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Abstract

Deceptive patterns are manipulative interface designs that influence users to act
against their intentions. While prior research has focused on detecting and classi-
fying these patterns, few technical solutions exist to mitigate them directly in the
browser. We present DPGuard, a browser extension that leverages Large Language
Models (LLMs) to remove deceptive patterns in situ, modifying the webpages’
content in real time. Building on existing research approaches, DPGuard processes
webpage elements selected by the user, transforms them into less manipulative
versions, and reinserts them into the webpage while preserving functionality and
privacy. The system supports both local and remote LLMs and is easily extendable
with new models.
A technical evaluation on prebuilt and real-world websites compares DPGuard’s
performance across multiple configurations. Results show that DPGuard effec-
tively reduces manipulative elements on simpler pages but faces challenges with
complex, dynamic websites. We conclude with limitations and future work, em-
phasizing the potential of LLM-based interventions but also the need for further
refinement to handle diverse web content robustly.
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Überblick

Deceptive Patterns sind manipulative Designs, die Nutzer dazu verleiten, gegen
ihre eigentlichen Absichten zu handeln, zum Beispiel etwa unnötigem Tracking zu-
zustimmen oder ungewollte Abonnements abzuschließen. Während sich bisherige
Forschung vor allem auf die Erkennung und Klassifizierung solcher Muster kon-
zentriert hat, existieren nur wenige technische Lösungen, die sie direkt beheben.
Diese Arbeit stellt DPGuard vor, eine Browser-Erweiterung, die Large Language
Models (LLMs) nutzt, um die manipulativen Designs direkt auf der Website zu ver-
ändern. Aufbauend auf bestehenden Ansätzen verarbeitet DPGuard ausgewählte
Elemente, macht sie weniger manipulativ und fügt sie wieder in die Seite ein, wobei
die Funktionalität erhalten bleiben soll. Das System unterstützt sowohl lokale als
auch serverseitige LLMs und ermöglicht eine einfache Integration neuer Modelle.
Eine technische Evaluation auf vorgefertigten und realen Websites vergleicht die
Leistung von DPGuard über mehrere Konfigurationen hinweg. Die Ergebnisse zei-
gen, dass manipulative Elemente auf einfacheren Seiten effektiv reduziert werden,
komplexere Websites aber zu Problemen führen. Abschließend werden Einschrän-
kungen und zukünftige Arbeiten diskutiert, wobei das Potenzial LLM-basierter
Gegenmaßnahmen, zugleich aber die Notwendigkeit weiterer Verbesserungen
hervorgehoben wird, um vielfältige Webinhalte robust zu verarbeiten.
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Conventions

Throughout this thesis, we will use the following
conventions.

Deceptive patterns (DPs) and dark patterns are
synonymous. We use the term “deceptive patterns” as
suggested by the ACM ethics board.

The text will reference deceptive patterns as described by
Gray et al. [2024a].

Definitions of technical terms or short excursuses are set off
in colored boxes.

Definition: Excursus.Excursus:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a
written text.

Source code and implementation symbols are written in
typewriter-style text: myClass.

Numerical values are given in SI units where applicable
and rounded to two decimal places.

The whole thesis is written in American English.
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Chapter 1

Introduction

The rapid growth of digital services and online commerce
has led to an increasing reliance on web-based interfaces
for everyday tasks, ranging from shopping and communi-
cation to accessing public services. While these interfaces are
designed to guide users through the web experience, they
frequently employ deceptive patterns [Mathur et al., 2019].

Definition: Dark /
Deceptive Pattern.

Dark Patterns / Deceptive Pattern:
Initially coined by Harry Brignull, deceptive patterns are
now defined as: “tricks used in websites and apps that
make you do things that you didn’t mean to, like buying
or signing up for something”¹.

Examples Deceptive patterns
manipulate users
into doing something
against their best
interest.

 include misleading content banners, such as
cookie-banner popups that aim to make users accept all data
collection, or bad pre-selected defaults that exploit cognitive
biases [Bösch et al., 2016]. Often, users are unaware of the
manipulation [M. Bhoot et al., 2021], or are unable to oppose
such manipulative influences effectively [Bongard-Blanchy
et al., 2021]. As such, understanding, identifying, and miti-
gating deceptive patterns is crucial for creating ethical and
user-friendly web experiences.

¹https://www.deceptive.design/, Accessed August 2025

https://www.deceptive.design/


2 1 Introduction

Deceptive patterns
are used all over the

web.

Recent research has highlighted the widespread use of
deceptive patterns across various online platforms. For in-
stance, a 2024 report² by the Federal Trade Commission
(FTC) studied the use of deceptive patterns in subscription
services and found that over 75% of the 642 platforms that
offered subscription services employed at least one decep-
tive pattern to influence user decisions.

Existing research
lacks practical

countermeasure
implementations.

While the identification and detection of deceptive patterns
have been the focus of research [Mathur et al., 2019; Chen
et al., 2023; Nayak et al., 2024], the mitigation of deceptive
patterns is still a relatively underexplored area. Recent
research additionally focuses on assessing how mitigations
should be presented to the user, but lacks practical, technical
implementations of these mitigations in real-world scenar-
ios [Schäfer et al., 2023; 2024].

Existing tools only
detect specific DPs,

without mitigating
them.

Existing tools and browser extensions that aim to address
deceptive patterns, such as the “Dapde Pattern Highlighter”³
or “Insite”⁴ on GitHub, aim at detecting and highlighting
deceptive patterns. These tools often support only a limited
set of known deceptive patterns and may not be regularly
updated to keep pace with the evolving landscape of web
design. Additionally, they typically do not offer cross-
browser compatibility, limiting their broader accessibility.

LLMs are a
promising tool for

direct deceptive
pattern mitigation.

To tackle the lack of technical countermeasures, Schäfer et al.
[2025] propose the use of Large Language Models (LLMs) to
mitigate deceptive patterns on websites directly, highlight-
ing its feasibility by modifying exemplary HTML and CSS
code. For that, they developed a prompt that can be used to
instruct LLMs to directly mitigate deceptive patterns in web
interfaces, skipping the need for a separate detection step.
Their research shows promising results, with 91% of the self-

²https://www.ftc.gov/news-events/news/press-releases/2024/07/
ftc-icpen-gpen-announce-results-review-use-dark-patterns-affecting-
subscription-services-privacy, Accessed August 2025

³https://github.com/Dapde/Pattern-Highlighter, Accessed August
2025

⁴https://github.com/NicholasTung/dark-patterns-recognition, Ac"
cessed August 2025

https://www.ftc.gov/news-events/news/press-releases/2024/07/ftc-icpen-gpen-announce-results-review-use-dark-patterns-affecting-subscription-services-privacy
https://www.ftc.gov/news-events/news/press-releases/2024/07/ftc-icpen-gpen-announce-results-review-use-dark-patterns-affecting-subscription-services-privacy
https://www.ftc.gov/news-events/news/press-releases/2024/07/ftc-icpen-gpen-announce-results-review-use-dark-patterns-affecting-subscription-services-privacy
https://github.com/Dapde/Pattern-Highlighter
https://github.com/NicholasTung/dark-patterns-recognition
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created web elements being less manipulative after applying
the LLM-based mitigation.

In This thesis explores
real-world
applicability of LLM-
based mitigations.

 this thesis, we will assess how the research by Schäfer et
al. [2025] can be implemented in order to mitigate deceptive
patterns on real-world web interfaces. We will investigate
how LLMs can be used to counteract deceptive patterns
in situ, providing users with another way of counteracting
manipulative design choices while browsing the web.

DPGuard aims to
implement LLMs as
a direct technical
countermeasure,
without the need for
an additional
detection step.

We present DPGuard, a browser extension that leverages
LLMs to directly mitigate deceptive patterns in situ as users
interact with web pages, accessing and modifying the under-
lying Document Object Model (DOM). The DOM is the data
structure used for websites and their HTML code. Browser
extensions are mentioned as promising tools for this task
[Mathur et al., 2019], as they can be easily installed by users
and operate directly within the web browser [Schäfer et al.,
2025]. We explore different ways of using the extension,
including having the user choose which part of a website
they want to apply mitigations to, and automatic mitigation,
where the extension applies mitigations automatically. Be-
sides focusing on the feasibility of real-world LLM-based
deceptive pattern mitigation in general, we also address
privacy concerns by running LLMs locally, thus avoiding the
need to send user data to external servers. Additionally, we
investigate intrusiveness, ensuring that the browser exten-
sion does not disrupt the user experience or interferes with
the webpages’ intended functionality.

In the following chapters of this thesis, we will present
related work regarding deceptive patterns and their mitiga-
tions in Chapter 2. In Chapter 3, we will explain design
requirements and the architecture of DPGuard. In Chapter 4,
we will detail the implementation of the browser extension,
followed by a technical evaluation of its effectiveness in
Chapter 5. We will contextualize our findings and discuss
future work in Chapter 6, closing with a summary of our
contributions in Chapter 7.
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Chapter 2

Related Work

2.1 Identification and Classification

In Deceptive patterns
are categorized and
exposed to raise
awareness of
manipulative design.

 the last 15 years, researchers and taxonomists have come
to understand deceptive patterns through studies and exam-
ples. In 2010, Harry Brignull coined the term “dark patterns”
and created a website¹ showcasing different categories of
deceptive design and a “Hall of Shame”, exposing compa-
nies using deceptive patterns. An example is displayed in
Figure 2.1. This was an important step for raising public
awareness about deceptive design practices and identifying
deceptive behavior in user interface designs. These original
categories continue to provide a base for taxonomies in
modern research [Gray et al., 2018; Mathur et al., 2019; Chen
et al., 2023].

