications that focuses on browser
independent development. With GWT, web applications
are developed and debugged in Java. For deployment,
the compiler translates the Java application into a browser-
compliant JavaScript and HTML application that runs in a
web browser.

GWT eases development as Java’s object orientation helps
to improve comprehension. Furthermore, many develop-
ment tools exists for Java that helps to accelerate develop-
ment. Through the compiler generated code, the resultingWeb application

development in Java
on client and server
side

application is performance optimized, while debugging is
more efficient as web browser incompatibility has been at-
tended to.

Despite using Java for development, widget sets of Java,
such as the Abstract Window Toolkit or Swing, are not in-
cluded. Instead the user interface is created with compo-
nents of the GWT Web UI class library which holds widgets
like buttons, text fields etc.. Thus, as an example, user inter-
face code of Java applications have to be rewritten although
other parts can be re-used.

XML11

XML11 proposed by Puder [2006] is an XML based abstract
windowing toolkit inspired by the X11 protocol of the X
window system (see 2.4.1). It migrates native Java applica-
tions to client applications that run in a web browser.

In order to run a Java application over the network in a
browser it is translated into a JavaScript and HTML appli-
cation. The translating process begins on byte code level
where Java commands are dissembled to atomic instruc-
tions. First, Java classes are translated into an XML basedMigration of Java

application through
bytecode translation

programming language, so-called XLMVM. This XMLVM
program is then translated into JavaScript by mapping via

10http://code.google.com/webtoolkit/

http://code.google.com/webtoolkit/

2.5 Development of Web Applications 27

style sheets. The resulting JavaScript program can gener-
ally run in a web browser. However, some classes, such
as a database, require fixed resources that cannot migrate.
Therefore, a configuration file determines which of the XM-
LVM classes can be migrated to the client and which need
to remain on the server side. To communicated between
such classes, a proxy marshals parameters and sends them
to the server. The proxy appears to the application as a re-
mote object.

Although XML11 uses remote communications like X11,
differences are considered. While X11 is used with high
bandwidth networks rather than a medium bandwidth net-
work with a high latency like the internet. Thus, to adapt to
the different network environment, XML11 transfers wid-
gets, instead of pixels, to the web browser and events back
to the server back end.

In comparison with GWT, XML11 is also different as it fo-
cuses on the migration of desktop application and GWT on
web application development. The translation of Java into
JavaScript differs, also. Unlike GWT, XML11 does not re-
quire adjustment to the original Java code. One reason for
it is that XML11 uses the native widget set AWT. Another
difference happens in the translation process. GWT trans-
lates the Java source code while XML11’s cross-compiler
translates the byte code. Hence, features of newer versions
of Java can be supported as byte code instructions stay the
same.

However, similar to web desktop systems XML11 applica-
tions are remotely controlled through the web browser. The
resulting application does not interact with the web or fol-
low its principles. The desktop or back end in this case re-
mains isolated on one server. With WIDE, the aim is to keep
the distribution of web applications and to provide a single
information space interacting with the distributed network
of various services.

28 2 Related work

2.
6

C
om

pa
ri

so
n

Ta
bl

e

Sy
st

em
Si

ng
le

in
-

fo
rm

at
io

n
sp

ac
e

Si
ng

le
si

gn
-o

n
A

cc
es

s
co

nt
ro

l
m

ec
ha

ni
sm

Ex
te

ns
ib

le
,

ex
te

rn
al

in
te

rf
ac

es

Ty
pe

of
da

ta
W

or
ks

ta
ti

on
in

de
pe

nd
en

t
In

st
an

ta
cc

es
s

A
m

az
on

S3
ye

s
no

A
C

L
ye

s
an

y
ye

s
ye

s
X

D
ri

ve
ye

s
no

n/
a

no
an

y
ye

s
ye

s
G

oo
gl

e
D

oc
s

ye
s

ye
s

sh
ar

in
g

lim
it

ed
do

cu
m

en
ts

ye
s

ye
s

A
IR

lo
ca

ld
es

kt
op

n/
a

no
ye

s
de

sk
to

p
?

no
Pr

is
m

n/
a

no
n/

a
an

y
w

eb
si

te
n/

a
ye

s
n/

a
W

eb
to

p
ye

s
n/

a
no

no
an

y
ye

s
ye

s
G

ea
rs

n/
a

?
n/

a
ye

s
n/

a
ye

s
no

X
ye

s
n/

a
no

ye
s

n/
a

ye
s

no
V

N
C

re
m

ot
e

O
S

n/
a

no
ye

s
an

y
ye

s
ye

s
X

en
A

pp
lo

ca
ld

es
kt

op
?

no
ye

s
an

y
?

no
X

M
L1

1
n/

a
n/

a
n/

a
n/

a
n/

a
n/

a
ye

s

Ta
bl

e
2.

3:
C

om
pa

ri
so

n
of

th
e

va
ri

ou
s

sy
st

em
s

29

Chapter 3

Initial study

“The city’s central computer told you? R2D2,
you know better than to trust a strange computer!”

—C3PO

3.1 Theory

When interacting with the web, and more precisely with
service running on the web, the user enters a trust relation-
ship. This trust relationship is important for smooth and
successful interaction. Thus, it is of particular interest to
know what trust exactly is, what effect does trust have on
the working process, and how trustworthiness is commu-
nicated to the trustor.

First, some definitions are explored for a better understand-
ing of trust. Trust is property of a relationship of two or
more parties. The trusting party is called the trustor and
the trusted party is called trustee.

The concept of trust appears in many different fields, such
as sociology, psychology, and computer science among oth-
ers. In Sociology the degree of trust is defined as a mea-
sure of belief of how honest, benevolent, and competent the
trustee is. In the field of computer science, different kind of

30 3 Initial study

trust relationships, such as computer mediated trust and
online trust, are of interest. Computer mediated trust de-
scribes the trust in others in situations where interaction
is mediated by computers as it is the case when chatting,
mailing, or online gaming with others. Online trust relates
to human-computer trust in an online environment, such
as website interaction.

3.1.1 General Trust Model

A detailed general model of trust is proposed by Riegels-
berger et al. [2005]. In their model they argue that the
trustee must meet contextual conditions to be trusted.
These conditions are described as temporal embedded-Contextual

conditions ness, social embeddedness, and institutional embedded-
ness. Temporal embeddedness relates to the trustee’s de-
pendence on the trust of the trustor at a later point of
time. When interacting multiple times, the trustor will re-
act to the prior behaviour of the trustee and if the trustee
has previously acted untrustworthily, the trustor might not
trust the trustee again. Social embeddedness refers to the
trustor’s social environment, particularly other potential
trustors of the trustee. Untrustworthy behaviour results
in decrease of reputation and thus, other parties might not
place trust in the trustee in future interactions. The institu-
tional embeddedness relates to the trustee being in an insti-
tution. They describe trust as institutions motivating trust-
worthy behaviour and sanctioning non-fulfilment. There-
fore, however, the trustee’s actions must be traceable and
investigation and actions must be relatively easy in com-
parison to the non-fulfilment. These three aspects motivate
the trustee to act in a trustworthy manner and communi-
cate - as signals - the trustworthiness of the trustee to the
trustor. In addition to these external incentives the trustee’s
motivation and abilities will affect his actions.

Separation in time and space were further discussed with
respect to their effect on the trust relationship. Spatial sep-Separation increases

uncertainty aration leads to loss of information regarding the trustee
and thus, increases uncertainty. Separation in time, such as
delayed response, increases the effect as it prolongs this pe-
riod of uncertainty. Uncertainty increases the feeling of risk

3.1 Theory 31

and thus, increases the need of trust.

Although Riegelsberger et al.’s framework illustrated trust
in general and not specifically in relation to online trust,
many aspects holds true for online trust.

3.1.2 Online Trust

However, as WIDE is an online system, this thesis’ primary
focus lay in online trust. Corritore et al. [2003] define on-
line trust as an attitude of confident expectation in an on-
line situation of risk that one’s vulnerabilities will not be
exploited. Such vulnerabilities can be, for example, loss of
privacy.

In their work, they present a model of trust for informa-
tional and transactional websites, excluding computer me-
diated trust scenarios. Their model consists of external fac-
tors, physical and psychological, and perceptional factors,
being credibility, ease of use, and risk.

Credibility is an important characteristic of trust, both on-
line and offline, and is closely related to the predictability of
an user interface. Ease of use deals with how easily an user
can achieve his goal when using a computer. The consis-
tency of the user interface can also improve the ease of use.
The third perceived factor of risk, is known as a key fac-
tor in offline trust literature and it has also been discussed
extensively in the area of online trust.

As ease of use increases the feeling of control and credibil-
ity is known to lower the perception of risk, both impacts
risk, as depicted in figure 3.1. Furthermore, Corritore et al.
argue that increased ease of use reduces the cognitive work-
load and thus, the user will have more cognitive resources
to notice credibility cues. In the model the external factors
affect all perceptional factors. The perception of risk and
the credibility of a website is also known to have direct ef-
fects on trust.

Similarly, Hampton-Sosa and Koufaris [2005] define trust
as the willingness of the trusting party to rely on the trustee.

32 3 Initial study

Figure 3.1: Trust model by Corritore et al. [2003]

In their work they focused on the factors that leads to ini-
tial trust which then encourages the user to use a website
for the first time. The results showed that a web site’s ap-
peal, namely the perceived usefulness and enjoyment, had
a significantly positive effect on the initial trust. Despite the
test’s results being unable to support their hypothesis that a
web site’s usability, control and ease of use, is positively re-
lated to initial trust in the web site’s company, they pointed
out that this could be due to the short time the users in-
teracted with the website and that longer interaction could
indeed increase the impact of usability on initial trust.

Another perspective on trust and credibility was presented
by Cyr et al. [2005] who led studies in design preferences
of different cultural groups and their effect on trust or e-
loyalty. Culture is assumed to be important as cultural
background in the effect on one’s perception and it has
been shown that trust related to perception, such as per-
ceived feeling of risk. A study with groups of Americans,
Canadians, Germans, and Japanese on their preferences of
local and foreign web sites gave mixed results with the
Japanese group unexpectedly displaying higher levels of
satisfaction and loyalty to the foreign website than the lo-
cal. Consequently, they have proposed to further researchInternet:

internationalized
common culture?

whether the internet itself will become or has become an
internationalized common culture. A model incorporating

3.1 Theory 33

these aspects among others may result in a better picture of
preferences across cultures.

