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Abstract

Data science is a frequent task in academia and industry. One common use of data
science is to validate hypotheses, in which the analyst uses significance-based hypothesis
testing to draw insights about a population distribution based on experimental data.
Apart from data scientists, who are professionally trained in data science and have high
skills levels, many non-professional analysts also carry out data analysis. These non-
professionals, who we refer to as data workers, are domain experts who lack expertise
in data science, such as academic researchers, project managers, and sales managers.

Through interviews, observations, online surveys, and content analyses, we aim to un-
derstand data workers’ workflows across important tasks in hypothesis testing: learning
theoretical and practical statistics, selecting statistical procedures, using data science
programming IDEs to experiment with ideas in source code, refine and refactor source
code, and disseminating findings from an analysis. We present our findings grouped
into two steps when performing data science tasks:

1. Preparing to perform data science tasks: We discuss our findings about the
impact of formal training on real-world statistical practice; trade-offs among in-
formation sources used for selecting statistical procedures; perceived complexity
and uncertainty about statistical procedure selection; and reluctance among data
workers to adopt alternative methods of analysis.

Based on the above findings, we present design recommendations and one artifact
to improve data workers’ workflows. Our artifact StatPlayground is an interactive
simulation tool that can be used to self-learn or teach statistical concepts and
statistical procedure selection.

2. Performing data science tasks: Our findings include an overview of data work-
ers’ workflows when performing hypothesis testing using programming IDEs,
which follows an exploratory programming workflow; and a comparison of ex-
isting interfaces for data science programming, namely computational notebooks,
scripts, and consoles, and a discussion of how well they support various steps in
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hypothesis testing.

To improve data workers’ workflows when performing data science tasks, we con-
tribute design recommendations and two artifacts. Our artifacts include StatWire,
an experimental hybrid-programming interface that encourages data workers to
write high-quality source code; and Tractus, an interactive visualization that can
lower the cost of working with experimental source code.

Based on our work, we present four takeaways that can be used by researchers, software
developers, and educators to lower the barriers to hypothesis testing.



xvii

Überblick

Data Science wird in der Wissenschaft und Industrie häufig benötigt. Ein wichtiger
Nutzen ist die Prüfung von Hypothesen, wofür der Analyst signifikanz-basierte Hypothe-
sentests verwendet, um auf Basis von Daten aus Experimenten Erkenntnisse über eine
Populationsverteilung zu gewinnen. Neben Data Scientists, die professionelles Training
in Data Science und hohe Kompetenz haben, üben viele nicht-professionelle Analysten
Data Science aus. Diese bezeichnen wir als Data Workers und sie sind Experten in einem
Gebiet, denen jedoch Expertise in Data Science fehlt. Data Workers umfassen akademis-
che Wissenschaftler, Projektmanager und Vertriebsleiter.

Mithilfe von Interviews, Beobachtungen, Online-Umfragen und Inhaltsanalyse haben
wir versucht, den Arbeitsablauf von Data Workern in wichtigen Aufgabenbereichen von
Hypothesentests zu verstehen: Theoretische und praktische Statistik erlernen; statistis-
che Verfahren auswählen; Data Science Programmierumgebungen nutzen, um mit Ideen
in Quellcode zu experimentieren; den Quellcode verfeinern und überarbeiten; sowie die
Analysergebnisse verbreiten. Wir gruppieren unsere Ergebnisse in zwei Teilschritte von
Data Science:

1. Die Vorbereitung zur Durchführung von Data Science-Aufgaben: Wir disku-
tieren unsere Ergebnisse zum Einfluss von formaler Ausbildung auf die tatsäch-
liche Praxis; Abwägungen zwischen Informationsquellen, welche die Auswahl von
statistischen Verfahren herangezogen werden; empfundene Komplexität und Un-
sicherheit über die getroffene Wahl statistischer Verfahren; und den Widerwillen
von Data Workern, alternative Analysemethoden anzuwenden.

Aufgrund dieser Ergebnisse präsentieren wir Designempfehlungen sowie ein Arte-
fakt, welche die Arbeit von Data Workern verbessern sollen. Unsere Artefakt ist
StatPlayground, ein interaktives Simulations-Tool, das zum selbstständigen Erler-
nen statistischer Konzepte und Verfahren genutzt werden kann.

2. Die Durchführung von Data Science-Aufgaben: Unsere Ergebnisse beinhalten
eine Übersicht über den Arbeitsablauf eines Hypothesentests unter Nutzung einer
Programmierumgebung, der die Form von explorativer Programmierung nimmt;
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und ein Vergleich existierender Oberflächen für Data Science-Programmierung,
nämlich Notebooks, Skripte und Konsolen, sowie eine Diskussion darüber, wie
gut sie die verschiedenen Schritte der Hypothesentests unterstützen.

Um den Arbeitsablauf von Data Workern während solcher Data Science-Aufgaben
zu verbessern, präsentieren wir Designempfehlungen und zwei Artefakte. Die
Artefakte sind StatWire, eine experimentelle Oberfläche zur hybriden Program-
mierung, die Data Worker dazu ermutigen kann, hochwertigen Quellcode zu
schreiben; und Tractus, eine interaktive Visualisierung, die den Aufwand der Ar-
beit mit experimentellem Code verringert.

Basierend auf dieser Arbeit stellen wir vier Erkenntnisse vor, die von Wissenschaftlern,
Software-Entwicklern und Ausbildern genutzt werden können, um die Hürden zum Er-
lernen des Umgangs mit Hypothesentests zu senken.
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Conventions

We use the following conventions throughout this thesis.

Definitions of terms, author’s contributions, and download
links are set off in colored boxes.

DEFINITION

Definitions of key concepts and terms are set off in orange-
colored boxes.

Definition:

Definition

https://hci.rwth-aachen.de/project a

aLinks to supplementary materials are set off in green-colored boxes.

PUBLICATIONS AND AUTHOR’S CONTRIBUTIONS

Author’s publications that are discussed in a chapter and his contributions are set off
in blue-colored boxes. Such boxes are added at the beginning of each chapter that
discusses our research contributions.

Source code and implementation symbols are written in
typewriter-style text.

myClass

We follow the APA manual of style for using title vs. sentence
cases [DeCleene and Fogo, 2012]. The titles of references in
the thesis text, headings at Levels 1 and 2, and named sections
within the thesis are written in title case. The titles of refer-
ences in the reference list entries and headings at Levels 3–5
are written in sentence case.

https://hci.rwth-aachen.de/project


xxii Conventions

The author of this thesis wishes to use the first person plural,
“we”, to acknowledge the contributions of his collaborators.
Plural first person pronouns, such as “we” and “us”, are used
to refer to the readers in order to help with narration, e.g., “Let
us assume that ...”. We use neutral third person pronouns, such
as “they” and “their” to refer to individual study participants to
maintain their anonymity.

The author’s individual contributions are clarified at the begin-
ning of each chapter.

The whole thesis is written in American English.
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Chapter 1

Introduction

“We are drowning in information,
while starving for wisdom.”

—Edward O. Wilson

In the past, Greeks used information about spatial positions Data helped ancient

Greeks predict the

future.

and trajectories of celestial bodies to predict the future. To do
this, Greek thinkers like Apollonius, Hipparchus, and Ptolemy
used epicycles1—geometric models of the sun, moon, and plan-
ets [Evans and Cannan, 2014]. Epicycles are fairly complex
models capable of accounting for variations in speed and tra-
jectories of these celestial bodies. Strikingly, an epicycle is not
a model borne out of physics, but of data.

Although we now have more sophisticated methods to track Data drive

advancements in

science and technology.

celestial bodies, many of our scientific and technological ad-
vancements are still driven by data. Audiovisual recordings of
animals in the wild help us understand their behavior [Hei-
thaus et al., 2002], measurements of surface radiative temper-
ature of earth help us understand the impact of greenhouse
gases on global warming [Jin and Dickinson, 2002], and tweets
produced before elections help us forecast the outcome of the
election [Rathi, 2017; Bovet et al., 2018].

To extract such insights from data, researchers and data ana-

1means “circle moving on a circle”
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Figure 1.1: Epicycles are geometric models of celestial bod-
ies used in Greece. The image shows a planet on an epicycle
(smaller dashed circle) rotating around an axis referred to as
a deferent (larger dashed circle). This model is borne out of
data, and can account for variations in speed and trajectories
of various planets. This is an example of a situation in which
data drive scientific advancements. (Source: Wikimedia Com-
mons.)

lysts use various tools and techniques. These tools and tech-
niques, as well as the governing principles, constitute data sci-
ence.

DATA SCIENCE

Data science is a set of tools, such as significance testing and
machine learning, and fundamental techniques that “sup-
port and guide the principled extraction of information and
knowledge from data” [Provost and Fawcett, 2013].

Definition:

Data Science

As a skill, data science has never been more necessary,Data science is no

longer a skilled

practiced just by

professionals.

widespread, or accessible. Modern technologies, such as the
internet, mobile devices, and wearables, produce data at fre-
quent rates. In order to gain an advantage over their peers
[Provost and Fawcett, 2013], industries often utilize such data
to drive their strategic decisions. For example, research by
Brynjolfsson et al. shows that companies that are data-driven



3

increase their productivity by 5–6% [Brynjolfsson et al., 2011].
As a result of this need, there is a demand for data analysts who
can work with data to produce insights [Zita, 2021; Glassdoor
Inc., 2021]. Further, modern computers are capable enough
of handling vast amounts of data; analysts no longer need
powerful supercomputers for this. This has lowered the bar-
riers to performing data science tasks, and data science is now
more widespread and accessible than ever before [Provost and
Fawcett, 2013].

DATA SCIENTIST

“A high-ranking professional with the training and curiosity
to make discoveries in the world of big data” [Davenport and
Patil, 2012].

Definition:

Data scientist

DATA WORKER

Anyone who regularly works with data without necessar-
ily having had extensive or any formal training [Boukhelifa
et al., 2017]. Data workers do not typically self-identify as
data scientists.

Definition:

Data worker

All of this has given rise to a new group of individuals who Data workers are

domain experts who

work with data without

necessarily having had

extensive or even any

formal training.

work with data called data workers. With this term, borrowed
from research by Boukhelifa et al., we refer to domain experts
who

• work with data without necessarily having had extensive
or even any formal training, and

• do not self-identify as data scientists [Liu et al., 2020].

As a result, data workers’ workflows constitute varying levels
of formalism [Harris et al., 2013b] and deviate from normative
practice. Data scientists, in contrast, are extensively trained
and typically operate with high skill levels [Davenport and
Patil, 2012]. Data workers work in various domains, such as so-
cial sciences, archaeology, human-computer interaction (HCI),
and medicine. They work under different designations, such as
academic researchers, project managers, and sales managers.
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Figure 1.2: There are four dimensions to data science: Do-
main, which indicates the field in which data science is applied,
such as research and business analytics; data, which drives
many of our scientific and technological advancements; tech-
nology, which includes the programming IDEs and software
tools that are used to perform data science tasks; and math,
which includes the techniques, such as neural networks, statis-
tical hypothesis testing, and regression analysis. We use these
dimensions to specify the scope of our work. The image has
been adapted from www.dezyre.com.

1.1 Hypothesis Testing

Data science has many applications, one of which is predictionStatistical inference

helps predict

characteristics of a

population from sample

data points.

[Davenport and Patil, 2012; Hernán et al., 2019]. A common
method for prediction is statistical inference, in which the ana-
lyst predicts the characteristics of the population based on sam-
ple data. Several paradigms of analysis can be used to achieve
such inference, such as the frequentist inference, Bayesian in-
ference, and AIC statistics. Along with Bayesian inference, fre-
quentist inference is the most common paradigm.

Frequentist inference includes methods such as statistical hy-Hypothesis testing is

prevalent across many

research fields.

pothesis testing (or significance testing), 95% confidence inter-
vals, and effect sizes. Although this research work is primarily
focused on hypothesis testing, we aim to generalize our work to
other data science techniques as discussed later in Section 7.2.
Hypothesis testing is the most common technique for inference
in many disciplines, such as HCI [Cairns, 2007; Kaptein and

https://www.dezyre.com/article/data-mining-vs-statistics-vs-machine-learning/349
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Robertson, 2012], psychology [Hubbard and Ryan, 2000], and
medicine [Rutledge and Loh, 2004]. In HCI, hypothesis test-
ing is routinely used to validate new interactions, devices, and
systems [Kaptein and Robertson, 2012; Besançon and Dragice-
vic, 2019], e.g., via A/B testing. To quantify the prevalence
of hypothesis testing in HCI, we surveyed publications at CHI,
a premier HCI conference [Guide2Research, 2020]. 351 out
of 703 papers (~50%) use quantitative methods. Excluding
50 papers that reported only descriptive statistics, we find that
276 out of 301 papers (91.6%) use hypothesis testing as the
method of inference.

Despite such prevalence, hypothesis testing has garnered criti- Hypothesis testing has

problems of

methodology and

practice, and is

considered hard to

teach.

cism over questionable use of and over-reliance on p-values,
which leads misinterpretation of results, e.g., [Kline, 2004;
Dragicevic, 2016]. Over-reliance of p-values leads to dichoto-
mous thinking, under which results of research studies are in-
correctly classified into “significant” and “non-significant”, e.g.,
[Dragicevic, 2016]. Beyond criticisms of the method, hypothe-
sis testing is also considered hard to learn and teach [Garfield
and Ben-Zvi, 2007, p. 375].

1.2 Motivation and Approach

This thesis aims to understand and improve data workers’ This thesis aims to

lower barriers to

performing hypothesis

testing.

workflows with hypothesis testing. We focus on data workers,
since their workflows differ from normative practice and very
little is known about their workflows [Boukhelifa et al., 2017].
We chose hypothesis testing, since it is the de facto standard
for statistical inference in several fields.

In our work, we employed an inductive approach to understand
data workers’ current practices. We do this through qualitative
research methods, such as observations and interviews, and
substantiate the findings with data from surveys. Based on the
insights we gathered from such data collection and analyses,
we identified opportunities for design, some of which we con-
tribute as research artifacts in this thesis. In our work, we aim
to answer the following questions:
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• How do data workers prepare to perform hypothesis test-
ing? What information sources do they use? What infor-
mation do they require? How do they select the appro-
priate statistical procedure?

• How do data workers perform hypothesis testing with
various interfaces? How well do these interfaces support
the various tasks in hypothesis testing?

1.3 Contributions and Structure

This thesis has contributions across two key tasks in data sci-
ence as shown in Figure 1.3: preparing to perform data science
tasks and performing data science tasks. Our contributions are
as follows:

1. Preparing to perform data science tasks

(a) Chapter 3: Two interview studies and a content
analysis that show how data workers prepare to
perform data science tasks: what knowledge they
seek, which information sources they use to seek
this, and how such information sources are used.

(b) Chapter 4: Based on our findings, we contribute de-
sign recommendations and one artifact: StatPlay-
ground, a simulation-based prototype to self-learn
or teach practical statistics, and Statsplorer, a tool
that helps educate data workers about common is-
sues in hypothesis testing.

2. Performing data science tasks

(a) Chapter 5 and Chapter 6: A content analysis that
shows common problems in data science program-
ming. Our findings led to an artifact, StatWire, an
exploratory prototype for hybrid data science pro-
gramming.

(b) Chapter 5: Two observation studies that help us un-
derstand two aspects of data science programming:
How the analyst’s source code evolves across hy-
pothesis testing, and how existing programming in-
terfaces support various steps in hypothesis testing.
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(c) Chapter 6: Our findings from these observation
studies led to Tractus, a tool that visualizes the
source code by grouping them into hypotheses.

Before presenting our contributions, we provide some back-
ground information that helps better situate our contributions
in Chapter 2.
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Chapter 2

Background and
Motivation

Data science is a broad term that is commonly used to refer to Data science is an

umbrella term used to

refer to a range of tasks,

tools, and techniques to

extract knowledge from

data.

a wide range of tasks, techniques, and principles used to obtain
insights from data. Over the years, there has been an increas-
ing uncertainty about what data science is, and, as a result,
data science is often mistaken for related disciplines, such as
data mining, big data, and data analytics [Provost and Fawcett,
2013; Dhar, 2013]. To situate our research more clearly within
the broad discipline of data science and to provide background
information that is required for understanding the contribu-
tions outlined in this thesis, we aim to answer the following
questions in this chapter:

• Section 2.1: What is hypothesis testing? What are the
steps in hypothesis testing?

• Section 2.2: What is data science? What ‘part’ of data
science is hypothesis testing?

• Section 2.3: What are some prominent issues in hypoth-
esis testing?

• Section 2.4: What is the role of hypothesis testing in data
science?

• Section 2.7: Who are data workers? What are their char-
acteristics? Why is it interesting to study them?
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Additionally, we discuss some notable research that motivated
our work and some background literature on topics related to
our work, such as characteristics of data science (Section 2.5)
and interfaces used to perform analysis (Section 2.6).

2.1 Steps in Hypothesis Testing

A scientific hypothesis is a concrete statement that gives one
potential explanation of a phenomenon [Toledo et al., 2011].
Hypotheses need to be tested for it to become scientific truthHypothesis testing

involves numerous

steps. At each step, the

analyst needs to make

decisions that impact

the remainder of their

analysis.

(or a theory), and hypothesis testing provides a numerical ap-
proach to do this. Hypothesis testing is a complex task that
involves several steps as discussed below. These steps are
adapted from existing research [Fife, 2020; Field, 2013], and
are grounded in author’s own experience of working with data
workers during the course of this research work.

1. Formulation: Determine one or more hypotheses based
on the research questions. The analyst typically identi-
fies such hypotheses from observations, surveys, exper-
iments, literature survey, or other such methods. For
example, in HCI, many researchers initially perform ex-
ploratory studies, and analyze the resulting data to gen-
erate hypothesis [Cockburn et al., 2018].

2. Design the experiment: In this step, the analyst designs
the experiment by picking the measurements (also known
as dependent variables) and factors (also known as inde-
pendent variables); sets up the experiment to limit extra-
neous variables; designs the stimuli and task to ensure
validity and reproducibility of the research.

3. Determine the sample: The analyst then recruits partic-
ipants who fit the inclusion criteria, e.g., age, experience,
and handedness. At this step, the analyst would also de-
termine an appropriate sample size based on a statistical
power estimation.

4. Run the experiment: The analyst runs the experiment
to collect the experimental data.
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5. Data cleaning: The analyst cleans data to remove out-
liers, convert data to the correct format, and normalize
values.

6. Exploratory analysis: The analyst understands their
data by performing exploratory data analysis, a process
in which the analyst uses visualizations and summary
statistics to detect patterns and anomalies. Such ex-
ploratory analysis could include significance tests, but
such tests should not be considered as statistical proof
for or against the hypothesis. The results should instead
be considered new hypotheses that are then evaluated in
another experiment and analysis, one targeted at statis-
tically accepting or rejecting a hypothesis.

7. Check data assumptions: Most statistical significance
tests assume certain characteristics about the data. The
most common assumptions are: Type of distribution,
whether the distributions have similar variances, and
whether the factor was within-subjects or between-
subjects. The analyst checks these assumptions before
carrying out the significance tests.

8. Perform significance tests: Based on data character-
istics and sample size, the analyst selects and performs
a statistical test. In situations where a factor has more
than two levels, the analyst performs an omnibus test like
ANOVA. Omnibus tests are used to test for a significant
effect across all distributions corresponding to these lev-
els. If such a test is successful in showing an effect, the
analyst performs pairwise tests to reveal effect between
each distribution pair.

9. Interpret the results: After performing significance
tests, the analyst interprets the results. This might in-
volve calculating the point estimates, e.g., effect sizes,
and interval estimates, e.g., 95% confidence intervals.
These estimates can be used to interpret the practical sig-
nificance of the findings from analysis.

10. Report the findings: Once the analyst interprets the re-
sults, they reports their analysis process, methods, and
findings in publications and presentations, e.g., by using
the APA style for reporting [American Psychological As-
sociation, 1994].
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2.2 Situating Hypothesis Testing in Existing
Classifications of Data Science

Data science refers to the tools, techniques, and principles usedData science involves

the use of principles

and analysis techniques

to extract insights from

data.

to extract information and knowledge from data [Provost and
Fawcett, 2013]. While tools and techniques are well-known,
principles are equally important and govern an analyst’s ap-
proach towards a data science problem. For example, an orga-
nization might request that analysts ensure that their analysis
source code conforms to clean code principles [Martin, 2008].

Techniques (also known as methods) facilitate the actual extrac-Analysis techniques

typically come from a

certain data science

paradigm.

tion of knowledge. Techniques often conform to a school of
thought, referred to as a paradigm. For example, unpaired t-
test, unsupervised learning, neural networks, and regression
models are some analysis methods, whereas frequentist infer-
ence [Field, 2013], Bayesian inference [Kruschke, 2015], and
AIC-based inference [Akaike, 1973] are paradigms of analysis
[Granville, 2016].

We now review some of the existing classifications of data sci-
ence, in order to situate hypothesis testing in these classifica-
tions. These classifications are not mutually exclusive, and in-
stead act as conceptual lenses with which to view the vast field
of data science.

2.2.1 Hernán’s Classification of Data Science by Task
Purpose

Hernán et al. classified data science tasks into three types onHypothesis testing is

used across all tasks in

Hernán’s classification

of data science tasks.

the basis of the purpose or intent: description, prediction, and
counterfactual prediction [Hernán et al., 2019]:

• Description: Using data to provide a quantitative sum-
mary of certain features in the world. Example tech-
niques include summary or descriptive statistics, cluster
analysis, and visualizations.

• Prediction: Using data to map some features of the world
to other features of the world. Example techniques in-
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clude correlation coefficients, random forests, and neural
networks.

• Counterfactual prediction: Using data to predict certain
features of the world as if the world had been different.
g-methods are commonly used to make counterfactual
predictions.

Hernán argues that hypothesis tests are used across all three
data science tasks, usually to generalize findings from sample
to population.

2.2.2 Descriptive vs. Inferential Statistics

During hypothesis testing, it is often impossible to collect mea- Descriptive statistics

are used to describe

samples.

surements from the entire population. Therefore, analysts col-
lect measurements about a sample data, and then use statistics
to estimate information about population. Descriptive statistics
refers to summary statistics that are used to describe a sample.
These include measures of central tendency, such as mean, me-
dian, and mode, and measures of variability, such as standard
deviation and variance. Although it is important to understand
the sample, the main goal of hypothesis testing is to draw con-
clusions about the population based on the sample.

Inferential statistics can provide this information. These in- Inferential statistics are

used to extrapolate

information from sample

to the underlying

population.

clude point estimates, e.g., effect size, and interval estimates,
e.g., 95% confidence intervals. These also include hypothesis
tests, such as t-tests and ANOVA, which results in a p-value
that acts as evidence for or against the null hypothesis and a
test statistic that measures how well the data points fit a pre-
defined model. A thorough discussion of inferential statistics,
including the underlying concepts of Central Limit theorem and
Gaussian distribution, is beyond the scope of this thesis. See,
e.g., [Field, 2013] for a detailed discussion of the basics.

2.2.3 Tukey’s Classification of Data Analysis:
Exploration and Confirmation

Tukey proposed that data analysis consists of two distinct, but
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related stages: Exploratory Data Analysis (EDA) and Confirma-
tory Data Analysis (CDA) [Tukey, 1980]. EDA is the initial stage
of getting acquainted with the data; it involves computing de-
scriptive statistics and plotting visualizations. The objective ofAnalysis involves

exploratory analysis to

understand data

patterns followed by

confirmatory analysis to

validate hypotheses.

analysts at this stage is to understand the data, detect patterns
and anomalies, and generate hypotheses. EDA could even in-
volve hypothesis tests or Bayesian analysis, but the results of
such tests should only be considered as tentative and as a first
step to confirmatory analysis.

CDA follows EDA, and involves validating one or more hy-EDA generates ideas

which are validated in

CDA.

potheses through hypothesis tests or Bayesian analysis. De-
scriptive statistics is used predominantly during EDA, whereas
inferential statistics is used during CDA. Common statistics
used in CDA are p-values, Bayes factors, effect sizes, and 95%
confidence intervals. Using another conceptual lens [Kell and
Oliver, 2003], EDA can be thought of as the process of in-
duction, i.e., generalizing data to generate ideas. Conversely,
hypothesis-driven data science is based on deduction, which
validates ideas through data. Both inductive and deductive
forms of data science complement each other.

2.2.4 Paradigms of Statistical Inference

Although frequentist inference is the most prevalent, there areThere are four

paradigms of statistical

inference.

many other established paradigms or schools of statistical infer-
ence: a) classical statistics or frequentist inference, b) Bayesian
statistics, c) the Akaikean-Information Criterion-based (AIC)
statistics, and d) likelihoodist statistics [Bandyopadhyay and
Forster, 2011].

Frequentist inference is based on the assumption that data distri-Frequentist inference

allows us to estimate

characteristics of

population.

butions, when repeatedly sampled over time, have properties
similar to the population. Based on certain factors like sample
size and type of distribution, frequentist inference allows us to
estimate population distribution’s characteristics with a certain
threshold of error. There are different approaches to frequen-
tist inference, such as the processes introduced by Neyman-
Pearson, Fisher, and Lindquist [Perezgonzalez, 2015].

Of these approaches, significance testing is one of the most



2.2 Situating Hypothesis Testing in Existing Classifications of Data Science 15

prevalent methods for validating research hypotheses [Cairns,
2007; Cockburn et al., 2018]. It involves computing p-values Significance testing

involves the use of

p-values to accept or

reject a hypothesis.

and using them as thresholds to validate hypotheses [Nicker-
son, 2000]. It is often employed in dichotomous testing, where
the researcher would accept or reject a hypothesis on the ba-
sis of statistical significance [Dragicevic, 2016]. Over the past
decade, significance testing has garnered a lot of criticism in
HCI [Dragicevic, 2016; Cockburn et al., 2018]; we discuss a
few prominent issues in Section 2.3.

Bayesian inference is based on Bayes’ theorem, under which the Bayesian inference,

which is based on

Bayes’ theorem, is an

alternative to

significance testing.

probability for a hypothesis to be true can become updated as
more data becomes available. Bayesian inference can be com-
putationally intensive and might require the analyst to specify
information that is rarely available, such as the prior proba-
bilities. As a result, analysts often select priors in a subjective
fashion, which is a subject of contention among statisticians,
e.g., as discussed in [Casella and Moreno, 2006]. Nevertheless,
as computers have become more powerful, many researchers
have recommended the use of Bayesian inference over hypoth-
esis testing [Gelman, 2006; Dienes, 2011; Kay et al., 2016].

AIC statistics uses a metric called Akaike1 Information Criterion AIC statistics use a

metric to compare

models. Likelihood

statistics use the

likelihood function to

compare models.

(AIC) to estimate prediction error of a model. This metric is
used to compare models, typically the same models constructed
in hypothesis tests. Likelihoodist statistics uses the likelihood
function, which measures the goodness of fit of a statistical
model as a factor of sampling density. Likelihoodist statistics
can be used alongside frequentist and Bayesian inference.

2.2.5 Model Selection vs. Significance-Based Testing

In addition to significance-based hypothesis testing, data an- Model selection allows

comparison of models

to determine the model

that best fits the data.

alysts can use model selection to validate hypotheses. In this
approach, the analyst determines several alternative hypothe-
ses, and models each hypothesis using a model [Burnham and
Anderson, 2002]. Then, metrics like AIC [Akaike, 1973; Boz-
dogan, 1987] and Bayes factor [Kruschke, 2015] are used to
select the model that has the best fit (or another relevant cri-

1named after Hirotugu Akaike, the Japanese statistician who developed
the metric
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teria). Thus model selection can be seen as an extension of
significance-based testing, in which the analyst obtains evi-
dence to prefer one hypothesis over another.

In contrast to model selection, hypothesis testing involves com-Significance testing is

used to obtain evidence

against null hypothesis.

paring two or more data distributions against each other to
obtain evidence against the null hypothesis2. Based on the ex-
perimental data, a statistic (p-value) is calculated, based on the
assumption that the data distributions were originally sampled
from the same population distribution. If this statistic falls be-
low a certain threshold, the null hypothesis is rejected, and,
consequently, the alternative hypothesis is accepted.

2.3 Prominent Issues in Hypothesis Testing

We now have a better understanding of what hypothesis testing
is and where it fits into data science. At this point, it is impor-
tant to briefly review prominent issues in hypothesis testing.
Over the years, there has been a lot of criticism against the
use of hypothesis testing across several research fields. In this
section, we discuss some of the prominent criticism against hy-
pothesis testing. We group the existing issues into two:

• issues that arise due to misinterpretation of how signifi-
cance tests work, and

• issues that arise due to incorrect application of signifi-
cance tests.

The two groups are not meant to be mutually exclusive. In-Hypothesis testing

issues are

methodological or

issues prevalent in

practice.

deed, incorrect application of tests can follow misinterpreta-
tions of significance tests. However, the issues in the first
group arise mainly due to the inherently complex nature of
hypothesis testing, and might be harder to address without ad-
dressing statistical education. In contrast, issues in the sec-
ond group have more involvement of sociological factors, e.g.,
over-reliance on p-values is a consequence of how the research
community has traditionally functioned. For more details on

2A null hypothesis indicates that there is no effect of the factor on the
measurement.
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the issues discussed below, please refer to prominent works in
HCI, psychology, and statistical practice, such as [McCloskey
and Ziliak, 1996; Hubbard and Bayarri, 2003; Cairns, 2007;
Armstrong, 2007; Kaptein and Robertson, 2012; Dragicevic,
2016; Kay et al., 2016].

2.3.1 Misconceptions in Significance Testing

Misinterpreting p-values

The first group of issues arise from the inherently complex na-
ture of significance tests, and a major contributor to complexity
is p-value. Several studies in the past have shown that even re-
searchers, even if they are trained, have difficulty interpreting
p-values [Oaks, 1986; Kline, 2004; Beyth-Marom et al., 2008].

When conducting empirical research, the researcher comes up p-values are hard to

interpret, even for

trained researchers.

This leads to several

issues when

interpreting results of

hypothesis tests.

with a null hypothesis and an alternative hypothesis. The null
hypothesis is a statement that postulates that there is no effect
view, i.e., a view of the world as it currently stands. The alter-
native hypothesis states a new theory, i.e., a view of the world
that the research is hoping to confirm. The analyst ideally
wants to know the probability of their alternative hypothesis
being true. The p-value, however, is a measure of the evidence
against the null hypothesis, not for the alternative hypothesis.
If there is sufficient evidence against the null hypothesis, then
the analyst de facto ‘rejects’ the null hypothesis, and, as a con-
sequence, ‘accepts’ the alternative hypothesis. Known more
commonly as “fallacy of the transposed conditional”, many an-
alysts tend to misinterpret p-value as the probability of the null
hypothesis being true [Cohen, 1994; Haller and Krauss, 2002].
Other common misinterpretations include interpreting high p-
values to mean that there is no effect [Dienes, 2014] and as-
signing too much reliability to p-value [Dragicevic, 2016].

Statistical vs. practical significance

A significantly lower p-value, usually less than 0.05, only tells
us that the effect is not caused by a sampling error, that is, there
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is a difference at the population level. p-value does not, andAnalysts tend to

incorrectly associate

practical significance to

p-values.

cannot, provide information about whether the effect, that is,
the difference between the sample distributions, has any prac-
tical implications. This fallacy, of associating practical signif-
icance to p-values, can be particularly problematic in studies
involving large sample sizes: Since p-values are sensitive to
large sample sizes, it is possible to obtain p < 0.05 even when
the difference between the distributions is trivial! Conversely,
it is possible to obtain a practically significant effect even when
the p-value is higher than 0.05.

Dichotomous thinking and publication bias

Due to the standard cutoff of 0.05 for p-values, many analystsData workers and

researchers tend to

binarily classify results

based on p-values,

which leads to

publication bias.

classify the results of their analysis into a binary “significant”
or “non-significant” result. Such classifications nullify the er-
ror and uncertainty associated with p-value and significance
testing, and can be particularly problematic in studies with
small sample sizes. Such dichotomous thinking is also preva-
lent among reviewers and results in publication bias: The ten-
dency for papers that show a statistical significant effect (i.e.,
p < 0.05) to have a higher chance of being accepted for publi-
cations than papers that do not [Dickersin et al., 1987]. Such
practice can hamper scientific progress3.

2.3.2 Practical Issues in Statistical Testing

Overlooking assumptions and using incorrect tests

When conducting analysis, analysts need to make a number ofSelect the appropriate

statistical procedure can

be complex, and data

workers may overlook

checking assumptions.

critical decisions that determine the correct statistical proce-
dure to use. To make these decisions, they keep track of key
information such as the assumptions of the statistical test e.g.,
normality of distributions and sphericity; dataset characteris-
tics, e.g., nature of the variables and how measurements are
made; and experimental design, that is, within- or between-
groups or factorial designs [Field, 2013]. Obtaining these de-

3https://www.economist.com/briefing/2013/10/
18/trouble-at-the-lab

https://www.economist.com/briefing/2013/10/18/trouble-at-the-lab
https://www.economist.com/briefing/2013/10/18/trouble-at-the-lab
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tails can be tricky and may require the researcher to do data
wrangling operations and make more decisions. Existing re-
search has shown that overlooking assumptions and using in-
correct tests is quite common [Cairns, 2007].

Overlooking statistical power

Statistical power is the ability of the statistical test to find a Data workers might

overlook statistical

power, ability of a

statistical test to find an

effect, if such an effect

is present.

statistically significant effect in case such an effect is present.
Statistical power estimation or power analysis can help calcu-
late the likely minimum sample size required to detect an ef-
fect size of given magnitude. Since many researchers do not
employ power analysis [Cohen, 1992], many published stud-
ies lack adequate statistical power, which calls into question
the validity of published findings [Maxwell, 2004].

Over-testing and p-hacking

In hypothesis testing, type I error (or false-positive) occurs
when we reject the null hypothesis when it is actually true in
the hypothesis. Type I error rate increases with more statistical
tests the analyst runs. This issue is called over-testing. There
are several ways to address over-testing, e.g., the Bonferroni
correction of p-values is a common technique.

Over-testing can bleed into data-dredging, which is also known Data workers might

inadvertently perform

multiple tests in search

of significant results,

and then selectively

report the findings.

as p-hacking, fishing, and HARKing4. In this questionable sta-
tistical practice, the researcher conducts several analyses, e.g.,
checking if there is an effect of a factor with each measurement
made in the experiment, finds a statistically significant result,
and reports this as a result of confirmatory analysis [Kerr, 1998;
Cockburn et al., 2018]. However, since the type I error rate
is inflated and data is not collected from an experiment de-
signed to test a particular hypothesis, the results are mislead-
ing. There are several research works that discuss this issue
in detail [Cockburn et al., 2018; Pu and Kay, 2018], and offer
alternatives, e.g., [Dragicevic et al., 2019], and guidelines for
good practice, e.g., [Cairns, 2019].

4An acronym for Hypothesizing After the Results are Known
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Issues in statistical reporting

According to Cairns, problems with reporting was one ofStatistical reports in HCI

research papers were

found to not conform to

APA standards of

reporting.

the dominant issues in HCI publications he analyzed [Cairns,
2007]. Several papers did not meet the APA standards. Papers
omitted information about the tests that were done, key statis-
tics, and even descriptive statistics, such as mean and standard
deviations. Cairns also speculates that authors of these papers
might have performed several tests, without reporting them all.
This relates to the HARKing issue we discussed earlier.

