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Abstract

Athletes benefit from immediate and frequent feedback on their performance during training.
Therefore, coaches try to provide instructions and feedback over multiple sensory channels before,
during, and immediately after an exercise: they explain and demonstrate how to move the body,
and they move the athletes’ bodies into correct position. In many situations, however, athletes
only receive feedback after performing an exercise because they are spatially separated from
their coaches. Also, they do not experience tactile feedback through the coaches’ hands.

To overcome these limitations, this work proposes and investigates artificial tactile stimuli for
providing instructions and feedback on performance in realtime. These tactile signals are called
tactile motion instructions. They stimulate specific body locations to communicate how to move
and how to adjust the posture. Empirical studies conducted in static and in active situations
informed the iterative design and the evaluation of a general set of tactile motion instructions that
can represent body movements in an intuitive way. These tactile instructions can be perceived
and recognized with high accuracy in situations that are cognitively and physically demanding.
In particular, they can lead to faster response times to move the body than spoken instructions
that are conveyed over earplugs.

Tactile motion instructions constitute a simple language where sequentially triggered instructions
can guide athletes during sequences of body movements. Using snowboarding as an example,
a field study conducted with snowboarders who experienced tactile motion instructions while
practicing a new riding technique demonstrated that this tactile language can help athletes to
learn motor skills.

This work is the first investigation into the intuitive interpretation of full-body tactile stimuli that
can instruct how to move the body during physical activities. The insights into the perception
and recognition of these stimuli in stationary and in active situations lead to guidelines for
designing tactile motion instructions. Besides sports training, the findings from this research
can be applied to various domains where immediate feedback on incorrect posture is typically
missing or impracticable, such as to prevent injuries in unsupervised situations during daily
physical activities, or to enhance rehabilitative exercises for regaining lost motor skills.

This dissertation also presents a custom-built wearable and wireless sensor and actuator system.
This system enabled the design of tactile motion instructions and their evaluation in real-world
conditions, and demonstrated that sensing and classifying posture and body movements while
snowboarding is possible in realtime. This system resulted in the first wearable assistant for
snowboard training that automatically provided tactile motion instructions during descents.
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Überblick

Sportler profitieren während des Trainings von unmittelbarer und häufiger Rückmeldung zu ihrer
Leistung. Aus diesem Grund versuchen Trainer Anweisungen und Rückmeldung vor, während,
und unmittelbar nach einer Übung zu geben, und zwar über mehrere Sinneskanäle: Sie erklären
und demonstrieren die korrekte Ausführung der Bewegungen, und sie helfen dem Sportler per
Hand, den Körper in die richtige Stellung zu bringen. Allerdings sind Sportler in vielen Situ-
ationen räumlich von ihren Trainern entfernt, so dass sie Rückmeldungen nur nach der Übung
erhalten. Des Weiteren erfahren sie keine taktile Rückmeldung durch die Berührung der Trainer.

Diese Dissertation untersucht, wie künstliche taktile Reize Anweisungen und Rückmeldung
während der Ausführung physischer Aktivitäten geben können. Diese taktilen Reize werden tak-
tile Bewegungsanweisungen genannt. Sie stimulieren bestimmte Körperstellen um zu vermitteln,
wie man sich bewegen und wie man die Körperhaltung korrigieren soll. In mehreren empirischen
Untersuchungen wurde untersucht, welche Körperbewegungen sich durch taktile Bewegungsan-
weisungen intuitiv repräsentieren lassen und wie diese Reize wahrgenommen werden. Diese
Untersuchungen wurden mit entspannter Körperhaltung und während der Ausübung physisch
und kognitiv belastender Aktivitäten durchgeführt. Die Ergebnisse zeigen, dass die entworfe-
nen taktilen Bewegungsanweisungen mit hoher Genauigkeit wahrgenommen und erkannt werden
können. Insbesondere können sie zu schnelleren Reaktionszeiten führen als über Kopfhörer über-
mittelte Sprachanweisungen.

Taktile Bewegungsanweisungen bilden eine einfache Sprache, in der eine Folge von Bewegungsan-
weisungen eine Abfolge von Körperbewegungen repräsentieren kann. In einer Feldstudie mit
Snowboardfahrern wurde demonstriert, dass diese taktile Sprache beim Erlernen motorischer
Fähigkeiten helfen kann. Dazu wurden taktile Bewegungsanweisungen während der Abfahrt
beim Üben einer neuen Fahrtechnik eingesetzt.

Diese Dissertation hat erstmalig untersucht, welche taktilen Reize mit Körperbewegungen as-
soziiert werden und welche Reize als Bewegungsanweisungen verwendet werden können. Die
gewonnenen Erkenntnisse über die Wahrnehmung und Interpretation der untersuchten Reize
haben zu einem Leitfaden für den Entwurf von taktilen Bewegungsanweisungen geführt. Diese
Forschungsergebnisse können auch in anderen Domänen angewendet werden, in denen unmit-
telbare Rückmeldung zu Fehlhaltungen während der Ausübung physischer Aktivitäten nicht
dargeboten werden kann. Zum Beispiel könnten taktile Bewegungsanweisungen helfen, Verlet-
zungen in unbeaufsichtigten Situationen im Alltag vorzubeugen. Außerdem könnten sie auch in
der Rehabilitation für die Wiedererlangung von motorischen Fähigkeiten eingesetzt werden.



xx Überblick

In dieser Arbeit wird auch ein tragbares System vorgestellt, das es erlaubt, einfache Körper-
bewegungen zu messen und künstliche taktile Reize am Körper zu generieren. Dieses System
diente als Grundlage für die Entwicklung der taktilen Bewegungsanweisungen und deren Unter-
suchung in realen Bedingungen. Basierend darauf wurde als Beispiel der erste tragbare Assistent
für Snowboardtraining entwickelt, der während der Abfahrt bestimmte Bewegungen des Fahrers
messen, interpretieren, und taktile Bewegungsanweisungen als Rückmeldung geben kann.
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Some of the material covered in this thesis has been previously published at
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Chapter 1

Introduction

“Defer no time, delays have dangerous ends;”

—William Shakespeare (excerpt from Henry VI)

Sports scientists have shown that frequent feedback on an athlete’s per- Frequent feedback

supports learning

of motor skills.

formance and concurrent feedback provided during the execution of body
movements can improve the performance and learning of motor skills [Wulf,
2007]. In general, coaches provide feedback via three channels: they explain
and demonstrate exercises, and they move the athlete’s body into correct
position. Even so, the type and the frequency of feedback that athletes re-
ceive during training depend on the sport. Compare, for example, typical
lessons in the tennis court to lessons on the slope (see Figure 1.1):

As a tennis student, you learn how to perform backhand and forehand Tennis scenario:

frequent feedback

during exercises

strokes. Your instructor explains how to position your body and how to
wield the racket. He talks to you whenever you need assistance. Moreover,
he guides your arm when your technique is wrong.

As a snowboard student, you learn how to perform turns. Your instructor Snowboarding

scenario: limited

and delayed

feedback

explains how to move your body during the ride. Then, he descends the
slope to demonstrate correct technique. As he stops, you start to slowly
descend. You are afraid to fall while turning the board. You look at your
feet and focus on keeping balance. The snowboard unexpectedly acceler-
ates. You loose control and... ouch! Your instructor cannot tell you how
to adjust posture to avoid further falls; he is too far away. He cannot push
you into correct position either. You only receive delayed feedback on your
riding mistakes, after descending the slope.

Spoken instructions played back over earplugs could assist students who Spoken

instructions are

often unsuitable

in noisy

environments.

are spatially separated from their coaches. Such messages, however, are
less appropriate in noisy environments because they can block important
audio cues that occur naturally. In our example, the sound of the snowboard
shoving snow away helps the rider to adjust the pressure and the edging
angle. Without these audio cues, the rider’s performance would degrade.
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Figure 1.1: Left: Tennis students frequently receive spoken, visual, and
tactile feedback during exercises, which helps them to differentiate between
correct and wrong movements (courtesy of [Cooper Aerobics Center, 2010]).
Right: Snowboard students do not receive feedback from their instructor
during exercises. They only receive instructions before descending the slope
and feedback after the run.

Moreover, the sound stemming from other skiers and snowboarders who
quickly approach from behind can help prevent accidents.

1.1 Tactile Instructions Correct Wrong Posture

Instead of spoken instructions played back over earplugs, small vibrationTactile

instructions signal

how to move the

body during

physical activities.

motors attached to the body could generate artificial tactile stimuli that
instruct athletes how to correct their posture. These stimuli would not
interfere with environmental audio cues. Moreover, they would directly
stimulate the skin such that athletes could immediately feel which part of
the body to move, as if the coach pushed or pulled their limbs into the
correct position. All physical activities and sports where coaches cannot
provide feedback during exercises could benefit from such tactile instruc-
tions, including skiing, surfing, dancing, and martial arts. This idea has
been mentioned before [Nakamura et al., 2005, Van Erp et al., 2006, Lieber-
man and Breazeal, 2007], but it has not yet been explored in detail.

Our vision relates to wearable computing, which inspired researchers sinceWearable

automatic sensing

and feedback

devices

the 1960s: “Wearable computing pursues an interface ideal of a continuously
worn, intelligent assistant that augments memory, intellect, creativity, com-
munication, and physical senses and abilities.” [Starner, 2001]. We imagine
wearable computers and smart clothes [Mann, 1996] that supervise body
movements and that automatically provide tactile instructions when the
athlete’s posture is incorrect. Such systems have to accomplish three tasks:
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1. Sense the athlete’s posture and body movements with sensors inserted
into the clothes and the sports equipment.

2. Build a posture and motion model of the body and determine if the
athlete’s movements are correct.

3. If the athlete’s posture or movements are incorrect, provide tactile
instructions to those parts of the body that have to be adjusted.

Assume again you were trying to perform consecutive turns on a ski run. Future

snowboarding

scenario: tactile

instructions

during descents

This time, however, your ski suit and your snowboard have built-in sensors.
Moreover, your suit contains vibration motors that are located at the thighs
and at the torso. While descending the slope, focusing on keeping balance,
you do not notice that you unconsciously shift your weight towards the
right foot, which points backwards on the snowboard. This posture makes
you feel safer because you do not lean your upper body downwards towards
the slope. Riding with this weight distribution, however, makes it difficult
to perform turns. Suddenly, you notice a push laterally at your upper right
thigh and right shoulder as if your instructor pushed you towards the left.
The vibration motors signal to shift your weight to the left foot towards
the front of the snowboard, thereby leading to a safe turn.

As envisioned in this scenario, learning to snowboard could become similar Automatic

instructions

support athletes

during training

and coaches while

teaching.

to learning to play tennis where the coach can directly guide the athlete’s
body into correct position. In particular, wearable sensing and feedback de-
vices that automatically provide tactile instructions during exercises could
enhance the learning experience in all sports where athletes do not re-
ceive immediate feedback on their performance because they are spatially
separated from their coach. These devices could also support coaches who
cannot focus their attention on all athletes at the same time during courses.

1.2 Context and Scope of this Thesis

Sport technologies are one thriving application domain for pervasive and Wearable

technology can

help athletes to

improve their

performance.

wearable computing [Chi et al., 2005]. Researchers from various fields, in-
cluding sport, kinesiology, physiology, and computer science, have started
to develop systems for measuring muscle movements and other physiologi-
cal aspects that can help coaches understand and improve the performance
of athletes, for example while swimming and rowing [James et al., 2004],
or while skiing [Michahelles and Schiele, 2005, Brodie et al., 2008]. As
Chi et al. [2005] stated, “Almost any sport could benefit from equipment
enhancements as well as novel measurement and analysis of athletes’ perfor-
mance.”. In fact, several systems that can provide visual, audio, or tactile
feedback during training have already been presented. Some systems target
at elite athletes, whereas others focus on amateur athletes. Some systems
are research prototypes, whereas others can be purchased. In this section,
we will give an overview of these systems and of their most popular appli-
cation domains, including sports training and daily physical activities.
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1.2.1 Visual and Audio Feedback

Baca and Kornfeind [2006] introduced rapid feedback systems for rowing,Rapid visual and

audio feedback for

elite athletes

table tennis, and shooting, which visualize on computer displays the quality
of an athlete’s technique, based on sensors built into the sports equipment.
Another example is the interactive throwing sleeve, which is a high-tech
armband with sensors at the wrist and elbow [Technology Review, 2008].
This wearable training tool for basketball players measures arm movements
when the athlete shoots the ball. A remote computer analyzes the wirelessly
transmitted data and maps the result to musical cues, which allow players
to immediately recognize arm movements that lead to successful shots.

Other systems target at amateur athletes and are meant to motivate fitnessPersonal training

devices offer

visual and audio

feedback for

amateur athletes.

and a healthier lifestyle. Examples include small armband-sized weight
management tools and personal training devices that can provide visual or
audio feedback after workout or to specific body movements, and that can
play music that suits the training program [Asselin et al., 2005, Wijnalda
et al., 2005]. A popular commercial device is GoWear fit, which can monitor
all physical activities performed during the day and which can display the
burnt calories [BodyMedia, 2008]. Another commercial system is Nike +
iPod, which can summarize the time, distance, pace, and the burnt calories
while jogging [Apple, 2008].

The Sonic Golf Club is a commercial gadget that focuses on golf training.Audio feedback

for golf training This club measures the acceleration of golf swings with sensors inserted into
the shaft and converts the measured speed to sound patterns [Sonic Golf,
2008]. Similarly, the Suunto G6 watch has built-in sensors for analyzing
certain characteristics of golf swings, such as the duration, the speed, and
the length of the swing plane in degrees [Suunto, 2009]. Although these
devices only address a small subset of body movements that can affect
a golfer’s technique, amateurs can immediately experience after putting
how fast and wide they swung their club such that they can adjust their
technique during practice.

Martial artists can also benefit from instant feedback on their performance.Audio and visual

feedback for

martial arts

training

The quality of punches is often difficult to assess because the involved body
movements are quickly executed. To address this issue, Takahata et al.
[2004] used accelerometers to analyze the timings and the forces of the
wrists, the ankles, and the waist while punching, and turned these mea-
surements into sound patterns. This audible feedback enabled amateurs to
hear and compare their movements to the instructor’s movements. Also,
Kwon and Gross [2005] combined accelerometers with video analysis to
visualize the power of punches as circles of different sizes.

A ski instructor devised a simple tool for correcting the posture of skiers.Audio feedback

for ski training The Ski Coach [Braisby, 2005], a commercially available mechanical device,
worn in a backpack, generates sound feedback that signals correct upper
body posture during turns. This tool consists of a tube slightly curved
upwards with three ball bearings (see Fig. 1.2). Skiers who correctly per-
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Figure 1.2: The Ski Coach [Braisby, 2005]. The clink of balls signals that
the posture of the shoulders is correct (courtesy of Chris Braisby).

form turns without tipping their shoulders hear an audible clink that the
moving balls produce when the forces that develop during turns pull these
balls from one end of the tube to the other end. Skiers who incorrectly tip
their shoulders do not hear this clink; the forces that develop during turns
are too weak to move the balls along the tube.

1.2.2 Tactile Feedback and Force Feedback

Up to now, only few systems have been devised that can provide feedback Tactile feedback

for sports training

and motor skill

learning

over the tactile channel, typically in the form of vibrational signals. Naka-
mura et al. [2005] experimented with such tactile stimuli at the wrist in
order to initiate dance movements. Van Erp et al. [2006] reported that tac-
tile stimuli have been tested as directional commands for navigation during
soccer training, as corrective instructions for improving the posture of cy-
clists and speed skaters, and as timing signals for coordinating body move-
ments while rowing and dancing. Lieberman and Breazeal [2007] applied
tactile stimuli to the joints in order to indicate movement deviations from
the target movement; these stimuli resembled a “force-field” built around
the correct motion path. Moreover, Huang et al. [2010] demonstrated that
passive tactile feedback can help teach motor skills for playing the piano.

A few systems focused on clinical applications. Wall et al. [2001] built a Tactile feedback

for rehabilitationbalance prosthesis that delivered tactile stimuli to the shoulders and later-
ally to the torso for reducing postural sway. Priplata et al. [2003] suggested
vibrating insoles for helping elderly people to maintain their balance while
standing still. Also, Lindeman et al. [2006a] proposed tactile stimuli to
warn patients of improper joint movements, such as after surgery.

Besides tactile feedback, haptic devices that stimulate the sense of touch Force feedback for

rehabilitation and

motor skill

learning

through force feedback [Oakley et al., 2000] have been developed to teach
motor skills. For example, a haptic interface can assist stroke patients in
moving their arms along a predefined path through forces that pull wrong
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movements of the limb in the correct direction [Loureiro et al., 2004]. Over-
all, several studies indicate that this haptic guidance can enhance rehabil-
itative exercises and can be used for training patients lost motor skills
[Holden, 2005, Bluteau et al., 2008, Yang et al., 2008].

In our view, automatic sensing and feedback devices that provide tactileTactile feedback

could support

patients at home

and could assist

people in

unsupervised daily

physical activities.

feedback could also support and motivate patients to continue practice at
home, in particular in-between the short sessions with doctors. Moreover,
these devices could assist in unsupervised situations during daily physical
activities when people do not receive feedback on their posture and body
movements. For example, many people who pick up a heavy box from the
floor bend their upper body forward but keep their legs straight, which
can injure the lower back and which can cause lumbago. Smart clothes
that detected these harmful movements could immediately deliver tactile
instructions to the thighs, thereby signaling to flex the legs.

1.2.3 Outlook

The aforementioned examples illustrate that there is an increased interestWearable

computers can

break new ground

in sports training.

in personal training and monitoring devices for sports, for medical appli-
cations, and for daily physical activities. On the one hand, performance
statistics motivate and allow athletes and amateurs to keep track of their
progress between workout sessions. On the other hand, frequent and con-
current feedback during training can improve the performance of athletes.
Wearable computing can break new ground in designing technologies that
sense and analyze body movements and that immediately provide feedback
and instructions, either over the visual, the auditory, or the tactile channel.