¹https://deceptive.design, Accessed September 2025

https://deceptive.design
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Figure 2.1: Example, taken from Gray et al. [2018], of the de-
ceptive pattern Preselection as a type of Interface Interference,
when trying to pay on a website. The preselected option of
subscribing to a newsletter is hidden behind an expandable
element. In order to continue without subscribing, the user
has to expand the element and deselect the option actively.

ApproximatelySystematic inquiry of
deceptive patterns is

important.

 at the same time as Brignull’s first work,
Conti and Sobiesk [2010] introduced one of the earliest
academic taxonomies of what they identified as “Malicious
Interface Design Patterns”. Researchers systematically iden-
tified a series of strategies for deception that included Misdi"
rection, Forced Actions, and Hidden Information. This added
a layer of organization and expectation on the role of the
components of an interface with the intent to manipulate the
user. The fact that their taxonomy provided an alternative
perspective to Brignull’s functional classification and the
academic efforts directed attention to the need for serious
and systematic inquiry into the deceptive patterns within
user interface design [Conti and Sobiesk, 2010].

Supplementing Brignull’s early work, a popular work by
Gray et al. [2018] studied and collected 118 artifacts from
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numerous Brignull’s early work
was extended
continuously.

 online platforms, such as Facebook, Reddit, and
Wired.com. Based on these findings, Gray et al. [2018]
proposed a revised taxonomy. Their taxonomy contains
only five generic categories: Nagging, Obstruction, Sneaking,
Interface Interference, and Forced Action. These categories aim
to capture the essence of the classifications proposed by
Brignull, while also being broad enough to encompass new
and emerging patterns [Gray et al., 2018].

Further Large-scale
empirical studies
help to grasp the
variety of DPs.

 attempting to grasp the variety of DPs, Mathur
et al. [2019] carried out a large-scale, empirical study on
deceptive patterns on the web that identified over 1,800
examples across thousands of websites [Mathur et al.,
2019]. Their study further justified and built on previous
taxonomies, providing evidence and context regarding the
different types of deceptive practices and the varieties of
instances and different sites on which they occurred. Mathur
et al. [2019] also researched the effects of deceptive patterns
on users, demonstrating that deceptive designs can shape
choice and affect autonomy.

A Inconsistencies
across different
research efforts
motivate the need for
a consensus on the
terminology.

 key issue with the examination of deceptive patterns is
the inconsistent terminology used across different research
efforts. Many researchers have independently developed
their own taxonomies and labels for similar or even identical
categories of deceptive design [Gray et al., 2018; Mathur
et al., 2019]. Conti and Sobiesk [2010] used names such as
Forced Work and Interruption, while Brignull used Nagging
and Obstruction to describe similar concepts. Furthermore,
taxonomies are often used to improve future work, and so
remote (as a latest addition) variants often appear, leading
to a proliferation of labels that can be confusing and over-
lapping. This lack of standardization complicates efforts to
compare findings, aggregate data, and start building an
understanding of the area. It could also make it more diffi-
cult for practitioners and policymakers to put research into
action, since there are many different definitions and classi-
fication terms that overlap in a range of meanings [Gray et
al., 2024a].
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To address the problems of research using different and pos-
sibly incompatible definitions for categories of DPs, Gray et
al. [2024a] have published an ontology that aimsGray et al. [2024a]

published an
ontology to combine
different taxonomies.

 to provide
a consensus about these categories. They conducted a sys-
tematic review of existing taxonomies and ontologies, iden-
tifying commonalities and differences among them. Their
work synthesizes previous efforts and proposes a unified
framework that can be used for future research and practice
in the field of deceptive design [Gray et al., 2024a]. A key
contribution of this ontology is the differentiation between
various levels of deceptive patterns:

• Low"level patterns: Refer to specific interface elements
or manipulations, such as Immortal Accounts or Complex
Language.

• Meso"level patterns: Describe combinations of low-level
patterns that work together to achieve a broader decep-
tive goal, like Hiding Information or Urgency.

• High"level patterns: Encompass systemic strategies, rep-
resented by the same five categories previously intro-
duced by Gray et al. [2018]: Nagging, Obstruction, Sneak"
ing, Interface Interference, and Forced Action.

This multi-level approach helps clarify the relationships be-
tween different types of deceptive practices and supports a
more nuanced analysis of how they operate in digital envi-
ronments [Gray et al., 2024a].

2.2 Countermeasures

WhenUsers struggle to
recognize and resist

deceptive patterns.

 encountering DPs, users often feel frustrated, as they
struggle to navigate interfaces that are designed to manip-
ulate their choices [Conti and Sobiesk, 2010]. The sheer
variety and subtlety of these patterns make them difficult
for users to recognize, let alone avoid. Most users lack the
expertise or awareness to identify manipulative elements,
and even when they are aware, research indicates that they
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are frequently unable to resist or circumvent these influences
[Bongard-Blanchy et al., 2021]. These issues motivate the
need for effective countermeasures, as mentioned in a recent
workshop that aimed at mobilizing research and regulatory
action against deceptive patterns [Gray et al., 2024b].

To Different
countermeasures
have been proposed
to mitigate deceptive
patterns.

 combat the variety of DPs, researchers have proposed
various countermeasures. Bongard-Blanchy et al. [2021] has
broadly categorized them into educational, design, technical,
and regulatory interventions. Each category aims to provide
four different scopes: Awareness, Detection, Resisting, and
Elimination. Eliminating countermeasures are particularly in-
teresting, as they do not require a deeper knowledge of the
field and can be applied automatically, visually presenting
their results [Schäfer et al., 2024]. Nevertheless, raising gen-
eral awareness about DPs can empower users, developers,
and designers to recognize and avoid manipulative designs
[Gray et al., 2018].

Current LLMs are a
promising tool for
mitigating deceptive
patterns.

 advances in research have explored using large
language models (LLMs) to apply mitigations to online
deception. For example, LLMs can be used to help users
automatically manage cookie consent banners [Porcelli et
al., 2024]. Additionally, LLMs have been employed to detect
DPs in user interfaces. Early successful attempts include
using GPT-3.5 Turbo to identify deceptive patterns in text
snippets [Sazid et al., 2023]. Using Generative AI, Mills and
Whittle [2023] have been able to detect DPs by using HTML/
JavaScript code and screenshots of websites.

Generative AI:
“Generative AI refers to deep-learning models that can
generate high-quality text, images, and other content
based on the data they were trained on.”² ChatGPT³ is an
example of Generative AI.

²https://research.ibm.com/blog/what-is-generative-AI, Accessed Sep"
tember 2025

³https://chatgpt.com, Accessed October 2025

https://research.ibm.com/blog/what-is-generative-AI
https://chatgpt.com
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More recently, Schäfer et al. [2025] proposed a system that
only implicitly contains a detection step, as it directly applies
less manipulative alternatives to webpages, rather than
merely identifying the presence of DPs.

2.3 Projects

AccordingBrowser extensions
are said to be

promising tools to
mitigate DPs.

 to Bongard-Blanchy et al. [2021], browser exten-
sions are a technical intervention method when dealing with
DPs. Browser extensions are perceived as a promising tool to
apply countermeasures directly [Mathur et al., 2019]. There
are projects published on GitHub⁴ that aim to detect DPs
while browsing the web.

Figure 2.2:  Screenshot of the Insite⁵ browser extension as
presented on their GitHub. The yellow elements highlight
detected deceptive patterns on the website itself.

AInsite detects and
highlights DPs in

text.

 browser extension called Insite⁵ used the dataset of Mathur
et al. [2019] to train a machine learning model that detects
DPs in real-time while browsing the web. The detected
elements are highlighted in yellow (see Figure 2.2), includ-

⁴https://github.com/topics/dark-pattern, Accessed September 2025
⁵https://github.com/NicholasTung/dark-patterns-recognition, Ac"

cessed September 2025

https://github.com/topics/dark-pattern
https://github.com/NicholasTung/dark-patterns-recognition
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ing a popup that provides additional information about
the category of the detected pattern. To realize this, the
extension relies on a backend server hosting its machine
learning model for text classification. Insite is theoretically
not constrained in the number of DPs it can detect, although
currently being limited to recognizing the categories from
Mathur et al. [2019].

Figure 2.3:  Screenshot (taken from their GitHub) of detected
deceptive patterns on amazon.de⁶ showcasing the Dapde
Pattern Highlighter⁷ browser extension. The highlighted ele-
ments are denoted with a black border around them. In this
example, a Countdown (left) and Scarcity (right) pattern are
detected.

As DAPDE only detects
and highlights
specific DPs.

 a part of the Dark Pattern Detection Project (DAPDE)⁷ ,
a team of researchers and developers at the University of
Heidelberg created the Dapde Pattern Highlighter browser
extension, receiving support from the German Research In-
stitute for Public Administration. The extension detects and
highlights (see Figure 2.3) a given set of patterns: Countdown,
Scarcity, Social Proof, and Forced Continuity (see Figure 2.4).
To account for not all DPs being present in a single frame, the
extension creates two temporary copies of the webpage. This

⁶https://amazon.de, Accessed September 2025
⁷https://dapde.de/de/, Accessed September 2025

https://amazon.de
https://dapde.de/de/
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Figure 2.4:  Popup of the Dapde Pattern Highlighter⁸ browser
extension, including the amount of detected deceptive pat-
terns per language (DE). The popup also showcases a list of
supported patterns and the ability to toggle the detection.

allows for the detection of patterns that may appear after a
user interaction.

