RWTH

Communication Of
Source Code Designs
Through Sketching

Thesis at the
Media Computing Group
Prof. Dr.Jan Borchers

Computer Science Department
RWTH Aachen University

Lukas Spychalski

Thesis advisor:
Prof.Dr.Jan Borchers

Second examiner:
Prof. Dr. Bjérn Hartmann

Registration date: Oct 31st 2012
Submission date: May 21st 2013

iii

I hereby declare that I have created this work completely on
my own and used no other sources or tools than the ones
listed, and that I have marked any citations accordingly.

Hiermit versichere ich, dass ich die vorliegende Arbeit
selbstandig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich
gemacht habe.

Aachen, May 2013
Lukas Spychalski

Contents

Absfract xi
iIberblick xiii
Acknowledgements XV
Convenfiond Xvii
I TInfroducfion 1
LT Thesis Confext and Mofivation 1
2 l'hesis Structura 8
P_Relafed work 9
P.T Sketches and Sketching in General 10
.2 Sketches and Software Developery 11

2.2.T Why do software developers sketch?. 13

2.2.2 How do software developers sketch] 14

2.3 Sketches and Tools for Software Developery . 15

2.4 Visualization Tools for Software Developers . 19

Contents

P.5 Consequences for thisthesid 21

B Initial Study] 23
A Fundamenfals 27
BT Tayoutsand Views 28
B2 The ConnectionPoinfd 30
a1 [he Connection Poinfs of Source Codd 30

A7 7 The Connection Points of a SketcH . . 31

I3 The Connection between Connection Pointd . 32

b Prototyping 33
pI Parficipant§ 34
p.2Z Methodology] 34
b.3 Designdecisiony. 34
p.3.1 Layoutsand Viewd 35

baZ l1he(onnechion Fomntd 38

Pomfd 39

b4 Implementation 40
b4l lafforml 40
b4’ lhelookc&beel 41

Il he Mission Control View 42

Contents vii
b.4.3 The navigational behavioq 44
[he Mission Confrol Viewl 44
[he Skefchbar Viewl 46
b__FEvaluafion 51
p.T ExperimentalSetup 52
p.I.T Participants 53
BT _Tasksand Condifiond 53

p.I.4~ Methodology] 57
B7Resulfd 59
p-Z1T Parficipant§ 59
B27 TaskSuccesd 59
p.2.3 Task Completion Timed 61

B2 4 Amount of Glances at Gkefched 62

pb.2Z5 Time Spent Looking at Sketched ... 63

B.2.6 Qualifative Observationd 64
Control group Memberg 64

[Connection group Members 66

b2/ __Semi-structured Post-Session Interd

View and Participants” Commenty .. 71

[Areas of Application 71

viii

Contents

BuggestedIdeas 78
[mplicationsfor HYy 78
B3 TRSCUSSION v e e e 79
Summary and Future Work 81
/T Summary and Confributiond 81
2 Future Workl o oL L0000 0oL 84

User Study: Declaration Of Consent & P’re-Session

Duestionnaire 87
User Study: Post-Session Interview Questions 89
User Study: Task Descriptions 91
User Study: 'rovided SKketches 95
Bibliography 97

[ndex 103

ix

List of Figures

L.I Components of software comprehension
maodels

.2 Example of a source code visualizationy. . . .

.o Exampleotasketch

.1 Example ot sketchey

.2 Screenshot of the sketching tool SILK

K.0 Keboard system architecturg

£.4 Calico, a sketch-based design environment

.o __Screenshot of (ode (Canvad

pb.1 Sketch on how drawings are digitalized . . .

B.1 basic areas of software development envi{
ronments

B.2 basic views of sketches integrated into a soft{
ware development environmentsy

44 (onnection Points of Sketched

11

16

17

20

25

List of Figures

p.l Visualization ot the prototype development

b.2Z Examples for an IDE-integration of sketcheg. 37

B3 Screenshof of the Mission Confrol Viewl . . . 42
b4 Screenshof of the Skefchbar Viewl 44
b.5 Examples of IDE-integration of sketched . . . 47

p.6 Screenshot depicting a connection between|
Ekefch and source code in the Skefchbar Viewl 48

BR7 Skefched 1ise case of the Skefchbar Viewl . . . 50

b.T Picture of the user study environmen{ 57

b.2 Number of successtully completed tasks in
[fhe quantitativeuserstudy. 60

p.o lask completion times in the quantitative

p.4 Amount of glances at sketches in the quanti
fativeuserstudy]. 62

b.o Amount of glances at sketches in the quanti
fativeuserstudy. 63

p.6 Amount of participants looking at theg
skefches distributed over fthe normahzed
fask completion time of lask 2 1in the quani
fitativeuserstudy] 70

V.1 Sketch of suggestion ror enhanced softwareg
prototype with additional functionalities] . . 85

[/ 2~ Sketch of suggestion for future approach .. 86

[D.T Sketches provided during the user study] .. 96

xi

Abstract

Understanding the design of source code and the mental model behind it is still a
major problem for programmers. Many software visualization tools are designed
to support programmers, but these tools are dependent on the underlying source
code, and programmers need to know more than the source code can convey in
order to understand it. Sketching is an established tool for ideation, exploration
and communication and software developers use sketches frequently in different
phases of the software development process to depict and convey different views
and concepts of the system under development.

To aid the communication of source code designs, I introduce the functionality to
integrate hand-drawn sketches into a software development environment and con-
nect them to source code.

After an initial study of software architects and developers regarding the use of
sketches in their everyday work, the fundamentals of a connection between source
code and sketches are presented. Based on these fundamentals, a software pro-
totype is developed that connects sketches and source code. For the purpose of
evaluating the software prototype and its functionality, 32 participants were ob-
served and interviewed in a user study. The results and implications of the user
study as well as suggestions for future work are presented.

xii

Abstract

xiii

Uberblick

Das Verstehen von Quelltext und dem dazugehdrigen mentalen Modell ist auch
heute noch ein grofies Problem fiir Programmierer und Softwareentwickler. Zwar
steht ihnen eine grofle Auswahl an Zusatz- und Hilfsprogrammen zur Verfiigung,
die den Quelltext visualisieren und dabei das Nachvollziehen von Quelltext und
seinem Aufbau vereinfachen sollen, jedoch kénnen diese Programme nur das vi-
sualisieren, was bereits im Quelltext vorhanden ist, wobei Programmierer mehr
benotigen um Quelltext zu verstehen. Das Erstellen von Zeichnungen ist eine be-
liebte Art der Ideenbildung, Weiterentwicklung von Ideen und Kommunikation.
Programmierer und Softwareentwickler erstellen hadufig Zeichnungen wahrend
des Entwicklungsprozesses um verschiedene Ansichten und Konzepte von Soft-
waresystemen zu visualisieren und zu erldutern.

Um den Aufbau des Quelltextes besser vermitteln und kommunizieren zu konnen,
bietet der von mir implementierte Softwareprototype die Moglichkeit Zeichnungen
in eine Softwareentwicklungsumgebung einzubinden und diese mit dem Quelltext
zu verbinden.

Nach der Pradsentation der Ergebnisse aus einer Erststudie, bei der ich Soft-
warearchitekten und Softwareentwickler beobachtet und befragt habe in Bezug
auf die Verwendung von Zeichnungen im Arbeitsalltag, werden die Grundlagen
zur Erstellung einer Verbindung zwischen Zeichnungen und Quelltext vermittelt.
Darauf aufbauend wird die Entwicklungs des Softwareprototypen vorgestellt, der
die Verbindung von Zeichnungen und Quelltext unterstiitzt. Um den Prototypen
und seine Funktionalitit zu evaluieren, wurde eine Benutzerstudie mit 32 Teil-
nehmern durchgefiihrt. Abschlieffend werden die Ergebnisse der Benutzerstudie
sowie Anregungen zur Weiterentwicklung des Prototypen und der Funktionalitdt
préasentiert.

XV

Acknowledgements

With these words I would like to sincerely thank everyone who supported me, first
and foremost my parents and my wife.

Hiermit mochte ich mich bei allen bedanken, die mich unterstiitzt haben, vor
allem bei meinen Eltern und bei meiner Ehefrau.

xvii

Conventions

Throughout this thesis I use the following conventions.

Text conventions

Definitions of technical terms or short excursus are set off
in coloured boxes.

EXCURSUS:

Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

The whole thesis is written in American English.

Chapter 1

Introduction

This thesis addresses the communication of source code de-
signs through sketching. The approach presented in this
thesis is to connect sketches directly to source code in or-
der to support the communication of source code designs.
This chapter provides an introduction and is structured as
follows:

Section [L1—*“[Thesis Confexf and Mofivafion” gives an
insight into the software comprehension process of
programmers and the role of sketches in this context.
Based on that, the motivation for connecting sketches
with source code in order to communicate source
code designs and support programmers during their
software comprehension process is formulated and
constitutes the foundation for my approach.

Section L2—"Thesis Sfructurd” presents an outline of the
thesis structure by briefly summarizing the individ-
ual chapters.

1.1 Thesis Context and Motivation

Understanding the source code of computer programs is
one of the core software engineering activities (Singer et al|
[1997], Ko'et-all [2006], CaToza et all [2006]) and is required

Understanding
source code takes a
lot of time and
mental effort.

1 Introduction

Understanding
source code is
building and refining
mental models about
its behavior.
Research suggests
three basic software
comprehension
strategies.

in many situations, e.g., when a programmer maintains,
reuses, migrates, refactors, or enhances software systems.
Software developers must gather a variety of information
in order to acquire knowledge about source code when try-
ing to edit and maintain that source code: What is con-
nected to what? Which changes affect the code elsewhere?
How are design decisions scattered across the code? What
is the rationale or history behind decisions? Who is the
owner responsible for the code? These are some questions
to which answers can be helpful while trying to compre-
hend a software program. However, the key to understand-
ing and successfully editing source code is not only gather-
ing knowledge about it, but rather putting this knowledge
into use.

Miiller et all [T993] define software comprehension as “the
task of building mental models of the underlying software
at various abstraction levels, ranging from models of the
code itself, to models of the underlying application do-
main, for maintenance, evolution, and reengineering pur-
poses”. Software comprehension models try to explain
and describe the way programmers attempt to understand
source code and researchers suggest three types of compre-
hension models:

e Bottom-up comprehension models propose that the
understanding is formed by reading the source code
and then chunking these low-level information and
mentally grouping them into high-level abstractions.
This is mainly the case when programmers have lit-
tle or no knowledge about the underlying application
domain. (Shneiderman and Mayei [1979], Penning
fonl [1987], Défienne [2002])

e Top-down comprehension models suggest that pro-
grammers have knowledge about the application do-
main and that this knowledge is utilized by program-
mers to build expectations that are mapped onto the
source code (Brookd [[983], Shatf [1992], Good ef all
[1999)).

e Combinations of the aforementioned models are
suggested as strategies pursued by programmers

1.1 Thesis Context and Motivation

since findings show that programmers switch be-
tween comprehension models and strategies in re-
sponse to external cues and stimuli (von Mayrhauser
and _Vand [1995], [Cetovsky and Soloway [1986]). In
particular, Letovsky [1986] states that “the human un-
derstander is best viewed as an opportunistic proces-
sors capable of exploiting both bottom-up and top-
down cues as they become available”.

Although software comprehension models differ in their
focus, they all incorporate four common elements that play
an important role during the process of understanding
source code designs:

1. External representations are external views that sup-
port the programmer during the process of compre-
hension. Examples for external representations are
software documentation, the source code itself, tools
that offer additional information about the source
code, and expert advice from other programmers
with knowledge about the source code in question.

2. The knowledge base can be seen as the acquired
knowledge gained before trying to understand the
source code. This knowledge may be knowledge
about the domain of application, programming stan-
dards and practices as well as experience. Shneider-
man and Mayer [1979] divide the knowledge base
into syntactical knowledge (language dependent, re-
gards statements and basic units in a program) and
semantical knowledge(language independent knowl-
edge, enables formation of mental model). The
knowledge base grows as the understanding deep-
ens.

3. The mental model is the programmer’s current un-
derstanding of the system, i.e., the internal, mental
representation of a real system’s behavior, organiza-
tion, and internal structure.

4. The assimilation process is the strategy that the pro-
grammer employs in order to comprehend the source
code. During this process the mental model is con-
tinuously updated using external representations, the

All software
comprehension
models consist of
four general
components:
External
representations of
the source code,
knowledge in the
head, a mental
model and the
assimilation process
that constantly
refines the mental
model.

1 Introduction

Since source code
provides low-level
information,
additional external
representations
should provide
higher-level
abstractions.

Many tools provide
external
representations in
the form of software
visualizations.

knowledge base and the current mental model that is
about to be refined (Daxzaed [1993]). One method for
the assimilation process is forming hypothesis about
the system’s behavior which are refined and verified
during the process (Brooks [T983]).

MENTAL MODEL

EXTERNAL REPRESENTATIONS

ASSIMILATION
PROCESS

Sva

Figure 1.1: Components of software comprehension mod-
els: The mental model is constantly updated during the as-
similation process using the knowledge base, external rep-
resentations and the current mental model.

External representations provide a facility to expand the
knowledge of software developers and programmers and,
thereby, refine the mental model of the source code. Since
programmers need low-level details as well as high-level
concepts according to the comprehension models, whereas
the source code itself is a very low-leveled and detailed
source of information, it seems standing to reason to pro-
vide high-level information about the structure and design,
e.g., visualizations and drawings of the software architec-
ture or data models.

Many different approaches and tools have been presented
and developed in order to support the software compre-
hension process by providing external representations in
the form of automatically generated software visualizations

1.1 Thesis Context and Motivation

(Eick et all [T992], Bragdon et al] [2010], Del.ine and Rowan
[2070], KurtZ [207TTa]). In essence, the visualizations repre-
sent high-level abstractions created on basis of the underly-
ing source code. Clearly, the advantage of these tools is that
the visualizations are created automatically and, therefore,
without additional work effort of the user.

SOFTWARE VISUALIZATIONS:

Software visualizations are visualizations created with the
support of computer-based tools. One kind of software vi-
sualizations are source code visualizations which are auto-
matically created visualizations from underlying source
code. Source code visualizations are created by re-
engineering tools that operate on the source code. An
example is shown in Figure 2. Another kind of soft-
ware visualizations are fool-based visualizations that are
not based on source code. These tool-based visualiza-
tions are created with computer-based visualization tools
like Microsoft Visio.

However, since the tools operate on the existing source
code, they can only visualize what is already present in the
source code. Hence, information about the source code de-
sign, that can not be conveyed via the source code itself are
not provided by these tools.

SKETCH AND SKETCHING:

In this thesis a sketch is meant to be a hand-made drawing
that represents the result of sketching. Sketching is to be
understood as a visual thinking tool utilized in processes
like ideation, exploration of alternatives and conversa-
tions with self or others. Sketching can be performed in
an analog or digital way: The analog way includes tools
like pen+paper or marker+whiteboard. The digital way
includes tools like digital pens and graphic tablets oper-
ated with a stylus. An example is shown in Figure [[3.

Empirical research shows that software developers and
programmers create hand-drawn sketches in order to un-
derstand existing code and form a mental model about
its behavior (LaToza et all [P006], Cherubini_et-all [2007h],
Walny et al] [20TT]). Sketches have the advantage of con-
veying visuospatial ideas directly, using elements and spa-

Re-engineering tools
operate on existing
source code.

Hand-drawn
sketches are a
helpful tool to create,
share and document
knowledge.

1 Introduction

Sketching is a tool for
ideation, exploration
and communication.

Software developers
need to know more
than the source code
can convey in order
to understand it.

Bithy.cs N
— - 7....
at : s \f\{o;nb_ﬁr s
= favoriteCa.. .

[e IR
¥ BestFriend
W Bark

o Name

lives ..
“riLives = [P Hame

@ Die
b EatRodent

257 Name

=@ HideEggs

GiantWombat.cs

#¢Gianthiombat
E I1sBadMF

1 % Chihuahud
¢ incessantly 4
@ YapAnnoyingly| | | oo

W Rampage” [

Figure 1.2: Example of a source-code visualization cre-
ated with the re-engineering tool Code Canvas (Delineand
Rowanl [20T0]).

tial relations, e.g., on paper, to convey elements and spatial
relations in the world: Expressing ideas in a visuospatial
medium makes comprehension and inference easier than
in a more abstract medium such as language (I'versky and
Suwa [2009]). Sketching can be used to create, share and
document knowledge about the software design and the

sualizing knowledge with sketches is a powerful means
of communication and can enhance conversations since it
allows more immersive and creative collaboration (Eppler
and Pfister [20T14]). o

Sketches are often the starting point of a software develop-
ment project, since sketching is an inexpensive and forgiv-
ing way to explore a multitude of possibilities and quickly
get an overview of the parameters and basic conditions of
the project. A brief outline of the software architecture or
the unpolished prototype of a user interface can be realized
in a very short time and with very little effort, but with a lot
of gain in terms of the direction the project should be head-
ing. Moreover, it is used during the maintenance phase
in which functionalities are refactored and additional, new
features are designed.

Entering the maintenance phase of an existing project, de-
velopers often need to grasp the mental model, design ra-
tionale or design decisions of the source code at hand. De-
velopers involved in the development of that project may

1.1 Thesis Context and Motivation

o
Aovin Q st necs
USBR. LUfee

Figure 1.3: Example of a hand-drawn sketch.

just need a reminder or hint in order to regain the under-
standing. However, a new team member joining a soft-
ware development project in its maintenance phase was not
present while structural layouts were discussed and design
decisions were made. But the sketches created during ini-
tial meetings and design sessions are external representa-
tions that can be helpful to the new team member and sup-
port the understanding of source code designs.

To put it briefly, hand-drawn sketches and diagrams are
code independent and can be used to visualize thoughts
and ideas that are not in the source code itself. However,
the creation of hand-drawn sketches takes time and re-
quires additional work effort, but sketches are created dur-
ing the software development process anyway and are also
archived (Walny et al] [20TT]).

Based on the preceding line of argument, it seems standing
to reason to introduce the ability to integrate sketches into
the source code: The approach pursued in this thesis is to
support the software comprehension process by introduc-
ing another external representation that incorporates hand-
drawn sketches. In order to realize this aim, I introduce and
evaluate the functionality to connect sketches to the corre-
sponding source code in order to communicate source code
designs.

Sketches are code
independent and can
capture the mental
model in a
visuospatial way.

Sketches connected
to source code
should provide an
additional channel of
information to
communicate source
code designs.

1 Introduction

1.2 Thesis Structure

Chapter 2—“Relafed work” provides an overview of liter-
ature published in the context of sketches in general,
sketches in the domain of software development as
well as tools for software developers that deal with
sketches and software visualizations.

Chapter B—"[[nitial Study}” presents my first-hand experi-

ence gained while observing two software architec-
tural meetings and interviewing software architects
and developers.

Chapter B—"Fundamenfald” provides basic ideas and
definitions concerning the connection between
sketches and source code.

Chapter B—“Prototyping” introduces my software pro-

totype that provides the functionality to connect
sketches and source code. Moreover, I describe my
design decisions in detail and explain certain aspects
of the implementation.