In this work, we have focused on tactile feedback. This channel has not
been explored yet in detail for providing realtime feedback and instructions
that could signal how to adjust the posture and how to move the body
during physical activities. In particular, we have investigated

• which artificial tactile stimuli delivered across the body could work
as instructions that represent body movements in an intuitive way,

• how well these tactile instructions were perceived and recognized in
active situations that were physically and cognitively demanding,

• how tactile instructions compared with spoken instructions delivered
over earplugs in active situations, and

• if tactile instructions could enhance the performance and learning of
motor skills in active situations.
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1.3 Thesis Contributions

This thesis evolved out of missing realtime feedback while snowboarding. We have designed

and evaluated a

language of tactile

instructions for

physical activities.

To instruct snowboarders how to correct their posture while descending the
slope, we imagined a wearable system that automatically sensed the rider’s
movements and that provided tactile instructions to the relevant parts of
the body. This initial idea resulted in the design of a general set of full-
body tactile patterns that can represent body movements in an intuitive
way [Spelmezan et al., 2009b]. These tactile patterns constitute a simple
tactile language of motion instructions for physical activities. This language
can guide through sequences of body movements similar to words that form
sentences in spoken languages [Spelmezan et al., 2009a].

Our work also addressed the three tasks that wearable sensing and feed- We present the

first wearable

snowboard

training system.

back devices have to accomplish: sensing of posture and body movements;
detecting mistakes; and providing instructions (see section 1.1). As an
example for developing such a system, we have informed the design of a
wearable snowboard training system [Spelmezan and Borchers, 2008], and
we have built hardware and software tools that support rapid prototyping
of simple wearable computing applications [Spelmezan et al., 2008]. These
tools enabled us to build the first assistant for snowboard training that
could sense and interpret the movements of the snowboard and the posture
of the rider [Spelmezan et al., 2009c]. To evaluate the proposed approach
to teaching motor skills in a real-world setting, we will report in this disser-
tation the results of a field study that was conducted with amateur athletes
who experienced tactile instructions during a snowboarding course.

The main contributions of this thesis address several research topics that
relate to the interaction between humans and computers (see Fig. 1.3):

• The development of hardware and software tools for rapid prototyping
of wearable computing applications that can sense posture and body
movements during physical activities and that can provide artificial
tactile feedback for corrections.

• The design of full-body tactile patterns that can represent body move-
ments in an intuitive way. These patterns can be quickly learned as
instructions and recalled in the long-term. Moreover, these tactile
motion instructions constitute a simple language that can communi-
cate how to move the body during physical activities.

• The evaluation of tactile motion instructions regarding their intuitive-
ness, learnability, perception, and recognition in active situations.

• The evaluation of tactile motion instructions for teaching motor skills
during physical activities.
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Use and Context

U1 Social Organization and Work

U2 Application Areas

U3 Human-Machine Fit and Adaptation

Human

H1 Human
Information
Processing

H2 Language,
Communication
and Interaction

H3
Ergonomics

C1 Input and
Output Devices

Computer
C2 Dialogue
Techniques

C4 Computer
Graphics

C5 Dialogue
Architecture

C3 Dialogue
Genre

Development Process

D4 Example Systems
and Case Studies

D1 Design
Approaches

D3 Evaluation
Techniques

D2 Implementation
Techniques and Tools

Figure 1.3: Research in Human-Computer Interaction (HCI) addresses
several topics that have been outlined by the ACM SIGCHI Curricula
[Hewett et al., 1992]. This thesis contributes to the highlighted areas.

1.4 Thesis Structure

This thesis is structured in four parts and includes the following chapters:

Part I: Wearable Sensing and Feedback Devices

Chapter 2 focuses on wearable computing, context recognition, and state-
of-the-art wearable systems that can sense posture and body movements.

Chapter 3 describes the custom-built wearable sensing and feedback de-
vice and the developed software tools that enabled us to design and to
evaluate tactile instructions with users in laboratory and in field studies.

Chapter 4 informs the design of a wearable snowboarding assistant and
presents algorithms that can classify basic context information on the slope.

Part II: Tactile Motion Instructions

Chapter 5 discusses the fundamentals of tactile perception and introduces
related work on tactile display technologies and their applications.

Chapter 6 addresses the design of artificial tactile stimuli that can repre-
sent body movements in an intuitive way and evaluates how young adults
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perceive and interpret these stimuli in stationary and in active situations.

Chapter 7 focuses on the language aspect of tactile motion instructions
and investigates how accurate young adults can recognize sequences of in-
structions that are based on two different encoding metaphors. This chapter
also examines how intuitive users regard the designed tactile stimuli to rep-
resent body movements and how well they can remember the meaning of
these stimuli after an extended time period without additional practice.

Chapter 8 describes a field study that was conducted with snowboarders
to evaluate tactile motion instructions for teaching motor skills. Finally,
the composed set of tactile motion instructions and recommendations for
designing tactile motion instructions are presented.

Part III: Conclusion

Chapter 9 summarizes the presented work.

Chapter 10 describes future challenges.

Part IV: Appendix

The appendices of this thesis provide supporting materials:

Appendix A shows the circuit schematic of the developed motor shield.

Appendix B, Appendix C, and Appendix D comprise the post-study
questionnaires for the conducted field studies.

Appendix E discusses the structure of formal languages.
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Part I

Wearable Sensing and
Feedback Devices
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Chapter 2

Wearable Computing

“Where a calculator on the ENIAC is equipped with 18,000
vacuum tubes and weighs 30 tons, computers in the future may

have only 1,000 vaccuum tubes and perhaps weigh 1.5 tons.”

—Unknown, Popular Mechanics, March 1949

In this dissertation, we have investigated artificial tactile stimuli as in-
structions how to move the body during physical activities. To design these
instructions necessitated a wearable feedback system that controlled actua-
tors for generating tactile stimuli on the skin. To evaluate these instructions
in real-world conditions necessitated a context-aware wearable system that
sensed and analyzed body movements, and that automatically provided
instructions on incorrect posture. In this chapter, we will introduce the
concept of wearable computers, and we will present technologies for build-
ing wearable sensing and feedback devices, as envisioned in section 1.1.

2.1 Wearable Computers

Wearable computers have a wide range of applications. Several systems Wearable

applications for

health related

domains

have been presented and have been deployed in particular in health related
domains. These systems can continuously record and supervise a patient’s
vital signs, physical activities, or exercises; they can inform patients on
their current medical status; and they can automatically notify physicians
of emergencies [Martin et al., 2000, Steele et al., 2003, Pentland, 2004,
Lukowicz et al., 2004, Jovanov et al., 2005, Sung et al., 2005]. Some devices
were designed for monitoring gait [Paradiso et al., 2004] or sway [Brunelli
et al., 2006]; these devices provided audio feedback for corrections.

Besides assisting coaches in analyzing the performance of athletes and in Wearable

applications for

sports

competitions

motivating amateurs to reach fitness goals (see section 1.2), wearable sys-
tems have been built that can support referees in scoring sparring matches
[Chi et al., 2004] and snowboarding competitions [Harding et al., 2009].
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Wearable devices have also been deployed in industrial settings [Stanford,Wearable

applications for

industrial settings

2002]. Due to their small size, they can support trainees and workers in their
natural work environments, for example while assembling and maintaining
complex systems like cars and airplanes, or they can assist rescue workers
in emergency situations [Lukowicz et al., 2007].

The aforementioned examples illustrate that wearable computers becomeA wearable

computer is not

just a device worn

on the body.

increasingly important as assistive technologies. But what is a wearable
computer? The adjective “wearable” implies that the computer is small and
portable enough to be worn or carried on one’s body [NOAD2, 2005]. This
straightforward definition only addresses the physical size of the device.
Wearable computers, however, have specific characteristics that differenti-
ate them from desktop computers and personal digital assistants. Rhodes
[1997] has first outlined these characteristics: besides being portable, always
on, and designed for hands-free use, they sense and exploit the physical con-
text and proactively convey relevant information to the user.

Later works referred to these characteristics and refined the concept ofWearable

computers are

aware of the

context in which

they are used.

wearable computing. For example, Dey et al. [1999] highlighted context-
awareness and proactivity : being “proactive” is “the essence of context-
aware computing: the computer analyzes the user’s context and makes
task-relevant information and services available to the user, interrupting
the user when appropriate”. Starner [2001] described the ideal attributes
of wearable devices: they observe and model the user’s environment, the
user’s physical and mental state, and its own internal state; they support
input and output modalities that best fit to the user’s context and provide
context-sensitive reminders as appropriate.

Lukowicz et al. [2004] defined wearable systems as“mobile electronic devicesThe user can

simultaneously

interact both with

the wearable

device and with

the environment.

that can be unobtrusively embedded in the user’s outfit as part of the
clothing or an accessory”. Such systems are context-sensitive because they
“model and recognize user activity, state, and the surrounding situation”.
Moreover, wearable computing offers a new interaction concept between
user, system, and environment: the user simultaneously interacts both with
the environment and with the system, while the system directly interacts
with the environment and further mediates the interaction between the
user and the environment. This concept is fundamentally different to the
interaction in conventional mobile systems, which forces users to focus on
the interface and to interact either with the system or with the environment,
but not with both at the same time.

2.2 Context-Awareness

As noted above, context-awareness is fundamental to wearable computing.
Context is an umbrella term for information that can describe the situation
of an object, a place, or a person relevant to the interaction between a user
and an application [Dey, 2001]. Context includes environmental conditions,
the state of surrounding objects, the user’s location, and human activities
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[Rhodes, 1997, Schmidt et al., 1999, Dourish, 2004, Lukowicz et al., 2004].
Context-aware systems use sensors that measure certain signals and phys-
ical conditions that can yield this information.

Recognizing context from sensor data is similar to recognizing speech from Context

recognition is a

classification

problem that

resembles speech

recognition.

different speakers [Intille et al., 2004]. Speech is one specific form of sensor
data that is noisy, ambiguous, and that often considerably varies between
users. The goal is to map this variable data into distinct classes based on the
characteristics of the speech. To capture the variability in speech, machine
learning techniques such as Hidden Markov Models [Rabiner, 1989] are
used for building statistical and computational models based on previously
annotated training data sets. The new speech that has to be recognized is
then compared to these models and mapped to the class that best describes
the speech’s characteristics.

Of particular interest to context-aware wearable applications is the recog-
nition of the user’s activity, gestures, body movements, and posture:

Activity recognition addresses the physical activities that people perform Activity

recognitionduring the day, such as walking, running, bicycling, standing still, climbing
stairs, riding an elevator, watching TV, cooking, or brushing teeth [Bao and
Intille, 2004]. The motion patterns of the body can reveal these activities.
To measure these patterns, wearable systems typically use accelerometers
to sense acceleration at various body locations. Based on the measured
acceleration patterns, the system identifies what the user does.

Gesture recognition addresses movements that are often performed with Gesture

recognitionthe hands or with the arms. Such gestures can be captured with iner-
tial measurement units that comprise accelerometers for sensing translation
and acceleration in three dimensions, and gyroscopes for sensing rotation
[Benbasat and Paradiso, 2002]. Gestures become increasingly important
in mobile and wearable computing applications because they can enable
“eyes-free” control and interaction with devices [Brewster et al., 2003].

Motion recognition focuses on fluid and continuous movements of the whole Motion

recognitionbody. Similar to gestures, the translation and the rotation of the body and
its limbs are sensed in three dimensions. Depending on the application sce-
nario, various technologies are combined [Welch and Foxlin, 2002]. These
technologies include inertial measurement units [Kunze et al., 2006], video
analysis and accelerometers [Kwon and Gross, 2005], or inertial measure-
ment units and ultrasonic sensors [Vlasic et al., 2007].

Posture recognition refers to the static pose of people. Stretch and bend Posture

recognitionsensors woven into clothes can yield the position of the trunk and the limbs,
such as whether the torso is bent forward or rotated to the side, or whether
the arms are stretched or flexed [Farringdon et al., 1999, Mattmann et al.,
2007]. Threshold tests on the orientation of accelerometer data often suffice
to detect transitions among simple postures, such as sitting, standing, or
lying [Farringdon et al., 1999]. To recognize postures that are more complex
or detailed, machine learning technique are applied [Mattmann et al., 2007].
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Figure 2.1: MTx orientation tracker and MVN motion capture suit with
17 MTx units (courtesy of [Xsens Technologies B.V., 2010]).

2.3 Toolkits for Building Wearable Computing
Applications

The wearable sensing and feedback devices that we have proposed for pro-Wearable sensing

and feedback

devices

viding tactile instructions during physical activities (see section 1.1) are one
example of context-aware systems that would observe the user’s physical
state to provide context-sensitive reminders as appropriate [Starner, 2001]
(see section 2.1). These devices have to accomplish three tasks: the first
task involves sensing of posture and body movements; the second task in-
volves building a posture and motion model of the body such that incorrect
posture and movements can be detected; the third task involves feedback
for corrections, in our case, as tactile instructions applied across the body.
These three tasks necessitate devices that can sense posture and body move-
ments, software algorithms that can analyze sensor measurements and that
can interpret the classified posture and body movements in realtime, and
devices can that artificially stimulate the skin. In this section, we will in-
troduce state-of-the-art sensing devices, prototyping platforms, feedback
devices, and software toolkits for building such systems.

2.3.1 Sensing Devices and Prototyping Platforms

Various sensing devices have been developed that can sense context infor-Sensing devices

mation regarding the user’s activity, posture, and body movements. Some
devices are commercially available, whereas others are research platforms
that cannot be purchased. These devices typically log sensor data for off-
line processing, or they transmit the measurements to desktop computers
or to mobile computing devices that can process this data in realtime.

The MTx motion tracker is a commercial sensing device [Xsens TechnologiesMTx motion

tracker B.V., 2010]. This inertial measurement unit has gyroscopes, accelerometers,
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Figure 2.2: Left: The Shake SK6 sensing unit. Right: The Arduino BT
prototyping platform hosts an ATMega168 8-bit micro-controller [Atmel
Corporation, 2009] and a Bluetooth module for wireless communication.

and magnetometers for measuring the orientation of body segments. Sev-
eral units can be combined to a motion capture suit (see Fig. 2.1). Sensor
data is transmitted over Bluetooth or over a wired connection to the host
computer. Previous versions of these trackers have been used for capturing
body movements in martial arts [Kunze et al., 2006] and in skiing [Brodie
et al., 2008], or for tracking hand gestures [Zinnen and Schiele, 2008].

Similar sensing devices are Flock of Birds [Ascension Technology Coorpo- Other sensing

devices for

capturing posture

and body

movements

ration, 2008] and GS-190-M [Animazoo, 2004]. ShapeWrap III [Measurand
Inc., 2010] uses shape sensors made of optical fibers. Since these systems
are expensive, some researchers have built similar devices from inexpensive
off-the-shelf components [Aylward and Paradiso, 2006, Pirkl et al., 2008].

The Shake SK6 and SK7 [SAMH Engineering Services, 2010] (see Fig. 2.2, Shake SK6 inertial

sensing unitleft) are wireless sensing devices that can transmit and receive data over
Bluetooth. These matchbox-sized units have various built-in sensors, in-
cluding accelerometers, magnetometers, and gyroscopes, and a plug for
two external sensors. A sensor fusion algorithm calculates the compass
heading in degrees relative to the earth’s magnetic north pole. Moreover,
these Shake devices have a built-in vibration motor and a plug for two ex-
ternal actuators that can generate tactile feedback. These units have been
used for augmenting mobile devices with additional sensing and feedback
capabilities [Williamson et al., 2007, Hoggan et al., 2009].

In contrast to commercially available sensing devices, many research plat- Research

platforms for

monitoring and

activity

recognition

forms mainly focus on monitoring of daily activities and on activity recog-
nition. These devices were designed to meet certain requirements, such as
small size and day-long operation. For example, BodyANT [Kusserow et al.,
2009] has one 3D accelerometer and can continuously sense and wirelessly
stream data up to five days. Similar wireless sensing devices are WearNET
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[Lukowicz et al., 2002], PadNET [Junker et al., 2003], MIThril [DeVaul
et al., 2003], Smart-its [Beigl and Gellersen, 2003], MITes [Tapia et al.,
2006], B-Pack [Ohmura et al., 2006], and MSP [Choudhury et al., 2008].
Some of these systems are modular and connect with prototyping shields or
daughter boards, including the Hoarder board [Gerasimov, 2002], PadNET
[Junker et al., 2003], Smart-its [Beigl and Gellersen, 2003], MIThril [DeVaul
et al., 2003], BTnode [Beutel et al., 2004], and Telos [Polastre et al., 2005].

Although off-the-shelf sensing devices are appropriate for many applicationLimitations of

off-the-shelf

sensing devices

and of research

platforms

scenarios, their disadvantage is that they only have a fixed set of built-
in sensors that cannot be exchanged. Moreover, they typically cannot be
programmed to run custom algorithms and applications that analyze sensor
data in realtime. Many of the aforementioned research platforms can be
customized, but they target at professionals who have knowledge in micro-
controller programming and in designing printed circuit boards.

Another class of devices are prototyping platforms. They are similar to thePrototyping

platforms aforementioned research platforms, but they were designed to foster rapid
prototyping of applications. These platforms do not have built-in sensors,
but they offer input pins to connect sensors. Some platforms also offer
output pins for actuators. Moreover, many prototyping platforms can be
easily programmed to analyze sensor measurements in realtime. For these
reasons, prototyping platforms are often used for building custom sensing
and feedback devices that address specific needs.