RelatingThe Dark Surfer
Extension uses

LLMs to detect and
highlight DPs.

 to this thesis, another browser extension called the
Dark Surfer Extension⁹ aims to detect DPs using LLMs. The
extension uses custom models based on a simple self-trained
LLM. Similar to Insite, the extension relies on a backend
server to host the models, while being able to detect only a
limited set of 5 patterns. After having detected DPs, the ex-
tension alerts the user and highlights the detected elements.

OverallDPGuard aims to
directly mitigate DPs
using LLMs, skipping

the detection step.

, related work has shown that detecting DPs is not an
easy task, as the variety of patterns is vast and the context in
which they appear is often complex. This thesis aims to con-
tribute to this field through the development of a browser

⁸https://github.com/Dapde/Pattern-Highlighter, Accessed September
2025

⁹https://github.com/Venkateeshh/DarkSurfer-Extension, Accessed
September 2025

https://github.com/Dapde/Pattern-Highlighter
https://github.com/Venkateeshh/DarkSurfer-Extension
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extension that directly implements Schäfer et al. [2025]‘s
approach, leveraging LLMs to skip the detection step and
directly apply mitigations.
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Chapter 3

The DPGuard Browser
Extension

Current DPGuard is a
browser extension
that uses LLMs to
mitigate deceptive
patterns in situ.

 solutions for defending against online deception of-
ten rely on rigid, rule-based systems that struggle to adapt to
the evolving tactics of malicious actors. Furthermore, these
systems mostly only provide warnings or highlights, leaving
users to deal with the deceptive content themselves manu-
ally. DPGuard aims at providing a more flexible and user-
friendly approach by leveraging the capabilities of LLMs to
directly modify deceptive content in situ, meaning directly
within the user’s web browser and webpage contents, rather
than having a separate detection and mitigation step. We
aim to contribute a direct technical countermeasure without
the additional need for user education or training. For that,
we designed and implemented a browser extension that can
connect to LLMs in order to identify and mitigate deceptive
content in situ. In order to successfully prompt the LLM to
perform the desired modifications, we used and adapted
the advanced prompt (found in Listing A.1), designed by
Schäfer et al. [2025].
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3.1 Requirements

For the design of DPGuard, we followed several key princi-
ples to ensure it is effective and easy to use, for the user and
for developers who want to extend or modify it. We wanted
to keep the system modular, allowing developers and re-
searchers to easily swap out components like the LLM. To
allow for an organized and scalable codebase, we analyzed
the requirements and derived the main components of the
system, especially focusing on the interaction between the
LLM, the users, and the Document Object Model (DOM).

Functional Requirements

TheNew LLMs should be
easily integrable into

DPGuard.

 first of four functional requirements is the interaction
with the LLM, as it is the base of the system. One of the main
design goals was to allow both local and remote processing.
For that, it should provide the ability to easily support new
LLMs. Generally, the interaction with the LLM should allow
for:

• A common interface for easy integration of new LLMs

• Local and remote processing

• Receiving HTML elements and metadata

• Returning HTML elements and metadata

TheThe user should be
able to select

elements on the
webpage.

 user interaction requirements focus on providing a
simple and intuitive interface for users to interact with the
extension. Its main features include the ability to show and
hide an overlay in which the user can manually select ele-
ments they want to send for processing. The user should be
able to:

• Show and hide the overlay

• Select HTML elements

• Undo, redo, and toggle changes
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• Change settings

• View the state of ongoing processes

• Cancel ongoing processes

To The user should be
able to toggle
between original and
modified content.

 be as transparent as possible, the overlay should display
progress information during processing. In addition, by al-
lowing undo, redo, and toggle functionality, we implement
the Switch (SW) countermeasure introduced by Schäfer et
al. [2023]. This countermeasure enables the user to switch
between the unmodified and modified versions of elements.
Furthermore, users should be able to modify settings, which
will be discussed in more detail in Chapter 4.

The We need a custom
interface for working
with complex HTML
elements.

 most important requirement is the Node Hierarchy, as
it is responsible for providing an intuitive interface when
working with custom HTML elements. Since the extension
heavily relies on the DOM content of webpages, it is crucial
to have a robust and efficient structure, which should sup-
port:

• Parsing and unparsing of HTML elements

• Calculating element size

• Evaluating and filtering elements

• Merging LLM responses into a compatible format

We should provide several methods for interacting with the
DOM, as this is the only way DPGuard can interact with the
webpage’s content. More specifically, it should be able to:

• Retrieve and replace HTML elements

• Modify CSS styles and stylesheets

• Mark modified elements

Its CSS modification is
crucial for effective
mitigations.

 ability to modify CSS styles and stylesheets is essential,
as some mitigations may require changes to the visual
appearance of elements outside their private attributes. Ad-
ditionally, marking modified elements is crucial for later
retrieval.
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For the final functional requirement, the extension should
support basic browser extension features, such as:

• Message passing between components

• Storage for settings and history

This is especially important for storing user settings and
the history of modified elements. Additionally, a robust
communication protocol between the different components
of the extension is necessary to ensure smooth operation.

Non-functional Requirements

• Performance

• Privacy and Security

• Compatibility

• Documentation

ForSecurity and privacy
are crucial for a

multi-platform
browser extension.

 non-functional requirements, performance is a key
consideration, as the extension should be able to process
elements quickly and efficiently, minimizing latency and
ensuring a smooth user experience. Since we are dealing
with potentially sensitive browsing data, privacy is another
important requirement. The extension should be able to
process data locally whenever possible, minimizing the
amount of data sent to remote servers. Security and protec-
tion against malicious scripts are crucial for interacting with
the DOM of webpages. The extension should be designed
to minimize the risk of cross-site scripting (XSS) attacks
and other security vulnerabilities, for example, by only re-
questing necessary permissions in the manifest file. As for
compatibility, the extension should be able to work with a
wide range of webpages and web applications, regardless of
their structure or content. This includes being able to run in
different browsers. Finally, documentation is an important
non-functional requirement, as it helps developers and users
understand how to use and extend the codebase.
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3.2 User Interface Design

Another crucial aspect of the DPGuard extension is its user
interface, which is designed to be intuitive and straightfor-
ward, allowing users to easily interact with the extension
and understand its functionality. The main components of
the user interface include the popup, providing the main
access point to the extension’s features, and the overlay,
which allows users to select and interact with elements on
the webpage.

3.2.1 Popup

Providing The popup provides
access to the main
features of the
extension.

 the main UI for the extension, the popup is acces-
sible by clicking on the extension icon in the browser toolbar.
Figure 3.1 shows the home screen and the settings screen of
the popup. The home screen (1) allows the user to enable
or disable the selection overlay discussed in Section 3.2.2,
as well as a short introduction to the extension’s features.
The settings screen (2) allows the user to configure (LLM-
specific) settings, as already mentioned in the requirements.
This includes the choice of LLM, the number of iterations to
run for each request, and which CSS style mode to use. The
number of iterations defines how often the LLM processes
the same element. The style mode determines how much of
the webpage’s CSS styles is included when sending elements
to the LLM, with options being inline styles, including style
from the document’s <head>, or including all computed
styles. Additionally, the user should be able to configure
whether the overlay should automatically close after a se-
lection, indicated by the checkbox stating “Allow multiple
edits”. If enabled, the overlay should remain open after a
selection, allowing the user to select and process multiple
elements in one session.
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(1) Home (2) Settings

Figure 3.1: The popup UI of the DPGuard browser extension,
showing the home screen (1) and the settings screen (2).
The home screen provides access to the main features of the
extension, while the settings screen allows users to configure
LLM-specific settings and other preferences.

ForThe history screen
provides access to
previously modified

elements.

 the last page of the popup, we implemented a history
screen, shown in Figure 3.2. The history screen provides
users with a list of previously mitigated elements, along with
the ability to view more details or toggle between the origi-
nal and modified versions, realizing the Switch (SW) visual
countermeasure mentioned in the requirements. Each entry
in the history list additionally includes metadata such as the
date and time of the modification to make it easier for users
to keep track of their actions. Users can click on an entry to
view more details or revert changes. On the top right is a
button to clear the entire history, in case the user wants to
start fresh.
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Figure 3.2: The history screen of the popup UI, showing
(a list of) previously mitigated elements along with their
metadata. Users can click on an entry to view more details
or revert changes.

3.2.2 Overlay

Since The overlay allows
users to select
elements on the
webpage for
mitigation.

 the overlay is the main way for users to interact with
the webpage, it was designed to be unobtrusive and easy to
use. The overlay provides a clear visual indication of when
the extension is active, including the ability to close the
overlay at any time. Figure 3.3 shows the two main features
of the overlay: The element selection mode (1) and the his-
tory hover feature. The element selection mode allows users
to click on elements they want to mitigate, highlighting cur-
rently hovered elements with a blue border. When clicked,
the overlay will show a shimmer effect, indicating that the
element has been selected and is being processed.
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TheModified elements
are highlighted with

a border in the
history.

 history hover feature (2) provides users with the abil-
ity to quickly find modified elements on the page while
browsing the history. When hovering over an entry in the
history list, the corresponding element on the webpage is
highlighted with a border in a different color, making it eas-
ier to find. This feature is particularly useful for users who
want to review or revert changes made by the extension,
as it allows them to quickly locate and identify modified
elements without having to manually search through the
webpage.

(1) Simple Overlay

(2) History Hover

Figure 3.3: The overlay UI of the DPGuard browser exten-
sion, showing the element selection mode (1) and the history
hover feature (2). The selection mode allows users to click
on elements they want to mitigate, while the history hover
feature provides users with the ability to quickly find mod-
ified elements on the page while browsing the history.
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Chapter 4

Implementation

Developing Different browsers
have different
extension APIs.

 a browser extension comes with several chal-
lenges and limitations, especially when making it multi-
platform. One of the main challenges is the limited set of
APIs and capabilities provided by different browsers. While
modern browsers like Chromium™, Firefox™, and Safari™
support a wide range of APIs, there are still differences
in how these APIs are implemented and what features are
available. Additionally, different browsers require different
manifest file formats and have different policies regarding
extensions, which adds complexity to the development
process.

