
by
Alexander Strauch

VirlWind
A mobile device for

user-centered
augmented reality

Diploma Thesis at the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Christian H. Bischof, Ph.D.

Registration date: Jan 23th, 2008
Submission date: Sep 10th, 2008

I hereby declare that I composed this thesis entirely myself
and that it describes my own work. All other sources and
tools are marked accordingly.

————————————————————————
Alexander Strauch, Aachen September 9, 2008

iii

Contents

Abstract xiii

Überblick xv

Acknowledgements xvii

Conventions xix

1 Introduction 1

1.1 Overview . 3

2 Fundamentals 5

2.1 The Human Eye 5

2.2 Haar Classifiers 7

2.3 Template Matching 9

2.4 Marker Tracking 12

3 Related Work 17

3.1 Mobile Augmented Reality 18

iv Contents

3.2 Spatially Aware Devices 22

3.3 User-centered Perspective 26

3.4 Comparison 29

4 System Design and Implementation 33

4.1 Hardware Setup 34

4.2 Software Implementation 35

4.2.1 Eye Tracking 40

Finding the Eye Regions 40

Finding the Iris 41

4.2.2 Marker Tracking 44

4.2.3 Calculating the User-centered Per-
spective 47

Finding the Real-world Coordinates . 47

Creating the Matrices 51

4.2.4 OpenGL Rendering 53

Measurement Mode 54

Augmented Reality Mode 54

Annotation Mode 55

Volume Mode 56

4.2.5 Annotations 57

5 Evaluation 61

5.1 First User Test 63

Contents v

5.1.1 First Phase 65

5.1.2 Second phase 67

5.2 Second User Test 68

5.3 Comparison of Time Measurements 72

5.4 Discussion . 73

6 Summary and Future Work 75

6.1 Summary and Contributions 75

6.2 Future Work 77

A The Pinhole Camera Model 79

B Quaternions 81

C Shadow Mapping 85

D CD Contents 87

Bibliography 89

Index 95

vii

List of Figures

2.1 The human eye 6

2.2 Haar-like features, from Lienhart and Maydt
[2002] . 7

2.3 Cascade of boosted Haar classifiers 9

2.4 Example for template matching 10

2.5 Image pyramid 11

2.6 Marker tracking example 13

2.7 Relationship between the different coordi-
nate systems, from Kato and Billinghurst
[1999] . 14

2.8 Direction vector computation, from Kato
and Billinghurst [1999] 15

3.1 AR Tennis, from Henrysson et al. [2006] . . . 18

3.2 Screenshot of the device by Schmalstieg and
Wagner [2005] 19

3.3 Scene structure awareness 20

3.4 Guidance system, from Burigat and Chittaro
[2005] . 20

viii List of Figures

3.5 Equipment for the ARCHEOGUIDE project,
from Gleue and Dähne [2001] 21

3.6 Scene from ARQuake, from Thomas et al.
[2002] . 23

3.7 Boom Chameleon, from Tsang et al. [2002] . . 23

3.8 Screen panel showing a slice of the volume
data, from Hirota and Saeki [2007] 24

3.9 Peephole metaphor, from Yee [2003] 25

3.10 Peephole Doodle Pad, from Yee [2003] 26

3.11 Perspective corrected content, from Nacenta
et al. [2007] . 27

3.12 CAVE at the RWTH Aachen 28

4.1 Modbook, from Axiotron 34

4.2 Case for the Modbook 36

4.3 VirlWind screenshot 37

4.4 Warning message 38

4.5 Screenshot of VirlWind with additional in-
formation . 39

4.6 Eye tracking process 42

4.7 Template image of the iris 43

4.8 Process of finding the iris 44

4.9 Pinhole camera model for distance estimation 48

4.10 Relationship between distance and x and y
translation . 50

4.11 Screenshot of the ”Measurement mode” . . . 54

List of Figures ix

4.12 Screenshot of the ”Augmented Reality mode” 55

4.13 Screenshot of the ”Annotation mode” 56

4.14 Screenshot of the ”Volume mode” 57

4.15 Start of an annotation 58

4.16 Annotation inside the virtual world 59

4.17 Minimized Annotation 59

5.1 User test setup 62

5.2 Model used in the first user test 64

5.3 Car with annotation 64

5.4 Ledge added to the box for the second user test 69

5.5 Diagram of one pass of one user 70

A.1 Geometry of the pinhole camera model . . . 80

C.1 Depth buffer content after the first pass . . . 85

C.2 Shadowed areas 86

C.3 Final result . 86

xi

List of Tables

3.1 Comparison of the different approaches . . . 32

5.1 The complete results of the first test 66

5.2 Results of the annotation test 67

5.3 The complete results of the second test 71

5.4 The results of the time measurement for the
first test . 72

5.5 The results of the time measurement for the
second test . 72

xiii

Abstract

Due to the constantly increasing power and the decreasing weight and size of
mobile devices they become more and more attractive for mobile Augmented
Reality applications. But although there exist some approaches, they are not
fully mobile (Tsang et al. [2002], McKenna [1992]), they lack the user-centered
perspective (Henrysson et al. [2005], Fitzmaurice [1993]) or they are too expensive
and require the user to wear special equipment (Gleue and Dähne [2001], Thomas
et al. [2002]).

The aim of this thesis therefore was to combine the best parts of these techniques
and create a

• mobile,

• robust and

• cost-saving

solution for intuitive three-dimensional navigation.

Therefore we utilized a conventional tablet computer with an internal camera and
an additional external camera mounted to the backside. In this way we could
then use the external camera to determine the position of the device inside the
real world by the use of fiducial markers and a multi marker tracking approach.
The internal camera however was used to keep track of the position of the user’s
eyes. After estimating the real world coordinates of the user’s head, relative to
the device, we then calculated the appropriate user-centered perspective based on
those two results.

In the end we conducted a user study to evaluate our system and compared the nor-
mal Augmented Reality method to our approach with user-centered perspective.
Although the hardware we used for the prototype was limited, the tests indicated
that this technique could be very promising for intuitive 3D navigation devices.

xiv Abstract

xv

Überblick

Durch die stetig wachsende Leistungsfähigkeit und den immer weiter reduzierten
Baugrößen und Gewichten werden mobile Geräte immer attraktiver für Anwen-
dungen die mobile erweiterte Realität erlauben. Doch obwohl einige Ansätze in
diesem Gebiet existieren sind diese entweder nicht vollkommen mobil (Tsang et al.
[2002], McKenna [1992]), bieten keine betrachterzentrierte Perspektive (Henrysson
et al. [2005], Fitzmaurice [1993]) oder sind zu teuer und verlangen vom Benutzer
das Tragen spezieller Ausrüstung (Gleue and Dähne [2001], Thomas et al. [2002]).

Ziel dieser Diplomarbeit war es deshalb die besten Teile dieser Techniken zu vere-
inen und eine

• mobile,

• robuste und

• kostensparende

Lösung für intuitive dreidimensionale Navigation zu bauen.

Um dies zu erreichen kam ein herkömmlicher Tablet Computer mit einer einge-
bauten Kamera zum Einsatz, den wir mit einer zusätzlichen externen Kamera für
die Rückseite des Gerätes erweiterten. Auf diesem Weg konnten wir die externe
Kamera dazu nutzen die Position des Gerätes innerhalb der realen Welt anhand
von Markern und einer Multi Marker Verfolgung zu bestimmen. Die interne
Kamera nutzten wir hingegen dazu die Position der Augen des Betrachters zu
verfolgen. Nach der Abschätzung der relativen Position des Benutzerkopfes
innerhalb der realen Welt konnten wir dann anhand dieser zwei Resultate die
passende betrachterzentrierte Perspektive berechnen.

Zum Schluß führten wir eine Benutzerstudie durch um den herkömmlichen Ansatz
der erweiterten Realität mit unserem, um die betrachterzentrierte Perspektive er-
weiterten, Ansatz zu vergleichen. Obwohl die Hardware die wir für den Prototyp
verwendeten limitiert war, deuteten die Tests an, daß diese Technik sehr vielver-
sprechend sein könnte für intuitive 3D Navigationsgeräte.

xvii

Acknowledgements

“Your friend is the man who knows all about you, and still likes you.”

—Elbert Hubbard

First of all I would like to thank Prof. Dr. Jan Borchers for giving me the oppor-
tunity to conduct this work. Additionally, I thank Prof. Dr. Jan Borchers and
Prof. Christian H. Bischof in advance for the survey of this work.

I especially want to thank Malte Weiss, who provided the topic for this thesis. Our
many fruitful discussions had a great influence and were the basis for numerous
design decisions of the practical part of this work.

I also want to thank all the reviewers of this thesis including Stefan Spieker, Malte
Weiss and my father .

Last but not least I want to thank my family, my friends and – most important of
all – my girlfriend Nicole for their patience and never-ending support. They were
there for me to pick me up when things went wrong and I would not be at this
point without them.

Thank you all!

xix

Conventions

Throughout this thesis we use the following conventions.

Text conventions

Definitions of technical terms or short excursus are set off
in orange boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

Definition:
Excursus

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in American English.

1

Chapter 1

Introduction

As a result of the constantly increasing power and decreas-
ing size of mobile devices, they become more and more
interesting as platform for interactive 3D applications.
One of these applications is known as mobile Augmented
Reality.

Azuma [1997] defined Augmented Reality (AR) as

• Combining real and virtual

• Interactive in real time and

• Registered in 3D

But most AR applications have the drawback of not in-
corporating the user’s point of view and therefore tend to
show the wrong perspective.

The idea behind our project therefore was to build a
system, which behaves like a virtual window — hence we
gave it the name VirlWind. It should adapt the shown
perspective to the viewing position of the user and the
position of the device itself. The hypothesis of our work is,
that this leads to a more intuitive and natural possibility to
experience three-dimensional environments.

2 1 Introduction

Since it would destroy this natural feeling, we wanted to
avoid special tracking hardware and any other auxiliary
equipment. We also wanted to keep the software as inde-
pendent of the platform as possible in order to maximize
the group of possible users and to not be limited to any
kind of hardware. Hence our goal was to build a mobile,
robust and cost saving solution for intuitive 3D navigation.

Possible applications for such a system are

• Navigate in computed tomography images

By moving the device forward and backwards
one could navigate inside those images and mark
all areas of interest. In this way a medical scientist
could also point out certain suspicious spots and ask
a colleague to have a look at them.

• Support interior designers

Designer could show their customers the result
of their work in place without altering the surround-
ing area. The customers then would be able to review
the suggestions and leave comments on places they
like or dislike.
This would provide valuable feedback for the design-
ers, because any critique would be directly connected
to spatial positions.

• Explore cultural heritage sites

The device would enable the user to see recon-
struction of the original buildings similar to the
solution Gleue and Dähne [2001] proposed. This ap-
proach could also be additionally extended to guide
visitors to interesting spots by placing annotations at
that positions.
These comments would directly show the user
where he has to go to see all attractions and could
provide him with additional textual or multimedia
information.

1.1 Overview 3

• Games

As the Nintendo Wii recently proved the introduction
of new input methods can positively influence the
perception of games and can help open up new
markets. Incorporating the spatial awareness and
the user-centered perspective into mobile gaming
devices could have a similar effect and add a whole
new level to the mobile gaming experience.

1.1 Overview

In Chapter 2—“Fundamentals” we will give some theo-
retical background for a number of algorithms we used
in the implementation of our system. The following
Chapter — Chapter 3—“Related Work” — deals with other
systems that exist in this research area and shows which
applications they are used for.

Chapter 4—“System Design and Implementation” then
presents our own system and shows in the first part how
it was designed and which hardware was used, while
the second part focuses on implementational details.
Afterwards, in Chapter 5—“Evaluation”, we will give an
in-depth analysis of the performance of the system. In this
context we will present the results of our user studies and
analyze what can be concluded from them.

The last Chapter 6—“Summary and Future Work” then
closes this thesis by summarizing our own work, pointing
out the contributions to the research community and giving
an outlook on what future research will be possible based
on our results.

5

Chapter 2

Fundamentals

“If the brain were so simple we could
understand it, we would be so simple we couldn’t.”

—Lyall Watson

Since great parts of this approach are based on image un-
derstanding and the analyses of pictures, we will first give
a brief introduction into the functionality of the human vi-
sual system. Then we will show the algorithms, which form
the basis for our tracking methods and are therefore essen-
tial for our work.

2.1 The Human Eye

The human eye works by letting light pass through the Light passes through
the pupil onto the
retina

pupil and then converting this light into electric impulses.
This conversion into electric signals is done by the retina,
which is a layer of light-sensitive cells situated at the rear of
the eye. The impulses are then transferred to the visual part
of the brain to be processed. Figure 2.1 shows the frontal
view of a human eye.

6 2 Fundamentals

Iris

Pupil

Sclera

Figure 2.1: Frontal view of the human eye

To vary the amount of light that passes through the pupilIris is used to adapt
to amount of
surrounding light

and to adapt to different light situations, the iris is used.
The iris is the set of muscles which is located around the
pupil. By relaxing or flexing these muscles the pupil can
change its size and therefore control the amount of light.