Chapter B-—"[Evaluafion” describes the experimental
setup and how I conducted the user study. Also, the
quantitative and qualitative results gathered during
the user study are presented.

Chapter Z—"“Summary and Future WorK” summarizes
the results of this thesis and gives suggestions that
should be addressed in future.

Chapter 2

Related work

This chapter offers an overview of literature published in
the context of this thesis. The overview provides back-
ground information to understand the study, establishes
the importance of this topic and justifies the approach taken
in this thesis. This chapter is structured as follows:

Section ZI—“BSketches and Sketching in General”:
presents findings about sketching from research
conducted in the field of cognitive psychology with
the focus on domains like architecture, industrial and
graphical design, as well as engineering.

Section Z2—*“Sketches and Software Developerd”:
narrows the focus to the software development pro-
cess and presents findings on why and how software
developers sketch in their everyday work.

Section Z3—*“Sketches and Tools for Software Developers”:
introduces several sketching tools for software devel-
opers that aim to enhance the sketching experience.

4

Section Z.4—"|Visualization Tools for Software Developers”:
introduces several re-engineering tools that aim to
support software developers by visualizing existing
code.

Section ZZ53—"[Consequences for this thesis”:
summarizes the findings and explains the influ-
ence on the development of this thesis.

10

2 Related work

Sketches are used to
externalize thoughts
and ideas to relieve
the working memory.

The ambiguity of
sketches supports
ideation and
innovation by
allowing different
interpretations of a
sketch.

Sketches are a
powerful tool of
communication and
help with
understanding.

Most findings focus
on cognitive
psychology.

2.1 Sketches and Sketching in General

Complex and detailed trains of thoughts can be a bur-
den for the limited-capacity working memory. Sketches
are a common way to relieve the working memory of
that burden and, thereby, externalize thoughts and ideas.
Hence, sketches are a visual representation of imagination:
Sketches ensure that fleeting thoughts can be stored per-
manently. Moreover, sketches can convey spatial as well as
abstract concepts that portray literal mappings, like build-
ings, or metaphorical mappings, like organization charts
(I'versky [1999], [I'versky [2002]). But sketches are more
than just an external storage for ideas.

Unlike a model that demands completeness, sketches are
vague, partial, and eliminate detail that is irrelevant and
distracting, while still capturing the essentials. That is why
sketches are ambiguous by definition. This ambiguity con-
tributes to the fact that different people can have different
interpretations of the same sketch, but also that one per-
son can have different interpretations in the course of time.
But instead of being the source of confusion, this ambigu-
ity seems to further innovation through reinterpretation,
which can lead to the extension of thoughts and the discov-
ery of new ideas (I'versky and Suwd [2009]). This process is
described as backtalk of self-created sketches (Goldschmidi
[2003]) or as a conversation designers have with their own
sketches (Schén [T983]) and is an essential part of the design
and ideation process.

Moreover, sketches can be used as a tool to guide and focus
a conversation. Pointing at relevant parts on a sketch adds
context and focus at the same time. Visualizing thoughts,
knowledge and ideas with another person or even with a
whole group will enhance the conversation and add a nat-
ural flow and pace to it. Using sketches and sketching tech-
niques in a conversation allows more creative and immer-
sive collaboration, which may lead to better listening, rec-
ollection and understanding of the issues discussed (Eppler.
and Ptister [20T14]).

All these findings about sketches are based on research con-
ducted in the field of cognitive psychology with the focus

2.2 Sketches and Software Developers

11

1 L w (oy
o~ { N \ [PV
\\\ 1 :)/ \ /
0 N > (&L// Mg
/ [- S
we' e] o
~ = O] < b
\/ AN
Z / \\; . \ N \ /
S ; Vs
v\ &7
/ /i \C- : / 2
’ / # \ \\\\\ 4 \y&

Figure 2.1: Sketches of a paper-prototype for a wearable
computing device designed for blind people with an optical
implant. The sketchy character enables creating multiple
versions quickly and can lead to new ideas.

on domains like architecture, industrial and graphical de-
sign, as well as engineering. An interdisciplinary literature
review on the benefits of sketching regarding the manage-
ment of knowledge is given by Eppler and Pfister [Z0TTH].
In their review the highlighted disciplines are psychology,
design and computer science. Three categories emerged in
which sketches are beneficial and support the findings pre-
sented so far. The three categories are knowledge creation,
knowledge sharing, and knowledge documentation. How-
ever, the benefits are not put in contrast to other knowledge
management techniques, but computer-based knowledge
management solutions seem to be distractive and add an
unnecessary information overload. In addition, many ben-
efits of sketching were found in more than just one disci-
pline. Which leads to the assumption that some of those
benefits may be universal and, therefore, also may be ap-
plied to the software design and software development
process.

2.2 Sketches and Software Developers

Spitballing, designing, creating, editing, refining, commu-
nicating and understanding are typical activities software
developers perform frequently (LaToza et all [2006], Walny

Interdisciplinary
findings suggest that
the benefits of
sketches are also
applicable in the field
of computer science.

Software
development is all
about the source
code.

12

7 __Related work

Conveying
knowledge about the
source code is a real

problem.

Knowledge about
source code is
mostly in the head of
software developers.

ef_all [2OIT]). Most of these activities are focused on
the source code. But despite the fact that it is written
in a human-readable programming language, source code
seems not to be a suitable medium of communication be-
tween human beings, since understanding code written by
someone else or self is a serious problem for software devel-
opers (Kaet-all [2006], CaToza et all [2006]). Moreover, the
lacking ability of source code to convey its own rationale or
history is also identified as a serious problem: That is why
software developers spend a lot of time understanding un-
familiar code and are trying to find information about it
(Singer et all [1997], Kaef all [2006], [CaToza ef all [200A]).

Meaningful names for methods, variables, and files, as well
as comments and documentation are helpful ways to share
information and common knowledge that cannot be re-
flected well in the implementation itself. But adding com-
ments or creating a good documentation requires addi-
tional expenditure of time besides the time that is already
spent creating, editing or refining the source code. As a
consequence developers rarely use or rely on documenta-
tion since they feel that it does not get updated frequently
and often provides to much information that is poorly writ-
ten. The “ugly truth” about documentation is that it is un-
trustworthy in large parts (Lethbridge et al] [2003]). Fur-
thermore, several parts of knowledge about code are never
written down and only exist in the head of the developers.

The adopted way to get the needed information about un-
familiar source code is to ask other team members in short,
but interruptive ad-hoc meetings, where the knowledge
gets frequently visualized in transient form, i.e., mainly on
whiteboards or paper (LaToza ef all [2006], Cherubini et all
[20070]). The result is that these visualizations of mental
models and the knowledge around source code have value
after the day of creation (Branham et all [?0T0]), but since
the sketches are rarely written down and archived after-
wards the knowledge is constantly rediscovered (LaToza
ot all [200A]).

In order to get a better understanding of the working habits
and practices of software developers in relation to sketches,
the following subsections describe why and how software
developers use sketches in their everyday work.

2.2 Sketches and Software Developers

13

2.21 Why do software developers sketch?

In order to identify the scenarios in which developers
sketch Cherubini_ef all [20075] interviewed nine software
developers and identified nine scenarios in which software
developers sketch. Subsequently 400 Microsoft employees
(81% software developers, 11% development leads, 5% ar-
chitects, 3% others) were surveyed in order to get a deeper
understanding of the nine identified scenarios. Three out of
nine scenarios were mentioned as the most important with
regards to creating sketches, whereas in the remaining six
scenarios the importance of sketches was either very sim-
ilar or exceeded by the importance of software visualiza-
tions:

1. Understanding existing code describes the process of
examining the source code and its behavior as well
as the usage of additional tools like documentation.
The goal is to form a mental model and develop an
understanding of the dependencies and relations.

2. Designing/refactoring describes the process of plan-
ning new or restructuring existing functionalities. Ex-
ploring new ideas and improving existing code also
requires a deep understanding of the structure and
the mental model behind the code.

3. Ad-hoc meetings are informal meetings of team
members in groups of usually two and at most five.
Missing, additional information about code or code-
related topics are gained in these meetings that are
almost never scheduled and, therefore, interruptions
of other team member’s work.

Other identified scenarios are mainly derivations and com-
binations of these three main scenarios: Onboarding de-
scribes the phase in which a new member is joining a group
of developers. Onboarding is a typical example for the pro-
cess of understanding existing code. Missing information
that cannot be gathered by self is then gathered in ad-hoc
meetings in which senior team members explain existing
code and create sketches to convey mental models of the
code.

Three scenarios
were identified as
very important with
regards to the
creation of sketches.

During the
onboarding process
new team members
try to gain an
understanding of
unfamiliar source
code.

14

2 Related work

Software developers
archive and reuse
sketches.

Software developers
create sketches
mainly on
whiteboards and on
paper.

Hand-drawn
sketches dominate
software
visualizations.

Walny et al] [2017] also give a detailed view for the domain
of software development and observed many similar areas
of application in comparison to other disciplines that use
sketches frequently. They followed sketches and diagrams
in their lifecycle within a software development process to
gain an insight whether and why sketches are used. The
scenarios in which developers created and used sketches
are very similar to those listed above. But, in addition they
found that sketches get modified, copied and shared after
their day of creation and also get archived for later use.

The findings presented in this subsection suggest that
sketches have a value for software developers and are used
in many different situations as a supporting tool in addition
to code itself. The following subsection gives an insight on
how software developers sketch.

2.2.2 How do software developers sketch?

Software developers mainly sketch on paper or on white-
boards (Kurfz [POTTH]) depending on the circumstances
and anticipated size of a sketch. Whiteboards, however,
were identified as the most adapted tool for producing
sketches since the production costs of a sketch were re-
ported to be very low. Developers can freely sketch, with-
out being constrained by formal notations or specific stan-
dards. But with an increasing level of granularity the costs
of creating a sketch increase and the creation of very de-
tailed sketches is therefore less common (Cherubini ef all
[20076]). Making use of paper and whiteboards, as well
as notebooks, printers, scanners, cameras, photocopiers,
hand-held devices, tablet devices and PCs indicates that de-
velopers have established their own and individual work-
flows in dealing with sketches (Walny et al! [20TT]).

In all scenarios described in subsection P21 hand-drawn,
analog sketches predominated over both tool-based visu-
alizations and source code visualizations created with re-
engineering tools. Moreover, the scenarios understand-
ing, designing/refactoring and ad-hoc meetings seem to
use microscopic as well as macroscopic views on the code
(Cherubini et all [2007b]). Developers state that a macro-

2.3 Sketches and Tools for Software Developers

15

scopic view, in which the high-level understanding is
shown of how a feature should work, is useful for the doc-
umentation of software and that these high-level concepts
have value even if they are not up-to-date, since they still
provide enough important information (Lethbridge et al!
[2003]). Developers further state that a macroscopic view
cannot be depicted automatically by a re-engineering tool
(Cherubinietall [20070]). Hence, especially in the three sce-
narios understanding, designing/refactoring and ad-hoc
meetings more than 75% of the surveyed software devel-
opers agreed or strongly agreed that hand-drawn, analog
sketches were important. Whereas re-engineering tools
were all beneath the 25% mark (Cherubini ef-all [20070]).

In summary, findings showed that mainly informal nota-
tions were used and current re-engineering tools were un-
suitable in many scenarios since they offered no help in ex-
ternalizing the mental models of code. Sketches are mostly
used for purposes like ideation and communication with
others and self.

2.3 Sketches and Tools for Software De-
velopers

Sketching with pen and paper or on a whiteboard is the
perfect example for direct manipulation: “you draw what
you want, where you want it, and how you want it to look”
(Grass_and Da [1996]). Computer-based sketching tools
add the burden of dealing with the tool itself and thereby
omit the freedom and fluidity that is provided without such
a tool. Using computer-based tools instead of sketching on
paper hinders creativity and shifts the user’s focus to refin-
ing the sketch by concentrating on colors, fonts, and align-
ments (Wong [1992], Goel [1995]). But, at the same time
computer-based tools offer certain advantages like editing,
sharing, and digitally archiving sketches. In addition com-
puters support 3D modeling, rendering and simulating as
well as remote collaboration (Gross-and Da [1996]). There-
fore, approaches that combine these two worlds should be
very appealing to software developers.

Computer-based
sketching tools omit
the Design Flow.

16

2 Related work

Tools should support
the Design Flow.

Digital sketching
tools are not popular,
due to poor sketch
recognition and
beautification.

An important guideline for tools that support sketching
is, that they should respect the fluidity of sketching, i.e.,
the Design Flow (Dorta et all [2008]) by letting the sketch-
ers concentrate on the sketching task and not distract them
with the tool (Csikszentmihalyi [T991)]).

= rrT— |- |r
f o Al m@
] S g

== {==)
S| - &@H , @
ﬂ‘_f@ VN
JF-J' s oy L-

Figure 2.2: SILK introduced by Landay [T996] is an inter-
active sketching tool. Designers can quickly sketch an in-
terface using an electronic pad and stylus, and SILK recog-
nizes widgets and other interface elements. SILK supports
the creation of interactive storyboards.

In 1996 Landay introduced SILK, a tool for sketching and
improving user interface prototypes, that could be oper-
ated with an electronic pad and a stylus. Landay envi-
sioned that in the future user interface designers would cre-
ate most of the user interface code with the help of tools like
SILK (Canday [1994]), EtchaPad (Meyer [1996]), DENIM
(Cin“et—all [P0O00]), InkKit (Plimmer_and Freeman [P0O07]),
and PaleoSketch (Paulson_and Hammond [P008]). These
tools automatically recognize hand-drawn graphical ele-
ments and transform them into elements that are part of
a formal notation. This allows the designer to edit sketched
interface designs and test the interaction of a sketched com-
ponent or widget. But these tools did not show a lot of
promise in everyday work, since the recognition of ele-
ments is still quite rudimentary, highly domain-specific and
restricted to a given set of recognizable elements. There-
fore, the support is not sufficient to convince users to switch
from analog sketching to digital, tool-based sketching, al-

2.3 Sketches and Tools for Software Developers

17

though the approach seems appealing (Plimmer and Free-
man [2007], Schmieder et all [2009]).

Another, rather small set of tools that enhances the sketch-
ing experience and is not primarily concerned with auto-
matic recognition of sketched elements or their beautifica-
tion, is a recent field of interest. With these tools sketches
stay sketches, but the analog tools get augmented with dig-
ital capabilities. One motivating factor behind these tools
is to provide a suitable setting for idea generation by sup-
porting and not omitting the Design Flow and applying the
convenience of the digital world.

/IMB B P

opo
/rISERTERT

Figure 2.3: The Reboard system architecture introduced by
Branham ef-all [20T0]. Sketches on the whiteboard are cap-
tured and retrievable via a calendar-like user interface.

Branham et all [20T0] address the limited space of a white-
board and the need for erasing sketches despite the fact that
these ephemeral sketches may have a temporal value by in-
troducing a system called ReBoard that automatically cap-
tures whiteboard images and archives them for later ref-
erence, so that the images can be accessed through a user
interface with a calendar-like view. The progress and the
results of collaborative and solo sessions get documented
and are reusable in the future. For instance, a sketch drawn
to help understanding a concept may be used later on as a
starting point in a brainstorming session for related ideas.
In order to not interrupt the Design Flow the system cap-
tures whiteboard images automatically by tracking changes
on the whiteboard.

Another toolset
augments analog
tools with digital
capabilities.

ReBoard is a
whiteboard capturing
system that archives
whiteboard content.

18

2 Related work

p gt

Nick - null y

[Unknown (8)

Bl ~ife v co[oc[MEOMBOUE] « -Jode

Figure 2.4: Calico introduced by Mangano et al] [2010] is an intuitive sketch-based
design environment for touch-based devices: (a) Grid View to manage multiple
Canvases, (b) advanced manipulation possible with scraps (blue elements)

Calico augments a
whiteboard or tablet
with digital
interaction
techniques.

Sketches are
redrawn multiple
times if future use is
anticipated.

Mangano et al! [20T0] also try to enhance the software de-
sign process on electronic whiteboards and tablet devices.
Their software called Calico adds certain features and capa-
bilities to an electronic whiteboard or a tablet device. By in-
troducing multiple virtual whiteboards arranged in a Grid,
the limited space of whiteboards is addressed. The concept
of scarps, which are grouped graphical elements, adds the
ability to copy and paste certain parts of a sketch in order
to reuse them and start exploring multiple variations of the
same initial scarp without having to redraw them.

Notwithstanding the above, the production quality of
sketches changes when sketchers are conscious about the
possibility that their doodles and scribbles might get reused
in the future. This is regardless of whether sketches are pro-
duced digitally or in an analog way. Therefore, the Design
Flow may get restricted since sketchers will start to redraw
a sketch multiple times in order to get a cleaner version of
the original sketch that will be recognizable in the future by
others or self (Branham et all [2010]).

2.4 Visualization Tools for Software Developers

19

The goal of tools presented in this section is to support soft-
ware developers by enhancing their sketching experience.
Therefore, these tools are very closely related to the tradi-
tional, analog way of sketching. In contrast, the following
section presents some re-engineering tools. These tools vi-
sualize already existing code and omit the sketching part
completely. They are still of interest for this thesis, since
they show the influence and implications of visualizations
combined with source code.

2.4 Visualization Tools for Software De-
velopers

A source code visualization is a graphical representation
of source code that is created automatically by the devel-
opment environment. Hand-drawn sketches and diagrams
are code independent and can be used to visualize thoughts
and ideas that are not in the source code itself, whereas
automatically generated visualizations are code dependent
and can only be representations of already existing code.
However, they can create these visualizations without any
assistance of the user and always depict the current status
of the source code.

Early contributions with regard to better understanding of
code and graphical visualization of code were tools like
SeeSoft (Fick et all [T992]) and have become more and more
evolved with recent tools like CodeGestalt (Kurtz [201Tal),
Code Bubbles (Bragdon et al] [2010]), and Code Canvas
(Deline and Rowan [20T10]). Corresponding user studies
suggest that these tools can help in understanding code, but
may also lead to an additional layer of confusion.

In particular Deline"and Rowan [?0T0] give an interest-
ing insight to the reasoning of their approach regarding
the scenarios from subsection ZZZ1. Their re-engineering
tool called Code Canvas is designed to support develop-
ers when trying to understand existing code, designing
and refactoring existing code, and in ad-hoc meetings. At
the center of their approach is the Code Map. The Code
Map is a visual representation of a software project on a

Source code
visualization tools
visualize only
existing code.

Source code
visualizations might
be helpful, but do not
have to be.

Code Canvas:
Shifting focus from
Code to Code Maps

20

2 Related work

Code Maps are
helpful to new team
members.