2.3.3 Problems in Statistical Education

Since hypothesis testing concepts can be hard to grasp, thereTheoretical and

practical hypothesis

testing can be difficult to

teach.

has been a lot of research aimed at improving statistical educa-
tion. Hypothesis testing can be even harder to teach than apply
in practice because, unlike real-world practitioners who could
sometimes view hypothesis testing as a “black box”, students
need to understand the underlying concepts. Statistical edu-
cators concur that students do find it hard to understand the
fundamental concepts, and that there is a mismatch between
expected learning outcomes what students are actually tested
for [Garfield, 1995, pg. 27].

Garfield discussed some common misconceptions in statisticsStudents’

misconceptions about

hypothesis testing are

resilient to change.

and probability [Garfield, 1995], some of which we discussed
in Section 2.3.1. Researchers have also warned that misconcep-
tions about statistical concepts are resilient to change [Garfield,
1995; Schmidt and Hunter, 1997]. Ignoring or disapprov-
ing students’ misconceptions will leave the misconceptions un-
changed. Past studies have reiterated that even fundamen-
tal concepts of probability are difficult for students to grasp
[Garfield and Ahlgren, 1988; Shaughnessy, 1992]. Educators
tend to overestimate how well their students understand sta-
tistical concepts.
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2.4 Role of Hypothesis Testing in Data Sci-
ence

Based on criticisms in the last section, one might wonder if hy- Despite criticisms

against it, hypothesis is

still very common.

pothesis testing has a role in data science. Despite questions
over its validity and concerns of incorrect use, hypothesis test-
ing is commonplace in data science work. A vast majority of
HCI researchers continue to use NHST despite prevalent crit-
icisms. Recall that in our survey of CHI publications, we find
that 91.6% of papers that perform quantitative analysis use hy-
pothesis testing.

We take the stance that hypothesis testing has its place in data In our work, we aim to

support hypothesis

testing as a normative

practice.

science and academic research, when the analyst conforms to
normative practice. Analysts need to differentiate analyses car-
ried out on data collected from exploratory studies and stud-
ies intended to gather evidence for or against a hypothesis.
Hypothesis testing can still be done on data collected in ex-
ploratory studies, as long as the results are not interpreted as
causation but instead a correlation. Hypothesis testing in the
confirmatory-style of analysis should be done on data collected
from an experiment that is designed to validate the hypothesis
[Abelson, 2012], as discussed in the previous section.

2.5 Characteristics of Data Science

In this section, we discuss some foundational concepts of data
science workflows and practices. This discussion help us un-
derstand current data science practice and reflect upon the an-
alysts’ pain points.

2.5.1 Exploratory Programming Workflow

Exploratory programming is a term originally introduced by In exploratory

programming practice,

programmers begin with

open goals and explore

ideas through code to

make goals concrete.

Beau Shiel in 1983 [Sheil, 1983]. In exploratory programming,
the programmer needs to prototype their ideas in source code
in order to make progress. In conventional programming, the
programmer has specifications for source code and writes code
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to match these specifications. In exploratory programming,
however, the programmer identifies the programming goals
through exploration, and these open-ended goals continue to
change over explorations. Examples of exploratory program-
ming tasks include interface design [Hartmann et al., 2008a],
data science [Kery et al., 2017], digital art [Montfort, 2016],
and many software engineering tasks, e.g., developing algo-
rithms [Yoon and Myers, 2014] and understanding how to use
a programming API [Robillard, 2009]. Exploratory program-
ming is an umbrella term that includes programming practices
like bricolage/tinkering, sketching, live coding, and code bend-
ing [Bergstrom and Blackwell, 2016].

Exploration is not unique to programming. For example, de-Exploration extends

beyond programming.

Exploratory

programming deals with

workflows specific to

programming.

signers who use GUI interface builders follow iterative proto-
typing techniques to progressively develop good interfaces. Re-
search about exploratory programming, however, focusses on
the consequences of using text-based programming to perform
the source code explorations, and studies how programmers
manage these explorations in code. Here are some key conse-
quences of exploratory programming practice:

• Exploration often results in low-quality source code, e.g.,Exploratory

programmers do not

invest in writing

high-quality code during

experimentation.

less or no modules and sub-optimal code [Kery and My-
ers, 2017; Kery et al., 2017]. Since it is unclear which
explorations will eventually fruitful, programmers focus
on making progress with their overall goal while com-
promising code quality.

• In a study with 21 programmers, Yoon and Myers foundExploratory

programmers frequently

backtrack to earlier

code.

that, during exploratory programming, programmers of-
ten backtracked to a piece of code, often repeatedly, dur-
ing exploration [Yoon and Myers, 2014]. Since code ex-
plorations can span across a long source code file, or even
across multiple source code files, there is a need for pro-
grammers to navigate source code effectively. In addi-
tion to helping with explorations, history of explorations
also act as a record of programmers’ exploration practice
[Davidson and Freire, 2008].

For more details about the characteristics of exploratory pro-
gramming, and how it differs from related concepts like oppor-
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tunistic programming and debugging into existence, see [Kery
and Myers, 2017].

Load data

Module 1 Module 1

Module 2Module 2

Log 
transform

log

log

Module 1: compute descriptive 
statistics (mean, sd), and plot 
histograms.

Module 2: fit a model, get 
residuals, and perform 
Shapiro-Wilk’s test on the 
residuals.

Figure 2.1:
Iterative and
non-linear
workflow. Code
acts on different
data in each
iteration.

Does hypothesis testing conform to an exploratory program-
ming workflow? During EDA, data workers explore various
combinations of measurements and factors, and visualize them
using a variety of visualization techniques to detect patters and
generate hypotheses. During CDA, data workers experiment
with different data transformations and models to determine
which approach works best. Thus significant portions of anal-
yses adopt an exploratory programming workflow.

2.5.2 Iterative, Non-Linear Workflow

Hypothesis testing follows an iterative, non-linear workflow
[Tukey, 1977; Lubinsky and Pregibon, 1988]. Consider Fig-
ure 2.1. In typical analysis, analysts make changes to data.
These changes result in the analyst iterating back to previous
steps and modifying them to suit the new data characteristics.
Such non-linear workflow is a characteristic of all exploratory
programming workflows.

To understand this, consider an example analysis as shown in Using an example, we

illustrate the iterative,

non-linear nature of

hypothesis testing.

Figure 2.1. The analyst loads their data, performs data prepro-
cessing to deal with missing values and conversions to long or
wide formats, views the descriptive statistics (mean, standard
deviation), and visualizes each distribution using a histogram.
Since none of the distributions are normally distributed, they
fits a model to get residuals, and perform a Shapiro-Wilk’s test
for the residuals. The results confirm that the distributions
are not normally distributed. The analyst then views the his-
tograms again and notices that the distributions could be log
normal. To confirm this, they apply a log transformation to the
dataset, view the descriptive statistics again, plot histograms,
and perform tests for normality on the residuals of transformed
distributions. With each iteration, the same chunk of analysis
code is applied to different data distributions.
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2.6 Interfaces to Perform Analysis

Data analysts have a variety of tools at their disposal that can
help them analyze data. The most common options are GUIs,
visual programming tools, and text-based programming tools.

2.6.1 GUIs for Data Analysis

GUI-based software, such as JMP5 [Goos and Meintrup, 2016],GUIs are popular

among data analysts,

but might lack powerful

statistical methods and

can be expensive.

Stata6 [LP StataCorp, 2007], SAS7 [O’Rourke et al., 2005]
and SPSS8 [Verma, 2012], are popular among data analysts.
GUIs offer a WIMP-interface that can be easy to use, and pro-
vide quick access to several statistical functions and utilities.
However, as the source code is typically not accessible, GUIs
might not have a generative value, and might not allow novice
data workers to graduate to professional data scientists [Myers,
1990]. Certain statistical software support scripting through
programming languages, e.g., with JSL9 (JMP Scripting Lan-
guage). This allows power users to extend the statistical func-
tions of the analysis software. Further, powerful GUI software,
such as JMP and Stata, can be quite expensive to use for stu-
dents and other non-professional analysts.

Certain web-based apps like StatWing10 are also GUI-based,
but lack the power and functionalities of desktop software.

2.6.2 Text-Based Programming

In conventional text-based programming, the programmer sub-Text-based

programming can be

appealing to data

workers who know

programming and is

considered more

productive than GUI.

mits a set of statements as a unit to “direct the behavior” of
the computing system [Illingworth, 1997]. Data workers, es-
pecially from a computer science background, might use pro-

5https://www.jmp.com
6https://www.stata.com/
7http://sas.com
8https://www.ibm.com/de-de/analytics/

spss-statistics-software
9https://www.jmp.com/support/help/en/15.2/jmp/

introduction.shtml
10https://www.statwing.com

https://www.jmp.com
https://www.stata.com/
http://sas.com
https://www.ibm.com/de-de/analytics/spss-statistics-software
https://www.ibm.com/de-de/analytics/spss-statistics-software
https://www.jmp.com/support/help/en/15.2/jmp/introduction.shtml
https://www.jmp.com/support/help/en/15.2/jmp/introduction.shtml
https://www.statwing.com
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gramming to perform analysis. Indeed, the statistics commu-
nity considers using programming languages like R to perform
analysis to be more productive than using a GUI [Valero-Mora
et al., 2012].

The most popular languages for data analysis are R [Ihaka and Popular data science

programming

languages, R and

Python, support

programming via scripts

and computational

notebooks.

Gentleman, 1996] and Python [Sanner, 1999]. There are
two main interfaces that analysts can use to write and execute
source code in these languages: script files and computational
notebooks. Script files allow storage and execution in a linear
fashion. In R and Python, when source code is executed, the
output is shown on the console window (for text output) or
in a separate window (for plots and other graphics). In com-
putational notebooks, analysts store and execute source code
in units called ‘cells’. A notebook is made up of several cells
arranged in a top-down manner. In addition to source code,
analysts can add rich text and graphics via Markdown to cre-
ate a narrative of the analysis. Notebook environments like
Jupyter11 [Kluyver et al., 2016] and Google Colab12 [Bisong,
2019] have become popular among all analysts.

2.6.3 Visual Programming

Visual Programming Languages (VPL) refer to a broad collec- Visual programming

allows the use of visual

notations for

‘programming’ and can

be better suited to data

analysis.

tion of interfaces that allow users to program “in a two (or
more) dimensional fashion” [Myers, 1990]. In VPLs, users
specify the input and output arguments or even the entire pro-
gram using visual notations. Visual programming languages
can also act as program visualizations, in which the graphics
are used to illustrate some aspect of the textual program [My-
ers, 1990]. Visualizations of data flow in source code are partic-
ularly well-suited to data analysis, and has been shown to im-
prove understanding and debugging [Wongsuphasawat et al.,
2017].

VPLs offer several advantages for programming in general: Visual programming can

improve code

comprehension and

navigation.

they lead to better programmer performance [Pandey and Bur-
nett, 1993; Baroth and Hartsough, 1995] than text-based pro-
gramming. They can help improve code comprehension [Cun-

11https://jupyter.org/
12https://colab.research.google.com/

https://jupyter.org/
https://colab.research.google.com/
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niff and Taylor, 1987; Scanlan, 1989; Bragdon et al., 2010a]
and code navigation [Coblenz et al., 2006; DeLine et al., 2006],
two tasks programmers spend 60–90% of their time on during
programming [Erlikh, 2000]. However, VPLs are not always
better in the absolute sense—even well-designed visual nota-
tions will not facilitate certain tasks [Green and Petre, 1992;
Green et al., 1991; Wright and Reid, 1973], making them in-
effective for such tasks. For a more complete discussion of the
characteristics of VPLs, see [Whitley, 1997].

VPLs can be inherently visual or textual [Chang, 1987; Zhang,There are two main

styles of visual

programming: mainly

visual or mainly textual.

2013]. Inherently visual VPLs like Scratch [Resnick et al.,
2009] let the user directly ‘specify’ the program through vi-
sual representations. Inherently textual VPLs instead provide a
graphical abstraction of the underlying textual representation.
ViSta [Young and Bann, 1996], Orange [Demšar et al., 2004],
RapidMiner [Hofmann and Klinkenberg, 2013], and KNIME
[Berthold et al., 2009] are examples of statistical tools that are
inherently textual VPLs.

2.7 Data Workers

In this section, we discuss data workers, the target users of this
research. In both academia and industry practice, there areIt is not just professional

data scientists who

work with data.

many who take on the role of analyst and work regularly with
data. The most well-known and well-researched of them are
data scientists, who work with data as their primary job func-
tion. Data scientists undergo extensive training and usually
have established workflows.

There are also those who work with data but not as their pri-Data workers are less

studied and their

workflows can be

significantly different

from normative practice.

mary job function. Such analysts, who we refer to as data work-
ers, are experts in their own field of interest but work with data
on a regular basis. Data workers do not self-identify as data sci-
entists [Liu et al., 2020], possibly because they work with data
without much or even any formal training and learn tool usage
themselves [Boukhelifa et al., 2017; Lowndes et al., 2017]. As
a result, data workers have varying skill levels13, perform anal-

13The more experienced data workers might have skills that are on par
with data scientists, but such data workers might still not self-identify as
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ysis tasks with “varying levels of formalism”, and have work-
flows that differ significantly from normative practice [Harris
et al., 2013a; Kandel et al., 2012]. According to research by
Wolff, data workers are the fastest-growing group of employ-
ees in the U.S. between 1950 and 2000 [Wolff, 2005].

2.7.1 Existing research about data workers

Prior research has focussed mainly on understanding and sup-
porting data scientists. Existing research on data workers is
sparse. We borrow the term data workers from Boukhelifa
et al., but references to such domain experts have been made
previously, e.g., as knowledge workers [Davenport, 2005] or
information workers [Wolff, 2005].

In the recent years, some research works investigated data There is sparse work

aimed at understanding

and supporting data

workers’ workflows.

workers’ practices and built tools to support them in their work.
For example, Boukhelifa et al. and Skeels et al. studied how
data workers cope with uncertainty in data [Boukhelifa et al.,
2017; Skeels et al., 2008], and Liu et al. studied how data
workers explore and manage alternatives in analysis, e.g., with
data sources and analysis methods [Liu et al., 2020]. Re-
searchers have also looked at how data workers visually ex-
plore model simulations in biological applications [Boukhelifa
et al., 2019], finding that data workers often have to man-
age multiple competing objectives, and require expertise across
multiple topics to finish their analysis task. Kandel et al. stud-
ied enterprise data workers to find, among other things, that
there is a disparity in programming proficiency among data
workers [Kandel et al., 2012].

2.7.2 End-User Programming

Since text-based programming is a common way data work-
ers perform analysis, we look to existing literature on end-user
programming to get more insights in data workers’ practices.

“End-users” is a term used to refer to non-professional pro-

data scientists.
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grammers. Indeed, not all data workers are non-professional
programmers: A computer scientist might be proficient in pro-
gramming, but might not be well-versed in data science tech-
niques and principles. Back in 2006, in U.S., it was estimatedEnd-users are

non-professional

programmers, who can

benefit from tool

support to make

programming easier.

that there are about 12 million end-users, far more than the
number of professionals, who are estimated at 3 million [My-
ers et al., 2006]. Although many end-users might use GUIs and
visual programming interfaces for their ease of use, end-users
in certain fields use conventional text-based programming for
the power and flexibility it offers.

Prior research by has found that end-users face a lot of bar-End-users write

error-prone code and

have an over-reliance

on code reuse.

riers in learning programming. Taking advantage of the hu-
man visual system, through visual programming [Myers, 1990]
and direct manipulation interfaces for programming [Cypher
and Halbert, 1993], can help end-users. Developers and re-
searchers have also built programming IDEs to better support
programming, e.g., by helping novices write source code in the
correct syntax [Miller et al., 1994; Teitelbaum and Reps, 1981]
and handle errors in code [Ko and Myers, 2004]. Researchers
have also shown that end-users write source code that is error-
prone [Rode and Rosson, 2003; Rosson et al., 2004], and tend
to rely a lot on code reuse [Blackwell, 2002]. Such findings
might also apply to data workers, who are end-user program-
mers using programming to work with data.

2.8 Motivation: Biehler’s Vision for Statis-
tical Tools

In 1997, Biehler wrote about his vision for a computer-Biehler envisioned a

statistical tool to help

learn and perform

hypothesis testing.

supported statistical tool that can be used to learn and per-
form hypothesis testing [Biehler, 1997]. Among other things,
he suggested the use of microworlds, interactive environments
for simulation that can be used by students to understanding
statistical concepts. This active learning approach could help
students get a solid understanding of statistical concepts, which
can help them make better decisions when performing hypoth-
esis testing. He suggested that software could have a more
prominent role in statistical education, taking over some of the
roles and responsibilities of teachers and tutors. But perhaps



2.8 Motivation: Biehler’s Vision for Statistical Tools 29

the biggest idea proposed by him is to merge the tools for learn-
ing and doing statistics; beginners need to be able to do statis-
tics when they learn them and the other way around. As Biehler
puts it, “a single adaptable tool may become all we need.”

Biehler also discussed three problems with the then avail- Biehler called for

changes to statistical

tools, such as more

cohesion among tools

and better adaption to

user’s expertise.

able statistical tools: complexity of tool problem, the closed mi-
croworld problem, and the variety problem. Tools developed for
professionals might be too hard for beginners, e.g., students,
to use. The co-evolution of the user and the tool’s function-
alities is, according to him, an important factor to consider.
The closed microworld problem describes the state of many
microworlds in statistical tools that are not flexible. These mi-
croworlds only work for certain situations, and thus do not
have a generative value. The variety problem is illustrated with
the various tools out there, which all seem to support analysis
in their own way with no cohesion among them.

Have we achieved Biehler’s vision? In early 2000s, Tinker- McNamara built upon

Biehler’s vision by

describing attributes for

a tool that unifies

learning and performing

analysis.

Plot [Fitzallen, 2012] and Fathom14 were developed by follow-
ing the guidelines proposed by Biehler. TinkerPlot and Fathom
are visualization-driven tools that can be used to teach ba-
sic concepts of statistics and probability, such as descriptive
statistics, distributions, and clustering. McNamara built upon
Biehler’s vision by proposing attributes for a statistical tool that
can be used to learn and perform statistics [McNamara, 2015].
McNamara calls for no separation between the tools at any
level, and her attributes cover a wide range of aspects, such
as focus on novices, support for a cycle of exploratory and con-
firmatory analysis, support for randomization, an emphasis on
interactivity, and support for narration, reproducibility, and ex-
tensibility.

14https://fathom.concord.org/

https://fathom.concord.org/
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Chapter 3

Understanding How Data
Workers Gather
Knowledge to Perform
Data Science

PUBLICATIONS AND AUTHOR’S CONTRIBUTIONS

The work in this chapter has contributions from Yuliya Sergiyenko and Yue Hu. Part
of the research in this chapter has been published as an extended abstract [Subrama-
nian and Borchers, 2017] and a paper [Subramanian et al., 2019a]. The author of
this thesis developed the research questions and planned all studies. The author is
responsible for the survey and part of the content analysis. Sergiyenko conducted the
initial interviews used to understand information needed to perform analysis, which
is discussed in Section 3.5 [Sergiyenko, 2018]. Hu conducted the interviews used to
understand about use of information sources, discussed in Section 3.6, as well as the
content analysis of queries on Q&A platforms, discussed in Section 3.8 [Hu, 2019].

There are several tasks that preclude an analysis task. In ad- Data workers prepare to

perform data analysis

by gathering information

about theoretical

concepts, tool usage,

and practical statistics.

dition to designing and carrying out the experiment, collecting
the data, and preparing it for analysis, analysts need to gather
information about tool usage, statistical concepts, and domain-
specific information about statistical procedures, e.g., knowing
that a 95% cut-off threshold is the standard in HCI research.
Understanding what information is needed to perform analy-
sis, and how data workers gathering this information can help
us gain more insights into the problems data workers face.
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Previous research in statistical education [Garfield, 1995] hasFormal education might

not prepare data

workers for real-world

analyses.

shown that there is a disparity between what students are
taught in school or college, and what information they need
to use to solve a real-world problem. By understanding the
information gathering process leading up to data analysis, we
may be able to gain more insights into this.

In this chapter, we discuss how data workers gather informa-This chapter presents

empirical research

about how data workers

gather information to

perform analyses.

tion about statistical procedures, the nature of this informa-
tion, how they decide upon the statistical procedures for their
experimental data, and so on. We also compare the various
information sources data workers use, such as books, research
publications, and interpersonal communication, highlighting a
tension between formal and informal sources. Based on this
discussion, we show existing gaps in the workflows, which we
aim to tackle with our artifact contribution in the next chapter.

We first provide motivation for our work by discussing the dif-
ficulties data workers face in learning statistical concepts and
selecting statistical procedures in Section 3.1 and then discuss
related work about information behavior of researchers and
students’ learning practice in Section 3.2. To situate our work,
we name the considerations of our work in Section 3.3, and dis-
cuss our guiding research questions and contributions in Sec-
tion 3.4. We present our own empirical studies and a survey in
which we investigated how data workers gather information to
prepare for an analysis in Sections 3.5–3.8. Finally, we address
the limitations of our work in Section 3.9.

3.1 Background: Statistical Procedure Se-
lection

We provide two arguments for why statistical procedure selec-Selecting statistical

procedures can be

difficult.

tion could be difficult, particularly for data workers: 1) inher-
ent complexity due to the wide-and-deep decision structure in-
volved and 2) difficulty in developing a clear mental model due
to the abstract nature of information in statistical procedure se-
lection. We now expand upon these arguments below.
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3.1.1 Procedure Selection is Inherently Complex

To illustrate how complex it can be to select statistical proce-Data workers need to

make several decisions

to select statistical

procedures.

dures, we briefly discuss a scenario. Assume that a data worker
has collected data via an experiment to determine the perfor-
mance of different keyboards. This experimental data involves
several independent and dependent variables. For example,
independent variables would be the keyboard layout, gender,
etc., and dependent variables are standard measures like typ-
ing speed and number of typing errors. After the data has been
loaded into an analysis software, the data worker views the
data and visualizes the data points using various plots to get an
overview of her data. She notices that there are some outliers,
i.e., extreme data points that are non-representative of the nor-
mative user performance. She removes these data points using
an outlier removal technique [Ben-Gal, 2005]. After remov-
ing outliers, the data worker decides to test if an independent
variable influences a measurement, i.e., has an effect. To de-
termine the appropriate statistical procedure, the data worker
needs to check the assumptions of the procedure. One of these
assumptions is that of normality, i.e., determining if the distri-
butions are Gaussian or normally distributed. However, check-
ing this assumption might not be straightforward.

There are numerous tests for normality, such as theDeciding statistical

procedures requires

information of existing

methods as well as

statistical expertise.

Kolmogorov-Smirnov test, Shapiro-Wilk test, Jarque-Bera test,
Pearson’s chi-squared test, and Anderson-Darling test [Yazici
and Yolacan, 2007]. The data worker needs to select the test is
that best suits her data and research hypotheses. For example,
for highly skewed and log-normal distributions, Jarque-Bera
test of normality works well; for symmetric distributions of
small sample size, Kolmogorov-Smirnov and Anderson-Darling
tests work well; and, although commonly found in analysis
software, Shapiro-Wilk test is not recommended for large sam-
ple sizes [Yazici and Yolacan, 2007]. Additionally, tests of nor-
mality might also require certain assumptions to be held true.
In addition to such statistical tests, data workers could also use
graphical methods, e.g., QQ plots, to determine if one or more
distributions are normal. Despite the plethora of options avail-
able for checking the normality of distributions, it is possible
that the data worker does not receive a binary result. For exam-
ple, it is agreed that for large sample sizes, graphical methods
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are more reliable, and minor deviations from normality would
not be an issue [Pallant, 2020].

The discussion above shows that a lot of experience and ex-
pertise is required just to perform one step in hypothesis test-
ing, that of checking whether the distributions are normally
distributed. Other steps, such as checking for other assump-
tions, selecting the significance test, and p-value corrections
(for post-hoc significance tests) can be equally, if not more,
complex. Figure 3.1 provides a good visual indication of the
complexity involved in selecting statistical procedures.

3.1.2 Data Workers May Lack a Clear Mental Model

Since many data workers are novices, they may not completely Data workers who lack

statistical expertise may

treat steps in procedure

selection as

abstractions, and might

consequently find it

hard to deal with novel

situations.

understand the underlying statistical concepts required for se-
lecting statistical procedures. For example, several studies in
the past have shown that even trained researchers have dif-
ficulty interpreting p-values [Oaks, 1986; Kline, 2004; Beyth-
Marom et al., 2008]. Due to this reason, data workers might
treat steps in statistical procedure selection as ‘black boxes’,
i.e., view it as an abstract step that yields results. Such an
approach might work in standard scenarios. However, since
data workers lack a clear mental model, they might struggle
to transfer knowledge to novel scenarios [Halasz and Moran,
1983]. Therefore, statistical procedure selection might be a
complex task for novice data workers who lack a clear mental
model of procedure selection, especially when they inevitably
face a novel scenario.

3.2 Related Work

In this section, we describe existing work about information
seeking behavior, and take a deeper look at research on teach-
ing statistical concepts. Finally, we conclude with some exist-
ing research and commercial tools that can be used to self-learn
and/or teach hypothesis testing.



36 3 How Data Workers Gather Knowledge

3.2.1 Statistical Procedure Selection

Issues about statistical procedure selection has been well doc-Even trained data

workers might find

procedure selection a

difficult task.

umented in statistical education research. For undergraduate
Psychology students, one of the five learning goals is to be able
to select the appropriate statistical procedure [Society for the
Teaching of Psychology Statistical Literacy Taskforce, 2014].
Despite this, selecting statistical procedure is a difficult task
even for the high performing students in Psychology [Gardner
and Hudson, 1999]. Problems with statistical procedure selec-
tion extend beyond classroom, and has been well documented
in scientific publications [Cairns, 2007; Bakker and Wicherts,
2011].

3.2.2 Information Seeking Behavior

Information seeking behavior is a well studied area of research.
Of particular interest to our work are research about informa-
tion behavior of scientists and programmers.

Scientists’ behavior

Researchers have studied scientists’ citation behaviorScientists’ information

seeking behavior is well

explored in research.

[Borgman and Furner, 2002; Bornmann and Daniel, 2008;
Leydesdorff and Milojevic, 2012], how they handle scientific
literature [Hemminger et al., 2007], and how they formulate
and discuss scientific problems in scientific communities
[Moore, 2005; Tuominen et al., 2005].

Palmer came up with a classification of scientists based on their
information gathering process. This includes nonseekers; lone,Variations in people,

context, and information

sources make it hard to

generalize findings

about information

seeking behavior.

wide rangers, who worked alone to gather a lot of information;
unsettled, self-conscious seekers, who work in groups and do not
have a focused topic; confident collectors, who are experts in
their field; and hunters, who sought specific research findings
[Palmer, 1991]. This serves to illustrate why studying informa-
tion seeking behavior is difficult: there are immense variations
among people, situations, and information sources that make
it hard to generalize findings.
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For this reason, many researchers have attempted to model There are many generic

models of information

seeking behavior.

information seeking behavior of users in a generic man-
ner. Prominent examples are the Ellis [Ellis, 1989], Kuhlthau
[Kuhlthau, 2004], and Savolainen [Savolainen, 1995] models.
Although these models give us an overview of various steps
in information behavior tasks, commonly known as the search
process [Whitmire, 2000], they do not apply well to specific
tasks and users.

There are still open questions and challenges about scientists’ Our research is

motivated by many

open questions and

challenges in

understanding

information seeking

behavior of data

workers.

information seeking behavior that motivated our studies. First,
there is a paucity of research aimed at scientists’ use of informa-
tion sources [Case, 2016]. Second, information about appro-
priate statistical procedure is available in several information
sources, many of which are informal sources like web forums.
Such sources often have conflicting, outdated, and even incor-
rect information. Therefore, it might be particularly difficult
for data workers to navigate existing information sources to
determine the appropriate statistical procedure.

Programmers’ behavior and use of Q&A platforms

In addition to studies about scientists’ behavior, existing re- Programmers tend to

carefully curate

information they collect

from various information

sources.

search works about programmers behavior, especially with
Q&A platforms, are also relevant to our work. Programmers
spend a majority of their time seeking information [Singer
et al., 1997], which makes them an natural choice for re-
searchers to study. O’Brien and Buckley proposed a five-stage,
non-linear model for programmers’ information seeking behav-
ior during software maintenance [O’Brien and Buckley, 2005].
One key finding is that since programmers use a variety of in-
formation sources to obtain information, a lot of time goes into
browsing and differentiating these information sources based
on programmers’ requirements for using the information. Sea-
man found that programmers evaluate the quality of infor-
mation sources based on the quality of the source code pre-
sented in them, and highly value information from a informa-
tionable person [Seaman, 2002]. This increased reliance on
interpersonal sources of information is well established in re-
search on information seeking, e.g., [Hertzum and Pejtersen,
2000; Yitzhaki and Hammershlag, 2004]. Nevertheless, so-
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cial risk (e.g., embarrassment from asking questions) and poor
availability of interpersonal sources might prompt users to seek
other information sources.

StackOverflow, a popular Q&A platform, receives 100 millionStackOverflow is a

popular Q&A platform

that relies upon the

expertise of community

members to moderate

quality of questions and

answers.

visitors every month [Stack Overflow, 2021]. Visitors can ask
questions, post answers to existing questions, and browse ex-
isting questions and answers. Questions and answers can be
voted on by community members; this helps moderate quality
of content on the platform. Prior research about Q&A plat-
form use has investigated the dynamics of user behavior, e.g.,
[Bachschi et al., 2020]; the influence of culture, gender, and
domain expertise on such platforms, e.g., [Oliveira et al., 2016;
Calefato et al., 2018; Nivala et al., 2020]; and quality of source
code answers provided on these platforms, e.g., [Treude and
Robillard, 2017].

3.3 Research Considerations

Based on the above discussion, we summarize the key consid-
erations of empirical studies carried out in this chapter:

1. Data workers might work with limited experience and
expertise on statistical concepts.

2. Although statistical education occurs over a long period
of time, statistical procedure selection typically occurs in
a limited period of time leading up to the analysis. One
evidence of this just-in-time learning approach is the pro-
liferation of questions about statistical procedure on Q&A
websites like StackExchange and CrossValidated.

3. Data workers often have to balance several criteria to
select a statistical procedure, such as statistical power,
feasibility of the implementation, familiarity, and accep-
tance in the community.

4. Data workers may have to deal with conflicting opinions
about the appropriateness of statistical procedures. Be-
cause of the proliferation of informal sources like Q&A
websites, weeding out unreliable information could be a
challenge.
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5. Unlike many other information seeking tasks, selecting
the appropriate statistical procedure can be highly cru-
cial as it can lead to the rejection of a publication. For
this reason, data workers also need to place a high value
on the credibility of the information source when making
the choice.

6. In general, information seekers are prone to satisficing,
i.e., choosing the first acceptable solution to a problem
[Berryman, 2008; Warwick et al., 2009].

3.4 Research Questions and Contributions

Through our research about how data workers prepare to per-
form data science tasks, we seek to answer the following ques-
tions:

• What are the different types of information data workers
seek immediately before performing data science tasks,
i.e., during just-in-time learning?

• What information sources do data workers use to gather
information about statistical procedure. How do these
sources compare against each other? What criteria do
data workers use to determine which resource to use?

• What strategies and coping mechanisms do data workers
use in order to select a statistical procedure?

• How do data workers use Q&A websites, which are one of
the most common information sources used by our study
participants? What information do data workers present
in the questions, what is the quality of answers like, and
what are some of problems respondents face?

We attempt to answer the above questions via three contribu-
tions:

1. The first contribution involves findings from twelve in-
terviews and three observations. We employed semi-
structured interviews with contextual walkthroughs to
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gain an understanding of the various types of infor-
mation data workers seek in preparation for their data
science task. Additionally, we also investigated what
sources are used for gathering these different types of
information, and how they compare against each other.

2. The second contribution involves findings from twelve
interviews. Unlike the first contribution, these interviews
were conducted with participants from a wide range of
fields, such as business statistics, HCI, psychology, and
automotive engineering. The focus of these interviews
were about information seeking behavior for the selec-
tion of statistical procedures. We investigated informa-
tion sources, our participants’ criteria for selection of sta-
tistical procedures, and their coping strategies.

3. The third contribution is a content analysis of 76 ques-
tions and answers from Q&A websites. This was done as
a follow-up to our second contribution, and deals with
how information is presented in the Q&A websites, how
respondents handle questions with incomplete/missing
information, and so on.

3.5 Study: Understanding Knowledge
Needed to Perform Analysis

We first describe our data collection and analysis method, and
then present the key findings from our analysis.

https://osf.io/dwy43/?view_only=
1df362f3d15843ad965bdfa140ba259c a

aContains our interview/walkthrough protocol, questionnaire used for
interviews, an example analysis with work modeling tools (redacted per-
sonal information), and the final affinity diagram.

https://osf.io/dwy43/?view_only=1df362f3d15843ad965bdfa140ba259c
https://osf.io/dwy43/?view_only=1df362f3d15843ad965bdfa140ba259c
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No. of participants When the analysis was carried out

4 1–2 weeks ago

1 1 month ago

2 2 months ago

1 6 months ago

Table 3.1: Our participants’ experience with analysis

3.5.1 Data Collection and Method

To investigate how data workers prepare for a real-world anal-
ysis task, we interviewed twelve data workers (three female)
from a local HCI lab. We initially used convenience sampling We interviewed twelve

data workers to

understand how they

prepare for analysis.

[Saunders et al., 2019] to recruit participants, but eventually
aimed to recruit participants with more experience in conduct-
ing analysis. We recruited participants via email, in which we
a) clarified the purpose of the user study, b) mentioned our key
requirement that the participant must be planning to perform
an analysis within the next three months, and c) requested the
receiver to forward the email to other potential participants, in
order to facilitate snowball sampling [Goodman, 1961].

Our participants include two undergraduate, eight graduate Study participants

include self-reported

novices and experts,

and have experience

conducting analysis.

students enrolled in Master’s programs, and two doctoral
students. All participants were from an engineering back-
ground. All but the two doctoral students considered them-
selves novices, whereas the doctoral students self-reported to
be experts. All participants but one had performed at least one
analysis involving hypothesis testing in the past two months
(median = 10 days). The interviews took place over a period
of four months.

We initially aimed to observe all participants as they prepare Observations were not

always possible since

some participants did

not have on-going

analysis for us observe.

for a real-world hypothesis testing task. However, only three
participants had on-going analysis during our study. For the re-
maining participants, we invited them to walk us through their
recent analysis in interviews, and used this as prompts for our
interview and observation sessions. On average, interviews
lasted 45 minutes and observation sessions, which included
discussions between the observer and participant, lasted 60
minutes.
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We used a protocol and questionnaire1 to guide our inter-
view and observation sessions. The questionnaire also acted
a checklist of topics to cover, and questions were interwoven
non-verbatim during the discourse with the interviewee. ForWe collected

demographics,

background of

participants, and our

participants’ workflows

with previous analyses

through interviews and

observations.

later interviews, we redesigned the questionnaire to get more
details on specific topics, such as the resources used by our
participants. In our study sessions, we first collected demo-
graphic information from our participants and briefed partici-
pants about the study purpose and procedure. We then sought
to understand their background in HCI and hypothesis testing.
Subsequent questions were aimed at gaining an understanding
of their previous analyses, particularly how they prepared for
their analyses. In addition to the interviews and observations,
we also carried out member checks four weeks after the study
session. Both interviews and observations were conducted in
the lab at which all participants worked. During the study ses-
sion, participants were rewarded with drinks and snacks.