Prototyping platforms that are commercially available were designed toToolkits for

building physical

user interfaces

support nonprofessionals in designing interactive systems and physical user
interfaces. These platforms include Make Controller Kit [Makingthings,
2010], Phidgets [Greenberg and Fitchett, 2001], and I-CubeX [Infusion Sys-
tems, 2007]. They can connect to various sensors and actuators but nor-
mally require an external power supply and a serial connection to a desktop
computer that can process sensor data. Thus, they are less suited as wear-
able stand-alone units for analyzing sensor measurements in realtime.

Arduino [Banzi et al., 2005] is an open-source electronics prototyping plat-The Arduino

physical

computing

platform

form for rapid prototyping of interactive systems and wearable applications.
Arduino also functions as stand-alone unit and supports wireless data trans-
fer, such as over Bluetooth (see Fig. 2.2, right). LilyPad Arduino is a small
variant of this board. Designed to introduce novices to electronics, com-
puting, and design [Buechley et al., 2008], this construction kit targets at
wearable computing and computational electronic textiles [Buechley, 2006].
All Arduino platforms can be programmed in a C-like language.

Sun SPOT [Sun Microsystems, 2004] is both a sensing device and a pro-Sun SPOT for

embedded

electronic devices

totyping platform. This device was designed to support rapid prototyping
of embedded electronic devices that can sense and respond to their envi-
ronment. SPOTs can be programmed in Java [Sun Microsystems, 1995],
and they can analyze sensor data in realtime. They function as stand-alone
units, and they can form a wireless sensor network.



2.3 Toolkits for Building Wearable Computing Applications 19

Figure 2.3: The TactaBoard [Lindeman and Cutler, 2003] controlled the
TactaVest [Lindeman et al., 2004a] (courtesy of Robert W. Lindeman).

2.3.2 Software Toolkits for Sensor Data Analysis

Software toolkits focus on visualizing sensor data and on context recogni- Sensor data

analysis and

context

recognition

tion. For example, IU SENSE is a desktop application that graphically
displays accelerometer data [Caracas et al., 2003]. The Georgia Tech Ges-
ture Toolkit (GT2k) focuses on implementing gesture-based recognition sys-
tems based on Hidden Markov Models [Westeyn et al., 2003]. The Con-
text Recognition Network (CRN) Toolbox targets at distributed activity
and context recognition systems on mobile and wearable devices that run
POSIX operating systems [Bannach et al., 2008]. The WUI-Toolkit focuses
on designing and implementing wearable user interfaces, such as those dis-
played in head-mounted displays [Witt et al., 2007].

A few other toolkits specifically support iterative and rapid prototyping Sensor-based

interactions with

mobile devices

and in ubiquitous

computing

environments

of sensor-based interactions or of context-aware applications. The Context
Toolkit [Dey et al., 2001] and iCap [Dey et al., 2006] target at ubiquitous
computing environments. d.tools [Hartmann et al., 2006] focuses on physi-
cal user interfaces for information appliances. Exemplar [Hartmann et al.,
2007] resembles IU SENSE but enables interaction design through pro-
gramming by demonstration. iStuff Mobile [Ballagas et al., 2007] aims at
sensor-enhanced mobile devices for ubiquitous computing scenarios [Balla-
gas, 2007]. These toolkits, however, are less suited for developing wearable
applications and for conducting field experiments with wearable systems,
as required in this work.

2.3.3 Tactile Feedback Devices

Only few devices that are commercially available can drive actuators. The Commercial

actuator systems

for wearable

computing

Shake SK6 (see Fig. 2.2, left) has a built-in actuator and a plug for two
external actuators. Another system is the Tactor Eval 2.0 module (9 cm ×
9.5 cm), which controls up to eight C2 tactors [Engineering Acoustics Inc.,
2010]. Eight modules can form a master-slave setup to control 64 tactors.



20 2 Wearable Computing

first
prototype

final
design

test

modify

Figure 2.4: Iterative design involves several cycles where initially rough
prototypes are tested with users and refined based on the gained results.

Many tactile feedback devices that can be worn on the body are custom-Custom-built

actuator systems built prototypes for research projects [Cardin et al., 2006a,b, Jones et al.,
2006]. Lindeman et al. [2006b] presented several systems. The TactaBoard
(19 cm × 11 cm × 5.8 cm) (see Fig. 2.3) controlled 16 actuators and var-
ied the intensity of the generated stimuli by pulse width modulation [Barr,
2001]. This board communicated to its host computer over a wired connec-
tion [Lindeman and Cutler, 2003]. The TactaBox (15.2 cm × 10.1 cm ×
5.1 cm) improved the TactaBoard and supported Bluetooth communication
[Lindeman et al., 2004b]. The TactaPack (5.8 cm × 3.5 cm × 1.35 cm) con-
sisted of one built-in vibration motor and one 3D accelerometer [Lindeman
et al., 2006a]. This unit was an example of a simple wireless sensing and
feedback device that could sense and stream to a host computer the posi-
tion of limbs during physical therapy exercises, and that could provide a
tactile warning signal when the measured accelerometer signals exceeded a
predefined threshold value, which corresponded to wrong limb movements.

Besides these wearable motor controllers, several researchers have built tac-Tactile vests for

full-body tactile

feedback

tile vests for investigating full-body tactile feedback [Yano et al., 1998, Ru-
pert, 2000, Gemperle et al., 2001, van Erp and van Veen, 2003, Jones et al.,
2004, Lindeman et al., 2004a]. These vests contained custom-built motor
controllers that communicated with their host devices over Bluetooth or
over a serial connection, such as the TactaVest (see Fig. 2.3).

2.4 Iterative Design: A Challenge in Designing
Wearable Computing Applications

Iterative design and prototyping are key principles for designing usable userIterative design

and prototyping

lead to usable

systems.

interfaces [Buxton and Sniderman, 1980, Gould and Lewis, 1985, Baecker
et al., 1995, Schrage, 1996]. Although developers usually have a good idea
of the final product, at the beginning of the design process they cannot fore-
see unexpected problems and usability breakdowns that users might face.
Frequent tests of prototypes with users and redesigns of these prototypes in
each iteration based on the gained insights help developers to refine initial
ideas and contribute to the final design of the system (see Fig. 2.4).
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These principles are of particular importance to wearable computing. De- Challenges,

requirements, and

constraints of

wearable systems

pending on the application domain and the services to provide, wearable
systems have to balance various technical, economical, and social con-
straints and requirements, including size, weight, power consumption, pro-
cessing requirements, reliability, maintenance, costs, privacy, and comfort
[Schmidt and Laerhoven, 2001, Starner, 2001]. For example, users usually
do not accept and wear devices that are uncomfortable or that interfere with
fluid human movement [Gemperle et al., 1998, Dunne and Smyth, 2007].
To address these issues, developers of wearable systems should adopt an it-
erative design approach, and they should involve users in the design process
as highlighted by Bass et al. [1997] and Smailagic and Siewiorek [1999].

Iterative design and prototyping, however, necessitate development tools Wearable

computing lacks

development

toolkits for rapid

prototyping.

that allow developers to quickly create user interfaces [Myers et al., 2000].
Even so, very few toolkits, platforms, and devices are commercially avail-
able that support rapid prototyping of wearable devices and user interfaces.
Moreover, off-the-shelf components rarely meet all requirements and con-
straints that new usage scenarios might require. For these reasons, develop-
ers have to build specialized hardware that address their needs. Although
custom designs can have benefits over using off-the-shelf components, for
example, they can reduce effort, overhead, power consumption, and costs
[Smailagic et al., 1997], they also can have disadvantages. In general, cus-
tom designs require technical expertise. Also, similar to many off-the-shelf
components, custom-designed systems can result in specialized hardware
that might not be reused in other settings than in the usage scenarios that
they have been developed for. These conditions can increase the time and
the effort for developing the intended system, and they can raise the thresh-
old to iteratively build and test new prototypes.

We faced similar problems when we started this dissertation. In order to In our case,

off-the-shelf

sensing and

feedback devices

were inappropriate

for building a

wearable sensing

and feedback

device for

exploring tactile

instructions.

explore tactile stimuli as instructions how to move the body during physi-
cal activities, we were looking for a system that could control actuators for
generating artificial tactile stimuli across the body. This system also had to
sense and analyze posture and body movements such that tactile instruc-
tions could be automatically applied in a realistic scenario. As summarized
in section 2.3, several commercially available devices and toolkits exist that
we could have used, but they also had limitations. These devices could
not be customized with additional sensors that were required for sensing
posture and body movements in our envisioned application scenarios. In
addition, they required us to use a platform for sensing context information
and a different platform for providing tactile feedback.

For these reasons, we have built a general-purpose sensing and feedback We have built

custom hardware

and software for

rapid prototyping

of wearable

applications.

device that offered connections for sensors and for actuators, based on the
Arduino BT prototyping platform. Also, we have developed software that
supported us in visualizing and analyzing sensor data for sensing posture
and body movements. These tools enabled us to prototype simple wear-
able computing applications and to iteratively design and evaluate tactile
instructions with users. We will describe these tools in the next chapter.
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2.5 Closing Remarks

The goal of this dissertation was to explore artificial tactile stimuli as in-Building wearable

applications is

challenging.

structions for correcting wrong posture and movements during physical ac-
tivities. To design and evaluate tactile instructions necessitated a wearable
system that sensed and analyzed posture and body movements, and that
automatically provided these instructions in realtime.

As discussed in this chapter, developing such a system is challenging be-Existing

technologies are

not versatile

enough.

cause wearable systems have to balance various constraints and require-
ments. Although several off-the-shelf hardware and software tools are avail-
able for prototyping wearable computing applications, these tools have cer-
tain limitations. Sensing devices that can track body movements rely on
additional computing devices for analyzing sensor measurements in real-
time. Also, they have a fixed set of built-in sensors, and they do not sup-
port experiments with alternative sensors that might be required in some
application scenarios. Moreover, most devices that can generate tactile
feedback are research platforms that cannot be purchased, whereas off-
the-shelf devices that can sense context information and that can provide
tactile feedback only connect to a few external sensors and actuators. An-
other limitation is that software toolkits that address context recognition
and sensor-based interactions either do not aim at wearable computing, or
they only run on dedicated mobile devices.

In the next chapter, we will present our work on a general-purpose wearable
system for sensing and actuation. This device allowed us to design tactile
instructions and to evaluate these instructions with users, considering lab-
oratory studies and field studies that also involved sensing of posture and
body movements in realtime.
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Chapter 3

A Wearable Sensing and
Feedback System

“I must create a system, or be enslaved by another man’s.”

—William Blake

In the last chapter, we have summarized existing technologies for building We have built

tools for rapid

prototyping of

wearable

computing

applications.

wearable sensing and feedback devices. These technologies, however, had
two disadvantages. They typically supported only a fixed set of built-in sen-
sors, and they required two platforms: a platform for sensing and analyzing
context information, and a platform for providing tactile feedback. To re-
solve these issues, we have developed a hardware platform that combined
sensing, actuation, and wireless data transfer. Additionally, we have im-
plemented software that assisted in analyzing sensor data and in designing
tactile stimuli. These tools allowed us to prototype simple context-aware
wearable applications. In particular, these tools enabled us to iteratively
design and to evaluate tactile instructions with users in a realistic setting.
In this chapter, we will introduce these tools, which have been presented in
part in [Spelmezan et al., 2008] and in [Spelmezan et al., 2009c].

3.1 Hardware Platform

Our wireless platform was intended for implementing wearable sensing and The wireless

system consists of

two units.

feedback devices as illustrated in section 1.1. This platform consisted of two
units: a custom-built box that supported sensing and actuation (SensAct);
and a host device. These units communicated over Bluetooth. Fig. 3.1
illustrates the architecture of this system and the tasks of each unit.

Both units had a programmable micro-controller that could run custom
algorithms for basic signal processing and context recognition. In a typ-
ical setup, the SensAct box sampled and preprocessed sensor data, and
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SensAct box
- samples sensor data
- controls actuators
- basic signal processing
  (low-pass filters, ...)
- classification algorithms
   (posture, activity)

Host device
- controls SensAct boxes
- logs sensor data
- visualizes sensor data
- basic signal processing
- classification algorithms
- higher application logic

8 sensors

Bluetooth
communication

6 actuators

Figure 3.1: The system architecture of the wireless platform for sensing
and analyzing context-information, and for providing tactile feedback.

streamed this data to the host. The host ran algorithms for context recog-
nition and implemented higher application logic, such as rules that could
interpret the classified posture. The host could also send control messages
to the SensAct box. These messages could define the sampling rate for
sensors, and they could start the transmission of raw sensor data or of clas-
sification results. Other control messages could activate actuators, such as
vibration motors for providing tactile feedback. The SensAct box could also
function as stand-alone unit that did not depend on the host to interpret
context information or to control actuators.

3.1.1 The SensAct Box

The SensAct box resembled the TactaBoard [Lindeman and Cutler, 2003]The SensAct box

is a general-

purpose sensing

and feedback

device.

and the TactaBox [Lindeman et al., 2004b] (see Fig. 2.3). In contrast
to these devices, the SensAct box also interfaced to sensors and offered
a programmable micro-controller based on the Arduino BT (see Fig. 2.2,
right). The ability to interface to different sensors and actuators and to
exchange them on the fly turned this box into a general-purpose sensing and
feedback device. This device was a versatile tool for conducting initial field
studies that could inform the design of context-aware wearable applications.

The SensAct box was developed in three iterations, as illustrated in Fig. 2.4.The SensAct box

was iteratively

developed.

Each prototype was tested in a field study and improved based on the gained
results (see chapter 4). The final system was used during laboratory and
field studies on tactile feedback (see chapters 6, 7, and 8).

The first prototype of the SensAct box had connector sockets for six sensorsThe first

prototype of the

sensor box

but did not support actuators (see Fig. 3.2). Two AA batteries attached
to the side of the box provided power for sensing and streaming of sensor
data for several hours. We used this device during the first user study
on the slope and logged data from various sensors for off-line analysis (see
section 4.3). This box served as proof of concept for building a wearable
snowboarding assistant. The hardware and the software for this box was
developed by Guggenmos [2007] under the guidance of the author.
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Figure 3.2: The first prototype of the SensAct box had connectors for
various sensors (12 cm × 6.5 cm × 4 cm).

Figure 3.3: The custom-designed motor shield atop of the Arduino BT
(see Appendix A for the circuit schematic).

The second prototype of the SensAct box included a custom-built motor A motor shield

drives vibration

motors for tactile

feedback.

shield (see Fig. 3.3) for the Arduino BT. This shield could control six ac-
tuators by pulse width modulation [Barr, 2001]. Actuators were connected
with TS connectors and sensors with TRS connectors, which commonly
served as mono and stereo audio plugs in electronic devices (see Fig. 3.4).
Two AA batteries powered the Arduino BT. Four AA batteries powered the
actuators. This SensAct box was developed in part by Schanowski [2008]
under the guidance of the author.
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Figure 3.4: The second prototype of the SensAct box (15 cm × 8 cm
× 5 cm) had TRS plugs to connect sensors (upper row) and TS plugs to
connect actuators (lower row).

status
LED

accelerometer
vibration motors

sensor / actuator
connections

Figure 3.5: The final prototype of the SensAct box had D-sub connectors
for sensors and TS plugs for actuators. A Nokia N70 mobile phone served
as host device during field studies.
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A user study on the slope (see section 4.4) revealed that the TRS plugs
could cause loose connections, which affected the sensor measurements.
Therefore, we replaced the TRS plugs with D-sub connectors for the final
design of the box (see Fig. 3.5). D-sub connectors were commonly used
for interfacing peripheral devices to computers. These connectors worked
reliably during our subsequent field studies. In contrast to the TSR plugs,
we did not experience loose connections with the TS plugs when testing
actuators in the field.

3.1.2 The Mobile Host Device

The host could be any Bluetooth-enabled device. With Bluetooth, we could A mobile phone

served as host

device for the

SensAct box.

concurrently connect up to seven SensAct boxes for controlling up to 42
actuators. We decided for using a Nokia N70 mobile phone as host unit
(see Fig. 3.5). This device could run custom-written programs in Java [Sun
Microsystems, 1995] and in Python [Python Software Foundation, 1991]. In
a typical setup with one SensAct box, we found no noticeable delay in the
wireless communication between this host device and the box; the average
time to send a six bytes command was approximately 39 ms.

3.2 Software Tools

We have developed programs for our host device and desktop applications Software libraries

and tools assist in

implementing

wearable

applications.

for Mac OS X that could control the SensAct box and that could visualize
sensor data. Also, we have developed software libraries for implementing
programs on our hardware platform. These libraries supported basic signal
processing with low-pass filters and helped implementing algorithms for
context recognition, which could run either on the SensAct box or on the
host device. Moreover, the host device could run programs that processed
raw sensor data streamed from multiple SensAct boxes.

3.2.1 Sensor Monitor and Motor Control

Two Java programs developed for our mobile host device assisted in testing Field studies

require frequent

testing of the

wearable

equipment.

sensors and actuators during field studies (see Fig. 3.6). Sensor Monitor
graphically displayed sensor measurements streamed from the SensAct box
in realtime such that the correct placement of sensors on the body could
be verified. Motor Control activated vibration motors such that their func-
tioning could be tested when inserted into clothes. Both programs were
programmed by Schanowski [2008] under the guidance of the author.
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Figure 3.6: Sensor Monitor (left) and Motor Control (right) ran on the
host device and assisted in testing the equipment during field studies.

Figure 3.7: iSense supported off-line analysis of logged sensor data and
synchronized this data to footage recorded during field studies.

3.2.2 iSense

iSense, a desktop application, visualized raw sensor measurements recordediSense visualizes

sensor data and

video off-line.

during field studies (see Fig. 3.7). This application resembled other tools
that could analyze and process sensor data in realtime, such as IU SENSE
[Caracas et al., 2003] and Exemplar [Hartmann et al., 2007]. iSense, how-
ever, could additionally synchronize sensor data to footage such that it was
possible to see how body movements affected the sensor measurements.

