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Abstract—Data workers are non-professional data scientists
who often use scripting languages like R, Python, or MATLAB,
and employ an exploratory programming workflow. Current
IDEs offer them two main programming modalities: script files
and computational notebooks. To understand how these modal-
ities impact work practice, we conducted a study with 21 data
workers, and a subsequent larger survey with 62 respondents.
Through interviews, walkthroughs, and screen recordings, we
collected information about their workflows. Our analysis shows a
tension between scripts and computational notebooks. Scripts are
more common, better support storage and execution of previous
analyses, but hinder experimentation. Notebooks better suit the
actual data science workflow, but can become easily unorganized.
We discuss how this dual nature of modality usage leads to
several issues that affect data workers’ workflows, and discuss
implications for the design of programming IDEs.

Index Terms—scripting languages, exploratory programming,
programming interfaces, data science, notebooks

I. INTRODUCTION

Data scientists perform tasks, such as machine learning,

significance testing, and regression analysis, to extract “in-

formation and knowledge from data” [1]. Many data scientists

are data workers, who are usually from academia and may

not be formal trained in data science or programming [2].

Scripting languages, such as R, Python, and MATLAB, are

popular among data workers [3], [4]. Today, the IDEs for

these languages allow data workers to write and execute

source code using two main programming modalities: scripts
and computational notebooks. We also investigated consoles,

but found that it is not used frequently. When using these

modalities, data workers employ a programming style known

as exploratory programming [5], characterized by open-

ended exploration of alternatives and the evolution of the

programmer’s goals during programming [6].

Our key goal with this research is to understand how these

modalities support data workers’ workflows. To achieve this,

we collected data from 21 data workers through interviews,

walkthroughs, and screen recordings. In this paper, we present

and discuss our findings about how the nature of data workers’

work affects how programming modalities are used in various

data science tasks. We support our findings using the data

collected from our participants, results of an online survey,

and Green’s cognitive framework for programming [7].

Fig. 1. Current scripting language IDEs support writing and executing code
via two programming modalities: scripts (left) and computational notebooks
(right). In this paper, we investigate how these modalities are used in data
science programming.

II. BACKGROUND AND RELATED WORK

We first describe how scripting language IDEs and their

modalities work, and then discuss prior research about data

science programming practices.

A. Scripting language IDEs

IDEs of R [8], Python [9], and MATLAB [10] are prevalent

in data science [3], [4]. Most of these IDEs support both

scripts and computational notebooks; some offer support via

plugins. The most popular notebook environments for the

three languages are RMarkdown, Jupyter, and MATLAB Live

Editor. In addition to IDEs, scripts can also be written in text

editors.

Scripts (Fig. 1, left) support conventional storage and

execution of source code. All IDEs support execution of entire

scripts, with most also allowing selective execution of snippets.

When scripts are executed, text output and error messages are

shown in the console, while graphic output is usually shown

in a separate dedicated window.

Computational notebooks (Fig. 1, right) let users organize

their code into cells. A cell typically represents one computa-

tional chunk of the data science task, and can be executed

in a non-sequential order. Unlike scripts, execution output978-1-5386-5541-2/18/$31.00 ©2020 IEEE
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is juxtaposed with the cell. Additionally, notebooks support

narration via Markdown; these are interwoven with the code.

B. Data science and exploratory programming

Many data workers use programming for data science

tasks. Prior research has studied data scientists’ exploratory

programming practice. We found three research works that

investigated data scientists’ notebook use [11]–[13]. Promi-

nent issues that were identified include the messy nature of

notebooks, difficulties using versioning control, and difficulties

finding previous code.

Unlike notebooks, which have been used almost exclusively

for data science, scripts were originally used for web develop-

ment and automation [14]. Only with the recent performance

bumps have data scientists begun using them [15]. Research

by Guo [16] and Kery et al. [17] present findings about data

science workflow in general, without differentiating between

programming modalities. For example, Kery et al. discuss

issues with the use of version control and code hoarding

practices among data scientists [17]. This paper is the first

to compare how the two main programming modalities are

used for different data science tasks.