To prepare for our analysis, we prepared full transcripts of bothWe use an affinity

diagramming technique

to organize study

insights.

the interview and observation sessions. One researcher ana-
lyzed the transcripts by using the recordings from observations
as supplements. This researcher and the author of this work did
work modeling, by using an affinity diagram and flow diagram
[Beyer and Holtzblatt, 1997] to organize and understand the
key insights from analysis. A total of 390 insights were struc-
tured and organized into an affinity diagram [Holtzblatt et al.,
2004].

3.5.2 Findings

We grouped the main insights in our affinity diagram, which
resulted in the following findings:

Significance of formal education

We first wanted to understand the role of formal education inAlthough all participants

were formally trained,

they needed to re-learn

statistics to perform

analyses.

performing hypothesis testing. We find that although all partic-
ipants had taken a statistical course earlier, most (11 out of 12

1Both protocol and questionnaire are available in supplements.
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participants; 92%) had to learn statistics again to prepare for
real-world analyses. Participants provided the following rea-
sons (ordered from most to least frequent) for having to re-
learn statistics:

• The courses were taken a long time ago (10 out of 12 par-
ticipants; 83%).

• The courses had no practical examples (9 out of 12 partic-
ipants; 85%).

• The courses were not adequate to help perform real-world
analysis (7 out of 12; 58%).

The second and third reasons indicate that courses on hypoth-
esis testing focus on theoretical concepts, and that the knowl-
edge transfer to real-world tasks is difficult.

Perceived incompetence in hypothesis testing

In addition to the reasons discussed above, half of the partici- Some participants

associated negative

connotations with

hypothesis testing.

pants (6 out of 12 participants; 50%) mentioned that they had
originally lacked the motivation to learn hypothesis testing,
which is why they had to re-learn it. These participants used
the following terms when conversing about hypothesis test-
ing: “very hard”, “necessary evil”, “not enjoyable”, and “least
favourite”. It is possible that these participants’ own perception
of competence or incompetence with hypothesis testing might
have affected their attitudes and perceptions about it [Frey and
Ruble, 1987; Stodolsky et al., 1991]. Few participants had pos-
itive associations with hypothesis testing: “fun”, “interesting”,
and “useful”.

Information required to perform real-world analysis

We identified three groups of information that our participants
required in order to perform real-world analysis: theoretical
foundations of statistics and probability, practical statistics, and
tool usage.
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Theoretical foundations include information of fundamental
statistical concepts, such as Gaussian distributions, measures
of central tendency and spread, and the central limit theorem.
These concepts are part of introductory courses in statistics andA limited amount of

theoretical information

is enough to perform

hypothesis testing.

probability, which, as we discussed earlier, most of our partici-
pants had taken. In general, participants agreed that a limited
information of theoretical concepts is adequate for performing
hypothesis testing, and that performing statistics required skills
that were not taught in statistical courses.

Tool usage involves expertise in using a statistical tool, be it aTool usage informs

participants how to use

a statistical software.

GUI or programming. Participants used a wide range of tools.
We discuss how participants decide upon tools to use in Sec-
tion 3.5.2. Four participants (33%) mentioned that their sta-
tistical courses used simpler statistical tools, if at all, than what
was needed for their real-world analysis.

Practical statistics relates to the practical information or know-
how required to perform analysis. “Which test should I apply
here?”, “How do outliers affect my distribution?”, and “What
happens if my data are left skewed?” are some example ques-
tions our participants had that seek to illustrate practical statis-
tics. Practical statistics requires information of procedure se-Practical statistics is a

bridge that connects

information of

theoretical concepts to

tool usage.

lection but also the relationship between the various statisti-
cal concepts. Our more experienced participants mentioned
that this is a skill they could develop only over time, by facing
new scenarios that required them to deviate from the statisti-
cal procedures typically used. Practical statistics is essential to
perform a real-world analysis, but our participants could gain
them only through experience.

Just-in-time learning practice

Our next finding concerns the time constraint under which ourParticipants reported to

work under a time

constraint, which

affected their choice of

information sources.

participants reported to prepare for hypothesis testing. Par-
ticipants reported to resort to just-in-time learning to gather
information required for performing statistics. As a result, tra-
ditional learning methods like books, lecture slides, and on-
line courses, while considered useful, were reported to be min-
imally used during preparation. Participants also reported that
using these information sources required them to spend a lot of
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time in identifying specific information relevant to their anal-
ysis. Participants mentioned that tutorials like Practical Statis-
tics for HCI2 [Wobbrock, 2011] and hcistats3 helped them de-
termine statistical procedures as well as tool usage with hypo-
thetical datasets. Online searches and web articles helped stu-
dents answer specific questions about practical statistics, but
often had inaccurate or unreliable information. Even when
students found reliable sources, they had to contextualize the
information in those sources to their analysis, which is not al-
ways straightforward. We compare these information sources
in more detail in Section 3.6.

Allocating time for analyses

Since participants gathered information needed for their anal- Most participants

underestimated the time

it would take for them to

perform hypothesis

testing.

ysis only shortly before their analysis began, we were curious
if they were able to finish their analysis as planned. 7 out of
12 participants (58%) reported that their analysis tasks took
more time than they had originally expected. The delay was
attributed to difficulties in learning statistics (6 out of 7 partic-
ipants; 86%), learning the analysis tool (6 out of 7 participants;
86%), and problems in experimental data collection (3 out of
7 participants; 43%). Therefore, as we discussed earlier, e.g.,
in Section 3.1, selecting the appropriate statistical procedure
and performing analysis are complex tasks.

Deciding upon the analysis software

Our findings also shed light on how our participants select tools Participants decided

upon statistical tool

based on interpersonal

recommendations,

expense, and familiarity.

for analysis. Participants reported to use the following criteria
(ordered from most to least frequent) to decide upon the sta-
tistical tool for their work:

• The tool was used and/or recommended by colleagues
and supervisors (8 out of 12 participants; 67%).

2https://depts.washington.edu/acelab/proj/
ps4hci/

3https://yatani.jp/teaching/doku.php?id=
hcistats:start

https://depts.washington.edu/acelab/proj/ps4hci/
https://depts.washington.edu/acelab/proj/ps4hci/
https://yatani.jp/teaching/doku.php?id=hcistats:start
https://yatani.jp/teaching/doku.php?id=hcistats:start
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• The tool was available for free (8 out of 12 participants;
67%).

• The tool was familiar (4 out of 12 participants; 33%) and
came up on a Google search (3 out of 12; 25%).

3.5.3 Summary of Key Findings

From our analysis, we find that

• Formal education does not prepare data workers ade-
quately for real-world analyses.

• Since hypothesis testing may be highly complex for cer-
tain novice data workers, they develop negative conno-
tations about hypothesis testing.

• Three types of information are required for analysis:
Theoretical foundations, tool usage, and practical statis-
tics, which acts as a bridge between theoretical founda-
tions and tool usage.

• There is more evidence that statistical procedure selec-
tion and carrying out an analysis are complex tasks.

3.6 Study: Understanding Resource Use

https://osf.io/rm9ba/?view_only=
dba6b1b49d72416bba1c4d26f528e569 a

aContains the final coding scheme from our analysis discussed in this
section as well as the first few pages of a transcript with codes, to illustrate
our analysis process.

To expand on our previous study, and to gain a comprehen-To understand resource

use, we conducted

interviews and a survey.

sive understanding of how data workers select statistical pro-
cedures in their work, we conducted detailed interviews with
data workers. We chose to use qualitative methods, such as in-
terviews and grounded theory analysis, as they are well suited
to help understand a complex process [Charmaz, 2006]. We

https://osf.io/rm9ba/?view_only=dba6b1b49d72416bba1c4d26f528e569
https://osf.io/rm9ba/?view_only=dba6b1b49d72416bba1c4d26f528e569
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describe our data collection and method, and then discuss the
key findings from our interviews. To triangulate our interview
findings, we conducted an online survey, the results of which
are discussed in Section 3.7.

ID Discipline Status Methods used

IP01 Business statistics MSc Decision trees, GARCH models

IP02 Applied psychology PhD ANOVA, chi-squared tests

IP03 Business statistics MSc Regression, PCA, clustering

IP04 HCI PhD ANOVA, frequency tests

IP05 Cognitive neuroscience PhD ANOVA, regression

IP06 Computer science PhD Neural networks, random forests

IP07 Risk and model analysis Ind n-gamma model, regression

IP08 Statistics Ind Regression

IP09 HCI PhD t-test, chi-squared tests

IP10 Automotive engineering MSc Correlation, neural networks, regression

IP11 Psychology MSc Structural equation model, ANOVA

IP12 Labor economics MSc DID, regression

MSc: Master’s student; PhD: PhD student; Ind: Industry practitioner.
GARCH: Generalized AutoRegressive Conditional Heteroskedasticity; PCA: Principal Component Analy-
sis; DID: Difference in Differences analysis.

Table 3.2: Details of participants we interviewed about resource use.

3.6.1 Data collection

We used purposive sampling [Etikan and Bala, 2017] to recruit Our participants came

from various disciplines,

worked on various data

science tasks, and

included two industry

practitioners.

12 participants from our personal and professional networks
(six female, median age = 26.5, will be referred to as IP01–
12) via university mailing lists and word-of-mouth. Purposive
sampling gave us the best chance of identifying information-
rich participants. At various stages of the sampling process,
we looked for data workers with specific experience level and
whether they worked in industry or academia. To improve ex-
ternal validity, we sampled participants from various domains,
such as HCI, psychology, and economics. Since procedure se-
lection is also a common issue in machine learning, we in-
cluded three participants (IP06, IP07, and IP10) who used sta-
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tistical machine learning techniques, such as neural networks
and classification. Most of our participants are graduate stu-
dents enrolled in a graduate program. We sampled two indus-
try practitioners (IP07 and IP08) as we were curious to learn
about their workflows.

Except for IP06, all participants used statistical inference meth-Participants performed

various analysis tasks. ods, such as regression and significance tests. For example,
IP01 analyzed house renting situation based on data from rent-
ing websites, IP02 investigated how the position and layout of
images in an advertisement could affect users’ responses, and
IP07 used natural language processing techniques to classify
whether comments on a website were useful or spam. Intervie-
wees’ experiences also varied substantially. Graduate students
pursuing their Master’s degree usually had only 1–3 years of
experience with analysis techniques, whereas our most experi-
enced interviewee, a doctoral student, had over seven years of
experience. For participant details, see Table 3.2.

3.6.2 Method

Semi-structured interviews

Before interviews, each participant gave their consent to beIn our interviews, we

focused on information

source usage aimed at

helping select statistical

procedures.

recorded and have their data collected. We conducted semi-
structured interviews to understand how our participants seek
information about statistical procedure. In semi-structured
interviews, participants are asked several key, predetermined
questions about topics of interest, but not in a specific order or
with a particular phrasing [Adams, 2015]. The semi-structured
nature of the interviews allowed us the flexibility to focus on
particular topics, depending on how the interview transpires.
However, since the semi-structured interviews have some struc-
ture, the data coding process is more effective, than when em-
ploying unstructured interviews [Minichiello et al., 2008]. We
developed and used a questionnaire for the interview, which
continued to evolve over the course of the interviews.

Our interviews consisted of three phases. During the firstOur interviews

consisted of three

phases.

phase, we collected background information about our partic-
ipants. This included questions such as “How long have you
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Figure 3.2: The resulting categories after qualitatively coding
the interview transcripts. We performed two cycles of coding
in MAXQDA software.

been doing hypothesis testing?” and “Have you taken any hy-
pothesis testing course?”. During the second phase, participants
were asked to walk the interviewer through a recent analysis
task. Through this walkthrough, we aimed to understand how
participants chose the statistical procedure, how they selected
the statistical tool, and how they dealt with the problems that
came up during these steps. Our questions in the third phase
were aimed at understanding our participants’ attitude towards
hypothesis testing as well as how they use various information
sources. When possible, we encouraged participants to present
their artifacts, e.g., their analysis or browser history, to get a
more deeper insight into our participants’ workflows.

Interviews lasted 45 minutes on average. The shortest inter- Interviews varied in

length, depending on

the stage of theoretical

saturation.

view was 25 minutes long, and the longest interview was over
one hour. The length of the interviews depended on the stage
of theoretical saturation achieved and on the amount of data
gathered. Interviews were conducted face-to-face where pos-
sible, but some interviews were conducted via Skype.

Analysis method

We recorded the audio of the interview sessions, and then pre- We used qualitative

methods to analyze

interview transcripts.

pared full transcripts. We used a grounded theory approach,
a well-known qualitative method used to explore relationships
and complex phenomenon. This approach particularly suited
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our goal of understanding a process or interaction [Creswell,
2013].

We performed two cycles of qualitative coding on these tran-We performed two

cycles of coding, and

eventually grouped

codes into 14

categories.

scripts and field notes: Open coding [Corbin and Strauss, 2014]
followed by focused coding [Charmaz, 2006]. During open cod-
ing, we added sentence-level codes to our transcripts. During
focused coding, we grouped the codes we developed (and iter-
ated on) in the first phase, and allowed theoretical categories
to emerge. We followed the methodology described in most
qualitative research manuals, e.g., [Saldaña, 2013]: We wrote
memos, discussed alternate explanations, and used a constant-
comparative method to gather data for validating our expla-
nations. Overall we identified 544 codes, which were subse-
quently grouped into 14 categories as shown in Fig. 3.2.

3.6.3 Findings

We present the main findings from our analysis, grouped into
three topics: 1) Uncertainty in statistical procedure selection,
2) coping strategies for procedure selection, and 3) informa-
tion sources used for selecting statistical procedures.

Uncertainty in statistical procedure selection

Prior research has shown that even highly trained students may
find it difficult to select the appropriate statistical procedure
[Gardner and Hudson, 1999]. Our participants also considered
statistical procedure selection to be complex, and gave specific
reasons.

Several participants (P03, P04, and P09–12) involved in aca-Uncertainty about

procedure selection

arises mainly from

methodological

concerns over the use

of frequentist

hypothesis testing.

demic research reporting feeling uncertain about statistical
procedure selection. Even though hypothesis testing has been
the standard technique for statistical inference, researchers
have recently raised concerns over its use, e.g., the over-
reliance on p-values. As a result, there is a proliferation of
research works that propose alternative approaches (e.g., [Kay
et al., 2016; Dragicevic et al., 2019]), as well as practical
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changes and guidelines to the current approach (e.g., [Cock-
burn et al., 2018; Transparent Statistics in Human–Computer
Interaction Working Group, 2019]). Such changes require aca-
demic researchers to make changes to their existing analy-
sis workflows, sometimes drastically by having to adopt new
workflows. Our participants reported that since “things were
always changing” (IP4), they had to be cautious about statisti-
cal procedure selection:

“There is a lot of uncertainty with test selection and
there are no standards [about which procedure is
best]. For me, it is hard to know which test to use.” -
IP4

Some participants reported to feel apprehensive about proce- Some participants

reported to delay

procedure selection as

they were apprehensive

of the task.

dure selection, which sometimes manifested itself as a form of
learned helplessness (“I never start by selecting the significance
test to analyze my study data, because I am not sure I can do it
properly!” – IP01). Such apprehension is warranted for some
participants, who had used an incorrect method themselves, or
recommended it to a colleague. For example, IP03 had used an
incorrect method earlier in their work that rendered their find-
ings invalid (“[...] we analyzed factors that affect the winning
percentage of each team in the NBA. I chose the wrong method
for it.” – IP03), and IP04 had suggested incorrect methods to
others (“I once recommended an analysis to a colleague, and it
turned out to be wrong. I am now reluctant to answer questions
about statistics [...]” – IP04).

Coping strategies

Since reporting the results of an incorrect procedure can result Participants prefer to

use well accepted,

familiar procedures.

in a publication getting rejected, our participants reported to
employ various strategies to minimize chances of incorrect se-
lection. As one can expect, most participants (83%) reported to
use the statistical procedure that is most accepted and common
in their community (“Regression is the most common method
for influence factor analysis in my research field.” – IP12). The
benefits of selecting a well-accepted, prevalent method seemed
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to outweigh any potential advantages an alternative method
could offer (“There are always different approaches to do the
same thing. Several methods could be correct, and each has [its]
advantages. In those situations, I just use the familiar one.” –
IP04). Interestingly, we also observed this strategy among
our more experienced participants, IP05 and IP09, who had
the knowledge and expertise required to adopt an alternative
method (“Generally, there are fixed routines when you are do-
ing projects. Normally we will use ANOVA because it’s easier and
better to use, and it’s a common method in psychology experi-
ments.” – IP05). This indicates that there is a general reluc-
tance to adopting new statistical procedures.

When asked about this reluctance, our participants reportedParticipants find it hard

to convince

stakeholders of

alternative procedures,

and want to avoid

risking rejection of their

publication.

that even when they were willing to adopt better methods, get-
ting the stakeholders, e.g., supervisors, reviewers, and clients,
on-board was difficult. For example, IP07 conducted a risk
analysis by applying an unconventional but valid method, but
had to revert to using regression models and decision trees later
upon the insistence of their superior (“My boss told me that in
the fields of p2p (peer-to-peer) and banking, the most frequently
used method is regression as the results are easier to interpret.” –
IP07). Indeed, participants who conducted academic research
were also cautious about using new methods as this might put
the acceptance of their paper in jeopardy (“[...] if I use this
method in my paper, will the reviewer of the paper know this ap-
proach? If they won’t, will they reject my paper? So, normally we
will just stick to the methodology already out there [...]” – IP04).

Satisficing behavior is prevalent in information behavior re-Participants are hesitant

to use new statistical

procedures, and

satisfice even when

they are aware of better

procedures.

search [Berryman, 2008]. Nevertheless it is concerning when
data workers satisfice with an inferior method with the knowl-
edge of better methods (P07, P08, and P10): (“I have discussed
this with a credit data analysis company [...] I asked if they use
deep learning models for analysis, they said ‘no, we don’t use such
a complex method, we just use simple logistic regression, even
though the former could get a better result.”’ – IP08).
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Information sources to help with statistical procedure se-
lection

In our interviews, we also investigated the various information
sources our participants used to help select statistical proce-
dures. We identified five types of information sources: books,
research publications, interpersonal sources, Q&A platforms,
and other websites.

Books: Books are a traditional medium to gain information. Books have depth of

information but finding

information specific to a

situation might take

time.

Many participants (P01–05, P07, P09, and P12) reported read-
ing books to gain a deeper understanding of the statistical
methods (“I read some books about the methodology I’m going
to use. I know the overall methodology, but some specifics I sort
of identify on-the-fly.” – IP04). However, as we discussed in our
previous study in Section 3.5.2, most participants did not re-
port using books to help decide on the statistical procedure for
specific situations, as finding the relevant, specific information
can take up significant time. Overall, books were used to gain
in-depth information, but were not preferred to decide upon
statistical procedures.

Research publications: All participants who conducted re- Participants reported to

use existing publications

as a template for their

research and analysis.

search in academia reported to use research publications to
help decide on statistical procedures. However, the prominent
reason was not that publications had high credibility or intro-
duced novel, state-of-the-art procedures. Instead, participants
sought publications that reported an analysis of a study simi-
lar to theirs, in order to gain a template for their own analysis.
This gave them an assurance that the statistical procedure they
use in their analysis will be accepted by the reviewers (“When I
get my topic, I will read lots of reference papers, determine what
methods they use [...] I will probably use the same one.” – IP05).
Some participants also reported to use these publications to
identify possible measurements and factors (“I will search for
some paper related to this field, find the factor mentioned in the
paper, and for each factor determine the independent variables
that were used.” – IP03). Some participants who conducted re-
search in analysis-heavy disciplines, such as risk analysis and
business statistics, reported to rely upon publications to be in-
formed about the state-of-the-art statistical procedures (P01,
P03, and P12).
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Interpersonal sources: Almost all participants (IP01–05 andParticipants considered

interpersonal sources to

be credible, but most

use this source only to

validate their choice of

statistical procedure.

IP07–12) agreed that seeking the validation of experts would
be the most credible, time-saving approach (“. . . asking others is
really important in the work. Normally if you find something by
yourself, it is time-consuming. [...] you should combine searching
by yourself and asking people [experts].” – IP07). It is important
to note that seeking validation from experts is different from
using experts as an information source for determining statis-
tical procedures; with validation, participants want to confirm
that their choice is correct (“I have these-and-these tests, and he
will check it, and we agree on which test to use.” – IP09). Having
an expert validate their procedure seems to reduce the uncer-
tainty around procedure selection (“(Referring to books) . . . even
if I read all these [books,] I would still not be sure. . . especially if
it is just [myself] making the decision.” – IP09). One issue with
this approach is that experts may not always be available—five
participants reported facing difficulties finding an expert in a
timely manner.

Q&A platforms: Almost all participants (IP01–07 and IP09–Q&A platforms are

popular among our

participants, despite

concerns over credibility

of responses.

12) reported using Q&A platforms like StackExchange4, Re-
searchGate5, and Zhihu6. While some posted questions about
statistical procedure selection on these platforms, most re-
ported to discussions of existing queries that had described a
scenario similar to theirs. Participants’ opinions about Q&A
platforms were mixed. What primarily attracted our partici-
pants was the possibility to receive answers from many able
experts in a timely manner (“I asked the question I mentioned
before, related to principal component analysis. There [were] 4
or 5 replies within two days.” – IP12). However, most partici-
pants mentioned that browsing existing discussions to find the
relevant one can be difficult, and raised concerns over the cred-
ibility of responses. We discuss the use of Q&A websites in more
detail in Section 3.8.

Blogs and wikis: Many participants (P04, P05, P09, P10, andEducational websites,

blogs, and wikis can

help inform statistical

procedure selection.

P11) reported to use certain websites that were not Q&A plat-
forms, such as educational pages, blogs, and wikis that con-
tained decision trees and tutorials. Participants’ opinions about
these websites were comparable to that of Q&A platforms, es-

4https://stats.stackexchange.com
5https://researchgate.net
6http://www.zhihu.com/; used in China

https://stats.stackexchange.com
https://researchgate.net
http://www.zhihu.com/
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pecially for reputable websites, e.g., a blog maintained by a
well respected academic researcher.

Disciplinary variations

We found that there were certain differences in statistical Participants’ concerns

about procedure

selection varied

according to the

discipline they worked

in.

procedure selection across disciplines. Participants who per-
formed machine learning tasks were concerned less with
whether a chosen statistical procedure was valid, and instead
focused on the utility of statistical procedures. For example,
IP6, who built neural networks sought neural network archi-
tectures that could yield a better model fit and prediction esti-
mates. Furthermore, for participants who did machine learn-
ing tasks, it was not uncommon to use several procedures and
compare them before deciding upon one or more procedures.
Such an approach was somewhat less common with partici-
pants who performed statistical hypothesis testing. Finally, the
chosen statistical procedure in machine learning tasks, e.g.,
neural networks, is seen as a more valuable contribution to-
wards the publication than hypothesis testing. Therefore, there
seems to be less satisficing behavior among participants who
performed machine learning tasks than hypothesis testing. De-
spite such differences, we found no differences across disci-
plines in the information sources used.

3.6.4 Discussion

Below we discuss some of the issues that resulted from our
analysis.

Low adoption of alternative statistical procedures

We find that since data workers, especially novices, are reluc- As data workers are

hesitant to adopt new

alternative procedures,

existing procedures

continue to be prevalent

over time.

tant to adopt new procedures, procedures that are prevalent in
publications and industry practice continues to stagnate. For
example, from our analysis of CHI ’19 publications, only 8% of
papers (25 out of 301 papers that report statistical inference)
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use procedures that are not significance testing, such as esti-
mation statistics and Bayesian statistics. We expect that as re-
searchers continue to adopt alternative methods, albeit in small
numbers, older methods will become less prevalent. Here are
some solutions that could help data workers adopt alternative
procedures faster:

• Encourage changes and establish standards at a confer-Our recommendations

range from

standardization to

pedagogical changes.

ence level, e.g., CHI attempted to address the replication
crisis by encouraging authors to include research mate-
rials along with publications7.

• Provide incentives to papers that adopt alternative meth-
ods successfully, such as badges and awards, similar to
the attempts to incentivize transparency in research pub-
lications [Robson et al., 2021].

• Teach alternative procedures in high school and univer-
sities by showing how they are better, e.g., easier to per-
form and provides better insights, than existing proce-
dures. This can be achieved with the aid of simple com-
puter simulations.

Learned helplessness about procedure selection

The helplessness novice data workers develop due to the un-
certainty in procedure selection can be addressed by offering
more hands-on training at a high-school or university level. Ad-
ditionally, working with an experienced data worker or a men-
tor can have a high value, since experienced data workers can
offer assurance and guidance in adopting a new procedure.

3.6.5 Summary: Key Findings

Based on our analysis of initial interviews, we have identified
the following:

7https://chi2021.acm.org/for-authors/
presenting/papers/guide-to-a-successful-submission

https://chi2021.acm.org/for-authors/presenting/papers/guide-to-a-successful-submission
https://chi2021.acm.org/for-authors/presenting/papers/guide-to-a-successful-submission
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• Data workers prefer commonly accepted statistical pro-
cedures due to the insistence of stakeholders or to not
jeopardize their publication’s acceptance, even when
they know that better methods are available.

• Academic data workers use publications as a template,
and use them to inform their analysis procedure.

• Data workers prefer validation from experts, either
through interpersonal communication or Q&A forums,
since it is the path of least effort [Zipf, 2016] when com-
pared to formal sources like books and research publica-
tions.

• In situations where finding the right expert is difficult,
data workers resort to informal sources like Q&A forums
and other websites.

3.7 Survey : Understanding Usage of Infor-
mation Sources

https://osf.io/tjq59/?view_only=
cabf188de919402ea45c0184c712c867 a

aContains the online survey and results from our survey.

To triangulate our interview findings discussed in the previous Our survey aims to

triangulate key findings

from our interviews.

section, and to gain more insights about data workers’ statisti-
cal practice, we conducted an online survey. We now discuss
the procedure of our survey, and the key findings from our anal-
ysis.

3.7.1 Data Collection

We designed a brief 5-minute survey that aimed to collect re- We sent the survey to

academic data workers

from various disciplines.

spondents’ background and details about the various informa-
tion sources they use to help determine statistical procedures.
We recruited our respondents by (a) contacting authors of rel-
evant CHI 2019 papers via email, (b) posting on one social

https://osf.io/tjq59/?view_only=cabf188de919402ea45c0184c712c867
https://osf.io/tjq59/?view_only=cabf188de919402ea45c0184c712c867
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media group that includes researchers, and (c) sending the sur-
vey to a local HCI lab’s mailing list. We identified the relevant
papers using an existing survey of the CHI 2019 proceedings
[Reinhard, 2020]. We emailed the first authors of the papers
that reported to use quantitative methods. To extract the au-
thors’ email addresses from proceedings, we used an existing
script used for a similar survey of CHI ’19 papers [Wachara-
manotham et al., 2020]. Respondents had the chance to enter
a raffle worth $30. The survey was closed after five days.

3.7.2 Details of survey respondents

51 respondents from 15 countries took the survey, with most re-Survey respondents

were from various

backgrounds, most

were formally trained in

statistics, and most

reported to have a lot of

statistical expertise.

spondents from Germany (31%) and the US (27%). 49% were
academic researchers, i.e., post-docs and professors; 31% were
PhD students; 10% were Master’s students; 6% were indus-
try practitioners; and the rest (4%) were Bachelor’s students.
While most respondents conducted their research or worked in
HCI, we also had a few respondents from twelve related disci-
plines, such as psychology and education. 77% reported to be
formally trained in hypothesis testing, but over a third of those
(44%) reported that the training did not prepare them well
enough for real-world analyses. Most respondents had plenty
of experience with hypothesis testing, with 22% reporting to
have performed 5–10 analyses and 33% performing over 10
analyses in the last year. Only 20% reported performing just
one or two analyses in the last year.

We now present the key findings from our survey.

3.7.3 Certainty About Statistical Procedure Selection

Many of our interview participants reported to be uncertain
about their choice of statistical procedure. To validate this find-
ing, we asked our survey respondents to rate how confident
they were in selecting statistical procedures (“In general, how
confident are you that the statistical procedure you have chosen
is correct?”).

Most respondents (77%) rated a 5 (‘Very confident’) or 4 (‘Con-Most respondents

reported to be confident

about their choice of

statistical procedure.
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fident’). Only 23% provided a rating of a 3 (’Neutral’) or 2 (’Not
confident’). This contrasts our interview finding, in which we
found that most interview participants were not confident in
their choice of statistical procedure. We have two potential
explanations for this. First, since many of our survey respon-
dents are quite experienced, they might have higher levels of
confidence in statistical procedure selection. Second, this in-
creased confidence might be the result of interpersonal discus-
sions with experts and/or the publication getting accepted, and
might not be indicative of the respondents’ initial uncertainties
about their choice of statistical procedure.

3.7.4 Perceived Complexity of Procedure Selection

Since many interview participants reported to find the selec- More than half of our

survey respondents

consider statistical

procedure selection a

complex task.

tion of statistical procedures complex, we wanted to validate
this in our survey. We asked respondents to rate their perceived
complexity of statistical procedure selection (“Based on your ex-
perience, how complex do you think finding the correct statistical
procedure is?”). The results validated our interview finding,
with over half of our survey respondents (53%) providing a
rating of a 5 (‘Very complex’) or 4 (‘Complex’). Only 10% rated
a 2 (‘Straightforward’) and the rest (37%) rated a 3 (‘Neutral’).
Most respondents (63%) who rated a 2 or 3 had conducted
five or more analyses, leading us to believe that inexperienced
researchers consider procedure selection a complex task.

3.7.5 Timeline of Research Process

In our first interview study, we had found that many partici- Most participants

decide upon statistical

procedures after

collecting some or most

data from their

experiment.

pants did not allow themselves enough time to decide upon the
statistical procedure and perform analysis. Therefore, we were
curious about the stage in a research process at which data
workers decide upon statistical procedures. To determine this,
we asked respondents to select from these stages in research
process: before collecting any data, after collecting some data,
or after collecting all data. The results show that more than a
third of our respondents decided upon a statistical procedure
before collecting any data (37%) or after collecting some data
(33%), with the rest (29%) making the decision after collecting
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all data. This shows the prevalence of preregistration practices
among our survey respondents, most of whom were experi-
enced academic researchers.

3.7.6 Information Sources

From our interviews, we had found that our participants usedSurvey respondents

were asked to choose

which information

sources they used.

a variety of information sources, with most relying upon expert
validation, either through interpersonal discussions or Q&A
platforms. To validate this, we asked our survey respondents
to select all the information sources they use to help decide
on statistical procedures: books, research publications, discus-
sion with experts, Q&A platforms, other websites, and lecture
notes or materials. The results confirmed our suspicions, with
discussion with experts being the most popular choice (cho-
sen by 84% of our respondents), followed by Q&A platforms
(65%), and formal information sources (books: 63%, publica-
tions: 61%). Lecture notes or materials were the least popular
(45%), a reaffirmation that formal training tends to focus less
on practical statistics as we discussed in Section 3.5.2.

Next, to understand how our respondents valued these various
information sources, we asked them to rate each source on the
basis of trustworthiness (“How reliable is the information?”),
speed (“How quickly can you get the information?”), and avail-
ability (“How readily available is the information?”). The avail-We asked respondents

to rate information

sources on various

criteria.

able ratings ranged from ‘Very bad’ to ‘Very good’. These fac-
tors were based on existing research on information behavior
[Pinelli et al., 1991] and the insights we gathered from inter-
views. Not surprisingly, books and research publications were
considered the most trustworthy. Discussion with experts were
also considered very trustworthy, but Q&A platforms and other
websites were considered less trustworthy. Formal sources like
books and publications were considered to take more time to
obtain information than informal sources like Q&A platforms
and other websites. Experts were the least available, followed
by books and publications. Therefore informal sources are
more accessible but less trustworthy, whereas experts are more
trustworthy and act as a quick source of information but are
less available.
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Figure 3.3: Results of our Likert scale questions, in which our respondents rated the
five different information sources—books, publications, Q&A platforms, other
websites, and discussion with experts—on the basis of trustworthiness (above) and
availability (below). Our results show that discussion with experts is considered
trustworthy but less available, and that informal sources like Q&A platforms and
websites are more available but less trustworthy. This could explain the widespread
use of Q&A platforms, despite the general perception that they are less trustworthy.

3.7.7 Summary: Key Findings

In summary, the key findings we can takeaway from our survey
are:

• Our survey findings confirm the prevalent belief among
data workers that selecting the appropriate statistical
procedure is complex.

• Experts are the most common information source for
data workers; data workers prefer interpersonal commu-
nication, but many data workers also use Q&A forums.

• Discussions with experts were considered trustworthy
and a quick source of information, but were not always
readily available. This could explain the widespread use
of Q&A forums, despite its lower levels of trustworthi-
ness.



62 3 How Data Workers Gather Knowledge

3.8 Content Analysis: Understanding
Queries About Analysis Procedures

https://osf.io/3rd4n/?view_only=
a77946842b7649758bdcf1b36d0ecbcc a

aContains the URLs of the questions we analyzed and attributes of
questions we manually coded.

Inspired by our findings from interviews, we wanted to under-We analyzed questions

and answers about

statistical procedure

selection from Q&A

websites to understand

how data workers seek

expert validation.

stand how Q&A websites are used by users to post questions
about statistical procedure selection and how such questions
are handled. The findings from this content analysis helps us
understand how data workers seek validation from experts,
which is one of the preferred information sources that help de-
cide upon statistical procedures. In this section, we first de-
scribe our data corpus (Section 3.8.1), our analysis method
(Section 3.8.2), and then present the key findings from our
analysis (Section 3.8.3).

3.8.1 Data Collection

We selected a random sample of 76 questions8 about hypoth-We carefully sampled

76 questions from Q&A

websites.

esis testing (Q01–76) from eminent Q&A websites, CrossVal-
idated9 (n=36) and ResearchGate10 (n=40). CrossValidated
and ResearchGate were mentioned by several participants in
our previous interview studies, and are well known in data sci-
ence community. CrossValidated is run by the StackExchange
network, a popular Q&A platform [Begel et al., 2013], and,
with over 15 million academic users as of 2019, ResearchGate
is one of the most well-known academic social networks.

Independently, we also informally surveyed other platformsWe sampled our data

from CrossValidated

and ResearchGate after

surveying other

platforms used for data

science discussions.

that one might use to ask questions about statistical proce-
dures. To do this, we did a Google search for hypothetical ques-

8https://docs.google.com/spreadsheets/d/
1xSt12wIbXNa3kFIqjE55_gNxO4T-ri15GS49hgTwhYE/
edit?usp=sharing

9https://www.crossvalidated.com
10https://www.researchgate.com

https://osf.io/3rd4n/?view_only=a77946842b7649758bdcf1b36d0ecbcc
https://osf.io/3rd4n/?view_only=a77946842b7649758bdcf1b36d0ecbcc
https://docs.google.com/spreadsheets/d/1xSt12wIbXNa3kFIqjE55_gNxO4T-ri15GS49hgTwhYE/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1xSt12wIbXNa3kFIqjE55_gNxO4T-ri15GS49hgTwhYE/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1xSt12wIbXNa3kFIqjE55_gNxO4T-ri15GS49hgTwhYE/edit?usp=sharing
https://www.crossvalidated.com
https://www.researchgate.com
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tions about statistical procedure selection and surveyed the re-
sults. In addition to CrossValidated and ResearchGate, other
results either a) included discussions based on a particular sta-
tistical tool, e.g., Statalist11, or b) had no dialogue between
questioner and respondents, e.g., discussions in ISIXSIGMA12.