3.1.3 Implication

From the aforementioned studies of trust certain implica-
tions for a platform for web application, such as WIDE, can
be derived. In the following we describe such two implica-
tions: control and transparency.

Control

Although control is not explicitly a separate factor of these
models, the perception of being in control is affected by the
ease of use, or usability. The relationship of control to risk
is of inverse correlation. Corritore et al. [2003] stated that

“The body of work on risk has also shown that
control reduces risk and that risk is higher in the
absence of control.”

Consequently, total control eliminates any uncertainties
leading to a situation without risk in which trust is not nec-
essary.

Transparency

According to Riegelsberger et al. [2005] institutions moti-
vate trustworthy behaviour. In an online environment like
that the web such an institution can be a network of var-
ious web site. They can act as an institution for each of
its members. In such a relationship, transparency is likely
to increase trustworthy behaviour as it increases the trace-
ability of actions and thus, lowers the cost of investigation,
supporting sanctions. Transparency to the user reduces the
degree of uncertainty presented which itself is closely re-
lated to risk.

34 3 Initial study

3.2 Survey

To gain further insight in online behaviour, trust towards
online web sites, and the general understanding of online
web applications we conducted an online survey.

The survey asked about general online experience, such as
how often people work online or what kind of services they
use.

3.2.1 Participants

For a more representative result that points out potential
regional differences the survey was was conducted in En-
glish and in Japanese. In total 183, 58 female participants
and 125 male participants, participated in the survey. The
average age was 26.63. More than half, 103, were students.
About 56% said that their degree was rather techical. Fur-
thermore, 55% of the participants estimated their general
computer skills to be very good or excellent.

3.2.2 Online Behaviour

While 17.7% of the participants do online shopping at least
once a month, 7.2% stated that they never do online shop-
ping. Of those who do online shopping, 76% stating that
they are mostly or completely satisfied. The fact that more
people do buy things online than people who do not in-
dicates that despite online shopping harbouring not only
privacy related risks but also financial risks for the user, is
accepted and regularly used.

In contrast to 25% storing their password for online ac-
counts in the web browser, 30% store some passwords de-
pending on various aspects. Most often answers were re-
lated to the importance or the amount of private informa-
tion. The three most stated reasons for storing passwords
in the web browser for those participants who neither gen-
erally store nor not store their passwords were the impor-

3.2 Survey 35

tance and level of privacy of data, the computer they work
with at that time, and the frequency they need to enter a
password. While importance of information and the com-
puter the user is using are indeed privacy related factors,
the frequency of use indicates that at least certain num-
ber of people find passwords generally cumbersome to re-
member and type in. This findings corresponds well to the
number of distinct passwords people use for their online
accounts, being in average 4.64 and 10.14 respectively.

3.2.3 Trust

The average rating for trust in online application was 5.06
opposed to 6.86 for trust in offline applications (10 highest),
with less than 5% rating their degree of trust in online ap-
plications higher than trust in offline applications and over
70% rated it lower. Despite over two thirds using web mail
to access their mails, a web application, 60% gave 5 or less
points for general trust in online applications opposed to
21% for local applications. Regarding the privacy concerns,
over 80% of the participants agreed that they worry about
privacy issues concerning personal information.

Figure 3.2: Results regarding the awareness of application’s abilities

Moreover, about 75% of the participants either completely
agree or mostly agree that they worry about privacy con-
cerning documents of theirs being online. Also, more than

36 3 Initial study

half of the participants worried about data loss of their on-
line documents. The awareness of online application’s abil-
ities to delete files, access files, and corrupt files was similar
to those of offline applications, as it is depicted in figure 3.2.

3.2.4 Data online

Furthermore, the participants felt more convenient access-
ing files offline than online with an average rating of 8.15 in
contrast to 6.13 for the level of convenience when accessing
files online, with 8.2% finding it more convenient to access
online data.

Figure 3.3: Results regarding password storage behaviour (left) and reasons for
offline copies of online data.

Also, about 33% of the participants do not think that hav-
ing an online copy of local data is a good idea. Of those
who gave reason, all stated they worry about unwanted
access of their data. Furthermore, reliability and accessi-
biliy concerned the participants; 35% preferred to have a
local backup of online data and 24% wanted offline copies
to have acccess when internet connectivity is not available.

3.3 Conclusion

In general the survey confirmed lower trust in online appli-
cation. However, with about two thirds of the participants
using web mail, a web application to access one’s emails,

3.3 Conclusion 37

and 17.7% doing online shopping once a month, it illus-
trates how web applications are already used by people.

Furthermore, the following conclusions about the users’ re-
lationship to web applications can be derived:

• Users generally trust web applications less than tra-
ditional offline applications

• Users worry about their privacy being kept when
data is stored online

• Users would like a local copy to access data when in-
ternet is not available

• Users use only a small number of distinct passwords

39

Chapter 4

Architecture

WIDE focusses on two aspects that are closely related to
each other: Authentication and Authorization.

Authentication of a subject is the action of validating or ver-
ifying the subject as authentic, that is, it is real true. With
respect to the login mechanisms of web pages, authentica-
tion of the user seeks to verify that the user logging in is
really the user he claims to be. Often the user authenticates
himself with a secret that should only be known to him and
thus, the web site can verify him.

Authorization is the concept of granting access to resources
only to those with permission to do do and in doing so,
protects resources from others. As such, information access
is essentially a problem of authorization, especially for pri-
vate information, as the owner has a stronger desire to en-
sure that only those he has allowed, access to such sensitive
information.

Furthermore, the conducted survey indicated that users
tended to worry about storing data online (see 3.2.4). De-
spite general trust in online applications appearing to be
lower than in offline applications, some online applications
are in fact very successful and are used on a day to day
basis. Web e-mail systems are a classic example of an infor-
mation oriented online service that many people use daily.
The survey’s result also highlighted the fact that users are

40 4 Architecture

aware of the potential risks of information being stored on-
line and thus, do not place trust in some web applications.

The above leads to two basic requirements for application
interaction:

1. The user, in general, will prefer a smooth interaction
with as few interruptions as possible. Since trusted
applications do not pose a threat or risk to the user, in-
teracting with a trusted application should minimize
interruptions caused by, for example, increased secu-
rity requirements.

2. Applications that users are unfamiliar with and are
perceived to harbour potential risks to the user are
not trusted. Such a web application could, however,
be still considered by the user to be useful or interest-
ing, despite the lack of trust. Thus, when using such
an untrusted application, it must not gain any other
information than what is explicitly permitted by the
user, for example, information that the user does not
consider to be private or sensitive.

In the following we describe the overall architecture of
WIDE to support both authentication and authorization
satisfying the above stated requirements to provide an user
experience closer to that in desktop computing where pri-
vacy concerns and information access are perceived to be
less problematic.

4.1 General Architecture

WIDE realizes a client/server architecture on the dis-
tributed systems of the different applications. It consists of
two parties being the WIDE server and the clients - the web
applications. To ease management of information, WIDE
separates data from the applications and the information
is accessed through the WIDE server that holds a storage
space and handles authentication and authorization, like
depicted in figure 4.1. This also adopts a more documentWIDE separates data

from applications and
centralizes it

4.1 General Architecture 41

centric working approach as an alternative to current appli-
cation centric working. The requests for accessing data are
realized through so-called transactions. However, the ap-
plications themselves are not affected and interact directly
with the user. As WIDE is designed as an information space
users can sign in and manage the information, application,
and data.

(a) Storage space im-
plemented in current
web applications

(b) WIDE provides a single
shared storage space

Figure 4.1: Storage Space Solutions for Applications

The following sections describe the main components of
the WIDE framework, the WIDE server and the application
clients. An overview of the WIDE server structure and its
interaction with other entities is provided in figure 4.2.

4.1.1 WIDE Server

The central component of WIDE is the WIDE server. It con-
nects the user, web applications, and data to one informa-
tion space. As such, its main purpose is in the handling of
authentication and authorization so as to protect the infor-
mation stored by the user.

For each connection to the involved parties a particular in-
terface will handle specific tasks. The application interface
is responsible for providing authentication to web appli-
cations and serves information access requests, so-called

42 4 Architecture

Figure 4.2: General Structure

transactions, from the web application to the WIDE server.
The user interface controller prompts the user for autho-
rization of such transactions. The execution of transactions,
such as that to gain access to information, is managed by
the data model.

The storage space, realized as a part of the server, supports
various applications and their individual needs by way of
a database-based hierarchical file system with tag support.
It was chosen as it poses a superset of a purely tag-based
file system and the traditional folder-based file systems.
The hierarchy helps users to find files and discover files byCombining tags and

hierarchical
filesystem

browsing as shown by Jones et al. [2005]. However, Quan
et al. [2003] and Marsden and Cairns [2003] have further
found out that tags can improve a hierarchical file system
and result in faster searching.

Transactions are further discussed in section 4.1.3 as they
are equally involved both the server and the clients. The
authorization process utilizing the transactions is explored
separately in section 4.3.

4.1 General Architecture 43

4.1.2 Application Client

The application client’s primary component is the WIDE
controller which is responsible for communication with the
server. The main concern when implementing the client
side framework was to ensure that is would integrate well
into applications without interfering with other toolkits.
Therefore, aspects other than server communication were
not explored as they are already a multitude of other tool-
kits that exist from which developers can choose.

The general native client framework is for the development
of web applications. Description of how existing web appli-
cations can be extended can be found in 6.1.

The client framework consists of one controller component,
the WIDE controller. It serves as an interface to the server
for authentication and transaction requests. It communi-
cates with the application via a controller of the developer’s
choice.

4.1.3 Transactions

For accessing data on the storage of the WIDE server,
the web application requests so-called transactions. To
support applications that require multiple transactions at
a time, transactions are bundled to transaction bundles.
Transactions must be bundled into transaction bundles as Transactions are

bundleda single transaction is not sent separately to the server.
Hence, the bundle holds information about the web appli-
cation, user, and status.

Each transaction defines an action on content. An action is
access or manipulation of data that is described in content.

The action defines the kind of manipulation the application
requests. A list of supported actions can be found in the ap-
pendix B. Some of these actions require user interaction and
therefore, will render a user interface on screen requesting
user input for execution. For example, when the user trig-
gers an open file command, the application might want to

44 4 Architecture

let the user choose the file to open. These prompts will not
be rendered by the application but instead by the server.
This is to protect the stored information from the applica-
tion and satisfies the requirement in section 1. Furthermore,
it will provide a more consistent user interface. The trans-
action’s content may be the files and folders depending on
the defined action. The value of content is XML encoded to
provide flexibility for further modifications.

