
StatWire: Visual Flow-based Statistical
Programming

Krishna Subramanian
RWTH Aachen University
52056 Aachen, Germany
krishna@cs.rwth-aachen.de

Chat Wacharamanotham
University of Zürich
8050 Zürich, Switzerland
chat@ifi.uzh.ch

Johannes Maas
RWTH Aachen University
52056 Aachen, Germany
johannes.maas1@rwth-
aachen.de

Simon Voelker
RWTH Aachen University
52056 Aachen, Germany
voelker@cs.rwth-aachen.de

Michael Ellers
RWTH Aachen University
52056 Aachen, Germany
michael.ellers@rwth-aachen.de

Jan Borchers
RWTH Aachen University
52056 Aachen, Germany
borchers@cs.rwth-aachen.de

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
CHI’18 Extended Abstracts, April 21–26, 2018, Montreal, QC, Canada.
© 2018 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-5621-3/18/04.
https://doi.org/10.1145/3170427.3188528

Abstract
Statistical analysis is a frequent task in several research
fields such as HCI, Psychology, and Medicine. Performing
statistical analysis using traditional textual programming
languages like R is considered to have several advantages
over GUI applications like SPSS. However, our examina-
tion of 40 analysis scripts written using current IDEs for R
shows that such scripts are hard to understand and main-
tain, limiting their replication. We present StatWire, an IDE
for R that closely integrates the traditional text-based edi-
tor with a visual data flow editor to better support statistical
programming. A preliminary evaluation with four R users
indicates that this hybrid approach could result in statistical
programming that is more understandable and efficient.

Author Keywords
Statistical Analysis IDE; Hybrid Programming; Visual Pro-
gramming.

ACM Classification Keywords
H.5.2 [User Interfaces]: Graphical user interfaces (GUI);
G.3. [Probability and Statistics]: Statistical software.

Introduction
Statistical analysis is an important task in several research
fields. While analysis can be performed using text-based
programming (e.g., R, Python) or GUIs (e.g., SPSS, JMP),



the statistical community considers text-based programming
to be a “much more productive, accurate, and reproducible
way of performing (analysis) tasks” than GUIs [17].

However, our analysis shows that scripts written using cur-
rent IDEs for R, the most commonly used text-based statis-
tics programming language [13], are hard to understand
and maintain. We speculate that current IDEs for R do not
support the data-driven, iterative, and non-sequential nature
of statistical analysis [10, 16], and we explore integrating
the text-based environment in current IDEs with a visual
data flow environment as a possible solution. As a realiza-
tion of this concept, we present StatWire, an IDE for R that
tightly integrates the two environments.

Motivation

Load data

Module 1 Module 1

Module 2Module 2

Log 
transform

log

log

Module 1: compute descriptive 
statistics (mean, sd), and plot 
histograms.

Module 2: fit a model, get 
residuals, and perform 
Shapiro-Wilk’s test on the 
residuals.

Figure 1: An example workflow of
statistical analysis. Analysis is
iterative and non-sequential with
‘modules’ acting upon modified
data with each iteration.

Current IDEs for R
R [6] is the most commonly used statistical programming
language in academia and research. Prominent IDEs for R
include RStudio1, the official R GUI, and Microsoft’s Visual
Studio Plugin for R. Such IDEs provide an interactive con-
sole for line-by-line execution of code snippets and script
files for storing analysis code, which can then be executed
in a sequential manner via the interactive console.

However, the workflow of statistical analysis is iterative
and non-sequential [16, 10], as shown in Fig. 1. This could
therefore be in conflict with the workflow supported by cur-
rent IDEs for R that use a sequential representation to store
and execute the analysis.

Evaluation of R Analysis Scripts
To investigate potential consequences of this mismatch, we
examined analysis scripts written in R by researchers. 40 R
analysis scripts, used in HCI and Psychology publications

1http://www.rstudio.com

at top-tier conferences such as CHI ’13 and ISWC ’16, were
collected from two sources: 32 scripts from 23 projects
on the Open Science Framework (OSF) platform2, and 8
scripts from 3 researchers at our university in Aachen. We
randomly selected no more than 3 scripts from the same
project or researcher to avoid biasing our analysis to a par-
ticular analyst. We analyzed a total of 20,303 source lines
of code (SLOC), with an average of 508 SLOC per file, and
found two major issues:

1. Excessive Code Cloning
Code cloning is a common programming practice in which
the user copies, pastes, modifies, and executes code [8,
15]. Excessive code cloning can make analysis scripts diffi-
cult to maintain, understand and modify [9, 11, 12], limiting
reproduction and reuse of the code for other analyses.