We used the following criteria to sample questions from Cross-
Validated and ResearchGate:

1. question should have a relevant tag: At least one of ‘sta-
tistical test’, ‘significant test’, and ‘hypothesis testing’;

2. question should have at least one answer written by a
respondent; and

3. question should be about selection of the appropriate sta-
tistical procedure, and not about usage details, i.e., how
to use a certain programming language or software to
perform a given statistical procedure.

3.8.2 Method

We analyzed our sample of 76 questions13 manually by identi- We manually analyzed

various characteristics

of questions and

responses.

fying several attributes of the question such as characteristics of
the dataset (sample size, experimental design, measurements,
factors, etc.), intention of the question (was it used to confirm
a given procedure, fact-check a specific detail, or ask an open-
ended question?), and the time-point during research when the
question was asked (before data collection, after data collec-
tion but before analysis, or after an initial analysis). We also
investigated the answers to these questions by identifying ac-
ceptance rates of the answers, whether the respondents assumed
information about the question, and agreement among the re-
spondents’ answers.

A solo-analyst iteratively developed the attributes after an ini- A solo coder analyzed

the textual content of

the posts.
11https://www.statalist.org/forums/forum/

general-stata-discussion/general/
12https://www.isixsigma.com/tools-templates/

normality/dealing-non-normal-data-strategies-and-tools/
13We analyzed 101 questions in total, but after analyzing the first 25 ques-

tions, we realized that these questions included requests for implementation
or programming details, so we decided to exclude these.

https://www.statalist.org/forums/forum/general-stata-discussion/general/
https://www.statalist.org/forums/forum/general-stata-discussion/general/
https://www.isixsigma.com/tools-templates/normality/dealing-non-normal-data-strategies-and-tools/
https://www.isixsigma.com/tools-templates/normality/dealing-non-normal-data-strategies-and-tools/
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tial analysis. We used qualitative analysis only to analyze the
text content of the posts. This helped us understand the char-
acteristics of the questions, as well as the conversation between
questioner and respondent. The coding was done by a single
analyst, who came up with a coding scheme after a phase of
open coding and through regular discussions with the author
of this work. A formal inter-coder agreement score was not
computed.

3.8.3 Findings

Prevalence of validation questions

In about half of the questions (36 out of 76; 47%), questionersMost questions we

analyzed already

included a possible

solution, and sought to

confirm it.

already knew which statistical procedure they should be using,
but were uncertain and hesitant to apply them to their data.
These questions sought to validate their choice with experts.
Prevalence of such questions is further validation of the un-
certainty in statistical procedure selection. In such questions,
questioners knew the statistical procedure, but had specific is-
sues, such as smaller sample size or unclear distribution type
which made them doubt their choice:

“. . . Based on previously published data, an one way
ANOVA would be best for what I am doing. . . When
I include steroid A on the graph[,] nothing is signifi-
cantly different from my basal reading... This seems
incorrect to me as this means there is dependence be-
tween each response... Is this because of the incorrect
test and which test should I then use? Or if this is cor-
rect, why should the bar for steroid A be effecting the
hypothesis testing of my remaining steroids?” (Q46)

Information specified in questions

Questions contained three groups of information as shown in
Table 3.3: dataset, experimental design, and questioner’s in-
tentions. We discuss these groups in detail below.
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Information No. of questions

Dataset

(32/76)

Complete raw data 13

Partial raw data 7

Fabricated data 3

Summary data 11

Assumptions 14

Experimental

design (76/76)

Factor
Name 66

Other 66

Measure

Fabricated 6

Name 64

Other 19

Sample size 32

Procedure 17

Factor design 19

Intentions

(67/76)

Hypothesis 26

Analysis goal 67

Potential solution 36

Table 3.3: Information questioners included in questions
about procedure selection

Dataset: Information about dataset is critical for questions
about statistical procedure and includes descriptive summary
statistics, i.e., measures of central tendency such as mean, me-
dian, and mode, and measures of spread such as standard de-
viation and variance; and other data characteristics, such as
homogeneity, linearity, and distribution type.

Although such information is important, only 42% (32 out of Not all questions

include information

about dataset.

76) of questions included it. Of these, in three questions the
information was provided only upon respondents’ request. Of
the remaining 44 questions, 34 questions (77%) had adequate
information to elicit answers. Of this, 27 of these questions
had incomplete information about dataset, but the given in-
formation allowed respondents to assume certain details about
the dataset. For example, in the following question, the re-
spondents could assume the distribution type and certain other
characteristics based on the measurements and factors:
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“. . . I am trying to study the association between
blood groups (categorical variable) and cholesterol
levels (continuous variable) adjusted confounders? I
was wondering which statistical test would be more
appropriate?” (Q05)

It is possible that unless the respondents’ assumptions are ex-
plicitly stated in the answers as shown below, the resulting an-
swer could be incorrect:

“. . . I suspect the distribution of hospital costs is pos-
itively skewed, is it? If so, I would strongly consider
using quantile regression rather than OLS linear re-
gression.” (Q42)

There were ten questions (23%) had not provided enough in-
formation for the respondents (“. . . Can’t respond responsibly
without more information. Please show more data, or specula-
tions of how data may look.” in Q15).

Experimental design: All questions provided information
about experimental design, even though in some cases the in-
formation was minimal. This includes information about fac-
tors such as the levels and whether they are between- or within-
subjects and possible interaction between factors.

While most questioners provided actual variable names fromAs information about

experiment might

include confidential

data, some questioners

use hypothetical names

and/or characteristics.

their experiment, some provided fabricated variables. This was
done in three ways:

1. Questions included descriptions of hypothetical variables
with similar properties. This approach was done mainly
to conceal sensitive information (“Suppose I am doing a
case control study. Lets say. . . For Example: If “satisfaction
with life” and “quality of life” are research variables in two
groups. . . Please explain as my research question is differ-
ent, and I have just given an example here.” in Q47).

2. Questions included real variable names, but the character-
istics were hypothetical. We found an example, in which
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Design the study and estimate sample size

Conduct the experiment to collect data

Perform analysis to obtain results

Interpret results and disperse findings

Identify research question

a

b

Figure 3.4: Experimental research consists of five steps that
are shown above. For most experiments, it is preferable to
decide the statistical procedure before conducting the
experiment (a). But from our analysis, we find that most
questions about statistical procedure selection are posted
after the data have already been collected (b). (Adapted from
[Jones, 2004].)

the questioner had specified different number of levels in
the question, but later clarified it (“I should say that my
data has two more score values than in my example (i.e.,
question) above, it was designed exemplary.” in Q01).

3. Questions included vague descriptions of the variables
and hypothetical variable names: (“I am running Kruskal-
Wallis tests in SPSS (a hypothesis testing software) to com-
pare answers to Likert [-scale] items among 3 (variable 1)
and 4 (variable 2) groups.” in Q29).

In addition to experimental design, nearly a half of the ques-
tions also included sample size.

Timeline of procedure selection and data collection

A typical analysis has several steps as shown in Figure 3.4:
Identify research question; design the study and estimate sam-
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ple size; conduct the experiment to collect data; and per-
form analysis to obtain results (adapted from [Jones, 2004]).
Depending on the type of analysis, researchers should ideallyThere are various

stages during the

research process at

which data workers can

decide upon the

statistical procedure.

decide the analysis procedure before conducting the experi-
ment. For typical controlled experiments and hypothesis test-
ing, it is recommended that researchers pre-register their anal-
ysis procedure [Cockburn et al., 2018], i.e., decide the proce-
dure before conducting the experiment (Figure 3.4a). For more
exploratory research works, which are still somewhat prevalent
in HCI, it would be OK to determine the analysis procedure
post-data collection (Figure 3.4b).

By analyzing the phrasing in the question and whether rawMost queries about

statistical procedure

selection were made

after all experimental

data had been

collected.

data were provided, we were able to determine the research
stage at which the questions were posted for all but nine ques-
tions. Over half the inquiries (36 out of 67; 54%) were made
after all the experimental data have been collected. A substan-
tial amount of inquiries (27 out of 67; 40%) were made after an
initial data collection. Only four questions were posted before
any data were collected.

3.8.4 Problems in Formulating Questions

Based on our analysis, we identified two key problems thatQuestions with missing

and unclear information

can lead to difficulties in

answering them.

questioners face in formulating questions. A good ques-
tion posted in Q&A websites is comprehensible and contains
enough information so that the respondents can provide an-
swers with certainty. When respondents encounter questions
that do not fulfill these requirements, it often leads to an in-
crease in the back-and-forth communication between the ques-
tioner and respondents. More importantly, it can result in in-
accurate, and sometimes incorrect, responses.

Questions with missing information

While the information presented in Table 3.3 are important toWe analyzed the

discussion threads in

Q&A platforms to

determine which

questions had missing

information.

be included in questions, not all information is required for ac-
curate answers. To determine whether a question has missing
information, we analyzed the discussion thread for each ques-
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tion as well as the answers. We specifically tried to answer the
following:

1. Do the respondents require additional information to
provide an answer?

2. Do the respondents provide multiple answers or assume
information? For example: (“First, specify whether the
data produced by questionnaire is continuous or categori-
cal. Chi-square is a better option for categorical data. If
continuous, then you need to specify whether your data is
parametric or non-parametric . . . ” in Q56).

Around a third of the questions (29 out of 76; 38%) we ana- The information that

was found missing

varied from one

question to another.

lyzed had missing information. The missing information varied
from fundamental details of the analysis, such as the goal of the
analysis and research hypothesis, to information specific to the
scenario described in the question (“What is the research ques-
tion? Is there any statistical hypothesis related to it?” in Q08).

Many questioners were seemingly novices, and were unsure Novices might have

difficulty knowing which

information should be

included in questions.

which information they should provide (“Please let me know
if you would like more detail. I’m still something of a statistics
beginner, so I’m not sure how much depth is required to be able
to answer this question.” in Q41).

To understand the consequences of missing information in Analysis of discussion

threads informed us

how respondents dealt

with missing

information.

questions, we inspected the discussion threads, e.g., as shown
in Figure 3.5. Almost always, respondents seek the missing
information by requesting for it. Ideally, this information is
provided by the questioner and the respondent is able to an-
swer the question. However, in most situations (22 out of 29;
76%), respondents offer multiple answers (10 out of 22), as-
sume information about the question (7 out of 22), do not an-
swer questions (3 out of 22), or use self-fabricated data to an-
swer questions (2 out of 22). While offering multiple answers
can be a better choice over incorrectly assuming information,
it bloats the answers and requires the questioner to carefully
process the answers.
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Figure 3.5: One of the answers posted to a question about statistical procedure
selection (Q06). Since the question had missing data, the respondent,
user2974951, assumed certain characteristics about the dataset. In our analysis,
we found that over a third of the questions (38%) did not include enough information
for the respondents to answer the question with certainty.

Questions with unclear information

Apart from questions that had missing information, 13 out of
76 questions (17%) provided information that we consider un-
clear. We determined a question to have unclear informationThe lack of clarity in

questions stems from

issues of language and

statistical terminology.

in a manner similar to that described above for determining
missing information. The lack of clarity mostly originated from
language and terminology issues, e.g., ambiguous sentences
and inaccurate phrasing of text, as well as a lack of adequate
information of statistical procedures on the questioners’ part,
e.g., misrepresenting analysis procedures and using incorrect
charts.

Questioners had particular difficulty in representing informa-Questions found it

difficult to use the

appropriate terms.

tion about their analysis in a clear and concise manner (“. . . I’ve
got 3 columns one for pre manipulation of language which will
be my control. I only have positive and negative columns. In
addition, I will also have a column for age(3 levels) and gender
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(2 levels) and want analysis how these demographics affect the
effect that positive and negative language has on investor pref-
erences.” in Q55). Notice the use of the word ‘column’, which
is used to refer to both the variables in the dataset as well as
the levels of the factor. This led to the following comment by
one of the respondents: (“3 columns:1– language classified into
+ve -ve. 2– age classified into 3 levels. 3– gender classified into
male female. And I understood that: investor preferences is the
outcome.” in Q55).

Questioners also had difficulty representing the experimental Questioners found it

difficult to specify

experimental design.

design in questions. Take the following question: (“Each sub-
ject is assigned to one of three different Times (morning, noon
or afternoon) and receives one Treatment (A,B or C).” in Q01).
One respondent assumed that it was designed to be a within-
groups design and gave a corresponding solution, only for this
to be clarified by the questioner later. Respondents dealt with
such questions in a manner similar to handling questions with
missing information, i.e., by requesting details and then resort-
ing to providing multiple answers or making assumptions if the
requested information was not satisfied.

3.8.5 Discussion

Through interviews, survey, and content analysis, we identified
three key problems about how data workers search for and de-
cide on statistical procedure in their work: a) Data workers feel
uncertain about their choice of statistical procedure, b) they
have difficulty presenting adequate information to experts, and
c) they decide upon statistical procedure after collecting the
data, thereby violating the recommended practice.

Uncertainty in procedure selection

There is no better evidence for the first problem than the preva- As data workers gain

more experience in

perform analysis, they

become more certain in

statistical procedure

selection.

lence of questions that seek to simply confirm the questioner’s
choice of a statistical procedure. Many data workers consider
statistical procedure selection a complex task. While discus-
sions with experts, being informed by reading research pa-
pers, and research artifacts that help with procedure selection



72 3 How Data Workers Gather Knowledge

[Wacharamanotham et al., 2015; Jun et al., 2019] can help,
the underlying problem seems to be a lack of practical training
in and deep information of statistics. While most data workers
undergo formal training at universities, this seems to empha-
size theoretical aspects. Data workers who underwent a more
practical training reported being more capable of handling the
complex nature of procedure selection. For example, IP02 is a
psychology PhD student and credits their confidence to prac-
tical training in a Bachelor’s course: “I’m confident of choosing
the right method because in my bachelor’s, my teacher asked us
to calculate a lot of the statistics manually [...]”. The result-
ing increase in confidence would also data workers to tackle
the second key problem, by making convincing arguments for
their choice of statistical procedures.

Presenting information about experiment and dataset to
experts

Our second problem deals with mostly novice data workers
who face issues seeking help from experts. They do not know
whether the information they present is adequate and how to
meaningfully present them. This leads to an increase in inter-
actions between the data worker and experts, not to mention
incorrect recommendations from experts. Herein lies oppor-
tunities for researchers and developers to target. We discuss
some ideas in the next chapter, in Section 4.1.6.

When should we seek statistical procedures?

As discussed in Section 3.8.3, most questions were posted after
collecting the entire experimental data. There are advantages
and disadvantages with this approach. During this stage, theQueries about statistical

procedures, when

asked after collecting all

data prevent

questioners to address

fundamental issues with

data collection.

entire dataset can be included in the question, even though
most questioners did not. Therefore the respondents can an-
swer questions with more certainty. In fact, when the entire
dataset was provided, respondents were able to identify the
missing information themselves (“Not only do you have het-
eroskedasticity [sic], with proportions (as in your example) very
close to 1 (or to 0) they’ll also be highly skewed . . . ” in Q10).
However, as the data have already been collected, any issues
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with experimental design or sampling cannot be fixed without
running the experiment again (“[. . . ] try to generate other simi-
lar questions that you can combine into a scale, because that [. . . ]
would allow you to use a more flexible set of statistics.” in Q43).

In questions posted before collecting any data, questioners Queries about statistical

procedures, when

asked before collecting

any data limits the

certainty with which

respondents can

provide answers.

sought validation for a predetermined approach. As no data
have been collected, respondents had to assume information
based on their own understanding, which might lead to less
certain answers (“[. . . ] can you state your objective in terms of
the two tasks? Can you show the data for at least a few of the
subjects?” in Q15).

In questions posted after collecting some but not all experimen- Queries about statistical

procedures, when

asked after collecting

some data allow for

more certain answers

while still allowing for

changes to experiment.

tal data, questioners were able to provide enough information
to improve respondents’ certainty, but could still revise experi-
mental design if necessary. Therefore, it might serve the ques-
tioner best to post questions about statistical procedure after
collecting some but not all experimental data, e.g., data from a
pilot. While this is the recommended practice in most research,
our analysis shows that existing practice is quite different.

Although our survey results show that preregistration is not
that uncommon, we need to validate this finding with data
workers from other domains and with lower experience. The Preregistration can help

avoid some of the

issues we have

discussed.

benefits of preregistration are clear: it can improve confidence
in statistical findings, and deciding on a statistical procedure
before collecting data can also help avoid fundamental issues
with experimental design and research methods, as shown
in our content analysis. Cockburn et al.’s work includes a
good discussion of the relevance and benefits of preregistra-
tion within HCI [Cockburn et al., 2018].

3.9 Limitations and Future Work

A significant limitation of our work is that our study partici- We had data workers

from various

backgrounds and with

various experiences

take part in our studies.

pants were not sampled from a consistent population. For ex-
ample, our survey participants turned out to have more ex-
perience than our interview participants in general. Although
this allows us to gain insights about experienced data workers,
e.g., how they are more assured about their choice of statis-
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tical procedures, such insights are no more than speculations
as we did not get an opportunity to interview them at length.
Further work is needed to understand the specific factors that
help novice data workers mature into experienced, more as-
sured data workers.

Even though we attempted to unravel the impact of disciplines
and data science tasks, e.g., machine learning and hypothesis
testing, on data workers’ workflows, we do not have enough
data to generalize our findings to all disciplines and data sci-
ence tasks. Nevertheless, the findings in this chapter help us
understand workflows when preparing to perform hypothesis
testing in HCI and related disciplines, and offers a starting
point for further research into understanding other data sci-
ence tasks and disciplines.

Finally, the questions we analyzed in our content analysis mightOur content analysis

results are only

indicative of how data

workers might seek

validation from experts.

not be a completely representative sample: we do not always
know the experience and expertise levels, discipline of the
questioners and the respondents. However, due to the large
sample size, the findings are largely indicative of the workflow
involved in asking and answering queries about statistical pro-
cedure selection. Future work about interpersonal sources of
information can help confirm our findings.

3.10 Summary

To understand how data workers prepare to perform hypothe-
sis testing, we conducted two interview studies, a content anal-
ysis, and a survey. Our findings focused mainly on procedure
selection and information sources used to select procedures.
We find uncertainty about procedure selection leads to preva-
lence of expert validation practices, and a general reluctance,
or even apprehension, to adopting new statistical procedures.
Although the on-going criticisms about hypothesis testing con-
tributes to this uncertainty, a deeper reason seems to be lack of
adequate practical training in statistics. A lack of training also
leads to incomplete mental models about hypothesis testing,
which leads to high levels of perceived complexity in proce-
dure selection and proliferation of questions about statistical
procedures with missing and unclear information. Motivated
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by our findings from this chapter, we next present research ar-
tifacts and recommendations to improve data workers’ work-
flows when preparing to perform hypothesis testing.
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Chapter 4

Supporting Data Workers
in Preparing to Perform
Data Science

PUBLICATIONS AND AUTHOR’S CONTRIBUTIONS

The work in this chapter has contributions from Jeanine Bonot, Radu Coanda, and
Malte Meng. Part of the research in this chapter has been published as an extended
abstract [Subramanian and Borchers, 2017], and one paper [Subramanian et al.,
2019a]. Bonot extended StatPlayground, discussed in Section 4.1, by adding fine-
level control and foreshadowing features; and evaluated StatPlayground with users
[Bonot, 2019]. Coandă developed Cheno, discussed in Section 4.1.3, which helps
with statistical computations [Coandă, 2019]. Meng developed an exploratory proto-
type to help data workers formulate questions for posting on Q&A platforms [Meng,
2020]. Although this prototype is not part of this thesis, the prototype helped us
identify several design recommendations discussed in Section 4.1.6.

In the previous chapter, we discussed how data workers pre-
pare to perform real-world analysis tasks. In this chapter, we
discuss solutions to address two prominent problems that came
up in this discussion: 1) practical statistics is an important skill
needed to perform analysis, and this skill is hard to develop
through formal training; and 2) difficulties in presenting infor-
mation about dataset and experiment in when asking questions
about statistical procedure selection Q&A platforms. Before
discussing these solutions, we address a prominent problem
in statistical practice.
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4.1 StatPlayground: Helping Data Workers
Learn Practical Statistics

https://osf.io/me2dc/?view_only=
efd437103561482286c4e230b75c1288 a

aContains pictures of design alternatives, Cheno Python package used
for backend computations, a demonstration video (of a previous iteration
of the prototype), a flipbook prototype used in previous design iterations,
and an example transcript of the feedback session for two participants.

From our discussions in the previous chapter, we find that for-We propose a tool to

help data workers learn

statistical procedure

selection and the

relationship between

statistical concepts.

mal education does not train data workers adequately with
practical statistics, which is essential for selecting statistical
procedures and performing analysis. By reviewing existing re-
search on improving statistical education, which will be dis-
cussed in Section 4.1.1, we developed a tool to help data work-
ers learn practical statistics, i.e., statistical procedures and re-
lationship between statistical concepts. We first review exist-
ing tools to help teach and self-learn statistics in Section 4.1.1.
Then discuss our prototype, StatPlayground, an exploratory ar-
tifact that can help learn statistical concepts, and discuss how
we validated it.

4.1.1 Related Work: Guidelines for Improving Sta-
tistical Education

We now discuss existing guidelines to improve statistical edu-
cation and software tools used to teach statistics; these works
motivated the design of StatPlayground.

One prominent issue in teaching statistics is that students’ mis-Students change their

statistical

misconceptions only

when challenged.

conceptions about statistics are resistant to change. Since stu-
dents learn by constructing their own knowledge [Resnick,
1987; Von Glasersfeld, 1987], they accept new ideas only when
they are challenged to confront their misconceptions [Garfield,
1995, pg. 31].

To address this issue, we investigated existing research into im-Active learning with

hands-on activities have

been shown to help

improve learning

outcomes in statistics.

proving statistical education. Prior research has shown that
students learn statistical concepts better when they are actively

https://osf.io/me2dc/?view_only=efd437103561482286c4e230b75c1288
https://osf.io/me2dc/?view_only=efd437103561482286c4e230b75c1288
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engaged. Active engagement can be achieved in several ways,
such as by involving students in hands-on activities [Lunsford
et al., 2006] and having students work in small groups with
others [Gnanadesikan et al., 1997]. Hands-on activities are ef-
fective as they allow students to apply theoretical knowledge to
novel situations, a task that might evaluate their understand-
ing of statistical concepts. Johnson et al., Goodsell et al., and
Fink provide guidelines for setting up collaborative, hands-on
learning environments [Johnson et al., 1991; Goodsell et al.,
1992; Fink, 2013].

The use of software aids in teaching environments has also gar-
nered the attention of researchers. Software simulations have
been successfully used to teach electrical circuits [Carlsen and
Andre, 1992] and mathematics [Reed, 1985]. In statistical ed-
ucation, Rice Virtual Lab in Statistics1, Seeing Theory2, and
Wise Interface for Statistical Education3 are some prominent
simulations. While research on the effective of simulations on Simulations can help

teach statistics, but

require careful use to be

effective.

statistical education is sparse, there are some promising results.
Simulations have been shown to improve learning outcomes
in comparison to traditional teaching methods [Wackerly and
Lang, 1996; Hodgson, 1996; Schwartz et al., 1998]. However,
not all simulations are equally effective, and their effectiveness
depends on several factors, such as how they are used by the
instructor, stimuli presented to the students, e.g., whether they
are given a question to solve, and the type of feedback offered.
For example, Pfaff and Weinberg found that their simulations
had a detrimental effect on improving learning outcomes [Pfaff
and Weinberg, 2009]. The authors outline some reasons be-
hind this in their paper, namely problems with implementation
of the simulation and the method used for assessing learning
outcomes [Pfaff and Weinberg, 2009, p. 9–10].

Overall, there are no methods of teaching that would work well
with all students, and solutions need to be evaluated with the
particular usage scenario in mind.

We now discuss StatPlayground, an exploratory prototype for
self-learning and teaching practical statistics. StatPlayground
can help users understand how several statistical concepts are

1http://onlinestatbook.com/rvls.html
2http://seeingtheory.io
3http://wise.cgu.edu

http://onlinestatbook.com/rvls.html
http://seeingtheory.io
http://wise.cgu.edu
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related to each other and understand statistical procedure se-
lection. It is based on active learning, and allows data workers
to explore statistical procedure selection and relationship be-
tween various statistical concepts. We now discuss the design
of StatPlayground.

4.1.2 Design

StatPlayground is a self-learning or teaching tool, meant to beStatPlayground allows

users to explore

statistical concepts and

procedure selection

through discovery

learning.

used alongside a course on statistical hypothesis testing. Stat-
Playground allows users to generate hypothetical data. These
data and relevant characteristics, such as the shape and skew-
ness of the distribution, variance, and sample size, are visu-
alized in StatPlayground. Based on data and characteristics,
StatPlayground selects and performs an appropriate statistical
procedure, such as a t-test or ANOVA. To allow for active learn-
ing, users can modify data and characteristics, e.g., by directly
manipulating the box plot visualization, to see how changes
to one characteristic affects other data characteristics, as well
as the resulting statistical procedure and results. We compare
this to students asking what-if questions about statistics in a
classroom. This intuitive manner of interacting with visualiza-
tions separates StatPlayground from other statistical simula-
tion tools like TinkerPlots [Fitzallen, 2012].

Design process

We designed StatPlayground in an iterative manner. An initialStatPlayground has

been developed in a

user-centered, iterative

manner.

software prototype was first informally evaluated with five ex-
perts in statistical hypothesis testing. All experts had at least
two years of experience in with inferential statistics; two of
them reported to regularly teach statistics as a part of statistics
course aimed at undergraduate and graduate students.

Through this evaluation with experts, we identified designExpert evaluation

allowed us to improve

StatPlayground by

adding two interaction

features.

changes to our prototype, such as a) fine-level control over data
characteristics, by allowing users to set the range of values for
data characteristics, lock/unlock the value from changing, and
b) feedforward mechanism to show how the statistics would
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change due to the current interaction, a concept we term fore-
shadowing, as shown in Figure 4.4. Fine-level control allows
the user to ask more fine-grained what-if questions like “Would
the effect size of this comparison of two distributions increase even
if the means of both distributions remain the same?”. After de-
signing these new features, we developed the current prototype
of StatPlayground.

Layout

StatPlayground has three main panels: data generation (Fig-
ure 4.1a), plot (Figure 4.1 center), and results (Figure 4.1c).
Users can generate data by using the data generation panel at
the top. The panel allows the user to create common distribu-
tions such as Gaussian, uniform, log normal, and bimodal dis-
tributions by setting the sample size and other relevant param-
eters. When a distribution is created, it is visualized as a box
plot in the plot panel. The box plot shows the mean, median,
whiskers, and outliers of the distribution, as well as the 95%
confidence interval of each mean. The plot panel also displays
important data characteristics that affect the resulting statis-
tics: shape of the distribution as a histogram (Figure 4.1c),
variance of each distribution as an animated bar chart at the
top-left corner (Figure 4.1d), and experimental design of the
factor to the left of the box plot (Figure 4.1e).

Interaction

Users interact with data in StatPlayground through direct ma-StatPlayground allows

direct manipulation of

data points. Changes to

one data characteristic

affect other

characteristics, which

StatPlayground can

visualize in real-time.

nipulation; we employ direct manipulation to invoke active en-
gagement and a sense of play. Users can click-and-drag data el-
ements to modify them e.g., click-dragging a mean will modify
the mean of the distribution.

We now describe an example interaction with outliers. To cre-
ate a new outlier, users can click on the empty space either side
of the whiskers as shown in Figure 4.2. Similarly, to delete
an outlier, users can click on an existing outlier point in the
box plot. When data are changed, the effect is visualized in
real-time. For example, Figure 4.2 shows the interface after
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Figure 4.2: Users can create, edit, or delete data by directly
interacting with the box plot. In this image, the user clicks
next to a box plot to create an outlier. StatPlayground
visualizes the effect: the mean shifts and the distribution is no
longer normal.

Figure 4.3: StatPlayground uses progressive disclosure to
reveal detailed information. User hovers over interface
elements to view tooltips.

the user adds an outlier to a distribution; the histogram curve
changes to indicate that the test for normality has failed and a
non-parametric test has been chosen as a result.

StatPlayground utilizes progressive disclosure [Springer and Detailed statistics and

details are revealed on

demand.

Whittaker, 2019] to reveal detailed information upon user
request. For example, hovering over any data point shows
the parameter and value (Figure 4.3), and hovering over
the histogram curve reveals the test that was performed
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Figure 4.4: StatPlayground provides feedforward during direct manipulation to help
the user predict the statistical result. Here, the user is manipulating the mean by
click-dragging it closer to the mean of the other distribution. When they do this, they
notice that a feedforward overlay shows up, which indicates the various effect sizes
they will reach upon continued dragging. Dark green indicates a large effect size and
yellow represents a small effect size.

(e.g., Shapiro-Wilk test) along with the resulting p-value (Fig-
ure 4.3).

Fine-level control and foreshadowing

Hovering over data points for a longer time period (2 seconds)Fine-level control allows

users to ask more

detailed what-if

questions.

shows the fine-level controls that can be used to lock/unlock
and set the range of values for a data characteristic. This can
be used by the users to ask more fine-grained, what-if ques-
tions. E.g., in Figure , the user queries, “What happens to the
effect size if . . . ?”. If a value is locked, then changes to other
characteristics are permitted only when the change does not
modify the characteristic whose value is locked.

In addition to fine-level control, StatPlayground supports a fea-With foreshadowing,

StatPlayground can

show the resulting

statistics before the user

interaction is complete.

ture we call foreshadowing. During direct manipulation, Stat-
Playground can visualize the possible results the user can ex-
pect to reach along the path of her manipulation via foreshad-
owing. For example, in Figure 4.4, when the user is click-
dragging the mean of a distribution further away from the
other distribution, they can see that moving them further apart
would result in incrementally smaller effect sizes. We chose to
use effect size over p-value to encourage the use of estima-
tion statistics, an alternative to significance testing [Cumming,
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2014].

4.1.3 Implementation Details and Challenges

We built the front-end of StatPlayground’s using modern web Inverse computations

proved to be

challenging due to the

need to compute a

multitude of data

configurations.

technologies: JavaScript (Angular v7) and HTML/CSS. Some
statistical computations are done natively in JavaScript using
libraries like Jerzy4 and jStat5. However, inverse-computation
of data configurations from a given statistic (p-value, effect
size), which is needed for the foreshadowing feature, proved
to be a challenge. Since many data configurations can produce
the same statistical results, we had to find and generate more
than one data configuration. While existing research works,
e.g., [Matejka and Fitzmaurice, 2017], could generate data
configurations from statistics, they are a) limited to descrip-
tive statistics like mean and standard deviation, and b) have a
different objective, that of generating visually distinct datasets.

To perform such inverse computations, we built a Python pack- We built Cheno, a

Python package to

generate data

configurations that

would result in a given

set of statistics.

age called Cheno6 that computes datasets that result in the
same given statistics. Unlike existing approaches, Cheno does
not generate visually different data configurations. Instead,
it generates the possible range of each data parameter, such
as mean and standard deviation, which can in turn be used
to produce visually different data configurations. We inte-
grated Cheno into StatPlayground via Flask7 to support sta-
tistical computations, but it can also be integrated into other
simulation-based learning tools. Despite the addition of Cheno,
inverse computations proved to be computationally intensive,
and infeasible for our user evaluation. For this reason, in our
evaluation, described in the next section, we decoupled Cheno
from StatPlayground, and instead used the Wizard of Oz pro-
totyping technique.

4https://github.com/pieterprovoost/jerzy
5https://jstat.github.io
6Cheno is an anagram of (Jacob) Cohen, an American statistician known

for his work on statistical power and effect size.
7http://flask.pocoo.org

https://github.com/pieterprovoost/jerzy
https://jstat.github.io
http://flask.pocoo.org
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4.1.4 Evaluation

Since StatPlayground is built around a novel concept, we
wanted to evaluate it in a holistic manner. The purpose of our
evaluation is to gain more insights into how StatPlayground
can be used to learn practical statistics.

The evaluation had two phases. We collected data from six par-StatPlayground was

evaluated in two

phases.

ticipants8 in the first phase, used feedback from participants
to improve StatPlayground’s design and evaluation procedure,
and then evaluated StatPlayground with eight more partici-
pants. Below, we briefly discuss the data collection, procedure,
and limitations of the first phase of our study, and then discuss
the second phase of our study. We then discuss the key findings
that resulted from the second phase of the study.

Study phase I

Data collection: We collected data from eight participantsWe recruited eight

participants from the

local lab to evaluate

StatPlayground.

(two female). We recruited the participants via emails sent to
a HCI research methods course mailing list. Participants were
not offered any incentives, and participation was voluntary. We
used convenience sampling [Etikan and Bala, 2017] to recruit
participants from our local lab because a) these participants fit
our target user group well and b) due to technical limitations,
it was not possible to evaluate StatPlayground remotely. All
participants had taken an introductory statistics course before.

Procedure: To ensure that all participants had the same base-
level understanding of statistics, we first provided a brief
overview of basic theoretical statistical concepts, such as effect
size, p-value, and statistical significance. Participants were alsoWe allowed participants

to refer to material

about statistical

concepts and gave a

tutorial on

StatPlayground.

allowed reference material about these concepts. Once partic-
ipants were acquainted with the statistical concepts, they were
presented with a hypothetical dataset, and given questions they
have to answer by using StatPlayground. The experimenter
also verbally described the interface, going over the layout of
the interface and basic components. The experimenter also

8We collected data from eight participants, but audio recording failed for
two participants.
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mentioned how StatPlayground can be used, e.g., the interface
can be clicked and dragged upon. Although this might prime
the participant to perform such actions, our goal is not to eval-
uate how discover-able such actions are, but instead evaluate if
and how StatPlayground can help participants learn statistical
concepts.

Questions were story-driven, e.g., “assume that out of all par- Participants’ tasks were

story-driven and guided.ticipants in your text-entry experiment, one of them has prac-
ticed touch-typing; how does she (i.e., the outlier) affect your
analysis?”. These questions guided the user’s interaction with
StatPlayground. Some questions were used to test if the par-
ticipant was able to understand a concept that came up in
an earlier question, e.g., “currently, the results are not signifi-
cant. How can you modify the distribution so that the result is
slightly significant but without modifying the mean/median?”.

Through our observations, we could evaluate whether the par-
ticipant was able to perform the following tasks via our story-
driven prompts:

1. Change the data distribution by click-dragging the mean.

2. Modify the distribution properties so that there is not
enough evidence for the null hypothesis to be rejected.

3. Modify the distribution properties so that there is enough
evidence for the null hypothesis to be rejected.

4. Determine whether the statistical test’s assumptions are
satisfied.

5. Add and remove outliers.

6. Prevent outliers from being modified.

Issues with the study: We had both technical and method- We encountered several

issues in study phase I,

including buggy

implementation and

inconsistent stimuli.

ological issues with the first phase of the study. Audio capture
failed for two participants, and, although we had the screen
recording for these participants, it was near impossible to an-
alyze them. More importantly, the artifact had several bugs
and missing implementation. Participants were severely ham-
pered in their tasks, e.g., creating an outlier would cause the
box plot to become non-interactive. Methodologically, study
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phase I had two critical issues: a) There was no script to guide
the experimenter during the study, which caused inconsisten-
cies in participant stimuli and b) Since the tasks were commu-
nicated to participants verbally, some participants needed to
be reminded about their tasks, which caused a distraction that
could have been avoided.