Took Auchisectics et Anae Wiedow Help
¥ | cessg = iy = e

Figure 2.5: Code Canvas introduced by Deline and Rowan
[20T0] is a Microsoft Visual Studio plug-in. It replaces the
tabbed documents with a zoomable code map.

single map. Such a map should help developers to keep
the mental model and give them better orientation while
navigating through code. Starting with a paper-prototype
(Cherubini_ef-all [20074]), Code Canvas was implemented
as a Microsoft Visual Studio plug-in. Although the paper-
prototype was based on whiteboard drawings created by
a team of developers, the resulting Code Map was a print
out of stylized drawings created with a computer program.
The software prototype is a zoomable and pann-able Code
Map with the ability to hide certain details according to the
zoom level in order to provide a microscopic and a macro-
scopic view of the project. In addition the user can open
multiple canvases of the same Code Map at the same time
to deal with different situations like working on a new fea-
ture on one Canvas and explaining some part of the project
to a team member on a second Canvas. This enables the
developer to simply return to the first Canvas and resume
the initial task after the conversation with the team member
ends and the second Canvas is no longer needed.

In the case of Code Maps new team members to a project
reported that they found visual representations helpful.

2.5 Consequences for this thesis

21

But still, re-engineering tools cannot visualize the mental
model behind the code and that is something that is notably
needed when trying to understand unfamiliar code.

2.5 Consequences for this thesis

The previous sections show the results of the literature
review and provide a basic understanding of sketches,
sketching in general, and sketching in the domain of soft-
ware development. Moreover, some tools are introduced
that support developers when sketching and some tools
that provide visual representations of existing code. In
summary, the following aspects of the literature review
have influenced the development of this thesis:

Sketching is an established tool for ideation and commu-
nication. Sketches have the property of being sketchy, in-
complete and ambiguous. Both the incompleteness and the
ambiguity promote new thoughts and ideas. In terms of
sketches being a means of communication, sketches can be
used to enhance a conversation by offering an additional
way to better understand the discussed issues and fill the
gaps that spoken language may create.

Research focusing on sketches and software developers
shows that software developers definitely create hand-
drawn sketches and diagrams in various phases of a project
and in different scenarios. Three scenarios were identified
as the most important, when it comes to creating sketches:
understanding, designing/refactoring and ad-hoc meet-
ings. In all three scenarios software developers preferred
hand-drawn sketches. Moreover, software developers re-
visit sketches and reuse them for multiple purposes like
clarifying certain aspects for others or using sketches as a
starting point in brainstorming sessions.

Computer-based sketching tools provide a poor recogni-
tion and, depending on the tool, sketches lose their ambi-
guity through that computerized recognition and follow-
ing beautification. Moreover, sketching tools impede the
Design Flow by distracting from the actual sketching task

Sketching supports
ideation and
communication.

Sketches are
important when
understanding, de-
signing/refactoring,
and in ad-hoc
meetings.

Sketches should stay
sketches.

22

2 Related work

Conclusions for this
thesis

and redirecting the focus to rather unimportant aspects like
colors, fonts and alignments.

Source code visualizations created by re-engineering tools
seem to be promising in terms of understanding exist-
ing code, but user studies were not able to show that re-
engineering tools provide a better understanding of exist-
ing, unfamiliar code.

When explaining or conveying a mental model, sketches
are a very useful and often applied tool. So it seems stand-
ing to reason to use created hand-drawn sketches and con-
nect them to already existing source code to enhance the
understanding and support the software comprehension
process. One added value of sketches is the ability to cap-
ture planned functionalities and features.

That is why I believe that the connection of hand-drawn
sketches and source code is a reasonable next step. The
connection should merge the advantages of sketches and
re-engineering tools and cancel out the disadvantages men-
tioned before.

23

Chapter 3

Initial Study

The literature review provided valuable insight into related
work conducted in this particular field. However, in order
to gather first-hand experience about the use of sketches
during everyday work, I visited a company that provides
IT solutions and consulting services to the energy industry
located in Aachen, Germany.

The company employs around 300 people and created a
revenue of 26 MM EUR in 2011. The IT department imple-
mented the agile software development framework Scrum
(Schwaber and Beedle [200T]) for their projects including
daily standup meetings and weekly team meetings to ex-
pedite and plan the progress. I was able to sit in on two
meetings of the software architects board and conducted
three informal, unstructured interviews: one with the head
of software architecture and two with software developers.

Derived from the data gathered during the meetings and
the interviews, I present representative vignettes embed-
ded in a narrative:

Lea is the head of a software developer team and the head software
architect. She has been working at the same company for 20 years
and witnessed the releases of many products. That is why her
team members call her the "dinosaur”. At the moment her team
is working on a new platform that will combine a set of smaller
programs that have been implemented by different groups of the

Gathering first-hand
experience by
visiting a company.

Two meetings were
observed and three
informal interviews
conducted.

Co-workers interrupt
each other to ask
questions and gain
knowledge about
source code.

24

3 Initial Study

Sketches are used to
provide a foundation
for conversations and
to support better
understanding.

Sketches are created
in ad-hoc meetings
to explain source
code design.

company. The company implemented an agile software develop-
ment framework to manage this project. One of many tasks is to
provide legacy support in order to be compatible with older ver-
sions. Since she was involved in all prior releases, Lea is the go-to
person, when open questions arise and her team members have
difficulties understanding the source code. So she constantly gets
interrupted in her day-to-day work. In addition to all the sched-
uled team-meetings, she has many smaller, unscheduled, and in-
formal meetings that happen in the hallway or before and after the
main meetings.

During a scheduled team meeting some points have to be ad-
dressed concerning the software architecture of the new platform.
All team members know the current architecture by heart and
Lea can just talk about her concerns and suggestions: Everyone
can follow her train of thought. Han has a suggestion to solve
one of the issues and he presents a new idea he already discussed
with Becca. They present their idea verbally. Luke, the newest
team member, has problems following their mental leaps and is
confused. He asks if someone could scribe the idea onto the white-
board. Becca gets up and starts sketching (see Figure B 1). She
sketches some very sketchy large-scale elements to provide some
orientation, so that everyone in the room can understand the con-
text in relation to the software architecture. Then she starts to
sketch in a more detailed way, while Han is repeating his idea.
He matches his talking pace to the time Lea needs to sketch the
spoken. Now Luke is able to follow the conversation, which is
true now for some of the other developers, too. At the end of the
meeting Lea takes a picture of the whiteboard with her mobile
phone (see Figure B 2). She sends it to Han and asks him to
add the picture to the according task in the task tracking tool (see
Figure B 3).

Luke goes back to his desk and wants to resume the task he was
assigned earlier, i.e., to fix a bug. He is trying to understand the
code that is connected to the bug. He tries to reproduce the bug to
get a hold of all components involved. He starts to make smaller
changes, to see which influence these changes have. He takes a
look at some visualizations that are provided by the development
environment: he now understands some of the dependencies. But
some information are still missing. He does not know how to
change the code, since he cannot understand why the code is writ-
ten the way it is. It makes no sense to him. Then he takes a look
at the wiki that is used for internal documentation. But there is

[afzia I (aogl

Figure 3.1: A sketch created on a whiteboard is digitalized and saved on the com-
puter. Sketches are archived, but rarely used again. 1) collaborative creation of
sketch on whiteboard, 2) digitalize the sketch with a digital camera or smartphone,

and 3) upload the photo to the computer.

just a lot of text and some code snippets of which he can find only
few in the source code. The text is only partially helpful since
the last change was made more than a year ago. He decides to go
to Lea and ask her for help, because he was not able to grasp the
concept behind the interaction of the involved components. Lea
opens the according code in her development environment and
start to explain. She clicks and jumps very quickly through the
project. Then she takes a sheet of paper and starts to scribble some
elements, connections, and dependencies. The explanation was a
little fast, but Luke asks Lea if he could take the sketch with him
in order to go through it on his own after returning to his desk.
After some time Luke still cannot figure out how to fix the bug.
So he takes the sketch to Han and asks him for help. Han takes
a look at the sketch and adds some elements and lines. Now ev-
erything falls into place for Luke and he can return to his desk,
where he successfully fixes the bug.

Luke fixed his bug and starts fixing another bug. At first he tries
to solve the problem by himself, but then he asks Lea for help even-
tually. Luke runs into Lea in the hallway, where whiteboards are
mounted to the wall. Lea grabs a marker and sketches the rough
conceptual structure and the reasoning behind the code that is
relevant to fix the bug on the nearest whiteboard. Now Luke has
all necessary information. He also has some ideas on how to im-
prove the structure, which they explore by sketching additional
elements. Since Luke cannot take along the whiteboard, he takes
a picture with his smartphone and transfers that picture to his
desktop computer in order to glance at it while fixing the bug.

After leaving the hallway meeting, Lea realizes that some of the
elements she sketched on the whiteboard were already depicted

Documentations are
outdated and
incomplete.

Sketches are
digitalized and
archived for future
use.

Sketches are helpful
to new team
members.

26

3 Initial Study

Sketches are hard to
maintain.

on the first sketches created for Luke. She starts to ponder: Any
other new team member might have similar problems to get on
board and catch up with all the other team members. The visual-
izations of the IDE and the wiki were only partially helpful, since
the code snippets in the documentation were outdated and there
was no reference to the updated code segments. She has an idea to
collect all the sketches and make the accessible for other new team
members. But then she remembers: She tried to do something like
that about five years ago for another project. She wanted to sketch
and draw everything about the current project at that time, but
after a month or so she surrendered, because the project progress
was faster and she could not keep up.

The drawn conclusions from our gathered experiences are:

1. Knowledge is in the head: The knowledge about
source code of a project is mainly in the heads of the
software developers and is recorded very rarely and
mostly for external documentation, i.e., documenta-
tion for clients. But an external documentation is
not designed for mental models of the source code or
the design rationale. Sketches are a adequate way to
externalize the knowledge in the head about source
code design.

2. A tool of communication: Sketches are created for
self or in meetings (mainly between two and four
people) in order to explain complex issues and to en-
sure a common knowledge base. The level of detail
may vary in the same sketch if useful. Sketches sup-
port communication and provide an addition channel
along with spoken language.

3. Helpful tool for new team members: New team
members need support and assistance in order to
catch up with the existent, but undocumented knowl-
edge within a development team. They often inter-
rupt co-workers and engage them in a conversation
during which sketches are created for explanatory
reasons frequently. These sketches are very valuable
and helpful to the new team members.

27

Chapter 4

Fundamentals

An approach to communicate the source code de-
sign through sketches and, hereby, connect hand-drawn
sketches with source code was not found in the literature
review. Therefore, it is important for me to review the fun-
damentals involved, when talking about a connection be-
tween sketches and source code. These fundamentals pro-
vide a common ground on which the prototyping process
was based on. This chapter provides an overview of these
fundamentals and is structured as follows:

Section E1—"[Cayouts and Views” presents basic layout
techniques of common software development envi-
ronments as well as ways content is viewed. This sec-
tion then introduces two views to integrate sketches
into an integrated development environment (IDE).

Section E2—"The Conneclion Painfs” defines the ter-
mini that are used to create a connection between
sketches and source code.

Section E3—“The Conneclion befween Connection Poinfs”

introduces two ways to display a connection between
Connection Points.

28

4 Fundamentals

The basic views of
an IDE as the
starting point for
exploration.

Two basic layout
techniques for views
used in IDEs.

4.1 Layouts and Views

The following basic views are provided by common soft-
ware development environments and provide a starting
point for further exploration on how and where to integrate
sketches:

e The content area displays the source code of a se-
lected file.

e The project tree displays the hierarchical structure of
the project using folders and filenames to support the
navigation through a project.

e Panels provide additional tools and information.

r it

Sz,

e

—————

o

=

——————

————————

e—— @

®
[
i

|
I
@

Figure 4.1: This sketch depicts basic areas of common IDEs:
1) content area, 2) project tree, 3) side panel and 4) bottom
panel

In order to add a view to the IDE, which is able to hold
sketches, I present two layout techniques that emerged as
fundamental ways to compose and arrange multiple views:

1. The Split Layout introduces an approach in which
two or more views share a common space. A split can

4.1 Layouts and Views

29

Tt

—
e
—_—
pmm——y
pr—
—_—
p—
—_
P
_—
T
fr—

Figure 4.2: This sketch depicts examples of the basic layouts in which sketches are
integrated into a software development environment: a) Split Layout (side panel),
b) Split Layout (bottom panel), c) Overlay Layout (fullscreen) and d) Overlay Lay-

out (floating)

be applied in two ways: horizontally (top-bottom)
and vertically (left-right). Applying this layout recur-
sively, a grid of views can be achieved, so that views
like the content area, a side panel or a bottom panel
can be displayed at the same time (see Figure B2 a, b).

2. The Overlay Layout implements a layer on top of an-
other view. The visibility of that layer can be toggled,
so that the Overlay View appears on top of the cov-
ered, underlying view or is not visible at all. This im-
plies that it is not possible to work with the part of the
underlying view that is covered and, therefore, hid-
den by the overlaying view. Different levels of trans-
parency are a possible solution for this problem. Ex-
amples for this layout technique are floating windows
and tabbed document interfaces (see Figure B2 ¢, d).

Having introduced the basic layouts that can be used to
place views in an IDE, the following two types of views
support the display of sketches. Both differ in the way how
value is attached to the placement and position of a sketch
in relation to other sketches within the respective view.

1. The Map View provides a fixed position for all
sketches in relation to each other and, thereby creates
a structure as a whole, i.e., a map. Similar to having
multiple elements in one sketch that have a relation
to each other, grouping several sketches in a certain
way spatially can have the same effect. Spatial mem-
ory can be supported by using the arrangement of

Two types of views to
display and arrange
sketches in IDEs:

The Map View
respects the spatial
arrangement of
sketches.

30

4 Fundamentals

The Context View
disregards the
placement of
sketches and allows
various techniques to
arrange sketches.

Connection Points
are the termini of a
connection.

Syntactical elements
that can be used as
Connection Points for
source code.

sketches like a map. Moreover, this view is indepen-
dent of source code and the arrangement has a value
in itself.

2. The Context View integrates sketches by displaying
them on demand as an additional information about
the corresponding source code. Access to the sketches
is gained only via source code and not through the
view itself. The display of contextual information
about source code in the form of sketches can be re-
alized in many different ways like panels or overlays.
Spatial arrangements between several sketches are ig-
nored and are highly dependent on predefined layout
rules, e.g., tiles and slideshows, within the view.

4.2 The Connection Points

In order to see how a connection between a sketch and
source code can be realized, I explored the individual and
elementary components and they are presented hereafter.
According to the Oxford Dictionary a connection is defined
as “a relationship in which a thing is linked or associated
with something else”. Set theoretically speaking the con-
nection between sketches and source code is a binary rela-
tion between a set of sketches and a set of code. One ele-
ment of the set of sketches can be connected to one or mul-
tiple elements of the code set, or vice versa. The following
subsections will address the different kinds of elements of
each set, which are the Connection Points.

4.2.1 The Connection Points of Source Code

A Connection Point in the source code is anything that can
be selected by the user. Thus the following syntactical ele-
ments can serve as a Connection Point (see Figure E3):

e single character (atomic unit)

e word (sequence of characters)

4.2 The Connection Points

31

e line (sequence of words)
e block (sequence of lines)

o file (sequence of blocks)

CotE
a b c
A 4
2 c;_mz
3 3
Y 4 Y
s))
I3 6L £ //
* ¥ > //
14 g 3

Figure 4.3: Examples of Connection Points in the source
code: a) word, b) line, ¢) block

The above structure of Connection Points allows flexibility
and a certain freedom: Semantical elements can be com-
posed out of the syntactical elements listed above, e.g., a
function or a method is a block and the declaration of a
variable is a word or a line.

4.2.2 The Connection Points of a Sketch

Assuming that a sketch is placed on a two-dimensional
plane, the Connection Point of a sketch can syntactically be
described as a geometrical element (see Figure E4). Such
an element can be a

e spatial point (atomic unit),
e line (sequence of points) or

e geometrical shape (points and lines).

The semantical elements of a sketch can be composed out
of syntactical elements: The Connection Point to a sketched
circle-object can be any of the syntactical elements, i.e., a
point, a circle, or any other shape.

Semantical elements
of Connection Points
of source code.

Syntactical elements
that can be used as
Connection Points for
a sketch.

Semantical elements
of Connection Points
of a sketch.

32

4 Fundamentals

A connection can be
established between
two or more
Connection Points in
a visualized or an
indicated way.

A visualized
connection can be
traced with the finger
from one Connection
Point to another.

An indicated
connection adds
characteristics to

indicate a relation
between Connection
Points.

SUETCGH

a b c
f—o =)
= L
Figure 4.4: Examples of Connection Points on a sketch: a)
point, b) line, ¢) geometrical shape

4.3 The Connection between Connection
Points

The connection between source code and sketches links two
or more Connection Points with each other and establishes
a relationship between them. During initial ideation ses-
sions to explore the possibilities many generated ideas were
heavily dependent on the view that was chosen to inte-
grate sketches into the IDE. Nevertheless, all ideas gener-
ated could be assigned to either of these two categories:

e visualized connections: The most prominent exam-
ple of a visualized connection of two or more Con-
nection Points is a line between two elements. Using
a line in order to connect elements is a common and
natural way: The line symbolizes the path that has to
be taken to get from one element to another element.
Hence, the visualized connection is a connection that
can be traced with the finger and therefore no mental
effort is necessary in finding all elements that are in
relation to each other.

¢ indicated connections: A more subtle approach is in-
dicating the relationship by adding unique character-
istics to the Connection Points involved in the relation
in order to differentiate them from other Connection
Points that are not part of the relation. Examples for
indicating techniques are color coding and different
shapes like stars, triangles, dots or pins that group
and, thereby, link certain elements together.

33

Chapter 5

Prototyping

The development of the prototype followed a cycle of de-
sign, implementation and analysis (DIA cycle) with users
being involved in the process. The prototyping process
started on paper and evolved into a software prototype, so
that the connection of sketches and source code could be
evaluated by software developers and programmers. This
chapter describes the prototyping process and is structured
as follows:

Section B1—"[Participants” gives a short description of

the participants, who were involved in the prototyp-
ing process.

Section B.2—“Methodology” provides insight into how

the prototyping process was carried out.

Section B3—*“Design decisions” describes the design ra-
tionale of the prototyping process. Design decisions
are presented for the choice of layouts and views as
well as Connection Points and the connections be-
tween them.

Section B.4—“Implementation” describes the results of
the implementation phase of the software prototype
by addressing its Look and Feel as well as its naviga-
tional behavior.

34

5 Prototyping

Four computer
science students and
two professional
software developers
provided continuous
feedback during the
analysis of the
prototype.

The prototype was
developed using the
DIA cycle.

During the
prototyping process
approaches were
explored and design
decisions were
made.

5.1 Participants

During the development of the prototype, interviews,
brainstormings, ideation and feedback sessions were con-
ducted with six people in all, i.e., mainly one or three in
each iteration. Four participants of these sessions were un-
dergraduate students of computer science and two were
professional software developers. Each of the students
had experience with software development, whereas two
worked in team projects and two worked on solo projects
at that time. One of the two participating software devel-
opers was a freelancer and the other one was an employee
at an IT company.