We have used iSense to analyze raw sensor data recorded from snowboardersWe have used

iSense to analyze

sensor recordings

off-line.

who descended a slope and to test algorithms for context recognition that
could recognize a snowboarder’s posture (see sections 4.3 and 4.4). To
investigate tactile instructions under real-world conditions, we have ported
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Figure 3.8: The Tactile Editor supported the design of tactile patterns
by visually manipulating the properties of tactile stimuli.

these algorithms to our wearable platform, and we have implemented an
interactive system that could trigger these instructions depending on the
snowboarder’s weight distribution during turns (see chapter 8).

3.2.3 Tactile Editor and SensAct Control

The Tactile Editor evolved out of the need to design tactile stimuli Spatiotemporal

patterns involve a

sequence of

tactile stimuli.

that involved multiple vibration motors, such as spatiotemporal patterns
(see section 5.3). These patterns could be represented as a sequence of
commands that specified the order and the timing to activate individual
motors. We have used a custom protocol to define these commands. For
example, the following commands pulsed a single motor for 100 ms at full
intensity:

B1;M1D1 // activate motor 1 at box 1, full intensity
B1;D100 // delay 100 ms
B1;M1D0 // deactivate motor

Tactile patterns that involved several motors could result in long lists of Tactile Editor

enables the visual

design of tactile

stimuli.

commands. To simplify the iterative design of patterns, the Tactile Editor
offered a Graphical User Interface (GUI) where color-coded rectangles rep-
resented individual motors arranged on a time line (see Fig. 3.8). The height
of rectangles represented the intensity of the vibration, whereas the width
represented the duration of the vibration. The distance between neighbor-
ing rectangles denoted the delay between sequential stimuli. Several tactile
tracks could be defined and transmitted to SensAct boxes for evaluation.
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Figure 3.9: To support lab studies on tactile feedback, tactile pattern
files could be loaded and displayed in a dedicated window. Each button
represented a specific tactile pattern.

These command lists could also be exported to text files that were processed
by the mobile host device. This application was programmed primarily by
Jonas [2008] under the guidance of the author.

We have additionally developed another desktop application, called SensActSensAct Control

Control. This application could process these text files and could display
the names of the tactile patterns as buttons in a window (see Fig. 3.9).
Pressing these buttons activated the motors on the SensAct boxes.

The Tactile Editor resembled other graphical development environmentsDesigning tactile

experiences

becomes

increasingly

important across

various domains.

for designing artificial tactile stimuli. These tools, however, were intended
to support other application scenarios. Immersion Studio [Immersion Cor-
poration, 2010a] addressed feedback effects that could be rendered by joy-
sticks or game-pads for computer games. VibeTonz [Immersion Corpo-
ration, 2010b] focused on the design of tactile effects that could enhance
applications running on mobile devices. The Haptic Editor [Enriquez and
MacLean, 2003] focused on the design of haptic icons that could enrich the
interaction with everyday manual controls, such as handles and joysticks
(see also section 5.3). These icons were defined as waveforms, which the
output device could translate into forces.

3.3 Closing Remarks

In this chapter, we have described custom-built tools for prototyping wear-We have built

tools for

prototyping

wearable

computing

applications.

able computing applications. We have designed these tools in order to
support two goals that were relevant for this dissertation. First, we in-



3.3 Closing Remarks 31

tended to investigate artificial tactile stimuli as instructions how to move
the body during physical activities. Second, we intended to build a wear-
able system for evaluating these tactile instructions in the field, based on
posture and body movements that were sensed and classified in realtime.
Since off-the-shelf sensing and feedback devices were less appropriate for
this purpose, we have developed a wireless hardware platform for experi-
menting with sensors and actuators in the field. We have also implemented
custom software for visualizing and analyzing sensor measurements off-line
and online during field experiments.

As an example for using this platform and these tools, we will report in the
next chapter how we have built the first wearable system for sensing and
analyzing a snowboarder’s posture and body movements during descents.
This system was required for testing tactile instructions with potential users
in a realistic setting. In the subsequent chapters, we will then report the
user studies that we have conducted for designing tactile instructions and
for evaluating these instruction in static and in active situations.
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Chapter 4

Towards a Wearable
Snowboarding Assistant

“Have you noticed that whatever sport you’re trying to
learn, some earnest person is always telling you to keep your

knees bent?”

—Dave Barry

The missing realtime feedback on performance while snowboarding was our
initial motivation for exploring tactile stimuli as instructions how to move
the body. To evaluate these instructions in the field, we decided to focus
on this domain as an example. This goal required us to build a system
that could automatically apply tactile instructions during a snowboarding
course, depending on the rider’s movements while descending the slope.

In the last chapter, we have presented a platform for controlling vibration We have built a

wearable

snowboard

training system.

motors. This platform also supported sensing of posture and body move-
ments, and enabled us to prototype simple wearable computing applications
that involved sensing and actuation in realtime. In this chapter, we will
describe the field studies that we have conducted with snowboarders for
developing a simple wearable assistant for snowboard training.

To develop this system, we have first interviewed snowboard instructors We have focused

on sensing and

classifying basic

context-

information while

snowboarding.

(see section 4.1). These interviews helped us to inform the design of a
wearable prototype and to identify common snowboarding mistakes that
the envisioned system should address (see section 4.2). An initial field
study helped us to validate the concept and to experiment with different
sensors that could measure a snowboarder’s posture and movements (see
section 4.3). Finally, we have conducted a user study with snowboarders to
collect sensor data during descents and to investigate if our wearable system
could sense and classify basic context information that was required for
interpreting body movements and for recognizing snowboarding mistakes
(see section 4.4). These findings were presented in [Spelmezan et al., 2009c].
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4.1 Interviews with Snowboard Instructors

To understand how snowboard instructors conduct courses and to gain in-Interviews with

snowboard

instructors

informed the

design of a

wearable assistant

for snowboard

training.

sight into the most common mistakes in snowboarding, we have interviewed
six instructors who taught introductory and advanced courses. Four in-
structors were members of the SNOW SPORT Team of RWTH Aachen
University. These nonprofessional instructors had passed a training course
that corresponded to the level of basic education (DSV Grundstufe) offered
by the German Ski Association [Deutscher Ski-Verband (DSV), 2009]. One
interviewee had a similar qualification (ÖSV Grundstufe) from the Austrian
Ski Federation [Österreichischer Skiverband (ÖSV), 2009]. The other in-
terviewee was a professional snowboard instructor (ÖSV Snowboardlehrer).
These interviews were conducted primarily by Guggenmos [2007].

All instructors confirmed that snowboard students usually receive delayedThe instructors

confirmed that

snowboard

students receive

delayed feedback.

feedback on their performance. A student only receives immediate feedback
when they slowly descend together with the student during the first lessons.
Sometimes, they call aloud from the distance if the student is close enough
to hear the message. The instructors also mentioned that they cannot
simultaneously observe all students when the group descends at the same
time. In particular, when they focus on one student, the other students do
not receive feedback on their performance.

The instructors explained several difficulties and common riding mistakesSnowboard

beginners face

many challenges.

that snowboarders face. The unfamiliar riding experience on the sliding
board is challenging because both feet are fixed to the board. For this
reason, many beginners are afraid to fall. They tend to ride in a stiff
posture, they dangle their arms, they look at their feet, and they often
bend their upper bodies downward from the waist instead of to flex the legs.
Two mistakes are very common: snowboarders incorrectly distribute their
weight and incorrectly rotate their upper bodies during turns. Although all
these aspects contribute to a smooth and graceful riding style, maintaining
correct weight distribution and upper body rotation are fundamental to
learning the basic snowboarding skills.

We asked the instructors on their opinion on a wearable assistant that
sensed the rider’s posture and movements and that automatically provided
feedback to correct the aforementioned mistakes while descending the slope.
To avoid bias, we did not mention how the system could provide feedback.

The instructors agreed that immediate feedback during exercises could helpRealtime feedback

could help

athletes to

improve their

riding skills and

could assist

coaches during

courses.

snowboarders to improve their skills. Beginners would often perceive their
posture and movements differently from what the instructor observed, and
they would have difficulty to recall after the ride which movements they
performed. For these reasons, realtime feedback could allow students to
focus on a particular mistake and to compare their perceived posture to
their actual posture. Also, many exercises would be performed on short
sections of the slope because the coach cannot observe students who are far
away. With automatic feedback, the group could avoid frequent stops.
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Even so, the instructors mentioned that not all students would benefit Some students do

not notice when

the instructor

calls out at them.

from feedback during exercises. For example, some beginners would feel
distracted if the instructor called out at them. Others would not notice or
would not respond to spoken instructions issued during the ride because
they focus on keeping their balance, or they pay attention to other things.

When asked what type of feedback they suggested for communicating in- The instructors

imagined spoken

instructions, ...

structions to snowboarders during descents, our interviewees most often
mentioned spoken messages over earplugs. These messages, however, might
be difficult to perceive in the noisy outdoor environment, and they might
block auditory warning signals of ski-slope grooming machines.

Another interviewee mentioned goggles with built-in displays. Similar to visual

demonstrations,

...

off-line video analysis, a virtual snowboarder could demonstrate correct
technique. This visual feedback, however, might overload the visual channel
and might disturb snowboard students during descents.

One interviewee mentioned gloves with buzzers that could encode instruc- and buzzers to

communicate

feedback in

realtime.

tions as different numbers of pulses: one pulse could signal to flex the legs,
whereas two pulses could signal to stretch the legs. Continuous pulses could
indicate that the proper movement range was left. Even so, students might
have difficulty in counting the number of pulses. Therefore, he proposed
instructions encoded as low and high frequency tones: a low tone could
signal to flex the legs, whereas a high tone could signal to stretch the legs.

When we proposed artificial tactile instructions that could be delivered by Tactile

instructions might

be more

appropriate for

advanced riders.

vibration motors to those body locations that had to be adjusted, our in-
terviewees laughed and made jokes about electro shocks. In general, they
found this idea unusual but potentially valuable. Even so, they argued
that artificial vibration delivered to the body might be hard to perceive
because snowboarders were already exposed to vibration and tactile stim-
uli that naturally occurred during descents. Inexperienced and first-time
snowboarders who were not familiar with tight clothes and with cold or
swollen limbs might miss such tactile instructions. Therefore, this feedback
might be more appropriate for advanced riders who already had experience
in snowboarding. Advanced snowboarders would not constantly focus on
maintaining balance such that they might have free attentional resources to
perceive and process instructions while descending the slope. Such tactile
instructions, however, should be clear to interpret, and they should only
indicate one mistake at a time. In particular, this feedback should not
overwhelm or annoy beginners who would often only need more time and
practice for learning to snowboard.

Some interviewees stated that they could benefit from a wearable assistant Instructors could

benefit from a

wearable assistant

themselves.

themselves to fine-tune their own movements. Besides snowboarding, other
sports that involved continuous body movements could also benefit from
this approach, such as horse riding, swimming, surfing, or ice-skating. In
contrast, football, volleyball, and sports that involved opponents and that
required athletes to quickly adapt to new situations were considered less
suited for wearable assistants that provided feedback in realtime.
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nose

tail

frontside edge

backside edge

front foot back foot

riding direction

Figure 4.1: Snowboard terminology and typical stance when the left foot
points forward (regular stance). Alternatively, some people prefer to ride
with the right foot pointing forward (goofy stance).

Figure 4.2: Left: The neutral position on the snowboard. Middle: A
frontside turn. Right: A backside turn. Photos by Martin Schliephake
[Deutscher Verband für das Skilehrwesen, Interski Deutschland, 2003].

4.2 Common Mistakes in Snowboarding

In this section, we will first introduce the correct posture for the basic rid-
ing technique that snowboard students learn during a snowboarding course.
Then, we will describe the aforementioned riding mistakes in detail, in par-
ticular incorrect weight distribution and counter-rotation [Deutscher Ver-
band für das Skilehrwesen, Interski Deutschland, 2003].

A snowboard has two edges and resembles a wide ski. Both feet are fixedThe snowboard

to the board such that the stance is transverse to the direction of travel.
Fig. 4.1 illustrates this stance on the snowboard.

The neutral position, also called basic stance, describes the correct postureThe neutral

position describes

the correct riding

posture.

during descents (see Fig. 4.2, left). The weight is central over the board
and distributed evenly between the feet. Ankles, knees, and hip joints
are slightly flexed. This flex acts as natural suspension to compensate for
uneven terrain, such as bumps in the riding path. The shoulders and the
hips are in line with the feet’s stance on the snowboard. The head is up, and
the rider looks in the direction of travel. In general, snowboard instructors
refer to this neutral position for recognizing mistakes during the ride.
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Figure 4.3: (a) The fall line is the most direct path that a ball would roll
down the hill. (b) The shaded areas of the feet indicate the correct weight
distribution for pivoting the board. Darker shades represent increased pres-
sure. The white bars represent the orientation of the upper body, which
turns towards the new riding direction, in this example towards the left.

Figure 4.4: Typical mistakes during turns are incorrect weight distri-
bution (left) and counter-rotation (right). Photos by Martin Schliephake
[Deutscher Verband für das Skilehrwesen, Interski Deutschland, 2003].

Descending the slope involves a sequence of turns that alternate between Frontside turns

and backside

turns

riding on the frontside edge and riding on the backside edge. These turns
are called frontside turns and backside turns (see Fig. 4.2, middle and left).
To switch between frontside and backside turns the rider points the board
downhill and pivots the board across the fall line (see Fig. 4.3 (a)).

The basic technique for pivoting the board is called basic turn. This turn Pivoting the

board with basic

turns

involves a sequence of body movements. Assuming a regular rider who
descends on the frontside edge in neutral position (see Fig. 4.2, middle), he
shifts the weight to the front foot and rotates the upper body to the left,
towards the new riding direction (see Fig. 4.3 (b)). The resulting posture
with increased pressure towards the nose of the board leads the board to
follow these movements; the snowboard aligns to the fall line and pivots
to the backside edge. Immediately following these movements, the rider
returns to neutral position. He redistributes the weight evenly between the
feet and aligns the torso parallel to the board (see Fig. 4.2, right). For the
next turn, the rider shifts the weight to the front foot and rotates the upper
body to the right such that the board pivots to the frontside edge.



38 4 Towards a Wearable Snowboarding Assistant

This movement sequence challenges beginners. Facing downhill, they hes-Beginners shift

their weight to

the back foot

while pivoting the

board.

itate to shift their weight to the front foot. Moreover, the board quickly
accelerates when aligned towards the fall line. For these reasons, beginners
tend to shift their weight to the back foot. Riding in this posture feels safer,
but the increased pressure towards the tail of the board makes it difficult
to pivot across the fall line and can lead to falls (see Fig. 4.4, left).

Many beginners also tend to twist their torso while traversing the slopeBeginners

counter-rotate

their torso while

traversing the

slope.

(see Fig. 4.4, right) instead of to keep their upper bodies parallel to the
snowboard as required in neutral position. In this twisted posture, they
cannot further rotate their torso towards the new turning direction for
pivoting the board. Instead, they quickly pull the board across the fall line
by simultaneously twisting the torso in the opposite direction of the new
turn and by exerting force through muscle action of the legs and feet.

In addition, many snowboarders often cannot assess if they sufficiently bendBeginners remain

stiff and ride with

straight legs.

their legs. They keep their legs straight, and they bend the upper body
downward from the waist. In general, people who learn motor skills tend to
consciously control their movements and adopt a stiff posture to maintain
balance [Wulf, 2007]. In snowboarding, riding with straight legs is not a
mistake per se, but knee flexion improves balance and stability during the
ride. Knee flexion also allows the rider to control the edging angle between
the board and the slope. Also, for some techniques, the rider has to flex
(stretch) the legs before pivoting and to stretch (flex) the legs after pivoting
[Deutscher Verband für das Skilehrwesen, Interski Deutschland, 2003].

4.3 Initial Testing of the Technology

After interviewing the instructors, we decided to focus on the aforemen-The first field

study for sensing

posture and

motion on the

snowboard

tioned snowboarding mistakes—incorrect weight distribution and counter-
rotation—and on riding with straight legs. After prototyping our first sens-
ing platform (see section 3.1.1), we conducted an exploratory pilot study
with snowboarders in the indoor ski resort SnowWorld Landgraaf, The
Netherlands. We experimented with different sensors to explore if it was
possible to sense knee flexion, the weight distribution, and the rotation of
the torso. Moreover, we recorded a first set of sensor data and footage for
off-line data analysis. This work was done in part by Guggenmos [2007].

4.3.1 Hardware and Sensor Setup

Piezoresistive bend sensors that increase their resistance when deformedBend sensors

measured the

flexion of the legs.

measured the amount of knee flexion during the ride. We used the Bend-
Short v1.1 bend sensors (87 mm × 7 mm × 0.1 mm), which measured flex
angles between 0◦ and 180◦ [Infusion Systems, 2007]. We wrapped two sen-
sors in foam to increase their robustness and attached them to the back of
each knee with knee pads (see Fig. 4.5).
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Figure 4.5: Elastic supports fixated bend sensors at the back of the knees
to measure the amount of knee flexion during the ride.

insole with FSR

inner boot

outer boot

sensor cables

snowboard

Figure 4.6: Pressure sensors located under the balls of the feet and under
the heels measured the weight distribution on the snowboard.

Force-sensitive resistors (FSR) measured the amount of pressure applied Force sensors

measured the

weight

distribution.

by the feet and captured the weight distribution on the snowboard. We
used the TouchMicro-10 v1.0 [Infusion Systems, 2007]. The sensors had a
diameter of 10 mm, were 0.2 mm thick, and handled forces up to 667 N (68
kg). One FSR was placed under the first metatarsal bone to measure the
pressure under the ball of the foot. Another FSR measured the pressure
under the heel. We taped these sensors to insoles (0.4 mm thick) and
inserted these insoles into the snowboarding boots (see Fig. 4.6).