Study phase II

To address the issues with study phase I, we made the following
key changes9:

• Information about scenario-based tasks that the partici-
pants had to do as a part of the study was presented to
the user on a printed sheet of paper in addition to verbal
instructions. The initial tutorial about statistical terms
was also printed on a sheet of paper, instead of being
conveyed verbally.

• A tutorial was added to StatPlayground that illustrated
the different features of StatPlayground. This replaced
the need for verbal instructions, and the resulting incon-
sistencies.

Participants: Seven participants (two female) volunteered to
take part in the study. All participants are university students,
our primary target user group, who have taken an introduc-
tory statistics course and/or performed hypothesis testing ear-
lier. None of the participants had taken part in study phase I.
As with study phase I, we recruited the participants via emails
sent to a HCI research methods course mailing list. Participants
were not offered any incentives, and participation was volun-
tary.

Procedure and analysis: Similar to study phase I, we firstParticipants were

tasked with answering

story-driven questions

using StatPlayground.

established base knowledge among our participants. Unlike
phase I, however, we gave our participants a handout with
descriptions of relevant statistical concepts. Participants were

9For a complete list of differences between the two phases of the study,
see [Bonot, 2019, Appendix B.2.2].
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then given another handout that described the dataset used
in the subsequent tasks. Participants then went over StatPlay-
ground tutorial to become familiar with the interface. Similar
to study phase I, participants were then given tasks that they
had to solve by using StatPlayground, e.g., “How would you
manipulate this outlier so that the heart rate will increase by
a minimum of 55 bpm, regardless of how stressful the user in-
terface is?”.

We used a guided approach instead of open-ended exploration
a) in order to better structure our participants’ tasks and to
keep our participants focused, and b) because it was infeasible
with our implementation to handle open-ended interaction in-
puts in real-time. Sessions lasted 40 minutes on average. We We gave questions to

our participants to guide

them through the study

session.

encouraged the participants to think aloud, and concluded the
session by getting feedback from participants. We used an un-
structured interview approach here for the feedback session10,
and used our field notes to determine the feedback questions.
The experimenter kept the prompts to a minimum and aimed to
triangulate findings from observations, per recommendations
of Boren and Ramey [Boren and Ramey, 2000]. We recorded
the audio, screen, and the webcam video footage.

We first used an online tool to automatically transcribe the au-
dio of the feedback session. The analyst carried out an infor-
mal, reflexive thematic analysis [Braun and Clarke, 2021] to
group participants’ utterances from the feedback session into
themes, the results of which are discussed below.

Key findings from evaluations

After analyzing our transcripts, we found several instances in StatPlayground shows

potential in helping data

workers learn practical

statistics.

which StatPlayground helped participants better understand
statistical concepts, e.g., the influence of measures of central
tendency (mean, median) and spread (variance) on the shape
of the distribution, how effect sizes work in comparison to p-
values, and how confidence intervals work. P13 mentioned
that if they were to continue using this tool, they would be able
to predict the statistics just by looking at the graphs, which is
a skill one can expect experts to have. Participants commented

10Sample transcripts from feedback session can be found in supplements.
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that the interface was, in general, easy and fun to use, indi-
cating that it can be immersive, and that they liked the gen-
eral idea of being able to learn in an interactive manner. P3
compared StatPlayground against their statistics course in her
Bachelor’s degree, in which the concepts were taught in a the-
oretical and abstract manner: “[StatPlayground] is an intuitive
way of grasping the concepts and understanding how they relate
to each other.”

Despite these positives, there were several instances in whichParticipants had

difficulty using and

understanding certain

components of

StatPlayground’s

interface.

our participants encountered difficulties when using StatPlay-
ground. Participants had difficulty using and interpreting fine-
level controls, and interpreting the graph that compared the
variances of distributions. Some participants were concerned
that the interface was too cluttered, and commented that it
was hard to see all the causal changes. Participants were also
concerned whether such a tool could be misused, e.g., to help
cherry-pick data points so that a significant p-value is obtained.
We elaborate on this concern in Section 4.1.5.

4.1.5 Discussion

Modes of interaction

In our study, we observed that our participants had two clearlyStatPlayground can be

tailored towards the

end-user’s needs.

discernible ways of using StatPlayground. Some participants
were adventurous and used StatPlayground in an exploratory
manner, interacting with the visualization beyond what was re-
quired to answer the questions. Most other participants were
cautious in using the interface and needed gentle nudges. P7
mentioned, “I could just trial and error, but I would not be sure
whether what I’m currently observing is interesting.” This indi-
cates two modes of usage: guided and unguided. Cautious users
could use StatPlayground in a guided mode, in which the inter-
action is driven by questions, which could be prescribed by an
educator. More adventurous users and experts could use Stat-
Playground in an unguided manner to explore concepts based
on their own what-if questions.
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Possible misuse

StatPlayground is intended to be used as a learning tool to un- StatPlayground can

only be used with

hypothetical data to

prevent potential

misuse.

derstand how the different statistical concepts and data charac-
teristics are interrelated. Interestingly, a few participants won-
dered whether StatPlayground could be used to analyze their
own data, at least as a quick way to pilot test their analysis. We
are concerned that since StatPlayground allows users to modify
data characteristics, users could tamper with their experimen-
tal data, even if it is done unintentionally, in order to obtain
statistically significant results. To avoid this, StatPlayground
does not allow users to upload and work with their data, and
instead requires users to generate hypothetical data.

Deployment considerations

Before using StatPlayground in a classroom or for self-learning, StatPlayground needs

to be integrated into

teaching after

considering

recommendations from

statistical education

research.

instructors need to design the questions for the guided mode.
Future work could look into an interface for instructors to de-
sign these questions. For best results, we recommend instruc-
tors to follow best practices from research on statistical educa-
tion, e.g., [Garfield, 1995; Zieffler et al., 2008], in combination
with StatPlayground.

4.1.6 Limitations

StatPlayground is not a production-ready tool, but only a pro- StatPlayground is a

prototype, more work is

needed before our

vision is attained.

totype, due to the challenges we discussed in Section 4.1.3. We
have contributed the novel design of StatPlayground with our
prototype, and evaluated it with users. Our evaluation with
users shows promise, but further studies are needed in class-
room or self-learning settings to validate how effective Stat-
Playground can be for learning practical statistics.
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4.2 Helping Data Workers Ask Questions
About Statistical Procedure Selection

The second problem deals with how data workers post queries
about selecting statistical procedures. In the previous chapter,
we identified several issues with the use of Q&A platforms for
statistical inquiries. An important issue deals with missing in-
formation about experiment and research questions, both of
which are required for respondents to answer their queries. A
related but different issue is that questioners specify informa-
tion in an unclear manner, which also leads to difficulties in
answering their queries. In this section, we discuss some ap-
proaches to tackle these issues.

Borrowing techniques from Q&A platforms used for questionsOur vision is a tool that

collects information

about experimental data

and design in a

structured manner.

on programming, we recommend to provide a structured way
to specifying information about dataset and experiment. Tools
like Plunkr11 and CodePen12 allow programmers to share re-
producible source code so that it is easier for respondents to
debug them. We envision a tool that allows data workers to
specify information about their dataset and experimental de-
sign in a structured manner, and use this structured format,
e.g., as a visualization, in the questions posted on Q&A plat-
forms. For example, Touchstone2 is a research artifact that
provides a structured way to provide details about dataset and
experiment [Eiselmayer et al., 2019].

In our content analysis, we found that there was a needQ&A platforms can

integrate features for

obfuscating sensitive

information about

dataset.

for questioners to obfuscate sensitive information about their
dataset. There are several technologies that allow such an ob-
fuscation while retaining the underlying characteristics of the
data, such as the IBM library for differential privacy13. Q&A
platforms can integrate such functionalities to allow data work-
ers to hide sensitive information when needed.

Finally, we identified several examples where respondentsQ&A platforms should

allow respondents to

collaboratively edit

questions to include

missing and unclear

information.

were able to assume information about the dataset and ex-
periment, when such information was either missing, incom-
plete, or unclear. While this can potentially lead to incorrect

11https://plnkr.co/
12https://codepen.io/
13https://github.com/IBM/differential-privacy-library

https://plnkr.co/
https://codepen.io/
https://github.com/IBM/differential-privacy-library
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responses, allowing experts to collaboratively agree upon such
missing or unclear information can get all respondents on the
same page, helping them provide responses with more cer-
tainty. CrossValidated, one of the websites we sourced ques-
tions from, allows respondents who have adequate reputation
to edit the information in questions.
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Chapter 5

Understanding How Data
Workers Perform Data
Science

“I suppose it is tempting,
if the only tool you have is a hammer,

to treat everything as if it were a nail.”

—Abraham Maslow

PUBLICATIONS AND AUTHOR’S CONTRIBUTIONS

Part of the research in this chapter has been published as two extended abstracts,
[Subramanian et al., 2018] and [Subramanian et al., 2019b], and two papers, [Sub-
ramanian et al., 2020b] and [Subramanian et al., 2020a]. The author of this thesis
developed the research questions, conducted interviews and observations, and ana-
lyzed data for all studies. Johannes Maas helped compute the inter-rater agreement
for our study investigating hypothesis testing workflow, discussed in Section 5.1. Nur
Hamdan contributed to the analysis of our study investigating programming modality
use discussed in Section 5.2. Prof. Chat Wacharamanotham contributed to our code
analysis in Section 5.3.

The artifacts and recommendations we introduced in the pre- We discuss data

workers’ workflows with

programming languages

for data science.

vious chapter help data workers learn practical statistics, im-
prove their workflow for selecting statistical procedures, and
help them avoid common errors in statistical practice. In this
chapter, we present data workers’ workflows when performing
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data science tasks. We discussed earlier that there are three in-
terfaces that support hypothesis testing: GUIs, visual program-
ming interfaces, and programming. Of these, programming
languages like R and python are popular among both profes-
sional data workers and data workers [Analytics, 2017; Piatet-
sky, 2018]. R, for example, has the highest adoption rate over
the last decade, mainly due to its package infrastructure, com-
munity support, and open-source nature. Our research in this
chapter deals with data workers’ workflows with programming
languages, particularly R and python.

We report findings from two observation studies and a con-Our first observation

study motivated a

content analysis and

another observation

study.

tent analysis. In our first observation study, discussed in Sec-
tion 5.1, we aim to understand data workers’ overall workflow
when performing hypothesis testing. The findings from this
study motivated our second study and a content analysis. The
second observation study, discussed in Section 5.2, helps us
understand how the various programming interfaces support
data science tasks. Finally, our content analysis, discussed in
Section 5.3, aims to quantify the quality of source code in data
analysis.

5.1 Study: Understanding the Hypothe-
sis Testing Workflow: Exploration and
Confirmation

https://osf.io/45jkf/?view_only=
15a5624c310e4e60a78b46700284412c a

aContains the coding scheme and details about our observation study
participants discussed in this section.

When using programming to perform data science tasks, dataData science

programming involves

exploratory

programming

workflows, which can

lead to issues when

writing production code.

workers follow an exploratory programming workflow. After
experimentation, data workers need to store and/or present
their code. To do this, data workers may rewrite their code to
improve code quality [Sandberg, 1988], document the insights
and rationale behind their analysis decisions [Sandve et al.,
2013; Abdul et al., 2018]. This can be laborious, as experimen-
tation results in poor quality source code [Kery et al., 2017].

https://osf.io/45jkf/?view_only=15a5624c310e4e60a78b46700284412c
https://osf.io/45jkf/?view_only=15a5624c310e4e60a78b46700284412c
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Figure 5.1 illustrates this workflow.

To understand how data workers write exploratory code and We observed ten data

workers experiment and

confirm their source

code.

work with this code afterwards when storing and presenting,
we observed ten data workers perform hypothesis testing tasks.
In the study, our participants experimented with ideas in source
code, and then revisited their experimental code to refactor
them, as well as to document the insights and rationale. This
gave us an insight into both their exploratory and ‘confirma-
tory’ workflows. We use the term exploratory phase to refer
to the initial analysis phase that conforms to an exploratory
programming practice. The term confirmatory phase (not to
be confused with confirmatory data analysis [Tukey, 1980])
refers to writing production code and reports for the sake of
storage and presentation. In the remainder of this section, we
first discuss existing work about understanding workflows in
hypothesis testing that motivated our work, and then present
our methods, findings, and a discussion of our findings.

5.1.1 Related Work: Overview of Hypothesis Testing

We discussed background information about hypothesis test-
ing, such as the exploratory programming practice and phases
in data science, in Section 2.5. In Section 2.2.3, we discussed Exploratory and

confirmatory analyses

constitute hypothesis

testing.

two phases of hypothesis-driven data analysis: (a) exploratory
data analysis (EDA) and (b) confirmatory data analysis (CDA).
In HCI, EDA is often used in exploratory studies [Cockburn
et al., 2018] and in certain domains like data visualization
[Fekete et al., 2019]. CDA involves methods like null hypoth-
esis significance testing (NHST), estimation using 95% confi-
dence intervals, and regression analysis.

One key critique of hypothesis testing is HARKing, i.e., Hy- An important issue in

hypothesis testing is

selective reporting of

analysis.

pothesizing After the Results are Known [Kerr, 1998; Cock-
burn et al., 2018], also known as “p-hacking” [Gelman and
Loken, 2013], “fishing” [Humphreys et al., 2013], or “wander-
ing down the garden of forking paths” [Gelman and Loken,
2013]. It refers to a situation where the researcher tries many
analyses, but reports only the successful analysis. Like Gelman
[Gelman and Loken, 2013] and Pu et al. [Pu and Kay, 2018],
we believe that HARKing is unintentional, and that it is a prob-
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An analysis step
A key insight

Production code
and report

Hypothesis 1
Hypothesis 2

Figure 5.1: During data analysis, data workers validate
several hypotheses. This involves several steps like loading
data, viewing descriptive statistics, and confirmatory analysis.
Analysis generates insights, which may lead to further
analyses. After experimentation, data workers write
production code and/or reports.

lem of analysis tool design. Omitting parts of the analyses from
reports also leads to a lack of transparency [Simmons et al.,
2011; Dragicevic et al., 2019].

5.1.2 Observational Study: Understanding the Ten-
sion Between Exploration and Confirmation

We first discuss how we collected and analyzed the data, and
then present the key findings in Section 5.1.3.

Data collection

We collected videos of ten data workers performing data anal-
ysis tasks. All participants reported to have prior experience
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(median = 2 years, range = 0.5 to 10 years) using RStu-
dio, a commonly used IDE for data analysis [Vikraman, 2018].
Participants were recruited via emails sent to local university Our participants are

RStudio users from

various backgrounds

and with varied

experiences.

and to R discussion group1 in a nearby city. We used con-
venience sampling initially, but eventually aimed to sample
participants with specific criteria. For example, after learning
about potential differences in workflows between HCI and psy-
chology students, we sent emails who were taking an advanced
statistics for psychology course at the local university.

We deliberately recruited participants who mainly use RStudio
to minimize the effect of programming IDE on analysis work-
flow. Some participants used multiple programming languages
and IDEs, but our observations and interviews are only based
on their RStudio usage. We aimed to improve the external va-
lidity of our experimental data by sampling participants with
varied experiences and from different disciplines, such as like
numerical analysis, applied psychology, and HCI. In the follow-
ing discussion, we will refer to our participants as P1–P10.

Most observations (8 out of 10) occurred at the participant’s We observed our

participants analyze

their own dataset or a

fabricated dataset.

place of work, which included various research labs at the uni-
versity. For the other observations, the participants were in-
vited to the local research lab. Seven participants used their
own computers to analyze data during the session. Others used
a machine at the local lab setup with RStudio and datasets.

Six participants analyzed fabricated data comparable to real- Several participants

analyzed fabricated

data.

world analysis, while others conducted analysis that was part
of their work. Fabricated datasets were developed by the au-
thor of this work, and mimicked data from a typing experi-
ment with different keyboard layouts. Participants who ana-
lyzed fabricated data did so because either a) they did not have
any on-going analysis at the time of our study or b) they worked
on data-sensitive projects. Tasks involved both exploratory and
confirmatory phases of the analysis, as we were interested in
learning about both. After the experimenter discussed the data
set and analysis intent with the participant, the participant was
asked to come up with initial hypothesis that they wanted to
validate that they then explored in RStudio.

During the session, participants were encouraged to think

1https://www.meetup.com/de-DE/koelnrug/

https://www.meetup.com/de-DE/koelnrug/
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Figure 5.2: Our analysis setup and coding process in ELAN
(https://archive.mpi.nl/tla/elan) annotation software. To analyze
videos, after getting acquainted with the content, we marked snippets corresponding
to three levels of codes: domain-agnostic programming tasks, tasks in analysis, and
steps in exploratory programming workflow.

aloud. The experimenter took notes of what participants said
and did, and noted points of interest, e.g., where participants
encountered difficulty during the analysis. Since the partici-We employed a

think-aloud protocol

with minimal prompts

from the experimenter.

pants’ utterances were level-3 verbalizations [Ericsson and Si-
mon, 1980], they are not reliable and have limited validity. For
this reason, using proposal from Boren and Ramey [Boren and
Ramey, 2000], we use the observational videos as the main
source of qualitative analysis, and use these verbalizations to
only provide a potential explanation of events. After the ses-
sion, the experimenter clarified any questions that came up
during the observation. We collected both the video and audio
logs of our study sessions. In total, we collected approximately
8 hours of audiovisual recordings (median = 54 minutes).

https://archive.mpi.nl/tla/elan
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Method

We began our analysis by extracting clips from recordings that We extracted clips from

recordings that were

relevant, and used

qualitative coding to

analyze them.

met one or more of the following criteria: (a) participant in-
teracts with RStudio, (b) participant interacts with another app
to conduct analysis, e.g., does a web search on analysis proce-
dure, and (c) participant utters something relevant about their
analysis. After a round of initial coding, we generated three
tiers of process codes [Bogdan and Biklen, 2007] as shown in
Figure 5.2. These codes were used to categorize

1. domain-agnostic programming tasks, e.g., writing com-
ments, creating a new file, or cloning code;

2. tasks in analysis, e.g., computing descriptive statistics, vi-
sualizing data, or building models; and

3. steps in exploratory programming workflow, e.g., creating
alternatives, writing production code, or searching for
code.

All analysis was done by the author of this work, with regu-
lar discussions with one researcher and regular memoing to
facilitate reflection. An inter-coder agreement score was not
computed. The resulting coding scheme can be found in sup-
plements. We did not use any system logs as our goal was not
to provide a statistical breakdown of data workers’ workflows,
but instead gain qualitative insights about it.

5.1.3 Findings

In this section, we describe our participants’ workflows to get
from exploratory to confirmatory phase. Sections 5.1.3–5.1.3
discuss exploratory phase, and the remaining sections focus
on confirmatory phase, specifically how information in ex-
ploratory code is utilized by our participants during confirma-
tory phase.
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# explore distribution response
hist(kbd[kbd$Layout == "QWERTY",]$Speed)
hist(kbd[kbd$Layout == "Dvorak",]$Speed)
hist(kbd[kbd$Layout == "Neo",]$Speed)
plot(Speed ~ Layout, data = kbd) # boxplot

# explore distribution response
hist(kbd[kbd$Layout == "QWERTY",]$Error)
hist(kbd[kbd$Layout == "Dvorak",]$Error)
hist(kbd[kbd$Layout == "Neo",]$Error)
plot(Error ~ Layout, data = kbd) # boxplot

1. Clone base code

2. Contextualize

3. Evaluate

Figure 5.3: Data workers follow an exploration routine:
Clone base code, view the context of current dataset to
modify the arguments of cloned code, and execute code to
determine its state.

How do data workers experiment through code?

Most participants (P1, P3, and P7–10) used consoles to beginConsoles were used to

kickstart analyses. their analysis and then eventually documented source code in
scripts. Consoles were used to test programming syntax and
libraries, and participants reported to prefer consoles for such
tasks as they are more interactive than using source code files.
We discuss consoles in more detail in Section 5.2.4.

After using consoles to kickstart their analysis, participants
wrote source code in script files. Experimentation was a re-
curring task for all participants. All participants used a stan-Experimentation

involved a standard

routine of cloning and

modifying source code.

dard routine (Figure 5.3) to experiment with code by explor-
ing alternatives: (1) Find and clone base code, (2) contextual-
ize code, and (3) evaluate state. Base code, such as code from
previous or current analyses or samples from the web, is there-
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Figure 5.4: A reconstruction of the analysis code written by
P08. Data workers use code blocks, sometimes prefixed with
a descriptive comment, to group meaningful steps in the
analysis.

fore a crucial component in source code experiments. As one
can expect, such code experiments were mostly conducted in a
non-reusable, non-modular fashion (P1, P4, and P6–10). This
validates a finding from prior work by Kery et al. [Kery et al.,
2017].

After cloning, participants used the variable names and vari- Participants need to

compare outputs of their

alternatives to progress

in their analyses.

able values from their session to update the arguments in the
clone to suit their new exploration. As the final step in this
routine, participants evaluated the source code by executing
it. This allowed them to compare source code alternatives, gain
insights, and determine next steps.
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How do data workers organize source code?

Most participants (P2–4 and P6–10) organized their source
code into blocks. Each block represents one meaningful stepParticipants organized

their source code into

blocks, and used them

to navigate source code

later.

in the data science task, e.g., loading data or checking assump-
tions for a statistical test. Participants usually prefixed these
blocks with a short comment describing the high-level task.
Only two participants, P1 and P5, reported to use blocks min-
imally in their work. While documentary structures like white
spaces and source code comments are used to improve code
readability [Vanter, 2002], blocks were reported to help navi-
gate source code later (P1, P4, and P8) (“[...] blobs [i.e., blocks]
are useful when I go through the source code [...] help me parse
code easier.” – P4).

How are hypotheses validated and
what prompts alternative analyses?

As stated earlier, a hypothesis is a binary statement that ex-Several tasks in

hypothesis testing used

R’s formula notation.

presses the relationship between two or more variables. All
participants performed statistical significance tests during our
observation. In addition to these tests, other steps that consti-
tute hypothesis validation are visualizing data, computing de-
scriptive statistics, performing tests for statistical assumptions,
and performing post-hoc tests. Our participants expressed their
hypotheses in source code, required for performing significance
tests, by using R’s formula notation2.

The simplest formula notation is of the form measureFormula notations have

clear syntactic signals

that allow us to identify

the hypothesis tested

using the source code.

~ factor, which refers to a hypothesis that investi-
gates whether the factor has a significant effect on the
measure. While source code corresponding to other
steps, such as visualization and tests of statistical assump-
tions, also used this formula notation, column selection
and dataset manipulation operations were more prevalent
for such tasks. For example, P1 performed a test for
normality using shapiro.test(data[data$method
== “Unistrokes”,].speed), where Unistrokes
is a level of the factor, method, and speed is the mea-

2http://tinyurl.com/y5of72lr

http://tinyurl.com/y5of72lr
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surement. (The participant analyzed a dataset that compared
text entry techniques in mobile phones.) The statement would
therefore be part of the source code that validates the hy-
pothesis WPM ~ method, i.e., a hypothesis that investigates
whether typing methods have an effect on the typing speed.

We encountered situations in which our participants performed Alternative explorations

were usually preceded

by modifications to data.

multiple analyses to validate the same hypothesis. We found
that several participants (P1, P2, P4, and P10) conducted these
alternative analyses after the data have been modified, e.g., by
transformations and removal of outlier data points. This is not
surprising, since the analysis method is almost entirely depen-
dent on the data characteristics [Gelman and Loken, 2013].
Changes to data mostly resulted from obtaining insights from
another step in the analysis, e.g., learning that data are log-
normally distributed prompted a change to data through data
transformation. There were only a few situations in which data
were modified impulsively by participants (“I will [... see] what
happens to distribution when these [data] points are removed.” –
P2). Participants used variable names like logData and
data_new to track the changes to data.

How do data workers rationalize their analysis?

As discussed earlier, data workers have the responsibility of re- Participants used prior

statistical knowledge,

execution output, and

external information

sources to rationalize

the choices they made

in analysis.

porting the rationale behind the decisions they made in their
analysis, such as transformations and using a non-parametric
statistical test, alongside reporting the key insights they ob-
tained in their analysis. Participants used the following infor-
mation from source code to rationalize analysis decisions:

• Most participants (P1, P5–10) had predetermined one or
more analysis steps, often based on their prior experience
and expertise in statistics. For example, before perform-
ing analysis, P7 knew that one of the factors in his data
had three levels and decided to use an appropriate sta-
tistical test (“I will probably be doing an ANOVA test here,
followed by pairwise comparisons.” – P7). Participants do
not capture such rationale explicitly during exploration,
but later include them in production code or analysis re-
ports.
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• All participants used results of previous executions as ra-
tionale, since results often lead to new insights about
data. For example, P8 used a quantile-quantile plot to
rationalize the use of a non-parametric test.

• In addition to above information, some participants (P2,
P3, P6, and P9) made references to external resources,
e.g., web articles3, including them as rationale. These
were usually documented in the production code using
comments and reported to be included in the reports.

How do data workers track data insights?

While insights are typically gathered from source code exe-
cutions, they are often more than the results themselves and
include the analyst’s interpretation. Therefore insights in ourInsight were often too

verbose to be captured

as comments.

study were often detailed and sometimes too verbose to be cap-
tured as source code comments, e.g., as P8 mentioned:

“I would recommend [users to] use EdgeWrite [a text-
input technique] here because the variance [of typing
speed] is low, but one can also use Graffiti which has
a higher average.” - P8

Such insights are hard to capture as comments, and mostMost participants relied

upon their memory to

recall such insights.

participants simply attempted to retain this insight in mem-
ory. Only two participants, P4 and P5, used RMarkdown
notebooks to track insights. P6 and P9 used comments
with some references to capture insights, e.g., Test is
inconclusive, see model o/p. However, most
participants (P1–3, P7, P8, and P10) did not use comments to
document insights and relied upon their memory instead (“The
information [about insights from exploration] is something I still
have in my head and it’s usually [just] a few key insights.” – P7).

Except for P4 and P5 who used RMarkdown notebooks, all par-Participants had to

re-execute their

exploratory code often

several times.

ticipants had to execute their source code over and over again

3E.g., https://stats.idre.ucla.edu/other/
mult-pkg/whatstat/

https://stats.idre.ucla.edu/other/mult-pkg/whatstat/
https://stats.idre.ucla.edu/other/mult-pkg/whatstat/
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when writing production code to recall rationale and insights.
This shows that data workers overlook the need for capturing
information on regular intervals during exploration. As further
evidence of this fallacy, we found that some participants found
it difficult to keep track of the source code that produced a
data insight even during the exploration stage. For example,
P7 could not find a code snippet they was looking for during
exploration and soon became frustrated (“One of these three
distributions is not normal... where is the line [of code] where
[sic] I computed [i.e., plotted] the histograms?” – P7).

What do data workers use comments for?

Data workers used comments to capture insights and rationale; Comments were used

to capture a variety of

information, but were

not commonly used

during exploration.

for navigation; and to manage source code alternatives. While
comments were commonplace in production code, some par-
ticipants (P1, P7, P8, and P10) were reluctant to use comments
during exploration (“I write comments [only] when I have found
something interesting [i.e., an insight].” – P8).

This is an implication of the exploratory programming practice,
in which the focus is on getting to the results faster and eval-
uating them than writing high-quality source code. Comments Comments in

production code

captured analysis

details, programming

details, and rationale.

in production code were used to provide a high-level task de-
scription, e.g., apply ANOVA (P6). Some participants P2–4
used comments to describe what they did programmatically,
e.g., loop through each data segment... (P2).
Additionally, several participants (P2, P3, P5, P7, and P8)
used comments to capture rationale and insights in production
code, e.g., Preconditions for wilcox test are
met (P7).

P2 used stylized comments to distinguish comments about
insights from other comments. P3 used section comments4 There were variations

among our participants

in their use of

comments.

for task descriptions, to help them navigate code more easily.
There were some individual differences in frequency and style
of comments, such as variations in verbosity and preference of
inline vs. tail comments. Some participants (P3, P4, and P7)
used comments to temporarily disable code snippets.

4https://support.rstudio.com/hc/en-us/
articles/200484568-Code-Folding-and-Sections

https://support.rstudio.com/hc/en-us/articles/200484568-Code-Folding-and-Sections
https://support.rstudio.com/hc/en-us/articles/200484568-Code-Folding-and-Sections
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How do data workers rewrite source code?

After exploring alternatives to obtain data insights, participantsParticipants rewrote

source code by cleaning

up experimental code or

writing code from

scratch.

rewrote exploratory code to be able to reuse it in analysis re-
ports or for production. Such source code would be dissemi-
nated and/or stored for later. Participants rewrote code in two
ways: (1) clean up current code (P1, P2, P4–6, and P9) and
(2) rewrite code from scratch (P3, P7, P8, and P10). To help
prune their exploratory code, participants used code blocks,
comments, and variable names to evaluate source code state-
ments.

To help identify code snippets they were looking, participantsExecution output from

consoles and

comments were used to

identify experimental

code snippets.

made use of executions in the interactive console and source
code comments. However, since most participants did not use
detailed comments during the initial exploration phase, most
participants had to re-execute source code several times, a be-
havior we also observed during the initial exploration phase.
Once located, source code is often cloned into a new source
code file or re-organized in the current file.

Participants changed variable names in situations where tem-Writing production

involved a number of

steps that relied upon

experimentation.

porary names were used, added or modified comments, and
rearranged code snippets within or across source code files, al-
though the latter occurred less frequently. Rewriting source
code required participants to retrace their steps; they did this
by looking at the current exploratory code, previous executions
that were displayed in the interactive console, and the panel
that listed a history of statements they have executed.

We identified the following issues our participants faced fromFinding relevant source

code that worked as

expected proved to be

difficult for our

participants.

our observations: (1) participants found it difficult to find the
correct version of a source code snippet, and (2) had difficulty
making sure that the execution dependencies of the code were
correctly cloned. For example, after validating several hypothe-
ses, P7 wanted to move their source code that was used to val-
idate one of the hypothesis to a new file. They looked through
their code to find this code, and then pasted it into the new file,
only to find upon executing it that an earlier statement (that
was used to set a variable as a factor) had not been copied.
Failing to copy all execution dependencies can result in faulty
executions or incorrect results, which can be even more prob-
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lematic.

5.1.4 Limitations and Future Work

Although our participants came from diverse disciplines, most Our participants were

mostly from academia,

which limits the external

validity of our findings.

Further longitudinal

studies are needed to

validate data workers’

workflows.

were from academia and do not represent the population of
data workers accurately. We recommend the reader therefore
to refrain from generalizing our findings to all data workers.
For example, industry practitioners may follow rigorous cod-
ing guidelines and write more modular code, reducing the is-
sues in finding prior code and execution results. We observed
each participant for about an hour and nudged them to show
us their workflow of getting from exploration to confirmation.
This might have hastened them, and led to workflows not rep-
resentative of their usual work. Also, real-world data science
projects tend to last for weeks or even longer, and the analysis
code could span multiple files. Future studies could investigate
data workers’ workflows through a longitudinal study.

5.1.5 Summary: Key Findings

In summary, we can take away the following from our observa-
tional study on understanding data workers’ hypothesis testing
workflows:

1. During exploration and while rewriting code, data work-
ers have difficulty keeping track of the source code that
had produced key insights and the states of their source
code experiments.

2. Exploration involves a standard routine of finding base
code, cloning, contextualizing, and evaluating it.

3. Hypotheses are the building blocks of an analysis. Source
code written to validate hypotheses have syntactic sig-
nals that make them detectable. Data manipulations,
such as transformations and outlier removal, lead to al-
ternative analyses, and data workers have to remember
variable names to keep track of these data changes.
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4. Data workers organize their code into blocks when writ-
ing code; these blocks are used as to navigate the source
code later during confirmation.

5. Data workers use (a) prior knowledge of statistical pro-
cedure, (b) text and graphic output of source code, and
(c) external resources like web pages to rationalize their
analysis.

6. Data workers do not capture data insights initially, but
instead rely on their ability to recall from memory and
sparse source code documentation.

7. It is hard for data workers to track the execution depen-
dencies in their source code. This leads to faulty execu-
tions or incorrect results when such code is cloned into a
new file, a step that is not too uncommon when writing
production code.

8. Data workers rerun code frequently in order to recall ra-
tionale, insights, and the states of their source code ex-
plorations.

5.2 Study: Understanding How Various In-
terfaces Support Data Science Program-
ming

https://osf.io/n6hsv/?view_only=
4c036ab7a1324935bdfad681b6107fa3 a

aContains details of our coding scheme.

In the previous section, we discussed the overall workflow of
data workers when performing hypothesis testing. During ourWe conducted a study

to investigate how

various interfaces for

data science

programming support

data science tasks.

study, we became curious about the use of consoles, which
some of our participants used for experimentation as discussed
in Section 5.1.3. We were also interested in learning how well
computational notebooks, which uses a cell-based program-
ming approach, could support data science programming in
comparison to scripts. We therefore conducted an observation
study to understand how data workers use these three pro-
gramming modalities: scripts, computational notebooks, and

https://osf.io/n6hsv/?view_only=4c036ab7a1324935bdfad681b6107fa3
https://osf.io/n6hsv/?view_only=4c036ab7a1324935bdfad681b6107fa3
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interactive consoles. We provide a brief overview of the three
modalities below, discuss our data and method in Section 5.2.2,
and then present and discuss our findings in Section 5.2.4.

5.2.1 Brief Overview of Programming Modalities

Scripts (Figure 5.5, left) support conventional storage and ex- Scripts support linear

execution and storage

of source code.

ecution of source code. All existing IDEs used for data science
programming support execution of entire scripts, with most
also allowing selective execution of snippets. When scripts are
executed, text output and error messages are shown in the in-
teractive console (Figure 5.5, center), while graphic output is
usually shown in a dedicated window.

Consoles (Figure 5.5 center) follow the Read-Eval-Print Loop Consoles allow quick

and easy execution, but

does not explicitly store

source code and output.

style of execution [Iverson, 1962]. Source code can be directly
written onto the console and executed line-by-line or can be
executed from the script file. Lines of code are executed se-
quentially with the output displayed immediately below each
executed line of code. The console usually has a display limit
of a few thousand lines, and the session’s state beyond the cur-
rent limit is lost. To view the previously executed commands,
the analyst needs to press the ↑ arrow key or scroll using her
mouse.

Computational notebooks (Figure 5.5, right) allow users to or- Notebooks offers cells

to organize source

code. Notebooks also

support Markdown for

adding verbose text.

ganize their source code into cells. A cell typically represents
one computational chunk of the data science task, and can be
executed in a non-sequential order. Unlike scripts, execution
output is juxtaposed with the cell. Additionally, computational
notebooks support narration via Markdown. These are textual
descriptions of, e.g., the analysis rationale, that can be inter-
woven with the code.