We followed a standard procedure [15] to identify instances
of code cloning. First, we preprocessed the analysis scripts
(remove blank lines, comments, etc.) to identify Lines of
Interest (LOI). Then, we used fingerprints as both the inter-
mediate representation of the code and the match detection
technique to compute instances of code cloning. We identi-
fied that out of 4098 LOI from all scripts, 2861 LOI, or 70%,
were parametric clones [15].

2. Prevalence of Non-Modular Code Using modules is
generally considered to lead to more productive program-
ming [5]. Non-modular code is inefficient and does not
match the nature of statistical analysis, since a typical anal-
ysis involves iterative execution of a module with modified
input, as shown in Fig. 1. This issue is further aggravated in
long analyses in which a module is reused several times.

In our analysis, we classified code snippets into the three

2http://osf.io



Histogram of speed

speed

A

B

I

G

H

F
E2E1

D

Count

C

Figure 2: User interface of StatWire, a novel IDE for performing statistical analysis using the R programming language. StatWire tightly
integrates a visual data flow editor (A) with a text-based editor (B) to better support code authoring.

major steps of statistical analysis: preprocessing, exploratory
analysis, and confirmatory analysis [16]. We then iden-
tified how many of these steps were part of each script.
We found that 97.5% of all scripts contained two or more
steps, and 60% contained all three steps. This issue was
also prevalent in long analysis scripts.

StatWire
Since existing IDEs for R result in issues with code repro-
duction and comprehension, we wanted to explore the tight
integration of a visual data-flow editor with the traditional
text editor as a possible solution. The following walkthrough
explains the interaction design of our current prototype:

Hazel is an HCI researcher who wants to analyze data from

a text entry study using StatWire. She is presented two
views: a visual data flow editor (Fig. 2 A) and a textual pro-
gramming environment (B). Each node in the visual editor
can be either a statlet, which is a processing step (F), or
a viewlet, which shows plots (E1) or data (E2). The edges
(H) represent the flow of data across the nodes. The visual
editor is initially empty, and Hazel creates a statlet by right-
clicking on the empty canvas. When a statlet is created,
the text editor (C) is shown with a default function template,
encouraging her to think in a modular fashion and to write
functions. During code authoring, Hazel uses the output
shown next to the code (D) for debugging. She authors
statlets to read in the CSV file and then subsets the data
according to different levels of an independent variable.



When she adds an input or output argument to the function
header, the corresponding node in the visual data flow ed-
itor is updated automatically (G). This lets Hazel focus on
the flow of data (i.e., overview) in the visual editor, and on
the processing code (i.e., details) in the text editor.

When Hazel wants to view the descriptive statistics of the
QWERTY distribution using another statlet, she ‘wires’ its
output to the ‘View descriptive stats’ statlet. She runs the
statlet to view the histogram (in a viewlet, Fig. 2 E1) and
descriptive statistics (Fig. 2 F). To repeat this for the other
two distributions, Hazel simply ‘rewires’ the input of the stat-
let, leading to an efficient analysis workflow.

StatWire was developed in a user-centered, iterative fash-
ion, during which we explored several design alternatives
to support a tight integration between the visual and text-
based environments. E.g., in an earlier prototype of StatWire,
users added input or output arguments via the visual pro-
gramming environment. However, evaluations with existing
users of R and an expert in statistical analysis who teaches
introductory courses in R revealed that users preferred to
update the arguments in the textual programming environ-
ment. This resulted in live updates to the visual program-
ming environment when changes were made to the textual
programming environment.

Related Work
Visual programming environments have been shown to help
with comprehension [2], programmer performance [1], and
code navigation [3]. For a comprehensive overview of vi-
sual programming environments and their benefits, see [7].
StatWire uses a data flow visual programming environment,
which better suits the data-driven nature of statistical anal-
ysis. Such data flow environments have been successfully
applied to other data-driven domains [18].

Existing visual programming environments such as ViSta
for statistical analysis [19] and Orange for machine learning
[4] do not expose the underlying source code of their mod-
ules. Blender, a 3D modeling software, allows the user to
view and edit the underlying source code of modules, but
they have to initially be authored in a different environment
and then imported. RapidMiner and KNIME are visual pro-
gramming environments that allow authoring code using a
text editor, but treat the visual editor as a passive element
(i.e., the visual environment does not reflect changes in the
textual code), resulting in a lack of integration between the
two environments. The Gestalt system provides textual and
visual environments, and allows the user to easily switch
between them [14]. However, it uses a linear list as its vi-
sual representation, which does not suit the non-linear na-
ture of statistical analysis. Further, Gestalt does not provide
a tight integration between the two environments.