The angular difference between the snowboard and the upper body can Two digital

compasses

measured the

rotation of the

upper body and

the snowboard.

reveal if the rider counter-rotates the torso. To measure the twist of the
upper body relative to the snowboard, we used the Shake SK6, which is an
off-the-shelf sensing unit that can output the compass heading in degrees
(see Fig. 2.2, left). We attached one unit to the lower leg of the front foot
and another unit to the upper body with hook and loop fasteners.

Fig. 4.7 shows our prototype system. Our sensor box (see also Fig. 3.2)
interfaced with the two bend sensors and with the four FSR sensors. The
host device, a Nokia N70 mobile phone, communicated wirelessly with the
sensor box and with the two Shake SK6 devices over Bluetooth.
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Figure 4.7: The first wearable system for sensing posture during descents
comprised two force sensing insoles, two bend sensors, the sensor box, two
Shake SK6 sensing units, and a Nokia N70 mobile phone as host device.

4.3.2 Participants and Study Procedure

Three snowboarders aged 24, 25, and 27 years participated (one woman).Three advanced

beginners

participated.

One volunteer snowboarded for nine years. The other two volunteers snow-
boarded for one year and for three months respectively. They rated their
skills as advanced beginners and stated to snowboard between 1–3 weeks
per year during their holidays.

The participants carried the sensor box in a pouch around their waist andThe host device

logged sensor

data at 20 Hz.

the host device in a pocket of their ski suit. The host device logged raw
sensor data streamed at 20 Hz from the three sensing units.

We have mentioned that the neutral position can be used for identifyingThe neutral

position served as

reference pose to

identify mistakes.

snowboarding mistakes (see section 4.2). To compare the posture while
descending the slope to the correct posture as required for basic turns, we
instructed the participants to pose in this posture on level ground while
the host device took a snapshot of the sensor data. These measurements
served as reference values for off-line video analysis.

After this setup phase, we instructed the participants to descend a shortThe descents were

captured on video. section of the slope (about 60 meters, 200 ft), riding as they usually did.
This setting was similar to what instructors would typically observe dur-
ing courses if they were not too far away from their students. For each
participant, we captured several descents on video to compare their pos-
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Figure 4.8: A participant’s weight distribution under the left foot.
Frontside turns corresponded to increased weight under the ball of the foot.
Backside turns corresponded to increased weight under the heel.

ture and body movements to the corresponding sensor measurements. The
participants were instructed to perform a small jump before each descent.
The force sensors detected this jump, which allowed us to synchronize the
footage with the sensor recordings off-line in iSense (see Fig. 3.7).

4.3.3 Preliminary Results

Adjusting all sensors properly to the body and into the boots lasted one The sensing

system did not

cause discomfort.

hour for each participant. Although the participants stated to have noticed
the sensor cables under the insoles and the foam at the knees, the equipment
did not hinder them in moving their bodies during the ride.

The wireless sensing platform worked reliably on the slope. We did not Some minor

problems with the

sensing platform

experience data loss or Bluetooth connection problems between the host
device and our sensor box. Even so, it was difficult to connect to the Shake
SK6 over Bluetooth through the thick layer of clothes. Also, we found
that our sensor box’s thin plastic connectors for sensors were too flimsy to
withstand extended stress.

We did not experience problems with the force sensors inside the boots. The The bend sensors

were fragile.bend sensors, however, work best when bent around a radius of curvature.
Although we embedded these sensors in a layer of foam to make them more
robust, they showed sharp bending points after the study. These bending
points lead to a sudden drop of sensor readings as opposed to continuous
change while flexing the legs. One bend sensor was damaged.
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Figure 4.9: A participant’s amount of knee flexion during descents. The
foam and the knee pads bent the sensors and introduced an offset between
the flexion measured at the left and right knee. The true flexion was about
33.4◦ lower for the left knee and 44◦ lower for the right knee. The rapid
increase in flexion at 13 seconds corresponded to the initial jump into the
air before descending the slope. Overall, the left leg remained rather stiff
compared to the right leg, which was slightly bent and stretched. The
sharp increase in flexion at 35.5 seconds was an artifact. The footage did
not confirm that the rider bent his right leg at that time.

Off-line data analysis revealed that it was possible to differentiate betweenThe force sensors

sensed the riding

edge.

frontside and backside turns based on the weight distribution between the
balls of the feet and the heels (see Fig. 4.8). We found that the reference
values measured by the force sensors while posing in neutral position worked
as threshold values for a threshold test that could estimate the point in time
when pivoting the board: when the rider switched to the frontside edge,
the sensor values under the balls of the feet exceeded their threshold values,
whereas the sensor values under the heels dropped below their threshold
values; when the rider switched to the backside edge, the sensor values
under the heels exceeded their threshold values, whereas the sensor values
under the balls of the feet dropped below their threshold values.

The bend sensors revealed the amount of knee flexion (see Fig. 4.9). SimilarThe sensor

recordings

revealed knee

flexion.

to the weight distribution, the reference values recorded in neutral position
with slightly bent legs worked as threshold values such that it was possible
to determine when the participants stretched or flexed their legs.

We also found that the compass heading of the Shake SK6 could not senseThe digital

compass did not

reveal the rotation

of the body.

the rotation of the upper body and of the snowboard. These measurements
were accurate in a stable environment, but the forces that continuously
acted on the body during the ride and while pivoting the board skewed the
accelerometer data and lead to heading errors [Caruso, 2000].
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4.3.4 The Instructors’ Opinion

Following the initial test on the slope, we presented the wearable system We demonstrated

our initial results

to a group of

snowboard and ski

instructors.

to eleven snowboard instructors and 28 ski instructors, including mem-
bers of the SNOW SPORT Team. These instructors participated in the
annual training course that was organized by the sports center of RWTH
Aachen University [Hochschulsport der RWTH Aachen, 2007]. One certi-
fied snowboard instructor and three certified ski instructors led this course.
We started by introducing all participants to our vision of wearable sports
training systems that could analyze the athlete’s body movements and that
could provide tactile instructions for corrections. Then, we explained how
our custom-built sensing systems worked, and we visualized sensor data
collected during descents, including weight distribution (see Fig. 4.8) and
amount of knee flexion (see Fig. 4.9).

Eight snowboard instructors (73%) and 19 ski instructors (68%) considered The majority of

instructors liked

our concept.

the idea to sense posture and boy movements with sensors and to pro-
vide tactile feedback during descents to be potentially very valuable. The
professional snowboard instructor agreed that the system could be useful
for correcting counter-rotation and incorrect weight distribution. Even so,
similar to the interviewed instructors (see section 4.1), he argued that ad-
vanced and proficient snowboarders were the target users. Beginners and
advanced beginners might not benefit from realtime feedback because they
tend to concentrate on maintaining their balance.

One ski instructor also taught dancing. He stated that he often placed
himself behind a dancer to touch the dancer’s right shoulder in the very
moment when the dancer was supposed to move the right foot. Therefore,
tactile instructions during descents might also work as reminders even if
they were not delivered to those body locations that had to be adjusted.

The other participants mainly questioned whether an automatic system The correct

posture during

descents also

depends on the

characteristics of

the slope.

could recognize mistakes. One professional ski instructors argued that it
would be impossible to distinguish between correct and incorrect move-
ments without considering the characteristics of the slope. Movements that
were correct in one situation could be wrong in a different situation. For
this reason, analyzing posture without considering this context information
would not yield which movements were wrong. For example, the instructor
has to see the gradient of the slope in order to assess if the student suf-
ficiently bends the legs. He further stated that beginners often ride with
straight legs because they cannot maintain their balance otherwise. In such
a case, realtime feedback for flexing the legs would not help. Even so, he
agreed that knee flexion could be correlated with weight distribution; feed-
back based on this correlation could help athletes to improve their skills.
Also, our approach could be useful for sports that involved simple and
standardized movements, such as for fitness activities at the gym.

These comments indicated that our system would have to consider environ-
mental context information for detecting riding mistakes. Even so, some
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mistakes do not depend on the properties of the slope. Moreover, the snow-
board instructor who supported our idea argued that realtime instructions
could help snowboarders to correct counter-rotation and incorrect weight
distribution. His opinion encouraged us to conduct a formal study on the
slope and to focus on recognizing the riding edge and transitions between
frontside and backside turns. With this context information, the system
could automatically determine the valid set of body movements and the
correct timing of these movements during turns.

4.4 Sensing Basic Context Information While
Snowboarding

The most basic context information that a wearable snowboard trainingWe focused on

sensing and

classifying the

riding edge.

system would have to sense and classify is whether the snowboarder de-
scends on the frontside or backside edge. Based on this information, the
system could infer if the rider’s posture and movements are correct.

The riding edge determines the set of valid upper body movements. RidersThe correct upper

body rotation

depends on the

rider’s stance and

on the riding

edge.

who prefer to descend with the left foot pointing forward have to turn
the upper body to the left when they pivot from the frontside edge to
the backside edge (see Fig. 4.3); they have to turn the upper body to the
right when they pivot from the backside edge to the frontside edge. These
movements are reversed for riders who prefer to descend with the right foot
pointing forward; they have to turn the upper body to the right (left) when
they pivot to the backside (frontside) edge.

The point in time when the snowboard pivots from one edge to the otherCorrect timing of

body movements edge reveals the correct timing of movements, including weight distribution,
upper body rotation, and knee flexion. Snowboarders should rotate their
torso towards the new riding direction shortly before pivoting the board,
as rotation while traversing the slope can result in to counter-rotation (see
Fig. 4.4, right). They should rotate their torso back to neutral position
after pivoting the board. Likewise, they should shift their weight to the
front foot shortly before pivoting the board and back to neutral position
shortly after pivoting the board. Unless riding in deep snow, which would
require them to keep the weight on the back foot such that the nose of
the snowboard does not sink in, increased weight towards the tail of the
snowboard while traversing the slope is considered wrong technique. The
correct timing of knee flexion also depends on the time when the rider pivots
the snowboard. Flexion or extension of the legs should occur shortly before
pivoting and shortly after pivoting the board (see section 4.2).

For these reasons, our main objective was to develop an algorithm thatWe developed an

algorithm that

classified the

riding edge.

could detect when snowboarders pivoted the board and that could classify
turns either as frontside turns or as backside turns. Therefore, we collected
force sensor data from several snowboarders for off-line data analysis. In
addition, we tested an alternative sensor for classifying knee flexion in or-
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Figure 4.10: Left: Optical bend sensors are robust and exhibit a linear
response to flexion. The layer of foam shielded and fixated these sensors
at the back of knees. Middle: Three force sensors captured the weight
distribution. Right: The participants wore the SensAct box in a pouch.

der to correlate knee flexion to the instant when pivoting the snowboard.
Finally, we evaluated a simple algorithm for activity recognition in order
to detect when snowboarders descended or paused, based on accelerome-
ter data. The motivation to differentiate between these activities was to
prevent the wearable assistant from providing feedback on seemingly wrong
posture, such as when moving the body during pauses. The work presented
in this section was done in part by Schanowski [2008] under the guidance
of the author.

4.4.1 Hardware Setup

Our first prototype of the sensor box reliably logged data during the pilot The redesigned

sensor box

included a motor

shield that could

drive actuators.

study, but the plastic connectors for sensors were too fragile for outdoor use
(see Fig. 3.2). Therefore, we modified the design of the sensing platform and
replaced the plastic connectors with TRS connectors (see Fig. 3.4). The
redesigned SensAct box also included a motor shield that could control
actuators, such a LEDs or vibration motors (see Fig. 3.3).

We also reconsidered the choice of sensors for measuring knee flexion. The Optical bend

sensors measured

knee flexion.

thin piezoresistive bend sensors could result in artifacts in the sensor data if
they were sharply bent (see Fig. 4.9). To avoid such artifacts, we built op-
tical bend sensors [Kuang et al., 2002]. These optical sensors (see Fig. 4.10,
left) consisted of a piece of plastic optical fiber with an LED at one end
and a photocell at the other end. The fiber was abraded in the middle such
that light sent through the fiber could escape when the fiber was bent: the
more the fiber was bent, the more light could escape through the abraded
region, and the less light arrived at the photocell. The redesigned SensAct
box was appropriate for interfacing to these sensors; we powered the LEDs
through the plugs that were originally intended for vibration motors.

Moreover, we included an additional force sensor inside each boot. This Three FSRs

measured the

weight

distribution.

sensor was placed under the fifth metatarsal bone, which lies towards the
outside of the ball of the foot (see Fig. 4.10, middle). We expected that
these six sensors would capture the weight distribution between the left foot
and the right foot, as proposed for skiing [Michahelles and Schiele, 2005].
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4.4.2 Participants and Study Procedure

To record sensor data during descents, we conducted a study in the indoorThe participants

had different

riding skills.

ski resort SnowWorld Landgraaf, The Netherlands. Eight snowboarders
aged 23–27 years (M = 25.13 years, one woman) were recruited from the
local university. On a five-point scale ranging from beginner to expert, one
participant rated his riding skills as level one, two as level two (advanced
beginner), three as level three (advanced), and two as level five. They snow-
boarded on average 1–2 weeks per year. Four participants had attended a
training course to improve their riding skills. One expert snowboarder was
a member of the SNOW SPORT Team. Two other candidates served as
pilot testers to reveal unforeseen problems with the hardware setup.

The participants wore the SensAct box in a pouch (see Fig. 4.10, right).The host device

logged sensor

data at 50 Hz.

The SensAct box sampled and streamed sensor data to the host device at
50 Hz. These measurements comprised data from six pressure sensors, two
bend sensors, and one 2D accelerometer attached to the upper body.

Before the first descent, we instructed the participants to pose in neutralWe captured the

rider’s posture in

neutral position as

reference values.

position on level ground (see section 4.2). To capture this posture, the
system recorded reference values from all sensors for ten seconds. We chose
this duration in order to capture the slight variations in sway while standing
still, instead of recording only a snapshot of the sensor values as we did in
our first field study (see section 4.3).

We recorded the participants on video for off-line data analysis. The dis-The participants

descended a

section of the

slope and tried

different riding

techniques.

tance between the starting point on the slope and the camera was about
140 meters (460 ft). This distance allowed the participants to gain higher
speed and to perform more turns compared to the first field study. All par-
ticipants descended five times. For the first and the last descent, we asked
them to descend as usual. For the second descent, they had to shift the
weight to the front foot for turning the board and to avoid incorrect weight
distribution towards the back foot. For the third descent, we introduced an
alternative riding technique that required them to stretch the legs before
pivoting the board and to flex the legs after pivoting. This technique served
to verify if the optical bend sensors sensed knee flexion and to observe how
accurate our candidates performed these movements. For the fourth de-
scent, they had to alternate between riding three turns and pausing for 10
seconds. All descents were performed without prior training.

4.4.3 Classification of the Riding Edge and of Turns

As depicted in Fig. 4.8, the force sensors inside the boots revealed when theComparing live

sensor values to

reference values

balls of the feet and when the heels exerted pressure on the snowboard. To
classify turns as frontside turns or as backside turns based on this sensor
data, we implemented an algorithm in iSense (see Fig. 3.7) that compared
the measurements during descents to the reference values captured in neu-
tral position when the weight was evenly distributed between the balls of
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the feet and the heels. The algorithm worked as follows:

First, the average of the reference values recorded under the balls (B) and
the heels (H) of the left foot (L) and the right foot (R) were computed:

Ri, i ∈ {LB,LH,RB,RH}

At each sampling time t during descents, mean shifting adjusted the force
sensor values Fi(t) by subtracting the corresponding reference values Ri. As
a result, the value 0 became the new reference value for all measurements,
which indicated when the weight was evenly distributed between the balls
of the feet and the heels:

Yi(t) = Fi(t)−Ri

Simple exponential smoothing with smoothing factor α (0 6 α < 1) reduced
sensor noise for the adjusted values Yi(t):

Si(0) = Yi(0)
Si(t) = α× Si(t− 1) + (1− α)× Yi(t)

The algorithm then summed the forces measured under the balls of the
feet (B) and the heels (H) and computed the difference (D) between these
values:

B(t) = SLB(t) + SRB(t)
H(t) = SLH(t) + SRH(t)
D(t) = B(t)−H(t)

Simple moving average (SMA) returned the mean weight distribution be-
tween the balls of the feet and the heels (the window size w denoted the
number of previous samples used to compute the mean weight distribution):

E(t) = SMAw(D(t)) =
D(t) +D(t− 1) + ...+D(t− w + 1)

w

The value of E(t) could be used for determining the riding edge. A threshold A threshold test

determined the

riding edge.

value TE defined the tolerance range around the reference value 0 where
we regarded the weight distribution between the balls of the feet and the
heels to be evenly distributed as captured in neutral position. The rider
descended on the frontside edge if the mean weight distribution was towards
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the balls of the feet: E(t) > TE . The rider descends on the backside edge if
the mean weight distribution was towards the heels: E(t) < −TE . The rider
pivoted the board if the mean weight distribution was within the boundaries
of the tolerance range defined by the positive and negative threshold values:
−TE 6 E(t) 6 TE . Transitions between the edges corresponded to the
beginning of turns.

The precision of this algorithm in classifying the riding edge depended onParameters for

classifying the

riding edge.

three parameters: the smoothing factor α, the window size w, and the
threshold value TE . To narrow down the choice of values that could be
used for classifying turns, we first experimented with the following values
that were applied to the sensor recordings from the first field study: TE ∈
{50, 100, 150, 200}, w ∈ {5, 10, 20, 40}, α ∈ {0.0, 0.3, 0.5, 0.7, 0.9} (the 10-
bit analog to digital converter of the Arduino BT board mapped input
voltages between 0 and 5 V from the sensors to integer values between 0
and 1023; TE = 50 corresponded to 244 mV or roughly 0.4 kg for the chosen
force sensors; w = 5 corresponded to 250 ms at 20 Hz sampling rate). In
general, we found that lower values for the threshold and for the window
size decreased the delay for recognizing new turns but caused classification
errors. The effect of the smoothing factor was less obvious to determine.