Since the irides are prominent features in human faces,Iris position used to
improve tracking our eye tracking algorithm first tries to estimate possible

eye regions and then to locate the position of the irides to
stabilize the tracking result. If no iris is found in an area,
we discard it to reduce the amount of false positives.

The eye is also used to estimate the distance of objects. ToDistance estimation
uses several
methods

achieve this a number of methods are utilized

• Stereo vision
Since the eyes are set a little bit apart from each other,
they both return a different picture. The closer the
object gets to the viewer, the more the two pictures
differ.

• Known objects
For objects the viewer has already seen before the size
of the picture of the object on the retina is known.

• Motion parallax
When we move our head, objects that are closer to us
move at a greater speed than objects that are far away.

2.2 Haar Classifiers 7

As we wanted to avoid that the user has to wear special
glasses or a head-mounted display, we were not able to
create stereo vision. So we resorted to simulating motion
parallax to give the user the impression of distance and to
make the displayed world feel more natural to the viewer.

2.2 Haar Classifiers

The method used in our work has initially been proposed Haar classifiers are a
statistical method to
rapidly detect objects

by Viola and Jones [2001] and was then extended by Lien-
hart and Maydt [2002]. It uses a statistical approach to
rapidly detect objects. For this a classifier has to be trained
with a set consisting of positive (images which contain the
object class of interest) and negative (images which don’t
contain the object class of interest) samples of a fixed size.
The training software searches for distinctive simple Haar-
like features, which can be used to identify the object. Each
of these features is described by one of 14 templates (see
Figure 2.2), its position inside the sample and its size.

Figure 2.2: Extended set of Haar-like features which are
used in the recognition process, from Lienhart and Maydt
[2002]

8 2 Fundamentals

The feature values are hereby computed in the followingComputation of the
feature values way :

• compute the pixel sum over the black area and the
pixel sum over the whole template,

• give these sums opposing signs and

• compute the weighted sum of both, with weight val-
ues inversely proportional to their area size

For example, the value of feature 2(a) of Figure 2.2 can be
computed as

feature value = −1 ·Areasumwhole + 3 ·Areasumblack.

, where the weights are given by

w0 = 1/
whole area
whole area

= 1

w1 = 1/
black area
whole area

= 1/
1
3

= 3

and the minus sign is a result of the second rule.

In the last step these ”weak” classifiers are combined intoWeak classifiers are
combined into a
cascade

more complex boosted ones to form a cascade of classifiers
with the simple ones at the beginning (see Figure 2.3).

The detection process then works by sliding windows withDetection process
would be slow
without optimizations

different sizes over the input image and determining for ev-
ery step if an object is visible or not. Without optimizations
this process would be too slow, so Viola and Jones [2001]
proposed the use of an intermediate representation of the
original image, the Integral Image (II).

II(X,Y) =
∑

x≤X, y≤Y
I(x, y)

Here I(x, y) stands for the pixel value of the original image
at position (x, y).

2.3 Template Matching 9

Figure 2.3: The cascade of boosted Haar classifiers speeds
up the recognition by discarding false regions at a very
early stage

With this representation it is possible to compute the sum
over every rectangle with just four array references. For
example, the sum of a rectangle at point (x0, y0) and size
(w, h) can be computed as

II(x0+w, y0+h)−II(x0+w, y0)−II(x0, y0+h)+II(x0, y0).

Due to the cascades, false image regions are rejected at a
very coarse scale. This, combined with the Integral Image
representation, makes sure that this approach achieves real-
time performance on modern day systems.

2.3 Template Matching

Template matching is an image processing technique which Template is matched
based on similarity
values

is used to find a predefined sub-image (a so-called tem-
plate) in a test image. The basic principle is, to move the
template over the test image and compute a measure of
similarity for the underlying area of the image. Examples
for similarity measures are squared differences and cross
correlation.
Then the algorithm finds the maximal or minimal similar-
ity value depending on which method was chosen. If the
value is above or below a certain predefined threshold, the

10 2 Fundamentals

algorithm presumes that the template was found inside the
test image and the corresponding position is returned (see
Figure 2.4).

Test image

Template image

Result

+ =

Figure 2.4: Example for one template matching pass. The
input image is searched for the template in the middle and
the region with the highest similarity value is marked in the
output image.

Usually this technique is very slow, since it has to computeFaster template
matching method is
used

similarity values for the whole image. For that reason we
chose to include an extended matching algorithm. The fast
template matching method used in our work was imple-
mented by Tristen Georgiou and works by first creating an
image pyramid for the template and the test image.

Here level 0, the base of the pyramid, represents the origi-Image pyramid helps
speeding up the
matching process

nal image. Each subsequent level i is computed by apply-
ing Gaussian filtering with a window size of 5 × 5 to level
i and then discarding even rows and columns. In this way
the image resolution is halved in every step. 2.5 shows an
example of this downscaling process.

2.3 Template Matching 11

Level 0 Level 1 Level 2

Figure 2.5: Different resolutions of an image pyramid, which is used to speed up
the matching algorithm

GAUSSIAN FILTERING:
The Gaussian filter is a low-pass filter, which is used to
reduce noise and detail in images. It works by computing
the weighted average of all samples within a predefined
window around each pixel. In contrast to mean filter-
ing, where the weights are chosen to be 1

of samples , in

this case the weights are computed according to the two-
dimensional Gaussian function, which is the density of
the normal distribution.

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2

Here x and y are the horizontal and vertical distance to
the origin and σ is the standard deviation of the Gaussian
distribution. Although the Gaussian function would be
non-zero on every point of the image, points outside the
window are not considered in the calculation.

Definition:
Gaussian filtering

The algorithm then proceeds by running template match- Detection works from
the smallest to the
biggest
representation

ing on the smallest template and the smallest test image.
If a match is found, the position in the original image is
computed and this area is again compared with the origi-
nal template.

12 2 Fundamentals

By first searching the downscaled image many regions can
be discarded very early and the running time can be re-
duced significantly.

2.4 Marker Tracking

This section describes the marker tracking algorithm by
Kato and Billinghurst [1999], which is implemented in
the ARToolkit library and can be downloaded from the
Human Interface Technology Lab. We chose the ARToolkit
library since it is fast, returns acceptable results, is free
for non-commercial use and is available for Mac OS and
Windows. Additionally it includes functions to capture
pictures from connected cameras, which we used on Mac
OS.

The marker tracking algorithm starts by thresholding
the grayscale picture that should be searched. Grayscale
pictures are used, because they can be processed faster.

The algorithm then searches for regions whose outline con-Line fitting algorithm
returns potential
regions

tours can be fitted by four line segments and saves their
intersection positions. By normalizing the sub-images in-
side the found regions and comparing them to prede-
fined marker template images, the algorithm can determine
which markers were actually found and can discard falsely
found regions. Figure 2.6 gives an overview of the various
steps of the algorithm.

2.4 Marker Tracking 13

Grayscale input image Thresholded input image

Template matching

Line fitting result

Found marker Predefined marker templates

Figure 2.6: Example pass of the marker tracking algorithm
used by ARToolkit. The outlines of the found marker are
then used to estimate the relative camera position

To estimate the position of the camera (see Figure 2.7), the Known marker size is
used for estimationalgorithm then has to know the size of the markers to build

the transformation matrix Tcm.


Xc

Yc
Zc
1

 =


V11 V12 V13 Wx

V21 V22 V23 Wy

V31 V32 V33 Wz

0 0 0 1

 ·

Xm

Ym
Zm
1

 (2.1)

=
[

V3×3 W3×1

0 0 0 1

]
·


Xm

Ym
Zm
1

 (2.2)

= Tcm ·


Xm

Ym
Zm
1

 (2.3)

14 2 Fundamentals

Figure 2.7: Relationship between the marker coordinates
and camera coordinates in ARToolkit, from Kato and
Billinghurst [1999]

We also need the perspective projection matrix P , which is
obtained in the calibration process of ARToolkit.

P =


P11 P12 P13 0
0 P22 P23 0
0 0 1 0
0 0 0 1

 =


fx 0 x0 0
0 fy y0 0
0 0 1 0
0 0 0 1

 (2.4)

so that


hxc
hyc
h
1

 = P ·


Xc

Yc
Zc
1

 (2.5)

Here fx and fy are the focal lengths in x and y direction
in pixel units and (x0, y0) is the principal point (see Ap-
pendix A—“The Pinhole Camera Model”). If now two par-
allel sides of a marker are projected to the image, they fulfill
the following two equations

a1 · x+ b1 · y + c1 = 0 a2 · x+ b2 · y + c2 = 0 (2.6)

2.4 Marker Tracking 15

The parameters of these equations were already found pre-
viously in the line fitting process. By substituting xc and
yc for x and y and combining equations (2.6) with equation
(2.5) we get

a1P11Xc + (a1P12 + b1P22)Yc
+ (a1P13 + b1P23 + c1)Zc = 0 (2.7)
a2P11Xc + (a2P12 + b2P22)Yc
+ (a2P13 + b2P23 + c2)Zc = 0 (2.8)

The normal vectors of these two planes shall now be given Direction vectors
have to be
normalized to be
perpendicular

as n1 and n2. That means, we can compute the direction
vector as u1 = n1 × n2. Repeating this calculation for the
other two sides of the marker yields u2. To correct process-
ing errors, we choose two perpendicular vectors v1 and v2
which lie in the same plane as u1 and u2 and which include
both vectors (see Figure 2.8).

Figure 2.8: The two perpendicular unit direction vectors v1
and v2, which are computed from the vectors u1 and u2,
from Kato and Billinghurst [1999]

The rotation component V3×3 of Tcm can then be computed
as (v1T , v2T , (v1 × v2)T). By using equation (2.1) and
equation (2.5) and inserting the coordinates of the marker
vertices and their respective image coordinates, we obtain
eight equations. From these equations we can compute the
translation component W3×1.

16 2 Fundamentals

With the transformation matrix Tcm we can then transformRecursive
optimization method
improves the result

the marker coordinates, compare the result to their image
coordinates and optimize the rotation component in Tcm.
This process is iterated a few times to improve the accu-
racy of the resulting transformation matrix. The transla-
tion component is reestimated in every iteration with the
method explained above.

17

Chapter 3

Related Work

“Science never solves a problem without
creating ten more.”

—George Bernard Shaw

There are various approaches that try to solve the problem
of navigating inside virtual environments.
At first we will take a look at Augmented Reality. In the
last years AR has become a well researched field and some
applications like, e.g., virtual advertisements in soccer
broadcastings are now part of our everyday life. For this
thesis we will focus on solutions that are mobile.

In the next section we will then show some devices that are
aware of their own spatial position and use this knowledge
to determine the content that is displayed. In this way they
connect the real world with the virtual world and offer a
window-like view. By translating the device the user can
change the current view to reveal other parts of the virtual
environment.

At last we will present a selection of systems that incor-
porate the position of the user to offer the appropriate
perspective. Some of them use shutter glasses and com-
pute a different picture for each eye to intensify the three-

18 3 Related Work

dimensional effect. We will finish this chapter with a com-
parison of the different projects, which will also point out
the differences to our approach.

3.1 Mobile Augmented Reality

As said in the introduction, there are many approaches forSymbian port of
ARToolkit determines
the position of the
device

Augmented Reality on mobile devices. One of these ap-
proaches was made by Henrysson and Ollila [2004]. In their
work they ported the ARToolkit to Symbian cell phones.
This framework has then been used in several projects like
AR Tennis [Henrysson et al., 2006], where two users play
a game of virtual tennis with their cell phones and a set of
markers is used to position the tennis court (see Figure 3.1).

Figure 3.1: Scene from the AR Tennis project where a
marker is used to determine the position of the mobile
phone, from Henrysson et al. [2006]

Guidance systems also are a field of application for mo-Guidance systems
popular application
for mobile
Augmented Reality

bile Augmented Reality systems. Schmalstieg and Wagner
[2005] proposed such a system, which provides relevant in-

3.1 Mobile Augmented Reality 19

formation in dependence of the current context. To accom-
plish this they use a low cost PDA (Personal Digital Assis-
tant) with an external camera and perform fiducial marker
tracking. The 3D content that is displayed here is stored on
a database server and is transferred to each device on de-
mand. A picture of the device and a snapshot of the display
can be seen in Figure 3.2.

Figure 3.2: Screenshot of the guidance system by Schmal-
stieg and Wagner [2005] which uses fiducial markers

Another approach was presented by Jung et al. [2007]. Scene structure
awareness used to
determine position

Their guidance system uses a markerless place recognition
technique and scene structure awareness to determine the
current position and to align the virtual content with the
live video. The device can then present additional infor-
mation about the places in sight and adjust the position of
this information to the current camera picture. Figure 3.3
shows the result of this image-based modeling method.