To The extension is built
using WXT, Vue, and
Vuetify to support
multiple browsers
and streamline
development.

 get around many of these challenges, we decided to use
a library for creating a web extension called WXT¹. WXT
provides a unified API for creating extensions that work
across multiple browsers, abstracting away many of the dif-
ferences between them. It additionally includes a set of tools
for building and deploying extensions, which integrate well
into our TypeScript² project. By using WXT, we were able to
focus on developing the core functionality of the extension
without having to worry about the underlying differences

¹https://wxt.dev/, Accessed August 2025
²https://www.typescriptlang.org/, Accessed August 2025

https://wxt.dev/
https://www.typescriptlang.org/
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Popup Content Script Node Hierarchy Overlay LLM

Popup Content Script Node Hierarchy Overlay LLM

request selection

open selection overlay

selected element

parse element

parsed element

send element

iterate

text response

parse response

merged element

store history

replace element

close overlay

Figure 4.1: Sequence diagram showcasing the architecture and data flow of the
DPGuard browser extension. The diagram illustrates how user interactions in the
popup lead to element selection on the webpage, which is then parsed, analyzed
by the LLM, and then sent back to the content script for updating the webpage
accordingly.

between browsers. To streamline UI development, we also
used the framework Vue³ together with the UI library
Vuetify⁴, which provide a set of pre-built components and
styles that can be easily customized to fit the needs of the
extension. To further enhance the development process, we

³https://vuejs.org/, Accessed August 2025
⁴https://vuetifyjs.com/en/, Accessed August 2025

https://vuejs.org/
https://vuetifyjs.com/en/
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used a multi-platform messaging library called WebExt"Mes"
saging⁵, allowing us to easily send typed messages between
the different components of the extension.

At The manifest file
defines a single
content and
background script
with minimal
permissions.

 the core of any extension is the manifest file. It provides
important metadata about the extension, such as its name,
version, and permissions. The manifest file also specifies
the different components of the extension, such as the back-
ground script, content scripts, and popup. Since we are
using WXT, we only need to provide a single manifest file,
which is then automatically converted to the appropriate
format for each browser during the build process. Specifi-
cally, our extension requires the storage permission and
specifies a single content and background script.

The sequence diagram in Figure 4.1 illustrates the architec-
ture and data flow of the DPGuard browser extension. In the
following sections, we will discuss the individual compo-
nents and their implementation in more detail, aligning with
the data flow depicted in the diagram and the requirements
outlined in Chapter 3.

4.1 Node Hierarchy

Even A custom Node
Hierarchy abstracts
interaction with DOM
elements.

 though the available DOM hierarchy implementation
provides a robust interface for interacting with HTML ele-
ments, it lacks certain features that are crucial for our use
case. To fulfill the requirements outlined in Chapter 3 and
address these limitations, we implemented a custom class
hierarchy depicted in Figure 4.2, for representing and inter-
acting with HTML elements in the DOM. This Node Hierar"
chy is responsible for providing a structured representation
of HTML elements, allowing for a much easier interaction
and manipulation of the DOM. To achieve this, we created a
base class called DomElement, which serves as the foundation

⁵https://www.npmjs.com/package/@webext-core/messaging, Ac"
cessed August 2025

https://www.npmjs.com/package/@webext-core/messaging
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for all other classes in the hierarchy. The DomElement class
contains common properties and methods that are shared
among all of our custom classes, such as the element’s total
and effective size, as well as a flag indicating whether the
element should be ignored during LLM processing.

DomElement

DomNode DomAttribute

TagNode TextNode CommentNode

Figure 4.2: The class hierarchy of the DOM representation
used in DPGuard. The DomElement class serves as the base
class for all DOM nodes, with DomNode and DomAttribute as
its direct subclasses. The DomNode class is further specialized
into TagNode, TextNode, and CommentNode, representing differ-
ent types of nodes in the DOM tree.

AtThe DomElement class
serves as the base

class for all DOM
nodes.

 the next level, we have two direct subclasses: DomNode
and DomAttribute. The DomNode class represents nodes in
the DOM tree, additionally implementing four methods:
parse, unparse, parseFromLLM, and unparseForLLM. It is further
specialized into three subclasses: TagNode, TextNode, and
CommentNode. The TagNode class represents HTML tags, such
as <div> or <span>, and contains properties for the tag name,
attributes, and child nodes. The TextNode class represents
text content within HTML elements, while the CommentNode
class represents HTML comments. On the other hand, the
DomAttribute class represents attributes of HTML elements,
such as their class or id, and contains properties for the
attribute’s name and value.

OneThe Evaluator
reduces the amount

of data sent to the
LLM by filtering

nodes.

 of the key features of our node hierarchy is its ability
to evaluate and filter nodes based on certain criteria. Each
class constructor takes an Evaluator object, which is respon-
sible for determining the attributes of the DomElement. Its
most important responsibility is to determine whether a
node should be ignored for LLM processing, based on rules
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depicted in Table 4.3, since reducing the amount of data
sent to the LLM is crucial to avoid token limitations. Token
limitations occur when the LLM has reached its maximum
context window, meaning its maximum amount of data to
process. Therefore, when evaluating whether a node should
be ignored, the Evaluator has three possible actions: It can ei-
ther decide to discard the node entirely, set its ignoreForLLM
flag and thereby mark it for later replacement, and reduce
the amount of data sent for processing, or it can keep the
node as-is. The decision is based on the type of node, its
attributes, and its content. For example, CommentNodes are
always discarded, as they do not contribute to the visual
representation of the webpage. To allow for more complex
cases, we introduced two lists: the ignore and irrelevant lists.
Each list contains strings whose occurrence is tested for in
the currently evaluated node.

Type Condition Action
found in tag irrelevant list discard
found in tag ignore list markTagNode

otherwise keep
TextNode always keep
CommentNode always discard

found in attribute ignore list mark
DomAttribute

otherwise keep

Table 4.3: A decision table outlining the handling of differ-
ent DomElement types during the parsing process. Possible
actions include discarding the element, marking it for later
replacement, or keeping it as-is.

Additionally The Evaluator also
computes the total
and effective size of
each node.

, the Evaluator computes the total and effective
size of each node by simply counting its characters, which is
used to further filter out nodes when necessary, for example,
when including the document’s <style>. The total size rep-
resents the size of the node including all its children, while
the effective size only counts nodes that are not ignored for
LLM processing. This allows us to filter out nodes that are
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too large based on their effective sizes, while still keeping
track of their total sizes for other purposes.

TheEach class
implements parsing

and unparsing
methods.

 CommentNode and TextNode classes are relatively simple,
as they simply store the text content of the node. Both classes
implement the parsing and unparsing methods, allowing
them to be easily converted to and from their string repre-
sentations. The LLM string representations differ slightly, as
they contain marker comments for the ignored node instead
of the actual node content.

TheThe TagNode class
handles HTML tags,
attributes, and child

nodes.

 TagNode class is the most complex class in our hierarchy,
as it represents HTML tags, which can contain attributes
and child nodes. Most of our implementation focuses on this
class, as it is responsible for handling the majority of HTML
elements in the DOM.

TheParsing a TagNode
involves recursively
traversing the DOM

tree and creating
DomElement objects.

 parsing process of a TagNode involves recursively tra-
versing the DOM tree and creating DomElement objects for
each node. During this process, the Evaluator determines
whether a child node should be included in the TagNode’s
children. For each visited child, its attributes are also parsed
into DomAttribute objects. The parsing process continues
recursively for each child node, resulting in a tree-like struc-
ture of DomElement objects that represents the original DOM
tree. The TagNode’s parsing is additionally able to handle the
different style modes, optionally including the <style> from
the documents <head>, or globally computed styles for each
element, aligning with the settings outlined in Section 3.2.1.
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Comment

Tag

Yes

No

Yes

No

Yes

No

Process output
from LLM

Element
type⁶

Is marker
commentDiscard

Replace with
original

Has marker
attribute

Replace
with saved list

Has
unvisited
children

Select child

Done

Figure 4.4: A flowchart illustrating the process of merging LLM-provided elements
with elements that have not been sent for processing. For TagNode elements,
marker attributes are replaced with saved attributes, and children are processed
recursively. CommentNode elements that are identified as markers are replaced with
their original counterparts.

The unparsing process is the reverse of parsing, converting a
TagNode and its children back into an HTML string represen-
tation. During this process, the TagNode iterates over its chil-
dren and attributes and calls their unparse method to obtain
their string representations, adding them to the final output.

⁶Since TextNode elements are always kept as-it, they are not part of
this process.
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Furthermore, the TagNode implements the parseFromLLM and
unparseForLLM methods, which are specifically designed for
handling LLM processing.Unparsing for LLM

processing involves
creating and

remembering marker
nodes.

 Unparsing for the LLM works
similarly to the regular unparsing, but with a few key differ-
ences. First, any child nodes that are marked to be ignored
for LLM processing are replaced with “marker comment
nodes” and an ID, indicating that they should be replaced
with their original counterpart later. We chose "leave-{ID}"
to be the marker comment and adapted the prompt accord-
ingly. Second, if any of its attributes are marked to be
ignored, a marker attribute is added to the tag, representing
all of the ignored attributes. This allows us to keep track
of which attributes should be replaced later. The resulting
string representation is then sent to the LLM for processing,
accompanied by a mapping of marker IDs to their original
nodes.