To analyze the new sensor recordings and to optimize the recognition rateThe first descents

served as training

set to optimize

the recognition

accuracy of the

algorithm.

of our algorithm across all riders, we decided for applying TE = 50, w = 25
(500 ms at 50 Hz), and α ∈ {0.1, 0.2, ..., 0.9}. The first descents served
as training set. We compared the output of the algorithm to the riding
edge on footage. We counted the number of correctly classified turns (true
positives), missed turns (false negatives), and misclassified turns (false pos-
itives). These values served for calculating a ranking R for each smoothing
factor α. A high ranking corresponded to a high number of correctly clas-
sified turns and to low numbers of missed and misclassified turns:

Rα = #correct−#missed−#misclassified

Given the smoothing factor α that yielded the best results, we evaluated theThe last descents

served as test set. algorithm based on the sensor recordings of the participants’ last descents.

Results

The classification accuracy for the training set was independent of theAll turns of the

training set were

correctly

recognized.

smoothing factor α. In total, the participants performed 56 turns. All
turns were correctly classified as frontside turns or as backside turns as ob-
served on footage. The algorithm reported three states: pivoting, frontside
edge, and backside edge. Fig. 4.11 shows an example output.

Table. 4.1 summarizes the classification accuracy for the test set. In total,96.72% of turns

of the test set

were correctly

recognized.

the participants performed 61 turns. A smoothing factor α = 0.9 yielded
the highest ranking R0.9 = 57 with 59 correctly classified turns (96.72%)
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Figure 4.11: Example output of the algorithm that detected the riding
edge. When the mean weight distribution E exceeded the threshold value
TE = 0.4, the algorithm outputted 0.4 to report turns on the frontside
edge. When E fell below the negative threshold value −TE = −0.4 kg, the
algorithm outputted -0.4 to report turns on the backside edge. An output
of 0 signaled an even weight distribution between the balls of the feet and
the heels while pivoting the board (−TE 6 E 6 TE).

Table 4.1: The classification accuracy of the turn detection algorithm
when applied to the test set. The results for α ∈ {0.1, 0.2, 0.4, 0.5, 0.6, 0.7}
were the same as for α = 0.0.

Smoothing factor α 0.0 0.3 0.8 0.9
Correctly classified turns 56 55 57 59
Misclassified turns 5 6 4 2
Ranking Rα 51 49 53 57
Recognition accuracy (%) 91.80 90.16 93.44 96.72

and two false positives. The lowest ranking was R0.3 = 49 with 55 correctly
recognized turns (90.16%) and six false positives. These false positives were
temporarily misclassified turns, which we regarded as errors. In these few
cases, the algorithm did not immediately recognize the new riding edge
when the board was pivoted as observed on footage. Even so, the edge was
correctly classified as soon as the snowboarder exerted sufficient pressure
towards the balls of the feet or towards the heels while traversing the slope.

We have also implemented an algorithm that used sensor data from the six Analyzing the

weight

distribution

between the feet

did not yield

usable results.

force sensors to compute the mean weight distribution between the left foot
and the right foot. This algorithm worked analogous to the algorithm that
classified the riding edge, except that the difference in weight distribution
was computed between the sum of the forces measured under the left foot
and under the right foot. We found, however, that this approach did not
accurately estimate the weight distribution as observed on footage.
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Discussion

The developed algorithm used a threshold test and empirically chosen pa-The algorithm

based on

threshold tests.

rameters for classifying the riding edge. This method was simple compared
to machine learning algorithms that would consider the variability in the
sensor data (see section 2.2). Even so, 96.72% of turns were correctly recog-
nized in the test set, which comprised sensor recordings from snowboarders
with different riding skills. Our sensor setup used for recognizing the rid-
ing edge was similar to the setup used for recognizing different modes of
walking with two force sensors placed under the shoes [Junker et al., 2004].
In this case, however, a probabilistic model based on Bayes classifiers dif-
ferentiated between level walking, ascending stairs, and descending stairs
with 98.2% accuracy on average. Future work should explore if similar al-
gorithms could help improve the classification of turns. These algorithms,
however, have to run on micro-controllers in realtime.

Although our algorithm correctly classified turns with high accuracy, weOur setup was

prone to errors. surmise that sensors built into the soles of the boots or sensors built into
the snowboard could help improve the recognition accuracy. Overall, it was
difficult for us to position the force sensors directly under the balls of the
feet and under the heels because the form of the participants’ feet and the
form of their boots slightly varied. Although we verified the placement of
these sensors with the Sensor Monitor application (see Fig. 3.6, left), some
participants had to exert more pressure until their sensor values peaked.
The sensor cables that run directly under the feet probably also influenced
the measurements. Moreover, we recorded reference values in neutral po-
sition only before the first descent. Since the sensor measurements also
depended on how tight the participants fastened their bindings before each
descent, we surmise that capturing reference values before each descent
could have improved the recognition accuracy of our algorithm.

Besides improving the setup of the force sensors, it might be necessary toWe chose

empirical values

that yielded good

results.

adjust those parameters that can influence the classification of turns, such
as the window size w used for computing the mean weight distribution E(t).
For example, Fig. 4.11 shows a fluctuation of D around 8.3 seconds. Had
the window size been too short, E(t) would have fallen below the threshold
value TE such that the algorithm would have incorrectly interpreted this
fluctuation as a new turn. During bumpy rides, a larger window size could
smooth out such short-term fluctuations that might result in misclassified
turns. More samples for computing E(t), however, will decrease the re-
sponsiveness of the algorithm. Alternatively, hysteresis could help prevent
the algorithm from misclassifying turns when E(t) fluctuates around the
threshold value.

Also, the threshold value TE could be adjusted to match different ridingThe threshold

value determines

the sensitivity of

the algorithm.

skills and riding techniques. TE determines how sensitive the algorithm re-
sponds to weight shifts. With high thresholds, it might be possible to assess
the quality of turns for advanced riders while carving ; this riding technique
requires the snowboarder to increase the edging angle (see Fig. 4.2, right),
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which results in high pressure loads under the heels and under the balls of
the feet. In contrast, low thresholds might detect when beginners pivot.
Beginners usually slide down the slope because they do not have the skills
to increase the edging angle. With low thresholds, a slight shift in weight
towards the toes (heels) would yield the frontside (backside) edge. During
bumpy rides, however, low thresholds might result in misclassified turns.

Our preliminary results indicated that it was not possible to classify The binding

influenced the

force sensor

measurements.

whether the weight distribution was towards the left or right foot. We
assume that the binding influenced the force sensor measurements. The
front part of the binding fastened the boot to the snowboard and exerted
a counter-force onto the balls of the feet. When the rider pulled the toes
upwards during backside turns, the ball of each foot still exerted some pres-
sure onto the sensors (see Fig. 4.8 between 19–21 and 24–25 seconds). In
contrast, the heels could be lifted inside the boots during frontside turns;
the sensors located under the heels did not measure forces such that these
sensors’ values approached 0 (see Fig. 4.8 between 16.5–19 and 22–23 sec-
onds). A similar effect could have occured when the rider increased the
weight towards either foot; the binding would exert a counter-force onto
the other foot, in particular under the ball of the foot. Future work should
investigate if additional sensors per foot, sensors built into the soles of the
boots, or sensors built into the snowboard could help to accurately measure
and classify the weight distribution between the left and right foot.

4.4.4 Knee Flexion during the Ride

For the third descent, the participants were asked to stretch the legs before
pivoting the board and to flex the legs after pivoting. The optical bend
sensors attached to the back of the knees measured this flexion and ex-
tension (see Fig. 4.12). Our method for classifying knee posture and for
differentiating between stretched and flexed legs was similar to our method
for classifying the riding edge (see section 4.4.3). The algorithm computed
the average of the reference values measured for the left knee (LK) and the
right knee (RK) while posing in neutral position with slightly bent legs:

Ri, i ∈ {LK,RK}

At each sampling time t during descents, mean shifting adjusted the bend
sensor values Bi(t) by subtracting the corresponding reference values Ri
(the value 0 became the new reference value, which represented slightly
bent legs):

Yi(t) = Bi(t)−Ri

Simple exponential smoothing with smoothing factor α (0 6 α < 1) reduced
sensor noise for the adjusted values Yi(t):
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Figure 4.12: A participant’s amount of knee flexion measured with optical
bend sensors. In this example, we did not map the sensor values to the cor-
responding flexion angles in degrees, as was the case with the piezoresistive
bend sensors that were calibrated by the manufacturer to exhibit an iden-
tical response characteristic (see Fig. 4.9). Although we tried to build both
optical bend sensors alike, the output range in volt depended on the width
and depth of the abraded area on the optical fiber. Thus, this example
shows a qualitative measure: a decrease in voltage corresponds to flexion
of the legs, whereas an increase in voltage corresponds to extension of the
legs. The foam and the knee pad introduced an offset between the flexion
measured at the left and right knee (see also Fig. 4.9). The participant
jumped between 1–2.5 seconds to point the board downhill.

Si(0) = Yi(0)
Si(t) = α× Si(t− 1) + (1− α)× Yi(t)

The algorithm then summed the values for both knees (K) and computed
the mean knee flexion (F, based on SMA with window size w):

K(t) = SLK(t) + SRK(t)

F (t) = SMAw(K(t)) =
K(t) +K(t− 1) + ...+K(t− w + 1)

w

The value of F (t) could be used for determining if the legs were flexed orA threshold test

determined the

posture of the

legs.

stretched. A threshold value TF defined the tolerance range around the
reference value 0 where we regarded the legs to be slightly bent: −TF 6
F (t) 6 TF . The rider stretched the legs if the mean flexion was greater
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Figure 4.13: A participant’s knee posture when stretching and flexing
the legs while pivoting the board (see Fig. 4.12 for the bend sensor values).
The ordinate 0 corresponded to slightly flexed legs and to an even weight
distribution while posing in neutral position. To visualize the relationship
between knee flexion and the riding edge, stretched legs were mapped to
the ordinate 1, flexed legs to the ordinate -1, frontside turns to the ordinate
2, and backside turns to the ordinate -2. The posture was unstable while
gaining speed before the first turn at five seconds. As a result, the output
of the algorithms fluctuated. The last turn occurred at 25 seconds.

than the threshold value: F (t) > TF . The rider flexed the legs if the mean
flexion was lower than the negative threshold value: F (t) < −TF .

Results

Given the posture of the knees and the riding edge, it is possible to analyze A posture model

of the legs for

assessing

snowboarding

skills

the rider’s technique. Fig. 4.13 correlates knee flexion to the riding edge
for one participant, based on an empirically chosen window size w = 25
samples (500 ms), TF = 10 (48.83 mV), TE = 50 (244 mV or 0.4 kg).
In this example, flexion and extension of the legs coincided with pivoting
the board, although the timing slightly differed depending on the riding
edge. The participant stretched the legs while pivoting to the frontside
edge and flexed the legs after pivoting; however, the legs were stretched
before pivoting to the backside edge and flexed while pivoting.

The duration for riding with stretched and flexed legs and the length of the
turns provided additional information on the participant’s skills. In par-
ticular, backside turns were noticeably shorter than frontside turns. This
indicates that this participant preferred to ride on the frontside edge. In
fact, backside turns can be more challenging than frontside turns, in partic-
ular for snowboard beginners. Overall, we observed that some participants
did not succeed in flexing and extending their legs as required.
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As for the riding edge, the threshold value for knee flexion has to be chosenThe threshold

value determines

the sensitivity of

the algorithm.

such that the movements of the legs can be differentiated. In the example
given above, the output of the algorithm was similar for TF ∈ [0...20], which
corresponded to thresholds up to 10% of the range between the minimum
and maximum values of K(t). With higher thresholds, the algorithm missed
transitions between stretched and flexed legs.

Our custom-built optical bend sensors did not produce sharp increases inCharacteristics of

optical bend

sensors

the measured voltage during the initial jump before descending the slope,
as was the case with the piezoresistive bend sensors (compare Fig. 4.12 at
2.5 seconds to Fig. 4.9 at 13 seconds). Neither did they produce artifacts.
We also found that these sensors were less susceptible to sensor noise than
the piezoresistive bend sensors or the force sensors; in practice, we were
able to skip exponential smoothing without influencing the classification of
knee flexion. One bend sensor, however, broke at the abraded area. Also,
the foam that fixated the sensors slipped out of the knee pads a few times.

Discussion

Knee flexion in combination with turn detection nicely demonstrated thatA simple posture

model can reveal

snowboarding

mistakes.

it was possible to build and to analyze a simple posture and motion model
of the legs during descents. Once other body movements can be recognized
with wearable sensors, including upper body rotation and the weight distri-
bution between the feet, a wearable snowboarding assistant could provide
instructions for correcting wrong movements and for signaling the correct
timing of movements, as envisioned in section 1.1. Moreover, statistics such
as the length of turns or the time difference between pivoting the board and
performing the required body movements could offer additional feedback
that could help coaches in assessing a snowboarder’s riding skills.

4.4.5 Activity Recognition: Riding and Pausing

A wearable snowboarding assistant should provide instructions during de-
scents but should remain idle during pauses. To test if data from an ac-
celerometer would suffice to distinguish between riding and pausing, we
measured the acceleration of the torso. We used the GForce3D-3 v1.0,
which sensed acceleration between -3 G and 3 G [Infusion Systems, 2007].

In general, acceleration patterns during descents should differ from accel-The acceleration

during the ride

differs from the

acceleration

during pauses.

eration patterns while standing still (see Fig. 4.14). The characteristics
of these patterns could reveal if the snowboarder is riding or pausing. In
this work, we summed the standard deviation of the acceleration measured
vertical to the slope (Y), which captured up and down movements, and
the standard deviation of the acceleration measured in direction of the ride
(X), which captured left and right movements along the board, based on
an empirically chosen window size of w = 50 samples (1 second).
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Figure 4.14: A participant’s acceleration measured along the vertical axis
of the torso. At 55 seconds, the participant quickly turned her upper body
towards the valley and continued to descend. She stopped at 70 seconds.

S(t) = σXw (t) + σYw (t)

A threshold test determined the time during which the rider moved (S(t) >
TA) or stood still (S(t) < TA).

Results

Overall, our approach to activity recognition recognized 96.03% of all de- The activity

recognition based

on a threshold

test.

scents and 77.78% of all pauses, based on an empirically chosen threshold
value TA = 8 (39 mV or 0.12 G). A lower threshold value (TA = 0.06 G)
increased the recognition of descents (99.89%) but decreased the recogni-
tion of pauses (50.16%). Misinterpretations of the activity occurred while
riding at low speed, such as during the slow acceleration phase at the start
of the ride, during the slow deceleration phase before coming to a halt, and
when the participants moved the body after the board stopped.

Discussion

In general, activity recognition involves machine learning algorithms that Machine learning

algorithms are

better suited for

classifying activity.

classify sensor data obtained from several accelerometers [Bao and Intille,
2004] (see also section 2.2). We used one accelerometer and a threshold test
to differentiate between riding and pausing. This simple technique demon-
strated that activity recognition is possible while snowboarding. Even so,
our approach was prone to errors. In particular, upper body movements
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during pauses yielded classification errors. It might have been beneficial to
also compare the acceleration of the upper body to the acceleration of the
snowboard because the snowboard typically does not move during pauses.
In this case, a threshold test might have differentiated between riding and
pausing with higher accuracy.

4.5 Closing Remarks

In this chapter, we have informed the design of a wearable assistant forWe have sensed

and classified

posture and body

movements while

snowboarding.

snowboard training. Based on two field-studies that focused on sensing of
basic context-information for recognizing common snowboarding mistakes,
we have presented and evaluated algorithms for classifying turns, knee flex-
ion, and activity. Our results demonstrated that it was possible to build
a simple posture and motion model of the body that could be used for as-
sessing certain aspects of the quality of a snowboarder’s riding technique.
Overall, our findings serve as a starting point for building wearable sys-
tems that could automatically detect wrong posture and movements while
descending the slope.

In the following chapters, we will focus our investigation on artificial tactile
stimuli as a new method for providing instructions how to move the body
during physical activities. To evaluate these tactile instructions in the field,
we have used the aforementioned findings for implementing a simple wear-
able assistant for snowboard training. This system could sense and interpret
the snowboarder’s weight distribution between the balls of the feet and the
heels for classifying the riding edge in realtime, and could automatically
provide tactile instructions that indicated correct posture during turns.
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Part II

Tactile Motion Instructions
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Chapter 5

Fundamentals of Tactile
Perception

“Touch seems to be as essential as sunlight.”

—Diane Ackerman, A Natural History of The Senses

In the first part of this dissertation, we have focused on wearable computing
and on a custom-built sensing and feedback device. We have built this
device as a basis for exploring artificial tactile stimuli as instructions how
to move the body, and we have shown how this system could be used for
sensing posture and body movements during physical activities.

We will now focus on tactile feedback. To design tactile instructions, we
need to know how the skin processes tactile stimuli and which tactile sen-
sations humans can perceive and differentiate. Therefore, in this chapter,
we will introduce the anatomy of the skin. We will present technologies
for generating tactile signals, and we will discuss design parameters for en-
coding information as tactile stimuli. Finally, we will summarize example
applications that conveyed messages over the tactile sense.