4.2 Authentication

The general authentication is achieved by a cookie-based
authentication, such as found in other web applications.
In addition, the web application connected to WIDE ben-
efits from WIDE’s single sign-on mechanism. Once logged
into WIDE, the user does not need additional passwords
to authenticate as the user’s identity is already known to
the WIDE server. To log in to client applications the WIDE
server uses the user information to authenticate the user to
the application without requiring additional authentication
by the user.

This approach was taken in order to further unify the in-
formation space. In addition, log-in procedures often in-
troduce unwelcomed breaks when working with various
applications by interrupting work flow which violates the
requirement in section 4.

Further support for the single sign-on approach is high-
lighted by the survey. One of the motivations for users
to web passwords was the frequency of usage (see 3.2.2).
Moreover, in a traditional desktop environment, althoughSingle sign-on

approach supported
by survey

the user desktop is often protected by a log-in themselves
form part of the desktop and thus, do not request from
the user additional login. As WIDE is a distributed sys-
tem, such an behaviour can be achieved by a single-sign on
mechanism with a central login instance, being the WIDE
server in this case.

When logging out on such an distributed system, the user
must be logged out on every application. Therefore, WIDE

4.2 Authentication 45

performs its own log-out procedure after all running appli-
cations of the user have been logged out. In addition, each
application can use WIDE’s authentication information as
a base for its own authentication method to protect the ap-
plication.

Assuming someone was able to gain access to an applica-
tion it would still not be possible for that person to access
the user’s information on the WIDE server itself. WIDE ap-
plications may store some settings to personalisation but
they do not host the data. As each application holds an Each application

holds its individual
cookie

individual authentication cookie that is only used for the
application’s own authentication the WIDE server and the
user’s hosted data are not affected and exposed to risk.

When the web application is started, WIDE’s authentica-
tion mechanism connects to the server’s ai/logged in user to
receive information about the status of authentication as
depicted in figure 4.3. If the user is not yet logged into
WIDE, he is prompted to do so. Only with the user logged
in, that means owning the cookie that the authentication
set, a random ID is generated and linked to the user’s iden-
tity and passed to the user for redirection to the applica-
tion. The application receives the ID and request the user’s
identification by passing the ID to ai/user hash. Once suc-
cessfully logged in at the application, the client framework
sends a notification to the WIDE server for a status update
and later, log-out.

Similar to log-in procedures, logging out is also commu-
nicated to the server after a successful log-out to update
the application’s status on the WIDE server. When the user
logs out of the WIDE server, all applications are requested
to perform their log out. When an application does not log
out, the WIDE server cancels the log out. This behaviour,
however, can be overridden in the case of a non-responsive
application server. Once the user is logged out of all his
applications, the WIDE will log out the user.

46 4 Architecture

Figure 4.3: Authentication process at start of client applica-
tion

4.3 Authorization 47

4.3 Authorization

The access control mechanism of WIDE is request-based,
that is, authorizations for a request’s execution is granted
request-by-request basis. Each transaction request from an
application must be authorized individually on the WIDE
server’s side. In the case of transactions from an untrusted
application, the user is prompted by the WIDE server to au-
thorize the request or discard the transaction. This mecha-
nism, is thus able to provide general protection of all the
user’s information. Were it to be realized on an excep- With request-based

authorization no
exceptions needed

tions of the general access policy, a continually increas-
ing number of exceptions could make the user lose track
of the exception and ultimately lead to unwanted access,
e.g. through misplaced private information. This is not the
case with WIDE as authorizations given by accepting the
prompts are only for one particular transaction and do not
affect any future transactions.

However, such prompts cause interruptions and as such,
can harm the user’s work flow. For that reason, when
trusted application requests a transaction, the server grants
access directly without asking the user for authorization.
This does not violate the requirements because trusted ap-
plications are not considered to be a risk and thus, informa-
tion access can be granted.

Therefore, the request-based access control of WIDE is able
to satisfy both stated requirements of application interac-
tion. The technical realization of the described transaction
granting request-based access control is illustrated in figure
4.4.

When the user interacts with an application and triggers an
action that requires, for example, stored information, the
application sends an request to the WIDE server. Once the
user has permitted the transaction the server executes the
transaction and returns the result to the application.

The authorization process consists of multiple steps to sa-
tisfy the needs of protecting information stored on the
server and minimize any lack of responsiveness due to bad
network performance.

48 4 Architecture

Figure 4.4: Request Based Authorization: The User Stays in
Control.

Figure 4.6 provides an illustrative overview of the whole
authorization process. When the user interacts with the ap-
plication and triggers a command that requires access to
the data storage, a corresponding transaction is formed and
bundled in a transaction bundle. The application then re-
quests the server to create a new transaction bundle.

This and the following steps are performed in a pop-up
window for multiple reasons. An additional pop-up win-
dow does not interrupt or leave the current page of the ap-
plication. This pop-up is also used for rendering the au-
thorization dialog by the WIDE server. It is similar to whatPop-up window for

rendering
authorization
requests

users are accustomed to in desktop user interactions. Fur-
thermore, it provides a direct connection between the user
and the server through which the server can authenticate
the user with the authentication cookie that is set by the
authentication mechanism. The user is crucial in the autho-
rization and execution process. Without the user neither
will run as only the user has the cookie holding the authen-
tication information that is required for the authorization to
progress.

The server then in return requests the transactions of the
bundle from the application that then returns the transac-
tions’ actions, however, the content of the transactions is
left out. Content of transactions can be substantial and re-
quire a long period of time when being transferred depend-
ing on the network’s transfer rate. A long file for example,
can delay the following steps even when the transaction
is rejected by the user. Thus, the content of transactions

4.3 Authorization 49

is transferred after the authorization by the user has taken
place.

When the application is not trusted, the server requests au-
thorization for each transaction. In the case of a dialog
being displayed, such as a file open dialog, the comple-
tion of the interactions - in the given example to select a
file and trigger the open command - is taken as the autho-
rization. Another authorization prompt is not necessary
because when completing the dialog interaction it can be
assumed that the user is aware of the action and by submit-
ting his choice, authorization is given.

(a) Simple Authorization Request Prompt

(b) Transaction Requiring Further Actions by the User

Figure 4.5: Authorization Prompts

Figure 4.5a portrays a prompt for a simple transaction, such
as to delete a file, that requires an authorization from the
user. For more complex transactions , such as that to open
a file the user selects, the required dialog for further user

50 4 Architecture

input is presented as shown in figure 4.5b.

These authorization prompts are rendered by the server
and thus, information about the user’s information can-
not be reached by untrusted application as it does not
reach the application at any point during the authorization.
Moreover, it removes the need for users to have to famil-Server rendered

authorization
prompts increase
consistency

iarize themselves with each application’s dialog styles. It,
therefore, improves consistency because all dialogs are ren-
dered by the one party - the server.

After successful authorization of all transactions, the con-
tent is transferred to the server where the transactions are
executed. The results of the transactions are returned to the
application and the URL for returning to the application is
requested from the application. Once the URL has been re-
turned to the server, the server guides the user back to the
application by redirecting to the received resume URL that
lets the application further process the results.

4.3.1 Example

The following provides an example scenario to illustrate
the authorization process. In this scenario the user works
with an online word processor that supports WIDE. The
user is logged in and the user wishes to open a file to edit.

1. The user clicks on the “file open” button in the appli-
cation menu.

2. The button click triggers the application to form a
new transaction bundle that contains a transaction
with a “file open dialog” action. Once created, the
application opens a pop-up window to the WIDE
server’s application interface.

3. The application interface creates an empty transac-
tion bundle and links it to the application’s bundle.
In the next step of the creation, the bundle fetches the
transactions, excluding the content, from the applica-
tion. Once all of the transactions has been received,
the user is redirected to the user interface controller.

4.3 Authorization 51

Figure 4.6: Message exchange for transaction request and
authorization by the user.

52 4 Architecture

4. The user interface controller renders a dialog that
prompts the user to select a file to open.

5. When the user chooses his file and completes the re-
quest, he is completing the authorization. The user
interface calls the transaction bundle to execute its
transactions which requests the content of each trans-
action before the actual execution. The result, the con-
tent of the file the user has chosen to be opened, is
stored in the transaction.

6. After the execution the server redirects back to the ap-
plication that requests the results and stores it in the
transaction’s content.

7. In the final step the application’s closeWindow calls the
result receiving callback action, that resumes the ap-
plication, and closes the pop-up window.

8. The callback function then displays the result of the
transaction as text in the text area to the user.

53

Chapter 5

Implementation

We implemented the WIDE server as a Ruby on Rails appli-
cation and several clients in various languages with differ-
ent characteristics, a native application that corresponding
to the server is also implemented as Ruby on Rails. How-
ever, we identified certain clients that natively are not sup-
ported by WIDE. By developing adjusted frameworks, as
explored in section 5.3 and 5.4, we increased the range of
application classes WIDE supports and provide useful en-
hancement to the applications.

5.1 Server Implementation

The architecture of the WIDE server is implemented as
Ruby on Rails utilizing a MySQL database. For communi-
cation with the clients we chose XML as it poses a standard
for data representation and parser for XML are available in
many programming languages.

The user access the server to interact with both the data and
the application working on the data. Therefore, we decided
to implement a data browser and an application manager.

54 5 Implementation

5.1.1 Data Browser

The Data Browser is a file browser that provides basic file
system interactions, such as copy, move, and delete. Fur-
thermore, it allows to add and remove tags. Tagged items
appear in automatically created tag folders that display all
items with a particular tag. As an alternative to the appli-
cation centric way to work, it allows the user to first se-
lect a file and then choose the application of choice to open
the file with. In summary, it is to maintain the information
space on the data side.

Figure 5.1: Data Browser

5.1.2 Application Manager

The Application Manager maintains the user’s web appli-
cations. There user can add and remove web applica-
tion, analogous to installing and de-installing on traditional
desktop systems. The list of applications also indicates the
login status of each application. A panel presents addi-
tional actions and information and allows the user to start

5.2 Native Client: Wordpresser 55

an application or log out. The user can also set the trust
level in this panel. Furthermore, the details to each appli-
cation are presented to the user, such as the URL of the ap-
plication, its description, and the last transactions.