In order to evaluate how common these modalities are in cur-
rent programming IDEs, we surveyed existing IDEs of the main
scripting languages. We found that most modern IDEs sup-
port all three modalities, although there are some differences
in how well they support them. For example, Jupyter and R
Markdown allow the programmer to run all code cells above
or below the selected cell; MATLAB only allows the program-
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Script Console Computational Notebook

Source code
Markdown
Comment
Output

>

Figure 5.5: Current scripting language IDEs support writing and executing code via
three programming modalities: scripts (left), consoles (middle), and computational
notebooks (right). In this paper, we investigate how these modalities are used in data
science programming.

mer to run all code cells below, but not above. Results of our
survey are in supplements.

We support our findings in this section using the data collected
from observations and interviews with 21 data workers; results
of an online survey, which we use to extrapolate our key find-
ings about modality usage to a larger sample; and by applying
Green’s cognitive framework for programming [Green and Pe-
tre, 1996] to help reason why a modality suits data science
tasks better than others. Based on our insights, we present de-
sign recommendations for future programming IDEs, discussed
in the next chapter, in Section 6.3.

5.2.2 Data Collection and Method

We collected data from 21 data workers (nine female, medianOur study sessions with

21 data workers

included a walkthrough

and observations. Our

participants analyzed

real-world or fabricated

dataset.

age of 27). We aimed to account for differences in data work-
ers’ background, domain, and scripting languages used. We
used purposive and snowball sampling methods to invite par-
ticipants through emails to university mailing lists and direct
emails to contacts from our professional network. We encour-
aged the receivers to forward the email to others who might
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Participant Experience Domain (Scripting language) Modalities

IP01 1 Significance testing (R) scripts

IP02 2 Significance testing (R) scripts

IP03 1 Significance testing (R) scripts

IP04 1 Significance testing (R) scripts

IP05 2 Machine learning (Python) notebooks

IP06 5 3D data processing (Python) scripts

IP07 3 Significance testing (R) scripts

IP08 2 Machine learning (Python) both

IP09 0.5 Financial analysis (R) both

IP10 3 Machine learning (Python) both

Significance testing (R)

IP11 1 3D data processing (Python) scripts

Numerical analysis (MATLAB)

IP12 2 Equation modeling (R) scripts

Significance testing (R)

IP13 1 Machine learning (Python) both

Significance testing (Python, R)

IP14 5 Machine learning (Python, MATLAB) both

IP15 3 Machine learning (Python) both

IP16 10 Machine learning (Python, R) both

IP17 3 Machine learning (Python, MATLAB) both

IP18 7 Numerical analysis (MATLAB) scripts

IP19 8 Numerical analysis (MATLAB, Python) scripts

IP20 5 Machine learning (Python) scripts

IP21 8 Significance testing (R) scripts

Machine learning (Python)

Table 5.1: Participant details from our study on programming modalities

fit the criteria. Participants include 13 academic data workers
who self-identified as researchers from different fields such as
psychology, HCI, and electrical engineering, as well as 8 grad-
uate students. All participants reported to use at least one pro-
gramming modality regularly in their work, which is a criteria
to take part in the study.
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We first conducted an interview of about 20 minutes with eachOur study involved

collecting background

data and information

about participants’

workflows via

interviews, and then a

walkthrough.

participant to gather background information: programming
experience, scripting language experience, current and pre-
vious projects with scripting languages, and IDEs they were
regularly use or were familiar with. After obtaining informa-
tion about our participants’ background through interviews,
we asked them to walk us through their recent data science
projects. This phase, which lasted 30 minutes on average,
helped us understand our participants’ workflow with the pro-
gramming IDE. We requested the analysis files our participants
showed us, but participants were hesitant to share these files
with us as these either contained sensitive information or par-
ticipants were not sure if these could be shared with us.

After walkthroughs, we wanted to observe participants, either
remotely or in-person, perform real-world tasks. Most partic-
ipants felt this was intrusive, and provided a screen recording
of their work instead. Also, since some participants (P1, P2,
P4, P7, and P10) worked on projects with sensitive data, they
analyzed a fabricated dataset to mimic their work. We col-
lected audio and video logs of the interview and walkthroughs,
and screen capture of observations. We later viewed the screen
recordings, and followed through with participants for clarifi-
cations. For details of our participants and the data we col-
lected, see Table 5.1.

To analyze our data, we followed the constant compara-We used grounded

theory methodology to

analyze our data. We

substantiated our

interviews and

observations with an

online survey.

tive method [Boeije, 2002; Glaser and Strauss, 2017] of the
grounded theory methodology [Strauss and Corbin, 1994;
Smith et al., 1995]. We first created full transcripts of the inter-
views. Then, following the guidelines in [Saldaña, 2013], the
author of this work did initial coding to come up with a coding
scheme (see supplements). This coding scheme was validated
by an independent coder to achieve a good agreement of Co-
hen’s κ= 0.84 [Landis and Koch, 1977].

We used process codes [Bogdan and Biklen, 2007] to codeWe performed two

cycles of coding to

analyze the data we

collected in the study.

our participants’ workflows with all modalities, and descriptive
codes [Wolcott, 1994] to code the problems faced by our partic-
ipants and information about their background. Process codes
allowed us to categorize the actions in the observational video,
e.g., “exploring alternative” and “executing code”. Descriptive
codes, in which the analyst assigns a topic to each coded en-
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tity, allowed us to categorize a) the demographic information
and b) the analysis technique and tools used. After the first
coding cycle, we developed axial codes by using the following
models: action/interaction, causal conditions, and phenomenon
[Strauss and Corbin, 1998]. Each model gives us a perspec-
tive in which to look at the codes from the first coding cycle in
order to find grouping patterns. In addition to interviews and
observations, we also conducted an online survey with 62 data
workers to substantiate our findings about modality usage for
data science programming, discussed in Section 5.2.4.

We now discuss the main findings resulting from the analysis.

5.2.3 Phases in Data Science

Based on our analysis, and grounded in earlier work by Guo
[Guo, 2012], we identified four phases in data science pro-
gramming as shown in Figure 5.6:

1. Data collection and cleaning: In this first phase, par-
ticipants reported to collect and clean data. Data are
mostly collected by another person (P2, P3, P6, P8, P9,
and P12–19), sometimes by the participants themselves
(P1, P4, P7, P10, P16, P20, and P21); public data were
used otherwise (P5, P11, and P16). After collecting data,
participants prepare the dataset for analysis, e.g., by con-
verting it to the right format and removing outliers. Data
cleaning takes a lot of time, and is a recurring task done
throughout analysis.

2. Experimentation: Participants often experiment with
different approaches to obtain insights from their data.
These approaches are implemented as "quick and dirty"
prototypes in the source code, often in a less modular,
reusable manner. In this phase, the data science work-
flow is highly iterative and unpredictable—experiments
lead to comparisons, comparisons generate even more
ideas to explore, and so on. For comparisons, our partic-
ipants employed various criteria, e.g., code metrics like
execution time and memory, but also domain-dependent
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criteria like statistical power (P4) and results of a fitting
function (P10).

3. Code refinement: To prepare the source code of the
analysis for dissemination, participants (a) improve the
readability of source code by adding further documenta-
tion and pruning scratchpad code (P2–P4, P7, P9, P10,
and P13), (b) refactor source code either in-place or into
a new script file or computation notebook to improve
code quality and reusability (P2–04, P8, P10, P13, and
P15), and (c) extend source code so that it works with
a wider range of input (P8 and P13). Extending source
code to work with more input was more common in ma-
chine learning.

4. Dissemination and storage: The final phase in data sci-
ence programming is to disseminate the results of the
analysis to the outside world, e.g., as a research pub-
lication, or store it for later reuse. All participants re-
ported disseminating the insights from their analysis, as
well as storing their source code for later reuse. Many re-
ported to disseminate source code (P5, P8, P9, P11, and
P13–19), although in some situations only as snippets or
pseudo-code (P8, P9, and P13–17).

5.2.4 Findings: How Data Workers Use Program-
ming Modalities

Before looking at how data workers use programming modal- We describe phases in

data science

programming, and how

interfaces should be

designed to support

them.

ities during the phases discussed above, we aim to determine
how capable these programming modalities are in supporting
the various tasks that occur these phases. Since data cleaning
occurs throughout analysis, we consider it to be a task similar
to experimentation in our discussion below. We use Green’s
cognitive dimensions [Green and Petre, 1996] to achieve this.

• Experiment: A key task of data workers during experi-
mentation is to create and test alternative approaches to
obtain insights from data. In comparison to other lan- Data workers begin

analysis by using

source code to try out

various approaches to

perform data science.

guages, scripting languages already lower the cost of ex-
perimentation by allowing programmers to program at
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a higher level of abstraction [Sandberg, 1988]. Since
new source code uses existing code as a starting point
[Kery et al., 2017], the programming interface should
help users find existing code. Using Green’s cognitive di-
mensions [Green and Petre, 1996], this would require
the interface to have a high-level of role-expressiveness,
i.e., the capacity of an interface to express the function-
ality of a piece of code to the programmer.

• Compare execution results of alternatives: During ex-Data workers need to

compare output of the

alternative explorations

to determine which

exploration to continue

with.

perimentation, data workers compare their alternative
explorations, and select an exploration to further work
on. To do this, data workers need to compare the exe-
cution results of these explorations. Data workers there-
fore need to be able to (1) locate the source code that
belongs to an exploration, for which the interface should
have high levels of role-expressiveness; (2) map the ex-
ecution output to the source code that generated it; and
(3) view execution outputs and source code for multiple
explorations simultaneously. To support (2), the proxim-
ity of output to source code is important, a concept we
term ‘code-result distance’. A high-distance means that
the execution output is located farther away from the
source code that generated it, and vice versa. (3) can
be achieved with a high-level of juxtaposability, the ca-
pacity of an interface to display “any two portions of the
program on screen side-by-side at the same time” [Green
and Petre, 1996].

• Curate source code: When refining code, data workersWhen writing code for

storage or production,

data workers have to

curate their

experimental code to

remove scratchpad

code and refactor

source code.

need to understand their code so that they can remove
the scratchpad code. This would require the program-
ming interface to have high levels role-expressiveness
and low code-result distance. Some programming in-
terfaces could alternatively support secondary notations
like tags and programmer’s comments to support this
task. Further, since scratchpad code is removed, it is vital
that any hidden dependencies are retained in source code
[Green and Petre, 1996].

• Present analysis and help reuse: To present the anal-
ysis and results to stakeholders or in publications, the
ability to add narrative and reproduce expected results
from source code is desired. Code reuse can be achieved
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by allowing programmers to locate relevant code, as well
as by copying-over or minimizing hidden dependencies.

Using this discussion as motivation, we wanted to reason how
scripts, computational notebooks, and consoles support vari-
ous data science phases. What are their roles? Do we need all
modalities to co-exist? We attempt to answer these questions
below.

Role of consoles in data science programming

We would first like to address the role of interactive consoles Consoles were mainly

used for secondary

tasks.

in data science programming. Consoles can be considered as
single-celled, stateless equivalents of notebooks. Most of our
participants (P1–4, P7–10, P12, P14–17, P20, and P21) use
consoles only for secondary tasks, e.g., to test the syntax of a
function from a new library API, check if a file has been parsed
correctly, and view the variable value (“The console is for what
I consider to be fire-and-forget tasks.” – IP4).

However, some participants (P2, P3, P4, and P9) reported to The interactivity and

ease offered by

consoles can be

appealing.

use consoles for core data science tasks. Consoles do not store
the source code and execution output in a manner similar to
scripts or notebooks. It instead implicitly stores them in the
console window, requiring the programmer to incessantly scroll
this window to find source code and execution output. This
often led to issues as IP9 describes:

“I have had so many issues with losing commands [in
consoles] that I try to put everything into scripts, but
sometimes the console lures me in.” - IP9

The ‘lure’ referred to by IP9 above arises from the interactiv- Inexperienced

participants had a

tendency to overuse

consoles.

ity offered by consoles. Small-scale experimentation can be
performed more conveniently by pressing the ↑ key to bring
up the history of commands to modify and re-execute them, a
concept known as debugging into existence [Rosson and Carroll,
1993]. Most participants who overused consoles had limited
experience conducting analysis, indicating that the appeal of
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Figure 5.7: An example that illustrates the low
juxtaposability of script files. IP7 stored his code experiments
in two different python script files (a) and (b). To compare
the execution outputs of these experiments, he had to execute
a script file individually, remember or note down the result
from the console (c), and then repeat this action with the
other script file.

consoles for core data science tasks reduces as one gains more
experience.

Scripts and notebooks for experimentation and comparing
experiments

Among our participants, many (P1–4, P6, P7, P9, P11, P12,Computational

notebooks were

preferred over scripts

for experimentation.

and P18–21) do not use computational notebooks on a regu-
lar basis in their work. Of the remaining participants who use
both computational notebooks and scripts, most (P5, P8, P13,
and P15–17) reported to prefer computational notebooks over
scripts for experimentation. The consensus is that scripts are
not well suited to exploratory work. Scripts are low in code-
result distance and juxtaposability. When a code snippet is
executed, the execution output is displayed on the console or
stored in the file system, away from the source code. As we dis-
cussed earlier, console windows can get cluttered over a period
of time, further aggravating this problem.
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As an example, consider Figure 5.7. IP07 has programmed Script files make it

difficult to compare

execution output of

programmer’s

experiments.

their experiments, in this case, various statistical models for
training data, into two Python scripts as shown in Figure 5.7a
and b. To compare these models, they execute each script
file individually and evaluates the output on the console (Fig-
ure 5.7c). Since they cannot see the execution outputs of both
the scripts simultaneously, they have to remember insights in
memory or note them down.

Notebooks, on the other hand, are better suited to experimen- Notebooks are suited to

experimentation

because of cell-based

programming.

tation. Our participants provided two main reasons for this.
First notebooks allow programmers to organize their source
code into manageable chunks in cells, allowing for an easier
experimentation without the need to use messy program struc-
tures like comments (“(On notebooks) I don’t have to worry
about the other code for now. I can focus on this [chunk of]
code.” – IP15). Second, notebooks provide a low code-result
distance, allowing data workers to easily map the execution
output to the code cells that generated them. For smaller code
cells, the juxtaposability is also improved, allowing data work-
ers to view multiple pairs of cell and execution output at the
same time.

Beyond these two reasons, two participants (IP13 and IP16) Some participants

reported to use

Markdown to think

about and organize their

analysis.

reported that their preference for notebooks came from Mark-
down, which helped them be more oriented in their analysis
(“I like to write down what I want to do in notebooks before I
start programming. This helps me organize the code better and
be focused.” – IP13). However, we discovered that this is not
common: most participants do not use much Markdown or
programming comments during the experimentation phase.

Scripts and notebooks for code refinement

Our participants performed two broad tasks when refining Scripts were preferred

over notebooks for

refactoring code.

source code: (a) refactor and migrate code, which might re-
quire the programmer to prune the scratchpad code; and (b)
add documentation and narratives. Scripts were the preferred
modality for (a). Scripts are supported in IDEs like PyCharm
and Visual Studio, which offer powerful code refactoring func-
tionalities, e.g., [Filippov, 2015]. Computational notebooks,
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on the other hand, are mostly used in web browsers, as this
facilitates collaboration and sharing, and offer less powerful
features for code refactoring.

Larger notebooks have been known to get unstructured and un-For larger data science

projects, script files can

offer a more

manageable structure.

manageable [Kery et al., 2018]. Using several scripts instead,
where each script acts as a “black box” code package could be
a simpler alternative in production. Despite these limitations,
we will next discuss how notebooks can be indispensable for
data workers to present their work.

Scripts and notebooks for dissemination and storage

Most participants (P1-4, P7-10, P12, P20, and P21) use scriptsScripts are

predominantly used for

storage.

for dissemination and storage, since scripts have better sup-
port for use in the production pipeline. For example, IP8 and
IP12 work on projects with a large code base that is already
organized as multiple scripts; it is easier for them to add new
source code as scripts. Other participants (P8, P15, P16, and
P17) reported to use scripts for dissemination and storage due
to several features, such as execution from the command shell,
better support for file stream access, and possibility of automa-
tion (“Compute cluster accepts only scripts. IPythons can be run
as well, but it is frowned upon [by those who maintain the com-
pute cluster] because it blocks computing resources.” – IP17).

Some participants (P5, P11, P13, P16, and P17) reported toNotebooks offer a

convenient interface for

communicating results

to others.

use notebooks mainly for dissemination, e.g., to stakeholders,
colleagues, or blog readers (“I like to make my analysis into a
report that one [readers, colleagues, etc.] can just read through
and execute cell-by-cell to understand.” – IP16). However, none
of our participants reported using computational notebooks ex-
clusively.

Many data workers kickstart their analysis by basing it on exist-Scratchpad notebooks,

which contain data

workers’ initial

experiments, can

support further

analyses.

ing code [Guo, 2012]. Some participants (P8, P13, P14, P15,
and P17) reported using scratchpads notebooks, i.e., notebooks
used for typically unstructured, exploratory work, for this pur-
pose. These notebooks were reported to help get reacquainted
with API usage and programming language syntax. Some par-
ticipants (P8, P14, and P15) considered these scratchpad note-
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ScriptsNotebooks

fun,

casual, rigid,

formal,
interactive

"doesn't feel right" outdated

for "black box" code

Figure 5.8: Terms our participants used to refer to
computational notebooks and scripts. Notebooks were
considered to be interactive and fun, but too casual, whereas
scripts were considered formal but too rigid.

books to be even more important than the source code files that
contain the production code, as it helps them reason about the
execution output better.

Data workers’ perceptions of notebooks and scripts

Throughout our study sessions, participants associated scripts Participants had both

negative and positive

connotations about

scripts and notebooks.

with terms like “black box,” “formal,” and “reliable,”, but also
“rigid” and “outdated” as shown in Figure 5.8. Notebooks, on
the other hand, were associated with “interactive” and “fun,”
but also “too casual” and “doesn’t feel right”. These connota-
tions about scripts and notebooks came from discussions about
how these modalities were used during different phases of data
science programming.

Scripts, unlike computational notebooks, allow data workers The ability to decouple

results from code can

be beneficial after

experimentation.

to view source code output without having to step-through the
source code cell-by-cell. This high code-result distance or the
ability to decouple the results away from the code can be desir-
able if the data worker just wants to obtain the results without
having to step through the code, one chunk at a time. Con-
versely, the higher-level of interactivity offered by notebooks
via low code-result distance and cell-by-cell execution acts as
an inconvenience when reusing code:

“I have tried writing the final version of my code
blocks in Python notebooks, but it just doesn’t feel
right. . . Once something is a black box, it should be-
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long in scripts. I don’t want to run it in a notebook
anymore because it runs through line-by-line and I
don’t want that. It doesn’t feel clean.” - IP17

Also, support for computational notebooks in productionThere is tension

between the use of

scripts and notebooks.

pipeline is still a work in progress. E.g., for IP17, a data worker
who builds neural networks, a standard practice in his field is
to outsource computationally-intensive executions to external
GPUs. These GPUs support scripts in the standard *.py file for-
mat, and not Python notebooks, making it difficult for IP17 to
adopt computational notebooks. There is thus a tension be-
tween the two main modalities, computational notebooks and
scripts (Figure 5.8). The interactivity of computational note-
books is great for experimentation, but scripts’ are a more reli-
able medium for reuse and storage.

Prevalence of computational notebooks and scripts

Since a significant number of our participants did not reportWe conducted an online

survey to understand

usage statistics of

scripts and notebooks.

using notebooks, we wanted to extrapolate the usage statis-
tics of notebooks and scripts to a larger sample. To do this,
we conducted an online survey with 62 data workers from var-
ious domains like machine learning and significance testing.
Respondents were recruited via word of mouth and social me-
dia. Respondents self-reported an average expertise of 3.51
(1 = novice, 5 = expert). Combining the survey results with
data from our interview participants (n = 21), we were able to
gather modality usage statistics for 83 data workers as shown
in Figure 5.9.

Scripts are the most commonly used programming modality
across R, Python, and MATLAB. Only five respondents use note-Although scripts are

most common,

notebooks are rising in

popularity. Most

notebook users use

scripts alongside

notebooks.

books exclusively, all for Python programming. Conversely, 40
respondents use scripts exclusively. Most respondents (n =
41) reported to use both computational notebooks and scripts.
Computational notebooks are more popular among Python
programmers (36 out of 53 respondents; 67.9%) than MAT-
LAB (3 out of 11 respondents; 27.3%) and R programmers
(7 out of 25 respondents; 28%). This indicates that Python
notebooks are more popular than the MATLAB Live Editor and
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Python

R

MATLAB

25 % 50 % 75 % 100 %

10 %

30 %

29 %

60 %

70 %

71 %

31 %

Scripts only Both Notebooks only

Figure 5.9: Results of our online survey where respondents
chose the programming modalities they use for data science
programming. Scripts are the most commonly used modality
across all programming languages, with many respondents
using a combination of scripts and computational notebooks.

RMarkdown notebooks, but there may be other explanations.
For example, notebooks could be more popular in the machine
learning community, in which Python is frequently used.

To investigate why scripts are more common than compu- Some participants find

notebooks unnecessary

for their work.

tational notebooks, we turned to our interview transcripts.
Twelve participants (P1–4, P6, P7, P9, P11, P12, and P18–21)
who do not use computational notebooks regularly had rea-
sons that varied from not being aware of notebooks to find-
ing notebooks unnecessary for their work. Some reported that
they had tried to use notebooks earlier, but did not gain a sub-
stantial benefit. There is thus no clear monopoly of modalities;
although scripts are still the most common modality in data sci-
ence, many data workers use notebooks often in combination
with scripts.

5.2.5 Limitations and Future Work

We based our findings mainly on the interview and walk- Among other limitations,

we used the

observations only as a

supplement to interview

transcripts.

through sessions. While we methodically coded and analyzed
the observation videos, we did not do a detailed analysis of the
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Data science task Notebooks Scripts

Experimentation Ø –

Refactor code – Ø
Large data science project – Ø

Present code Ø –

Share code Ø –

Execute from command – Ø
line or GPU

Store code – Ø
Re-run past code – Ø

Table 5.2: Trade-offs between notebooks and scripts

videos. The videos were instead used to confirm and extend the
insights we had developed from analyzing interview transcripts
and walkthrough sessions. In some cases, videos helped de-
velop open questions that were then clarified by analyzing the
interview transcripts. To ascertain data workers’ long term be-
havior and to understand how data workers’ workflows change
across various project requirements, longitudinal studies need
to be done. We discuss the implications of our findings and
provide design recommendations in Section 6.3.

5.2.6 Summary: Key Findings

In summary, we conclude the following from our study under-
standing how data workers use programming modalities:

• Scripts and computational notebooks are both part of
the data worker’s toolbox. Although scripts are still the
most common interface, many data workers, especially
in fields like machine learning, use notebooks alongside
scripts.

• Scripts are preferred during production as the ability to
use them as ‘black box’ with code refactoring features
makes them desirable.
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• Notebooks are preferred during experimentation as they
allow for easier comparison of alternative explorations
and notebooks’ cell-based programming approach better
suits the non-linear, iterative nature of hypothesis test-
ing.

• Although consoles are used mainly for secondary tasks,
such as testing a library API, their ability to juxtapose
results with source code and quick prototyping by pulling
up previous commands make them appealing to novice
data workers.

• We summarize our participants’ preferences for modali-
ties in Table 5.2.4. Ø indicates the preference of most of
our participants.

5.3 Source Code Analysis: Quantifying the
Quality of Data Science Source Code

https://osf.io/85nmv/?view_only=
e13feadffa4b49c0a6543b084838db78 a

aContains the results of our code corpus analysis along with URLs to
the OSF projects we sampled from.

From the discussion above, and from previous research, we We examined analysis

scripts written by data

workers to quantify the

quality of data science

source code.

now know that source code in data science tasks is of a poor
quality. While the quality of source code tends to increase af-
ter the confirmation phase, we were curious how high this can
get, especially because academic data workers in certain fields
like HCI typically do not share their analysis code in publica-
tions [Wacharamanotham et al., 2020]. To quantify the quality
of source code after confirmation phase, we examined analy-
sis scripts written in R by academic data workers. Since these
were analysis scripts after the confirmation phase, we consider
the results to provide an upper threshold of analysis code qual-
ity; we believe that the quality of experimental code would be
lower.

We collected 40 R analysis scripts, used in HCI and psychology
publications at top-tier conferences such as CHI ’13 and ISWC

https://osf.io/85nmv/?view_only=e13feadffa4b49c0a6543b084838db78
https://osf.io/85nmv/?view_only=e13feadffa4b49c0a6543b084838db78
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’16, from two sources. We collected 32 scripts from 23 projectsOur code corpus of 40

scripts was sampled

from reputed sources.

on the Open Science Framework5 (OSF) platform We sorted
the projects by their date of creation, and looked for R scripts
provided in the project. Beyond selecting scripts written in R,
we did not filter our sample in any other manner. In a similar
manner, we collected eight scripts from three researchers at
our local university. We randomly selected no more than three
scripts from the same project or researcher to avoid biasing
our analysis to a particular data worker. We analyzed a total
of 20,303 source lines of code (SLOC), with an average of 508
SLOC per file. We identified two key issues, which we discuss
below.

5.3.1 Excessive Code Cloning

From our previous discussions, we know that code cloning is aExcessive code cloning

can lead to several

issues.

prevalent practice. Excessive code cloning can make analysis
scripts difficult to maintain, understand and modify [Koschke,
2008; Mayrand et al., 1996; Monden et al., 2002], limiting
replication and code reuse for writing production code and fu-
ture analyses. We were interested in identifying instances of
parameterized code cloning, in which the parameters of one or
more lines of code are cloned as shown in Figure 5.10.

We followed a standard procedure [Rattan et al., 2013] to iden-
tify instances of code cloning. First, we did a preprocessingUsing a standard

procedure, we found

that 70% of our code

corpus are clones.

of our analysis scripts to remove empty lines and comments;
this helped identify the Lines of Interest (LOI). Then we used
code fingerprints, short representative strings used to uniquely
identify code [Johnson, 1993], as both the intermediate rep-
resentation of the code and the match detection technique to
compute instances of code cloning. We identified that out of
4098 LOI from all scripts, 2861 LOI, or 70%, were parametric
clones [Rattan et al., 2013].

5https://osf.io/

https://osf.io/
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# 2. perform bootstrap 
wis_case <- bootnet(wis_network,nBoots=2500,type='case') 
tbs_case <- bootnet(tbs_network,nBoots=2500,type='case') 
nimh_case <- bootnet(nimh_network,nBoots=2500,type='case') 

# 3. calculate the CS coefficient 
wis_cs <- corStability(wis_case) 
tbs_cs <- corStability(tbs_case) 
nimh_cs <- corStability(nimh_case) 

# 3. if the CS coefficient is high enough, run  
# another bootnet and interpret its bootnet plot 
wis_boot <- bootnet(wis_network,nBoots=2500) 
tbs_boot <- bootnet(tbs_network,nBoots=2500) 
nimh_boot <- bootnet(nimh_network,nBoots=2500) 

plot(wis_boot) 
plot(tbs_boot) 
plot(nimh_boot)

Figure 5.10: Example of parameterized code clones from our
corpus. The analyst clones a chunk of code and modifies the
parameters to suit the current task in analysis.

5.3.2 Prevalence of Non-Modular Code and Func-
tions

Modular code, characterized through the use of functions, is Modular code matches

the iterative nature of

hypothesis testing.

generally considered to lead to a more productive program-
ming [Hughes, 1989]. Non-modular code, on the other hand,
is inefficient and does not match the hypothesis testing work-
flow, since a typical analysis would involve iterative executions
of a module with different input arguments. This can be partic-
ularly problematic when analyzing datasets with several vari-
ables, since modules would be reused several times.

To analyze how modular source code is, we first classified code We manually identified

how many statistical

steps were included in

each script.

snippets in a script into the three major steps of hypothesis test-
ing: preprocessing, exploratory analysis, and confirmatory anal-
ysis [Tukey, 1977]. We manually created a mapping between
the R function calls in our script files and the steps these func-
tion calls belonged to. We ignored functions outside of these
categories such as source() and print(). Then we iden-
tified how many of these steps were part of each script in our
code corpus. We found that 97.5% of all scripts contained two
or more steps, and 60% contained all three steps. This issue
was also found to be prevalent in longer analysis scripts.
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Additionally, we found that 27 out of our corpus of 40 filesWe found that about two

in three scripts did not

use functions.

(67.5%) did not include any user defined function, which fur-
ther validates the prevalence of non-reusable code. This behav-
ior has previously been noticed by R experts, who recommend
use more, smaller functions [FitzJohn and Falster, 2013; Mäch-
ler, 2014].

5.3.3 Discussion: Implications for Data Science Pro-
gramming

While code cloning can be beneficial in certain use cases, e.g.,Excessive cloning can

hinder code reuse, an

important part of

analysis.

when the programming language does not support inheritance
[Kapser and Godfrey, 2008], excessive code cloning has been
associated with several issues. It results in analysis scripts that
are difficult to understand and modify [Mayrand et al., 1996;
Koschke, 2008], as well as maintain [Mayrand et al., 1996;
Monden et al., 2002]. Difficulty in understanding and modify-
ing source code could hinder code reuse.

We believe that current IDEs for R themselves do not supportCurrent IDEs might not

support hypothesis

testing workflow.

the repetitive and non-sequential workflow of hypothesis test-
ing. An R script stores and executes the code in a sequential
manner. While the analyst can manually select and execute a
linear subset of the script, such manual execution of R code
snippets can lead to misinterpretations when the data are out-
dated or execution dependencies are not selected. We continue
this discussion in the next chapter.

We therefore conclude that programming using R results in
code that has excessive code cloning, which makes the anal-
ysis process hard to understand, maintain, and replicate, and
contains non-modular code, and does not support the repet-
itive and non-sequential workflow of hypothesis testing. We
posit that this is a design problem, and that there is a need
for environments that better support the non-linear, iterative
execution of data science source code.
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Chapter 6

Supporting Data Workers
in Performing Data
Science

PUBLICATIONS AND AUTHOR’S CONTRIBUTIONS

The work in this chapter has contributions from Johannes Maas and Michael Ellers.
Part of the research in this chapter has been published as an extended abstract [Subra-
manian et al., 2018] and two papers, [Subramanian et al., 2020b] and [Subramanian
et al., 2020a]. The author of this thesis helped design both artifacts, StatWire and
Tractus. The author also evaluated both artifacts. Michael Ellers developed the first
version of StatWire [Ellers, 2017], which was improved by Johannes Maas [Maas,
2017], discussed in Section 6.1. Johannes Maas developed Tractus, discussed in Sec-
tion 6.2. Prof. Wacharamanotham helped evaluate StatWire.

In the previous chapter, we discussed data workers’ workflows
during data science programming. We identified three specific
problems:

1. In Section 5.3, we found that data workers write poor
quality source code that is hard to maintain: 70% of
source code in data analysis are clones, and source code
files are typically large and non-modular. We identified three

problems in the

previous chapter, which

we aim to address in

this chapter.

2. A prominent reason why data workers write poor quality
source code is exploratory programming practice, dur-
ing which data workers experiment with ideas in source
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code. As we discussed in Section 5.1, this makes it dif-
ficult for data workers to recall their experiments when
writing production code.

3. In Section 5.2, we found how scripts and notebooks play
critical roles across various phases of data science pro-
gramming. By having to use them both, data workers
have to switch contexts and often copy-paste code, re-
sulting in inefficient workflows.

The problem of excessive cloning is not specific to data scienceThe problems we solve

are not limited to data

science.

programming. Clones are very common in software projects
[Baker, 1995; Kapser and Godfrey, 2003], and lead to in-
creased maintenance costs [Fowler, 1997; Geiger et al., 2006].
The two other problems originate due to the exploratory pro-
gramming practice, which is also prevalent beyond data science
programming. We now discuss some approaches to address
these issues.

6.1 Encouraging Data Workers To Write
Modular, Maintainable Source Code

https://osf.io/79rux/?view_only=
c9b6ae0421034bffb43b19cce92cbbc9 a

aContains a demonstration video of StatWire and datasets used in eval-
uation.

https://github.com/i10/StatWire a

aContains the source code for StatWire.

From our content analysis in the previous chapter, we deter-We identified three

reasons why data

science source code

contains excessive

clones and is

non-modular.

mined that source code written for data analysis contains nu-
merous clones and is non-modular. We believe that these prob-
lems arise due to a combination of a) iterative, non-linear
workflow of data analysis; b) exploratory programming prac-
tice, in which the programmer does not invest resources in writ-
ing high-quality code when experimenting; and c) lack of in-
centives for sharing code as a part of publications. We have

https://osf.io/79rux/?view_only=c9b6ae0421034bffb43b19cce92cbbc9
https://osf.io/79rux/?view_only=c9b6ae0421034bffb43b19cce92cbbc9
https://github.com/i10/StatWire
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discussed b) at length in Sections 2.5.1 and 5.1.3. We elabo-
rate on a) and c) below.

Programming interfaces for data analysis predominantly sup- The design of data

science programming

interfaces does not

match the data science

programming workflow.

port linear storage and execution of source code. Most pro-
gramming interfaces support selective execution, but even such
execution is linear. This, however, does not match the non-
linear and iterative nature of data analysis, and can result in in-
efficient usage scenarios, such as multiple executions and using
incorrect variable values, which we discussed in Section 5.2.
As we discussed earlier, computational notebooks and interac-
tive consoles can better support non-linear, iterative workflows
due to the high level of interactivity they provide. Despite this,
such interfaces have limited support for writing and maintain-
ing production code. There is a potential for redesigning inter-
faces used for data science tasks so that they may better support
non-linear, iterative workflows.

Several fields of research such as psychology [Open Science
Collaboration, 2015], HCI [Wacharamanotham et al., 2020],
and medicine [Begley and Ioannidis, 2015] have reported that
it is uncommon for researchers to share research artifacts, There is little incentive

to share source code

used to perform data

analysis.

which includes the source code used for analyzing experimen-
tal data, in order to facilitate replications. A key reason seems
to be lack of incentives for sharing such artifacts [Feger et al.,
2019; Wacharamanotham et al., 2020]. Since data workers do
not have strong incentives for sharing their source code, they
do not have to spend time and effort modifying their source
code to refactor and add documentation.

How can we encourage data workers to write better source We introduce StatWire,

a hybrid programming

interface to encourage

data workers to write

modular source code.

code? As an exploratory solution, we introduce StatWire, with
which we explored a data-driven, hybrid programming ap-
proach to encourage data workers to write modular source
code. StatWire integrates a traditional text editor with a visual
data-flow editor. After discussing the idea behind StatWire in
Section 6.1.1, we describe how StatWire works using a short
interaction walkthrough in Section 6.1.3, and discuss its in-
tended benefits through a small-scale study with data workers
in Sections 6.1.5–6.1.6.
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6.1.1 Idea: Hybrid Programming to Encourage Mod-
ular Programming

We aimed to create an interface that encourages programmers
to write source code in a modular fashion. Text-based program-
ming is powerful, and allows programmers to express busi-
ness logic in a concrete manner. It does not, however, allowText-based

programming allows

users to express logic

concretely, and visual

programming allows

users to reuse code and

get an overview of

analysis.

easy reuse of code, as functions are less common in data sci-
ence programming due to the iterative workflow. As it stands,
reuse is possible only via copy-paste programming. On the
other hand, visual programming environments organizes pro-
grammers’ source code into visual blocks, which can be readily
reused. Further, such environments abstract the details of the
underlying business logic, allowing programmers to focus on
higher-level tasks. We were interested in exploring a combina-
tion of text and visual programming environments to get the
best of both worlds. We designed and developed StatWire with
this idea in mind.