5.1 The Cutaneous Sense

The skin is one of the most important organs of our body and indispensable The skin senses

when something

touches our body.

to life. This thin layer of tissue protects us from infection and prevents the
loss of body liquids. Moreover, the skin enables us to feel when something
contacts our body. For example, our clothes create friction. We can dis-
criminate whether the textile is scratchy or soft. When we sit in a chair,
we notice its shape and feel both soft and hard areas, which can be padded
textile or hard armrests. Other sensations that relate to the skin enable us
to hold a pen with our fingers, to feel the applied pressure while writing,
and to notice when we accidentally touch a hot surface.



60 5 Fundamentals of Tactile Perception

Subcutaneous fat

Free nerve
endings

Pacinian
corpuscles

Meissner’s
corpuscles

Merkel receptors

Ruffini
corpuscles

Epidermis

Dermis

Hypodermis

Sweat
gland

Figure 5.1: The three layers of the skin. Mechanoreceptors detect when
the skin is deformed (adapted from [Goldstein, 2002]).

The skin consists of three layers: the epidermins, the dermis, and the hypo-Receptors in the

skin register

external stimuli.

dermis (see Fig. 5.1). Their thickness varies across the body. For example,
these layers are thicker at the stomach and at the feet than at the eyelids.
The epidermis is the upper layer and acts as barrier (0.55–1.5 mm thick).
The dermis (0.6–3 mm thick) contains free nerve endings and receptors that
respond to external stimuli. The nervous system transmits the information
on these stimuli to the brain. This information can result in sensations
including temperature, pain, pressure, or vibration. The hypodermis is the
lowest layer. This tissue can be several centimeters thick and includes fat,
connective tissue, blood vessels, and hair follicle roots.

Table 5.1: Mechanoreceptors have different characteristics that determine
to which tactile stimuli they respond and which sensations we perceive
([Kaczmarek et al., 1991, Goldstein, 2002, Wall and Brewster, 2006]).

Merkel Meissner Ruffini Pacinian
Frequency range Hz
(peak sensitivity) 0–100 (5) 1–300 (50) < 8 (0.5) 5–1.000 (250)

Rate of adaptation SA1 RA1 SA2 RA2

Receptive field area
mm2 (median) 1–100 (11) 2–100 (12.6) 10-1000 (59) 10–500 (101)

Receptors/cm2

fingertip (palm) 140 (25) 70 (8) 21 (9) 9 (15)

Perceived sensation Pressure, form,
roughness

Stroking,
fluttering Skin stretch Vibration



5.1 The Cutaneous Sense 61

The tactile sense pertains to our sensation of pressure [Oakley et al., 2000]. The tactile sense

Four types of mechanoreceptors sense mechanical pressure and deformation,
such as when the skin is stretched or pulled (see Fig. 5.1): Merkel’s discs
and Meissner’s corpuscles, which can only be found in hairless skin; and
Ruffini’s corpuscles and Pacinian corpuscles, which can be found in hairy
and in hairless skin. These receptors have different characteristics that
enable us to distinguish between pressure intensities, textures, and other
attributes of objects that we interact with.

Table 5.1 summarizes important characteristics of these mechanoreceptors: The main

characteristics of

mechanoreceptors

mechanoreceptors respond to stimuli that deform the skin at different fre-
quencies; they adapt slowly (SA) or rapidly (RA) to static stimuli; the size
of their receptive fields is small (1) or large (2); their receptor density in
the skin varies. These characteristics are discussed in the following para-
graphs (for additional information on mechanoreceptors, see [Kaczmarek
et al., 1991, Goldstein, 2002, Wall and Brewster, 2006]).

Mechanoreceptors fire impulses when they detect a stimulus. This firing Rate of

adaptationrate tends to decrease with time. The rate of adaptation describes how fast
they adapt to a stimulus that remains constant. Merkel’s discs and Ruffini’s
corpuscles adapt slowly. They are most sensitive to a static stimulus, and
they continue to respond until the stimulus stops. Merkel’s discs respond
to steady indentation and enable us to perceive the form and roughness of
objects, including texture, edges, points, and corners. Ruffini’s corpuscles
respond to rapid indentation that typically stretches the skin.

In contrast, Meissner’s corpuscles and Pacinian corpuscles quickly adapt Pacinian

corpuscles detect

high frequency

vibration.

to static stimuli. They are most sensitive to dynamic stimuli and only
fire impulses when they detect a change, which typically occurs at the
beginning and at the end of the stimulus. The Pacinian corpuscles detect
high frequency vibrations and optimally respond to frequencies around 250
Hz [Cholewiak and Collins, 1991, Verrillo and Gescheider, 1992].

Mechanoreceptors respond to a stimulus that occurs within a certain area Receptive field

areaaround their location in the skin. The size of this area—the receptive field—
determines how distant and accurate they perceive the stimulus. Ruffini’s
and Pacinian corpuscles have large receptive fields. Although they best
respond to a stimulus that occurs directly above their location in the skin,
they also gather information from distant stimuli. This information, how-
ever, is less detailed and accurate. Merkel’s disks and Meissner’s corpuscles
have small receptive fields. These mechanoreceptors only respond to a
stimulus that occurs very close to them, but they yield precise perceptions.

The fingertips and the lips, which we mainly use for exploring and inter- Receptor density

acting with objects, contain densely packed mechanoreceptors with small
receptive fields. Mechanoreceptors with large receptive fields mainly exist
in those areas of the body that do not require an accurate tactile sense,
such as the back, the stomach, and the legs.

The density and the receptive fields of mechanoreceptors influence how close Spatial resolution

and two-point

threshold
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two points of stimulation can be such that we perceive them as different
and not as one stimulus. The two-point threshold, a measure of the spatial
resolution of the skin, denotes this minimum distance between two stimuli.
This threshold varies on the body and ranges from 0.9 mm at the fingertips
to 45 mm at the calf, the thigh, and the back [Weinstein, 1968].

5.2 Tactile Display Technologies

The research literature differentiates between force feedback devices andForce feedback

devices address

the kinesthetic

sense.

tactile feedback devices [Oakley et al., 2000]. Force feedback devices ad-
dress the human kinesthetic sense, which pertains to the relative position
and movements of the body, including finger, hand, and limbs. Kinesthetic
information originates from receptors located in muscles, joints, and ten-
dons. For example, the Phantom Omni haptic device [SensAble Technolo-
gies, Inc., 2010] generates forces for touching and interacting with virtual
objects on a computer monitor. If the user pushed the cursor against a vir-
tual object, motors in the device would create counter-forces to indicate a
solid. Other devices were designed for computer games, such as Logitech’s
Force 3D Pro joystick [Logitech, 2010].

In contrast to force feedback devices, tactile feedback devices address theTactile feedback

devices address

the tactile sense.

tactile sense. This sense pertains to the mechanoreceptors that respond
to deformations of the skin, such as when the skin is stretched or pulled.
Tactile feedback devices are also called actuators or tactors. Those that
vibrate are also called vibrotactile displays [van Erp, 2002]. Some devices
were designed to optimally stimulate the Pacinian corpuscles because these
receptors best respond to vibration.

In this section, we will focus on mechanical devices that deform the skin inInertial actuators

rotate an

eccentric mass.

order to create tactile sensations. The most widely used actuators are iner-
tial actuators, such as vibration motors that are built into mobile phones.
These inexpensive actuators (3–5 Euros) are electric motors that rotate
an eccentric mass [Mortimer et al., 2007]. Two types of vibration motors
exist: pancake motors and cylindrical motors (see Fig. 5.2). They are typ-
ically shielded by a casing that vibrates together with the mass. Pancake
motors are placed flat on the skin such that their eccentric mass rotates
horizontally to the skin. The eccentric mass of cylindrical motors rotates
perpendicularly to the skin. For this reason, cylindrical motors tend to
produce slightly more intense sensations [Schätzle et al., 2006].

A disadvantage of many vibration motors is that they vibrate at frequenciesLimitations of

inertial actuators below the peak sensitivity of the Pacinian corpuscles. Another disadvan-
tage is that a higher supply voltage increases both the frequency and the
intensity of the vibration. Also, since the mass rotates, the spin-up time to
reach the full intensity level and the spin-down time to stop can be around
100 ms or more [Mortimer et al., 2007].

The Tactaid VBW32 tactor is an inertial actuator that was specificallyVBW32 tactor
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Figure 5.2: A pancake motor (top) and a cylindrical motor (bottom).

designed as a tactile hearing aid for hearing impaired persons [Audiologic
Engineering Corporation (AEC), 1982]. In contrast to vibration motors,
this tactor does not rotate a mass but uses a coil that attracts or repels a
magnet when an alternating electromagnetic force is generated [Cholewiak
and Wollowitz, 1992, Brown, 2007]. Its vibration frequency is around 250
Hz, and its response time is around 12.5 ms [Brown, 2007].

In contrast to inertial actuators, linear actuators do not shake the device. Linear actuators

move a rod

perpendicular to

the skin.

They typically consist of a voice-coil or solenoid (a loop of wire wrapped
around a metallic core) that attracts a metal rod when voltage is turned on.
A spring pulls the rod back to its original position when voltage is turned
off. This sequence of opposing movements drives the rod perpendicularly to
the skin. Since the moving rod spins neither up nor down, linear actuators
have quick response times [Niwa et al., 2004, Mortimer et al., 2007].

The C2 tactor (around 150 Euros) is such a linear actuator [Engineering C2 tactor

Acoustics Inc., 2010]. The diameter of the rod that stimulates the skin is
0.7 cm. This rod produces a strong and localized sensation at the contact
point, while the passive housing shields the surrounding skin from stimuli.
This device was designed to optimally stimulate the Pacinian corpuscles
but can also produce stimuli across a wide range of frequencies. It is driven
by sine wave tone bursts, can evoke sensations that feel smooth or rough,
and has a response time around 5 ms [Brown, 2007].

Another type of actuators exploits the piezoelectric effect that occurs in Piezoelectric

actuatorsnon-conductive materials, such as in certain ceramics and crystals, includ-
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ing quartz. Piezoelectric materials generate a voltage in response to applied
mechanical stress. This effect is reversible: an applied voltage deforms the
material. A piezoelectric actuator is a thin rectangular plate that consists
of two sandwiched layers of piezoelectric materials with opposing polarity.
Depending on the applied voltage, one layer of the plate contracts while
the other layer expands. The resulting motion bends the plate. If one
end of the plate is fixed, the other end can move to stimulate the skin
[Poupyrev et al., 2002]. Multiple plates arranged in an array can stretch
the skin [Hayward and Cruz-Hernández, 2000]. These actuators can also
create spatiotemporal effects by moving tiny rods [Summers et al., 2001].

A recent approach to create tactile displays involves shape memory alloys.Shape memory

alloys These alloys change their shape in response to temperature. In cold state,
the alloy can be easily deformed. Upon heating above a threshold temper-
ature, the alloy returns to its original form. Through resistive heating, this
characteristic can be exploited to control the shape and movement of ma-
terials [Coelho and Maes, 2008], to stimulate the fingertips [Scheibe et al.,
2007], or to build passive texture displays [Harrison and Hudson, 2009].
Even so, shape memory alloys could be inappropriate for directly stimu-
lating the skin because they are actuated by heat [Harrison and Hudson,
2009]. Another disadvantage is their slow response speed.

5.3 Parameters for Tactile Information Transfer

The various tactile sensations that we can perceive could represent infor-Different tactile

signals can

represent different

information.

mation. For example, a mobile phone that vibrates an inertial actuator
in a trouser pocket could signal either a voice call or a text message. To
differentiate between these two messages necessitates two distinct tactile
sensations. In this section, we will describe parameters that could be varied
to create different sensations, and we will present guidelines for designing
artificial tactile messages.

Some guidelines and recommendations are general and apply to all applica-General design

guidelines tion scenarios: tactile messages should be self explaining and composed of
well-known meaningful components; tactile displays should be unobtrusive
and comfortable to wear for longer time periods; the same display should
avoid tactile clutter and sensory overload through simultaneous or sequen-
tial presentation of multiple messages [van Erp, 2002].

Concrete guidelines refer to the available parameters for encoding tactileConcrete design

guidelines messages. This set of parameters comprises frequency, amplitude, wave-
form, location, duration, rhythm, and spatiotemporal patterns. Since the
tactile sense has certain capabilities in perceiving and discriminating dif-
ferences along these dimensions, some parameters are better suited than
others for encoding information. The technology that stimulates the skin
(see section 5.2) and the situation in which tactile stimuli are delivered also
influence which parameters are appropriate for conveying information. In
the following paragraphs, we will take a closer look at these parameters.
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The skin can perceive frequencies up to 1.000 Hz [Sherrick and Craig, 1982], Humans can

identify 3–5

frequency levels.

but the usable range does not exceed 400 Hz [Cholewiak and Wollowitz,
1992]. The Pacinian corpuscles are most sensitive to frequencies around 250
Hz [Cholewiak and Collins, 1991, Verrillo and Gescheider, 1992] (see Table
5.1). Humans can absolutely identify between three and five frequency
levels and up to eight levels when these frequencies are delivered at different
intensities [Sherrick, 1985]. Even so, frequency and intensity can affect each
other. Changes in intensity can lead to perceived changes in frequency
[Geldard, 1957, Rothenberg et al., 1977].

The perceived intensity of a stimulus primarily depends on its amplitude, Humans can

identify 3–4

intensity levels.

which determines how much the skin is deformed. When intensity encodes
information, the stimulus should be strong enough to be detected but not
too strong to cause pain or discomfort [Craig and Sherrick, 1982]. Humans
can differentiate between 15 intensity levels and can absolutely identify
three to four levels [Geldard, 1960, Craig, 1972]. For message transfer, these
levels should be widely separated between the minimum intensity that can
be detected and the maximum intensity that is comfortable [Geldard, 1960].

The waveform of a stimulus describes the shape of the vibration wave. This Humans can

differentiate

between 3 levels

of roughness.

shape determines how rough the stimulus feels. Sine waves feel smooth,
whereas square waves feel rough and most intense [Gunther et al., 2002,
van Erp, 2002]. Besides frequency, waveform is hard to discriminate and
less suited for encoding information [Geldard, 1957]. Even so, three levels
of roughness can be differentiated with the fingertips [Brown, 2007].

The accuracy in identifying the location of a stimulus depends on several Factors that

influence how well

a stimulus can be

located on the

body

factors. Anatomical reference points, such as wrist and elbow, can help to
estimate the position and to identify the location of the stimulus [Cholewiak
and Collins, 2003]. Also, actuators should slightly rest against the skin,
otherwise the vibration could reach the bone structure. Since bones relay
vibration, the user might not be able to locate the stimulus [Brewster and
Brown, 2004]. Moreover, the two-point threshold has to be considered to
ensure that stimuli from neighboring actuators are perceived at different
locations (see section 5.1).

Geldard [1957] recommends using stimuli that last between 0.1 seconds Humans can

absolutely

differentiate

between 4–5

levels of duration.

and two seconds (see also [Geldard, 1960]). Durations outside this range
are either too short or too long for communicating information in most
situations. Trained users can differentiate between 25 durations within this
range. While four to five levels can be absolutely identified, three levels are
recommended for untrained users. The ability to detect pauses between two
stimuli depends on the intensity and the length of these stimuli [Gescheider
et al., 1974]. In general, pauses of 10 ms can be detected such that two
sequential signals are not perceived as one signal.

Rhythm is an important design parameter for Earcons, which are audio Rhythmic patterns

vary the duration

and timing of

signals.

messages [Blattner et al., 1989]. Design guidelines for Earcons state that
rhythm should be as different as possible [Brewster et al., 1995]. Based
on these guidelines, Brown [2007] has shown that rhythm is also a suitable
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Figure 5.3: The sensory saltation phenomenon yields the impression
that stimuli are delivered to locations between the mechanically stimulated
points (adapted from [Tan and Pentland, 1997]).

parameter for tactile messages. These messages vary the duration and the
timing of signals. When designing rhythmic patterns, the number of pulses
that can be perceived within a given time is important. For example, we
cannot accurately perceive if more than five pulses occur within 0.7 seconds
[Sherrick and Craig, 1982].

Spatiotemporal patterns resemble rhythmic patterns. They deliver signalsSpatiotemporal

patterns vary the

location, duration,

and timing of

signals.

closely in time and in space [van Erp, 2002]. When neighboring actuators
are sequentially activated and deactivated, they produce the sensation of
movement on the skin such that spatial patterns and directional lines can be
drawn on the user’s body [Brewster and Brown, 2004]. Two spatiotemporal
effects are well known: apparent movement and sensory saltation.

Apparent movement is the same as the visual phi phenomenon [Sherrick,Apparent

movement 1968a, Craig and Sherrick, 1982]. When two neighboring light sources are
sequentially activated for a short time, the light appears to move between
these locations. The same effect exists when two neighboring tactile signals
stimulate the skin. This effect also occurs if the signals stimulate opposing
sites on the body, such as the left and right arm [Sherrick, 1968b].

Sensory saltation evokes the illusion that tactile stimuli occur at locationsSensory saltation

feels as if a tiny

rabbit hops across

the skin.

where the skin was not mechanically stimulated [Geldard and Sherrick,
1972]. In the original experiment, three actuators placed in line at equal
distance on the forearm sequentially delivered three pulses. Instead of per-
ceiving individual pulses, phantom impressions equally distributed between
the first and the last location were perceived. This sensation felt as if a tiny
rabbit hopped across the skin [Geldard and Sherrick, 1972] (see Fig. 5.3).

To evoke sensory saltation necessitates at least two stimulation points withTiming values for

sensory saltation each two pulses [Geldard, 1975]. The illusion becomes more robust with
up to six pulses per location [Geldard, 1985]. Larger numbers of taps can
also evoke saltation unless the stimuli persist for too long under the same
positions. The gaps between pulses can range from 20–300 ms. Pauses
between 40–60 ms yield optimal results with vivid and regularly perceived
hops [Geldard, 1985].
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Sensory saltation can occur upwards, downwards, or simultaneously up- Saltation can be

used for drawing

directional lines

wards and downwards at different body locations. An interesting charac-
teristic of saltation is that this effect can be used for drawing directional
lines. In particular, the direction of these lines can be identified without
learning the meaning of these patterns in advance [Tan et al., 2000].