TheParsing from LLM
involves merging the

modified tree with
ignored nodes.

 parsing from LLM is more complex, as it involves merg-
ing the modified tree returned by the LLM with the original
tree. The process, depicted in Figure 4.4, also behaves simi-
larly to the regular parsing, but when encountering a marker
comment or attribute, the original node or attributes are used
instead of creating a new node. This ensures that any nodes
or attributes that were ignored during LLM processing are
preserved in the final tree structure. This process is repeated
recursively for each child node until all children have been
visited and merged.

AtAll DomElements
implement equality

checking for finding
differences.

 last, the TagNode class also provides a method for finding
the smallest difference between two TagNodes. This is espe-
cially useful for implementing the History Hover feature
depicted in Figure 3.3. When comparing two TagNodes, the
method recursively traverses both trees, comparing each
node and its attributes. If a difference is found, the method
returns the node that is different, allowing us to easily iden-
tify which part of the element has changed.
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4.2 LLM Client

Since The LLM client
abstracts interaction
with different LLM
providers.

 the LLM is a core component of the extension, we
implemented a common interface for interacting with dif-
ferent LLM providers, called the BaseClient. The interface
defines the basic method that any LLM client must imple-
ment: processNode, which takes a TagNode, the number of
iterations to run for, and the timestamp of the request. The
method returns a processed TagNode, along with metadata
to be stored in the history. For each run of processNode,
the client handles a series of steps. First, it unparses the
TagNode into a string representation suitable for sending to
the LLM (unparseForLLM), alongside its list of ignored nodes.
Afterwards, it sends the unparsed string to the LLM for pro-
cessing, possibly iterating multiple times. Specifically, this
means that the result is piped back into the LLM for further
refinement, aligning with promising research by Schäfer et
al. [2025]. Once the LLM has finished processing, the client
parses the modified HTML string back into a TagNode and
merges it with the original node using the list of ignored
nodes (parseForLLM). Since the LLM might have returned an
identical element, we compute a sha256 hash of the modified
element and compare it to the original. If they are identical,
we do not return any element or history information, as
no changes were made. Otherwise, we return the modified
element and the (history) metadata.

Currently Local and remote
LLM clients are
implemented.

, we have implemented two clients: local and
remote. In order to be able to run LLMs locally, we
used LMStudio⁷, which provides a local API for interacting
with various open-source models. The LmStudioClient uses
LMStudio’s API to send requests and receive responses.
For remote LLMs, we implemented the OpenAiClient, which
uses OpenAI’s API to interact with GPT"4o⁸. Both clients

⁷https://lmstudio.ai/, Accessed October 2025
⁸https://openai.com/index/hello-gpt-4o/, Accessed October 2025

https://lmstudio.ai/
https://openai.com/index/hello-gpt-4o/
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handle the specific details of communicating with their
respective APIs while adhering to the common interface de-
fined by BaseClient. This allows us to easily switch between
different LLM providers without changing the core logic of
the extension, for example, when adding support for more
providers in the future.

4.3 Content Script

A content script is a JavaScript file that runs in the context of
a web page, allowing it to interact with the page’s DOM and
modify its content. Specified in our manifest file, the content
script is automatically injected into web pages matching the
pattern http*://*/*, allowing it to run on all HTTP and
HTTPS pages.

WeThe content script
orchestrates the

extension’s
functionality.

 chose the content script as the core orchestrator of the
extension, as its ability to interact with the DOM makes it
ideal for handling user interactions, retrieving and replacing
HTML elements, and coordinating communication between
the different components of the extension. The content script
is responsible for handling messages from the Popup and
Overlay, managing the LLM processing pipeline, and updat-
ing the webpage with the modified elements. In the follow-
ing sections, we will discuss its individual components and
their implementation in more detail.

4.3.1 Overlay Communication

TheDirect injection of the
overlay into the DOM

has limitations.

 overlay, which allows the user to select elements and
send them to the LLM for processing, is created and injected
into the current webpage by the content script. Typically,
the overlay would be comprised of a single IFrame injected
into the DOM directly. This approach, however, has several
limitations. The overlay is responsible for capturing user



4.3 Content Script 33

input, such as mouse clicks and movement, to allow users
to select elements on the webpage. If the overlay is injected
directly into the DOM, it can interfere with the webpage’s
existing event listeners and styles, leading to unexpected
behavior. Specifically, when trying to capture mouse events
for elements that are rendered in a different context, such
as within a shadow DOM, the simple overlay would not be
able to access these elements directly, as the mouse events
would be consumed by the hovered element.

Shadow DOM:
“[A] Shadow DOM enables you to attach a DOM tree to an
element, and have the internals of this tree hidden from
JavaScript and CSS running in the page.”⁹

To The overlay is
rendered in a
shadow DOM to
avoid interference
with the webpage.

 circumvent these limitations, we decided to render the
overlay using an IFrame in a shadow DOM itself. This
allows the overlay to encapsulate its styles and event listen-
ers, preventing interference with the underlying webpage.
However, this means that the overlay cannot access the
webpage’s content directly, as shadow DOMs are isolated
from each other.

To The overlay indirectly
accesses the
webpage’s DOM via
message passing.

 enable communication between the overlay and the
content script, we implemented a message-passing system
using the window.postMessage API. This way, the overlay can
indirectly access the webpage’s DOM by sending messages
to the content script, which can then retrieve and modify
elements on behalf of the overlay. The most important mes-
sages exchanged between the overlay and content script are:

• iframe-mouse-move: When the user moves their mouse
over the webpage, the overlay sends this message to the
content script, which responds with information about
the element currently under the cursor. This allows the
overlay to highlight elements as the user hovers over
them.

⁹https://developer.mozilla.org/en-US/docs/Web/API/Web_
components/Using_shadow_DOM, Accessed October 2025

https://developer.mozilla.org/en-US/docs/Web/API/Web_components/Using_shadow_DOM
https://developer.mozilla.org/en-US/docs/Web/API/Web_components/Using_shadow_DOM
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• iframe-mouse-down: Sent by the overlay when the user
clicks on an element. The content script responds by
sending the selected element to the LLM for processing.

• content-bounding-rect: Sent by the content script as a
response to iframe-mouse-move, containing the bound-
ing rectangle of the element under the cursor. The
overlay uses this information to position its highlight
box correctly.

Consequently, messages for opening and closing the over-
lay also exist, as well as displaying progress information.
Overall, this message-passing system allows the overlay to
interact with the webpage’s content indirectly, while still
benefiting from the encapsulation and isolation provided by
the shadow DOM.

4.3.2 DOM Interaction

TheThe content script
interacts with the

DOM to retrieve and
modify elements.

 content script constantly interacts with the DOM of
the current webpage, as it is responsible for retrieving
and replacing HTML elements, modifying CSS styles and
stylesheets, and marking modified elements with a custom
attribute. To retrieve an element based on the user’s selec-
tion, the content script uses the document.elementFromPoint
method, which returns the topmost element at the specified
coordinates. This allows the content script to accurately
identify which element the user has clicked on, even if it is
nested within other elements or rendered in a shadow DOM.

WhenModified elements
are marked with

custom attributes.

 replacing an element in the DOM with its modified
version, the content script additionally appends a custom
attribute called dpguard-timestamp, which contains the time-
stamp of when the element was modified. Furthermore,
it adds the dpguard-timestamp-smallest attribute, which
marks the smallest modified element on the page, whose cal-
culation was discussed in Section 4.1. To modify CSS styles
and stylesheets, the content script can directly manipulate
the style attribute of HTML elements or modify existing
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<style> tags in the document’s <head>. This allows the
content script to change the visual appearance of elements
as needed, for example, to highlight modified elements or
adjust their layout.

Furthermore Utility functions
facilitate DOM
interaction.

, the content script provides several utility func-
tions for interacting with the DOM, such as replacing an
element by its dpguard-timestamp, replacing the root DOM
element, or highlighting elements by their timestamp. These
functions allow for easy retrieval and management of mod-
ified elements, as well as providing visual feedback to the
user about which elements have been changed.
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4.4 Background Script

TheThe service worker
initializes storage

and computes
hashes.

 background script, also called the service worker, is a
JavaScript file that runs in the browser’s background, sepa-
rate from any web page. It is responsible for handling tasks
that do not require direct interaction with the webpage,
such as managing shared storage and computing hashes for
element comparison. In our case, the background script does
two things: Initializing the extension’s storage with default
settings if they do not exist yet, and providing a method for
computing sha256 hashes of HTML elements. The storage is
used to persist user settings in local storage, while history
data is only stored in session storage, losing its state when
the browser or tab is closed, since that information is not
relevant anymore.

SinceMessage passing is
limited to serializable

data.

 the service worker is considered to be responsible
for tasks that do not require direct interaction with the
webpage’s DOM, we thought about moving all LLM-related
tasks to the background script, but decided against it, as
message passing between the content and background script
is limited to serializable data. This makes it impossible to
communicate complex objects, such as our node hierarchy,
between the components, which would have required addi-
tional serialization and deserialization logic.



37

4.5 History

To The history feature
tracks modifications
and allows undo/
redo actions.

 keep track of modifications and revert changes if neces-
sary, we implemented a history feature. This feature is com-
prised of two things: The EditHistory and EditHistoryItem.
The EditHistory is responsible for managing a list of
EditHistoryItems, which represent individual modifications
made to elements on the webpage. Each EditHistoryItem
contains the original and modified HTML elements, along
with metadata provided by the LLM, such as the timestamp
of modification, a summary of changes made, and the reason
for the modification.

The Undo and redo
actions are
performed iteratively.