Figure 5.2: Application Manager

5.2 Native Client: Wordpresser

For prototyping we decided to implement a small publish-
ing application for Wordpress1, a weblog system that is
used by many people. The application, we called it Word-
presser, publishes a text post to a weblog that can be read
by others. Text editors supporting WIDE that do not pro-
vide publishing functionality can thus still be used to write
a post and then post the saved text file with Wordpresser.
Therefore, this small prototype well illustrates how a work-
flow in WIDE could look like.

1http://www.wordpress.org

http://www.wordpress.org

56 5 Implementation

5.2.1 Design

As a publishing tool, Wordpresser allows the user to open
files, add a title, and publish the post to the weblog. The
weblog is determined by settings, such as the weblog’s ad-
dress and other information required for remotely publish-
ing a post, that the user must enter before publishing. The
settings are stored separately by the application.

5.2.2 Implementation

To implement the prototype we used the native client
framework in Ruby on Rails and a MySQL database. The
database also stored the settings of the user’s Wordpress
weblog. For the publishing the application accessed the
weblog via XML remote procedure calls2 (XMLRPC).

5.2.3 Interaction

For publishing a post the user starts Wordpresser and then
opens a text file from WIDE or types in a new text. Due to
the alternative more document centric approach, another
way of opening a text file with Wordpresser is to select the
file in the Data Browser and open it with Wordpresser. Into
the input field at the top the user can further type in a title
for the post, as depicted in figure 5.3. To send the post to
the weblog, the user clicks the publish button. Once pub-
lished, the most recent posts are displayed to the user to
confirm the successful post to the user. In the recent posts
panel, posts can be directly accessed through the provided
hyperlinks.

The user does not have to enter the setting required for pub-
lishing because WIDE’s authentication identified the user
to Wordpresser that then loads the corresponding settings.

2http://www.xmlrpc.com/spec

5.3 JavaScript Client Framework 57

Figure 5.3: Wordpresser is a Simple Publishing Tool That
Posts Text Files.

5.2.4 Conclusion

The Wordpresser prototype implemented successfully the
WIDE request based authorization. For other kind of appli-
cations however, a different framework is needed. The fol-
lowing section describes such a framework for JavaScript
based applications.

5.3 JavaScript Client Framework

When analysing the framework, a lack of support for
JavaScript stand-alone application was discovered. Stand-
alone JavaScript applications are small applications that

58 5 Implementation

work without a server back-end. These kinds of applica-
tions do not work with the general WIDE framework as is
relies on direct server communication.

They are limited as they can process data but cannot access
and manipulate stored data. For example, with a JavaScript
based drawing program, one could draw simple images,
but not save them for future editing. These kinds of appli-
cations can be considered stateless as states of the applica-
tion cannot be stored in a database. Instead, the state exists
in the current instance of the browser environment of the
application. A reload resets the instance and the state is no
longer available. This is also true for another window of the
same application that creates a new instance of the applica-
tion that is independent of the other instance. A problem
presents itself here as instances are independent from each
other. Callbacks addressing web pages of the application
creates new instances that cannot retrieve the data of the
other instance. Furthermore, instead of having a database
on the server for such applications a local database solu-
tion is required that runs in the application’s instance in the
browser environment. Another difference is that in contrast
to a server, HTML applications cannot send HTTP requests
to domains other than of the originating server. To over-
come this restriction of the JavaScript environment, another
method has to be chosen for both inbound and outbound
communication.

5.3.1 Design

The WIDE client framework for JavaScript addresses these
key problems and provide a local WIDE client imple-
mented in JavaScript that runs in the browser’s environ-
ment. Thus includes a simple database to store transac-
tion data, communication across window instances, POST
method based transaction requests, and alternative data re-
trieval.

When the web page of the application is loaded, the trans-
action bundle database is initialized. New transaction bun-
dles are stored in that database and referenced through its
index in the database.

5.3 JavaScript Client Framework 59

To bridge instances of the application, the frame makes
use of the opener attribute of the window instance. This is
achieved, for example, when opening a new window, such
as a pop-up window, this window can back-reference to the
originating window via window.opener. This bridges the
two instances and data can be accessed across instances if
there is such a parent-child relationship. This relationship
holds even when containing documents changes, as long
the currently referencing document is of the same domain.

To send transaction requests to the WIDE server the frame-
work uses a HTML form that is submitted via JavaScript
to post data. For receiving messages, such as the result of
transactions, the framework dynamically pulls the results
from the WIDE server by loading a 〈script〉tag onto the ap-
plication’s page when the transaction has been executed on
the WIDE server. These mechanism however require a dif-
ferent behaviour of the WIDE server.

5.3.2 Implementation

The framework consist of the following two Javascript files
and three HTML files.

• wide settings.js

• wide no http.js

• post tas.html

• post tas content.html

• result receiver.html

wide settings.js holds constants for communication with the
WIDE server, such as the application’s code and URL.
These settings must be defined correctly to ensure that the
framework will run.

wide no http.js handles transaction creation and the com-
munication with the pop-up window instances. In a
Javascript based client, the instantiation of a transaction

60 5 Implementation

bundle is similar to a server based client. First, newTB()
creates a new bundle and stores it in the local database.
Through the attribute resume function , the function which
is called after the results are received, is specified. New
transactions are appended to the array transactions of
the bundle by newTA() , a function of the bundle. To
specify the transaction, attributes, such as ta action,
ta name, ta content , can be set. With the submit
method submit tb() of the transaction bundle the au-
thorization starts.

An example of a simple initialization for saving a document
is listed here.

var tb = newTB(); //new bundle
var ta = tb.newTA(); //new transaction
ta.ta_action = SAVE;
ta.ta_name = ’text’;
ta.ta_content = ’hello world’;
tb.resume_function = ’saved’;
tb.submit_tb(); //submit to server

The three HTML files are for the communication of the au-
thorization process that is undertaken entirely in a pop-up
window created when the transaction bundle is submitted
as depicted in 5.4. With the three HTML files, the transac-
tions are sent to the WIDE server and the result is requested
from the server in the form of a JavaScript file that executes
the resume function of the transaction bundle together with
the result.

In more detail, the submitted transaction bundle’s ID is
sent to the WIDE server’s application interface to create
a corresponding transaction bundle. Due to the specific
no http mode sent alongside the request, the server redi-
rects back to the application. post tas.html instantaneously
retrieves the transaction data from the application host in-
stance over the window.opener context and posts the
transaction details without the content to the ta receiver ac-
tion of the WIDE server’s application interface where the
authorization of the transaction occurs.

5.3 JavaScript Client Framework 61

Figure 5.4: Overview of WIDE’s JavaScript Framework

After successful authorization, the server redirects back to
post tas content.html that posts the transactions’ content to

62 5 Implementation

the ta content receiver action that executes the transactions
and redirects to result receiver.html. With the received in-
dex, the result is pulled from the WIDE server by insert-
ing a 〈script〉 tag into the DOM that loads a JavaScript file
at show result js. This JavaScript file is dynamically created
from the content of the associated index. It contains code
that transfers the content of the transactions to the applica-
tion’s host instance’s database and calls the corresponding
resume function. The resume function has to accept one pa-
rameter which will be the resulting transaction bundle, like
that shown in the following example.

function saved(tb){
var ta = tb.getTransactionByName(’text’);
myText = ta.ta_content;

}

Through the adjustments explained above, the framework
supports the same mechanism of transaction handling for
JavaScript-based applications. This was prototyped with
the implementation of the JS Editor prototype application.

Prototype: JS Editor

Since JavaScript-processed data generally cannot be stored
online due to the restrictions of JavaScript, sophisticated
applications are difficult to realise. To complement the
sketched potential workflow for Wordpresser (see 5.2 we
decided to implement a text editor based on JavaScript
named JS Editor. JS Editor is a text editor web application to
manipulate text which the user can save and load through
the WIDE framework.

Implementation

TinyMCE JavaScript Content Editor3 (TinyMCE) provided
a powerful text editor framework for the JavaScript based

3http://tinymce.moxiecode.com/

http://tinymce.moxiecode.com/

5.3 JavaScript Client Framework 63

editor. However, it does not define from where the con-
tent to be edited comes or how the data is saved. The get-
ter and setter methods for the currently edited content pro-
vided also by TinyMCE. These were used to implement the
open and save functionalities with the described JavaScript
Framework.

Figure 5.5: JS Editor, a JavaScript-based editor that sup-
ports WIDE

When JS Editor is started, the user can use the top buttons
to open a text file and to save the current text, for example,
to continue editing at a later point in time. Furthermore,
the top right button quits the application.

In summary, we successfully demonstrated that WIDE’s
JavaScript client framework provided additional value to
JavaScript stand-alone applications by way of data manip-
ulating and storing functionality that is not possible solely
with JavaScript and HTML.

64 5 Implementation

5.4 ActionScript Client Framework

The JavaScript framework provides a solution for
JavaScript applications that is similar to Flash-based
applications. They, like JavaScript applications, run in the
browser and do not necessarily rely on a back end server.
However, Flash does provide methods for HTTP requests
without restrictions, that is, a server outside the domain of
the originating server can be accessed. This functionality
can replace the problematic reception of the results in the
JavaScript client framework. Therefore, we designed a
client framework by re-using parts of the JavaScript client
framework and using the external interface of ActionScript
to communicate with it.

5.4.1 Design

The ActionScript client framework consists of JavaScript,
HTML files, and ActionScript classes. The communication
during the authorization process is achieved analogous to
the JavaScript client framework. The external interface of
ActionScript provides callbacks from JavaScript functions
to call ActionScript functions in the Flash application, and
external calls to run JavaScript functions in the embedding
HTML file from the Flash application. These methods are
used to communicate the transactions natively formed in
ActionScript to the external JavaScript and to return the
callbacks of the WIDE server to the Flash application as the
user instance of it cannot be called directly from outside the
browser environment. Finally, the results are received via a
HTTP request similar to server based applications.

5.4.2 Implementation

In general the implementation of the ActionScript client
framework consists of a modification of the JavaScript
client described before and the following ActionScript
classes and JavaScript file.

5.4 ActionScript Client Framework 65

Figure 5.6: Overview of WIDE’s ActionScript Framework

• WideClientSystem

• Transaction

• TransactionBundle

• no http flex.js

The WideClientSystem class holds settings, the initialization,
and the transaction database. It also communicates the ini-
tialization to the external JavaScript environment.