LAMP3D (Location-Aware Mobile Presentation of 3D con- Virtual tour to show
places of interest to
visitors

tent) by Burigat and Chittaro [2005] is also a mobile device
to guide tourists and provide additional information. This
system offers three modes of operation. In GPS-based
navigation the data delivered by the GPS module is
used to estimate the position of the user and display the
appropriate VRML (Virtual Reality Modeling Language)
content (see Figure 3.4). The second mode, manual
navigation, can be used to explore the city off-line or to

20 3 Related Work

plan a route and the last mode, replayed navigation,
plays back a virtual tour based on previously recorded
location and orientation information.

Figure 3.3: Input image after the structure is analyzed
and the corresponding content is overlaid, from Jung et al.
[2007]

Figure 3.4: Guidance system which shows 3D models and
additional information based on the current location, from
Burigat and Chittaro [2005]

Gleue and Dähne [2001] tried a different approach for theReconstructions are
overlaid on live video ARCHEOGUIDE (Augmented Reality-based Cultural HEr-

itage On-site GUIDE) project. Their system presents vir-
tual reconstructions of buildings within the real environ-
ment. Therefore it uses a backpack with a mobile computer

3.1 Mobile Augmented Reality 21

and a HMD (Head-Mounted Display). The user position is
tracked by a GPS (Global Positioning System) and an elec-
tronic compass is used to determine the orientation of the
user’s head. In Figure 3.5 a user with all required equip-
ment is shown.

Figure 3.5: Equipment needed for the ARCHEOGUIDE
project. The user has to wear a backpack and a HMD, from
Gleue and Dähne [2001]

22 3 Related Work

Schiele et al. [2001] presented a similar attempt for aGuide displays
auxiliary content on
objects in view

virtual museum guide. The system also consists of a
HMD and a backpack with a mobile computer. In the
first step a database is filled with audio and video content
that should be played if a certain object is in the field of
view. This can either be done by the user itself or, for
example, by an museum employee. Whenever one of the
trained objects comes into the sight of the camera, the pre-
viously stored content is overlaid on the current live image.

For ARQuake, Thomas et al. [2002] extended the gameVirtual walls comply
with real walls Quake by id Software to an Augmented Reality applica-

tion. Therefore the levels of the game where modeled af-
ter real locations so that walls or ceilings don’t have to be
drawn and the levels inside the game comply to the real
environment. Augmented Reality content like enemies and
the GUI is overlaid to give the user the impression of a
real game (see Figure 3.6). Tracking in this system is im-
plemented with a combination of a GPS, a compass (for
outdoor tracking without buildings in sight) and fiducial
markers (for outdoor tracking near buildings and for in-
door tracking). The hardware configuration of ARQuake
corresponds to the ARCHEOGUIDE system and is there-
fore too heavy to be used over a long period of time.

3.2 Spatially Aware Devices

There are also some systems which incorporate the positionBoom mounting
alleviates the weight
of the device

of the device, but are not mobile. The Boom Chameleon by
Tsang et al. [2002] is such a system. It consists of a boom
mounted LCD (Liquid Crystal Display) panel with touch-
screen functionality, a computer, a microphone and a pair
of speakers (see Figure 3.7). From the angles of the various
joints of the boom the system can determine the position
and orientation of the LCD panel and display the appropri-
ate view onto the scene. Then the user can make annota-
tions or record whole review sessions for later playback.

3.2 Spatially Aware Devices 23

Figure 3.6: Scene from ARQuake which is shown on the
head mounted display, from Thomas et al. [2002]

Figure 3.7: With the Boom Chameleon the user can navi-
gate around the 3D model and place comments, from Tsang
et al. [2002]

24 3 Related Work

Another approach was made by Hirota and Saeki [2007].Volume slices are
displayed based on
the orientation of the
device

The Cross-section Projector is used to view volume data in
an intuitive way. Here multiple laser displacement sensors
are used to determine the distance and orientation of the
screen plane (see Figure 3.8). A liquid crystal projector is
then used to generate the image on it. The system offers
two different modes, depending on how the user moves
the screen plane. If the screen plane is moved fast enough,
a 3D image of the volume data is displayed, otherwise it
shows single slices of the data.

Figure 3.8: Screen panel showing a slice of the volume data
according to the orientation of the screen plane, from Hirota
and Saeki [2007]

Chameleon, the prototype presented by Fitzmaurice [1993],Moving the device
translates the
window into the the
virtual world

was one of the first approaches for the so-called peephole
metaphor. In this metaphor a spatially aware mobile de-
vice serves as connection between the real and the virtual
world. The prototype consists of a small LCD monitor with
an attached button and a six degree input device, a Silicon
Graphics workstation and a camera, which captures that
part of the large workstation screen which is currently vis-
ible on the mobile device. Moving the monitor horizon-
tally or vertically adjusts the ”peephole” accordingly in the

3.2 Spatially Aware Devices 25

virtual world, while a translation forwards or backwards
equates to zooming in or out of the picture. The relation-
ship between the virtual workspace and what is displayed
on the screen is shown in Figure 3.9.

Figure 3.9: Relationship between the peephole and the
virtual workspace, which is in the background, from Yee
[2003]

Yee [2003] in his proposal presented two prototypes. The Virtual workspace
can be much larger
than the current
visible portion

first prototype was built using a Handspring Visor and im-
plements a two-dimensional ”peephole” without zooming.
An example application for it is the Peephole Doodle Pad,
which can be seen in Figure 3.10. In this picture a circle
larger than the display size is drawn by moving the Visor
simultaneously. The second prototype was extended with
a tracker which is able to track three dimensions.

26 3 Related Work

Figure 3.10: The Peephole Doodle Pad in this example is
used to draw a circle which is larger then the display onto
the virtual workspace, from Yee [2003]

3.3 User-centered Perspective

In this section we will present some systems that incor-Movement of the
head changes the
camera view

porate the position of the user to provide the appropriate
perspective. Cooperstock et al. [1995] proposed such a
system to aid video conferences and give attendees the
feel of fully participating rather than only watching the
meeting. Hence the system tries to track the attendees head
by comparing the current image to a reference image and
then adjusts the remote camera via an attached motor.

3.3 User-centered Perspective 27

The E-conic project was introduced by Nacenta et al. [2007]. Previous knowledge
about the setup and
tracking results used
to determine correct
perspective

It is an interface to dynamically correct the perspective of
displayed content in multi-display environments. For this
purpose the user’s head is tracked with an ultrasonic three
degree of freedom tracking system, while mobile devices
are tracked with a combination of ultrasonic and inertial
tracking. All information about static displays like location,
size and orientation are stored in a geometry server, which
then enables the system to calculate the perspective correc-
tion for every display and every mobile device (see Figure
3.11).
The correct perspective can now be determined by putting
all objects that should be displayed onto a virtual plane that
is perpendicular to the user’s viewing direction and pro-
jecting this plane onto the displays.

Figure 3.11: After the determination of the user’s position
relative to the monitors the content can be displayed in the
correct perspective, from Nacenta et al. [2007]

Another HCD (Head-Coupled Display) solution was pro- Head-coupled
display as
replacement for real
window

posed by Radikovic et al. [2005]. Their artificial window
was intended for windowless environments as a substitute
for a real window. The system uses a camera and head-
tracking software to determine the position of the user in
front of the screen and to adapt the perspective.

28 3 Related Work

Creation of the picture is then done with image-based
rendering methods to achieve a realistic view in real-time.

At the 1992 SIGGRAPH the first CAVE (Cave AutomaticShutter glasses
provide stereo vision Virtual Environment) was presented by Cruz-Neira et al.

[1992] (also see [Cruz-Neira et al., 1993]). A CAVE is built
up from five projection screens that form a room. The
pictures are created by high-resolution projectors, which
project the images onto mirrors from where they are re-
flected onto the screens. Tracking of the user’s head is done
with electromagnetic sensors that are mounted to Stereo-
scopic LCD shutter glasses. The glasses are needed to sepa-
rate the images for the left and right eye. From the position
of the user’s head the correct user-centered perspective can
be computed and the user can move freely inside the vir-
tual world.

Figure 3.12: Photograph of the CAVE at the RWTH Aachen,
which can be used to simulate virtual environments

3.4 Comparison 29

With the ImmersaDesk and the Infinity Wall Czernuszenko More affordable
systems with one
projection screen

et al. [1997] presented two derivatives of the CAVE that
are much more affordable. The ImmersaDesk consists of
a rear-projected screen, which is mounted at an angle of
45 degrees. Because of the rotation the user is able to look
forward and downward. To perceive three-dimensional
pictures the user here also has to wear shutter glasses. The
position and orientation of the head of the primary user
are tracked and the perspective is adjusted accordingly.
In contrast to the ImmersaDesk the Infinity Wall was built
with a much larger screen, as it was intended for presen-
tations in front of large groups. Like the ImmersaDesk the
perspective of the Infinity Wall can be controlled by either
the primary shutter glasses with the attached tracking
system or by a wand.

In 2007 Lee presented a head-tracking approach which uti- Wii remote used to
track LED pointslizes two infrared LEDs (Light-Emitting Diode) which are

mounted to a pair of glasses and the Nintendo Wii remote.
The Wii remote is connected to a computer via Bluetooth
and is placed above or below a screen. Tracking of the two
LEDs is accomplished with the internal 1024× 768 infrared
camera of the Wii remote which also contains hardware to
track four of these infrared dots at 100Hz simultaneously.

3.4 Comparison

Most of the approaches we presented in the first section of Lightweight and
inexpensive solutions
for mobile AR

this chapter utilize a mobile phone or a PDA to display the
virtual content and to calculate the position of the device
itself (Henrysson and Ollila [2004], Schmalstieg and Wag-
ner [2005], Jung et al. [2007], Burigat and Chittaro [2005]).
Those devices are very lightweight and therefore allow the
usage over a long period of time. They are also cost saving,
since most persons already own a mobile phone or a PDA.
But due to the limited processing power they would still be
too slow to achieve eye tracking at interactive frame rates
without additional hardware. This means that they can not
yet offer an user-centered perspective.

30 3 Related Work

The other projects in this section follow a different ap-Head-mounted
displays can cause
cybersickness

proach. They use an additional computer in a backpack
for the processing part and display the resulting image on
a head-mounted display (Gleue and Dähne [2001], Schiele
et al. [2001], Thomas et al. [2002]). Due to the use of the
HMD this systems offer an user-centered perspective but
are also costly. Besides that, the usage of head mounted
displays can lead to motion sickness or cybersickness (see
McCauley and Sharkey [1992] or Joseph J. LaViola [1999]),
which occurs if the visually perceived motion does not
correspond to the motion observed by the other sense
organs. The resulting symptoms of this are dizziness
and nausea, which can significantly affect the usability
of the device. Mobile devices that offer user-centered
perspective are not affected by this phenomenon as much
as head-mounted displays are, since the user is not forced
to look at the screen all the time.

In the second section we showed some spatially awareViewing position
does not influence
the visable area

devices that, in their own way, also create a window
into a virtual world. None of them however offers an
user-centered perspective, so the displayed content only
depends on the position and orientation of the device.
The first two approaches we presented in this section
were both not mobile and did use special hardware to
achieve the tracking (Tsang et al. [2002], Hirota and Saeki
[2007]). Therefore they did not meet our requirements.
The other two projects which we showed in this section
are representatives of the peephole metaphor (Fitzmaurice
[1993], Yee [2003]). Both of them are mobile and do not
require the use of special hardware but they do not offer an
user-centered perspective either.

3.4 Comparison 31

The third section then presented some projects which ex- Almost all systems
that provide the
correct perspective
are stationary

plicitly incorporate the position of the user to calculate the
user-centered perspective (Cooperstock et al. [1995], Na-
centa et al. [2007], Radikovic et al. [2005], Cruz-Neira et al.
[1992], Czernuszenko et al. [1997], Lee). Unfortunately only
one of them is mobile and most of them are very costly. Fur-
thermore the system by Nacenta et al. [2007] is only par-
tially mobile, since the tracking hardware has to be set up
correctly. Table 3.1 shows a comparison of all different ap-
proaches.

32 3 Related Work

Ta
bl

e
3.

1:
C

om
pa

ri
so

n
of

th
e

di
ff

er
en

ta
pp

ro
ac

he
s

Pa
pe

r
M

ob
il

e
U

se
r-

ce
nt

er
ed

pe
rs

pe
ct

iv
e

C
os

ts
av

in
g

U
se

s
sp

ec
ia

l
ha

rd
w

ar
e

H
en

ry
ss

on
an

d
O

lli
la

[2
00

4]
√

×
√

×

Sc
hm

al
st

ie
g

an
d

W
ag

ne
r

[2
00

5]
√

×
√

×

Ju
ng

et
al

.[
20

07
]

√
×

√
×

Bu
ri

ga
ta

nd
C

hi
tt

ar
o

[2
00

5]
√

×
√

×

G
le

ue
an

d
D

äh
ne

[2
00

1]
√

√
×

√

Sc
hi

el
e

et
al

.[
20

01
]

√
√

×
√

T
ho

m
as

et
al

.[
20

02
]

√
√

×
√

Ts
an

g
et

al
.[

20
02

]
×

×
×

√

H
ir

ot
a

an
d

Sa
ek

i[
20

07
]

×
×

×
√

Fi
tz

m
au

ri
ce

[1
99

3]
√

×
√

×

Ye
e

[2
00

3]
√

×
√

×

C
oo

pe
rs

to
ck

et
al

.[
19

95
]

×
√

×
√

N
ac

en
ta

et
al

.[
20

07
]

√
√

×
√

R
ad

ik
ov

ic
et

al
.[

20
05

]
×

√
√

×

C
ru

z-
N

ei
ra

et
al

.[
19

92
]

×
√

×
√

C
ze

rn
us

ze
nk

o
et

al
.[

19
97

]
×

√
×

√

Le
e

×
√

√
√

33

Chapter 4

System Design and
Implementation

“Everything has beauty, but not everyone sees
it.”