5.2 Methodology

Following the rationale of the DIA cycle, ideas were gen-
erated during early brainstorming sessions to get a rough
insight on how the connection of sketches and source code
could be realized and what the interaction should look like.
The more evolved the prototypes got the more detailed
the implementation became. Design decisions were made
and implemented during the process. Once new ideas and
changes were mentioned during the analysis of a software
prototype feature, these were again explored on paper and
implemented hereafter. Smaller adjustments and fine tun-
ings at the end of the development process were then im-
plemented directly (see Figure BT).

5.3 Design decisions

In the course of prototyping many possible configurations
and variations of layouts, views, Connection Points and
connections types were explored and discussed. While get-
ting input from participants involved in the process and
considering findings of the literature review, certain design
decisions I made, that led to the software prototype. In the

5.3 Design decisions 35

SOFTUARE

Figure 5.1: The prototype development process started with paper prototyping
and evolved to a software prototype. The figure depicts the process figuratively.
Parting lines represent the generation of new ideas. During the analysis of these
ideas, design decisions were made that influenced the prototype represented by
merging lines.

following subsections my decisions and their rationale are
presented.

5.3.1 Layouts and Views

The way a sketch is arranged in relation to the source code Layouts and views
was a very vivid topic for the participants. Using sketches were examined in
as a map with spatial arrangements and recognizable land- ideation sessions.

marks was favored over approaches in which the spatial
memory was ignored.

1. The Split Layout: Participants noted that they would The Split View allows
like to see the source code and the sketches at the for showing source
same time, e.g., side-by-side. Most participants imag- code and sketches
ined a side panel on the right side of the source code side-by-side. A
since source code starts at the left edge of the con- vertical split was
tent area, whereas the right part of the content area preferred.

is mostly unused when common coding conventions
are followed, especially, on current monitors with a
16:9 display ratio. Participants imagined a white can-
vas on the right side of the content area and liked
the idea of placing sketches next to the correspond-
ing source code. That is why the vertical Split Layout
was one of the favorite layouts. A horizontal Split
Layout was discussed as well, but was not liked at
all: Loosing precious height in the content area, i.e.,
the amount of concurrently visible lines of code, was

36

5 Prototyping

The Overlay View
displays a view on
top of another view
and covers that
underlying view.

Decision: Use
vertical Split Layout
and fullscreen
Overlay Layout.

Exploring the use for
the Map View
showed promise with
providing orientation
due to use of spatial
memory.

The Context View
was disliked, since it
ignores the meaning

of the placement of
sketches.

seen as a clear disadvantage.

2. The Overlay Layout: The mostly referenced varia-
tion of this layout was a fullscreen Overlay. Despite
the fact that in this layout it is not possible to see
the source code and the sketches at the same time,
this layout was the participants favorite in terms of
project navigation. The fullscreen Overlay Layout
was compared to a map that should be helpful with
regards to orientation within a project due to the
strong use of spatial memory if the view allowed for
fixed placements of sketches. This advantage was
derived from experience with, e.g., computer games
in which opaque overlaying maps provide overview
and orientation.

After talking to participants about the layouts, I decided to
implement a vertical Split Layout and a fullscreen Overlay
Layout. Participants were also consulted on how to display
the sketches within a view:

1. The Map View: The possibility to give meaning to
a position on a canvas by placing a sketch at that
position, was requested by many participants. They
talked about displaying the architectural structure of
software by arranging the sketches in a certain way
and thereby having a way of applying value to the ar-
rangement and recording knowledge acquired while
creating the sketches. This approach of visualizing
sketches was compared to a whiteboard and its expe-
rienced ability to provide overview and orientation,
since a fixed placement of sketches supports spatial
memory.

2. The Context View: This particular view generated
ideas that were very dependent on the way how the
connection between source code and sketches was re-
alized. One example mentioned, were tooltip-like
floating bubbles. These bubbles would overlay the
source code, but not cover it as a whole. Another idea
for a Context View was showing all sketches, that
were important in the specific context, in a filmstrip-
like fashion integrated in a Split View. But, the Con-
text View was not liked by the participants due to the

5.3 Design decisions

37

lu ”“J“ \\\

e

N

—_—

3 00000

Figure 5.2: Results of an ideation session about the integration of sketches into the
IDE. Overlay and Split Layouts determine the layout of Map and Context Views in
relation to the source code. Visualized and indicated connections are used to link

Connections Points to each other.

38

5 Prototyping

Decision: Use the
Map View.

Feedback showed,
that participants want
to use all syntactical
elements as
Connection Points for
source code.

Participants were
undecided on which
syntactical elements

to use as Connection
Points of sketches:
spatial points and
shapes were favored.

Decision: Use all
syntactical elements
as Connection Points
for source code and
use only spatial
points as Connection
Points for sketches.

lacking use of spatial arrangements. Participants re-
ported to have no use for sketches that are technically
part of a whole structure, but are shown individually
and detached from that structure.

With regard to these comments, I decided to not use the
Context View at all and instead all views should have prop-
erties of the Map View to support spatial memory.

5.3.2 The Connection Points

When talking about Connection Points with the partici-
pants, there was a consensus that they wanted to be able to
use any of the syntactical elements (single character, word,
line, block, file) of the source code as Connections Points.
The reason was that they want to be able to select anything
in the source code and connect it to a sketch without restric-
tions.

In contrast participants were not very agreed on the Con-
nection Points of sketches. Some participants were satis-
fied with spatial points and compared them to thumbtacks
or fridge magnets that would suffice. Other participants
wanted to be able to use all syntactical elements, e.g., they
wanted to use a rectangular shape that would overlap a
rectangle on the sketch. They liked the freedom of choice
and the ability to use a plane as a Connection Point. How-
ever, one participant made a compelling argument against
using geometrical shapes as Connection Points: Since a
sketch already made use of geometrical shapes in order to
create elements and objects and relations, the use of geo-
metrical shapes as Connection Points would render many
parts of the sketch redundant. In a way, the sketch would
get replicated.

In order to keep the whole process of connecting sketches
with source code as simple as possible, the decision was
made to implement all syntactical elements as Connection
Points of source code, but only spatial points as Connection
Points of sketches in the software prototype. Since the idea
behind the software prototype is to provide the ability to

5.3 Design decisions

39

connect sketches and source code with each other, the fo-
cus is exactly that, since introducing multiple and resizable
shapes as well as different colors might shift the focus to re-
fining and beautifying the Connection Points (Wong, [1997],
Goel [1995]).

5.3.3 The Connection between Connection Points

Once a decision about Connection Points for both sketches
and source code was made, the connection between Con-
nection Points had to be established. A line between two el-
ements is a commonly used way to show a relation between
these elements. A visualized connection can instantly be
perceived and all visible, involved elements can be found
at a glance. But this was also mentioned as a drawback,
since too many lines between multiple elements can lead to
confusion and an overload of information. In contrast, in-
dicated connections have no problem with clutter, though a
mental component might be necessary, since the connection
has to be made mentally, e.g., by recognizing and differen-
tiating unique characteristics of related Connection Points
of a sketch.

The first approaches sketched by me and participants
showed outlined source code, outlined sketches and a line
in between. At first participants thought about drawing the
connection line directly on the source code and tested it in
an early software prototype. Since there was no computer-
ized management of those lines, this approach was quickly
dismissed and participants asked for a cleaner and more
subtle way.

Another problem with regards to visualized connections
was a fullscreen Overlay Layout: This layout provides a
layer on top of the content area and visualized connections
between layers of depth could not be imagined in any way.
In this situation participants drew small dots on the paper
prototype of the fullscreen Overlay View to indicated a con-
nection to a sketch. These dots were then implemented in
the software prototype for all connections between sketches
and source code and participants responded well to these
Connection Dots, which reminded them of fridge magnets

Visualized
connections lead to
clutter and indicated
connections demand
clear feedback to
reduce mental effort.

No approach was
found to combine
visualized
connections with a
fullscreen Overlay
Layout.

40

5 Prototyping

Participants
preferred marked line
numbers to indicated

connected code
segments.

Decision: Use
Connection Dots and
marked line numbers

to indicated
connections.

The prototype was
implemented as an
extension for Adobe
Brackets.

Adobe Brackets
provides a single,
continuous selection
metaphor.

or portals. Connection Dots do not create any clutter and
do not replicate the sketch itself.

Furthermore, participants did not like that code segments
were outlined all the time, i.e., being marked. They pre-
ferred to indicated the connection by marking the corre-
sponding line number in order to prevent overstimulation
caused by multiple marked code segments.

Hence, the indicated connection was persuade during the
development of the software prototype and the Connection
Dots are visual representations of Connection Points of a
sketch that are actively involved in a connection between
sketches and source code. On the side of the source, I de-
cided to mark the line numbers of lines that were part of a
connection.

5.4 Implementation

5.4.1 Platform

I implemented the software prototype as an extension
for the open-source code editor Adobe Brackets”. Adobe
Brackets is a community-driven project and is built on top
of web technologies such as HTML, CSS and JavaScript. It
is still in its early development stages and is developed in
the manner of the agile software development framework
Scrum. During the course of this thesis Sprints 15 to 24 were
released with major changes and feature additions.

The underlying core text editor of Adobe Brackets is
CodeMirror? to which Adobe Brackets offers a very basic
API, so that direct access to instances of CodeMirror is nec-
essary and encouraged by the community. CodeMirror im-
plements a single, continuous selection metaphor, mean-
ing that there can only be one continuous selection at any
given time. Hence, it is not possible to select multiple code
segments that are intermitted by other unselected code.

'http:/ /www.brackets.io
*http:/ /codemirror.net

5.4 Implementation

41

Known gestures like holding the shift key still result in a
continuous selection with one starting point and one end
point of that selection.

The following libraries were also used in order to imple-
ment the functionality of a connection between source code
and sketches:

e Sketch.js? is a jQuery plugin that provides the basic
functionality of sketching on an HTML canvas ele-
ment. The plugin was extended with an undo func-
tion. It is used to support free-hand sketching.

e Kinetic.js® is an HTML5 Canvas JavaScript frame-
work that enables high performance animations, tran-
sitions, node nesting, layering, filtering, caching, and
event handling, among others. It is used to support
managing sketches and their Connection Points.

e JSON2.js® provides a light-weight, language inde-
pendent, data interchange format. It is used to save
and restore all data about connections in an xml-file.

e jQuery UI® provides a set of user interface interac-
tions, effects, widgets, and themes. This library is
used for transitions.

5.4.2 The Look & Feel

According to the Design decisions made about the views
that should be supported by the prototype, two views
emerged as approaches to enable the connection of sketches
with source code. During the implementation process,
small feedback loops with participants helped defining
and creating a look and feel for the connections between
sketches and source code. In order to provide a holistic
approach to the interaction, the following views present a
similar behavior in terms of creating, managing and using
connections between sketches and source code.

*http:/ /intridea.github.io/sketch.js/

*http:/ /kineticjs.com/

*https:/ / github.com/douglascrockford /JSON-js
Shttp:/ /jqueryui.com/

Additional libraries
were used to
implement the design
decisions.

A similar look and
feel was
implemented for all
views to provide a
consistent user
experience.

42

5 Prototyping

LIVE DEVELOPHES

Beaokers

LenoTe
DBULERAP|

CHeong

WetSoewdT],

Py

Figure 5.3: A screenshot of the Mission Control View:

&8 ey

WES INsPEcTo B—

AN
= o 7\ g EoirQ
—— I\

) <
101 2 V\EN\'ON‘T”JU}?R N N

\N;m:‘nxﬁﬁ

INUNETEST EvToR,
Mied PRl \ j’ Fd
ToneL — v !
“ C ’QSL» Tluen BAeE inawten
= o9 DAL -
Sl hae Gl 550
I iNE C ot

or Gl

a semi-transparent,

fullscreen overlay on top of the source code offers an overview of a project.

The Mission Control
View is a Map View
integrated into a
fullscreen Overlay
Layout.

The Mission Control
View provides two
types of Connection
Dots:

Code Dots are
connected to code
segments.

The Mission Control View

The Mission Control View implements a Map View inte-
grated into a semi-transparent, fullscreen Overlay Layout
with indicated connections. This view is a canvas of infi-
nite size with a basic zoomable interface as the navigational
metaphor in order to adapt to different screen size. The user
interface elements of this view are integrated into the view
itself, since the Mission Control View overlaps all other ar-
eas of the editor. Since this view is designed to provide an
overview of the whole project, only one Mission Control
View exists per project.

Moreover, the Mission Control View introduces two kinds
of Connection Dots, which differ from each other in color,
so that users can distinguish between the two types of con-
nected Connection Points:

e Code Dots are dots that are connected to characters,
words, lines and blocks of source code. A Code Dot

5.4 Implementation

43

has a visible counterpart at the further end of the con-
nection, i.e., in the code. To indicate the correspond-
ing connected Connection Point in the source code the
corresponding line numbers are color-coded.

e File Dots are dots that are connected to a file within
the project and have no visible counterpart on the
source code side, since they are connected to the
whole file.

In order to create, manage and use the Connection Dots, the
Mission Control View introduces two modes:

e normal mode: In this mode the user can use the Dots
as a navigational and orientational tool.

e edit mode: In this mode the user can add, move and
delete sketches as well as Connection Dots.

The Sketchbar View

The Sketchbar View is the right frame of a vertical Split
Layout, whereas the source code is in the left frame. This
side-by-side approach allows for displaying sketches and
source code at the same time. The user interface is inte-
grated into the Sidebar that it provided by a default instal-
lation of Adobe Brackets. One Sketchbar View exists per
file, so that each file can have its own sketches displayed
alongside the source code.

The Sketchbar View implemented in the software prototype
uses only Code Dots due to the one-to-one relation of a file
and a Sketchbar View. Therefore, File Dots are not used in
this view at all.

In addition to the normal and the edit mode which are sim-
ilar to those implemented in the Mission Control View, the
Sketchbar View introduces a third mode:

e sketching mode: In this mode the user can sketch on
the canvas provided by the Sketchbar View in order
to quickly annotate sketches or make small additions.

File Dots are
connected to files.

The Sketchbar View
is the right frame
within a vertical Split
Layout next to the
source code.

Only Code Dots are
implemented.

The sketching mode
allows the user
create free-hand
drawings directly on
the Sketchbar View.

44

5 Prototyping

if (tkeyy {

return

i
var keyDescrip

if (hasMacCerl
keyDescrip

i

if (hasAlt) {
keyDescrip

}
if (hasshift)
keyDescrip
}
if (hasCerl) {
if (bracke
keyDes
} else {
keyDes
|
3

keyDescriptor.

return keyDese

var hasMacC

if (1left

Figure 5.4:
by-side view on sketches and source code. Yellow line numbers and yellow dots
on sketches indicate connections. The blue dot and the blue marked source code
illustrate a selected connection.

Having the sketches
and the source code
side-by-side the
navigational behavior
has to be specified to
support
communication of
source code designs.

Participants asked to
be guided from a
sketch to the source
code instead of
jumping there.

function _buildKeyDescriptor (hasMacCtrl, hasCtrl, hasAlt, hasShift, key) {

console. log(

tor = [1;

function normalizeKeyDes

function _compareiodifierstring(left, right) {

INLINE TEXTEOI TOR.

INUNE Wi beET [CSSINLne FoiTge.

Iané CoLop EoiToRr

HULTI RAGLS nine EoiToR.

) A
tor . push()i

A
Al

D4
f

tor . push (

{
tor . push(

2

ts.platform ===
eriptor. push(

) L
i

'H

i — {
3 oo @

criptor.unshi ft(

push (key) ;

riptor.join(

KE7&INDING MANALER |

criptorString(origescriptor) {

/

PAN DLER

N

HANDLEZ. Hawplge

|| tright) {

A screenshot of the Sketchbar View: a Split View that offers a side-

5.4.3 The navigational behavior

After implementing the two views and the functionality of
connecting the Connection Dots to Connections Points of
the source code, the navigational behavior was very impor-
tant. The premise was to provide an intuitive and support-
ive way in which a user interacts with the two views and
the communication of source code designs is supported by
showing requested information in a helpful way.

The Mission Control View

This view allows the user to navigate through the source
code by omitting the project tree and its folder structure.
Participants wanted to be guided from a sketch to the cor-
responding source code segment in order to preserve some
kind of orientation within the source code rather than jump

5.4 Implementation

45

from one to the other without any visual feedback and re-
lying on external reference points like the position of the
scrollbar to check if the position within a file changed, or
checking the filename to see if possibly even the file itself
changed.

Therefore, clicking on a Connection Dot will highlight it by
enlarging it and dissolve the Mission Control View gradu-
ally at the same time, so that the user gets visual feedback in
reaction to the click and the source code is the focus again.
If the clicked Connection Dot is connected to a code seg-
ment in a file different then the one currently opened, the
corresponding file is opened. If, in addition, the clicked
Connection Dot is a Code Dot the content area is scrolled
to the connected code segment, i.e., the Connection Point
of source code, which then is highlighted via a color-coded,
permanent selection. The permanent selection of the con-
nected code segment is active for as long as the user needs
it and can only be unselected manually by clicking on the
corresponding line numbers, which toggles the permanent
selection as well as the highlighting of the corresponding
Connection Dot on the Mission Control View. This way the
user is provided with as little as possible, but as much as
necessary visual feedback about the transition from sketch
to source code.

Moreover, this view allows users to orientate themselves
using back-links, i.e., using the connection between a
sketch and source code starting from the Connection Point
of the source code and following it to the Connection Point
of the sketch. Participants testing the software prototype re-
ported that they would like to see where certain connected
code segments are located within the overall structure of a
project. Clicking on a color-coded line number results in a
highlighted Connection Point of the source code and shows
the permanently selected code segment that is part of the
connection; at the same time the corresponding Connection
Dot is highlighted, i.e., enlarged, on the Mission Control
View. In order to see and find the highlighted Connection
Dot within the sketches, users have to toggle the Mission
Control View.

However, File Dots are highlighted automatically as soon
as the corresponding file is opened in the content area, so

Clicking on a
Connection Dot will
initiate a transition
from the Mission
Control View to the
content area
providing visual
feedback for the user.

Back-links can be
used to orientate self
within the project
with the help of
sketches.

A File Dot is
highlighted
automatically.

46

5 Prototyping

The navigational
behavior is tied to the
scrolling behavior of
the views in a Split
Layout.

Both the content
area and the
Sketchbar View have
the same total height
to support placing of
sketches in proximity
to corresponding
source code.

Using intelligent
synchronized
scrolling for both
views.

that the user can toggle the Mission Control View at any
time to gain orientation in the project with the help of high-
lighted File Dots and perceive the context in which the file
is in relation to the rest of the project.

The Sketchbar View

Since this view allows the user to see both the source code
and additional information about the source code in the
form of sketches at the same time, the navigational behav-
ior was much discussed, especially the scrolling behavior of
both views, i.e., the content area containing the source code
and the Sketchbar View, in relation to each other. There-
fore, I explored the behavior on paper and implemented
afterwards in order to proof the concept.