66 5 Implementation

The setup of transactions is similar to other client frame-
works. An example is shown here.

var tb:TransactionBundle = wideClient.newTB();
var ta:Transaction = tb.newTA();
ta.ta_name = ’save_transaction’;
ta.ta_content = ’hello flex’;
ta.ta_action = wideClient.SAVE_AS;
tb.resumeFunction = ’savedToWide’;
tb.submit();

When a transaction bundle is submitted, the transaction
is sent to the external JavaScript framework that initi-
ates the authorization process. For a detailed descrip-
tion of the authorization process communication see 5.3.2.
However, when result receiver.html is called by the WIDE
server, it calls the Flash framework with the received index.
The framework then requests the result via a ActionScript
HTTP request. An overview of the whole process is pro-
vided in figure 5.6

5.4.3 Prototype: Flex Spreadsheet

After having implemented two applications dealing with
text, the prototype of a Flash-based web application we de-
cided to be a spreadsheet application. Spreadsheets being
also text-based are good for prototyping as textual data is
small and easier to read. Furthermore, spreadsheet appli-
cations seems to pose the next most important office appli-
cations after word processing applications as they can be
commonly found in office suites, such as Google Docs and
Zoho.

We developed Spreadsheet with Flex Builder 2 and inte-
grated the ActionScript framework. As data format for the
spreadsheets we chose comma separated values in favour
of quick prototyping as it can easily edited manually. The
spreadsheet application provides basic functionalities in-
cluding labelling cells and entering simple formulas for
calculation. In addition, similar to JS Editor it provides a
WIDE supported loading and saving functionality.

5.5 Conclusion 67

Figure 5.7: Spreadsheet, a Flex-based Spreadsheet Applica-
tion Supporting WIDE

The Load from WIDE button loads a file from WIDE after
which, depending on the contents, the application displays
a table with the corresponding cells or a notification that the
contents is not in the right format. The user can edit cells
individually and enter formulas as shown on figure 5.7. For
later editing the spreadsheet then can be saved to WIDE.

5.5 Conclusion

In this chapter we described two frameworks that enabled
new web application classes to utilize WIDE and thus, ex-
panded the range of supported web applications. Both ad-
dressed application classes can be offered by a simple web
storage service as they do not rely on a server and if do-
ing so cannot provide functionality as it is provided by the
frameworks.

Through the prototyping of the new frameworks we ad-

68 5 Implementation

justed the WIDE server to the new frameworks, in particu-
lar the returning of results and handling of requests.

While WIDE supports ways to develop web applications,
it is unlikely that existing well established web applica-
tions will instantaneously support WIDE. Thus, chapter 6
explores ways to integrate existing web application exter-
nally.

69

Chapter 6

Integration

6.1 WIDE Support for Existing Applica-
tions

In contrast to applications that are being developed, exist-
ing applications cannot be adjusted easily. Although some
applications provide APIs to access the application’s ser-
vice or plug-in support, others do not offer any support for
external adjustment.

Integration of applications is crucial for several reasons. A
User who is content with his current web application is
unlikely to change his favourite application. Furthermore,
data of that application might have taken a long period of
time to be gathered and if migration is possible, at least
cumbersome to the user. For some applications the accu-
mulation of data itself is a valuable information that is lost
when the data is migrated. In such a case, integrating the
existing application solves the problem without losing any
data of the user. In addition, with integration, applications
do not have to be developed from scratch and development
effort is reduced to the development of an appropriate in-
tegration.

Therefore, this chapter explores methods to incorporate
WIDE support into existing applications.

70 6 Integration

6.1.1 API

APIs can be used to interact with the application through
other applications, but they do not offer methods to inte-
grate new functionality to the existing web application. In-
tegration of new functionalities requires the application to
act and react instead of merely returning replies to incom-
ing request from the API. To overcome this a new view can
be created that interacts with the API. This, however, re-
sults rather in a new application since APIs often do not
provide all the functionality the application provides. In-
stead, APIs can be used together with other methods to in-
tegrate new functionality to the existing application. The
following sections will discuss these methods.

6.1.2 Plug-Ins

As adjustment of the original existing application is impor-
tant in keeping the user experience when working with the
application, it is necessary to seamlessly integrate without
any additional user interactions. Plug-ins offer such seam-
less integration. Plug-ins are computer programs that can
extend (be plugged into) the application, the so-called host
application. To interact with the host application, plug-ins
use the application’s API. The plug-ins are usually called
automatically from the host application itself and thus, do
not require additional user interaction to be run. Further-
more, plug-ins are installed to the host applications which
keeps the web application’s workstation independence.

Figure 6.1: Possible Architecture for Integration: Plug-ins

Therefore, plug-ins in combination with APIs offer a good
solution for WIDE to integrate into existing applications.

6.1 WIDE Support for Existing Applications 71

6.1.3 Adapters

For web applications that do not support plug-ins, a more
general approach to insert new functionality to an exist-
ing web application is needed. Flash-based applications are
difficult to adjust as they run in the web browser’s sandbox
that cannot be accessed from the outside without chang-
ing the original code inside the application. In comparison,
HTML-based application’s views are in text and thus, are
easier to to interact with. Two possible approaches are tun-
nelling and code injection.

Figure 6.2: Possible Architecture for Integration: Tun-
nelling via a Proxy Server.

Tunnelling

Tunnelling requires all the interaction to be tunnelled
through another web server that inserts some extra func-
tionality or adds some WIDE specific interface. The tun-
nelling option gives the adapter application full control
of the adapted application. However, the additional web
server between the adapted server, being the application
server, and the user also means that interaction is delayed
by the factor of two, because every request and response is
routed through the adapter server. Furthermore, it also in-
creases the risks of identity theft as all interactions are pass-
ing through the adapter server. Thus, login information,
such as passwords, and other information, such as docu-
ment data, can be monitored easily by the adapter. In fact,
this kind of misuse is not possible to detect because it is un-
dertaken on the server with server sided processing and as
such, can occur without the user’s knowledge.

72 6 Integration

Code injection

The other approach is to inject some JavaScript code into
the web application’s site to be adapted. JavaScript pro-
vides means to insert, remove, and manipulate elements
of a web page. In contrast to the tunnelling approach,
JavaScript is executed on the client’s machine which leads
to better scaling as opposed to a server sided solution. Even
with an optional backend server that the injected JavaScript
code communicates with, only those interactions requiring
the backend server will need this additional communica-
tion while other parts of the web application’s interaction
remain the same.

Figure 6.3: Possible architecture for integration: Code in-
jection via web browser plug-in.

However, as code injection requires the injecting software
and the code to be injected to be situated on the web
browser’s workstation, this approach is not workstation in-
dependent. Despite the lack of independence, locally ex-
ecuted JavaScript has one major advantage over the tun-
nelling approach. One of the major drawbacks of tun-
nelling was the potential identity theft due to invisible
server sided code. In contrast, since JavaScript runs in the
web browser it is possible to inspect the code at any time.
This openness cannot prevent identity theft but facilitates
detection of it and thus, lowers the probability of malicious
code. Furthermore, JavaScript injection code does not re-
quire a running web server giving more developers access
to the development of adapters.

In light of the above factors, we have chosen the code injec-
tion approach. The code to be injected varies depending on
the web application because the user interface, in which the

6.2 Prototype Implementation 73

adapter needs to be inserted, differs. As the injection code
needs to be downloaded and stored locally on the worksta-
tion the problem of different versions, like those of tradi-
tional software, can still arise. This effect can be reduced
however, through dynamic loading of external JavaScript
code. The scripts are dynamically requested at runtime
from a single source, a web storage, and thus, unless the
loader for dynamic loading requires change different ver-
sions of code should not appear.

6.2 Prototype Implementation

6.2.1 Flickr Adapter

The Flickr Adapter incorporates WIDE support to Flickr1,
an online community platform for hosting videos and im-
ages, by integrating methods to interact with the storage
of WIDE. It provides two basic functions: loading pic-
tures from WIDE to the user’s Flickr account and saving
Flickr pictures to WIDE. Technically, the adapter is real-
ized by a server supported web application and Grease-
monkey2, a Mozilla Firefox extension that allows users to
run JavaScript scripts on web pages.

When the user interacts with Flickr, Greasemonkey runs
the Flickr Adapter script that inserts enhancements to the
user interface and catches user events. It shows a ‘Load
from WIDE’ option in the ‘You’ menu as depicted in figure
6.4a and it also inserts ‘Save to WIDE’ at the bottom of pic-
tures as shown in figure 6.4b. For pictures to be loaded from
WIDE, the script calles the Flickr Adapter server that com-
municates with Flickr via its API. Furthermore, the script
assists the Flickr Adapter server in notifying the WIDE
server when the login status changes.

1http://www.flickr.com
2https://addons.mozilla.org/de/firefox/addon/748

http://www.flickr.com
https://addons.mozilla.org/de/firefox/addon/748

74 6 Integration

(a) Additional Menu Item to Load Pictures
from WIDE Inserted into the Flickr Menu.

(b) Inserted Hyperlink
to save Pictures to
WIDE.

Figure 6.4: Injected user Interface Manipulation in Flickr by
the WIDE Adapter.

Load from WIDE

When the user chooses to load a picture from WIDE, the
file open dialog is presented from which the user can se-
lect a picture. After the upload has been completed, he is
redirected to the picture page of Flickr and can edit details,
such as description, and add tags to the picture.

Save to WIDE

The download of pictures to WIDE is also done through
the server. After the adapter server has downloaded the
picture, it forms a transaction and request a save dialog.

6.2.2 gDoc Picture Insertion Adapter

The gDoc Picture Insertion Adapter introduces an option
to insert images loaded from WIDE. It uses a Greasemon-
key script and the JavaScript client framework discussed in
5.3. It integrates “From WIDE” as a third option, besides

6.3 Conclusion 75

Figure 6.5: The gDoc Picture Inserter Adjust the Google
Docs Insert Image menu to Support Images Loaded from
WIDE

‘URL’ and ‘upload’, into the image insertion dialog. When
the users clicks the “Browse...” button the “File open” dia-
log pops up and the user is prompted to select a file. Once
the transaction is completed successfully a small preview
thumbnail appears. By clicking the “Insert” button the im-
age is inserted at the position of the cursor.

6.3 Conclusion

Although the latter adapter is rather an add-on than a full
adapter that completely integrates Google Docs, it pro-
vided access to the shared information space of WIDE for
the particular functionality of inserting picture. With the
adapter prototypes successfully implemented the integra-
tion of existing web application’s functionalities in WIDE,
it demonstrates how third party developers can extend ap-
plication to utilise WIDE.