—Confucius

In the previous chapter we introduced some research
projects which deal with Augmented Reality and user-
centered perspective. One of the problems combining these
two areas is that the device can not just display the camera
image from a static perspective. The perspective has to
be readjusted every time the user changes his point of view.

As we did not see any way how to achieve this on our
mobile device, we instead resorted to showing a complete
virtual scene in which we tried to reproduce the real world
as accurately as it was possible on this limited hardware.
We also had to find a balance between visual realism and
usability, as especially the eye tracking algorithm takes up
a lot of resources and we thought that smooth interaction
with the device was crucial for our approach.

34 4 System Design and Implementation

The contents of this chapter show which hardware we used,
provide a detailed view on how the software was imple-
mented and give a description of the used methods. For
this we concentrate on the essential parts of the software
and omit trivial things like setting up windows or creating
buttons.

4.1 Hardware Setup

As platform for our application we chose the ModbookTablet computer with
two connected
cameras

by Axiotron (see Figure 4.1). The Modbook is a slate-
style tablet Mac, which runs Mac OS X v10.5 Leopard. It
is equipped with a 2.4GHz Intel Core 2 Duo CPU, 2GB
of 667MHz DDR2 SDRAM, an Intel GMA X3100 graphics
chipset and a built-in iSight camera that we used for eye
tracking. The widescreen display of the device measures
13.3 inch in diagonal and has a native resolution of 1280 by
800 pixels. As the base system for the Modbook is a Apple
MacBook computer, it unfortunately weighs 2.5kg.

Figure 4.1: The Modbook by Axiotron, which we used as
basis for our prototype, from Axiotron

4.2 Software Implementation 35

For marker tracking we additionally connected an external Modified notebook
bag used as case for
Modbook

iSight camera. Since we wanted to take the users the fear
of dropping the device, we also built a special case with
two straps at the side to provide a better grip. The external
camera was then mounted perpendicular at the center of
the backside of this case.

Alongside the camera we placed a mouse, which gave the Mouse mounted to
backside of deviceusers the ability to freeze the current view and start an

annotation without loosing the control over the device.
Figure 4.2 shows a picture of this construction.

As markers we used the patterns that were provided in Change of markers
improved the
recognition rate

the examples of the ARToolkit Patternmaker by Johnson
et al.. They achieved a higher recognition rate and less
errors than the patterns that come with ARToolkit and
could be used at higher distances. We used ten markers
with the size of 135mm × 135mm and five with the size of
67.5mm × 67.5mm. Then we glued each one of them to a
piece of cardboard to avoid wrinkles and to give them more
weight.

4.2 Software Implementation

The software was meant to be multi-platform, so we used C++ used for
compatibility to
multiple platforms

C++ as the programming language in conjunction with QT
by Trolltech, to build the GUI (Graphical User Interface)
and access OpenGL, which we used to render the virtual
scene. For image processing we included OpenCV by Intel,
because it offers many useful functions and its examples
were a good starting point. Marker tracking is done with
ARToolkit, which was originally developed by Kato and
Billinghurst [1999] and can now be found at the Human
Interface Technology Lab. We additionally extended it
with a multi-marker recognition algorithm to improve
stability.

36 4 System Design and Implementation

Figure 4.2: The case we built for the Modbook. The straps on the sides should give
users a good grip of the device

The capturing of the camera images is handled differentlyCamera capturing
works platform
dependent

depending on which platform the software runs on. On
Macintosh we use the video functionality of ARToolkit and
one of QT’s built-in timers for camera capturing, whereas
on Windows the videoInput library by Watson and a
dedicated camera capture thread (camthread.cpp) are
used. We restricted the size of the captured images on both
platforms to 320 × 240 pixels to speed up the recognition
process.

VirlWind supports different operation modes, which can beOperation modes for
different application
possibilities

initialized by calling the application with the correspond-
ing command line parameter :

• ’’-test’’ : Measurement mode
Displays a model of a box with pits and bulges, where
we hid letters which the participants of the user stud-
ies had to find

• ’’-ar’’ : Augmented Reality mode
Displays the same model as the ”Measurement
mode”, but with exchanged letters and with the cur-
rent picture of the marker tracking camera as back-
ground

4.2 Software Implementation 37

• ’’-annotate’’ : Annotation mode
Displays a faulty model of a car to test the annotation
feature of the software

• ’’-volume’’ : Volume mode
Displays a computed tomography volume of a head

If no parameter is given, the software starts into the ”Mea-
surement mode”. At start the software switches to full-
screen and displays a virtual scene depending on which
operation mode was chosen (see Figure 4.3).

Figure 4.3: Screenshot of VirlWind in ”Volume mode”

During the initialization phase VirlWind searches for con- First two cameras
used for trackingnected cameras and if two or more are found, the first two

of them are used as input for the eye tracking algorithm and
the marker tracking algorithm. Whenever there are new
captured images, they are fed into the tracking algorithms.
If no eyes are found in the captured image a warning sign
is displayed at the top of the screen as can be seen in Figure
4.4.

38 4 System Design and Implementation

Figure 4.4: If no eyes are found, VirlWind displays a warn-
ing message on the top side of the window

We also included a display mode which shows someOther displaymode
used for
configuration and
information output

additional information. Here the main window
(mainwindow.cpp) is split up into an status area, the
OpenGL rendering area (glwidget.cpp), the eye track-
ing window (facetracker.cpp) and a window for
marker tracking (markertracker.cpp). This is shown
in Figure 4.5. It can be accessed by clicking the red square
in the upper left corner of the OpenGL window, which
appears when you hover above it. The status area that is
displayed consists of

• a label showing the eye tracking status,

• a label showing the estimated translation of the face
to the camera,

• a label showing the number of currently captured im-
ages per second,

• a button to quit the program,

• a button to save all previously made annotations and

• a button for further options like disabling/enabling
tracking or adjusting the number of slices for volume
rendering.

4.2 Software Implementation 39

Figure 4.5: Screenshot of VirlWind with additional information, like the eye track-
ing status and the estimated translation of the user’s head

This mode also gives the user the opportunity to switch
camera inputs by clicking on one of the two camera
windows.

In the following subsection we will give an in detail view
of the various steps that our system performs to display the
appropriate view.

40 4 System Design and Implementation

4.2.1 Eye Tracking

At first we have to search for possible eye regions. In these
areas we will later search for irides to stabilize the result
and reduce the amount of false positives.

Finding the Eye Regions

Eye tracking is done in the corresponding widgetDifferent classifiers
for eye region
detection

facetracker.cpp. It uses three different Haar classifiers
in the process of finding the eye regions

• haarcascade frontalface alt2.xml : Face
classifier, which is bundled with OpenCV

• haarcascade eye.xml : Eye classifier, which was
created by Shan

• eyes22x5.xml : Eye-pair classifier, which was cre-
ated by Castrillón Santana et al. [2007]

Whenever a new image camimg is capturedPossible eye regions
searched for irides

void detect and draw(IplImage* camimg)

is called. It first creates a smaller gray version of the image
to speed up Haar detection. The algorithm then performs
three steps to detect the eye regions. If one of these ap-
proaches succeeds the resulting areas are checked with the
findIris function and, if an iris is found, new templates
of these eye regions are created. Otherwise the algorithm
proceeds with the next step.

1. First the algorithm uses the face classifier to detect the
largest face in the image. If a face is found, it copies
the upper left and upper right quarters to own buffers
and searches these with the eye classifier.

2. If no face is found in the first step, but there exist tem-
plates for the eye regions, template matching is done.

4.2 Software Implementation 41

3. If still no eyes were found, the eye pair classifier is
used to identify the largest pair of eyes in the image.

Figure 4.6 depicts the whole process of finding the eye re-
gions.

Finding the Iris

After a possible eye region is found, the algorithm tries to
locate an iris inside this area. For this the function

bool findIris(IplImage *src, CvPoint

*eyePoint, int rectSize)

is called. As arguments the function takes the BGR-
format input image, the estimated eye position
eyePoint and rectSize so that (eyePoint.x ±
rectSize, eyePoint.y ± rectSize) is the search
window. If an iris is found, findIris succeeds and
returns the corresponding image point in eyePoint.

The algorithm starts by separating the red channel of the Equalize histogram
to increase image
contrast

input image’s search window. We choose the red channel,
because it proved to be the most responsive to skin color.
Then the histogram of this image is equalized and a median
filter with a window size of 15× 15 is applied.

MEDIAN FILTERING:
The median filter is a spatial filter, which is normally
used to reduce noise in images. Therefore a window with
an odd number of samples is defined centered around
each pixel. The pixel value is then replaced by the me-
dian value of all samples in this window.

Definition:
Median filtering

42 4 System Design and Implementation
In

pu
t i

m
ag

e
Se

ar
ch

 fo
r e

ye
 re

gi
on

s

w
ith

 fa
ce

 c
la

ss
ifi

er
an

d
ey

e
cl

as
si

fie
r

w
ith

 e
ye

 p
ai

r c
la

ss
ifi

er

w
ith

 te
m

pl
at

es

C
ap

tu
re

 n
ew

 im
ag

e

Fi
nd

 th
e

ir
id

es
C

re
at

e
ey

e
re

gi
on

 te
m

pl
at

es

fa
ilu

re

fa
ilu

re

fa
ilu

re

su
cc

es
s

su
cc

es
s

su
cc

es
s

Fi
gu

re
4.

6:
Ey

e
tr

ac
ki

ng
pr

oc
es

s
:

A
ft

er
se

ar
ch

in
g

th
e

ey
e

re
gi

on
s

w
it

h
th

re
e

di
ff

er
en

t
ap

pr
oa

ch
es

th
e

al
go

ri
th

m
st

ar
ts

to
se

ar
ch

fo
r

th
e

ir
id

es
an

d
cr

ea
te

s
te

m
pl

at
es

of
th

e
su

rr
ou

nd
in

g
re

gi
on

s

4.2 Software Implementation 43

As last step the template shown in Figure 4.7 is searched Template matching
improves eye
positions

inside the image with template matching. If the confidence
value of the result is above a certain level, we presume that
we found an iris and the corresponding point is marked
with a small circle in the associated camera window.

Figure 4.7: The template image we used to search for the
iris. In most cases this template worked well and gave us
the correct location

If both irides were found, the coordinates are passed on to
the calcEyePosition function to estimate the real world
coordinates of the user’s head. The whole process of find-
ing the eyes is depicted in Figure 4.8.

44 4 System Design and Implementation

Input image Separated red channel Equalized histogram

Median filteringResult Template matching

Figure 4.8: After equalizing the histogram of the red channel of our input image,
we run a median filter on it and use template matching with the image of Figure
4.7 as template to find the iris coordinates

4.2.2 Marker Tracking

Marker tracking in our system is done with ARToolkit (seeMulti-marker
algorithm more
stable

Chapter 2.4—“Marker Tracking” for an explanation on
how it works). But tracking just one marker was not stable
enough and the multi-marker approach of ARToolkit
was too inflexible, so we added another multi-marker
algorithm.

With this algorithm the user just has to specify which mark-Initialization pass
collects all marker
positions

ers are used, but not their exact position relative to the ori-
gin. This can be done in the initialization file marker.ini.
We define the origin to lie at the center of the first marker
(marker 0) which is specified.

4.2 Software Implementation 45

During the execution of the program we then memorize for
every marker if it is visible in this pass and if it was found
before. If a marker is recognized which has not been found
before, its position can be calculated with the matrices that
ARToolkit provides us.

There are two cases which have to be dealt with if a marker
i that is recognized for the first time gets visible :

1. Marker 0 is visible

2. Marker 0 is not visible, but marker j, which was
found before and whose position is therefore known,
is visible

RELATIVE TRANSFORMATION:
If A is the transformation matrix for marker a and B is
the transformation matrix for marker b, then we define
the relative transformation from marker a to marker b as
matrix B′, so that
A ·B′ = B.

Definition:
Relative
Transformation

In the first case we get the relative transformation for
marker i as

A ·B′ = B
⇔ B′ = A−1 ·B

whereas A and B are the transformation matrices for
marker 0 and i that are returned by ARToolkit and B′ is
the relative transformation matrix from marker 0 to marker
i.