 EditHistory keeps track of the current position in the
history list, allowing users to undo and redo changes. Con-
sequently, it also allows the user to jump to a specific point
in the history, possibly performing multiple undo or redo
actions at once. Rather than storing a snapshot of the whole
webpage for each history item, we only store the original
and modified element, as this allows the webpage to change
without us undoing everything. Consequently, we need to
ensure that multiple undo and redo actions are performed
iteratively. For example, if a user makes three modifications
to different elements on the page, and then wants to undo
the last two changes, the EditHistory will first revert the
most recent change, and then revert the second most recent
change, resulting in the webpage being restored to its state
before those two modifications were made. Replacing the
whole webpage also deletes the history, as it is no longer
valid.

When The smallest
modified element is
highlighted when
browsing history.

 the user browses the history, the content script uses
the dpguard-timestamp-smallest attribute to identify the
smallest modified element for that history item, highlighting
it in the webpage (Figure 3.3). This is especially useful when
the LLM only made minor modifications that did not affect
the whole element, allowing users to easily identify which
parts of the requested element were actually changed.
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Chapter 5

Technical Evaluation

To test the effectiveness of our implementation, we con-
ducted a systematic technical evaluation of the DPGuard
extension. We designed a set of parameters and metrics to
assess the tool’s performance, accuracy, and usability. The
evaluation was carried out in a controlled environment and
partly automated. We chose to automate the evaluation as
much as possible to ensure consistency and repeatability of
the results. However, some aspects of the evaluation, such
as categorizing the results, required manual inspection and
judgment.

5.1 Methodology

Our The evaluation
extends the work by
Schäfer et al. [2025]
with real-world
webpages, additional
metrics, and
parameters.

 evaluation closely follows the evaluation methodology
of Schäfer et al. [2025], using the same LLM (GPT-4o) and
similar parameters. However, we extended their approach
by incorporating real-world web pages in addition to the
prebuilt pages they used. This allowed us to assess the
tool’s performance in more realistic scenarios. Since Schäfer
et al. [2025] already built a set of prebuilt pages, we reused
one page of each category (nine deceptive websites and
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one legitimate website). To align with their evaluation, we
selected ten real-world pages, also including nine deceptive
websites and one legitimate website, therefore providing the
same diversity in page types. Table B.1 shows the real-world
pages that were manually selected to ensure a representative
sample.

InWe compared local
and remote model

performances.

 addition to using the remote GPT-4o model, we also
evaluated DPGuard with qwen2.5-32b-agi, a local LLM said
to have comparable¹ performance of OpenAI’s GPT-4o. This
gave us insight into how the tool performs with different
LLMs, but does not allow for a direct comparison between
the two models, since the local model’s performance is
heavily dependent on the hardware it runs on. In our case,
we used a desktop PC with an Intel i5-13600KF, 32GB RAM,
and an NVIDIA RTX 4090.

To then formally define the evaluation, we considered the
following parameters, leading to a total of 240 evaluation
runs:

• Page Type: Real-world or prebuilt pages (2 × 10)

• LLM: Local or remote (× 2)

• Iterations: 1, 3, or 5 iterations of LLM processing (× 3)

• Style Mode: None or intermediate (document’s <style>
found in <head>) (× 2)

ToThe results describe
how well DPs were

mitigated.

 be able to compare the results of the different runs, we
would need a way to quantify the results. While we could
use a simple binary metric (correct/incorrect), we found that
this would not account for the varying degrees of correctness
in the results. To address this, we split the results into five
categories:

• Removed: The deceptive pattern was fully removed,
and there are no manipulative elements left.

¹https://dubesor.de/benchtable#cost-effectiveness, Accessed October
2025

https://dubesor.de/benchtable#cost-effectiveness
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• Reduced: The deceptive pattern was partially removed,
but some manipulative elements are still present.

• Unchanged: The element remained unchanged.

• Worsened: The element was modified, but the manip-
ulative elements were made worse.

• No-op: The LLM was not able to process the request,
e.g., due to a timeout or an error.

The We defined
quantitative metrics
to complement
subjective
judgments.

 results were decided and applied according to the
Ontology by Gray et al. [2024a]. While these self-created
categories provide a good overview of the results, they are
still somewhat subjective and can be interpreted differently
by different evaluators. In order to not only rely on subjec-
tive judgments, we additionally defined a set of quantitative
metrics to measure the performance of the tool:

1. Duration(ms): The total time taken for the evaluation
run, measured in milliseconds. This allows us to de-
duce the performance impact of different parameters.

2. Total/Effective  Size(yes/no): The total and effective
size (in character length) of the selected element helps
us understand how much content is available and how
much of it is actually processed.

3. Unrelated Changes(yes/no): Whether the LLM made
changes to parts of the element that were not related to
the deceptive pattern.

4. Functionality(yes/no): Whether the functionality of the
element was preserved after the modifications.

For our methods of analysis, we manually inspected the
results of each run and categorized them according to the
defined categories. We mainly used descriptive statistics to
summarize the results, such as counts and percentages for
each category. For our quantitative metrics, we calculated
averages and percentages to provide a more objective assess-
ment of the tool’s performance.
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5.2 Results

AllThe evaluation
included a total of

240 runs, with results
categorized and

analyzed.

 runs were gathered and evaluated in a spreadsheet.
After categorizing the results, we manually inspected the
runs and outlined different trends and observations. For
instance, we found that the remote LLM was generally more
hesitant to make changes in either direction, resulting in
more unchanged outcomes than the local LLM, but also had
a higher number of removals or reductions. This is due to
the local LLM producing more No-op results, likely because
of its limited token length and context window when com-
pared to the remote LLM. Table 5.1 shows a summary of the
results for the different LLMs, additionally indicating that
unchanged results were preferred over worsened results.

Result LLM: Local LLM: Remote Total
Removed 14 17 31
Reduced 20 27 47
Unchanged 28 46 74
Worsened 12 10 22
No-op 46 20 66
Total 120 120 240

Table 5.1: A summary of the evaluation results, categorized
by the outcome of each run and the type of LLM used (local
or remote). Bold numbers indicate the highest occurrences
in each category.

SinceFunctionality was
generally preserved,

and unrelated
changes happened

in 33% of cases.

 preserving functionality is an important part of a suc-
cessful in situ mitigation, Table 5.2 shows a breakdown of
the functionality preservation and unrelated changes made
by the LLMs when making changes, meaning that No-op
results were excluded to allow for a better comparison. The
results indicate that the local LLM was more likely to make
unrelated changes, potentially due to its limited capabilities.
However, both LLMs were generally able to preserve the
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functionality of the elements, with prebuilt pages achieving
a perfect score.

Parameter Functionality Unrelated Changes
Local 95.95% 40.54%
Remote 85.86% 26.26%

Prebuilt 100.0% 24.17%
Real-world 67.92% 50.94%
Total 90.17% 32.37%

Table 5.2: A percentage distribution of functionality preser-
vation and unrelated changes made by the LLMs across
different parameters (LLM type and page type).

To Duration analysis
showed the remote
LLM was nearly 4
times faster than the
local LLM.

 briefly assess model performances, we measured the
average duration of each run, with results for the local and
remote LLM being shown on a logarithmic scale in Figure 5.3.
The boxplot indicates that the remote LLM was nearly 4
times faster than the local LLM, likely due to the difference
in hardware and infrastructure. Additionally, we found that
using no style mode was faster than using the intermediate
style mode (as the LLM had to process less content), roughly
halving the average duration.

10 100
Duration (seconds)

local

remote

Figure 5.3: The durations (in seconds on a logarithmic scale)
for local and remote LLMs on all page types and iterations.
The remote LLM is nearly 4 times faster than the local LLM
on average, with a much smaller interquartile range.
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SincePage type analysis
revealed prebuilt
pages generally

yielded better
results.

 DPGuard provides insight into how real-world web-
pages can be modified to remove manipulative patterns, we
also compared results based on the type of page (real-world
vs. prebuilt), shown in Figure 5.4. We found that for a major-
ity of real-world pages, the LLM was not able to make any
changes (No-op), or the manipulative elements remained
unchanged. More than half of the occurrences were No-ops.
It was additionally never able to fully remove the manipu-
lative elements. In contrast, prebuilt pages never contained
No-op results and generally produced more improvements,
with almost half of the runs resulting in a reduction or
removal.

Real-world
Prebuilt

0 10 20 30 40 50 60
Number of occurrences

No-op

Worsened

Unchanged

Reduced

Removed

Figure  5.4:  A comparison of the evaluation results for
real-world and prebuilt pages across different outcome
categories. The chart shows that prebuilt pages generally
yielded better results, while real-world pages had a higher
number of No-ops and fewer removals of deceptive patterns.

InOverall, around
47.12% of all runs

produced a removal
or reduction of

manipulative
elements.

 total, around 47.12% of all runs produced a removal or
reduction of the manipulative elements. For prebuilt pages,
more than half (51.66%) of the runs produced such an im-
provement, while for real-world pages, this was only 12.5%.
This indicates that while the tool is effective on simpler,
prebuilt pages, it struggles with the complexity of real-
world webpages, since real-world webpages often contain
more complex structures, sometimes generated when using
a framework, making it harder for the LLM to identify and
modify the relevant elements. This suggests that further
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improvements are needed, for example, by providing a more
sophisticated chunking/ignoring algorithm or by using a
more powerful LLM.

Results Smaller effective
sizes led to better
results.

 have additionally shown that a higher effective size
generally leads to No-op or unchanged results, probably due
to the LLM being overwhelmed by the amount of content
it had to process. This further supports the need for a more
sophisticated chunking and ignoring algorithm.