77

Chapter 7

Validation

“How can we create what could become
culturally significant systems if we demand that the

system be validated before a culture is formed
around it?”

—Bill Buxton et al.

In considering WIDE as a proof of concept of a distributed
desktop environment, we argue that a usability evalua-
tion is not an appropriate approach to validate the system.
WIDE as an architecture and framework instead, focusses
on usefulness, rather than that usability which, however,
should form the focal point of the applications itself. Also,
WIDE communicates mainly with the applications while
user interaction is limited to authentication and authoriza-
tion. WIDE’s evoked working environment is in some as- WIDE is not very

visible to the userpects similar to or resembles offline systems. When evalu-
ating, users might mistakenly compare it to offline systems
in which performance is, in many respects, better due to the
innate nature of the web and the local workstation. Hence,
such evaluations are more likely to show limitations rather
than evaluate the novel approach and concept itself intro-
duced in this thesis. As, according to Greenberg and Bux-

78 7 Validation

ton [2008],

“the choice of evaluation methodology - if any
- must arise and be appropriate for the actual
problem or research question under considera-
tion.”

WIDE purposes a system for working online although such
a culture of working online has yet to come despite the pop-
ularity of the web in general as it is yet not seen as place to
place information and people prefer to have an offline copy
(see 3.2.4).

Taking the aforementioned arguments into account, we be-
lieve that a usability evaluation is not beneficial and there-
fore, we are going to validate our work by a design ratio-
nale. Hereby, we follow what has been recommended byDesign rationale to

validate WIDE Greenberg and Buxton and critique our design by reason
our design decisions, what alternative were considered, the
context of the work, the problems that can be expected in
such context and what to do next.

7.1 Design Rationale

In this design rational we reason about the goal WIDE seeks
for, the decisions made to approach this goal, but also what
have been learned and what problem we are expecting con-
cerning WIDE.

7.1.1 Challenge

As pointed out in chapter 2 current distributed applications
lack centralized online information access which results in
decreased efficiency when working with them as the dis-
tribution of information across several information spaces
adds complexity to information retrieval as the information
spaces are not linked together. That means, e.g. that usersIncreased complexity

through distributed
information spaces

7.1 Design Rationale 79

have to search for a file in one information space after an-
other, instead of one search over all information spaces.

This happens when users work with various applications
and files can be opened by more than one application.
When the user wishes to find that file, there are no cues
in which application to find that file. Such reduced vis-
ibility lowers the information in the world and increases
the knowledge that is required to be in the head which is
harder to obtain as stated by Norman [2002]. This is partic-
ularly problematic as a file’s position can change over time
and learned knowledge becomes useless and furthermore,
is likely to mislead the user to an outdated location.

Having a file at all the applications that can open it, does
ease the problem but on the other hand introduces the prob-
lem of different versions when edited by an application. A Synchronization

increases effortsolution to this could be to synchronise information which
increases the effort and thus, reduces the efficiency of work.

Furthermore, to gain the most benefit from online systems,
the framework must be able to work platform indepen-
dently and with no additional application requiring setup
or installation. Also, users want to keep their applications
of choice due to their personal preferences and thus, keep
their diversity and distribution. However, efficient work-
ing requires an unified information space, as highlighted
above, and a single entry point for applications. In addi- Accessible Unified

information spacetion, applications must in general be able to access all data
necessary even although some of the information can be
considered private.

The idea of a single central external entry point would in-
troduce a new concept to web applications but it must also
provide a way to keep existing applications and provide
ease of implementation for the development of new appli-
cations.

7.1.2 Solution

To resolve these requirements, a single point of information
is needed that ensures trustworthy behaviour by means

80 7 Validation

such as ’human-in-the-loop’. An information browser and
its induced document-centric work flow will offer an al-
ternative, more natural way of working. Furthermore,
adapter applications help to integrate already developed
applications and the use of standards eases the integration
into new applications and makes it in general run in web
browsers without any modifications. Thus, WIDE provides
a unified workstation independent information space for
distributed applications that, due to its usefulness, helps to
increase the efficiency of work flow in an distributed online
environment.

7.1.3 Decisions

WIDE separates the data from the applications. While with
separated data the user could decide by placing the file
which application to give access the file, in a single informa-
tion space this needs to be addressed. WIDE, therefore, fo-
cusses on keeping the user in control of his documents and
protect them from untrusted applications and unwanted
access. Furthermore, we decided to utilize the external win-
dow management that the underlying web browser and its
operating system provide. Both decision and the reasoning
behind it are as follows.

Server Rendered Requests

One major design decision to support control of the user,
was to render the authorization requests by the server. The
advantage of such an approach is that the user interface of
requests are the same, independent of the requesting appli-
cation. This satisfies one of the best known usability heuris-Be consistent
tics in computer interaction, being to keep the interface con-
sistent.

Shneiderman and Plaisant [2004] proposes consistent style,
layout, and terminology to help the user to find necessary
information more efficiently.

The style of user interface that is rendered by the WIDE

7.1 Design Rationale 81

server resembles dialogs of the well-known desktop. The
familiarity improves, beside consistency and predictability
among others, the user interface’s learnability, as stated by
Dix et al. [2003]. Improved learnability also increases the
communicated trustworthiness, as the user has a higher
perception of control (see 3.1). higher

trustworthiness and
usability through
server rendered
requests

External Window Manager

When interacting with WIDE another aspect is how ap-
plications are displayed to the user. While webtop sys-
tems, such as EyeOS and G.ho.st, use an internal window
manager to display applications inside their environment,
WIDE utilizes the web browser’s and its underlying oper-
ating system’s window managing capabilities by opening
applications in new tabs or windows.

This decision was made for several reasons. External
rendering of the application maximizes the application’s
screen space available as it uses all the window’s screen
space for itself instead of sharing it with internally rendered
window decorations and other applications. Furthermore,
windows are handled either by the web browser or the un-
derlying operating system which is likely to be more pow-
erful and provides more functionality to handle them. It Independent window

management
increases
responsiveness

is also more responsive to manage the windows on a lo-
cal system opposed to an online system that runs in a low-
performance environment or lags due to bad connectivity.

An external window managing also prevents WIDE from
observing the user when working with an application. Also
interaction with WIDE supporting application and regular
web application do not differ and thus, increases further
familiarity and consistency.

7.1.4 Lessons Learned

Currently, many different forms of web application popu-
late the web and are provided to the user. This is partly
because the internet makes it so easy to distribute and pro-

82 7 Validation

mote new ideas. The variety of web toolkits for web de-
velopment is similarly diverse. And still, the web is chang-
ing at a high pace. However, it makes it difficult to find
the best possible solution for development that benefits the
users. Especially, with cross-web browser incompatibility
not yet resolved and different paradigms for development
(see 2.5 and 2.5). Complexity is particularly high when the
development of a web application includes several differ-
ent frameworks that need to work together.

7.1.5 Expected Problems

According to O’Reilly [2005], “data is the new intel inside”
and control over data has become key advantage of some
companies over their competitors. That means, not only
the service provided by an application is of value but also
the data created within the service. As WIDE proposes toApplication/data

separation is unlikely
to be tolerated.

separate data from the applications and to move it to the
WIDE server, this is unlikely to be tolerated by web appli-
cation providers.

However, O’Reilly also points out that a free data move-
ment, similar to the free software movement, will emerge.

7.1.6 Context and Vision

The motivation of this project was briefly explored in the
introduction (see 1). While the potential and benefits of
web applications are unambiguous, current systems to not
support these. With WIDE the user can organize his data
and coordinate it with the applications. Further develop-
ment will allow users to change their information space
provider, that are web sites providing services like WIDE
offers, without loosing data and need to re-install all the
applications. Information spaces will be as easily to switch
as themes in current desktop systems. Furthermore, infor-
mation system like WIDE will not only incorporate appli-
cations but also storage providers. They will offer a single
entry point to a distributed information space in which ele-
ments can be added, changed, and removed, very similarly

7.1 Design Rationale 83

to how people can change hard disks of their computer and
change the programs installed on the computer.

Therefore, the next steps to further improve WIDE and how
to approach the envisioned idea by addressing unresolved
issues are described in the future work section 8.

85

Chapter 8

Summary and Future
Work

“The future is here. It’s just not widely
distributed yet.”

—William Gibson

While working on this project we encountered many ideas
for further improvement for which there was not sufficient
time to implement them. In this chapter these ideas are fur-
ther explored.

8.1 Summary

WIDE is a framework for more desktop-like working with
web application. It provides a workstation independent
shared single information space and further ensures trust-
worthy behaviour through giving the user enhanced con-
trols over his files.

First, we analysed different approaches that aim for more
convergence of the web and desktop on various levels, such
as user experience and development, and explored alterna-
tive remote computing approaches, such as virtualization.

86 8 Summary and Future Work

We could, in a comparison, identify a lack of support for
the requirements that a system like WIDE seeks to satisfy.

To gain further insight of the users’ perception and con-
cerns when working with online information and storing
information online, we conducted an online survey con-
firming the requirements. We also reviewed current models
of online trust on which we based parts of the design for the
architecture.

Then, we proposed the architecture of our WIDE frame-
work for supporting working online and protection of in-
formation. Through several client prototypes of poten-
tial web applications interacting with the WIDE system,
we refined the design, added support for Flash-based and
JavaScript-based applications. As part of the implementa-
tion, we further reviewed different ways to integrate exist-
ing applications and presented our choice for integration
which we also were able to successfully implement as pro-
totypes.

In the validation we argued our evaluation methodology
and stated our rationale in which based on HCI literature,
common user heuristics, and the gained knowledge about
trust we reasoned our design decisions that successfully en-
hances usefulness of web application and therefore widens
their application area.

We also gave insight in other considerations and finally em-
bedded our design in the vision WIDE seeks to approach.

8.2 Future Work

Although WIDE can be already utilised by web applica-
tions, many aspects could not be implemented due to time
limitations.

• notifications for reactive transactions

• integration of external storage spaces

8.2 Future Work 87

• exchanging of WIDE systems

Also, we expect near future changes of the restrictions on
XMLHttpRequest, as the W3C workgroup web applica-
tion is currently working on access control for cross-site re-
quests1. Once such an access control is available cross-site Evolution of web

standards helps to
simplify the WIDE
framework

JavaScript calls would be possible and make some aspects
of the proposed JavaScript client framework redundant re-
quiring it to be adjusted.