III. METHOD

We collected data from 21 data workers (9 female, median

age of 27). Participants include 13 researchers from different

fields such as Psychology, Human-Computer Interaction, and

Electrical Engineering, and 8 graduate students. All partic-

ipants reported using at least one modality in their work.

After obtaining participants’ background details through in-

terviews, we asked them to walk us through their recent data

science projects. This helped us understand our participants’

workflow with the programming IDE. After walkthroughs,

we wanted to observe participants, either remotely or in-

person, perform real-world tasks. Most participants felt this

was intrusive, and provided a screen recording of their work

instead. We collected audio and video logs of the interview

and walkthroughs, and screen capture of observations. For

details of our participants and the data we collected, see

https://hci.rwth-aachen.de/modality-use.

To analyze our data, we followed the Constant Comparative

Method [18], [19] of the Grounded Theory methodology [20],

[21]. Details of our method, including the code book can be

found on https://hci.rwth-aachen.de/modality-use. In addition

to interviews and observations, we also conducted an online

survey with 62 data workers to substantiate our findings about

modality usage for data science programming, discussed in the

next section.

IV. HOW DATA WORKERS USE

PROGRAMMING MODALITIES

Before looking at how data workers use scripts and note-

books, we need to understand what the different tasks in data

science programming are, and what characteristics program-

ming IDEs need to have to support these tasks. Given below

are four important tasks in data science programming and the

corresponding characteristics required by the modalities. These

tasks are adopted from Guo’s work [16] and grounded in our

analysis. The characteristics are based on Green’s cognitive

dimensions [7]. For details, see https://hci.rwth-aachen.de/

modality-use.

1) Experimentation: The main task of data workers during

experimentation is to create and test new approaches.

Since new code is typically written based on existing

code [17], the interface should help users find existing
code. Per Green’s cognitive dimensions [7], this requires

a high-level of role-expressiveness, i.e., help the user

know the functionality of a piece of code.

2) Compare execution results of approaches: During

experimentation, data workers compare their experi-

ments and select an experiment to refine. To compare

execution results, data workers need to be able to (1)

locate the source code that belongs to an approach,

i.e., high role-expressiveness, (2) map the output to the

source code that generated it, and (3) view execution

outputs and source code simultaneously. To support (2),

the proximity of output to source code is important, a

concept we term ‘code-result distance’. A high-distance

means that the execution output is located farther away

from the source code that generated it, and vice versa.

(3) can be achieved with a high-level of juxtaposability

[7].

3) Curate source code: When refining code, data workers

need to understand their code so that they can remove

the scratchpad code. This would require high role-

expressiveness and low code-result distance. Alterna-

tively, the programming interface could support sec-

ondary notations like tags and programmer’s comments

to aid this task. Removing source code should also be

done without breaking any hidden dependencies [7].

4) Present analysis and help reuse: To present the anal-

ysis and results to stakeholders or in publications, the

ability to add narrative and reproduce expected results

from source code is desired. Reproducibility can be

achieved by minimizing hidden dependencies.

Do scripts and computational notebooks co-exist in har-

mony, or in discord? How do data workers utilize them at

various stages of data science? We address these questions

below.

A. Scripts and notebooks for experimentation and comparing
experiments

Among our participants, many (P01–04, P06, P07, P09,

P11, P12, and P18–21) do not use computational notebooks

frequently in their work. However, of the remaining partic-

ipants who use both computational notebooks and scripts,

most (P05, P08, P13, and P15–17) prefer notebooks for

experimentation. This is not surprising as scripts are not well

suited to exploratory work. They have low code-result distance

and juxtaposability. When a code snippet is executed, the

execution output is displayed on the console or stored in the

file system; this can deter the data workers’ productivity during
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experimentation. Also, the console can get cluttered over a

period of time, further exacerbating this problem.

Notebooks, on the other hand, better suit experimentation.

Our participants provided two main reasons for this. First,

notebooks allow organizing source code into manageable

chunks, allowing easier experiments without having to use

messy program structures like comments:

“(On notebooks) I don’t have to worry about the

other code for now. I can focus on this [chunk of]

code.” - P15

Second, notebooks offer a low code-result distance, allowing

data workers to easily map the execution output to the code

cells that generated them. For smaller code cells, the juxta-

posability is also improved, allowing data workers to view

multiple code cell-execution output pairs at the same time.