Participants wanted to place the sketches in relation to the
source code. Hence, a sketch that is related to a certain part
of the source code should be visible when the related source
code is visible. But participants did not want to have a
Context View, since they considered the support of spatial
memory as essential. Participants suggested a Map View
linked to the content area: A canvas with the same height
as the total height of the file, i.e., the height of both the
on-screen and off-screen part. So if a file consists of 1000
lines of code and a line has a height of 15px, then the to-
tal height of that file would be 15000px, as would have the
Map View. With regards to the total height of an empty file
or a file, that has a height lower than the editor window,
I made the design decision to initialize the height of the
canvas of Sketchbar View with the height of the Sketchbar
View itself, which is dependent on the height of the editor
window. The decision is based on the participants” com-
ments that sketching often is done before the implementa-
tion of code is initiated, hence, the user should be able to
import a sketch, even if no line of code has been written,
yet.

Moreover, participants suggested synchronized scrolling
of the content area and the Sketchbar View, since they did
not want to scroll both the content area and the Sketchbar
View separately. After participants tested the implementa-

5.4 Implementation 47

-
r

N \ \ . \ s
g N N N T N ~ [’ .
* — [N %\ \ E— NN -
. . * wemmra N ~
? N \ VN 4
. AN . : ’— v N
—— MY . g, .Y .
W EmemRm NN N . . N
P + g N
\ g—— [N N K . M :
© e : : . . M) .
g— N .
. N . N RN 2
. .
e s
[i .
gz —
]

'n-"u'
o
9

Figure 5.5: The scrolling behavior implemented in the Sketchbar View: a) hover-
ing a Connection Dot indicates off-screen connected code segment, b) clicking a
Connection Dot scrolls the code segment on-screen, c) entering the content area
activates synchronous scrolling and syncs the two views, d) clicking on an active
Connection Dot without having entered the content area before synchronizes the
views.

tion of synchronized scrolling, they were irritated with the
behavior when only one Connection Point of a connection
was visible and the other one was off-screen. This is mainly
the case, when a sketch on the canvas of the Sketchbar View
represents multiple code segments in the source code and
the corresponding code snippets are interspersed through-
out the file. Therefore, a meaningful behavior of the inter-

48 5 Prototyping

TSI (LTE 7 U]

Figure 5.6: A screenshot of the Sketchbar View: A yellow Connection Dot and a
yellow line numbers indicate a connection. The highlighted blue Connection Dot
and the blue marked code segment depict an active, selected connection. Hovering
over the right, yellow Connection Dot, the top edge is highlighted, which indicates
that the connected code segment is off-screen.

action with connections had to be defined with regards to
this particular view, because both are tied closely together.

Feedback needs to
be provided when

If parts of a connection are not visible, be it due to the vir-

tual limitations of the editor window or due to the real lim-

one Connection itations like the size of a display, the user still needs to get

Point of a connection meaningful feedback on what the further end of the con-
is off-screen. nection is. I implemented the following behavior:

Hovering over a e Hovering a Connection Dot with the mouse pointer
Connection Dot highlights the Connection Dot itself and marks the
marks the corresponding code segment if it is on-screen. How-

corresponding code
segment for the
duration of the hover.

Clicking on a
Connection Dot turns
the code segment
mark into a
permanent mark.

ever, if the corresponding code segment is off-screen
its position is indicated either at the bottom edge of
the content area if the code segment is located fur-
ther down in the source code or at the top edge in
the opposite case (see Figure BA: yellow gradient at
top edge). Upon leaving a hovered Connection Dot
with the mouse pointer it gets unhighlighted and the
corresponding code segment is unmarked. Indicators
are hidden if the corresponding code was off-screen.

Clicking a Connection Dot sets both the highlight-
ing of the Connection Dot and the marked code seg-
ment, which was already marked during hovering
the Connection Dot, as permanent (see Figure B).
If the corresponding code segment is off-screen the
content area scrolls up or down until it is on-screen
(see Figure BAb); in this case synchronized scrolling

5.4 Implementation

49

is deactivated, with an offset between the two views
of the Split Layout being the result. Upon leaving a
clicked and highlighted Connection Dot nothing hap-
pens. The connection is highlighted and stays high-
lighted until it is manually unhighlighted by click-
ing on the Connection Dot again (see Figure B5d) or
by clicking on the line numbers of the correspond-
ing code segment. The offset between both views
is eliminated and the synchronized scrolling is rein-
stated as soon as either the mouse cursor enters the
content area (see Figure B5c) or the Sketchbar View is
scrolled.

Similar to the Mission Control View, back-links are
available for this view and behave in the same way: A
click on the line number marks the Connection Point
of the source code, i.e., the connected code segment,
and the corresponding Connection Dot is highlighted
in the Sketchbar View. If the Connection Dot is off-
screen, synchronized scrolling is deactivated and the
Sketchbar View is automatically scrolled so that the
highlighted Connection Dot is on-screen. Synchro-
nized Scrolling is reinstated if the line number is
clicked so that the code segment is unmarked and the
Connection Dot is unhighlights if the content area is
scrolled or if the Sketchbar View is entered with the
mouse cursor.

The implementation of such a behavior is highly de-
pendent on and was only possible due to the single,
continuous selection metaphor of the editor. It is not
possible if a connection consists of more than two
Connection Points and more than one is off-screen.

The content area is
asynchronously
scrolled to the
appropriate line if the
connected code
segment is
off-screen.

Back-links enforce
asynchronous
scrolling if the
corresponding
Connection Dot is
off-screen.

This scrolling
behavior is
dependent on the
single, continuous
selection metaphor.

50 5 Prototyping

Figure 5.7: A use case of the Sketchbar View depicting the creation of connections
and its scrolling behavior: Add a picture to the Sketchbar View (1) by selecting
it for the native file system (2). Select a code segment that shall be connected to
the added sketch (3). Add (4) and place (5) the Connection Dot on the sketch.
Since the edit mode was entered upon adding a picture, asynchronous scrolling
is activated. Scroll the content area and select another code segment that shall be
connected to the sketch (6). Again add (7) and place (8) a new Connection Dot for
that connection. Leave the edit mode (9), so that synchronized scrolling is activated
and the content area is automatically scrolled to the same position as the Sketchbar
View is currently.

51

Chapter 6

Evaluation

To test how the software prototype works for practition-
ers, I conducted a user study at RWTH Aachen University
in which I explored five hypotheses. This chapter is struc-
tured as follows:

Section h.1—"[Experimental Setup” presents the setup of
the between groups user study by explaining the re-
cruitment process of participants and introducing the
two tasks, participants had to complete. Moreover,
the two conditions of the study are described in de-
tail as is the methodology applied during sessions.

Section b.2—"Results” presents some general information
about the participants joining the user study as well
as the results of the sessions and their influence on
the five hypotheses. The chapter ends with a compi-
lation of insightful, interesting and distinctive com-
ments made by the participants.

Section b3—"IDiscussion” briefly discusses the results
and observations of the user study:.

In order to investigate if the connection of sketches and
source code can communicate the source code design and,
therefore, be an additional source of information that helps
software developers and programmers in their software

52

6 Evaluation

comprehension process, I suggest and explore the follow-
ing five hypothesis:

H1 Given a time-constrained task that requires browsing
and understanding source code, more programmers
can solve the tasks correctly using the software pro-
totype with a sketch-enriched code base than us-
ing a default installation of the editor Adobe Brack-
ets with a regular code base and having the sketches
presented on paper.

H2 Using the software prototype with a sketch-enriched
code base, programmers can solve tasks that re-
quire browsing and understanding source code
more quickly than using a default installation of the
editor Adobe Brackets with a regular code base and
having the sketches presented on paper.

H3 Working on a sketch-enriched code base and using the
software prototype during tasks that require brows-
ing and understanding source code, programmers
look at sketches more often than when using a de-
fault installation of the editor Adobe Brackets and
having the sketches presented on paper.

H4 Working on a sketch-enriched code base and using the
software prototype during tasks that require brows-
ing and understanding source code, programmers
look at sketches longer than when using a default
installation of the editor Adobe Brackets and having
the sketches presented on paper.

H5 Programmers (subjectively) find that the connection
between sketches and source code is an additional
tool, that supports their software comprehension pro-
cess by helping them to understand the mental
model behind the code.

6.1 Experimental Setup

Hypothesis H1-H4 can be tested by performing quanti-
tative measurements. Supporting H5 requires qualitative

6.1 Experimental Setup

53

methods, such as a semi-structured post-session interview
and observing participants working on tasks. In this sec-
tion we describe the way we recruited participants and
present in detail the setup of the experiment that was used
during the user study in order to explore the five hypothe-
ses.

6.1.1 Participants

In order to evaluate the software prototype graduate
and undergraduate computer science students as well as
alumni from RWTH Aachen University were invited via
an email circular to participate in the user study. Several
days before the user study was closed all participants who
received the initial circular and had not yet responded,
received individualized reminder emails. In addition to
that also professional software developers were directly ap-
proached and invited via email to participate in the study.
All participants were compensated by entry in a drawing
for a 50 EUR gift certificate.

6.1.2 Tasks and Conditions

The evaluation of the software prototype was designed in
such a way that Hypothesis H1-H4 could be tested with
quantitative measures. We chose two tasks, which should
be completed by the participants. Both tasks required the
participants to read and understand the source code in or-
der to successfully complete them. The focus of both tasks
was on the navigation between methods and files within
a project, rather than creating or changing existing code,
since finding the right locations in the source code and us-
ing a reasonable path to get there, should indicate basic
comprehension of the source code design and its mental
model.

Task 1 is fixing a bug, that was issued within the Adobe
Brackets community after the release of Sprint 19 and
was fixed with Sprint 20. The Brackets community

Invitations were sent
to computer science
students and
professional software
developers.

Participants need to
understand the
source code to
successfully
complete two tasks.

Task 1 is fixing a bug.

54

6 Evaluation

Task 2 is adding a
menu item and the
corresponding
functionality.

Participants have to
highlight the lines of
code and verbally
outline their
solutions.

A pilot test showed
that code base and
tasks are suitable.

identified the issue® suitable for beginners task and
therefore it is appropriate for getting used to the edi-
tor and the code base. In order to fix the bug a certain
part of a regular expression within an if-statement
needs to be removed. I limited the working time for
this task to 20 minutes.

Task 2 is adding a new feature for existing functionality.
To complete the task multiple locations in the code
base have to be located and identified. The task can
be divided into three subtasks, that need to be accom-
plished in order to complete the whole task:

Task 2.1 is adding a new menu item,
Task 2.2 is adding a new Command-ID, and

Task 2.3 is registering the new Command-ID with
the CommandManager and providing the cor-
responding handler, that is called when the
Command-ID is triggered by clicking on the
menu item.

Each subtask consists of adding one line of code.
I limited the working time for this task to 25 minutes.

In order to complete a task participants had to point out the
lines in which a change or addition should be made and
the participants had to verbally outline the changes or ad-
ditions they would make in those lines. Only then was the
task counted as completed. Moreover, the task was counted
as successfully completed if the presented solution would
result in a successful and working implementation and the
correlating elucidations were compatible with the solution.
The exact task descriptions can be found in appendix Cl.

A pilot test, that was conducted prior to the user study,
showed that the code base was readable and understand-
able even if someone had very little or no experience with
JavaScript, but at least basic knowledge about other pro-
gramming languages. Moreover, the pilot test showed the
appropriateness of the two tasks for this study: The term
jslint has 651 occurrences within the code base and a
search for the term html generates 4339 results. Hence,

'Issue 2950: https:/ /github.com/adobe /brackets /pull /2950

6.1 Experimental Setup

55

the chance of finding the right solution for either task by
chance and without understanding the source code is very
small.

In order to study the influence of an existing connection be-
tween source code and sketches on the participants’ behav-
ior, creating sketches and creating connections was omitted
in the study. Hence, each participant of this study assumes
the role of a new team member within a software project,
who has to go through the onboarding process. As a con-
sequence, the Sketchbar View was deactivated entirely for
the course of this user study.

Another reason for removing the Sketchbar View from the
user study was, that during the pilot test the Sketchbar
View was mostly empty, due to the fact that the amount
of available sketches was limited. Participants of the pilot
test used the presence of sketches in a Sketchbar View as
an indicator for being on the right track. One participant
started to open nearly every Sketchbar View to check if the
according file was needed to successfully complete the task.
Filling some Sketchbar Views with meaningful, but task-
unrelated sketches was not an option, due to the lack of
available sketches and time constraints, that prevented the
additional creation of meaningful sketches by a third and
unbiased party. Therefore, during the final setting of the
user study the focus was the Mission Control View.

A between groups study design with two conditions was
chosen, so that every participant had to perform only one
condition. Both groups were given the same

e source code editor: Participants worked with the de-
fault and, at that time, latest release of the open-
source editor Adobe Brackets, i.e., Sprint 20. Adobe
Brackets uses a third-party tool called JSLint? to en-
sure a certain quality within the code. JSLint is a static
code analysis tool, that checks if the JavaScript source
code complies with coding rules.

e code base: The code base, on which the two tasks had
to be performed, is the source code of Adobe Brackets

*https:/ /github.com/douglascrockford /JSLint

Sketchbar View was
deactivated since
there were not
enough meaningful
sketches and users
of the pilot test took
advantage of that.

A between groups
study design was
chosen.

Both groups work
with the same editor
Adobe Brackets, ...

... the same code
base, ...

56

6 Evaluation

... and the same
sketches that were
provided by an
unbiased third party.

The software
prototype provides
connections between
sketches and code
for the connection

group.

The control group
has a printed version
of the sketches.

Sprint 19. This version comprises about 214.000 lines
of code in 1263 files distributed over 20 root folders.
Except for the third-party and the extension folders,
the code base has a very flat hierarchy with one or no
sub-folders.

o sketches: The sketches refer to parts of the code base
and were created by an active Brackets developer,
who works at Adobe. The sketches were created
without any knowledge about the tasks. As a result
the sketches contain drawings of things that are not
related to the tasks in any way. In a sketch-enriched
project a new team member would find many useful,
but also task-unrelated sketches or even no sketches
at all. Therefore, both the irrelevant and the relevant
sketches were incorporated into the Mission Control
View and the printed version, in order to provide a
certain level of realism and to not be too obvious by
design. The sketches and their arrangement can be
found in the appendix D.

The difference between the two conditions is the way the
sketches are presented as well as the availability of the
software prototype, that provides the connection between
sketches and source code in order to support the communi-
cation of source code design (see Figure b1):

Condition 1 (connection group) provides access to the
sketches only via the software prototype: All sketches
were placed in the Mission Control View and con-
nected to the source code. The connections were
made and the sketches were places by a participant
of the pilot test. A printed or any other version of the
sketches was not provided to this group.

Condition 2 (control group) provides the sketches as a
printed version on a DIN A3 sheet of paper with the
same arrangement as in Condition 1, but lacking the
link between sketches and source code. The Mission
Control View was deactivated.

6.1 Experimental Setup

57

Figure 6.1: The setup used in the evaluation of the software
prototype. Condition 1: The display shows the Mission
Control View with the sketches. Condition 2: The lower left

corner shows the same sketches and sketch-arrangement
printed on a DIN A3 sheet of paper.

6.1.3 Semi-structured post-session interview

In order to gather qualitative data with reference to H5, I
prepared a semi-structured interview that deals with the
hypothetical application of the software prototype in a
project, that the participants are or were recently involved
in. The second of two questions was formulated in an open
way to support a natural and wide course of conversion
and allow the participants to give comments freely without
being lead by the question. The questions can be found in
appendix B.

6.1.4 Methodology

Participants were asked to fill out a consent form and a pre-
session questionnaire, in order to assess their knowledge
about JavaScript as well as Adobe Brackets and its source
code (see appendix [Al). After completing the questionnaire
each participant was assigned to one of the two conditions
in the following manner: The first member of a pair of par-
ticipants was assigned by chance and the second was auto-

A post-session
interview should
provide subjective
comments in order to
verify H5.

Participants filled out
a short pre-session
questionnaire and
were assigned to a
condition randomly.

58

6 Evaluation

However,
participants with
knowledge about the
code base were
distributed evenly
among the two
conditions.

Participants were
introduced to the
editor, code base,
and if necessary to
the software
prototype.

The tasks were
issued one after
another and
participants were
asked to think aloud.

The Find In Project
functionality was
provided if it was

asked for.

All participants
worked with the
same hardware.

matically assigned to the other group to ensure an even dis-
tribution of participants between the two conditions. The
pairing of two participants, who would split up to either
group, was conducted with regard to the pre-session ques-
tionnaire. The focus was to ensure, that the number of par-
ticipants having knowledge about Adobe Brackets and its
source code was evenly distributed among the two groups.
Other than that no influence was exerted.

To begin with, each participant was given a short introduc-
tion to the code editor and its user interface. The default
shortcuts for Find and Find Next were provided in writ-
ten form. Moreover, the default third-party plug-in JSLint
was described and explained, since it played an important
role in both tasks. The software-prototype and the short-
cut to toggle the Mission Control View was explained to
all participants of the connection group. With regards to
the sketches, participants of both groups were informed
that the sketches had been created and arranged by a third-

party.

After answering general questions asked by some partici-
pants, the tasks were presented to the participants one af-
ter another, meaning that Task 2 was handed to the partic-
ipants only after either the participant declared Task 1 as
being completed regardless of whether it was completed
successfully or not, or the maximum working time was
reached, or the participant forwent the task. During the
study, participants were asked to think aloud, in order to
provide me with insights about their trains of thought and
mental models while working. In order to promote think-
ing aloud, participants were allowed and encouraged to
ask any questions, but questions were only answered if
they did not reveal the solution for a task.

Participants were allowed to use the full range of func-
tions provided by the default installation of Adobe Brack-
ets. However, the Find In Project function was not men-
tioned during the introduction, but participants, who asked
for such a function during the session, were provided with
the corresponding shortcut.

To ensure the same prerequisites, all participants worked
with the same hardware, i.e., a MacBook Pro with a 2.4GHz

6.2 Results

59

Intel Core 2 Duo processor and 8GB RAM. Participants
used a 23” screen with a resolution of 1920x1680 pixels,
which is common for a modern work place for program-
ming. Adobe Brackets was opened in the native Full Screen
Mode of OS X version 10.8.3. Both the screen content and
audio were recorded using Silverback? to allow further
analysis afterwards if necessary.

After participants completed the tasks, the semi-structured
interviews were conducted. Participants of the control
group were given a short demonstration of the prototype
and were then asked the same two questions.

6.2 Results

6.2.1 Participants

A total of 32 participants joined the user study with an
even split of 16 for each condition. 27 participants were
male and five were female. Twelve participants were grad-
uate and twelve were undergraduate computer science stu-
dents. Another four graduate students were engineers or
physicists with a background in programming and soft-
ware development. The remaining four participants were
professional software developers. The average age was 28
years with a maximum of 36 and minimum of 23 years.

21 participants had at least basic knowledge about
JavaScript and four participants were familiar with the
source code of Adobe Brackets.

6.2.2 Task Success

Task 1: This task was successfully completed by 14 partic-
ipants of the connection group and ten participants of the
control group. A comparison of the number of correct so-
lutions for Task 1 showed no significant difference for the

3h’c’cp:/ /www.silverbackapp.com/

After completing their
tasks, participants
were interviewed.

32 participants
including four
professional software
developers joined the
user study.