Preliminary Evaluation
To identify how well StatWire supports statistical program-
ming with R, we compared it to RStudio, a widely used IDE
for R, as well as RapidMiner and KNIME, two visual pro-
gramming environments with R integration.

We recruited four R users from our local university in Aachen.
Three had taken a graduate-level introductory analysis
course in R, all had used RStudio before (none had used
KNIME or RapidMiner before), and all had at least three
years of experience performing statistical analysis.

Procedure
Each user performed analysis with each tool for a minimum
of 30 minutes with different datasets and research ques-
tions. Additional research questions or datasets were pro-
vided as needed. We balanced the order of conditions and
randomized both the dataset-tool pairing and the character-



istics of datasets to minimize learning effects (Fig. 3. The
analysis required typical, non-trivial analysis methods such
as factor encoding, data transformation, and post-hoc tests.

Significant Findings

RStudio StatWireRapidMiner
Dataset 1 Dataset 3Dataset 2

StatWire RStudio RapidMiner

KNIME StatWire RStudio

RStudio KNIMEStatWire

Dataset 2 Dataset 3 Dataset 1

Dataset 3 Dataset 1 Dataset 2

Dataset 2 Dataset 3Dataset 1

Figure 3: The experimental design
of our preliminary study. We
balanced the order of conditions
and randomized data-tool pairing.

With RStudio, none of our users followed a modular pro-
gramming approach. There were several instances of code
cloning, and users used comments to structure the anal-
ysis. However, because users were familiar with RStudio,
they reported feeling at ease using the tool.

With RapidMiner and KNIME, users had issues with the
lack of integration between visual data flow editor and tex-
tual environment, which led to frustration. E.g., while au-
thoring textual code, the visual data flow editor was not up-
dated and did not provide any interaction. Of course, over
time, users learn to work with these shortcomings.

With StatWire, users benefited from the tighter integration
between the two programming environments: Two users
reported understanding the analysis better because of the
visual data flow editor, and during analysis with StatWire,
18 out of 35 statlets were reused, whereas no reuse was
observed with other tools. Nevertheless, not all modules
were reused, which indicates further work is necessary.

StatWire is open-source software, and available as a local
web application from the StatWire project home page.3

Future Work
While our preliminary study is promising, it is limited by
sample size and guiding hypotheses, and further longitu-
dinal studies are required to understand StatWire’s effects
on code understanding, structuring, and navigation, as well
as on the productivity of the analysis. Further, the artifact

3http://hci.rwth-aachen.de/statwire

can be extended to allow transformation of existing analy-
sis scripts into a more structured and reusable format by,
e.g., automatically highlighting similar chunks of code and
semi-automatically converting them to a reusable module.

REFERENCES
1. Ed Baroth and Chris Hartsough. 1995. Visual

Object-Oriented Programming. Manning Publications
Co., Greenwich, CT, USA, Chapter Visual
Programming in the Real World, 21–42.
http://dl.acm.org/citation.cfm?id=213388.213393

2. Andrew Bragdon, Robert Zeleznik, Steven P. Reiss,
Suman Karumuri, William Cheung, Joshua Kaplan,
Christopher Coleman, Ferdi Adeputra, and Joseph J.
LaViola, Jr. 2010. Code Bubbles: A Working Set-based
Interface for Code Understanding and Maintenance. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’10). ACM, New
York, NY, USA, 2503–2512. DOI:
http://dx.doi.org/10.1145/1753326.1753706

3. Robert DeLine, Mary Czerwinski, Brian Meyers, Gina
Venolia, Steven Drucker, and George Robertson. 2006.
Code Thumbnails: Using Spatial Memory to Navigate
Source Code. In Proceedings of the Visual Languages
and Human-Centric Computing (VLHCC ’06). IEEE
Computer Society, Washington, DC, USA, 11–18. DOI:
http://dx.doi.org/10.1109/VLHCC.2006.14

4. Janez Demšar, Blaž Zupan, Gregor Leban, and Tomaz
Curk. 2004. Orange: From Experimental Machine
Learning to Interactive Data Mining. In Proceedings of
the 8th European Conference on Principles and
Practice of Knowledge Discovery in Databases (PKDD
’04). Springer-Verlag New York, Inc., New York, NY,
USA, 537–539. http:
//dl.acm.org/citation.cfm?id=1053072.1053130

http://dl.acm.org/citation.cfm?id=213388.213393
http://dx.doi.org/10.1145/1753326.1753706
http://dx.doi.org/10.1109/VLHCC.2006.14
http://dl.acm.org/citation.cfm?id=1053072.1053130
http://dl.acm.org/citation.cfm?id=1053072.1053130


5. John Hughes. 1989. Why Functional Programming
Matters. Comput. J. 32, 2 (1989), 98–107.

6. Ross Ihaka and Robert Gentleman. 1996. R: A
Language for Data Analysis and Graphics. Journal of
Computational and Graphical Statistics 5, 3 (1996),
299–314.