B. Scripts and notebooks for code refinement

Our participants performed two broad tasks when refining

source code: (a) refactor and migrate code, which may require

pruning the scratchpad code; and (b) add documentation and

narratives. Scripts were mostly used to perform (a). This is

because scripts are often used in IDEs like PyCharm and

Visual Studio, and therefore offer powerful code refactoring

functionalities, e.g., [22]. Notebooks, on the other hand, are

mostly run on the web to facilitate easier sharing, and offer

little to no code refactoring functionality.

Larger notebooks have been known to get unstructured and

unmanageable [11]; instead, several scripts, where each script

acts as a “black box” code package could be a simpler alterna-

tive. This also helps explain why notebooks are not typically

used to write software packages that contain large code base.

Despite these limitations, participants found notebooks to be

indispensable, especially when they need to present or share

their work.

C. Scripts and notebooks for dissemination and storage

Most participants (P01-04, P07-10, P12, P20, and P21)

use scripts for dissemination and storage. Scripts have better

support for use in the production pipeline. E.g., P08 and

P12 work on projects with a large code base that is already

organized as multiple scripts; it is easier to add new source

code as scripts. For some participants (P08, P15, P16, and

P17), scripts are indispensable because of what they offer:

Execution from the command shell, better support for file

stream access, possibility of automation, etc.:

“Compute cluster accepts only scripts. IPythons can

be run as well, but it is frowned upon [by those

who maintain the compute cluster] because it blocks

computing resources.” - P17

Computational notebooks were used by some participants

(P05, P11, P13, P16, and P17) mainly for dissemination, e.g.,

stakeholders, a colleague, or blog readers. However, none

of our participants reported using computational notebooks

exclusively.

Fig. 2. Terms our participants used to refer to computational notebooks and
scripts. Notebooks were considered to be interactive and fun, but too casual,
whereas scripts were considered formal but too rigid.

Many data workers kick-start their analysis by basing it

on existing code [16]. Several participants (P08, P13, P14,

P15, and P17) reported using scratchpads notebooks, i.e.,

notebooks used for typically unstructured, exploratory work,

for this purpose. These notebooks can also help data workers

get reacquainted with API usage and programming language

syntax, Some participants (P08, P14, and P15) considered

these scratchpad notebooks to be even more important than

the source code files that contain the production code, as it

helps them reason about the execution output better.

D. Data workers’ perceptions of notebooks and scripts
Participants associated scripts with terms like “black box,”

“formal,” and “reliable,”, but also “rigid” and “outdated” as

shown in Fig. 2. Notebooks, on the other hand, were associated

with “interactive” and “fun,” but also “too casual” and

“doesn’t feel right”. As we discussed earlier, scripts were

considered the main modality to store production code for

dissemination:

“For me, when I do analysis and [write production]

code, I want to make it formal. [. . . ] it makes sense

to have my source code in scripts.” - P15

Scripts, unlike computational notebooks, allow data workers

to view source code output without having to step-through

the source code cell-by-cell. This high code-result distance

or the ability to decouple the results away from the code

can be desirable if the data worker just wants to obtain the

results without having to step through the code, one chunk

at a time. Conversely, the higher-level of interactivity offered

by notebooks via low code-result distance and cell-by-cell

execution acts as an inconvenience when reusing code:

“I have tried writing the final version of my code

blocks in Python notebooks, but it just doesn’t feel

right. . . Once something is a black box, it should

belong in scripts. I don’t want to run it in a notebook

anymore because it runs through line-by-line and I

don’t want that. It doesn’t feel clean.” - P17

Also, support for computational notebooks in production

pipeline is still a work in progress. E.g., for P17, a data worker

who builds neural networks, a standard practice in his field is

to outsource computationally-intensive executions to external

GPUs. These GPUs support scripts in the standard *.py file

format, and not Python notebooks, making it difficult for P17

to adopt computational notebooks.
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There is thus a tension between the two main modalities,

computational notebooks and scripts (Fig. 2). The interactivity

of computational notebooks is great for experimentation, but

scripts’ are a more reliable medium for reuse and storage.