60

6 Evaluation

For neither task was
the difference of
correct solutions
between the two

conditions significant.

16

14
12
1 . .
0

Task 1 Task 2.1 Task 2.2 Task 2.3 Task 2

o

©

o

»

N

B successful participants in the Connection Group
I successful participants in the Control Group

Figure 6.2: The figure shows how many participants were
able to complete the tasks in each condition successfully.
For each task and subtask, more participants of the connec-
tion group completed their tasks successfully.

two groups according to a two-tailed Fisher’s exact test us-
ing the method of summing all p-values (p = 0.22).

Task 2: Regarding the three subtasks of Task 2, again,
none showed a significant difference comparing the num-
ber of correct solutions according to two-tailed Fisher’s ex-
act tests using the method of summing all p-values (Task
2.1: p = 048; Task 2.2: p = 0.39; Task 2.3: p = 0.47). Tak-
ing a look at Task 2 as a whole, the task was considered
to be solved successfully if all three subtasks were solved
correctly. Therefore, eleven participants from the connec-
tion group and eight participants from the control group
completed the second task successfully with no significant
difference.

There were more participants in the connection group, who
completed both tasks successfully then there were in the
control group, but the task success rates were not signifi-
cantly different. Consequently, H1 can not be confirmed.

6.2 Results

61

6.2.3 Task Completion Times

a) all participants b) successful participants
25 min o0 o000 00 .* -
L]
L] ° LJ
20 min e eoooce
L]

15 min

10 min

5 min

Task 1 Task 2 Task 1 Task 2

Il average task completion time for Connection Group
Il average task completion time for Control Group

Figure 6.3: The figure shows the average time required to
solve the two tasks: a) comparing measurements with and
without the connection for all participants of the study, b)
comparing measurements only for participants, who com-
pleted the task successfully.

Task 1: On average the successful participants of the con-
nection group outperformed the successful control group
participants by 1:59 minutes. But the difference between
both groups was not significant according to an unpaired
t-test with a Welch’s correction (p = 0.43).

Task 2: The average participant of the connection group
needed 14:31 minutes to successfully complete all three
subtasks and thereby outperformed the average, success-
ful control group participant by 3:27 minutes. Again the
difference between the two groups was not significant (p =
0.32).

Participants, who could use the sketch-enriched code base
and the software prototype completed their tasks faster, but

For neither task was
the difference of the
task completion
times between both
groups significant.

62

6 Evaluation

not significantly faster. Consequently, H2 can not be con-
firmed.

6.2.4 Amount of Glances at Sketches

30 .
25 .
20

15

10

Task 1 Task 2

Il amount of glances at sketches by Connection Croup
Il amount of glances at sketches by Control Group

Figure 6.4: The figure shows the amount of glances taken
at sketches by the participants while solving the tasks. The
dots represent each participant. The bars represent the av-
erage amount of glances.

Task 1: On average the participants of the connection
group looked 4.2 times at the Mission Control View with
a total of 67 times. Whereas the participants of the con-
trol group looked at the printed version of the sketch 2.7
times with a total of 43 glances. Despite the 56% increase
of glances there was no significant difference according to
a Mann-Whitney test (p = 0.33).

Task 2: During the second task participants of the connec-
tion group looked at the Mission Control View 208 times
in total with an average of 13 glances per participant. In
contrast the participants of the control group looked at the
printed version of the sketch 77 times with an average of 4.8
glances per participant. Since the values of Task 2 for each

6.2 Results

63

group passed the D’Agostino & Pearson omnibus normal-
ity test (connection group: K2 = 2.7, p = 0.25; control group:
K2 =3.9, p = 0.14), the unpaired t-test with Welch'’s correc-
tion was applied to the data and shows a significant differ-
ence (t = 3.483, df = 18.29, p = 0.0026).

Participants of the connection group looked more often at
the Mission Control View than participants of the control
group looked at the printed version of the sketch. The dif-
ference was significant for Task 2, but not for Task 1. Con-
sequently, H3 can not be confirmed in general.

6.2.5 Time Spent Looking at Sketches

9 min
8 min .
7 min
6 min .
5 min .
4 min
) L]
3 min . .
. .

2 min

LJ
L]
1 min

Task 1 Task 2

I time looking at sketches by Connection Group
Il time looking at sketches by Control Group

Figure 6.5: The figure shows the duration of glances taken
at sketches by participants while solving the tasks. The dots
represent each participant. The bars represent the average
duration of glances.

Task 1: Participants in the connection group looked at the
Mission Control View for 1:44 minutes on average. Com-
pared to the control group, where a participant looked for
1:11 minutes on the sketches, no significant difference was
detected (unpaired t-test with Welch’s correction: p = 0.20).

The difference of
glances taken by
each group is
significant for Task 2,
but not for Task 1.

64

6 Evaluation

The difference of the
overall duration of
glances taken by
participants of each
group is only
significant for Task 2.

Distinct differences in
the behavior of the
two groups were
observed.

Control group
members used the
sketch rarely and
relied on
well-established
methods like
scrolling, clicking and
searching to
complete the tasks.

Task 2: During this task the participants in the connection
group looked at the Mission Control View for 3:40 minutes
on average, i.e., 20.3% of the task completion time of all
participants, whereas the participants of the control group
looked at the sketch for 1:15 minutes on average, i.e., 5.9%
of the task completion time of all participants. Since the val-
ues of this task passed the D’Agostino & Pearson omnibus
normality test (connection group: K2 = 2.41, p = 0.92; con-
trol group: K2 = 0.16, p = 0.30) for each group, the unpaired
t-test with Welch’s correction was applied and showed a
significant difference (t = 3.923, df = 17.60, p = 0.0010).

Participants of the connection group looked at the Mission
Control View longer than participants of the control group
looked at the printed version of the sketch. The difference
was significant for Task 2, but not for Task 1. Consequently,
H4 can not be confirmed in general.

6.2.6 Qualitative Observations

For either group very clear patterns of behavior were ob-
served during the sessions. The following two segments
will provide a brief insight into how the average partici-
pant made use of the sketches resp. the sketches and their
connections to the sketches depending on the group affilia-
tion, based on my observations during the studies.

Control group Members

The participants in this group read the task description and
then looked at the sketches provided on a DIN A3 piece of
paper. They studied each and every sketch on the paper
to find potential hints on where to start the task. Since the
participants were asked to think aloud, most participants
stated that they could not find anything helpful, so they
started to work with the editor. Eleven participants moved
the paper with the sketches farther to their left and put
the paper with the task description right in front of them,
so that the sketches disappeared from their field of view.
Working with the editor, participants used an already well-

6.2 Results

65

documented set of operations (Ko etall [2006], Starke et al’
[2009]). The main operations that were performed were:

e navigating via project tree to find, re-find and open
files

e navigating via tabs to quickly switch between al-
ready opened files

e scrolling through files to find useful information by
skimming the code

e reading comments of files and methods

e searching within a file or within the whole project

If participants reached an impasse, they would take an-
other look at the sketches to check, for they might have
missed some important clues or information that could
have helped them to complete the task. At the very end
of a task some participants would take another look at the
sketch to check if they might have overseen something, e.g.,
participants pointed out the correct line in the code and de-
scribed the correct changes they would apply verbally and
took a quick look at the sketch to see if they might have
forgotten something.

During the second task the behavior was quite similar,
however, after the initial skimming of the sketch and
searching for parts regarding this task, participants tried
to reassure themselves of their correct approach during the
task about two to four times by looking at the sketch. These
glances were initiated by statements like

“T will take another look at the sketches, since
they have been provided, ... there should be
something on them.”

“Oh, I completely forgot the sketches, maybe
they will help me now ... No, still not helpful.”

“Let’s take another look ... I got that and I
got that, but I don’t know where to find that

Participants glanced
at the sketch when
reaching an impasse,
but quickly turned
back the the editor.

66

6 Evaluation

One participants did
not use the sketches
at all.

Sketches were
mainly used as a last
resort to find
information.

Connection group
members used the
Mission Control View
and the connections
to source code quite
often and started to
toggle the view
frequently.

... I think I found something on the sketch, that
might be helpful, so I will try to find that in the
code by searching for that exact term provided
in the sketch.”

“Let’s have another look ... OK, I see that this
sketch has to do with my task, but I don’t get it,
so I'll resume working with the editor.”

One participant stood out by not looking at the sketches at
all. This participant had basic knowledge of JavaScript and
no knowledge about the code base. The task completion
time for Task 1 was 7:40 minutes and 10:21 minutes for Task
2. Other than that, the behavior did not deviate from other
participants’, who looked at the sketches. After asking him
for the reason for not looking at the sketches he replied that
he had not noticed at all that he did not look at the sketches.

All in all, the sketches were used as a reference and as a
tool to reassure the participants actions, but mainly as a
last resort. Due to the fact that most participants looked
at the sketches since they were provided as part of the task
and not because they felt the need to, participants used the
aforementioned common methods to solve the tasks and
understand the code.

Connection group Members

Participants of this group read the task description and
then opened the initially closed Mission Control View. Sim-
ilarly to the control group, participants in the connection
group took the initial glance to get an overview of all
sketches. Task 1 clearly was the task where participants ac-
customed themselves with the Mission Control View and
the functionality provided. While it was not very obvious
during Task 1, the behavior of this group clearly shifted
during the second task: Participants constantly switched
between the Mission Control View and the source code in
order to navigate the code base. It quickly became clear,
that folder and file names were not that important, since

6.2 Results

67

elements of the Mission Control View turned out to be suit-
able substitutions even if the names of the elements did not
coincide with the filename or the method names they were
connected to.

The aforementioned operations that were used by the con-
trol group members, however, were not substituted, but
rather complemented by the navigational properties of the
Mission Control View. However, as soon as the participants
felt, that the sketches and the connections provided by the
Mission Control View, would not help them, they fell back
into old habits for a short amount of time and, e.g., started
to search within files as well as the whole project and nav-
igated via the project tree or tabs, only to come back to the
Mission Control View and use its functionality again to con-
tinue with the task.

With the help of the Mission Control View, participants
were able to find the correct lines within the code quite
fast, but did not realize their success at first. Together with
method names and comments of methods and files, I was
able to observe the formation of the mental model.

A few participants stated that they would not have created
some of the connections provided, but rather connected dif-
ferent lines of code or files with the sketches. Interestingly,
some of those participants withdrew their statement during
the task by saying

“Now that I understand the concept, I guess it
makes sense to connect these particular lines of
code with that sketch. I'm not sure if it is the
best way to do it, but it's OK” or words to that
effect.

Another common observation was that participants were
scrolling through a file and reading comments, when sud-
denly they asked:

”"What was I looking for again?”

and immediately opened the Mission Control View to find

Participants of the
connection group
mixed the use of the
Mission Control View
with other
well-established
methods constantly.

The combination of
sketches, comments,
and meaningful
method names was
helpful.

Participants used the
Mission Control View
to recover their train
of thoughts.

68

6 Evaluation

Most participants
explained the mental
model behind the
source code to
themselves several
times.

Two participants
used the Mission
Control View very
extensively and
provided a lot of
useful insights.

the highlighted File Dot in order to see, where they were
with regard to the sketches, whereas in the same situation
most participants of the control group turned to the task
description and not to the sketches provided on paper.

It is particularly noteworthy that most participants either
partially or entirely explained the way they understood
the individual subtasks and how they worked together to
themselves during the session in order to recapitulate their
progress in some way. Before they gave their final answer
in order to successfully complete the task, they mentally
walked through their individual steps with words like

”So I added the menu item here in line 128 and
provided the Command-ID that I decelerated in
the Command.js. Now I want to register that
Command-ID with the CommandManager and
I obviously have to use the register method for
that. I have all parameters, but the function
that is executed when I click on the menu item
and I don’t know where this call of the register
method has to go” or words to that effect.

This recapitulation of the progress was made with the Mis-
sion Control View being opened and by pointing on the
sketches and following the sketched lines as well as click-
ing onto the Connection Dots to get to the corresponding
code segments to prove to themselves, that they had con-
sidered every part of the task. This kind of behavior was
not observed with the control group.

One professional software developer and one graduate in-
dustrial engineer working at an IT company embraced the
functionality of the Mission Control View by extensively
using the connections from the sketches to the source code.
They had the highest amount of glances at the Mission Con-
trol View (29 times and 30 times). With an average glance
duration of 16 seconds, one third of their task completion
time consisted of using the Mission Control View as a way
to navigate through the code base. Whereas some partic-
ipants showed only few signs of a change in their way to
approach the tasks, the change of behavior for these two

6.2 Results

69

participants was very evident compared to the behavior of
control group members.

In conclusion, the Mission Control View and the connec-
tions between sketches and source code were used in the
following scenarios:

e navigation: In order to jump to a certain part of the
code base the Mission Control View was opened and
a Connection Dot was used. This way of navigating
was liked by all connection group participants and re-
ported as very helpful by eleven participants of the
connection group.

e context comprehension: The Mission Control View
was opened and looked at in order to review which
other parts were related to the current element of
interest. This was reported as something unprece-
dented in this form (five participants) and extremely
helpful (twelve participants).

e orientation within the context: Highlighted Connec-
tion Dots were used as an indicator for the current
position within the context. All participants used this
feature by very quickly toggling the Mission Control
View.

e mental walkthroughs: The Mission Control View
was used as a way to be reassured by self about the
validity of the approach chosen to complete the tasks
and to check if something was omitted. This was
observed with every participants of the connection
group, but in many different ways: Some participants
argued with themselves, whereas others mumbled
to themselves or just pointed on the Mission Con-
trol View with their finger and navigated through the
sketch while going through the steps mentally.

Another observation was that only two participants used a
back-link from the source code to the sketches in the Mis-
sion Control View by clicking on the marked line numbers
in order to see to what sketch that code segment was con-
nected. Each of those two participants used the back-links

Four main behavioral
scenarios emerged:
navigation via
Connection Dots,
review of context,
orientation within the
context, and mental
walkthroughs.

Back-links were not
used, supposably
because there were
to few in the code
base and the Mission
Control View was
sufficing.

70

6 Evaluation

once. This extremely small number might be explained by
the fact that on the one hand the approach to the Mission
Control View was a new concept and on the other hand
the relatively small number of back-links within the code
base may not have encouraged the use of said back-links.
Another possible explanation are the Connection Dots that
were connected to files: While being in a file that had a
connection to a sketch the corresponding Connection Dot
was automatically highlighted in the Mission Control View.
This seems to have been a sufficient alternative to back-
links, hence, participants opened the Mission Control View
and could immediately orient themselves without using a
back-link. But, with an activated Sketchbar View and more
back-links to sketches the usage of back-links might have
been higher and revealed additional insights.

11 4

ORNWAUON
PR S R S S R

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

ORNWAUON
P R S S T S

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

= amount of connection group participants looking at the Mission Control View
distributed over the normalized task completion time of Task 2

amount of control group participants looking at the printed sketches
| distributed over the normalized task completion time of Task 2

Figure 6.6: The figure shows the amount of participants
looking at the sketches distributed over the normalized
task completion time of Task 2. The initial skimming of
the sketches observed in both groups is represented by the
peaks at around 10%. The bar chart for the connection
group shows a more frequent usage of the sketches due to
the source code connections provided by the Mission Con-
trol View conveying the observation that the Mission Con-
trol View was used for navigational purposes.

6.2 Results

71

In order to visualize the difference of behavior and interac-
tion with the sketch, the task completion times were nor-
malized for each of the 32 participants. Figure B8 shows
that the way and frequency in which the sketches were
used during the second task was quite similar for all par-
ticipants of either group. While most participants of both
groups looked at the sketches after reading the task de-
scription (peaks at around 10%), participants of the con-
nection group continued the use the Mission Control View
as well as the sketches and the connections to the source
code during the second task. Consistent with observations
made during the user study, the bar graph depicts that the
sketches provided via the Mission Control View were con-
sulted more frequently and by more participants compared
to the control group with its printed version of the sketches.

6.2.7 Semi-structured Post-Session Interview and
Participants’ Comments

After the test, I initiated the interview session with two
questions (see appendix B) so that an informal chat could
be initiated. 15 participants were working on a solo project
and another 15 participants were working on team projects
at the time of the interview. Two participants were working
both on a team project and a solo project. Moreover, partici-
pants were asked if and how they would imagine to use the
functionality of being able to connect sketches with source
code with regard to their projects.

Areas of Application

Regardless of their group affiliation, participants imagined
the prototype to be useful within their project in the follow-
ing areas:

e navigational support: Participants of the connec-
tion group liked the idea of navigating through their
project via the Mission Control View using the Con-
nection Dots. Some instantly imagined their project

Participants of the
connection group
used to look at the
Mission Control View
more frequently and
evenly distributed.

15 participants
worked in a solo
project, 15 in team
projects, and two in
both.

Five areas of
application emerged
during the interviews.

72

6 Evaluation

affiliated sketches and visualizations and were ex-
ited to connect them to the source code asking how
sketches can be imported into the Mission Control
View and how connections to the source code are cre-
ated. Participants of the control group imagined that
the Connection Dots can be helpful since most partici-
pants reported that the printed version of the sketches
was not very helpful in finding the correct files or
code lines and they had to use the search function in-
stead.

project overview / software architecture: Partici-
pants of both groups imagined the Mission Control
View to provide an adequate overview of the project
and the software architecture. Participants also re-
ported that they would use the Mission Control View
to conceive the context of the task they were working
on, to see which other team members had to be in-
volved in the task or which other parts of the project
had to be considered. Participants of the connection
group reported that the Mission Control View, was a
way to not loose track of the task at hand by “zoom-
ing out into a kind of meta view”.

documentation / design decisions: Sketches and vi-
sualizations like UI elements or informal class dia-
grams of the software architecture created in different
project phases could be collected and stored in one
place as part of the documentation.

“Sketches and the connection to code are
not enough documentation in my opinion,
but together with comments it would be
pretty awesome. If I wanted to know more
about a certain part of the project that was
somehow connected or close to my part of
the project, then I could just click on it and
then read some comments to get an overall
understanding.”

“When I return to a certain part of the code
I worked on like two weeks ago, I can’t re-
member why I did certain stuff and how the
classes and methods work together. I knew
it two weeks ago like the back of my hand,

6.2 Results

but now ... nothing! I normally take a look
at my sketches, that I made at that time or
if I already threw them away I start to as-
semble all the missing parts in my head by
walking through the source code and some-
times making new drawings. But, this is
really tedious and sometimes even the rea-
son why I don’t make changes to the code
anyway, although I know it would be bet-
ter to refactor and change my code. So in
such a case, the Mission Control View and
the links to the code would be very helpful”
or words to that affect.

e capturing the development progress: Some partic-
ipants had the idea that the Mission Control View
could be used as a Manager’s View meaning that a
project leader could see the progress of the project,
i.e., new elements that had been added to the view or
changes that had been made. The project leader could
jump into the corresponding part of the code and
have an insight into the work that is already done.
Two participants imagined adding ‘changed since last
visit’-indicators and an overview with a timeline, so
that it is possible to scroll through the progress of the
project and see the development of new elements and
the change of existing elements and their relation-
ships amongst each other:

“I imagine it like Apple’s TimeMachine?,
but in fact it would be the data from the ver-
sion control system. Because, let’s be hon-
est: Who likes to read commit messages?
That would really be a fun way to oversee
the project’s development.”

e onboarding process: Above all, participants imag-
ined this functionality to be very helpful for new team
members. They reported that it is hard for a new team
member to catch up with all the knowledge about the
project and the decisions that have been made dur-
ing the design process and the implementation phase.
Such a view on the project would be an enormous

4http:/ /www.apple.com/osx/apps/#time-machine

74

6 Evaluation

Twelve participants
regularly create
sketches, three only
use visualizations,
nine create both and
four create neither.