1
3
5

0 5 10 15 20 25 30
Number of occurrences

No-op

Worsened

Unchanged

Reduced

Removed

Figure 5.5: The evaluation results based on the number of
iterations (1, 3, and 5). The chart highlights 3 iterations as
the most effective setting, producing the highest number
of removals and reductions while minimizing No-ops and
worsened outcomes.

Similar Iteration analysis
identified 3 iterations
as the most effective
setting.

 to Schäfer et al. [2025], we also evaluated the impact
of different LLM iterations (introduced in Section 4.2),
shown in Figure 5.5. Aligning with their work, we found that
3 iterations produced the best results, yielding the highest
number of removals and reductions, while minimizing un-
changed and worsened outcomes. However, we also found
that the more iterations were used, the more No-op results
were produced. This is likely due to the LLM reaching its
token limit or context window, especially for the local LLM.
This suggests that while multiple iterations can be beneficial,
there is a trade-off between the number of iterations and
the likelihood of the LLM being able to process the request
successfully.
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Figure 5.6: A boxplot comparison of the evaluation durations (in seconds and with
a logarithmic scale) with GPT"4o based on the page type (lower: real-world, upper:
prebuilt) and the number of iterations (1, 3, and 5). The plot indicates that prebuilt
pages generally have shorter durations compared to real-world pages across all
iteration counts, with real-world pages showing greater variability in duration.

ThePrebuilt and real-
world pages were
compared for their

durations.

 duration analysis was further extended by comparing
the average duration based on the page type (real-world vs.
prebuilt) and the number of iterations, shown in Figure 5.6.
The results were only gathered for the remote LLM (GPT"4o)
to allow for a better comparison, since the local LLM’s
performance is heavily dependent on the hardware it runs
on, and we only want to compare the page types here. Addi-
tionally, we only considered runs that produced a change
(excluding No-op results) to focus on successful modifica-
tions.

ThePrebuilt pages were
generally faster to
process than real-

world pages, which
had a much higher

spread.

 results indicate that prebuilt pages were generally faster
to process than real-world pages, likely due to their simpler
structure and smaller size. However, for a single iteration,
real-world pages actually had a slightly lower median du-
ration, potentially because the LLM was able to quickly
identify and modify the relevant elements without needing
to process the entire page, or because the LLM did not
actually process the elements thoroughly. As the number
of iterations increased, the duration for real-world pages
increased more rapidly than for prebuilt pages, possibly
due to the increased complexity and size, or the LLM now
actually trying to meticulously process the element. For iter-
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ations 3 and 5, real-world pages produced increasingly more
No-op results, indicating that the LLM struggled to process
the content within its token limit. Nevertheless, both page
types showed an increase in duration with more iterations,
highlighting the trade-off between the number of iterations
and processing time.

Figure 5.7: A cookie banner from The Guardian², a real-world manipulative web-
page containing an example of Confirmshaming and Visual Prominence. The banner
pressures users into either accepting personalized ads or giving monetary support
through wordings such as “Rejection hurts…”.

Figure 5.8: The modified cookie banner from Figure 5.7 after applying DPGuard
with a local LLM, 1 iteration and intermediate styles. The Visual Prominence
was reduced by removing the yellow background of the paragraph, but the Con"
firmshaming was not addressed, as the manipulative heading remained unchanged.

During the evaluation, we also kept a record of interest-
ing cases and observations. For instance, Figure 5.7 and
Figure 5.8 show the original and modified versions of a

²https://theguardian.com/europe, Accessed October 2025

https://theguardian.com/europe
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cookie banner from The Guardian², respectively.A cookie banner
from The Guardian
demonstrated both

successful and
unsuccessful

mitigations.

 The origi-
nal banner uses a large heading to make the user feel guilty
for rejecting the cookies, implementing both Confirmshaming
(triggering uncomfortable emotions such as guilt or shame)
and Visual Prominence (making less relevant parts more
prominent) [Gray et al., 2024a]. DPGuard was then applied
only to the text on the left, since including the buttons on
the right would have exceeded the token limit. Nevertheless,
the DPGuard was able to remove the Visual Prominence
by unifying the text style and removing the yellow back-
ground. However, the Confirmshaming was not addressed,
as the manipulative heading remained unchanged. This in-
dicates that while DPGuard can effectively address certain
manipulative patterns, it may struggle with more subtle or
complex elements, especially when operating under token
constraints posed by the LLM.

AlthoughThe LLM introduced
manipulative

elements in some
cases.

 generally effective, we also observed some unex-
pected behaviors. For instance, Figure 5.9 and Figure 5.10
show the original and modified version of a prebuilt Fair
Pattern website respectively. The original website did not
contain any DPs, but after applying DPGuard, the LLM
created a manipulative element by negating the wording of
the checkbox, making users believe they needed to tick the
box to unsubscribe instead of subscribing to the newsletter.
This aligns with findings highlighting the risk of LLMs
generating misleading or manipulative designs [Chen et al.,
2025] and emphasizes the importance of thorough review of
LLM-generated content to avoid inadvertently introducing
manipulative elements.
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Figure 5.9: The original (prebuilt) Fair Pattern website. The
website showcases a checkbox that allows the user to sub-
scribe to a newsletter. The checkbox is not pre-ticked.

Figure  5.10: The modified Fair Pattern website from Fig-
ure 5.9 after mitigating with the local LLM, 1 iteration and
no additional styles. The LLM negated the wording of the
checkbox, making users believe they needed to opt out
instead.

Overall The evaluation
highlighted both
strengths and
weaknesses of
DPGuard.

, the evaluation demonstrated that DPGuard is a
promising tool for mitigating deceptive patterns on web-
pages. However, the results also highlighted several areas
for improvement, particularly in handling the complexity
of real-world webpages and ensuring that manipulative el-
ements are effectively addressed without introducing new
issues. Furthermore, the choice of LLM and configuration
parameters had a great impact on the effectiveness of the
tool. When using local LLMs, it is crucial to consider their
limitations, such as token limits and context windows, since,
currently, our results show that their usage may not be suffi-
cient for realistic and reliable in situ mitigations.
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Chapter 6

Discussion

Bongard-Blanchy et al. [2021] DPGuard extends
existing research on
technical
interventions for
deceptive patterns.

 defined the category of tech-
nical intervention as an effective countermeasure against
deceptive patterns. Examples of such interventions include
Insite or the DAPDE project. By implementing DPGuard, we
contribute to this line of research. Specifically, our extension
can be assigned to the category of technical interventions,
with a focus on realizing the scope of elimination [Bongard-
Blanchy et al., 2021]. Since our approach leverages LLMs to
identify and mitigate deceptive patterns, the natures of the
intervention and its scope are not determined beforehand.
The resulting visual countermeasure [Schäfer et al., 2024]
aligns more closely with design intervention methods. For
all of the applied mitigations, we ensured that the original
content remains accessible to users by implementing the
SW countermeasure by Schäfer et al. [2023]. This way, users
have the ability to toggle between the original and modified
content, allowing them to make informed decisions based
on their preferences. This intervention falls within the scope
of elimination and awareness, enhancing the user’s ability to
recognize and understand this type of deceptive pattern in
the future.
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FurthermoreDPGuard extends
existing research by

using LLMs.

, our work extends the concept of technical in-
terventions by incorporating Large Language Models (LLMs)
for the detection and mitigation of deceptive patterns. This
supplements existing research that has explored the use of
LLMs for detecting deceptive patterns, most notably the
work of Schäfer et al. [2025], by introducing a practical real-
ization in the form of a browser extension.
ConsideringDPGuard provides a

flexible and
extensible platform
for future research.

 the current state of research outlined in Chap-
ter 2, our approach aims to provide an interface for the
HCI community to experiment with LLMs for mitigating
deceptive patterns. By offering a flexible and extensible
platform, we enable researchers and practitioners to explore
various strategies for countering deceptive patterns, poten-
tially leading to more effective and user-friendly solutions
in the future, especially considering the rapid advancements
in LLM capabilities¹.

RelatingDPGuard focuses on
direct mitigation

rather than detection
and is not limited to

specific DPs.

 our work to existing projects, DPGuard distin-
guishes itself by focusing on the direct mitigation of decep-
tive patterns using LLMs, rather than solely detecting or
highlighting them. While tools like Insite² and DAPDE³ pri-
marily aim to identify and visually indicate the presence
of deceptive patterns, our approach goes a step further by
actively modifying the webpage content to reduce manipu-
lativeness. Additionally, our approach does not suffer from
the limitation of only being able to detect a predefined set
of deceptive patterns, as our use of LLMs allows for a more
adaptive approach to mitigation. The more flexible nature of
DPGuard could possibly improve upon the effectiveness of
deceptive pattern countermeasures when compared to other
tools, as it is not limited to a fixed set of known patterns.
However, this flexibility also introduces challenges, such as
ensuring that the LLM-generated mitigations are appropri-
ate and do not inadvertently introduce new usability issues.

¹https://artificialanalysis.ai/leaderboards/models, Accessed October
2025

²https://github.com/NicholasTung/dark-patterns-recognition, Ac"
cessed August 2025

³https://github.com/Dapde/Pattern-Highlighter, Accessed August
2025

https://artificialanalysis.ai/leaderboards/models
https://github.com/NicholasTung/dark-patterns-recognition
https://github.com/Dapde/Pattern-Highlighter
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While DPGuard
complements
existing tools while
introducing new
challenges.

 DPGuard is more flexible in its application scope, it
also faces challenges that are not present in other tools. For
instance, the reliance on LLMs introduces variability in the
quality of mitigations, depending on the model used and
its training data. Furthermore, the modification of elements
directly within the DOM can lead to unforeseen interactions
with the webpage’s functionality, potentially disrupting the
user experience. Overall, DPGuard complements the exist-
ing scenery of tools by providing a promising and novel
approach to deceptive pattern mitigation, addressing some
of the limitations of prior work while also introducing new
challenges that warrant further investigation.