The second case also is not very difficult. Here we first cal- Relative
transformations
propagate to all
newly found markers

culate the relative transformation from marker j to marker
i as

B′ = A−1 ·B

46 4 System Design and Implementation

Then we get the final transformation B′′ by multiplying B′

by the relative transformation A′ from marker 0 to marker
j

B′′ = A′ ·B′ = A′ ·A−1 ·B

With these equations we can then calculate the relativePositions saved for
next execution position of every marker to the origin automatically. If the

user quits the application, these positions are saved into
marker.ini.sav and used for the next start.

Since in some cases we got more than one transformationDifferent matrices
are combined for
improved stability

matrix with corresponding errors estimates, we can use
this additional information to stabilize the tracking result.
For this we resorted to quaternions (see B—“Quaternions”
for an explanation of quaternions) instead of matrices,
because they are easier to interpolate.

The algorithm starts by calculating the transformation ma-Quaternions are
used to combine the
different
transformations

trix B in the basis of marker 0 for all markers whose rela-
tive transformations are known and which are visible at the
moment

B = A ·A′−1.

Here A represents the transformation matrix of the corre-
sponding marker i and A′, as before, represents the relative
transformation from marker 0 to marker i. Then this
matrix is converted into a quaternion q and translational
components p[0], p[1] and p[2].

In the next step all of these quaternions and translation val-
ues are summed up relative to their associated confidence
values, which can be obtained from the ARMarkerInfo
structure, and at last they are divided by the sum of all con-
fidences to get an unit quaternion. This quaternion with
translation values is then converted back to a 4 × 4 matrix
and forwarded to the rendering widget for perspective cal-
culations.

4.2 Software Implementation 47

4.2.3 Calculating the User-centered Perspective

To calculate the user-centered perspective we first have to Pinhole camera
model approximates
mapping from 3D to
2D

estimate the position of the user’s head relative to the mo-
bile device. For this we will resort to the pinhole camera
model (for an explanation see Appendix A—“The Pinhole
Camera Model”).

Finding the Real-world Coordinates

In order to determine the real world position of the head Focal length needed
for computationrelative to the mobile device, we need the focal length of

the used camera in millimeters. Unfortunately, the camera
calibration algorithm of ARToolkit only gives us fx and fy,
the horizontal and vertical focal lengths in pixel units.

fx =
focal length[mm]
pixel width[mmPixel]

fy =
focal length[mm]
pixel height[mmPixel]

Therefore we need to know the pixel size of the camera,
to calculate the focal length in millimeters and convert
the image plane coordinates to millimeter units. For our
device we used iSight cameras, which have a pixel size of
2.2µm× 2.2µm.

In Figure 4.9 the scene is shown from the top view. From Interpupillary
distance assumed to
be 63 millimeters

the Pythagorean theorem we can conclude that

AP
2 = (

AB

2
)2 + z2

⇔ z2 = AP
2 − (

AB

2
)2

⇒ z =

√
AP

2 − (
AB

2
)2

, where AB specifies the distance from point A to point B.

48 4 System Design and Implementation

Pinhole camera

P

A

B

A‘

B‘

z - distance eyes to camera

f - focal length

pu
pi

l d
is

ta
nc

e
in

 re
al

 w
or

ld
 (m

ill
im

et
er

)

pu
pi

l d
is

ta
nc

e
in

 im
ag

e
pl

an
e

(m
ill

im
et

er
)

Figure 4.9: The pinhole camera model we used to estimate the distance of the
viewer to the internal camera

This distance is also known as interpupillary distance and
we estimate it to be 63 millimeters, which is the mean value
for adults [Dodgson, 2004].

AP = PA can then be calculated with the theorem on in-
tersecting lines

A′B′ : AB = PA′ : PA

⇔ PA = (PA′ ·AB) : A′B′

Here we can again use the Pythagorean theorem to deter-
mine PA′

PA′
2 = f2 + (

A′B′

2
)2

PA′ =

√
f2 + (

A′B′

2
)2

so that PA can be written as

PA =

√
f2+(A

′B′
2

)2·AB
A′B′

4.2 Software Implementation 49

Inserting this partial result then yields the final solution

z =

√√√√
(

√
f2 + (A′B′

2)2 ·AB
A′B′

)2 − (
AB

2
)2

=

√√√√(f2 + A′B′2

4) ·AB2

A′B′
2 − AB

2

4

= AB ·

√√√√f2 + A′B′2

4

A′B′
2 − 1

4

= AB ·

√
f2

A′B′
2

=
AB · f
A′B′

After we have determined the distance of the viewer to the Translation computed
based on the
midpoint of both eyes

mobile device, we can calculate the horizontal and vertical
translation based on this distance. For this we compute the
x and y coordinates of the point (midx,midy), which lies in
the middle between both eyes. This point is represented in
Figure 4.10 as black dot.

The computation of the real world coordinates then works
in a similar way to the computation of the distance

x2 = AP
2 − z2

y2 = AP
2 − z2

and again we can use the theorem on intersecting lines

2 ·A′B′ : 2 ·AB = PA′ : PA

⇔ PA = (PA′ ·AB) : A′B′

To eliminate the unknown, we then express PA′ as

PA′ =
√
f2 +A′B′

2

⇒PA =

√
f2 +A′B′

2 ·AB
A′B′

50 4 System Design and Implementation

Pinhole camera

P

A

B

A‘

B‘

z - distance eyes to camera

f - focal length

Translation
in real w

orld
Tr

an
sl

at
io

n
in

 im
ag

e
pl

an
e

Figure 4.10: The pinhole camera model we used to determine the x and y transla-
tion based on the previously calculated distance

Inserting this leads to

x2 = (

√
f2 +midx

2 · x
midx

)2 − z2

=
(f2 +midx

2) · x2

midx
2 − z2

=
f2 · x2

midx
2 +

midx
2 · x2

midx
2 − z2

=
f2 · x2

midx
2 + x2 − z2

⇒ x2 =
z2 ·midx2

f2

Since the calculation of y works analogously, we can con-
clude

x =
z ·midx

f

⇒ y =
z ·midy

f

4.2 Software Implementation 51

Creating the Matrices

In the last step the information we gained from marker Combination of
tracking results
yields user-centered
perspective

tracking and eye tracking have to be combined into a
model-view matrix and a projection matrix to setup the
OpenGL rendering window. With the model-view matrix,
every point is first transferred into the coordinate system of
the device by multiplying it with m Matrix and then it is
transferred into the coordinate system of the viewer. This
is done with the procedure gluLookAt, which creates a
viewing matrix based on the

1. eye position,

2. the point where the camera is targeted at and

3. an up-vector, which defines the orientation of the
camera.

The real world coordinates of the viewer in this case are
represented by trans x, trans y and trans z. Since in
OpenGL the matrices are multiplied to the left side of the
vector and concatenated transformations are applied from
right to left, we need to reverse the order of the operations
to yield the correct result.

glMatrixMode(GL MODELVIEW);
glLoadIdentity();

gluLookAt(trans x, trans y, trans z,
trans x, trans y, 0.0f,
0.0f, 1.0f, 0.0f);

glMultMatrixd(m Matrix);

52 4 System Design and Implementation

Then we set up the viewing frustum according to theThe viewing frustum
specifies the field of
view of the virtual
camera

position of the viewer and the width of the screen
(screenWidthMM). For this we call glFrustum, which
creates a perspective projection matrix with

1. the left and right vertical clipping planes,

2. the bottom and top horizontal clipping planes and

3. the near and far depth clipping planes.

The clipping planes for the four sides are furthermore
multiplied by nearPlane / trans z to keep the near
plane at a fixed distance.

GLfloat nearPlane = 0.1f;
GLfloat hwidth = screenWidthMM / 2.0f;
GLfloat hheight = hwidth / aspect ratio;

glMatrixMode(GL PROJECTION);
glLoadIdentity ();

glFrustum(nearPlane*(trans x - hwidth)/trans z,
nearPlane*(trans x + hwidth)/trans z,
nearPlane*(trans y - hheight)/trans z,
nearPlane*(trans y + hheight)/trans z,
nearPlane, 10000);

After these matrices are set the OpenGL window is ready
and we can start drawing the appropriate content based on
the operation mode.

4.2 Software Implementation 53

4.2.4 OpenGL Rendering

We wanted to display three-dimensional models, so we Associated mtl file
defines the materials
used in the model

included the GLM library by Robins to load and render
Wavefront obj files. The GLM library was provided in the
examples of the GLUT (OpenGL Utility Toolkit) source
distribution. We choose the obj format, because the files
have a simple structure and most modeling applications
provide an export option for it.

To use textured models we extended the library with the

GLuint glmInitTexture(char* texName)

function, which loads the texture specified by texName
with OpenCV’s image functionality and returns a GLuint,
which can be used by OpenGL. We also embedded the
draw commands into Display lists to speed up the render-
ing process.

As shadows are a strong cue for the relative disposition of Shadows provide
information about
relation between
objects

objects in images, we included a three pass shadow map-
ping approach into our rendering process (see Appendix
C—“Shadow Mapping” for an explanation of shadow
mapping). For this we used frame buffer objects to store
the depth map, because in this way the size of the depth
map was not limited by the resolution of the display.

Since we needed some OpenGL extensions, we addition- GLee also used to
access shadersally included the GLee (GL Easy Extension) library by

Woodhouse. It is a cross-platform library, which aids in
accessing almost all OpenGL extensions. This way we
did not have to struggle with the varying implementation
details of the different platforms.

In the following we will describe for each operation mode
of our software which settings and what models were used.

54 4 System Design and Implementation

Measurement Mode

For the ”Measurement mode” we included a model of a
simple box with pits and bulges, where we hid letters
which the users had to find in the user test (see Figure 4.11).
As background for the box we choose a wooden texture that
should resemble the table on which we placed the markers.
To model the box we used Google SketchUp1 and exported
the result to obj file format.

Figure 4.11: Screenshot of the ”Measurement mode”,
where a simple model of a box is displayed

Augmented Reality Mode

Since we wanted to compare the normal Augmented Real-
ity approach to our approach with user-centered perspec-
tive, we implemented an ”Augmented Reality mode”. In
this mode the same model as in the ”Measurement mode”
is displayed, but with exchanged letters. The model is here
rendered on top of the current picture of the backside cam-
era. In Figure 4.12 this operation mode including one an-
notation, which is placed inside the world, can be seen.

1Free modeling software by Google http://sketchup.google.
com/

http://sketchup.google.com/
http://sketchup.google.com/

4.2 Software Implementation 55

Figure 4.12: Screenshot of the ”Augmented Reality mode”,
where the same model is displayed as in the ”Measurement
mode” but the background is exchanged with the current
picture of the camera on the backside. An annotation can
be seen, which was placed into the scene before

Annotation Mode

To test the annotation feature of our device, we imple-
mented an own ”Annotation mode”. In this mode a defec-
tive model of a car is displayed, with the intention, that the
user marks every flaw that he encounters. As can be seen
in Figure 4.13 we choose to include only blatant errors, so
that it is obvious for the user which points he has to mark.
To deform the car we again used Google SketchUp. For this
mode we additionally included simple reflections of the car
on the ground by rendering the model again, but this time
mirrored along the y-axis.

56 4 System Design and Implementation

Figure 4.13: Screenshot of the ”Annotation mode”, where
one can see clearly the wrong orientation of the tire and the
right mirror

Volume Mode

The ”Volume mode” shows one of the possible appli-
cations of our device. A computed tomography image
(CTheadsmall.raw) is displayed in front of a grid and the
user can navigate inside this volume, either by moving the
device or by moving the head. For this we implemented the
class VolumeRenderer, which loads a raw image file, in-
terprets the content as three-dimensional texture with pre-
defined measurements and displays it with the use of a ver-
tex shader.

In the program options, which can be reached in the view-
ing mode with additional information, the user can vary
the number of slices which are displayed simultaneously
as can be seen in Figure 4.14.

For this mode we disabled the shadow mapping algorithm,
since the displaying of the three-dimensional texture would
otherwise have been too slow.

4.2 Software Implementation 57

Figure 4.14: In the ”Options” section the user can control
the number of slices that are displayed and turn on or off
both tracking algorithms

4.2.5 Annotations

As said before, we also implemented an annotation feature Annotations can be
used to cooperate on
a project

to give users the ability to place comments inside the virtual
environment. A new annotation can be created by clicking
the left mouse button inside the rendering window and fin-
ished by clicking the right mouse button. The user can now
draw freely and for example mark bad parts of a model as
can be seen in Figure 4.15.

58 4 System Design and Implementation

Figure 4.15: To start an annotation the user has to click the
left mouse button, or with a touchscreen, just begin to draw
onto the desired locations

While the annotation mode is active any changes to thePerspective is frozen
during creation user’s perspective or the position of the device will be dis-

carded, so the user does not have to remain frozen for the
time of creation. After the creation is finished, the anno-
tation is placed inside the virtual world onto the position
where it was started (see Figure 4.16) and a bitmap file with
the current date and time is created inside the /pic folder.