8.2.1 Notifications for Reactive Transactions

Current transactions are created by the application, most
likely due to a user’s action. However, transactions that
may be required after an event that occurred without any
direct interaction of the user, are not supported yet. Thus,
adding notification, that communicate such events to a par-
ticular web application, would enrich interaction between
information space and application. For example, a weblog Notification increase

the level involvement
of applications

application could update a post when the user adds pic-
tures or modifies the text file of the post’s folder on the
WIDE storage space. Such reversed transactions tighten the
relationship of server and application, similar to agents in
desktop environment that observe a certain aspect.

8.2.2 External Storage Space Integration

Existing web application have their own storage space to
host the data of the application. For example, Flickr host
pictures uploaded by the user. These currently need to be
migrated to WIDE to share them across applications. Such
a collections of pictures however can grow over time to
thousands of pictures. Moreover, meta-data added to the
pictures, such as comments by other users, cannot be mi-
grated with the data resulting in complete loss of such in-
formation.

1http://www.w3.org/2008/webapps/charter/
webapps-deliverables.html

http://www.w3.org/2008/webapps/charter/webapps-deliverables.html
http://www.w3.org/2008/webapps/charter/webapps-deliverables.html

88 8 Summary and Future Work

To avoid such a scenario, WIDE should in future also sup-
port storages in a similar manner it currently supports ap-
plications. A storage can be plugged to WIDE, analogous
to a external hard disk drive that is plugged into the com-
puter, and provide the data to the WIDE system. However,External data

sources should be
able to plugged into
WIDE

passing such external data through the WIDE server does
not seem appropriate as transfer time is likely to double
with the WIDE server in between the data and the applica-
tion. Instead, for data transfer, such as when opening a file,
the server should arrange a direct connection between the
application and the data source for the data transfer.

This approach promises to be a way to integrate data, that
is already made available online, to WIDE.

8.2.3 Exchanging WIDE

Currently web application know of one WIDE system they
belong to. However, this is a restriction and should be
avoided. In future, application should instead by able to
connect to multiple WIDE systems and allow the user to
choose a WIDE system he wants to use. When changing
from one WIDE system to another application should al-
low to exchange the WIDE server they are connected to.
This provides smooth migration without any lost of infor-
mation, similarly to exchanging a window manager in the
X window system.

89

Appendix A

Preliminiary Study:
Online Survey

A.1 General Information

1. What is your age?

Age in years

2. Are you female or male?

© female

©male

3. What country are you from?

4. In which of the following fields is your current
occupation?

© Administration
© Advertising, marketing and PR
© Arts, design and crafts
© Construction and property management
© Counselling, social and guidance services
© Education, teaching and lecturing
© Engineering
© Finance and management consultancy
© Health care
© Human resources and employment

90 A Preliminiary Study: Online Survey

© Insurance and pensions and actuarial work
© IT, economics, statistics and management services
© Law enforcement and public protection
© Legal services
© Leisure, sport and tourism
© Logistics and transport
©Manufacturing and processing
© Publishing, media and performing arts
© Sales, retail and buying
© Scientific services
© Student
© Other (please specify)

5. What is your highest degree of education you have
obtained or, if you are a student, you are studying for
now?
© High School
© Bachelor
©Master/Diplom
© Ph.D.
© Other (please specify)

6. Of which field is that degree?
© rather technical
© rather non-technical

7. How do you consider your skills?
excellent very good good fair poor

General computer
skills

© © © © ©

Web skills (familiar-
ity with the web)

© © © © ©

A.2 Computer Usage 91

A.2 Computer Usage

8. How many days in an average week do you use..

never
less than once

a week
1 or 2 days

3 days
4 days

5 days
6 or more days

...your com-
puter at home?

© © © © © © ©

...your com-
puter at work?

© © © © © © ©

...a different
computer that
was not initially
intended to be
used by you?

© © © © © © ©

9. How do you rate the level of convenience when
using a computer with an environment different
than yours, such as different OS, different browser,
mediaplayer etc.?

completely

convenient

mostly
convenient

neither convenient nor

inconvenient

mostly
inconvenient

completely

inconvenient

N/A

different OS © © © © © ©
Different
programs

© © © © © ©

A.3 Internet Usage

10. How many days in an average week do you access
the internet with a computer?

never
less than once

a week
1 or 2 days

3 days
4 days

5 days
6 or more days

At home © © © © © © ©
At work/school © © © © © © ©
At other places © © © © © © ©

11. At what other places than at home and at your work
do you access the internet?
2 Internet cafe
2 Library
2 Hotel

92 A Preliminiary Study: Online Survey

2 Airport/station
2 Other (please specify)

12. How frequently do you purchase online?
© Never
© Rarely
© Several times a year
© About once a month
© About once a week
© Several times a week

13. How frequently do you purchase songs online?
© Never
© Rarely
© Several times a year
© About once a month
© About once a week
© Several times a week

14. How satisfied are you with online shopping?
© Completely satisfied
©Mostly satisfied
© Neither satisfied nor not satisfied
©Mostly not satisfied
© Completely not satisfied
© N/A

15. In the past 2 months, how many different web ac-
counts have you used that require login?
Answer with number

16. How many different passwords do you use for these
accounts?
Answer with number

17. Do you store passwords in your browser, i.e. your
browser fills out the login form for you?
© Always
© Never
© Depends (please specify on what it depends)

18. How many times in the past two weeks have you for-
gotten a password?
Answer with number

A.4 Data on the web 93

19. How do you retrieve your password when you can-
not remember your password?
2 Look up the password in the registration mail
2 Look it up somewhere else
2 Answer the security question
2 Request the application send you the/a new pass-
word by mail
2 Other (please specify)

20. How many times in the past two weeks have you for-
gotten your username?
Answer with number

21. How do you retrieve your user name when you can-
not remember your user name?
2 Look up the user name in the registration mail
2 Look it up somewhere else
2 Request the application send you the user name by
mail
2 Other (please specify)

A.4 Data on the web

22. Which of the following statements are true?
2 I have a web space account to store documents on
it.
2 I am aware of some of my documents being online
available.
2 I access my email account over a web site.
2 I access my instant messenger client online, i.e. via
web messenger.
2 I have contact information stored online.

23. How do you make documents available to others?
2 I do not make documents available to others
2 Email
2 Upload to a web space service
2 Instant messenger
2 To make a document available online I do some-
thing else (please specify)

24. Why do you make the documents available online?
2 I do not make documents available online
2 Share documents

94 A Preliminiary Study: Online Survey

2 Collaborate
2 Backup
2 Availability / Access
2 Other (please specify)

25. How often do you back up your documents on your
computer?
© never
© rarely
© about once or twice a month
© about once or twice a week
© about every or every second day

26. What kind of documents do you back up?
2 I do not back up documents
2 Office documents
2 Contact data
2 Mails
2 Schedule
2 Media
2 Other (please specify)

27. How do you back up your documents on your com-
puter?
2 I do not back up documents
2 Backup on a media (CD, DVD etc.)
2 Backup on another hard drive
2 Backup to a web space
2 Other (please specify)

28. Do you think it is generally a good idea to have a copy
of your online documents on your own computer?
© Yes
© Depends
© No

29. Why do you think so?

30. Do you think it is generally a good idea to have an
online copy of your local documents?
© Yes
© Depends
© No

31. Why do you think so?

A.5 Web applications 95

A.5 Web applications

32. I am interested in what you consider a web applica-
tion. Please try to give some examples of what you
think web applications are.
Please enter the name and/or the web address.

(a)

(b)

(c)

Some examples for web applications are

• web-based mail services like hotmail
(http://www.hotmail.com)

• map services like google maps
(http://maps.google.com)

• e-commerce sites like amazon
(http://www.amazon.com)

• web-based office application like google docs
(http://docs.google.com)

• web-based instant messenger like meebo
(http://www.meebo.com)

• auction sites like ebay
(http://www.ebay.com)

• social networks like facebook
(http://www.facebook.com)

• blogging sites like wordpress
(http://www.wordpress.com)

33. With these examples, do you know some web appli-
cations?

I do not know any

I know some

I use one

I use more than one

Web mail service © © © ©
Web instant messenger © © © ©
Office application © © © ©
Map service © © © ©
Auction site © © © ©
Online Shop © © © ©

96 A Preliminiary Study: Online Survey

A.6 Trust

34. Do you agree with the following statements?

Completely agree

Mostly
agree

Neither disagree nor agree

Mostly
disagree

Completely disagree

N/A

Web applications can-
not corrupt/harm my
online stored web appli-
cation documents.

© © © © © ©

Web applications
manipulate only
online stored web
application documents
I have allowed to be
manipulated.

© © © © © ©

Web applications can
delete online stored
web application doc-
uments without my
knowledge.

© © © © © ©

35. Do you agree with the following statements?

Completely agree

Mostly
agree

Neither disagree nor agree

Mostly
disagree

Completely disagree

N/A

Software on my
computer cannot cor-
rupt/harm my locally
stored documents.

© © © © © ©

Software on my com-
puter manipulate only
local documents I have
allowed to be manipu-
lated.

© © © © © ©

Software on my com-
puter can delete local
documents without my
knowledge.

© © © © © ©

36. Do you agree with the following statements?

A.6 Trust 97

Completely agree

Mostly
agree

Neither disagree nor agree

Mostly
disagree

Completely disagree

N/A

I am worried about pri-
vacy issues concerning
personal information
about me.

© © © © © ©

I am worried about pri-
vacy issues concerning
my documents being
online.

© © © © © ©

I am worried about data
loss on my hard disk

© © © © © ©

I am worried about data
loss of my online docu-
ments

© © © © © ©

37. Do you agree with the following statements?

Completely agree

Mostly
agree

Neither disagree nor agree

Mostly
disagree

Completely disagree

N/A

My Software is updated
regularly

© © © © © ©

I do not update software
if not needed

© © © © © ©

Updating software is
good

© © © © © ©

Updating software dis-
tracts from my flow of
work

© © © © © ©

I trust updated software
more than not updated
software

© © © © © ©

38. Rate your general trust in the following.
(answer with numbers, whereas 0 stands for ’no trust
at all’ and 10 stands for ’trust without doubts’)
General trust in software on your computer
General trust in web applications

39. Rate the level of convenience in accessing informa-
tion/documents in the following situations
(answer with numbers, whereas 0 stands for ’unac-
ceptable’ and 10 stands for ’comfortable’)
documents/information online (assuming you are
connected to the internet)
documents/information on your hard disk

98 A Preliminiary Study: Online Survey

Thank you very much for your participation!