6.1.2 Related Work: Hybrid Statistical Tools

Several tools have tried to combine text-based programmingIn many tools, users

can use visual editors to

generate textual code.

with visual representations. Rehearsal World [Finzer and
Gould, 1993], Aura 2 [Dannenberg, 2004], and more recently
BrickLayer [Cheung et al., 2009] let the user work with a vi-
sual editor in order to generate the underlying source code.
Heterogenous languages allow programming by letting users
intermingle text and visual notations [Erwig and Meyer, 1995].

For hypothesis testing, ViSta [Young and Bann, 1996] is a visualViSta has both visual

and text editors, but the

text editor cannot be

used to author new

functionalities.

statistical system that allows users to work with both a visual
interface and a text-based interface simultaneously. However,
the text-based interface is used only to use predefined modules,
not to author new modules from scratch. The text-based inter-
face only acts as a textual interface for invoking the predefined
statistical modules, not defining them.

Both RapidMiner [Hofmann and Klinkenberg, 2013] and KN-RapidMiner and KNIME

are primarily visual

interfaces, with limited

support for text

integration.

IME [Berthold et al., 2009] offer visual interfaces to construct
workflows for predictive modeling, data mining, hypothesis
testing, etc. Users can drag-and-drop existing widgets into a
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Figure 6.1: Tools such as RapidMiner and KNIME (shown
above) separate the text-based editor from the visual data
flow editor.

blank canvas, specify the data flow via click-and-drag, and run
the workflow to view the results. Extensions to RapidMiner and
KNIME allow integration of R code snippets and plots. The user
can add an R code snippet module and can view and edit the
underlying source code using a pop-up dialog box as shown in
Figure 6.1. However, the interfaces of both these tools separate
the text-based editor from the visual data flow editor. Editing
the textual code has no effect on the visual data flow editor,
and to add an argument to the textual code, the user needs to
use the visual editor. Such tools are more suited to functions
that are already written, tested, and debugged in a different
environment e.g., in a text-based IDE. Writing analysis code
from scratch using such interfaces is difficult because of a lack
of support for the debugging process.
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6.1.3 Interaction Walkthrough

StatWire consists of two panels as shown in Figure 6.2: visual
data flow editor (Figure 6.2A) and a textual programming en-
vironment (Figure 6.2B). Each node in the visual editor can
be either a statlet, which is a step in analysis (Figure 6.2F),
or a viewlet, which shows plots (Figure 6.2E1) or data (Fig-
ure 6.2E2). The edges (Figure 6.2H) represent the flow of data
across the nodes.

The visual editor is initially empty, and the user can create aThe two interfaces

seamlessly combine to

help the user perform

data science

programming.

statlet by right-clicking on the empty canvas. When a statlet
is created, the text editor (Figure 6.2C) is shown with a de-
fault function template. This encourages the user to think in
a modular fashion and use functions. When authoring code,
users can use the output pane next to the code (Figure 6.2D)
for debugging the source code. The two editors allow the user
to operate at two levels of abstraction: the visual editor pro-
vides an overview of the entire analysis process including the
flow of data, whereas the text editor allows the user to focus on
the business logic of each step. In addition to receiving input
from other statlets, statlets can also take a file as an input via
a file browser.

StatWire tightly couples the two editors. When input and out-The two interfaces are

tightly integrated. When

one interface is altered,

the other interface

changes to reflect this.

put arguments are added to the function header in the text
editor, the corresponding node in the visual editor is automat-
ically updated (Figure 6.2G). The statlet displays the output
values in the visual editor. If the user wants to view an entire
data table or a plot, they can utilize a viewlet, which uses a
dedicated window. Viewlets take takes only one input and no
output.

6.1.4 Design Process

We developed StatWire by following a user-centered, itera-We used a

user-centered, iterative

process to design and

develop StatWire.

tive design process, during which we explored several design
alternatives to support a tight integration between the two
programming environments. In earlier prototypes, e.g., users
could add arguments via the visual programming environment.
However, evaluations with existing users of R and one statis-
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tics expert who teaches introductory courses in R revealed that
users preferred to update the arguments in the textual pro-
gramming environment. Users wanted the visual editor to be
used exclusively for the higher-level task of managing the over-
all statistical workflow. To address this issue, we incorporated
live updates to the visual editor upon changes to the textual
editor.

6.1.5 Evaluation

The primary intended benefit of StatWire is to improve theWe expect StatWire to

improve code quality

and code

comprehension.

quality of source code written for data science tasks. Specif-
ically, we expected StatWire to increase the use of functions
and reduce cloning. Additionally, since the visual editor pro-
vides an overview of the analysis process, we wanted to under-
stand if using StatWire led to increase in comprehension of the
analysis workflow.

To evaluate whether StatWire can provide these benefits, weWe compared StatWire

to RStudio and two

visual programming

tools in a user study

with four data workers.

conducted a study to identify how well StatWire supports
statistical programming with R. In this study, we compared
StatWire to RStudio1, a widely used IDE for R, as well as Rapid-
Miner2 and KNIME3, two visual programming environments
with R integration. We identified these tools based on an infor-
mal survey of R-based IDEs and programming environments.
We did not consider environments that expose a frontend for R
programming language, since our aim is to understand changes
in programming behavior.

We recruited four data workers (one female) who use RStu-
dio from our research lab. Three participants had taken a
graduate-level introductory analysis course in R. All partici-
pants had used RStudio before, but none had used KNIME or
RapidMiner. All participants were experienced in performing
hypothesis testing—all reported to have at least three years of
experience.

We first collected some background information from eachParticipants used the

programming tools we

provided to analyze

hypothetical datasets.

1https://www.rstudio.com/
2https://rapidminer.com
3https://knime.com

https://www.rstudio.com/
https://rapidminer.com
https://knime.com


6.1 Encouraging Data Workers to Write Better Code 139

RStudio StatWireRapidMiner
Dataset 1 Dataset 3Dataset 2

StatWire RStudio RapidMiner

KNIME StatWire RStudio

RStudio KNIMEStatWire

Dataset 2 Dataset 3 Dataset 1

Dataset 3 Dataset 1 Dataset 2

Dataset 2 Dataset 3Dataset 1

Figure 6.3: The experimental design of our study to evaluate
StatWire. We balanced the order of conditions and
randomized data-tool pairing.

participant: Their experience with statistical analysis, experi-
ence with R programming, which other analysis tools they use,
and experience with functional programming. Each partici-
pant performed analysis with each analysis tool for a minimum
of 30 minutes.Participants analyzed a random representative
dataset. Datasets were designed by the author of this work,
and included hypothetical data from HCI experiments. For ex-
ample, the first participant evaluated data from a mobile text
entry study that compared the typing speed for three different
handwriting-recognition input techniques, namely Unistroke
[Goldberg and Richardson, 1993], EdgeWrite [Wobbrock et al.,
2003], and Graffiti [MacKenzie and Zhang, 1997]. They were Participants analyzed

data from hypothetical

HCI experiments.

given a list of predetermined research questions to focus their
analysis on. Additional datasets with research questions were
provided when participants managed to finish the analysis be-
fore the stipulated minimum duration of 30 minutes. The
second participant began analyzing an additional dataset, but
could not complete the analysis.

We balanced the order of conditions and randomized both the
dataset-tool pairing and the characteristics of datasets to min-
imize learning effects (Figure 6.3). Beyond standard hypothe-
sis tests, the analysis required the use of typical but non-trivial
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techniques such as factor encoding, data transformation, and
post-hoc tests.

We collected the screen, audio, and webcam feed of the ses-
sions. To analyze the experimental data, we employed an in-We employed thematic

analysis to analyze

experimental data.

formal, reflexive thematic analysis [Braun and Clarke, 2021],
in which we sought to identify patterns of user behavior. Af-
ter partially transcribing the audio recording, a solo analyst as-
signed codes to them, and then generated initial themes. These
candidate themes were then evaluated over time by analyzing
additional data. We used the expected benefits of StatWire to
guide our analysis. Below we present some of the key findings
from our analysis.

6.1.6 Significant Findings

Prevalence of bad quality code

We first wanted to establish the prevalence of inefficient pro-When using RStudio,

our participants wrote

non-modular code with

excessive clones.

gramming practice with existing analysis tools. When using
RStudio, none of the participants followed a modular program-
ming approach. There were several instances of code cloning,
and participants used comments to structure their analysis
source code. Despite this, because users were familiar with
RStudio, they reported to feel at ease when using it.

Existing visual programming environments lack tight inte-
gration with text-based programming

RapidMiner and KNIME are two popular tools that primarily
expose a visual programming environment, but also has sup-
port for editing the underlying source code. With both Rapid-Our participants

encountered several

problems with using

text-based editor when

using RapidMiner and

KNIME.

Miner and KNIME, participants found the lack of integration
between visual data flow editor and textual environment frus-
trating. For example, while authoring textual code, the visual
data flow editor did not update automatically. It was also not
possible to view both environments simultaneously. Over time,
participants were able to work around these shortcomings.
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Evidence of StatWire’s benefits

With StatWire, users benefited from the tight integration be-
tween the two programming environments. Two users re- We identified evidence

for benefits of StatWire.ported to understand the analysis better as a result of the visual
data flow editor. When conducting analysis with StatWire, over
half of the statlets (18 out of 35; 51%) were reused, whereas
no reuse was observed with other tools.

StatWire is open-source, and available as a local web applica-
tion from the StatWire project home page4.

6.1.7 Limitations and Future Work

While our preliminary study is promising, it is limited by sam- Our study shows that

hybrid programming

approaches can be

promising, but more

work is needed.

ple size and guiding hypotheses, and further longitudinal stud-
ies are required to understand StatWire’s effects on code under-
standing, structuring, and navigation, as well as on the produc-
tivity of the analysis. Further, the artifact can be extended to
allow transformation of existing analysis scripts into a more
structured and reusable format by, e.g., automatically high-
lighting similar chunks of code and semi-automatically con-
verting them to a reusable module.

6.2 Supporting Exploratory Programming
Workflow

https://osf.io/pe9a2/?view_only=
d201aeb945b747e49328ec86bc58e68b a

aContains the results of parser evaluation, datasets used in evaluation,
and source code for a previous iteration of Tractus.

https://github.com/i10/tractus a

aContains the source code for the latest version of Tractus.

4https://hci.rwth-aachen.de/statwire

https://hci.rwth-aachen.de/statwire
https://osf.io/pe9a2/?view_only=d201aeb945b747e49328ec86bc58e68b
https://osf.io/pe9a2/?view_only=d201aeb945b747e49328ec86bc58e68b
https://github.com/i10/tractus
https://hci.rwth-aachen.de/statwire
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Our observational study in Section 5.1 helped us understand
data workers’ workflows when performing hypothesis testing.
We found that there are two phases in analysis: an experimenta-
tion phase, during which the data worker experiments in source
code with their ideas, and then a confirmation phase, during
which the data worker rewrites code and writes statistical re-
port. A key finding is that data workers have difficulty in re-
calling the key insights and rationale for their analysis from the
experimentation phase.

We now introduce a potential solution to this issue: Tractus.
Tractus is an addin for the RStudio IDE. It helps data work-Tractus helps data

workers track source

code and insights

through source code

visualization.

ers track source code that had yielded insights during explo-
ration, and understand their source code explorations better
when writing production code and reports later. We envision
Tractus to reduce code re-runs, help data workers manage ex-
plorations, and rationalize their analysis choices in reports. We
first discuss related work in Section 6.2.1, discuss how Tractus
works and how we implemented it in Sections 6.2.2–6.2.2, and
describe how we evaluated Tractus in Section 6.2.3.

6.2.1 Related Work

Tractus is not the first tool to help users understand and find
analysis code. We discuss some prominent tools that do this,
and discuss prominent works about source code visualization
that informed the design of Tractus.

Tool support for understanding and finding analysis code

Previous research has produced several artifacts to help data
workers understand and find prior code. Burrito [Guo andPrevious tools help by

visualizing data science

activities and execution

output; maintaining

alternatives in code;

and helping find source

code.

Seltzer, 2012] captures and displays source code outputs, time-
line of activities, and notes from a data science project to help
data workers capture their data science workflow. Variolite
[Kery et al., 2017] is a lightweight version-controlling system
that helps data workers maintain code alternatives and track
outputs. Code Gathering Tools (CGT) [Head et al., 2019] is an
interactive extension to Python notebooks that can help data
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workers find, clean, and manage code, by providing mecha-
nisms to locate source code. Verdant [Kery et al., 2019] is also
a notebook plugin that visualizes code history to help program-
mers find prior code.

Unlike these tools, Tractus tracks the data worker’s experiments
by visually grouping them into the corresponding hypotheses,
presents this structured visualization to help the user stay ori-
ented, and, during confirmation phase, helps locate the source
code that yielded particular insights.

Visualizations of source code and history

We consulted several existing works on source code visualiza- Source code

visualizations has

several use cases and

benefits.

tion to inform the design of Tractus. Systems like Code Bub-
bles [Bragdon et al., 2010b], Code Thumbnails [DeLine et al.,
2006], and Stacksplorer [Krämer et al., 2010] visualize code
to help improve comprehension and navigation. Programming
IDEs employ other forms of visualization like icons and graphi-
cal overlays next to the code to encode information like syntax
highlighting, code conventions, and version control informa-
tion [Sulír et al., 2018].

In data science, an important task is tracking the sources of Past works help track

data sources and

source code history.

data, i.e., data provenance. Provenance Explorer is a tool that
supports this task by visualizing data and events associated
with it as a graph [Cheung and Hunter, 2006]. Prior research
artifacts, e.g., [Kery et al., 2019; Wittenhagen et al., 2016; Yoon
et al., 2013], visualize source code history to improve code
comprehension and foraging.

Unlike Verdant [Kery et al., 2019], which is the closest to our
work, Tractus works at a more abstract level by grouping source
code into hypothesis, captures execution dependencies, and
contextual information from source code that data workers use
to recall rationale and insights.

6.2.2 Interaction Design

Tractus consists of three components as shown in Figure 6.4:
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Parser

R script files

R session Visualization

RStudio addin

execution dependencies,
hypothesis information,
contextual information

Source code and
execution output

Figure 6.4: Tractus consists of three components: RStudio
addin, parser, and the visualization. The RStudio addin feeds
the R code and execution output from the R session to the
parser. The parser breaks down the code, detects the
hypothesis that the code belongs to, and finds execution
dependencies in code. This information is then visualized.

1. The parser is the back-end of Tractus. It breaks down RTractus’ parser is

responsible for

identifying the

information that is

visualized in Tractus.

source code and obtains (a) the hypothesis investigated
by each statement in the analysis, (b) the execution de-
pendencies among variables in source code, and (c) con-
textual information in source code such as the block and
tail comments. Our RStudio addin is responsible for cap-
turing the comments, execution output, and the order of
execution of statements, and sending these to the parser.
Hypotheses are the atomic building blocks of analysis
and reflects the data worker’s mental model. We believe
that leveraging this information can help data workers
find source code more easily. Execution dependencies
are captured to help minimize incorrect and faulty execu-
tion of production code. Finally, contextual information
helps data workers rationalize their analysis and rewrite
source code after exploration.

2. The visualization, which acts as the front-end of Tractus
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as shown in Figure 6.5. The visualization receives in- Tractus uses a

tree-based visualization

to group source code

into hypothesis, along

with contextual

information.

formation about how the source code should be grouped
according to the hypothesis they belong to, execution de-
pendencies, and contextual information from the parser,
and visualizes them in real-time. The visualization mon-
itors the parser output for changes, and updates the vi-
sualization on change. In the visualization, the source
code is organized into blocks to improve navigation, and
variables used in the analysis are emphasized to help
track provenance of data. Furthermore, since a common
task during analysis is to copy-paste code and modify ar-
guments, the visualization also supports data injection.
Data injection allows data workers to select a block of
code, and modify the dependent and independent vari-
ables in it. The visualization can be shown in the RStudio
viewer pane or in a native web browser. Since RStudio’s
viewer pane does not support certain features like auto-
complete or copy-to-clipboard, data workers might pre-
fer using web browsers.

3. The RStudio addin integrates the parser and web app into
the R session. The addin watches the R session for new The addin integrates the

parser and visualization.source code executions, captures them, and feeds them
to the parser along with execution results. Only state-
ments that successfully execute are sent to the parser.
The addin is also responsible for displaying the web app,
i.e., the visualization front-end of Tractus, in the viewer
pane of RStudio.

We designed Tractus in an iterative manner, at every stage gath-
ering feedback from R users and data workers. After using low-
fidelity sketches to test the design of Tractus’ visualization, we
built two high-fidelity implementations as shown in Figure 6.6
and Figure 6.5 to evaluate the user interaction with the visual-
ization. We now describe the parser and visualization.

Parser

The parser is the back-end of Tractus. It is responsible for de- The parser is the

back-end of Tractus and

is agnostic to the source

of R source code.

tecting information from the source code that is visualized by
Tractus’ front-end. The parser is agnostic to where the R code
is written by the data worker—it can read R source code from
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Figure 6.6: The first version of Tractus. After evaluating this
version with users, we made several design improvements,
e.g., symmetrical tree required horizontal scrolling for large
files, and improved the underlying architecture in the current
version.

an R script file, an R session’s history database file, or even
through the RStudio addin. Tracking the R session’s history al-
lows Tractus to capture code experiments performed in interac-
tive consoles, a common practice among novice data workers.
We validated the parser’s ability to process R source code by
using it to parse a test dataset of existing R scripts; we discuss
the validation results later in Section 6.2.2.

Detecting components of a statement: The parser decon- The parser breaks down

each statement into an

AST representation to

obtain the individual

components, such as

variable, function name,

and arguments.

structs the given R source code into an Abstract Syntax Tree
(AST) representation [Baxter et al., 1998]. The AST represen-
tation breaks down each statement into variable, expression,
function name, and arguments (name and value). The parser
filters out statements that do not have to be visualized, such as
package installations, statements that do not execute success-
fully, and control structures like loops and conditions. Unlike
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existing parsers, our custom parser captures comments, both
inline and block, and line feeds so that it can detect code blocks.

Detecting execution dependencies: Earlier works have al-
ready successfully detected execution dependencies in source
code, e.g., [Weiser, 1981; Higo and Kusumoto, 2009]. Our
parser detects execution dependencies by keeping track of vari-
ables and statements. A statement that uses a variable de-
pends on the statement that had defined or modified that vari-
able. Statements that use multiple variables depend on mul-
tiple statements; conversely, a variable can be depended upon
by multiple statements. Our parser ignores dependencies inTractus tracks all

variables and

statements to determine

execution dependencies

for each statement.

control structures, e.g., dependencies from statements that are
inside an if-block to those outside the if-block. Our parser val-
idation revealed only a few instances of this, since hypothe-
sis testing typically has a linear, but branching, control flow.
Therefore, we concluded that capturing and displaying control
structures into the dependency graph would not have yielded
significant benefits.

In addition to helping users understand their explorations bet-Alternative explorations

are easy to spot in

Tractus.

ter, revealing the execution dependencies also helps capture
the alternative explorations that result from data modifica-
tions. Alternate explorations use different data and are tracked
in our visualization more easily (Figure 6.5g).

The parser first keeps track of the variables resulting from the
AST representation and then uses this information to cumula-
tively detect execution dependencies in the code. These depen-Tractus uses a DAG to

capture execution

dependencies.

dencies are captured by the parser as a labeled Directed Acyclic
Graph (DAG), in which each node is a statement and each di-
rected edge is labeled with the variable name that establishes
the dependency between the connected statements. Travers-
ing this graph results in all statements required to execute a
statement with correct values.

Detecting hypotheses: Data workers use one or more hy-Tractus uses the R

formula notation to

detect which hypothesis

is being tested in a

statement.

potheses to investigate relationships between variables. To val-
idate a hypothesis, there are typically one or more alternative
explorations. Our parser groups source code based on the hy-
pothesis it validates by exploiting R’s formula notation, as well
as data selection and data manipulation operations. As men-
tioned earlier, this notation is used to encode the relationship
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between variables, and is commonly used across several analy-
sis steps, such as significance tests, assumption tests, and plots
or graph creation.

In R, there are certain significance tests that allow data Our parser

implementation had

some challenges.

workers to specify hypothesis without this formula nota-
tion, e.g., the ezANOVA function in the ezANOVA pack-
age5. However, we found very few instances of this in
our test dataset of R scripts that we used for our parser
evaluation. We encountered false positives in cases where
the formula notation was used in a plotting function rather
than for specifying relationships between variables. An ex-
ample is the ddply function, in which the user uses the
formula notation to specify how to split the data frame,
e. g. ddply(kbd, ~ Layout, function(data)
summary(data$Speed)). In general, however, we did
not discover significant mismatches between our intentions
and the parser results in our parser validation. To summarize
how our parser works, hypothesis detection occurs by looking
at the following information:

• R’s formula notations like measurement
~ factor and measurement ~
factor1*factor2*factor3. R’s formula
notations can be used to specify advanced factor
designs.

• Dataset manipulation operations like subdivisions:
subset(data, factor ==
“level”)$measurement

• Dataset column selections, e.g.,
data[data$factor ==
“level”,]$measurement

Capturing code blocks: Data workers organize their source We captured the code

blocks by looking for

lines of code after a

block comment was

detected.

code into code blocks and prefix the block with a comment.
We call such comments block comments. We wanted to capture
the entire block, including the block comment when present.
(A block therefore includes all statements in the block as well
as the leading comment.) To achieve this, whenever the parser

5https://www.rdocumentation.org/packages/ez/
versions/3.0-1/topics/ezANOVA

https://www.rdocumentation.org/packages/ez/versions/3.0-1/topics/ezANOVA
https://www.rdocumentation.org/packages/ez/versions/3.0-1/topics/ezANOVA
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encounters a line of code that is a comment, we assume that a
new block is present. All comments following the first line of
comment are considered to be the block’s comment until the
first line containing an expression is encountered. This and all
subsequent expressions are linked to the same block until an
empty line is encountered, upon which the block is considered
to have been completely captured.

Parser’s output - hypothesis tree: The parser uses a tree dataTractus uses a tree

representation to group

source code based on

the hypothesis being

tested.

structure to capture the hypothesis information of source code.
We refer to this as the hypothesis tree. The parser constructs
this tree by parsing the source code one statement at a time,
and extracting the source code components (variable, function
name, arguments, etc.) and dependencies. To represent execu-
tion dependencies in the tree, the parser adds dependent state-
ments as a child to the statements they depend on. In situations
where there are multiple parents, we pick the most recent par-
ent in the source code to retain a tree structure. Even though
a DAG would reflect this one-to-many dependency more ac-
curately, our tree representation is simpler and resembles the
source code more closely. If the statement belongs to a hypoth-
esis, it is added under the corresponding branch in the tree.
Each branch represents a hypothesis; a branch is created when
a new hypothesis is first encountered in a statement. Metadata
associated with the statement, such as its execution output and
tail comment, are also added to the hypothesis tree.

Parser evaluation: We evaluated our parser using a test
dataset of 38 R scripts. We randomly sampled these scriptsOur parser achieves a

good coverage of a test

corpus of 38 R scripts.

from the Open Science Framework (OSF)6, a platform that al-
lows researchers to share research material, We also solicited
scripts from researchers at our local university. By testing these
scripts with our parser, we were eventually able to achieve a
82.4% successful coverage with these files. Four files had syn-
tax errors and failed to execute, so we removed them from
our test dataset. Of the remaining 34 files, Tractus successfully
parsed and visualized 28 files. The parser failed to parse the
six remaining files due to several reasons, e.g., deeply nested
statements. The parser was also capable of successfully parsing
large files (> 7500 LOC).

6http://osf.io

http://osf.io
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Visualization

The RStudio addin runs a web view alongside the R source
code that visualizes the hypothesis tree. Below, we describe the
design of this visualization and how users can interact with it.
We start by describing the layout of the app, how information
is presented and organized at a higher level of abstraction, and
then discuss the concrete details.

Layout: The visualization is located next to the user’s code. Tractus’ interactive

visualization is shown in

the right panel.

At the top of the visualization, a panel provides an overview
of all the hypotheses explored in source code. Clicking on a
hypothesis highlights the corresponding nodes in the visual-
ization below. The panel at the top also includes options to
perform new explorations and generate source code that can
reproduce results. We discuss how Tractus supports new ex-
plorations in Section 6.2.2 and generate code for reproducing
results in Section 6.2.2. Below the top panel, Tractus visualizes
the user’s code, including execution dependencies, execution
output, and contextual information, with all this information
grouped into hypotheses.

Visualizing dependencies and hypotheses: Tractus aims to Tractus uses a tree

visualization, the

structure of which is

determined by

execution

dependencies.

provide an overview of the analysis, and helps data workers
transition from exploration to writing production code and re-
ports. To support this, we chose a tree visualization instead of
a graph. This tree visualization is constructed as follows:

1. If the statement has no dependencies, it is placed under
the root node.

2. If the statement has one dependency, it becomes a child
of the dependent statement’s node in the tree, e.g., Fig-
ure 6.5a.

3. If the statement has multiple dependencies, it becomes a
child of the chronologically most recent parent.

The resulting tree visualization captures the dependencies Branches in tree are

color coded to indicate

the hypothesis that is

tested. Statements that

belong to a block are

grouped.

among statements. Tractus then uses the information about
each statement’s hypothesis, obtained from the parser, for
grouping statements. Statements that belong to a hypothesis
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validation are placed under the branch corresponding to the
hypothesis as shown in Figure 6.5c and color coded. State-
ments that do not belong to a particular hypothesis, e.g., code
used for loading datasets, are thus distinguishable by color
from other code. As a second level of grouping, statements that
belong to the same code block are grouped, e.g., Figure 6.5f.
Block comments are explicitly shown to the user as they usually
describe the code block at a high level. Inline comments are
shown only upon request as discussed below in Section 6.2.2.
Inside each group of code that corresponds to a hypothesis vali-
dation, statements are displayed top-down in their source code
order.

Visualizing contextual information: To reduce visual clutter,Tractus visualizes

contextual information,

such as execution

output and comments.

Tractus uses progressive disclosure [Nielsen, 2006] of informa-
tion. For variable assignment statements, Tractus displays only
the variable and function names by default; additional infor-
mation, such as the execution output, the statement’s line num-
ber in an R code file, tail comment (if any), and the complete
statement, are shown when hovering with the mouse pointer as
shown in Figure 6.5h. Users can collapse and expand branches
in the visualization to shift focus to specific code groups, both
at a hypothesis-level and code block-level.

Statements that had changed a variable’s value and statementsTractus’ visualization is

designed to help data

workers find information

faster.

that do not contribute to the business logic, e.g., print()
and cat(), are displayed, but are intentionally made less no-
ticeable. Through this, by color coding hypothesis groups, and
through indentation of nodes, Tractus uses visual cues to help
data workers find information faster.

Data injection

To semi-automate the exploration routine, Tractus supportsAs exploration has a

standard routine,

Tractus automates this

via data injection.

data injection. Data injection works as follows. The data
worker selects the base code in the visualization, clicks on a
button to inject data, and selects, from a list that Tractus creates
by analyzing existing code, the measure and factor(s). Tractus
then generates the code with new variables and copies it to the
clipboard. This can immensely benefit data workers who often
create new code alternatives from existing code by avoiding
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the need to manage data dependencies manually.

Result reproduction

A cornerstone of good scientific practice is to be able to publish By tracking execution

dependencies, Tractus

can generate code that

will reproduce an

execution output.

code that reproduces consistent results. To support data work-
ers achieve this, Tractus supports generating code that can re-
produce the result of a statement. While this is not a novel
feature [Weiser, 1981; Head et al., 2019], we included it in
Tractus for the benefit it provides. When the user selects one
or more desirable statements, Tractus uses dependency infor-
mation to retrieve all statements necessary to reproduce the
expected result, and displays them.

Architecture

Tractus is built so that its components can be modified in an Tractus is built to

support extensions.independent manner. This allows for easier extensions, e.g.,
support for more metadata, for additional visual artifacts, and
other scripting languages like Python. The parser is written
in Rust7, a high performance, robust programming language,
and returns a structured JSON tree that can be visualized dif-
ferently if desired. The visualization is built using D3.js8 and
can be run in a web browser. The RStudio addin is written in
R.

6.2.3 Evaluation

We used two user studies to evaluate Tractus. In the first study,
we aimed to understand how data workers use Tractus to un-
derstand R code written by others. We used the findings from
this study to improve Tractus, and then conducted a second
study to understand how Tractus can help data workers across
various stages in analysis, i.e., exploratory and confirmatory
phases.

7https://www.rust-lang.org
8https://d3js.org

https://www.rust-lang.org
https://d3js.org
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Study 1: Can Tractus help understand source code?

Three participants (1 female; P1–P3) tested an earlier proto-In our first study, our

participants used

Tractus to understand

and describe R scripts.

type of Tractus (Figure 6.6). We recruited the participants via
emails sent to university mailing list and an R users group9.
Participants were not offered any incentives to take part in the
study. Two participants self-reported as intermediate users of
RStudio to perform analysis, and one identified as a novice.

Participants were tasked with understanding and then describ-
ing three R scripts. We sampled scripts of three different sizes
(small: 25 LOC; large: over 500 LOC) from OSF10. ParticipantsParticipants used

Tractus to understand

and explain different R

scripts.

used a local machine that had RStudio with the Tractus-addin
installed on it. On the left pane, participants could see the
source code from the sampled scripts, and, on the right pane,
they could view and use Tractus. Participants were asked to
explain the code verbally using the prompt, “Could you explain
what is going on in the code?”. Participants were informed that
they could take as much time as they want and allowed to use
any resources, e.g., use a search engine to check what an R
function does. The experimenter intervened very little, but an-
swered any questions the participant had. We collected the
video and took field notes. Study sessions lasted 40 minutes
on average.

Analysis: We analyzed the video and field notes using infor-We used thematic

analysis to analyze

experimental data.

mal, reflexive thematic analysis [Braun and Clarke, 2021]. We
partially transcribed the audio from the session, and immersed
ourselves with the screen recording and field notes. We as-
signed codes to the transcript, developed potential themes, and
evaluated these themes based on data from screen recording,
field notes, and subsequent data from transcripts. Due to lim-
ited number of users, many themes could not be evaluated with
confidence. The resulting findings discussed below should be
considered preliminary.

Key findings: All participants commented that Tractus helpedTractus has potential to

help data workers

understand source code

in scripts, especially in

large script files.

them understand source code better than when navigating
code without Tractus. This effect is pronounced for larger anal-
yses that validate several hypotheses. P1 suggested better ways

9https://www.meetup.com/de-DE/koelnrug/
10https://osf.io

https://www.meetup.com/de-DE/koelnrug/
https://osf.io
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to group information in the visualization. P2 liked the hover-
interaction, and mentioned that the visualization helped them
easily spot which statistical model was used for each hypothe-
sis.

The results also motivated several design improvements. The Following a

user-centered, iterative

design process, we

used the feedback from

our participants to

improve Tractus.

symmetrical tree structure in this version of Tractus required
horizontal scrolling and was hard for the study participants to
navigate, even for files that were only moderately long. Par-
ticipants also mentioned that the visualization had too many
details that added to the visual clutter. We fixed these issues,
and improved the underlying architecture of Tractus to make
extensions to Tractus easier.

Study 2: Can Tractus improve data science workflow?

We conducted a second study that validated Tractus across ex- Our second study

sought to validate how

Tractus is used across

experimentation and

production stages of

data science.

perimentation and production phases. Seven data workers (3
female, median age = 29, P1–P7) took part in the study. They
were recruited through mailing lists and social media. Partici-
pants were compensated with a 20 € gift card. P1, P5, and P6
self-identified as beginners, P2, P4, and P7 as intermediates,
and P3 as an expert R analyst.

To establish a status quo of our participants’ workflows, we In the study, participants

generated hypothesis,

validated them, and

wrote a report with the

aid of Tractus.

asked them to first use RStudio without our Tractus addin
before they used RStudio with Tractus. Before the session
with Tractus, participants were given an overview of Trac-
tus interface. Participants were given datasets11 to analyze.
These datasets contain adequate measurements and factors,
and many potential hypotheses could be validated. To main-
tain ecological validity, participants were asked to first perform
exploratory analysis to generate hypotheses by themselves, and
then perform confirmatory analyses. Based on their findings,
participants were asked to write a report of their analysis. Af-
ter the analysis, participants had the opportunity to provide
open-ended feedback about Tractus. All participants analyzed
at least two datasets, and sessions were 100 minutes long on
average.

11Source: https://github.com/fivethirtyeight/data;
see supplements for dataset details.

https://github.com/fivethirtyeight/data
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Throughout the session, participants were encouraged to think
aloud. The experimenter prompted the participants little, andParticipants were

encouraged to think

aloud during the study.

allowed sufficient time for participants to do an open-ended ex-
ploration of the dataset. In situations where participants had
difficulty using the interface, the experimenter intervened to
help. The participant was not guided in the analysis process,
since this would equally affect their workflow across both con-
ditions.

Analysis

We partially transcribed the audio recordings, and applied se-
lective reflexive thematic analysis [Braun and Clarke, 2021].
As with study 1, we relied on field notes, screen recordings,
and artifacts we collected from the study to evaluate potential
themes. The screen recordings were selectively analyzed using
the ELAN annotation tool12.

Findings

Execution dependencies: Tractus’ visualization of execution de-
pendencies received positive reviews from participants. P1, P3,Tractus’ visualization

proved effective in

helping participants

track variables created

earlier.

P4, and P6 reported that the visualization of execution depen-
dencies was useful during the initial experimentation phase.
The visualization proved to be particularly effective in helping
participants track variables that were created a while ago. P3
compared the visualization to the Environment pane in RStu-
dio, which is one approach used by participants to track vari-
ables when using RStudio without Tractus, mentioning that the
ability to understand the origins of a variable was useful (“[The
execution dependency graph] reminds of the Environment pane,
[but] it is just better as it [also] shows where [a] variable came
from.” – P3). In this situation, the participant had not named
the variable appropriately, but the dependency graph helped
him infer the context (in this case, the variable was the result
of a subset function).

Code curation and code quality: One unintended side effect ofTractus encouraged our

participants to remove

scratchpad code and

rename variables.

Tractus was that it encouraged participants to curate their code.
After performing exploratory analysis, P2 and P3 used the vi-
sualization to remove scratchpad code from their script so that
the visualization would become less messy. For example, P2

12https://archive.mpi.nl/tla/elan

https://archive.mpi.nl/tla/elan
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found that there were several nodes in the visualization that
represented his explorations to fix a bug; since this did not con-
tribute towards the analysis, he wanted to delete these lines of
code. P2 also mentioned that he would not have removed these
lines of code when using RStudio without Tractus, indicating
that the visualization improves awareness of source code. In
contrast to removing source code, three participants (P3, P4,
and P6) used the visualization to improve the quality of their
R code, e.g., by renaming variables.

Exploration states: Since the visualization groups code accord- Tractus allowed

participants to compare

states of their

explorations, an

important task that

helps progress of

analysis process.

ing to hypotheses, it helped participants notice patterns across
analyses. Several participants (P1, P3, P4, and P6) were able
to compare the states of hypotheses to understand similarities
and differences (“[Using Tractus, it is] easier to compare analy-
ses side by side to say ‘yeah, it’s the same’ or find [out] what is
different.” – P1). This also proved to be useful when writing
reports later, since participants could easily detect differences
between explorations.