7. Wesley M. Johnston, J. R. Paul Hanna, and Richard J.
Millar. 2004. Advances in Dataflow Programming
Languages. Comput. Surveys 36, 1 (2004), 1–34. DOI:
http://dx.doi.org/10.1145/1013208.1013209

8. Miryung Kim, L. Bergman, T. Lau, and D. Notkin. 2004.
An Ethnographic Study of Copy and Paste
Programming Practices in OOPL. In Empirical Software
Engineering, 2004. (ISESE ’04). 83–92. DOI:
http://dx.doi.org/10.1109/ISESE.2004.1334896

9. Rainer Koschke. 2008. Frontiers of Software Clone
Management. In Frontiers of Software Maintenance
’08. 119–128. DOI:
http://dx.doi.org/10.1109/FOSM.2008.4659255

10. David Lubinsky and Daryl Pregibon. 1988. Data
Analysis as Search. Journal of Econometrics 38, 1-2
(1988), 247–268. DOI:
http://dx.doi.org/10.1016/0304-4076(88)90035-8

11. Jean Mayrand, Claude Leblanc, and Ettore M. Merlo.
1996. Experiment on the Automatic Detection of
Function Clones in a Software System Using Metrics.
In 1996 Proceedings of International Conference on
Software Maintenance. 244–253. DOI:
http://dx.doi.org/10.1109/ICSM.1996.565012

12. Akito Monden, Daikai Nakae, Toshihiro Kamiya, Shin
ichi Sato, and Ken ichi Matsumoto. 2002. Software
Quality Analysis by Code Clones in Industrial Legacy
Software. In Proceedings Eighth IEEE Symposium on

Software Metrics. 87–94. DOI:
http://dx.doi.org/10.1109/METRIC.2002.1011328

13. Robert A. Muenchen. 2017. The Popularity of Data
Analysis Software. (2017). (Accessed: 08-31-2017)
http://r4stats.com/articles/popularity/.

14. Kayur Patel, Naomi Bancroft, Steven M. Drucker,
James Fogarty, Andrew J. Ko, and James A. Landay.
2010. Gestalt: Integrated Support for Implementation
and Analysis in Machine Learning.. In Proceedings of
the 23rd Annual ACM Symposium on User Interface
Software and Technology (UIST ’10). ACM, New York,
NY, USA, 37–46. DOI:
http://dx.doi.org/10.1145/1866029.1866038

15. Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh.
2013. Software Clone Detection: A Systematic Review.
Information and Software Technology 55, 7 (July 2013),
1165–1199.

16. John W. Tukey. 1977. Exploratory Data Analysis.
Addison-Wesley Publishing Company.
https://books.google.de/books?id=UT9dAAAAIAAJ

17. Pedro M. Valero-Mora and Rubén D. Ledesma. 2012.
Graphical User Interfaces for R. Journal of Statistical
Software 49, 1 (2012), 1–8.

18. Kanit Wongsuphasawat, Daniel Smilkov, James
Wexler, Jimbo Wilson, Dandelion Mané, Doug Fritz,
Dilip Krishnan, Fernanda B Viégas, and Martin
Wattenberg. 2017. Visualizing Dataflow Graphs of
Deep Learning Models in TensorFlow. IEEE
Transactions on Visualization and Computer Graphics
(2017).

19. Forrest W. Young and Carla M. Bann. 1996. ViSta: The
Visual Statistics System. (1996).

http://dx.doi.org/10.1145/1013208.1013209
http://dx.doi.org/10.1109/ISESE.2004.1334896
http://dx.doi.org/10.1109/FOSM.2008.4659255
http://dx.doi.org/10.1016/0304-4076(88)90035-8
http://dx.doi.org/10.1109/ICSM.1996.565012
http://dx.doi.org/10.1109/METRIC.2002.1011328
http://r4stats.com/articles/popularity/
http://dx.doi.org/10.1145/1866029.1866038
https://books.google.de/books?id=UT9dAAAAIAAJ

	Introduction
	Motivation
	Current IDEs for R
	Evaluation of R Analysis Scripts

	StatWire
	Related Work
	Preliminary Evaluation
	Procedure
	Significant Findings

	Future Work
	REFERENCES 