E. Prevalence of computational notebooks and scripts

Since a significant number of our participants do not use

notebooks, we wanted to extrapolate the usage statistics of

notebooks and scripts to a larger sample. To do so, we

conducted an online survey with 62 data workers from various

domains like machine learning and significance testing. Re-

spondents were recruited via word of mouth and social media.

Respondents self-reported an average expertise of 3.51 (1 =

novice, 5 = expert). Combining the survey results with data

from our interview participants (n = 21), we were able to

gather modality usage statistics for 83 data workers as shown

in Fig. 3.

Fig. 3. Results of our online survey where respondents chose the pro-
gramming modalities they use for data science programming. Scripts are the
most commonly used modality across all programming languages, with many
respondents using a combination of scripts and computational notebooks.

Scripts are the most commonly used programming modality

across R, Python, and MATLAB. Only five respondents use

notebooks exclusively, all for Python programming. Con-

versely, 40 respondents use scripts exclusively. Most respon-

dents (n = 41) use both computational notebooks and scripts.

Computational notebooks are more popular among Python

programmers (36 out of 53 respondents; 67.9%) than MAT-

LAB (3 out of 11 respondents; 27.3%) and R programmers (7

out of 25 respondents; 28%). This indicates that Python note-

books are more popular than the MATLAB Live Editor and

RMarkdown notebooks, but there may be other explanations.

E.g., notebooks are more popular in the machine learning

community, where Python is commonly used.

To investigate why scripts are more common than compu-

tational notebooks, we returned to our interview transcripts.

Twelve participants (P01–04, P06, P07, P09, P11, P12, and

P18–21) who do not use computational notebooks regularly

had reasons that varied from not being aware of their existence

to finding them unnecessary. Some reported that they had tried

to use notebooks earlier, but did not gain much benefit. There

is no clear monopoly of modalities; scripts are still the most

TABLE I
TRADE-OFFS BETWEEN THE TWO COMMON MODALITIES OF DATA

SCIENCE PROGRAMMING. �INDICATES THE PREFERENCE OF MOST OF

OUR PARTICIPANTS.

Data science task Notebooks Scripts
Experimentation � –

Refactor code – �
Large data science project – �

Present code � –

Share code � –

Execute from command – �
line or GPU

Store code – �
Re-run past code – �

common modality in data science, but many data workers use

notebooks, often in combination with scripts.

V. OPPORTUNITIES FOR DESIGN AND CONCLUSION

Our findings from the previous section show trade-offs

between scripts and notebooks. Despite their share of issues,

notebooks are gaining traction among data workers, and re-

searchers are constantly working to improve their interaction

design, e.g., with [13], [23] and [24]. It is also reasonable to

expect computational notebooks to have better support for use

in production pipeline in future.

Here are some ways to redesign notebooks to bridge the

difference to scripts: a) lock code cells so that they are

immune to further changes once the data worker finishes

experimentation, b) merge code cells after they reach a level

of maturity to help avoid executing small code cells one at a

time, and c) allow users to switch between experimentation

and refinement modes; in experimentation mode, cell-based

programming is active, but in the refinement mode, cells of

flattened into scripts—users can switch between the modes as

desired. However, given how prevalent scripts currently are,

these are long-term solutions. For design recommendations

that can resolve problems in the short-term, and our design

recommendations for other issues discussed in this paper, see

http://hci.rwth-aachen.de/modality-use.

In summary, good programmers find notebooks “too casual”

since it promotes writing unstructured, less-modular code;

existing notebook users find scripts rigid and unyielding for

experimentation. Issues arise when data workers try to re-

purpose notebooks to write and store production code, and

use scripts for experimentation, both of which are not ideal.

Given this dual nature of modality use, how can we (a)

design notebooks to support storage and use in production

pipeline, (b) help data workers who are also good programmers

“ease in” to notebooks, and c) design an environment where

data workers can seamlessly switch between experimentation,

code refinement, and presentation? We hope that the insights

presented in this paper can inform future designs and research

in data science IDEs.
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