Participants archive
sketches and
visualizations if they
anticipate potential
future use.

support to get to know the project. One professional
software developer mentioned that they had special
projects made for new team members, that are meant
to help the new team members to familiarize them-
selves with the project without being at risk of gen-
erating any damage to the productive version of the
project:

“Oh, I can see that implemented in our
sample projects and be helpful to new co-
workers. Since we already spend time cre-
ating these sample projects, adding the con-
nections between sketches and the source
code manually wouldn’t be that tragic...
as long as the cost-benefit ratio is right, I
guess.”

During conversations the topic of sketches and visualiza-
tions as well as their creation came up. Twelve partici-
pants reported that they create sketches while working on
their project, three stated to solely use visualizations cre-
ated with tools like Omnigraffle® or StarUML?, and nine
participants reported to sketch as well as use tool-based vi-
sualizations depending on the situation or the project phase
they were in. Secluding, four participants reported to nei-
ther sketch nor use tool-based visualizations at all. Reasons
for participants not sketching in their project were, that the
project was to small to sketch or they could maintain all the
mental work in their head and had no need for externaliz-
ing their thoughts.

Moreover, participants stated that they mainly sketch dur-
ing initial phases of their projects. Some participants con-
firmed that they keep their drawings or digitalize them,
e.g., by taking a picture with their smartphone if they saw
potential future reusability. If the sketch was important
enough participants would create a tool-based visualiza-
tion to have a clean version of the sketch. Participants using
only tool-based visualization reported that they did not like
to sketch, since it was too messy and their drawing skills
were not refined enough so that their sketches were rather

>http:/ /www.omnigroup.com/products/omnigraffle
Shttp:/ /staruml.sourceforge.net

6.2 Results

75

hard to decipher for others or self after a certain amount of
time or the thoughts they had during the creation of said
sketches were no longer of concern. These findings coin-
cide with the findings reported of Branham et all [20T0],
Cherubini et all [2007b], and Walny et al] [20TT].

Identified Problems

However, participants of the groups also identified prob-
lems and challenges with the application of the function-
ality of connecting source code and sketches within their
projects:

e creation of sketches / visualizations: The creation
of sketches was identified as a problem by almost
every participant. Despite the fact that most par-
ticipants created sketches or visualizations, they still
mentioned that creating sketches is time consum-
ing. Sketches created during team meetings or ad-
hoc meetings of two or three team members are valu-
able byproducts, but the creation of a sketch for the
sketches sake was recognized as an additional bur-
den. It was compared to documenting the source
code by some participants:

“l guess creating sketches for a project
is a nice and helpful thing, but it’s like
with documentation: You know you're sup-
posed to do it, but you still don’t do it”.

e standardized sketching: Some participants consid-
ered the quality of their own sketches and were con-
cerned about the readability of sketches. They imag-
ined that every team member of their project would
contribute and provide sketches and they saw poten-
tial problems in how helpful these sketches were if
they came below an acceptable level of quality.

“What's the use anyhow if I am not able to
recognize parts of a sketch because they are
too scribbled.”

Four major problems
emerged while
talking about
implementing the
prototype within the
participants project.

76

6 Evaluation

“What if I used rectangular elements for
some thing and a teammate used circles for
the same thing?”

With this in mind, some participants even mentioned
that they often were not able to decipher their own
sketches after a certain time. This problem would
definitely lower the value of the whole functionality
since the sketches are a very important part of the
connection. As a possible solution, participants sug-
gested formal conventions for sketches that applied
to the whole team.

currentness: Since very few participants reported to
re-sketch their own sketches if they were not up-to-
date, the foremost mentioned problem was the cur-
rentness of sketches and connections.

“What happens if I change something in the
code? Oh ... Do I really have to re-sketch
this part? Then I would probably leave the
sketch as is.”

Participants were torn between the fact that they
would like to have the connections as well as the
sketches created automatically and the fact that
sketches had a “certain charm” of their own and were
a "prove of mental work”, as one participant phrased
it. Participants, who created solely tool-based visu-
alizations, reported that they would simply change
their visualizations with the corresponding tool and
then add the new visualization to the Mission Con-
trol View by replacing the old one. Participants stated
that they would predict the enthusiasm to maintain
sketches and connections to flatten with time and that
the “new feature”-status of the functionality would
fade.

team-size: All participants agreed that keeping the
sketches and connections alive might be realistic for a
rather small team of developers and a medium-sized
project. Larger teams would have problems to main-
tain the sketches and a certain level of quality. Partic-
ipants, who worked in solo projects, liked the func-
tionality provided by the prototype, but agreed that

6.2 Results

77

creating and maintaining the sketches as well as the
connections in addition to creating and maintaining
the source code, which is the main task of software
development projects, was too much of a burden for
one person and seen as overkill.

Another concern some participants had was about perfor-
mance: The delay between clicking on a Connection Dot
and finally seeing the connected file or line of code was re-
ported as too long by some participants. Although partici-
pants understood that a research prototype may suffer from
problems like this, they still found themselves hindered in
navigating more quickly sometimes and started to double

and triple click a Connection Dot if the performance got
bad.

One participant in particular had a special view at the func-
tionality and the software prototype. She recently joined a
software development team and was currently in the on-
boarding process. She told of interrupting her mentor con-
stantly and taking notes during these short ad-hoc meet-
ings, but she was not used to sketching and therefore draw-
ing sketches was not one of her strong points. During the
post-session conversation she said:

“I see how sketches and the connection can be
helpful. The sketches were like a road map to
me. I think using such a map is easier than
searching because you don’t need to know ex-
actly what you are looking for. The sketches
can complete the missing parts or even tell you
what to look for. I think I will start sketching
more and archive those sketches. Maybe I can
create such a map for our project at work and it
could make things easier for the next new team
member... Is there a way to connect sketches to
source code in the IDE we use at work?”

Participants had to
wait after clicking on
a Connection Dot too
long.

One participant was
currently in the
onboarding process
at work and provided
first hand knowledge.

78

6 Evaluation

Ideas for enhancing
the software
prototype: tabs and
intelligent zoomable
interface

The software
prototype might be
the reason for the
connection group
outperforming the
control group even
though they were
looking at sketches
more often and
longer.

Suggested Ideas

Three participants had own ideas on how the software pro-
totype might be enhanced and further developed. One idea
was to add tabs to the Mission Control View. Each tab
could hold the same sketches but users would be able to
rearrange them as needed, e.g., for different tasks or differ-
ent users. Moreover, these tabs could act as views at the
system with different levels of detail. Another user imag-
ined an area zoomable pane, meaning that within one view
there could be multiple zoom levels in different areas of
the view, e.g., one area depicting component A could be
zoomed to a more detailed view and another area depict-
ing component B could be zoomed out completely in order
to show the basic structure. Being able to add connections
between two or more sketches would enhance the possi-
bilities of conveying the concept and structure behind the
source code. Connection Dots would be merged and infor-
mation would be aggregated in a zoomed out view whereas
the Connection Dots would split and show on the corre-
sponding sketches with a higher zoom level. Some ideas
mentioned by these participants are similar to approaches
taken in the field of zoomable user interfaces and off-screen
visualizations (Bederson and Hollan [1994], Bederson ef all
[2000], Baudisch_and Rosenholfz [2003], Zellweger et all

Implications for H5

Although, both the task success ratios and task completion
times were not significantly different when comparing the
two groups, the fact that the connection group participants
looked at the sketches for 20.3% on average during Task
2 and still outperformed the control group in both tasks,
suggests that the Mission Control View and the connection
between sketches and source code may have contributed to
that affect.

In conclusion, there was a consensus among the partici-
pants of the connection group that the connection between
sketches and source code had helped them understanding

6.3 Discussion

79

source code designs. This was noted especially for Task 2
and could be observed during the mental walkthroughs.
Participants of the control group imagined that the ability
of jumping through the code via the Mission Control View
would be helpful, but some control group participants were
skeptical if the navigational element of the Mission Control
View would have helped them understanding the mental
model, since they gained that understanding although not
using the software prototype. Consequently, H5 can be con-
firmed partially, but not in general.

6.3 Discussion

Taking a look at the tasks presented in the user study and
the quantitative data gathered in order to support H1-H4,
the difference between the two tasks is clearly visible: Both
groups used the first task to acclimatize to the environment
of the user study, i.e., the source code editor, the code base
and the sketches. However, during the second task partici-
pants were more engaged and felt more comfortable. Espe-
cially connection group participants used the Mission Con-
trol with ease, after getting used to the functionality during
Task 1.

In terms of appropriateness, the first task had a very nar-
row solution path and did not provide enough opportu-
nity to use the knowledge gathered through techniques like
searching, skimming, and scrolling the source code and for
the connection group additionally the use of the Mission
Control View. My observations of the participants showed
that the knowledge gained during the first task was applied
mainly during Task 2.

Therefore, it is my opinion that the tasks were appropriate
in combination and Task 1 was a prelude to Task 2, espe-
cially for the connection group, since they had to become
acquainted with the Mission Control View. Task 1 was deal-
ing more with syntactical knowledge and Task 2 with se-
mantical knowledge. This may have contributed to the re-
sults and insignificant differences for Task 1 regarding H3
and H4.

Comments made by
connection group
participants suggest
that the connection
between source code
and sketch is helpful
for understanding
source code.

Task 1 was used to
get acclimatized.

Task 1 was a prelude
for Task 2.

The tasks were
appropriate in
combination.

80

6 Evaluation

Amount of glances of
the control group
were low since the
sketches were put
out of sight.

Connection group
could access the
sketches easily
through the Mission
Control View, without
changing the field of
vision.

Mental walkthroughs
suggest build up of
mental model.

With regard to the usage of sketches, I affiliate the observa-
tion that participants of the control group did not use the
sketches as often as the connection group to the fact that
the printed version of the sketches was often put aside and,
therefore, not in the participants’ line of sight. Before each
session the printed version of the sketches was placed di-
rectly in front of the participant, i.e., between the partici-
pant and the keyboard (unlike seen in Figure B the sketch
was placed more to the right). Participants put the sketches
aside upon receiving the description for Task 1 and in most
cases the sketches stayed to the participants’ left side even
if they searched for more information to complete a task.

In contrast, participants of the connection group looked at
the Mission Control View when searching for more infor-
mation. I affiliate this observation to the ease of use of
the software prototype and the ability to quickly switch be-
tween the content area containing the source code and the
Mission Control View, without having to change the field of
vision and move the head. I conclude that the Mission Con-
trol View can be interpreted as an integrated and utilizable
source of information, whereas the printed version can be
seen as an additional, but not directly utilizable source of
information.

In conclusion, for a first software prototype, participants
found the functionality to be very helpful while navigat-
ing the code base. Usability issues were reported and valu-
able feedback for future designs was obtained. The mental
walkthroughs observed in the connection group suggests
that participants were building up a mental model of the
source code design regarding the implemented concept of
menus in the source code of Adobe Brackets (Task 2). Con-
versations with the participants of both groups suggest that
the functionality to connect sketches with source code in or-
der to communicate source code designs can be especially
helpful during the onboarding process.

81

Chapter 7

Summary and Future
Work

This thesis addresses the communication of source code de-
signs through sketching with the goal to support software
developers and programmers understanding the mental
model of source code. The approach presented in this thesis
is to connect source code, which is a very low-level source
of information, to sketches that can be anything from low-
level details to high-level concepts about the source code.
Thus, enabling programmers and software developers to
use sketches in order to navigate and understand the source
code.

7.1 Summary and Contributions

To provide an insight of how programmers try to under-
stand source code and its behavior, I started by outlining
software comprehension models and the fundamental ele-
ments involved. The basic idea behind software compre-
hension can be compared to a black box called the assimila-
tion process that has external representations of the source
code, a programmer’s knowledge base, and the program-
mer’s current mental model of the source code as an input
and the output is a refined and updated mental model of
the source code.

Software
comprehension
models describe how
a mental model is
formed.

82

7 Summary and Future Work

Sketches can depict
different levels of
abstraction and can
support many
different strategies
for the assimilation
process.

Sketches are an
ideation tool, support
communication with
self or others, and
can depict more than
what source code
visualizations
provide.

An initial study
provided first-hand
experience about
sketches in the
software
development
process.

Software comprehension strategies suggest that both low-
level information as well as high-level abstractions are of
value during the process of understanding. However, the
information and the level of abstraction that is helpful is
different in each situation and for each person. That is why
software developers often create sketches while explaining
the source code design to self or others. Sketches have the
ability to provide the level of abstraction that is actually
needed at that time and, moreover, can provide different
levels of abstraction at the same time. Whereas computer-
based tools can only visualize information that is existing in
the code, sketching offers the ability to sketch exactly what
needs to be visualized. Sketches are a very versatile tool
that can support many software comprehension strategies,
since a sketch can depict anything that is needed to support
the assimilation process, regardless of whether, e.g, the data
flow or the control flow is used to create a mental model.

Reviewing related work in the context of this thesis showed
that sketching supports the ideation process through ambi-
guity and incompleteness of sketches. Moreover, sketches
are a very helpful means of communication, since they pro-
vide an additional way to better understand discussed is-
sues and fill the gaps that spoken language may create.
In the context of software development, programmers re-
ported that sketches are important when trying to under-
stand existing source code, designing/refactoring, and dur-
ing ad-hoc meetings. Source code visualizations were not
important in these three scenarios, even though these ex-
ternal representations are automatically generated without
any assistance of the programmer. Research also showed
that sketches are archived and reused by programmers and
some tools have been introduced on that account.

To deepen my understanding of how software developers
and software architects use sketches and drawings in their
everyday work, I visited an IT-company that focusses on
solutions for the energy industry and observed two soft-
ware architectural meetings and interviewed members of
the software development team. The results from that first-
hand experience are that the team members” knowledge
is mainly in their heads, sketching is used as a tool of
communication to externalize thoughts and ideas, and that
sketches can be very helpful during the onboarding process

7.1 Summary and Contributions

83

of new team members.

With the literature review and the initial study in mind,
the fundamentals of a connection between source code and
hand-drawn sketches were established in chapter B. I pre-
sented basic layout techniques within IDEs as well as views
for sketches within these layouts. Moreover, I explored the
Connection Points of both source code and sketches which
are the termini of a connection and I presented two cate-
gories of connections between Connection Points, i.e., visu-
alized connections and indicated connections.

In order to be able to evaluate the approach, I started ex-
ploring the connection between source code and sketches
on paper and implemented a software prototype, here-
after. During the prototyping process constant feedback
and analysis sessions focussed and streamlined the pro-
totype with each iteration. The final prototype was im-
plemented as an extension for the open-source code ed-
itor Adobe Brackets and offers two different views: The
Mission Control View is a fullscreen overlay that provides
an map-like overview of the underlying source code. The
Sketchbar View is a canvas in a side panel next to the
source code and also implements a Map View. In particular,
the challenges concerning the navigational behavior of the
Sketchbar View, were explored and situation-dependent
synchronous scrolling was implemented to support an in-
tuitive interaction. However, this navigational behavior of
the Sketchbar View was only possible due to the single,
continuous selection metaphor of the used source code ed-
itor.

To evaluate the functionality of connecting hand-drawn
sketches and source code, I conducted a between groups
user study and for the duration of the user study only the
Mission Control View was available to the participants. I
wanted to know, if the connection of hand-drawn sketches
and source code would communicate source code designs
to the participants and, therefore, support their software
comprehension process. The results of the evaluation
showed no significant difference in the task success rates or
the task completion times, despite the fact that participants
who used the software prototype outperformed the partic-
ipants of the control group in both cases. However, partici-

Fundamentals about
the connection
between source code
and sketches were
introduced.

The prototyping
process resulted in a
software prototype
incorporating two
different layouts.

| evaluated the
software prototype
and studied the
connection between
source code and
sketches.

84

7 Summary and Future Work

The contribution of
this thesis.

Provide more
automatization and
assist the user.

pants who used the software prototype looked significantly
longer and significantly more frequent at sketches on aver-
age and still outperformed the control group. Observations
and comments suggest that the connection between source
code and sketches is helpful. The prototype was used to
navigate the code base, comprehend the context, orientate
within the context and to support mental walkthroughs.
Mentioned benefits of the functionality were the ability to
connect any visualization (sketches and tool-based visual-
izations) to source code without restrictions as well as the
ability to integrate new sketched ideas and features into the
context of the source code and start from there. Problems
that were identified were the burden of creating sketches
manually as well as keeping the sketches up-to-date and
readable despite the lack of sketching conventions.

To sum up, this work contributes the investigation and
exploration of the connection between source code and
sketches. Furthermore, this work gives empirical indi-
cations for supporting the claim that the connection of
sketches can convey source code design better (not neces-
sarily faster) than sketches without a connection to source
code. I conclude that an approach integrating sketches into
the IDE and connecting them to source code can be espe-
cially helpful during the onboarding process of new team
members joining a software development project.

7.2 Future Work

The functionality of providing a connection between
sketches and source code implemented in the software pro-
totype was well received by the participants of the user
study. Future work in this direction should consider the
benefits, but also the shortcomings presented in this thesis.

An enhanced prototype should provide more automati-
zation and assistance: Creating and maintaining connec-
tions manually was identified as a burden and clear disad-
vantage. But, in order to still be able to use the benefits
of sketches and sketching the integration of hand-drawn
sketches should not be omitted completely. I suggest a

7.2 Future Work

85

o

T

Figure 7.1: These sketches depict suggestions for future
software prototypes: a) select semantical elements via a
context menu to connect them to sketches, b) drag and
drop semantical elements from a list to connect them to
sketches, c+d) “zooming” between different layers of the
same concept to provide high-level concepts and low-level
details, and e) tabbed Map View and source code visualiza-
tions combined with hand-drawn sketches to support bet-
ter maintenance.

hybrid approach that combines re-engineering capabilities
and code independent visualizations. To facilitate the bur-
den maintenance of connections the Connection Points of
source code should be semantical elements, e.g., variables
and functions, rather then syntactical elements, e.g., lines
and blocks (see Figure ZTa+b). In addition, sketches could
share the space with source code visualizations, in order to
provide a more holistic experience and bring these two ap-

Mix sketches and
source code
visualizations.

86

7 Summary and Future Work

Tabs and different
layers of abstraction.

A zoomable Map
View in a Split Layout
Layout.

proaches closer together (see Figure [ZTe).