99

Appendix B

TITLE OF THE
SECOND APPENDIX

The different actions of a transaction are introduced in the
following list.

• OpenFile opens the file that is defined in content and
returns the file.

• SaveFile saves the file that is defined in content.

• DeleteFile deletes the file that is defined in content.

• CopyFile copies the first file defined in content to the
second file defined in content and returns the desti-
nation file.

• MoveFile moves the first file to the second file defined
in content.

• SelectFileDialog opens a dialog that prompts the user
to select a file.

• OpenFileDialog opens a dialog that prompts the user
to select a file to open.

• SaveAsFileDialog opens a dialog that prompts the user
to select a file or enter new filename to save a file un-
der a particular filename.

100 B TITLE OF THE SECOND APPENDIX

• OpenDir opens the folder defined in content and re-
turns a listing of the contained files and folders.

• CreateDir creates the folder defined in content and re-
turns the created folder.

• DeleteDir deletes the folder that is identified in con-
tent.

• CopyDir copies the first folder defined in content to
the second folder defined in content and returns the
destination folder.

• MoveDir moves the first folder defined in content to
the second folder defined in content and returns the
destination folder.

• SelectDirDialog opens a dialog that prompts the user
to select a folder and returns the listing of the con-
tained folders and files.

• CreateDirDialog opens a dialog that prompts the user
to enter a name and select a location to create a new
folder and returns the empty folder.

• DeleteDirDialog opens a dialog that prompts the user
to enter a name or select a folder to delete that folder.

101

Bibliography

Amir. weblog, 2008. URL http://vdiworks.com/wp/
?p=15.

Paul Bergevin. Thoughts on netbooks, 2008. URL
http://blogs.intel.com/technology/2008/
03/thoughts_on_netbooks.php.

Cynthia L. Corritore, Beverly Kracher, and Susan Wieden-
beck. On-line trust: concepts, evolving themes, a model.
International Journal of Human-Computer Studies, 58(1):
737–758, 2003. URL http://portal.acm.org/
citation.cfm?id=941183&dl=ACM&coll=&CFID=
15151515&CFTOKEN=6184618.

Dianne Cyr, Carole Bonanni, John Bowes, and Joe Ilsever.
Beyond trust: Website design preferences across cul-
tures. Journal of Global Information Management, 13(4):24–
52, 2005.

Alan Dix, Janet E. Finlay, Gregory D. Abowd, and Russell
Beale. Human-Computer Interaction (3rd Edition). Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 2003. ISBN
0130461091.

Saul Greenberg and Bill Buxton. Usability evaluation con-
sidered harmful (some of the time). In CHI ’08: Proceed-
ing of the twenty-sixth annual SIGCHI conference on Human
factors in computing systems, pages 111–120, New York,
NY, USA, 2008. ACM. ISBN 978-1-60558-011-1. doi:
http://doi.acm.org/10.1145/1357054.1357074.

Nicola Guarino. Formal Ontology in Information Systems:
Proceedings of the 1st International Conference June 6-8, 1998,
Trento, Italy. IOS Press, Amsterdam, The Netherlands,
The Netherlands, 1998. ISBN 9051993994.

http://vdiworks.com/wp/?p=15
http://vdiworks.com/wp/?p=15
http://blogs.intel.com/technology/2008/03/thoughts_on_netbooks.php
http://blogs.intel.com/technology/2008/03/thoughts_on_netbooks.php
http://portal.acm.org/citation.cfm?id=941183&dl=ACM&coll=&CFID=15151515&CFTOKEN=6184618
http://portal.acm.org/citation.cfm?id=941183&dl=ACM&coll=&CFID=15151515&CFTOKEN=6184618
http://portal.acm.org/citation.cfm?id=941183&dl=ACM&coll=&CFID=15151515&CFTOKEN=6184618

102 Bibliography

William Hampton-Sosa and Marios Koufaris. The effect of
web site perceptions on initial trust in the owner com-
pany. Int. J. Electron. Commerce, 10(1):55–81, 2005. ISSN
1086-4415.

William Jones, Ammy J. Phuwanartnurak, Rajdeep Gill,
and Harry Bruce. Don’t take my folders away!: orga-
nizing personal information to get ghings done. In CHI
’05: CHI ’05 extended abstracts on Human factors in comput-
ing systems, pages 1505–1508, New York, NY, USA, 2005.
ACM Press. ISBN 1595930027. doi: 10.1145/1056808.
1056952. URL http://portal.acm.org/citation.
cfm?id=1056952.

Gary Marsden and David E. Cairns. Improving the usabil-
ity of the hierarchical file system. In SAICSIT ’03: Pro-
ceedings of the 2003 annual research conference of the South
African institute of computer scientists and information tech-
nologists on Enablement through technology, pages 122–129,
, Republic of South Africa, 2003. South African Institute
for Computer Scientists and Information Technologists.
ISBN 1-58113-774-5.

Florian Moritz. Rich internet applications (ria): A
convergence of user interface paradigms of web and
desktop exemplified by javafx. Master’s thesis, Uni-
versity of Applied Science Kaiserslautern, Germany,
2008. URL http://www.flomedia.de/diploma/
documents/DiplomaThesisFlorianMoritz.pdf.

Gregory B. Newby. The necessity for information space
mapping for information retrieval on the semantic
web. Information Research, 7(4), 2002. URL http://
InformationR.net/ir/7-4/paper137.html.

Donald A. Norman. The design of everyday things. Basic
Books, [New York], 1. basic paperback ed., [nachdr.] edi-
tion, 2002. ISBN 0-465-06710-7.

T. O’Reilly. What is web 2.0 - design patterns and business
models for the nect generation of software. 2005. URL
http://www.oreillynet.com/pub/a/oreilly/
tim/news/2005/09/30/what-is-web-20.html.

Arno Puder. A code migration framework for AJAX appli-
cations. In DAIS ’06: 6th International Conference on Dis-

http://portal.acm.org/citation.cfm?id=1056952
http://portal.acm.org/citation.cfm?id=1056952
http://www.flomedia.de/diploma/documents/DiplomaThesisFlorianMoritz.pdf
http://www.flomedia.de/diploma/documents/DiplomaThesisFlorianMoritz.pdf
http://InformationR.net/ir/7-4/paper137.html
http://InformationR.net/ir/7-4/paper137.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html

Bibliography 103

tributed Applications and Interoperable Systems, pages 138–
151. LNCS, Springer, 2006.

D. Quan, K. Bakshi, D. Huynh, and D. Karger. User Inter-
faces for Supporting Multiple Categorization. Proceedings
of INTERACT, pages 228–235, 2003.

Tristan Richardson, Quentin Stafford-Fraser, Kenneth R.
Wood, and Andy Hopper. Virtual network computing.
IEEE Internet Computing, 2(1):33–38, 1998. ISSN 1089-
7801. doi: http://dx.doi.org/10.1109/4236.656066.

Jens Riegelsberger, M. Angela Sasse, and John D. McCarthy.
The mechanics of trust: a framework for research and
design. Int. J. Hum.-Comput. Stud., 62(3):381–422, 2005.
ISSN 1071-5819. doi: http://dx.doi.org/10.1016/j.ijhcs.
2005.01.001.

Robert W. Scheifler and Jim Gettys. The x window system.
ACM Trans. Graph., 5(2):79–109, 1986. ISSN 0730-0301.
doi: http://doi.acm.org/10.1145/22949.24053.

Ben Shneiderman and Catherine Plaisant. Designing the
User Interface: Strategies for Effective Human-Computer In-
teraction (4th Edition). Pearson Addison Wesley, 2004.
ISBN 0321197860.

Mark Weiser. The computer for the twenty-first
century. Scientific American, pages 94–110, 1991.
URL http://www.ubiq.com/hypertext/weiser/
SciAmDraft3.html.

Aaron Weiss. Webos: say goodbye to desktop applications.
netWorker, 9(4):18–26, 2005. ISSN 1091-3556. doi: http:
//doi.acm.org/10.1145/1103940.1103941.

http://www.ubiq.com/hypertext/weiser/SciAmDraft3.html
http://www.ubiq.com/hypertext/weiser/SciAmDraft3.html

Typeset October 8, 2008

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Mobility
	Challenges of web applications
	Chapter overview

	Related work
	Classifications
	Web and Desktop Applications
	User Perception-based Definition

	Non Web-based Remote Applications

	Information Spaces
	Online Storage Services
	Amazon S3
	AOL Xdrive

	Web Applications
	Google Docs

	Web Desktops
	EyeOS
	G.ho.st
	Stoneware webOS
	Conclusion

	Hybrid applications
	Desktop Integration
	Adobe AIR
	Prism
	Gears

	Desktop Applications over the Network
	X Window System
	Virtual Network Computing
	Citrix XenApp

	Development of Web Applications
	GWT
	XML11

	Comparison Table

	Initial study
	Theory
	General Trust Model
	Online Trust
	Implication

	Survey
	Participants
	Online Behaviour
	Trust
	Data online

	Conclusion

	Architecture
	General Architecture
	WIDE Server
	Application Client
	Transactions

	Authentication
	Authorization
	Example

	Implementation
	Server Implementation
	Data Browser
	Application Manager

	Native Client: Wordpresser
	Design
	Implementation
	Interaction
	Conclusion

	JavaScript Client Framework
	Design
	Implementation
	Prototype: JS Editor
	Implementation

	ActionScript Client Framework
	Design
	Implementation
	Prototype: Flex Spreadsheet

	Conclusion

	Integration
	WIDE Support for Existing Applications
	API
	Plug-Ins
	Adapters

	Prototype Implementation
	Flickr Adapter
	gDoc Picture Insertion Adapter

	Conclusion

	Validation
	Design Rationale
	Challenge
	Solution
	Decisions
	Server Rendered Requests
	External Window Manager

	Lessons Learned
	Expected Problems
	Context and Vision

	Summary and Future Work
	Summary
	Future Work
	Notifications for Reactive Transactions
	External Storage Space Integration
	Exchanging WIDE

	Preliminiary Study: Online Survey
	General Information
	Computer Usage
	Internet Usage
	Data on the web
	Web applications
	Trust

	TITLE OF THE SECOND APPENDIX
	Bibliography
	Index