Since the creation of many annotations could obscure theAnnotations can be
minimized object and confuse the user annotations can be minimized

in our system. This can be achieved by right-clicking onto
the designated comment. Figure 4.17 shows the same scene
as Figure 4.16, only with a minimized annotation.

4.2 Software Implementation 59

Figure 4.16: The previously created annotation is placed
onto the correct location and is rotated accordingly

Figure 4.17: By clicking with the right mouse button onto
an annotation the user can minimize it

61

Chapter 5

Evaluation

“No amount of experimentation can ever prove
me right; a single experiment can prove me wrong.”

—Albert Einstein

To evaluate our work we conducted two user studies. Users had to walk
around a virtual boxThe tests should show if the approach with user-centered

perspective brought advantages in comparison with the
normal Augmented Reality method or if it just confuses
the users. For this we placed the markers on a table, which
was situated in the middle of the room and calibrated our
device to these marker positions by hovering the device
over the markers until all their positions were known
(also see Subsection 4.2.2—“Marker Tracking”). Figure 5.1
shows the setup we used in our tests.

In the first two of the following sections we will start with
an analysis of the questionnaire we handed out after the
tests and in the third section we will compare the times we
measured. The contents of the last section will then be used
to summarize the results.

62 5 Evaluation

Figure 5.1: We placed the markers on a table and the users had to walk around to
find different letters

5.1 First User Test 63

5.1 First User Test

Our first test was split up into two phases. For the first Questionnaire should
give qualitative
feedback

phase the device was operated consecutively in the normal
Augmented Reality mode and then in our mode with eye
tracking. For each test person we exchanged the order of
the two approaches randomly and — as it was a single
blinded trial — the users had to compare ”Method A” to
”Method B”.

After a minute to adapt to the device, the users had to
find letters that were affixed to a box inside the virtual
world and say them aloud if they encounter one. Figure
5.2 shows the model of the box. They were then asked to
fill out a questionnaire to provide qualitative feedback. For
a quantitative comparison we measured the time the users
needed to fulfill the task.

With the second test phase we wanted to evaluate our Flaws were placed
obviouslyannotation feature. To evaluate this feature a faulty model

of a car was presented to the users and they had to mark
all obvious flaws. We then asked them to give qualitative
feedback about this feature, to find out if it was beneficial
to place the comments as half-transparent billboards inside
the virtual world (see Figure 5.3).

Our test group consisted of two females and six males.
Each of them was a computer science student between the
age of 24 and 30. Seven out of eight stated that they use
the computer everyday, whereas only one of them stated
that he uses 3D modeling programs more often than once a
week.

64 5 Evaluation

Figure 5.2: The model we used in the first user test. The letters were placed on each
side of the box, so the user had to walk around to find all of them

Figure 5.3: Car with an annotation, which points out the mistake in the model

5.1 First User Test 65

5.1.1 First Phase

The first test phase showed that the mean time the users
needed to find the letters were higher with user-centered
perspective. Only two participants were faster with our
approach and interestingly one of them was the person
who stated that he often uses modeling programs. All
participants had no problems in finding all letters.

The questionnaire we handed out after the tests yielded ”Real” background
more intuitive for
users

that, except one person, all of them favored the Augmented
Reality approach. As the answers to the other questions
pointed out, this can be lead back to the ”real” background
in the Augmented Reality approach and the, sometimes,
faulty eye tracking results. Every time a user moved out
of the field of view of the camera or moved too fast, the
tracking got lost. On the one hand this was due to the
opening angle of the camera, and on the other hand it was
due to tracking errors forced by an remaining uncertainty
in the underlying tracking algorithm.

This also explains why some participants noted that the Participants did not
notice that their eyes
were tracked

Augmented Reality approach felt ”smoother”, although
the tracking results were the same in both cases and both
approaches ran at the same rate of frames per second.
As it was a single blind trial we could not tell them that
eye tracking was used and, unfortunately, most persons
used the device the same way they did in the Augmented
Reality version.
An overview of the results of the questionnaire for the first
test can be found in Table 5.1.

66 5 Evaluation
St

ro
ng

ly
di

sa
gr

ee
D

is
ag

re
e

N
ei

th
er

ag
re

e
no

r
di

sa
gr

ee

A
gr

ee
St

ro
ng

ly
A

gr
ee

N
/A

Iw
ou

ld
us

e
m

et
ho

d
A

ug
m

en
te

d
R

ea
lit

y
1

2
5

V
ir

tu
al

R
ea

lit
y

w
it

h
ey

e
tr

ac
k-

in
g

4
1

3

R
eq

ui
re

s
m

or
e

at
te

nt
io

n
A

ug
m

en
te

d
R

ea
lit

y
2

6

V
ir

tu
al

R
ea

lit
y

w
it

h
ey

e
tr

ac
k-

in
g

5
3

N
av

ig
at

io
n

al
w

ay
s

be
ha

ve
d

lik
e

Ie
xp

ec
te

d
A

ug
m

en
te

d
R

ea
lit

y
1

6
1

V
ir

tu
al

R
ea

lit
y

w
it

h
ey

e
tr

ac
k-

in
g

6
2

Ta
bl

e
5.

1:
Th

e
co

m
pl

et
e

re
su

lt
s

of
th

e
fir

st
te

st

5.1 First User Test 67

5.1.2 Second phase

The questionnaire the users filled out after they found all
faults of the car model showed that half of the users liked
the idea of taking notes and placing them at the current po-
sition. They stated, that it was a good feature for group dis-
cussions and that additional features like zooming or high-
lighting of the marked area could be added.

Strongly
dis-

agree

Disagree Neither
agree

nor dis-
agree

Agree Strongly
Agree

N/A

Displaying the
annotations
inside the
virtual world
helped me

2 2 4

The annota-
tion method
always be-
haved like I
expected

2 2 4

Table 5.2: Results of the annotation test

After the questionnaire was finished, we asked the other Some users did not
see annotationshalf of the group what they did not like about this feature

and it showed, that they had not seen any of the annota-
tions they made previously. Some just noticed a small flash
up when they passed one, but they thought that it was an
error of the device.

68 5 Evaluation

5.2 Second User Test

Since most users preferred the Augmented Reality ap-Most users in the first
test preferred the
Augmented Reality
mode

proach because of the ”real” background and we could not
provide one for our approach, we modified the conditions
for the second user test. Instead of using our mode and
the Augmented Reality mode, we just used only the first
one. The eye tracking was then randomly disabled for the
first or second run. We additionally modified the model
that was used to include a bigger ledge under which we
also hid a letter as can be seen in Figure 5.4. In this way
we wanted to motivate the users also to use their head
movement to change the current view.

For the second user test the user group again consisted of
eight persons between the age of 24 and 30. Seven of them
were male computer science students and one of them was
a female sales assistant. The tasks the users had to fulfill
remained the same as in the first test and once again we
measured the time the users needed.

As the measured times suggest, the second test was harder
to cope with. The mean times the participants needed were
more than twice as large as in the first test.

Due to the changed conditions now all of the users discov-Changed conditions
also changed
outcome of the
questionnaire

ered that they also could use their head to yield a certain
view on the scene. This resulted in a slightly changed
outcome of the questionnaire. Now four of the eight
participants preferred our approach, while the other four
chose the approach with only marker tracking.

As we, after the questionnaire was finished, asked thoseInstability of eye
tracking confused
many users

four persons why they preferred the approach without
eye tracking, they replied that they would have chosen
our approach, if it would have been more stable. The
instability was, as in the first test, partially a result of the
small opening angle of the camera and partially of our eye
tracking algorithm, which, in some cases, produced false
positives.

5.2 Second User Test 69

Figure 5.4: The big ledge on the left side was added to make the user aware of the
eye tracking

In contrast to the first test, where most of the users only
employed the device itself to alter the viewpoint, this time
they also used the position of the head as can be seen
in Figure 5.5. To find the letter under the big ledge, for
example, some participants held the device fixed at a low
position and then tried to adjust the view by moving the
head up and down.

Table 5.3 summarizes all results of the questionnaire for the
second test.

70 5 Evaluation

-4
0

-2
0020406080

-1
00

-8
0

-6
0

-4
0

-2
0

0
20

40
60

80
10

0

m
m

mm

Fi
gu

re
5.

5:
Th

is
di

ag
ra

m
sh

ow
s

th
e

m
ov

em
en

ts
of

on
e

us
er

,w
ho

us
ed

th
e

ey
e

tr
ac

ki
ng

to
ch

an
ge

th
e

vi
ew

po
in

to
ft

he
de

vi
ce

.
Be

ca
us

e
of

th
e

w
ay

th
e

us
er

he
ld

th
e

de
vi

ce
th

e
w

ho
le

di
ag

ra
m

is
tr

an
sl

at
ed

in
y

di
re

ct
io

n

5.2 Second User Test 71

St
ro

ng
ly

di
sa

gr
ee

D
is

ag
re

e
N

ei
th

er
ag

re
e

no
r

di
sa

gr
ee

A
gr

ee
St

ro
ng

ly
A

gr
ee

N
/A

Iw
ou

ld
us

e
m

et
ho

d
W

it
ho

ut
ey

e
tr

ac
ki

ng
1

3
2

2

W
it

h
ey

e
tr

ac
ki

ng
1

3
2

2

R
eq

ui
re

s
m

or
e

at
te

nt
io

n
W

it
ho

ut
ey

e
tr

ac
ki

ng
1

3
3

1

W
it

h
ey

e
tr

ac
ki

ng
3

2
2

1

N
av

ig
at

io
n

al
w

ay
s

be
ha

ve
d

lik
e

Ie
xp

ec
te

d
W

it
ho

ut
ey

e
tr

ac
ki

ng
5

1
1

1

W
it

h
ey

e
tr

ac
ki

ng
1

2
4

1

Ta
bl

e
5.

3:
T

he
co

m
pl

et
e

re
su

lt
s

of
th

e
se

co
nd

te
st

72 5 Evaluation

5.3 Comparison of Time Measurements

For both user tests we measured the times the users needed
to fulfill the tasks. The mean times and the corresponding
standard deviations that emerged from this can be found in
Table 5.4 and Table 5.5.

Augmented
Reality mode

Virtual Reality
with eye
tracking

Mean time 12.6 sec 14.1 sec

Standard devia-
tion

3.3 sec 4.0 sec

Table 5.4: The results of the time measurement for the first
test

Without eye
tracking

With eye
tracking

Mean time 29.4 sec 33.9 sec

Standard devia-
tion

7.9 sec 8.5 sec

Table 5.5: The results of the time measurement for the sec-
ond test

Based on these results we now perform a paired Student’sStudent’s t-test used
to test for statistical
significance of
results

t-test. For this we will assume that the differences of the
measured times for each participant are realizations of
independent, normally distributed random variables with
mean value µ and unknown variance σ.

Our null hypothesis is, that the users need the same time
for both approaches, or formal : µ = 0. As alternative, the
measured data suggests, that the users are slower with our
method, which means µ > 0.

5.4 Discussion 73

For our data the corresponding one-sided t-test returns

• t = 0.9608 for the first test and

• t = 0.9967 for the second one.

The critical value however, which the Student-distribution
for 7 = (n−1) degrees of freedom and a level of significance
of 0.05 returns, is 1.89446 (for a level of significance of 0.1 it
returns 1.415).

This on the one hand means, that for the given level of sig-
nificance it is not statistically safe to refuse the null hypoth-
esis in favor of the alternative and on the other hand, that
due to the asymmetry of the t-test the null hypothesis can
also not be verified.

5.4 Discussion

The tests we did indicate that user-centered perspective
could be a helpful addition to mobile 3D navigation de-
vices. As soon as the participants found out that they could
change the perspective with their head movement, they
tried to utilize it to fulfill the given task. Unfortunately
the eye tracking method was not robust enough to allow a
completely natural movement in front of the camera. This
confused some of our test persons, which made the system
less intuitive to use for them.

As the first test pointed out, the combination of virtual
objects and real background was the most accessible
operation mode for the majority of our participants. Even
if no marker was found this method still showed the
view ”through” the device and therefore made it easier to
re-establish the tracking.

74 5 Evaluation

We also tested our annotation feature and the results were
positive. Half of the users stated that the comments inside
the virtual world helped them and that they behaved as ex-
pected. But to make the annotation feature more useful the
weight of the device has to be reduced. This would allow
the user to hold the system with one hand, while marking
interesting points with the other one.

75

Chapter 6

Summary and Future
Work

“Prediction is very difficult, especially about the
future.”

—Niels Bohr

The following chapter contains a summary of our research,
points out the contributions to the field of mobile Aug-
mented Reality and provides some ideas for future research
to improve the device.

6.1 Summary and Contributions

At first we started with an introduction to the area of Currently no mobile
device with
user-centered
perspective

mobile Augmented Reality. Then we showed, what current
approaches can be used for and what their limitations are.