Orientation and navigation: Tractus can help data workers be Tractus allowed

participants backtrack

to previous code and be

more oriented in their

analysis.

more oriented during analysis. For example, when analyzing
their data, P2 wanted to test several hypotheses. They selected
one and tested it, but while doing so, they identified another
hypothesis and set off on a different analysis path. When this
did not lead to promising results, P2 used Tractus to backtrack
to the initial hypothesis to continue the analysis. The benefits
of Tractus do not cease after analysis. P4 mentioned that the
visualization was useful to kick-start new analyses, since the
visualization captures the analysis procedure more succinctly
and is more easily understandable than source code.

Design improvements: We also identified several areas of im-
provement based on this study. Three participants (P1, P4, and Our study motivated

several improvements

to the design of Tractus.

P5) found the visual notation, especially execution dependen-
cies, hard to understand initially. We redesigned the visualiza-
tion to reduce clutter by reducing the information shown and
by making some changes to the layout. Overall, participants
were mostly positive about Tractus and looked forward to us-
ing it. During all ten sessions, Tractus was able to detect the
hypotheses accurately except for two instances. In both these
instances, the participant specified the hypothesis in an unex-
pected manner, e.g.:



158 6 Supporting Data Workers in Performing Data Science

read.csv(“~/data.csv”)$measure ~
read.csv(“~/data.csv”)$factor

While this is valid, it is uncommon and our parser failed to de-
tect the hypothesis. (The parser is programmed to only expect
variables in a formula notation.)

6.2.4 Discussion

Towards reproducible, transparent data science

For future analysts to be able to replicate an analysis, executingBy capturing and

producing source code

that produces execution

output, Tractus

promotes reproducible

data science.

the analysis source code should reproduce the expected results.
Tractus makes this possible by using the execution dependen-
cies to capture source code. Tractus can also be extended to
work with R packages like reprex13, which provide out-of-
the-box functionalities to track and capture all dependencies in
source code.

The visualization in Tractus provides a nice overview of theTractus’ visualization

can be readily shared in

reports to promote

transparency.

analysis, including all the alternative paths that were explored
during the course of the analysis. This can be readily shared
in research papers or as supplements to promote transparency
of analysis. Tractus could be extended to capture Markdown14

from R Notebooks, allowing integration of narratives in the vi-
sualization.

Increased awareness of forking paths

HARKing or the forking paths problem is a prominent issueTractus’ visualization

keeps a record of all

paths taken during an

analysis, even the ones

that do not end up

getting reported in

publications or reports.

with statistical practice. Since Tractus makes these paths visi-
ble to the data worker, it can improve data worker’s awareness
of their forks in hypothesis testing. This could be an antidote
to over-testing, and help data workers be more oriented and
structured in their analysis. Additionally, Tractus can be ex-
tended to track all significance tests the data worker conducts,

13https://github.com/tidyverse/reprex
14https://daringfireball.net/projects/markdown/

https://github.com/tidyverse/reprex
https://daringfireball.net/projects/markdown/


6.3 Addressing the Dual Use of Scripts and Notebooks 159

warn against over-testing, and automatically apply p-value cor-
rections.

6.2.5 Limitations and Future Work

Tractus could parse most (82.4%) of the R scripts we tested Tractus’ parser can be

extended to certain

programming constructs

and other programming

languages.

it with, as well as the scripts from our user studies. How-
ever, the parser still has certain limitations. Complex struc-
tures like deeply nested statements are supported, but slow
down the parser significantly. Tail comments that occur be-
fore a statement or expression is complete, e.g., for(i in
1:n) #Comment, are not supported. More details about
limitations are available in the Appendix. Other programming
languages used for hypothesis-driven data science, like Python,
have syntax similar to R that can be leveraged to detect hy-
potheses. For example, Python uses the following syntax for
selecting data: variable = data[data[’factor’]
== level][’measure’].

Tractus could be extended to support other data science tasks, Tractus can be

extended to other data

science tasks that also

use syntactic signals.

as long as the task involves explicit notations for explorations,
similar to the formula notation for hypothesis testing. Tasks
that do not fit this criteria, e.g., machine learning, would re-
quire a different method to detect explorations. Further, since
this depends on syntactic signals in source code, implementa-
tions will be programming language-specific.

As with most of our previous studies, most of our study partic-
ipants are from academia, which limits the external validity of
our findings.

6.3 Addressing the Dual Use of Scripts and
Notebooks

In the previous chapter, we discussed how scripts and note-
books cater to various phases in data science programming,
and discussed some problems data workers face by having a
need for both modalities. Source code often gets cloned within
or across files requiring data workers to maintain links between
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clones to propagate changes, e.g., by linked editing [Hartmann
et al., 2008b].

Reproducibility

We found many data workers record only the source code thatAs cluttered scripts can

affect code navigation,

data workers tend to

sacrifice reproducibility

of data science.

Tracking dependencies

in notebooks can be

particularly problematic.

produces the results they will use. Participants are aware of
the importance of conducting reproducible science, but do not
want to clutter their scripts as this might affect code naviga-
tion. Further hidden dependencies are prevalent in compu-
tational notebooks. Some of our study participants reported
encountering notebooks that do not execute because they had
not copied all the dependencies when migrating code. Poten-
tial solutions include dependency managers, e.g., Drake15, and
tools that help find code snippets, e.g., [Head et al., 2019] and
[Kery et al., 2019].

Design recommendations for notebooks

Despite their share of issues, notebooks are gaining traction
among data workers, and researchers are constantly working to
improve their interaction design, e.g., with [Kery et al., 2019;
Head et al., 2019] and [Rule et al., 2018]. It is also reasonable
to expect computational notebooks to have better support for
use in production pipeline in future.

Here are some ways to redesign notebooks to bridge the dif-We discuss some ideas

to extend notebooks in

order to reduce the

need for scripts.

ference to scripts: a) lock code cells so that they are immune
to further changes once the data worker finishes experimen-
tation, b) merge code cells after they reach a level of matu-
rity to help avoid executing small code cells one at a time, and
c) allow users to switch between experimentation and refine-
ment modes; in experimentation mode, cell-based program-
ming is active, but in the refinement mode, cells of flattened
into scripts—users can switch between the modes as desired.
However, given how prevalent scripts currently are, these are
long-term solutions.

15https://github.com/ropensci/drake
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Chapter 7

Conclusion

In this thesis, we discussed data workers’ workflows when
preparing for and performing data science tasks. We focussed
on data workers, analysts who have limited training and ex-
pertise in data science. We focussed on hypothesis testing due
to its prominence in research and industry. In this chapter, we
present four takeaways based on what we learned from this
work in Section 7.1. We discuss how our findings apply to other
data science tasks in Section 7.2, before adding some conclud-
ing remarks in Section 7.4.

7.1 Takeaways: What We Learned About
Data Science and Data Workers

We identified the following takeaways from our user studies We present four

takeaways aimed at

researchers,

developers, and

educators.

that sought to understand data workers’ workflows as well as
the studies that sought to validate our artifacts. These take-
aways aim to lower the barriers for hypothesis testing, and
are relevant for researchers, software developers, and statis-
tical educators.

Data workers underestimate the time needed to prepare
for and perform analysis: We believe that a lack of practical
training and negative connotations towards hypothesis testing
contribute towards data workers’ just-in-time learning practice.
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Such a practice has several consequences. An importance con-Just-in-time learning

leads to satisficing in

procedure selection.

sequence is that data workers underestimate the time needed
to prepare for and perform analysis. This leads to satisficing
when selecting statistical procedures (although there are other
factors, which we will get to shortly), and an inability to ad-
dress deep issues in analysis method and experimental design.

The research community needs to reward data workers forRewarding data workers

for preregistration can

limit problems.

their preregistration practices, e.g., by giving them a badge or
special recognition. Although preregistration may not always
be possible, we need to encourage data workers to select pro-
cedures early, e.g., after a pilot test. This can motivate data
workers to determine statistical procedures in advance, which
can limit satisficing behavior and allow them to address prob-
lems in their analysis method and experimental design.

Established statistical procedures continue to stagnate: WeLack of clear mental

models contributes

towards stagnation of

existing procedures.

find that there is a general reluctance to adopting new statisti-
cal methodologies among data workers. This is not limited to
novices, although experienced data workers are more inclined
to confidently adopt new techniques. We posit that lack of clear
mental models about hypothesis testing and knowledge of al-
ternative methods, such as Bayesian inference and estimation
statistics, contribute to this.

These are problems that cannot be solved in short-term and re-We need to train data

workers to be more

critical about analysis

techniques, and teach

alternative methods

during formal education.

quires statistical educators to a) train data workers to be more
critical of methods and b) teach alternative methods. Recent
works across communities, e.g., [Dragicevic et al., 2019; Kay
et al., 2016; Cumming, 2014], have began to spread aware-
ness among the research community. From our analysis of CHI
2019 papers, we find that 8% of papers that use quantitative
methods use these alternative methods, such as Bayesian infer-
ence and estimation statistics. One can expect that over time,
adoption rates would increase due to the significant benefits of
these alternative methods.

There is a high price for working with experimental code:Using messy

experimental code to

write production code or

kickstart a new analysis

can be difficult.

Experimentation is essential in data science. Since data work-
ers write messy code, there is a lot of effort needed to work with
experimental code later when writing production code and re-
ports. We find that some data workers consider the experimen-
tal code to be even more important than the final production



7.2 Generalizability of Findings 163

code, as they use experimental code to kickstart new analysis.

We need to keep the cost of experimentation low, but lower We outlined some

solutions to lower the

effort of working with

experimental code.

the effort of working with experimental code later. We out-
lined a few ideas in our work. A hybrid programming inter-
face can encourage the use of reusable modules, and the visual
programming interface can facilitate better navigation post-
experimentation. Interactive source code visualizations like
Tractus and Verdant [Kery et al., 2019] capture and present
information that can help situate experimental code. Addi-
tionally, structuring source code to match data workers’ men-
tal model like we did in Tractus (by grouping code into the
hypothesis that it validated) can reduce the effort of working
with experimental code.

Diverse tools may address diverse needs but contribute to The variety problem is

still prevalent in data

science programming.

data workers’ problems: The duality in programming inter-
faces with the need for both scripts and computational note-
books causes problems. We have many specialized data science
tools, e.g., based on the type of data it analyzes, target users,
and stage of the data science task at which it is used, and can
expect to have more such tools as data science becomes more
widespread. Although these tools work well for specific use
cases, data workers may need to work with many of these tools.
This leads to the variety problem that Biehler discussed in work
[Biehler, 1997], with no cohesion among existing tools.

Before new tools and interfaces are developed for analysis, re- New tools and

interfaces for analysis

need to consider how it

would integrate into

data workers’ current

workflows.

searchers and developers need to be carefully consider its place
in data workers’ current workflows. Which task does it help
with? How can the user graduate to other steps? Is the tran-
sition well integrated? Answering such questions can help re-
duce the cost of using multiple powerful but incohesive tools.
We outlined some ideas to improve notebooks to bridge the gap
between notebooks and scripts, but the underlying idea of tool
unification extends beyond notebooks and scripts.

7.2 Generalizability of Findings

Our studies were focussed on understanding data workers’
workflows with hypothesis testing. In our research, we briefly
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explored related data science tasks, such as neural networks,
principle component analysis, and so on. We learn that there
are several similarities among these tasks that allow us to be
hopeful of the external validity of our work. For example:

• Usage of information sources for procedure selection hasMany of our insights

generalizes to other

data science tasks.

few variations among tasks.

• Explicitly visualizing the data science process to mimic
the analyst’s mental model, as we did with Tractus, can
benefit other data science tasks. For example, Patel
et al.’s work with Gestalt, a tool to support machine learn-
ing process, applies this technique to machine learning
[Patel et al., 2010].

• Simulation tools like StatPlayground that allow users to
learn concepts by discovery can help learn other data sci-
ence tasks. For example, CNN Explainer is a tool that
uses interactive visualizations to help users learn Convo-
lutional Neural Networks through active learning [Wang
et al., 2021].

However, there are also noticeable differences that limit gener-This thesis can serve as

a first step into

understanding

workflows of other data

science tasks.

alization to other tasks. For example, our approach with Stat-
Playground is limited to hypothesis testing; and from our inter-
views, we find that data workers who perform machine learn-
ing tasks have lesser reluctance to adopt new techniques—
indeed, a lot of contributions in machine learning research are
new techniques, e.g., [Ueda, 2000]. Nevertheless, we hope
that our work serves as a useful first step in lowering the bar-
riers to other data science tasks.

7.3 Do Significance Tests Have a Place in
Future?

Significance testing plays a central role in this thesis. With crit-
icisms against the use of significance tests, there is a question
mark over their place in future. Will this work be obsolete in
ten years? Are we encouraging the use of significance tests
despite their shortcomings?
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Our work extends beyond significance tests, as we discussed in The findings from this

thesis are not limited to

significance tests.

the previous section. Additionally, we took steps toward adopt-
ing alternative methods in our artifacts: StatPlayground en-
courages estimation statistics even though it reports p-values;
Tractus can capture any data models, e.g., Bayesian, by cap-
turing syntactical signals in source code; and StatWire’s hybrid
programming approach extends to all data-centric tasks, e.g.,
audio signal processing and video editing. We believe that sig-
nificance tests will remain relevant in future albeit with mod-
ifications, such as bootstrapping and increased preference of
estimation statistics over p-values.

7.4 Concluding Remarks

Through interviews, observations, surveys, and content analy-
ses, we presented data workers’ workflows across various tasks
in hypothesis testing: selecting statistical procedures, learn-
ing practical statistics, using programming IDEs to experiment
with ideas in code, refactoring code, and writing production
code for storage and dissemination. Based on our findings,
we presented design recommendations as well as three arti-
facts: StatPlayground, which helps data workers learn practi-
cal statistics; StatWire, which encourages data workers to write
modular code thereby lowering the cost of working with ex-
perimental code; and Tractus, which supports the hypothesis
testing workflow by exposing contextual information about ex-
perimentation. We hope that this thesis sheds light on current
workflows in hypothesis testing, and that our artifacts help im-
prove these workflows.
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Matúš Sulír, Michaela Bačíková, Sergej Chodarev, and Jaroslav
Porubän. Visual Augmentation of Source Code Editors: A
Systematic Mapping Study. Journal of Visual Languages &
Computing, 49:46–59, 2018. ISSN 1045-926X. doi: 10.
1016/j.jvlc.2018.10.001. URL http://dx.doi.org/
10.1016/j.jvlc.2018.10.001.

Tim Teitelbaum and Thomas Reps. The cornell program synthe-
sizer: A syntax-directed programming environment. Com-
munications of the ACM, 24(9):563–573, September 1981.
ISSN 0001-0782. doi: 10.1145/358746.358755. URL
https://doi.org/10.1145/358746.358755.

Alexander H. Toledo, Robert Flikkema, and Luis H. Toledo-
Pereyra. Developing the research hypothesis. Journal of
Investigative Surgery, 24(5):191–194, 2011. doi: 10.3109/
08941939.2011.609449. URLhttps://doi.org/10.
3109/08941939.2011.609449. PMID: 21867386.

Transparent Statistics in Human–Computer Interaction Work-
ing Group. Transparent Statistics Guidelines, Jun
2019. (Available at https://transparentstats.
github.io/guidelines).

Christoph Treude and Martin P Robillard. Understanding stack
overflow code fragments. In 2017 IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME), pages
509–513. IEEE, 2017. doi: 10.1109/ICSME.2017.24. URL
https://doi.org/10.1109/ICSME.2017.24.

John W. Tukey. Exploratory Data Analysis, volume 2. Pearson,
1977. ISBN 978-0201076165.

John W Tukey. We Need Both Exploratory and Confirma-
tory. The American Statistician, 34(1):23–25, 1980. ISSN
0003-1305. doi: 10.1080/00031305.1980.10482706. URL
https://doi.org/10.2307/2682991.

Kimmo Tuominen, Sanna Talja, and Reijo Savolainen. Dis-
course, Cognition, and Reality: The Social Constructionist
Viewpoint on Information Practices. Information Today, 2005.

N. Ueda. Optimal linear combination of neural networks for
improving classification performance. IEEE Transactions on

https://doi.org/10.1145/3313831.3376764
https://doi.org/10.1145/3313831.3376764
http://dx.doi.org/10.1016/j.jvlc.2018.10.001
http://dx.doi.org/10.1016/j.jvlc.2018.10.001
https://doi.org/10.1145/358746.358755
https://doi.org/10.3109/08941939.2011.609449
https://doi.org/10.3109/08941939.2011.609449
https://transparentstats.github.io/guidelines
https://transparentstats.github.io/guidelines
https://doi.org/10.1109/ICSME.2017.24
https://doi.org/10.2307/2682991


Bibliography 205

Pattern Analysis and Machine Intelligence, 22(2):207–215,
2000. doi: 10.1109/34.825759. URL https://doi.
org/10.1109/34.825759.

Pedro M Valero-Mora, Ruben Ledesma, et al. Graphical user
interfaces for R. Journal of Statistical Software, 49(1):1–8,
2012. doi: 10.18637/jss.v049.i01.

Michael L. Van De Vanter. The Documentary Structure of
Source Code. Information and Software Technology, 44
(13):767–782, 2002. ISSN 0950-5849. doi: 10.1016/
s0950-5849(02)00103-9. URL https://doi.org/
10.1016/S0950-5849(02)00103-9. Special Issue
on Source Code Analysis and Manipulation (SCAM).

JP Verma. Data analysis in management with SPSS software.
Springer Science & Business Media, 2012. ISBN 78-81-322-
0786-3.

Rajesh Vikraman. Global Report on State of Data Sci-
ence & Machine Learning - 2018 Based on Kaggle
Survey, 2018. https://rpubs.com/cvrajesh/
kagglesurvey2018, (last accessed on May 16, 2021).

Ernst Von Glasersfeld. Learning as a constructive activ-
ity. Problems of representation in the teaching and learn-
ing of mathematics, pages 3–17, 1987. doi: 10.1.1.458.
7301. URL http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.458.7301.

Chat Wacharamanotham, Krishna Subramanian, Sarah Theres
Völkel, and Jan Borchers. Statsplorer: Guiding novices in
statistical analysis. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems, CHI
’15, page 2693–2702, New York, NY, USA, 2015. Associa-
tion for Computing Machinery. ISBN 9781450331456. doi:
10.1145/2702123.2702347. URL https://doi.org/
10.1145/2702123.2702347.

Chat Wacharamanotham, Lukas Eisenring, Steve Haroz, and
Florian Echtler. Transparency of chi research artifacts: Re-
sults of a self-reported survey. In Proceedings of the 2020
CHI Conference on Human Factors in Computing Systems,
CHI ’20, page 1–14, New York, NY, USA, 2020. Associa-
tion for Computing Machinery. ISBN 9781450367080. doi:

https://doi.org/10.1109/34.825759
https://doi.org/10.1109/34.825759
https://doi.org/10.1016/S0950-5849(02)00103-9
https://doi.org/10.1016/S0950-5849(02)00103-9
https://rpubs.com/cvrajesh/kagglesurvey2018
https://rpubs.com/cvrajesh/kagglesurvey2018
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.458.7301
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.458.7301
https://doi.org/10.1145/2702123.2702347
https://doi.org/10.1145/2702123.2702347


206 Bibliography

10.1145/3313831.3376448. URL https://doi.org/
10.1145/3313831.3376448.

Dennis Wackerly and J Lang. ExplorStat. In Joint Statistics
Meeting, Chicago, 1996. URLhttp://www.stat.ufl.
edu/users/dwack.

Zijie J. Wang, Robert Turko, Omar Shaikh, Haekyu Park, Ni-
laksh Das, Fred Hohman, Minsuk Kahng, and Duen Horng
Polo Chau. CNN Explainer: Learning Convolutional Neural
Networks with interactive visualization. IEEE Transactions
on Visualization and Computer Graphics, 27(2):1396–1406,
2021. doi: 10.1109/TVCG.2020.3030418. URL https:
//doi.org/10.1109/tvcg.2020.3030418.

Claire Warwick, Jon Rimmer, Ann Blandford, Jeremy Gow, and
George Buchanan. Cognitive economy and satisficing in in-
formation seeking: A longitudinal study of undergraduate
information behavior. Journal of the American Society for In-
formation Science and Technology, 60(12):2402–2415, 2009.
doi: 10.1002/asi.21179. URL https://doi.org/10.
1002/asi.21179.

Mark Weiser. Program slicing. In Proceedings of the 5th In-
ternational Conference on Software Engineering, ICSE ’81,
pages 439–449, Piscataway, NJ, USA, 1981. IEEE Press.
ISBN 0-89791-146-6. URL http://dl.acm.org/
citation.cfm?id=800078.802557.

Kirsten Whitley. Visual programming languages and the em-
pirical evidence for and against. Journal of Visual Lan-
guages & Computing, 8(1):109 – 142, 1997. ISSN 1045-
926X. doi: 10.1006/jvlc.1996.0030. URL https://
doi.org/10.1006/jvlc.1996.0030.

Ethelene Whitmire. Information Seeking in the Online Age:
Principles and Practice. Journal of the Association for In-
formation Science and Technology, 51(10):964, 2000. doi:
10.1002/1097-4571. URL https://doi.org/10.
1002/1097-4571.

Moritz Wittenhagen, Christian Cherek, and Jan Borchers.
Chronicler: Interactive exploration of source code history.
In Proceedings of the 2016 CHI Conference on Human Fac-
tors in Computing Systems, CHI ’16, pages 3522–3532, New
York, NY, USA, 2016. ACM. ISBN 978-1-4503-3362-7. doi:

https://doi.org/10.1145/3313831.3376448
https://doi.org/10.1145/3313831.3376448
http://www.stat.ufl.edu/users/dwack
http://www.stat.ufl.edu/users/dwack
https://doi.org/10.1109/tvcg.2020.3030418
https://doi.org/10.1109/tvcg.2020.3030418
https://doi.org/10.1002/asi.21179
https://doi.org/10.1002/asi.21179
http://dl.acm.org/citation.cfm?id=800078.802557
http://dl.acm.org/citation.cfm?id=800078.802557
https://doi.org/10.1006/jvlc.1996.0030
https://doi.org/10.1006/jvlc.1996.0030
https://doi.org/10.1002/1097-4571
https://doi.org/10.1002/1097-4571


Bibliography 207

10.1145/2858036.2858442. URL http://doi.acm.
org/10.1145/2858036.2858442.

Jacob O. Wobbrock. Practical Statistics for HCI, 2011.
http://depts.washington.edu/acelab/
proj/ps4hci/ (last accessed on May 16, 2021).

Jacob O. Wobbrock, Brad A. Myers, and John A. Kembel.
EdgeWrite: A stylus-based text entry method designed for
high accuracy and stability of motion. In Proceedings of
the 16th Annual ACM Symposium on User Interface Soft-
ware and Technology, UIST ’03, page 61–70, New York, NY,
USA, 2003. Association for Computing Machinery. ISBN
1581136366. doi: 10.1145/964696.964703. URL https:
//doi.org/10.1145/964696.964703.

Harry F. Wolcott. Transforming Qualitative Data: Description,
Analysis, and Interpretation. SAGE Publications, London,
United Kingdom, 1994. ISBN 9780803952812.

Edward N Wolff. The growth of information workers in
the U.S. economy. Communications of the ACM, 48
(10):37, 2005. ISSN 0001-0782. doi: 10.1145/
1089107.1089134. URL https://doi.org/10.
1145/1089107.1089134.

K. Wongsuphasawat, D. Smilkov, J. Wexler, J. Wilson, D. Mané,
D. Fritz, D. Krishnan, F. B. Viégas, and M. Wattenberg. Vi-
sualizing dataflow graphs of deep learning models in Ten-
sorFlow. IEEE Transactions on Visualization and Computer
Graphics, 24(1):1–12, 2017. ISSN 1077-2626. doi: 10.
1109/TVCG.2017.2744878. URL https://doi.org/
10.1109/TVCG.2017.2744878.

Patricia Wright and Fraser Reid. Written information: Some
alternatives to prose for expressing the outcomes of com-
plex contingencies. Journal of Applied Psychology, 57(2):160,
1973. doi: 10.1037/h0037045. URL https://doi.
org/10.1037/h0037045.

Berna Yazici and Senay Yolacan. A comparison of vari-
ous tests of normality. Journal of Statistical Computation
and Simulation, 77(2):175–183, 2007. doi: 10.1080/
10629360600678310. URL https://doi.org/10.
1080/10629360600678310.

http://doi.acm.org/10.1145/2858036.2858442
http://doi.acm.org/10.1145/2858036.2858442
http://depts.washington.edu/acelab/proj/ps4hci/
http://depts.washington.edu/acelab/proj/ps4hci/
https://doi.org/10.1145/964696.964703
https://doi.org/10.1145/964696.964703
https://doi.org/10.1145/1089107.1089134
https://doi.org/10.1145/1089107.1089134
https://doi.org/10.1109/TVCG.2017.2744878
https://doi.org/10.1109/TVCG.2017.2744878
https://doi.org/10.1037/h0037045
https://doi.org/10.1037/h0037045
https://doi.org/10.1080/10629360600678310
https://doi.org/10.1080/10629360600678310


208 Bibliography

Moshe Yitzhaki and Gloria Hammershlag. Accessibility and use
of information sources among computer scientists and soft-
ware engineers in Israel: Academy versus industry. Journal
of the American society for information science and technology,
55(9):832–842, 07 2004. ISSN 1532-2882. doi: 10.1002/
asi.20026. URL https://doi.org/10.1002/asi.
20026.

YoungSeok Yoon and Brad A. Myers. A longitudinal study
of programmers’ backtracking. 2014 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC),
pages 101–108, 2014. doi: 10.1109/vlhcc.2014.6883030.
URL https://doi.org/10.1109/VLHCC.2014.
6883030.

YoungSeok Yoon, Brad A. Myers, and Sebon Koo. Visualiza-
tion of fine-grained code change history. 2013 IEEE Sym-
posium on Visual Languages and Human Centric Computing,
pages 119–126, 2013. doi: 10.1109/vlhcc.2013.6645254.
URL https://doi.org/10.1109/VLHCC.2013.
6645254.

Forrest W. Young and Carla M Bann. ViSta: The Visual Statis-
tics System. Technical report, 94–1 (c), UNC LL Thurstone
Psychometric Laboratory Research Memorandum, 1996.

Kang Zhang. Visual Languages and Applications. Springer Sci-
ence & Business Media, 2013. ISBN 978-0-387-29813-9. doi:
10.1007/978-0-387-68257-0.

Andrew Zieffler, Joan Garfield, Shirley Alt, Danielle Dupuis,
Kristine Holleque, and Beng Chang. What does research sug-
gest about the teaching and learning of introductory statis-
tics at the college level? A review of the literature. Journal of
Statistics Education, 16(2), 2008. doi: 10.1080/10691898.
2008.11889566. URL https://doi.org/10.1080/
10691898.2008.11889566.

George Kingsley Zipf. Human Behavior and the Principle of Least
Effort: An Introduction to Human Ecology. Ravenio Books,
2016. ISBN 978-1614273127.

Christopher Zita. Is Data Science Still a Rising Career in 2021,
2021. https://tinyurl.com/mry9h9k7 (last ac-
cessed on May 16, 2021).

https://doi.org/10.1002/asi.20026
https://doi.org/10.1002/asi.20026
https://doi.org/10.1109/VLHCC.2014.6883030
https://doi.org/10.1109/VLHCC.2014.6883030
https://doi.org/10.1109/VLHCC.2013.6645254
https://doi.org/10.1109/VLHCC.2013.6645254
https://doi.org/10.1080/10691898.2008.11889566
https://doi.org/10.1080/10691898.2008.11889566
https://tinyurl.com/mry9h9k7


209

Index

p-value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5, 13, 15
- interpretation issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17–18

Abstract Syntax Tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147
affinity diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
analysis interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24–26

- GUI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
- hybrid programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134
- textual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24, 136
- visual programming . . . . . . . . . . . . . . . . . . . . . . . . . . 25–26, 28, 136

CHI conference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 21, 55
code cloning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128, 138
code curation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156
code navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
confidence intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
confirmatory data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14, 97
contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 8, 39–40, 161

data injection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152
data obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
data science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 9, 12
data scientist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
data worker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26–27
dependent variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
descriptive statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
direct manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Directed Acyclic Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

effect size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
epicycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
execution dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148, 156
exploratory data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11, 14, 97
exploratory programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21–23

fine-level control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84
foreshadowing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84

grounded theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114



210 Index

hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, 96

- issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16–20
- steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

hypothesis tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

independent variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
information seeking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36–38
information sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46–61

just-in-time learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

over-testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

paradigms of analysis
- AIC statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
- Bayesian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
- frequentist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
- likelihood. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145, 150
phases of data science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115–117
practical statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43, 78
programming comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
programming interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110–127

- consoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102, 119
- notebooks . . . . . . . . . . . . . . . . . . . . . . . 25, 106, 120–125, 159–160
- scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25, 120–125, 159–160

progressive disclosure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83, 152
publication bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Q&A platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62–75, 92
qualitative coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50, 101, 114

R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25, 127, 136, 153
R formula notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10, 158, 160
research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

significance test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11, 16
simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
StackOverflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
statistical assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
statistical assumptions, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
statistical inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4, 13
statistical power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
statistical procedure selection . . . . . . . . . . . . . . . . 32–35, 50–51, 58–59

transparency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158



Index 211

validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10, 47, 73, 109, 155
video analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143, 151–152

Wizard of Oz prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



Typeset January 16, 2023


	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Hypothesis Testing
	Motivation and Approach
	Contributions and Structure

	Background and Motivation
	Steps in Hypothesis Testing
	Situating Hypothesis Testing in Existing Classifications of Data Science
	Hernán's Classification of Data Science by Task Purpose
	Descriptive vs. Inferential Statistics
	Tukey's Classification of Data Analysis
	Paradigms of Statistical Inference
	Model Selection vs. Significance-Based Testing

	Prominent Issues in Hypothesis Testing
	Misconceptions in Significance Testing
	Misinterpreting p-values
	Statistical vs. practical significance
	Dichotomous thinking and publication bias

	Practical Issues in Statistical Testing
	Overlooking assumptions and using incorrect tests
	Overlooking statistical power
	Over-testing and p-hacking
	Issues in statistical reporting

	Problems in Statistical Education

	Role of Hypothesis Testing in Data Science
	Characteristics of Data Science
	Exploratory Programming Workflow
	Iterative, Non-Linear Workflow

	Interfaces to Perform Analysis
	GUIs for Data Analysis
	Text-Based Programming
	Visual Programming

	Data Workers
	Existing research about data workers
	End-User Programming

	Motivation: Biehler's Vision for Statistical Tools

	How Data Workers Gather Knowledge
	Background: Statistical Procedure Selection
	Procedure Selection is Inherently Complex
	Data Workers May Lack a Clear Mental Model

	Related Work
	Statistical Procedure Selection
	Information Seeking Behavior
	Scientists' behavior
	Programmers' behavior and use of Q&A platforms


	Research Considerations
	Research Questions and Contributions
	Study 1: Knowledge Required for Analysis
	Data Collection and Method
	Findings
	Significance of formal education
	Perceived incompetence in hypothesis testing
	Information required to perform real-world analysis
	Just-in-time learning practice
	Allocating time for analyses
	Deciding upon the analysis software

	Summary of Key Findings

	Study: Understanding Resource Use
	Data collection
	Method
	Semi-structured interviews
	Analysis method

	Findings
	Uncertainty in statistical procedure selection
	Coping strategies
	Information sources to help with statistical procedure selection
	Disciplinary variations

	Discussion
	Low adoption of alternative statistical procedures
	Learned helplessness about procedure selection

	Summary: Key Findings

	Survey : Understanding Usage of Information Sources
	Data Collection
	Details of survey respondents
	Certainty About Statistical Procedure Selection
	Perceived Complexity of Procedure Selection
	Timeline of Research Process
	Information Sources
	Summary: Key Findings

	Content Analysis: Queries About Procedure Selection
	Data Collection
	Method
	Findings
	Prevalence of validation questions
	Information specified in questions
	Timeline of procedure selection and data collection

	Problems in Formulating Questions
	Questions with missing information
	Questions with unclear information

	Discussion
	Uncertainty in procedure selection
	Presenting information about experiment and dataset to experts
	When should we seek statistical procedures?


	Limitations and Future Work
	Summary

	Improving Data Science Workflow
	StatPlayground: Helping Data Workers Learn Practical Statistics
	Related Work: Guidelines for Improving Statistical Education
	Design
	Design process
	Layout
	Interaction
	Fine-level control and foreshadowing

	Implementation Details and Challenges
	Evaluation
	Study phase I
	Study phase II
	Key findings from evaluations

	Discussion
	Modes of interaction
	Possible misuse
	Deployment considerations

	Limitations

	Improving Statistical Procedure Selection

	Understanding Data Science Workflows
	Understanding the Hypothesis Testing Workflow
	Related Work: Overview of Hypothesis Testing
	Observational Study: Exploration and Confirmation
	Data collection
	Method

	Findings
	How do data workers experiment through code?
	How do data workers organize source code?
	Hypothesis validation and alternative analyses
	How do data workers rationalize their analysis?
	How do data workers track data insights?
	What do data workers use comments for?
	How do data workers rewrite source code?

	Limitations and Future Work
	Summary: Key Findings

	Understanding Data Science Programming Interfaces
	Brief Overview of Programming Modalities
	Data Collection and Method
	Phases in Data Science
	Findings: How Data Workers Use Programming Modalities
	Role of consoles in data science programming
	Scripts and notebooks for experimentation
	Scripts and notebooks for code refinement
	Scripts and notebooks for dissemination and storage
	Data workers' perceptions of notebooks and scripts
	Prevalence of computational notebooks and scripts

	Limitations and Future Work
	Summary: Key Findings

	Analysis of Data Science Source Code
	Excessive Code Cloning
	Prevalence of Non-Modular Code and Functions
	Discussion: Implications for Data Science Programming


	Supporting Data Workers in Performing Data Science
	Encouraging Data Workers to Write Better Code
	Hybrid Programming to Encourage Modular Programming
	Related Work: Hybrid Statistical Tools
	Interaction Walkthrough
	Design Process
	Evaluation
	Significant Findings
	Prevalence of bad quality code
	Integrating text-based programming
	Evidence of StatWire's benefits

	Limitations and Future Work

	Supporting Exploratory Programming Workflow
	Related Work
	Tool support for understanding and finding analysis code
	Visualizations of source code and history

	Interaction Design
	Parser
	Visualization
	Data injection
	Result reproduction
	Architecture

	Evaluation
	Study 1: Can Tractus help understand source code?
	Study 2: Can Tractus improve data science workflow?

	Discussion
	Towards reproducible, transparent data science
	Increased awareness of forking paths

	Limitations and Future Work

	Addressing the Dual Use of Scripts and Notebooks
	Reproducibility
	Design recommendations for notebooks



	Conclusion
	Takeaways: What We Learned About Data Science and Data Workers
	Generalizability of Findings
	Do Significance Tests Have a Place in Future?
	Concluding Remarks

	Own Publications
	Bibliography
	Index