Since the Map View used in the software prototype was re-
ported to be useful, future work should allow for map-like
arrangements to support project orientation and naviga-
tion. To enhance such a view, participants suggested addi-
tional features like tabbed Map Views for different work sit-
uations and tasks of one person, but also to provide views
for multiple users involved in a project. Moreover, “zoom-
ing” within different layers of the same sketch, but with dif-
ferent levels of abstraction could enhance fluid transitions
between high-level concepts and low-level details (see Fig-
ure [ZTic+d).

With regard to a Split Layout in which source code and
sketches are displayed side-by-side, future work should
evaluate the capabilities of the view itself, regardless of
whether a Map View or a Context View is chosen. Adding a
zoomable user interface to a Split Layout might add naviga-
tional advantages, and, therefore, should be explored (see
Figure [Z2).

e

|
—— e |

Figure 7.2: A suggestion for a future Split Layout approach:
The Map View zoomable and scrolling is relative and de-
pendent on the zoom level.

87

Appendix A

User Study: Declaration
Of Consent &
Pre-Session
Questionnaire

ID

Informed Consent Form
Evaluation of connection between source code and sketches
Principal Investigator: Lukas Spychalski, Media Computing Group, RWTH Aachen University

Purpose of the study

This study is conducted in relation to my diploma thesis at RWTH Aachen University.

The goal is to study if the connection between source code and sketches can be an additional
channel of communication in order to enhance the understanding of source code.

Procedure
You will be asked to perform two tasks in which you should navigate through source code. You
will be asked to answer some questions. The study will take up to 40 minutes.

Risks / Alternatives to Participation
There are no risks associated with participation in the study. Participation in this study is
voluntary. You are free to withdraw or discontinue the participation at any time.

Confidentiality
All information collected during the study period will be kept strictly confidential. You will be

identified through identification numbers. No publications or reports from this project will
include identifying information on any participant.

[J 1 have read and understood the information on this form

O agree to being filmed during the study (screencapturing & face via webcam)

date / participant’s signature

gender [J male [J female
age years
occupation

programming experience years

Do you know about JavaScript? 4 yes [J no

Do you know the source code of Adobe Brackets? OJ yes J no

[J 1 want to enter the lottery for a 50€ Amazon gift card

email address

89

Appendix B

User Study: Post-Session
Interview Questions

Please think of a project, that you are currently working on or recently worked on.

Did you work on that project by yourself or in a team? (J solo [J team

How and what for would you use the tool in that project?

91

Appendix C

User Study: Task
Descriptions

Brackets uses JSLint (JavaScript Code Quality Tool) to maintain a certain quality in the code.
JSLint is executed automatically when the file is saved and the occurring errors are listed in
the statusbar. In the given implementation of Brackets both JavaScript files (.js) and HTML
files (.html/.htm) are checked by JSLint. Checking HTML files with a JavaScript Quality Tool is

a bug.

Example of how JSLint errors are listed:

brackets.js

brackets.js

define(function (require, exports, module) {

require(i);

require(|)

require()5

require(u)3

var Global = require("u 1)
AppInit = require("u)»
LanguageManager = require()»
ProjectMan = require(),
Document! = require("d)
command EditorManager = require()
) e e CSSInlineEditor = require(Vi
CommandManager.js ISUtils = require(/])
WorkingSetView = require()
WorkingSetSort = require()
DocumentCommandHandlers = require('d [)
FileViewController = require()
FileSyncManager = require()»
KeyBindingManager = require()
Commands = require(),
CommandManager = require()»
CodeHintManager = require(|)
JSLintUtils = require(" language/JSLintUtils"),
JSLint Errors
67 Expected '}’ and instead saw 'WorkingSetView'. JSUtils = require("language/JSUtils")
editor 68 Expected 'WorkingSetView' at column 5, not column 9. WorkingSetView = require("project/WorkingSetView"),
extensions 68 "WorkingSetView' was used before it was defined. WorkingSetView = require("project/WorkingSetView"),
file 68 Expected ;' and instead saw ',". WorkingSetView = require("project/WorkingSetView"),
hel . N 5 \
P 68 Expected '," at column 5, not column 68. WorkingSetView = require("project/WorkingSetView"),
htmlContent
index.html 68 Expected an identifier and instead saw ',". WorkingSetView = require("project/WorkingSetView"),
v language Line 67, Column 62 i * 319 Lir JavaScript Spaci

Task 1

Your task is to fix that bug, so that JSLint only operates on JavaScript files and
not on HTML files.

» Where would you make change(s)?
Please indicate the position(s) for the change(s) by highlighting the line
or code snippet and state your change(s) verbally

JSLint is automatically executed when a file is saved. But there is no way to execute JSLint

manually without saving a file.

Task 2

Your task is to add a new context menu item called “Execute JSLint“ to the
context menu of the editor, that will execute JSLint on the currently visible
JavaScript file.

» Where would you make this change or changes?
Please indicate the position(s) for the change(s) by highlighting the line
or code snippet and state your change(s) verbally

Before: After:
Quick Edit 3tE Quick Edit 3tE
Select All A Select All

Execute JSLint

Info: The name of the menu item (“Execute JSLint") is already given for every language and
is available by using

* Strings. CMD JSLINT EXECUTE
So you don’t have to bother with internationalization.

94

C User Study: Task Descriptions

95

Appendix D

User Study: Provided
Sketches

D User Study: Provided Sketches

96

‘dnoi13 Jonyuod ayj pue dnoxd uoroauuod ayj Y3oq 03 Apmys 1asn a3 Surmp papraoid saydieyg :1°q Sy

2 CLASN 921
rves,
)i
J\awammem
alo
oD B Eong

_ YYY SOLYIS w

—./

SHPSONIS

LoD @‘
13D

C =%

2CUga aNANI

e | eaverres

" sHgen
Oy +spy sy 1oy WY

U.\S\ D) o SRR

TN AW Mo 2aNdNy
cL2
K Fdlqﬂumm\\ 09 TN HC)
v s (Ras3d) m
~NTIVO0L, ova |f S o al 7 ()

_ 4

A™YUU0)

\ ©)
@

103 a1 iy &

ntvavgol

97

Bibliography

P. Baudisch and R. Rosenholtz. Halo: a technique for vi-
sualizing off-screen objects. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI
‘03, pages 481-488. ACM, 2003.

B. B. Bederson and J. D. Hollan. Pad++: a zooming graph-
ical interface for exploring alternate interface physics. In
Proceedings of the 7th annual ACM symposium on User inter-
face software and technology, UIST '94, pages 17-26. ACM,
1994.

B. B. Bederson, J. Meyer, and L. Good. Jazz: an extensi-
ble zoomable user interface graphics toolkit in Java. In
Proceedings of the 13th annual ACM symposium on User in-
terface software and technology, UIST ‘00, pages 171-180.
ACM, 2000.

A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Che-
ung, J. Kaplan, C. Coleman, F. Adeputra, and J. J. LaViola.
Code bubbles: a working set-based interface for code un-
derstanding and maintenance. In CHI "10: Proceedings of
the 28th international conference on Human factors in com-
puting systems. ACM, 2010.

S. M. Branham, G. Golovchinsky, S. Carter, and J. T. Biehl.
Let’s go from the whiteboard: supporting transitions in
work through whiteboard capture and reuse. CHI, pages
75-84, 2010.

R. Brooks. Towards a theory of the comprehension of
computer programs. International Journal of Man-Machine
Studies, 18(6):543 — 554, 1983.

M. Cherubini, G. Venolia, and R. DeLine. Building an
Ecologically valid, Large-scale Diagram to Help Devel-

98

Bibliography

opers Stay Oriented in Their Code. In Visual Languages
and Human-Centric Computing, 2007. VL/HCC 2007. IEEE
Symposium on, pages 157-162, 2007a.

M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko. Let’s
go to the whiteboard: how and why software developers
use drawings. In CHI "07: Proceedings of the SIGCHI confer-
ence on Human factors in computing systems. ACM Request
Permissions, 2007b.

M. Csikszentmihalyi. Flow: The Psychology of Optimal Expe-
rience. Harper Perennial, 1991.

S. P. Davies. Models and theories of programming strat-
egy. International Journal of Man-Machine Studies, 39(2):
237-267,1993.

R DeLine and K Rowan. Code canvas: zooming towards
better development environments. In Software Engi-
neering, 2010 ACM/IEEE 32nd International Conference on,
pages 207-210, 2010.

E. Détienne. Software Design—Cognitive Aspects. Springer-
Verlag New York, Inc., 2002.

T. Dorta, E. Perez, and A. Lesage. The ideation gap:hybrid
tools, design flow and practice. Design Studies, 29(2):121—
141, 2008.

S. G. Eick, J. L. Steffen, and E. E. Sumner Jr. Seesoft - A Tool
for Visualizing Line Oriented Software Statistics. IEEE
Trans. Software Eng., 18(11):957-968, 1992.

M. J. Eppler and R. Pfister. Sketching at work: A Guide to
Visual Problem Solving and Communcation. mcm Institute,
2011a.

M. J. Eppler and R. Pfister. Sketching as a tool for knowl-
edge management: an interdisciplinary literature re-
view on its benefits. In i-KNOW ’11: Proceedings of
the 11th International Conference on Knowledge Management
and Knowledge Technologies. ACM, 2011b.

V. Goel. Sketches of Thought. MIT Press, 1995.

G. Goldschmidt. The backtalk of self-generated sketches.
Design Issues, 19(1):72-88, 2003.

Bibliography

99

J. Good, P. Brna, and R. Cox. Programming Paradigms, In-
formation Types and Graphical Representations: Empirical In-
vestigations of Novice Program Comprehension. University
of Edinburgh, 1999.

M. D. Gross and E. Y. Do. Ambiguous intentions: a paper-
like interface for creative design. In Proceedings of the 9th
annual ACM symposium on User interface software and tech-
nology, UIST "96, pages 183-192. ACM, 1996.

A.J. Ko, B. A. Myers, M.]J. Coblenz, and H. H. Aung.
An Exploratory Study of How Developers Seek, Relate,
and Collect Relevant Information during Software Main-

tenance Tasks. Software Engineering, IEEE Transactions on,
32(12):971-987, 2006.

C. Kurtz. Code Gestalt: a software visualization tool for
human beings. In CHI "11 Extended Abstracts on Human
Factors in Computing Systems, CHI EA "11, pages 929-934.
ACM, 2011a.

C. Kurtz. Code Gestalt: From UML Class Diagrams to Soft-
ware Landscapes. Diploma thesis, 2011b.

J. A. Landay. SILK: sketching interfaces like krazy. In
CHI '96: Conference companion on Human factors in comput-
ing systems: common ground. ACM Request Permissions,
1996.

T. D. LaToza, G. Venolia, and R. DeLine. Maintaining men-
tal models: a study of developer work habits. In Proceed-
ings of the 28th international conference on Software engineer-
ing, ICSE "06, pages 492-501, New York, NY, USA, 2006.
ACM.

T. C. Lethbridge, J. Singer, and A. Forward. How Software
Engineers Use Documentation: The State of the Practice.
IEEE Softw., 20(6):35-39, 2003.

S. Letovsky and E. Soloway. Delocalized Plans and Pro-
gram Comprehension. Software, IEEE, 3(3):41-49, 1986.

J.Lin, M. W. Newman, J.I. Hong, and J. A. Landay. DENIM:
finding a tighter fit between tools and practice for Web
site design. In Proceedings of the SIGCHI conference on Hu-
man Factors in Computing Systems, CHI "00, pages 510-
517. ACM, 2000.

100

Bibliography

N. Mangano, A. Baker, M. Dempsey, E. Navarro, and
A. van der Hoek. Software design sketching with cal-
ico. In the IEEE/ACM international conference, pages 23-32.
ACM, 2010.

J. Meyer. EtchaPad - disposable sketch based interfaces. In
Conference Companion on Human Factors in Computing Sys-
tems, CHI 96, pages 195-196. ACM, 1996.

H. A. Miiller, S. R. Tilley, and K. Wong. Understanding soft-
ware systems using reverse engineering technology per-
spectives from the rigi project. In Proceedings of the 1993
conference of the Centre for Advanced Studies on Collabora-
tive research: software engineering, volume 1 of CASCON
'93, pages 217-226. IBM Press, 1993.

B. Paulson and T. Hammond. PaleoSketch: accurate primi-
tive sketch recognition and beautification. In Proceedings
of the 13th international conference on Intelligent user inter-
faces, IUL 08, pages 1-10. ACM, 2008.

N. Pennington. Empirical studies of programmers: second
workshop. chapter Comprehension strategies in pro-
gramming, pages 100-113. Ablex Publishing Corp., 1987.

B. Plimmer and I. Freeman. A toolkit approach to sketched
diagram recognition. In Proceedings of the 21st British
HCI Group Annual Conference on People and Computers:
HCI...but not as we know it - Volume 1, BCS-HCI '07, pages
205-213. British Computer Society, 2007.

P. Schmieder, B. Plimmer, and R. Blagojevic. Automatic
evaluation of sketch recognizers. In Proceedings of the
6th Eurographics Symposium on Sketch-Based Interfaces and
Modeling, SBIM "09, pages 85-92. ACM, 2009.

D. A. Schon. The Reflective Practitioner: How Professionals
Think in Action. Basic Books, 1983.

K. Schwaber and M. Beedle. Agile Software Development with
Scrum. Prentice Hall PTR, 2001.

T. M. Shaft. The role of application domain knowledge in com-
puter program comprehension and enhancement. PhD thesis,
1992.

Bibliography

101

B. Shneiderman and R. Mayer. Syntactic/semantic interac-
tions in programmer behavior: A model and experimen-
tal results. International Journal of Computer & Information
Sciences, 8(3):219-238, 1979.

J. Singer, T. C. Lethbridge, N. G. Vinson, and N. Anquetil.
An examination of software engineering work practices.
CASCON, page 21, 1997.

J. Starke, C. Luce, and]. Sillito. Searching and skimming;:
An exploratory study. In ICSM, pages 157-166. IEEE,
2009.

B. Tversky. What does drawing reveal about thinking? In
IN, pages 93-101, 1999.

B. Tversky. What do sketches say about thinking? In AAAI
Spring Symposium on Sketch Understanding. AAAI Press,
2002.

B. Tversky and M. Suwa. Thinking with sketches. vol-
ume 1, pages 75-85. 2009.

A. von Mayrhauser and A. M. Vans. Program comprehen-
sion during software maintenance and evolution. Com-
puter, 28(8):44-55, 1995.

J. Walny, J. Haber, M. Dork, J. Sillito, and S. Carpendale.
Follow that sketch: Lifecycles of diagrams and sketches
in software development. Visualizing Software for Under-
standing and Analysis (VISSOFT), 2011 6th IEEE Interna-
tional Workshop, 2011.

Y. Wong. Rough and ready prototypes: lessons from
graphic design. In Posters and Short Talks of the 1992
SIGCHI Conference on Human Factors in Computing Sys-
tems, CHI 92, pages 83-84. ACM, 1992.

P. T. Zellweger, J. D. Mackinlay, L. Good, M. Stefik, and
P. Baudisch. City lights: contextual views in minimal
space. In CHI ‘03 Extended Abstracts on Human Factors
in Computing Systems, CHI EA "03, pages 838-839. ACM,
2003.

103

Index

ad-hoc meeting, [2, I3, (3135, [9, 21, 24, I3, [Z2, B2
Adobe Brackets, @, i1, £3, b2, B3, B5-bd,
assimilation process, B, B, 8, B, B2

back-link, A5, €5, B9, B9, 70
between groups, b1, b5, b5, B3

Code Dot, B2, B2, B3, 5

computer-based tool, B, B2

conditions,

Connection Dot, B9, £1, E2-23, B2-60, bB8-72, [74, 8
connection group, 66, b8, b3-b4, b, b2, BI3-72, Z3-80
connection point, 27, Bll, B0-34, B3-43, &5, B7-49
Context View, B, B0, BA-38, B4,

control group, B, bA, B9-64, BE-8Y, 71, [22, Z3-E0, B3,

design decision, B3-B5, &1, &4, [72
Design Flow, [[5, I8, TA-IS, U1
DIA cycle, B3,

evaluation, BI-80
external representations, B, B, B, [, BT, B2

File Dot, B3, €3, €7, 44
future work, B4-8d

hypothesis, 52, B2, b3

indicated connection, B2, B2, B4, 34, B0, B2
JSLint, B4, B,

knowledge base, B, 3, K1

Map View, 29, U9, BA, BS, B2, B4, B3, BS,

mental model, B, B, B, [2, I3, [7, l0-2, PA, B2, B3, BS, A4, B3,
9-K82

Mission Control View, B2, B2-74d, 09, B3-bR, h2-hd, ha-173, I/, [75,
9,83

onboarding, I3, [[3, b3, I3, 74, K2,

104 Index

onboarding process, Bl
Overlay Layout, 29, P9, BA, BY, B2

re-engineering tool, B, B, B, 8, [4, [5, [, T, 2

Scrum, 23, &
semantical elements, B, B3
semantical knowledge, B,

sketch, B
Sketchbar View, B3, B3, &4, B6-b0, BF, 70, B3
sketching, B

software comprehension, [, 2, -8, 4, P2, b2, B1-83
software comprehension models, 2, 8, ET

software visualization, &, §, 8, 8, I3, [4

source code design, [, B, B, 4, P4, P8, 7, B4, b1, B3, bA, 7954
source code visualization, B, B, [, 19, P2, §2, Y

Split Layout, 28, P9, B5-34, B3, B4, @9,

syntactical elements, B0, BT, B, B5

syntactical knowledge, B,

task completion time, b, &, B4, A, bS, [0, [71, I8, B3
task success, B4, I, [Z8, B3
tasks, B3

visualized connection, B2, B2,

Typeset May 21, 2013

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Thesis Context and Motivation
	Thesis Structure

	Related work
	Sketches and Sketching in General
	Sketches and Software Developers
	Why do software developers sketch?
	How do software developers sketch?

	Sketches and Tools for Software Developers
	Visualization Tools for Software Developers
	Consequences for this thesis

	Initial Study
	Fundamentals
	Layouts and Views
	The Connection Points
	The Connection Points of Source Code
	The Connection Points of a Sketch

	The Connection between Connection Points

	Prototyping
	Participants
	Methodology
	Design decisions
	Layouts and Views
	The Connection Points
	The Connection between Connection Points

	Implementation
	Platform
	The Look & Feel
	The Mission Control View
	The Sketchbar View

	The navigational behavior
	The Mission Control View
	The Sketchbar View

	Evaluation
	Experimental Setup
	Participants
	Tasks and Conditions
	Semi-structured post-session interview
	Methodology

	Results
	Participants
	Task Success
	Task Completion Times
	Amount of Glances at Sketches
	Time Spent Looking at Sketches
	Qualitative Observations
	Control group Members
	Connection group Members

	Semi-structured Post-Session Interview and Participants' Comments
	Areas of Application
	Identified Problems
	Suggested Ideas
	Implications for H5

	Discussion

	Summary and Future Work
	Summary and Contributions
	Future Work

	User Study: Declaration Of Consent & Pre-Session Questionnaire
	User Study: Post-Session Interview Questions
	User Study: Task Descriptions
	User Study: Provided Sketches
	Bibliography
	Index