It became clear that all approaches are either

• not mobile,

• do not offer a user-centered perspective,

76 6 Summary and Future Work

• are too expensive or

• require additional equipment

We then developed our own system that should overcome
these limitations and provide the user with an intuitive
solution for 3D navigation. As basis for our device we
chose a tablet computer with touchscreen functionality
and an internal camera. This was extended with another
external camera for marker tracking.

In the next step we implemented our own eye tracking al-Tracking determines
position of device
and user

gorithm based on Haar classifiers combined with template
matching and extended the marker tracking algorithm of
ARToolkit. These tracking results were then used to calcu-
lated the appropriate user-centered perspective. Since we
could not provide the camera picture for this perspective,
we instead implemented a virtual scene which should
imitate the real view.
To test the system we defined four different operation
modes, which all display different scenes. Additionally
an annotation feature was presented, which enables the
users to place half-transparent comments inside the virtual
world.

As last step we evaluated our system in two user tests.Device has to be
improved to be more
useful

The tests showed that our approach would be beneficial,
if the tracking results would be improved and the weight
of the device could be reduced. It also exemplified, which
relevance the ”real” background of Augmented Reality
applications has on the perception of the usability of the
device.

As main contributions to the research community there are

• the extended eye tracking algorithm, which is fast,
needs no user calibration and, in most cases, works
with acceptable results

6.2 Future Work 77

• the multi-marker approach, which permits the use of
a set of markers without defining their exact positions
in advance

• the test results, which showed that the users generally
would prefer the system with user-centered perspec-
tive, if it worked flawlessly

6.2 Future Work

Since most users complained about the weight of our proto- Prototype was too
heavy for long time
use

type, the first way to improve the system would be to find a
lighter device. It should feature a more powerful graphics
processor, to enable a more realistic presentation and
improve the overall performance of the system. As said in
the introduction, mobile devices become smaller and more
powerful with every new generation, so the next version of
tablet computers should be able to satisfy the requirements.

Another limitation was that the device only recalculates Get rid of the
markersits own position if one or more markers are in sight. For

use in a natural environment it would be more convenient
to set the markers aside and use other techniques. One
possibility would be, to use a set of predefined reference
images and calculate the position and orientation based
on a selection of significant points. This would enable the
usage of the device in environments where no markers
could be placed or are not allowed.

In the current prototype the range in which our eye tracking Improve eye tracking
algorithm works sufficiently well is limited. Since the dis-
tance of the user to the device during the process is rather
small, the built-in camera can only capture a fraction of the
space the user could move to. Furthermore our eye track-
ing algorithm sometimes returns false positives and starts
tracking the wrong points. These limitations could be atten-
uated by using a wide-angle lens camera or multiple cam-
eras and improving the eye tracking algorithm.

78 6 Summary and Future Work

Introducing, for example a calibration phase for every user
and using this prior knowledge of the face would speed up
the tracking and improve the estimation of the real world
coordinates.

One participant of our user test suggested a differentUse the device itself
to draw notes method to draw annotations. Since our prototype required

the user to hold it with both hands because of the weight,
he suggested to use the movements of the device itself to
control the drawing. In this way the users could place
simple marks like circles without even taking the hands off
the device.

For certain applications it would also be useful, if multipleMultiple Users at the
same time users could work concurrently. Then one user would see

the annotations by everyone else and they could collab-
orate inside the virtual world. This could be realized by
defining one device as host, which gets the information
about the position and orientation of all other devices and
shares this information. The different users could then be
represented by avatars in the virtual room.

As pointed out in Chapter 4—“System Design and Imple-Exchange virtual
scene against
camera picture

mentation” a big drawback of our approach is that a vir-
tual scene instead of the camera picture of the real world
is drawn. A sphere camera or a motorized camera could
for example be used to calculate the appropriate view. An-
other possibility would be, to use an array of cameras for
the backside and a lumigraph (see Gortler et al. [1996]) in
order to determine the correct background picture.

79

Appendix A

The Pinhole Camera
Model

The pinhole camera model is widely used in the area of
computer vision. It ignores many effects like geometric
distortions but thereby it is very simple.

A point P = (X,Y, Z)T is projected onto the image plane,
by calculating the intersection Q = (x, y)T of the projection
line from P through the origin with the image plane (see
Figure A.1). It is easy to see, that there are two similar tri-
angles which share the projection line as their hypotenuses.
Therefore the following equation holds

y

f
=
Y

Z

⇔ y =
f · Y
Z

A similar result can be found for the x coordinate

x

f
=
X

Z

⇔ x =
f ·X
Z

80 A The Pinhole Camera Model

Origin

P

Q

f - Focal length Principal point

Pinhole camera Image plane

Z

Y

y

Figure A.1: Geometry of the pinhole camera model as seen from the side

But these equations only hold if the principal point, the in-
tersection of the optical axis and the image plane, is in the
middle of the image plane. Otherwise we have to add a
translation (cx, cy). This yields as final result(

x
y

)
=
(f ·X

Z + cx
f ·Y
Z + cy

)
=
f

Z
·
(
X
Y

)
+
(
cx
cy

)

81

Appendix B

Quaternions

Quaternions are an extension to complex numbers and are
named H, after their inventor Sir William Rowan Hamilton
[1844]. Since they are more efficient and more numerically
stable than rotation matrices, quaternions are often used in
many fields like computer graphics and navigation.

A quaternion always can be expressed by

q0 + q1 · i+ q2 · j + q3 · k q0, q1, q2, q3 ∈ R

where i,j and k satisfy

i2 = j2 = k2 = i · j · k = −1.

The imaginary part here behaves like a vector (q1, q2, q3)
∈ R3, whereas the real part q0 acts as a scalar a ∈ R.

In the following we will give definitions of the essential op-
erations for working with quaternions :

• Sum of two quaternions Q,R ∈ H

Q+R := q0 +r0 +(q1 +r1) · i+(q2 +r2) ·j+(q3 +r3) ·k

82 B Quaternions

• Conjugation Q of Q ∈ H

Q := q0 − q1 · i− q2 · j − q3 · k

• Product of two quaternions Q,R ∈ H (not
commutative)

Q ∗R := q0 · r0 − q1 · r1 − q2 · r2 − q3 · r3
+(q1 · r0 + q0 · r1 − q3 · r2 + q2 · r3) · i
+(q2 · r0 + q3 · r1 − q0 · r2 + q1 · r3) · j
+(q3 · r0 + q2 · r1 − q1 · r2 + q0 · r3) · k

• Dot-product of two quaternions Q,R ∈ H

Q ·R := q0 · r0 + q1 · r1 + q2 · r2 + q3 · r3

• Norm of Q ∈ H

‖Q‖ :=
√
Q ·Q =

√
q02 + q12 + q22 + q32

A unit quaternion, which we will use to represent rotations,
has a norm of one. One desirable characteristic of it is, that
its inverse equals its conjugate. Any quaternion Q 6= 0 can
be transformed to a unit quaternionQ′ by dividing it by it’s
norm

Q′ = Q
‖Q‖ = q0

‖Q‖ + q1
‖Q‖ · i+

q2
‖Q‖ · j + q3

‖Q‖ · k

As said before, quaternions can be used to easily repre-
sent rotations in R3. For this we first embed a point x =
(x0, x1, x2)T into H

X = 0 + x0 · i+ x1 · j + x2 · k ∈ H

83

Multiplying this with a unit quaternion

Q = cos(θ2) + axsin(θ2) · i+ aysin(θ2) · j + azsin(θ2) · k

with ax2 + ay
2 + az

2 = 1 according to

X ′ = Q ∗X ∗Q−1 = Q ∗X ∗Q

rotates the point x along the axis (ax, ay, az) by an angle θ.

Using quaternions instead of Euler angles has several ben-
efits :

• Gimbal lock is avoided
Because the final rotation matrix with Euler angles
depends on the order of multiplications, rotations
over one axis sometimes get mapped to another axis
or it is even impossible to rotate around a specific axis.
This phenomenon is commonly called Gimbal lock.

• Easier to read-off rotation axis and
angle
As you have seen, it is very easy to construct a
quaternion for a rotation along a specific axis and
angle. Likewise it is also not very hard to read-off the
angle and axis by transforming this equation a little
bit.

• Easy to create a smooth rotation
While it is hard to calculate rotation matrices to rotate
smoothly from one point to another for quaternions
there exist methods like Slerp (spherical linear inter-
polation), which can be used to compute the interme-
diate quaternions.

84 B Quaternions

At last we will show how to convert a quaternion Q = q0 +
q1 · i+ q2 · j + q3 · k ∈ H back to a rotation matrix M ∈ R3×3

M =

 q0
2 + q1

2 − q22 − q32

2q1q2 + 2q0q3
2q1q3 − 2q0q2

2q1q2 − 2q0q3 2q1q3 + 2q0q2
q0

2 − q12 + q2
2 − q32 2q2q3 − 2q0q1

2q2q3 + 2q0q1 q0
2 − q12 − q22 + q3

2



This can then be used again in, e.g., OpenGL.

85

Appendix C

Shadow Mapping

The shadow mapping approach we used in this thesis
works in a three step process and is based on the original
approach by Williams [1978]. In the first step the scene is
rendered from the light’s point of view. This step is only
used to fill the depth map with the corresponding depth
values for each pixel and therefore all additional things like
lighting are disabled and only flat shaded backsides are
drawn (Figure C.1 shows the content of the depth buffer
after the first pass).

Figure C.1: Depth buffer content after the first pass

For the second step the scene is then rendered from the
camera view with dim lighting. This step, which is de-
picted in Figure C.2, will later create the shadowed areas.

86 C Shadow Mapping

Figure C.2: Car model rendered with dim lighting for the
shadowed areas

In the last step we draw the lit areas of the scene. To
accomplish this, we have to convert each point we want
to draw into light space coordinates, to compare it to the
corresponding depth map value. For this we use the
ARB shadow extension of OpenGL, which takes care of the
comparison. If the depth value of the current pixel now is
smaller or equal to the depth map value, we draw it and
otherwise it is discarded. The combination of lit areas and
shadows then yields the final image which can be seen in
Figure C.3.

Figure C.3: The car model after combining all passes

87

Appendix D

CD Contents

The CD which comes enclosed with this thesis contains two
folders ”VirlWind” and ”Tests” and a pdf file of this the-
sis. In the first folder you will find the source code includ-
ing a Xcode and a Dev-C++1 project file and the binaries
for Windows and Macintosh systems. The second folder
contains the log files of our user tests.

1Open source C/C++ IDE by Bloodshed Software :
http://www.bloodshed.net/devcpp.html

89

Bibliography

Axiotron. Axiotron Modbook. URL http://www.
axiotron.com/. [Online; accessed 31-August-2008].

Ronald Azuma. A Survey of Augmented Reality. Presence:
Teleoperators and Virtual Environments, 6(4):355–385, 1997.

Stefano Burigat and Luca Chittaro. Location-aware visu-
alization of VRML models in GPS-based mobile guides.
In Web3D ’05: Proceedings of the tenth international con-
ference on 3D Web technology, pages 57–64, New York,
NY, USA, 2005. ACM. ISBN 1-59593-012-4. doi: http:
//doi.acm.org/10.1145/1050491.1050499.

M. Castrillón Santana, O. Déniz Suárez,
M. Hernández Tejera, and C. Guerra Artal. ENCARA2:
Real-time Detection of Multiple Faces at Different Reso-
lutions in Video Streams. Journal of Visual Communication
and Image Representation, pages 130–140, April 2007.

Jeremy R. Cooperstock, Koichiro Tanikoshi, and William
Buxton. Turning Your Video Monitor into a Vir-
tual Window. In Proc. of IEEE PACRIM, Visualisation
and Signal Processing, March 16 1995. URL http:
//citeseer.ist.psu.edu/30824.html;ftp:
//dgp.utoronto.ca/pub/jer/ieee95.ht.ps.Z.

Carolina Cruz-Neira, Daniel J. Sandin, Thomas A. DeFanti,
Robert V. Kenyon, and John C. Hart. The CAVE: audio
visual experience automatic virtual environment. Com-
mun. ACM, 35(6):64–72, 1992. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/129888.129892.

Carolina Cruz-Neira, Daniel J. Sandin, and Thomas A. De-
Fanti. Surround-screen projection-based virtual reality:

http://www.axiotron.com/
http://www.axiotron.com/
http://citeseer.ist.psu.edu/30824.html; ftp://dgp.utoronto.ca/pub/jer/ieee95.ht.ps.Z
http://citeseer.ist.psu.edu/30824.html; ftp://dgp.utoronto.ca/pub/jer/ieee95.ht.ps.Z
http://citeseer.ist.psu.edu/30824.html; ftp://dgp.utoronto.ca/pub/jer/ieee95.ht.ps.Z

90 Bibliography

the design and implementation of the CAVE. In SIG-
GRAPH ’93: Proceedings of the 20th annual conference on
Computer graphics and interactive techniques, pages 135–
142, New York, NY, USA, 1993. ACM. ISBN 0-89791-601-
8. doi: http://doi.acm.org/10.1145/166117.166134.