Limitations and Future Work

During Several limitations of
DPGuard were
identified during
development and
evaluation.

 the development of DPGuard and especially while
conducting technical evaluations, we noticed some limita-
tions of our approach that could be addressed in future
work. Specifically, we identified three main areas for im-
provement: Handling dynamic webpage content, improving
the Evaluator’s and CSS parsing capabilities, and enhancing
the user interaction. Additionally, we consider the LLM to be
the most notable bottleneck of our approach, although this is
not a limitation of our implementation, but rather a general
challenge when working with LLMs [Naveed et al., 2025]

In Handling dynamic
webpage content is
a challenge for
DPGuard.

 its current state, DPGuard is primarily designed to handle
static webpage content. However, many modern webpages
feature dynamic content that can change frequently, such as
animations or counters. This poses a challenge, as we are
only able to take a snapshot of the webpage at a specific point
in time. If the content changes after the snapshot is taken, for
example, for a counter, implementing Fake Urgency [Gray et
al., 2024a], the LLM might not be able to make appropriate
modifications. Additionally, DPs that exist across different
pages can currently not be mitigated. A potential solution
to this problem could involve implementing a more sophis-
ticated mechanism for tracking changes, for example, by
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periodically re-evaluating the webpage content or capturing
more than one snapshot over time, similar to what is done in
the DAPDE browser extension. This would allow the exten-
sion to adapt to changes in the webpage content and provide
more accurate mitigations.
AdditionallySome webpages do

not render their
content in a

traditional DOM.

, during our evaluation, we observed that a
few webpages did not render their pages in a traditional
DOM, but instead used a canvas element to render the entire
page. This approach makes it impossible for DPGuard to
access and modify individual elements, as the content is not
represented in the DOM. Addressing this limitation would
require a different approach, potentially involving image
recognition techniques, similar to how Chen et al. [2023]
use computer vision to detect deceptive patterns in mobile
applications.

ForThe evaluator
currently lacks a

sophisticated
implementation.

 the Evaluator, we identified several areas for improve-
ment. First, the current implementation only includes a basic
algorithm for ignoring certain elements, which comes with
the drawback of including irrelevant elements in the LLM
processing, making it harder for the LLM to focus on the
relevant parts. A more sophisticated algorithm could be de-
veloped, calculating the actual token count of the elements
to be sent to the LLM, and being context-aware, for example,
by ignoring elements that are not visible to the user. Further-
more, the Evaluator currently does not consider the size of
the elements when deciding which elements to send to the
LLM. This can lead to situations where very large elements
are sent, exceeding the token limit of the LLM.
MoreoverCSS parsing could

be improved to
better preserve

visual appearance.

, our current implementation for processing CSS
styles is limited, as we only support inline styles and
styles defined in the document’s <head>. Technically, we
also support computed styles, but this often leads to very
large elements being sent to the LLM, which can exceed
token limits and impact performance. A more sophisticated
approach could involve selectively including only the most
relevant styles, for example, by analyzing which styles are
actually applied to the element and its children, and exclud-
ing any unused styles. This would help reduce the size of the



55

elements being sent to the LLM, while still preserving their
visual appearance.

Following Having the user
select elements
requires technical
understanding and
manual effort.

, we identified some areas for improvement in the
user interaction. While the current implementation allows
users to select elements on the webpage and apply mitiga-
tions, it still requires a certain level of technical understand-
ing and manual effort. Future work could explore ways of
automatically applying mitigations without user interven-
tion. However, this would require implementing a chunking
algorithm similar to Block"o"Matic [Sanoja and Gançarski,
2014], since sending the entire webpage to the LLM at once is
often not feasible due to token and performance limitations.
Additionally, the user interface does not account for moving
elements, such as popups or modals, which can make it
difficult for users to select the desired elements. Further
complementing the research by Schäfer et al. [2023], future
work could expand the range of visual countermeasures
available for history hover, such as adding HL+E (Highlight
+ Explain).

Lastly Future work could
address LLM
limitations and
expand model
support.

, while we addressed privacy concerns by running
LLMs locally, this approach comes with its own set of
challenges. Local LLMs often have limitations in terms
of performance and capabilities compared to cloud-based
models. Future work could explore ways to optimize the
performance of local LLMs or investigate hybrid approaches
that balance privacy and performance, for example, by using
local models for initial processing and cloud-based models
for more complex tasks. Since DPGuard provides a common
interface for different LLM providers, expanding the range
of supported models could also be a potential area for
future work, especially for researching the effectiveness of
different models for mitigating deceptive patterns. Although
our current implementation only allows for new LLMs to be
integrated by modifying the source code, we believe that the
differences in their interfaces are minimal enough to allow
for a more user-friendly integration process in future itera-
tions.
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Chapter 7

Conclusion

The goal of this thesis was to explore the practical feasibility
of using LLMs to mitigate deceptive patterns on real-world
web interfaces. To achieve this, we developed DPGuard, a
browser extension that implements the approach proposed
by Schäfer et al. [2025] and allows users to select elements
and apply LLM-based mitigations in situ. We presented
the design and architecture of the extension, detailing its
core components, including the Node Hierarchy and the LLM
Client interface. We also described the technical implemen-
tation of the extension, highlighting key features such as the
Evaluator, and the communication system between all of the
extension’s components. For evaluation, we tested DPGuard
on a set of webpages while changing several parameters. We
found that generally, the extension was able to mitigate de-
ceptive patterns, even though the application on real-world
webpages proved to only provide moderate effectiveness,
with the LLM being the bottleneck. We acquired promising
ideas for future work, especially for allowing effective mit-
igations on real-world webpages. Summarizing, while DP"
Guard demonstrates the potential of LLM-based mitigations
for deceptive patterns, it also highlights the challenges and
limitations of applying this approach in practice, requiring
further research and development.
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Appendix A

Prompt

Make the following html page less manipulative. Adhere to the following 12
rules from now on :
1. If there is no manipulation, then do not change anything.
2. Never remove any actions like buttons or links
3. Never make buttons look inactive or grayed out if they can be clicked.
4. Never add any new information to the page that was not present before.
5. If two buttons are on the same hierarchical level, make both the same
design.
6. Never add new functionalities to the site.
7. Never change facts.
8. Never change numbers.
9. Never hallucinate or invent new information.
10. Never invert the meaning of a statement.
11. Never include the input html code as a part of your response.
12. Provide a list with the changes you performed and why those changes
were necessary.
13. Keep all comments and attributes starting with "leave-" untouched.
14. Provide a short (2 to 4 words) summary of the changes made (or null).
15. Provide a reason why the changes were necessary (or null).
  
Listing A.1: The prompt that was used to instruct the LLM to modify deceptive
webpages. It includes a set of 15 rules that must be followed when modifying the
page. The original prompt was taken from Schäfer et al. [2025] and adapted to the
needs of DPGuard. Note that the prompt is formatted for better readability.
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Appendix B

Evaluation Webpages

On the following pages, you can find all the webpages used
for the evaluation of DPGuard.
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URL Pattern Element
https://www.opodo.de/ False Hierarchy List of “Prime

Flight Deals”
https://www.ryanair.com/de/de/lp/
entdecken/mitgliedschaft

Positive Framing Yellow banner

https://www.adobe.com/
creativecloud/plans.html

Bundling Creative Cloud
Pro

https://amzn.eu/d/6S0ZFNn High Demand Limited time offer
banner

https://www.nytimes.com/
subscription

Complex
Language

Payment text

https://en.wikipedia.org/wiki/Human-
computer_interaction

None First paragraph

https://help.disneyplus.com/en-GB/
article/disneyplus-en-de-price

Comparison
Prevention

Pricing table

https://www.google.com/search?q=
ferienwohnung

Disguised Ad Top result

https://www.theguardian.com/europe Confirmshaming Cookie banner
https://www.t-mobile.com/cell-phone-
plans

Comparison
Prevention

Leftmost option

Table B.1: All real-world websites that were used in the evaluation of DPGuard.
The table lists the URL, the deceptive pattern that is present on the page, and the
element that was tested. The access date for all webpages was October 03, 2025.
Prebuilt websites were taken from Schäfer et al. [2025] and are not listed here.

https://www.opodo.de/
https://www.ryanair.com/de/de/lp/entdecken/mitgliedschaft
https://www.ryanair.com/de/de/lp/entdecken/mitgliedschaft
https://www.adobe.com/creativecloud/plans.html
https://www.adobe.com/creativecloud/plans.html
https://amzn.eu/d/6S0ZFNn
https://www.nytimes.com/subscription
https://www.nytimes.com/subscription
https://en.wikipedia.org/wiki/Human-computer_interaction
https://en.wikipedia.org/wiki/Human-computer_interaction
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Figure B.2: Opodo, False Hierarchy, List of “Prime Flight
Deals”

Figure B.3: Ryanair, Positive Framing, Yellow banner

Figure B.4: Adobe, Bundling, Creative Cloud Pro



64 B Evaluation Webpages

Figure B.5: Amazon, High Demand, Limited time offer
banner

Figure B.6: New York Times, Complex Language, Payment
text

Figure B.7: Wikipedia, None, First paragraph

Figure B.8: Disney Plus, Comparison Prevention, Pricing
table
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Figure B.9: Google, Disguised Ad, Top result

Figure B.10: The Guardian, Confirmshaming, Cookie banner

Figure B.11: T-Mobile, Comparison Prevention, Leftmost
option
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