Marek Czernuszenko, Dave Pape, Daniel Sandin, Tom De-
Fanti, Gregory L. Dawe, and Maxine D. Brown. The Im-
mersaDesk and Infinity Wall projection-based virtual re-
ality displays. SIGGRAPH Comput. Graph., 31(2):46–49,
1997. ISSN 0097-8930. doi: http://doi.acm.org/10.1145/
271283.271303.

Neil A. Dodgson. Variation and extrema of human inter-
pupillary distance. In Proceedings of the SPIE Volume 5291,
Stereoscopic Displays and Virtual Reality Systems XI, 2004.

George W. Fitzmaurice. Situated information spaces and
spatially aware palmtop computers. Commun. ACM, 36
(7):39–49, 1993. ISSN 0001-0782. doi: http://doi.acm.
org/10.1145/159544.159566.

Tim Gleue and Patrick Dähne. Design and implementation
of a mobile device for outdoor augmented reality in the
archeoguide project. In VAST ’01: Proceedings of the 2001
conference on Virtual reality, archeology, and cultural heritage,
pages 161–168, New York, NY, USA, 2001. ACM. ISBN
1-58113-447-9. doi: http://doi.acm.org/10.1145/584993.
585018.

GLUT. GLUT - The OpenGL Utility Toolkit. URL http://
www.opengl.org/resources/libraries/glut/.
[Online; accessed 31-August-2008].

Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and
Michael F. Cohen. The lumigraph. In SIGGRAPH ’96:
Proceedings of the 23rd annual conference on Computer graph-
ics and interactive techniques, pages 43–54, New York, NY,
USA, 1996. ACM. ISBN 0-89791-746-4. doi: http://doi.
acm.org/10.1145/237170.237200.

Sir William Rowan Hamilton. On a new Species of Imagi-
nary Quantities connected with a theory of Quaternions.
In Proceedings of the Royal Irish Academy, Vol. 2, pages 424–
434, 1844.

http://www.opengl.org/resources/libraries/glut/
http://www.opengl.org/resources/libraries/glut/

Bibliography 91

Anders Henrysson and Mark Ollila. UMAR: Ubiquitous
Mobile Augmented Reality. In MUM ’04: Proceedings
of the 3rd international conference on Mobile and ubiqui-
tous multimedia, pages 41–45, New York, NY, USA, 2004.
ACM. ISBN 1-58113-981-0. doi: http://doi.acm.org/10.
1145/1052380.1052387.

Anders Henrysson, Mark Ollila, and Mark Billinghurst.
Mobile phone based AR scene assembly. In MUM ’05:
Proceedings of the 4th international conference on Mobile and
ubiquitous multimedia, pages 95–102, New York, NY, USA,
2005. ACM. ISBN 0-473-10658-2. doi: http://doi.acm.
org/10.1145/1149488.1149504.

Anders Henrysson, Mark Billinghurst, and Mark Ollila. AR
Tennis. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Emerg-
ing technologies, page 1, New York, NY, USA, 2006. ACM.
ISBN 1-59593-364-6. doi: http://doi.acm.org/10.1145/
1179133.1179135.

Koichi Hirota and Yuya Saeki. Cross-section Projector: In-
teractive and Intuitive Presentation of 3D Volume Data
using a Handheld Screen. In 3D User Interfaces, 2007.
3DUI ’07. IEEE Symposium on, 2007. doi: http://doi.
ieeecomputersociety.org/10.1109/3DUI.2007.340775.

Human Interface Technology Lab. ARToolkit. URL http:
//www.hitl.washington.edu/artoolkit/. [On-
line; accessed 31-August-2008].

id Software. id Software : Quake. URL http://www.
idsoftware.com/games/quake/quake/. [Online;
accessed 31-August-2008].

Intel. OpenCV : Open Source Computer Vision Li-
brary. URL http://www.intel.com/technology/
computing/opencv/. [Online; accessed 31-August-
2008].

David Johnson, Christopher Berthiaume, and Bryan
Witkowski. ARToolkit Patternmaker. URL
http://www.cs.utah.edu/gdc/projects/
augmentedreality/. [Online; accessed 31-August-
2008].

http://www.hitl.washington.edu/artoolkit/
http://www.hitl.washington.edu/artoolkit/
http://www.idsoftware.com/games/quake/quake/
http://www.idsoftware.com/games/quake/quake/
http://www.intel.com/technology/computing/opencv/
http://www.intel.com/technology/computing/opencv/
http://www.cs.utah.edu/gdc/projects/augmentedreality/
http://www.cs.utah.edu/gdc/projects/augmentedreality/

92 Bibliography

Jr. Joseph J. LaViola. A Discussion of Cybersickness in
Virtual Environments. Technical report, Providence, RI,
USA, 1999.

Eunsoo Jung, Sujin Oh, and Yanghee Nam. Handheld AR
indoor guidance system using vision technique. In VRST
’07: Proceedings of the 2007 ACM symposium on Virtual
reality software and technology, pages 47–50, New York,
NY, USA, 2007. ACM. ISBN 978-1-59593-863-3. doi:
http://doi.acm.org/10.1145/1315184.1315190.

Hirokazu Kato and Mark Billinghurst. Marker Tracking
and HMD Calibration for a Video-Based Augmented Re-
ality Conferencing System. In IWAR ’99: Proceedings of the
2nd IEEE and ACM International Workshop on Augmented
Reality, page 85, Washington, DC, USA, 1999. IEEE Com-
puter Society. ISBN 0-7695-0359-4.

Johnny Chung Lee. Head Tracking for Desktop VR
Displays using the Wii Remote. URL http://www.
cs.cmu.edu/˜johnny/projects/wii/. [Online; ac-
cessed 31-August-2008].

R. Lienhart and J. Maydt. An extended set of Haar-
like features for rapid object detection. volume 1,
pages I–900–I–903 vol.1, 2002. doi: 10.1109/ICIP.2002.
1038171. URL http://dx.doi.org/10.1109/ICIP.
2002.1038171.

Michael E. McCauley and Thomas J. Sharkey. Cybersick-
ness: perception of self-motion in virtual environments.
Presence: Teleoper. Virtual Environ., 1(3):311–318, 1992.
ISSN 1054-7460.

Michael McKenna. Interactive viewpoint control and three-
dimensional operations. In SI3D ’92: Proceedings of the
1992 symposium on Interactive 3D graphics, pages 53–56,
New York, NY, USA, 1992. ACM. ISBN 0-89791-467-8.
doi: http://doi.acm.org/10.1145/147156.147163.

Miguel A. Nacenta, Satoshi Sakurai, Tokuo Yamaguchi,
Yohei Miki, Yuichi Itoh, Yoshifumi Kitamura, Sriram
Subramanian, and Carl Gutwin. E-conic: a perspective-
aware interface for multi-display environments. In UIST
’07: Proceedings of the 20th annual ACM symposium on
User interface software and technology, pages 279–288, New

http://www.cs.cmu.edu/~johnny/projects/wii/
http://www.cs.cmu.edu/~johnny/projects/wii/
http://dx.doi.org/10.1109/ICIP.2002.1038171
http://dx.doi.org/10.1109/ICIP.2002.1038171

Bibliography 93

York, NY, USA, 2007. ACM. ISBN 978-1-59593-679-2. doi:
http://doi.acm.org/10.1145/1294211.1294260.

Adrijan S. Radikovic, John J. Leggett, John Keyser, and
Roger S. Ulrich. Artificial window view of nature. In CHI
’05: CHI ’05 extended abstracts on Human factors in comput-
ing systems, pages 1993–1996, New York, NY, USA, 2005.
ACM. ISBN 1-59593-002-7. doi: http://doi.acm.org/10.
1145/1056808.1057075.

Nate Robins. The GLM Library. URL http://www.
xmission.com/˜nate/. [Online; accessed 31-August-
2008].

RWTH Aachen. CAVE at the RWTH Aachen. URL
http://www.rz.rwth-aachen.de/ca/c/nsi/
lang/de/#snapshots. [Online; accessed 31-August-
2008].

Bernt Schiele, Tony Jebara, and Nuria Oliver. Sensory-
Augmented Computing: Wearing the Museum’s Guide.
IEEE Micro, 21(3):44–52, 2001. ISSN 0272-1732. doi:
http://dx.doi.org/10.1109/40.928764.

Dieter Schmalstieg and Daniel Wagner. A Handheld Aug-
mented Reality Museum Guide. In Proceedings of IADIS
International Conference on Mobile Learning 2005, 2005.

Ting Shan. Website of Ting Shan. URL http://www.
nicta.com.au/people/shant. [Online; accessed 31-
August-2008].

Bruce Thomas, Ben Close, John Donoghue, John Squires,
Phillip De Bondi, and Wayne Piekarski. First Per-
son Indoor/Outdoor Augmented Reality Application:
ARQuake. Personal Ubiquitous Comput., 6(1):75–86,
2002. ISSN 1617-4909. doi: http://dx.doi.org/10.1007/
s007790200007.

Trolltech. Qt Cross-Platform Application Framework. URL
http://trolltech.com/products/qt. [Online; ac-
cessed 31-August-2008].

Michael Tsang, George W. Fitzmaurice, Gordon Kurten-
bach, Azam Khan, and Bill Buxton. Boom chameleon:
simultaneous capture of 3D viewpoint, voice and ges-
ture annotations on a spatially-aware display. In UIST

http://www.xmission.com/~nate/
http://www.xmission.com/~nate/
http://www.rz.rwth-aachen.de/ca/c/nsi/lang/de/#snapshots
http://www.rz.rwth-aachen.de/ca/c/nsi/lang/de/#snapshots
http://www.nicta.com.au/people/shant
http://www.nicta.com.au/people/shant
http://trolltech.com/products/qt

94 Bibliography

’02: Proceedings of the 15th annual ACM symposium on
User interface software and technology, pages 111–120, New
York, NY, USA, 2002. ACM. ISBN 1-58113-488-6. doi:
http://doi.acm.org/10.1145/571985.572001.

P. Viola and M. Jones. Rapid object detection using
a boosted cascade of simple features. 2001. URL
citeseer.ist.psu.edu/viola01rapid.html.

Theo Watson. videoInput - a free windows video cap-
ture library. URL http://muonics.net/school/
spring05/videoInput/. [Online; accessed 31-
August-2008].

Lance Williams. Casting curved shadows on curved
surfaces. SIGGRAPH Comput. Graph., 12(3):270–274,
1978. ISSN 0097-8930. doi: http://doi.acm.org/10.1145/
965139.807402.

Ben Woodhouse. GLee (GL Easy Extension library). URL
http://elf-stone.com/glee.php. [Online; ac-
cessed 31-August-2008].

Ka-Ping Yee. Peephole displays: pen interaction on spa-
tially aware handheld computers. In CHI ’03: Proceedings
of the SIGCHI conference on Human factors in computing sys-
tems, pages 1–8, New York, NY, USA, 2003. ACM. ISBN
1-58113-630-7. doi: http://doi.acm.org/10.1145/642611.
642613.

citeseer.ist.psu.edu/viola01rapid.html
http://muonics.net/school/spring05/videoInput/
http://muonics.net/school/spring05/videoInput/
http://elf-stone.com/glee.php

95

Index

abbrv, see abbreviation
annotations, 57–58
augmented reality, 1

- mobile, 18–22

conventions, xix

evaluation, 61–74
eye tracking, 40–43

filtering
- gaussian filtering, 10–11
- median filtering, 41

future work, 77–78

haar classifier, 7–9
hardware setup, 34–35
human eye, 5–7

iris, 41–43

marker tracking, 12–16, 44–46

pinhole camera model, 47, 79–80

quaternions, 81–84

related work, 17–31
rendering, 53–56

shadow mapping, 85–86
software implementation, 35–58
spatially aware devices, 22–25
summary, 75–77

t-test, 72–73
template matching, 9–12
tracking

- eye, 40–43
- marker, 12–16, 44–46

96 Index

user tests
- first one, 63–67

first phase, 65–67
second phase, 67

- second one, 68–69
user-centered perspective, 26–29, 47–52

viewing matrices, 51–52

Typeset September 9, 2008

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Overview

	Fundamentals
	The Human Eye
	Haar Classifiers
	Template Matching
	Marker Tracking

	Related Work
	Mobile Augmented Reality
	Spatially Aware Devices
	User-centered Perspective
	Comparison

	System Design and Implementation
	Hardware Setup
	Software Implementation
	Eye Tracking
	Finding the Eye Regions
	Finding the Iris

	Marker Tracking
	Calculating the User-centered Perspective
	Finding the Real-world Coordinates
	Creating the Matrices

	OpenGL Rendering
	Measurement Mode
	Augmented Reality Mode
	Annotation Mode
	Volume Mode

	Annotations

	Evaluation
	First User Test
	First Phase
	Second phase

	Second User Test
	Comparison of Time Measurements
	Discussion

	Summary and Future Work
	Summary and Contributions
	Future Work

	The Pinhole Camera Model
	Quaternions
	Shadow Mapping
	CD Contents
	Bibliography
	Index