The aforementioned parameters are most often used for creating artificial Masking effects

and adaptation

can influence the

tactile perception.

tactile sensations. Some characteristics of the tactile sense, however, can
change the intended perceptions. For example, the skin integrates stimuli
that are delivered close in time and in space such that masking effects
can occur [van Erp, 2002]. These effects can change the quality and the
timing of the stimuli, which can make certain stimuli difficult to detect
and to identify. Masking effects can be reduced when the stimuli vibrate
at different frequencies or when the pauses and the distance between them
increases. Also, the mechanoreceptors tend to adapt to a constant stimulus
(see section 5.1). This adaptation can alter the perceived intensity and the
intensity threshold for detecting a stimulus [van Erp, 2002].

Overall, according to Geldard [1957], the three primary parameters for Primary encoding

parametersencoding tactile messages are amplitude, duration, and body location. He
stated that “Certainly one can distinguish a strong from a weak burst of
vibration, a long from a short one, and there is no difficulty in saying
which arm or leg receives it.”. Brown [2007] suggested spatial location,
duration, and rhythm, whereas intensity should be carefully considered
because various factors can influence how users perceive magnitude.

Another issue that has to be considered is the encoding strategy for rep- Encoding

srategies: the

pictorial and the

coded approach

resenting information as tactile messages. Craig and Sherrick [1982] dif-
ferentiated between the pictorial approach and the coded approach. The
pictorial approach directly transfers information from one sense to another
sense (Brown [2007] named this the direct approach). For example, the
Optacon reading device rendered the shape of a scanned image onto the
fingertips such that the meaning of the stimuli was self-explaining (see sec-
tion 5.4.1). In contrast, the coded approach uses an abstract mapping
between a stimulus and its meaning such that this relationship has to be
learned. Even so, coded messages can represent any information, including
data that does not have a pictorial representation.

One examples of coded messages are Haptic phonemes [MacLean and En- Haptic icons

riquez, 2003], which are constructed of simple waveforms. These short ab-
stract signals could represent information on the state, function, or content
of objects and events, which are called haptic icons (hapticons).

Another example are Tactons [Brewster and Brown, 2004], which are based Tactons are

structured

messages that

encode multi-

dimensional

information.

on the structure and design principles of Earcons [Blattner et al., 1989].
Tactons (tactile icons) are rhythmic or melodic patterns that could pro-
vide feedback in user interfaces. Brewster and Brown [2004] differentiate
between one-element, compound, inherited, and transformational Tactons.

One-element Tactons are short bursts or temporal patterns. Compound
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Tactons are a sequence of two or more one-element Tactons. Inherited
Tactons are hierarchically combined. For example, while the Tacton at the
highest level has a certain rhythm, a Tacton at the next level preserves
this rhythmic structure but ends with a higher frequency Tacton rendered
with a different waveform. Lower level Tactons then change the tempo
or another parameter. Transformational Tactons represent the properties
of the delivered messages as different tactile parameters. For example,
to represent files in a computer interface, rhythm could encode the type,
frequency the size, and body location the creation date. Brown [2007]
presented guidelines for designing Tactons and showed that users could
learn and identify these abstract messages.

Another encoding strategy is the metaphorical approach [Brown, 2007],The metaphorical

approach which relies on common and known metaphors, such as a heartbeat [Chan
et al., 2005]. Heartbeat and hug-like sensations could convey personal and
emotional information over distance (see section 5.4.5). Other encoding
strategies relate to semiotics and exploit the meaning and interpretation
that people assign to touch [Brown, 2007].

5.4 Applications for Tactile Feedback

Artificial tactile messages are usually applied in situations when the visual
or auditory sense cannot process information or when these senses are over-
loaded. Since the 1960s, several devices have been built for assisting blind,
visually impaired, or hearing impaired persons. During the last 20 years,
various other scenarios have been explored. In this section, we will give an
overview of the most common applications, based on the aforementioned
tactile display technologies and parameters for tactile information transfer.

5.4.1 Sensory Substitution

Sensory substitution systems substitute visual or sound information withReading aids for

blind and visually

impaired persons.

tactile signals [Kaczmarek et al., 1991]. The Braille alphabet, devised in
1821 by Louis Braille, a blind person, is such a system. Braille presents
textual information to the fingertips. Rectangles of raised and lowered dots
encode characters, numerals, and punctuation (see Fig. 5.4, left). Experi-
enced adults can reach reading speeds of over 100 words per minute [Schiff
and Foulke, 1982]. One discontinued device that rendered Braille symbols
was the VirTouch tactile mouse. This mouse had three arrays of pins that
displayed spatial and temporal patterns for assisting users in reading text,
and in recognizing pictures and graphics [Wall and Brewster, 2006].

The Optacon reading device converted visual information into tactile cuesThe Optacon

device for reading

text displayed

images as

vibration

(see Figure 5.4, right). The user placed the finger on a tactile array that
consisted of metal rods. By moving a small camera over text, the rods that
corresponded to black parts of the captured image vibrated. This vibration
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Figure 5.4: Left: The Braille alphabet uses a sequence of dots that can
be read by touch (photo by Christophe Moustier, Wikimedia Commons).
Right: The Optacon II reading device displayed on its tactile array the
spatial pattern of the captured image (source: Wikimedia Commons).

displayed the spatial pattern of the text. Experienced users reached reading
speeds between 30–50 words per minute [Craig and Sherrick, 1982].

A different approach for conveying textual information as cutaneous pat- Tactile languages

for reading textterns mapped letters and numbers to tactile signals of different intensities,
durations, and body locations. The Vibratese language presented these sig-
nals with an array of nine actuators located at the chest [Geldard, 1957].
The Optohapt system used nine actuators distributed across the whole body
[Geldard, 1966]. Experiments showed that people could learn and read the
developed tactile languages (see also section 7.1).

Other sensory substitution systems supported hearing impaired persons. Aids for the deaf

and hard of

hearing

For example, Tactaid devices with VBW32 tactors (see section 5.2) could
convert environmental sound information into unique vibration patterns
[Audiologic Engineering Corporation (AEC), 1982]. As these devices could
reveal sound differences such as between voiced and unvoiced consonants,
they were used for supporting children during speech training [Weisenberger
and Percy, 1994].

5.4.2 Navigation Systems

Navigation towards waypoints is a popular scenario for tactile feedback. Navigation

towards targetsA wearable computer that tracks the user’s location with the Global Po-
sitioning System (GPS, see gps.gov) could provide localized tactile pulses
that indicate the direction to walk. Ross and Blasch [2000] tested such an
interface with visually impaired persons. Their shoulder-tapping system
consisted of three actuators located at the back. The center actuator was
activated when the walking direction was correct, whereas the left and right
actuators signaled the new direction to walk when the user was off target.
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Compared to spoken instructions and other audio cues, these tactile sig-
nals yielded better performance and were preferred by users. Directional
lines based on sensory saltation could also convey guidance signals [Tan and
Pentland, 1997]. For example, Ertan et al. [1998] and Jones et al. [2006]
reported that trained users were able to recognize with almost perfect ac-
curacy directional lines that were delivered to the back while walking.

Several other systems are based on the same idea. For example, TsukadaNavigation with a

waist belt and Yasumura [2004] built a waist belt with eight actuators for pedestrian
navigation. The location of vibration around the waist signaled the di-
rection to walk, whereas the pulse intervals indicated the distance to the
target, using shorter intervals when the user approached the destination. A
similar waist belt for waypoint navigation was tested with helicopter pilots
and boat navigators [van Erp et al., 2005]. For automobile drivers, Vibro-
cons were introduced as tactile navigation symbols [van Erp and van Veen,
2001]. Actuators under the left or right leg indicated a left or right turn,
whereas consecutive activation of all actuators under both legs from back
to front signaled to go straight.

Another scenario for tactile feedback is aviation. Jet pilots could looseImproving spatial

awareness in

aviation

their orientation when high forces act on their bodies during flights. To
resolve such mishaps, Rupert [2000] proposed a tactile situation awareness
system. The pilot could wear a suit consisting of an array of actuators
arranged in columns and rows. To indicate the orientation of the plane,
this array could deliver tactile stimuli to the torso that represent roll and
pitch angles. For example, to encode the direction of the gravity vector
in 3D space with respect to the pilot’s position in the seat, a stimulus at
the lower left side of the torso could indicate a slight tilt of the aircraft
to the left. Actuators located higher at the left side could signal an
increased tilt of the aircraft. These stimuli could also support pilots when
visually scanning instruments. The same approach could help astronauts
to experience the orientation of a space ship [van Erp and van Veen, 2003].

5.4.3 Warning Signals

When visual attention is vital, such as during flights, tactile warning signalsWarning signals

alert pilots to

critical events.

could direct the attention towards critical events. Sklar and Sarter [1999]
reported that tactile cues applied to the wrist could direct a pilot’s atten-
tion to unexpected events and status changes that occurred in automated
cockpit systems. Moreover, these warning signals increased the detection
rates of automatic mode changes and decreased the pilot’s response times
compared to the standard situation when the pilot visually scanned the
instruments.

Also, a tactile stimulus at the accelerator pedal could indicate if a carWarning signals

for car drivers driver exceeded the allowed speed limit [van Winsum, 1999]. This stimulus
increased the driver’s performance and reduced the workload compared to
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an audio message. Tactile signals at the back could also direct a driver’s
attention to the back mirror [Ho et al., 2005]. These signals decreased the
driver’s response time and increased the accuracy in responding to time-
critical events, such as when a car rapidly approached from behind.

Besides guiding visually impaired persons towards a destination, tactile Obstacle

detectionsignals could warn of obstacles. For example, Cardin et al. [2006a] built a
system that could spot nearby objects in the walking path with ultrasonic
transducers attached to the body. Actuators at the waist indicated the
location and the distance to these objects. The haptic radar [Cassinelli
et al., 2006] was a similar warning system, based on infrared proximity
sensors that could detect objects in the environment. To warn workers
of unseen objects that might approach from behind during safety-critical
tasks, actuators in the safety hat could deliver warning signals to the head.

5.4.4 Interaction with Mobile Devices

Compared to audio messages, tactile messages are discreet. They do not dis- Tactile messages

are private but

underused.

turb nearby users, neither do they compromise private information [Chang
et al., 2002]. Even so, mobile phones seldom make use of such messages.
In general, they only pulse a vibration motor to announce incoming calls
and text messages, or to signal low battery status.

A simple tactile signal, however, could significantly improve the interac- Improved

interaction with

handheld devices

tion with mobile user interfaces. For example, during a text scrolling task
that required tilting the device, a pulse that indicated when a line of text
scrolled up or down reduced the task completion time compared to scrolling
without tactile feedback [Poupyrev et al., 2002]. Other scenarios involved
list selection, status notifications, and navigation towards destinations [Luk
et al., 2006]. Moreover, Williamson et al. [2007] described a simple tech-
nique for actively sensing data in mobile phones. Upon shaking the device,
virtual message balls were simulated that bounced around. These balls ex-
pressed certain impact characteristics that revealed the properties of unread
messages: impacts that felt deep and heavy indicated long text messages,
whereas impacts that felt lighter indicated several short messages.

Tactile feedback has also been shown to decrease typing errors and to in- Tactile feedback

decreases typing

errors.

crease typing speed on touchscreen devices [Hoggan et al., 2008]. Moreover,
force-feedback could reduce typing errors on physical keyboards, using soft-
ware that analyzed the typed words and that dynamically adjusted the
pressure resistance of keys through solenoids [Hoffmann et al., 2009]. Be-
fore each keystroke, the resistance of keys that would have lead to a typing
error according to dictionary and grammar rules was increased such that
the user could notice possible typing errors in advance.
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5.4.5 Distant and Emotional Communication

People often touch each other when they talk. Intimate gestures, such as aTactile stimuli can

represent feelings. handshake, a hug, or a kiss express feelings. To promote a sense of aware-
ness between distant people, tactile displays could simulate such gestures.
For example, inTouch [Brave and Dahley, 1997] and HandJive [Fogg et al.,
1998] are shared physical objects that could connect spatially separated
users. While each user interacts with the personal object, this interaction
would affect the distant object and would convey remote presence. Com-
Touch [Chang et al., 2002] could augment audio communication over mobile
phones in a similar way. Each device includes sensors for measuring forces
applied by the fingers and actuators for creating tactile stimuli. When users
grasps and squeeze their devices during conversation, the remote partner
could immediately perceive this tactile interaction, which could emphasize
a specific phrase, indicate turn-taking, and signal attention or nodding.

The Hug Shirt [CuteCircuit, 2010] is a similar system that could promoteHugging over a

distance distant awareness between friends and that could send hugs over a distance
[Mueller et al., 2005]. This shirt contains pads with built-in sensors and
actuators located at those body areas that people usually touch when they
hug, such as the upper arms, the shoulders, and the back. When these pads
are touched, the sensors measure the applied pressure, the skin tempera-
ture, and the heart beat. This data is transmitted over the mobile phone to
the remote partner, whose Hug Shirt would recreate the sensation of touch,
warmth, and emotion.

Benali-Khoudja et al. [2005] and Salminen et al. [2008] investigated how
tactile patterns delivered to the fingertips were perceived and interpreted.
They found that certain characteristics of tactile stimuli, such as their di-
rection and continuity, could represent emotional information, including
affection, pleasantness, and arousal. Such stimuli could enrich the interac-
tion in virtual reality and telepresence applications. Also, they could en-
rich text messages in instant messaging applications, which lack non-verbal
communication cues [Rovers and van Essen, 2004].

Moreover, tactile signals could accompany music performances [GuntherEnhancing music

performances et al., 2002]. Similar to perceiving low frequency vibrations when standing
close to powerful speakers, multiple actuators placed across the body could
intensify and enhance the listeners’ feelings and experience.

5.4.6 Virtual Reality

Virtual reality simulates three-dimensional environments with head-Interaction in

virtual

environments

mounted and CAVE-like displays [Cruz-Neira et al., 1992]. Since the user
cannot touch virtual objects, tactile and force feedback devices could make
the interaction in these environments feel realistic. For example, actuators
could render localized stimuli that indicate when the body collides with
walls or with objects [Yano et al., 1998, Lindeman et al., 2004a, Schätzle
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et al., 2006] (see Fig. 2.3 for the TactaVest). The CyberTouch tactile feed-
back system for the CyberGlove [CyberGlove Systems, 2007] can stimulate
the fingers and the palm with small vibrotactile actuators when the user
touches solid virtual objects. This glove has also been used for remote
exploring of objects in teleoperation applications [Aleotti et al., 2002]. An-
other approach for simulating contact with virtual objects used thimbles
with contractible wires around the fingertips [Scheibe et al., 2007] (see shape
memory alloys in section 5.2). Also, force feedback devices were used for
surgical training [Chen and Marcus, 1998], for remote controlling of robotic
vehicles [Stone, 2001], and as controllers for computer games.

5.5 Closing Remarks

Researchers have explored various applications for artificial tactile stimuli,
and they have shown that these stimuli could effectively convey information
to users. Our goal was to apply tactile stimuli as messages that signaled
how to move the body during physical activities. Therefore, in this chapter,
we have first discussed how the skin processes tactile stimuli and which
sensations humans can perceive. Then, we have reviewed parameters for
encoding information as tactile signals, and we have presented technologies
and example applications that conveyed messages over the tactile sense.

In the next chapter, we will introduce tactile motion instructions, and we
will describe the design and evaluation of full-body tactile patterns that
could represent body movements in an intuitive way.
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Chapter 6

Tactile Motion Instructions

“I never teach my pupils. I only attempt to provide the
conditions in which they can learn.”

—Albert Einstein

In this chapter, we will explore artificial tactile stimuli as instructions how Tactile stimuli can

result in reflex

actions.

to move the body during physical activities. We call these stimuli tactile
motion instructions. The idea behind tactile motion instructions is simple:
stimuli that affect the skin can trigger body movements. For example, we
are likely to turn around when we unexpectedly feel a tap at the shoulder.
Moreover, the location of the tap can influence our movements. A tap at the
left shoulder makes us turn to the left, whereas a tap at the right shoulder
makes us turn to the right. This example illustrates that we habitually
respond to tactile stimuli by moving the body in a certain direction.

We believe that artificial tactile stimuli can intuitively represent body move- Applications of

tactile feedback

systems in sports

ments and that they can instruct athletes how to move. This idea relates
to tactile navigation displays that signal the direction in which to walk
(see section 5.4.2). Van Erp et al. [2006] proposed a similar idea for sports
training and mentioned that a vibrating element could replace the hand of
the coach in dynamic situations when coaches cannot physically push and
pull a student’s limb into the desired position. They differentiated between
three applications: where to move to, how to move, and when to move.

Where to move to: People directly map a tactile stimulus to body coor- A localized tactile

stimulus could

signal the

direction where to

move.

dinates [van Erp, 2005]: a stimulus on the left side of the body represents
left; a stimulus on the right side of the body represents right; a stimulus
on the front or on the back of the body represents front or back. Since
such localized stimuli can intuitively represent spatial direction, they can
indicate the direction towards a target relative to the position of the body.
Besides navigation [Ross and Blasch, 2000, van Erp and van Veen, 2001,
Tsukada and Yasumura, 2004, van Erp et al., 2005] (see section 5.4.2), such
stimuli could be applied to sports training. For example, they could signal
team players in which direction to look and move [Van Erp et al., 2006].
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When to move: The onset of a tactile stimulus could signal the timeA stimulus could

signal when to

initiate a

movement.

when to move. Timing information is in particular important for sequences
of body movements. For example, oarsmen have to precisely time their leg
and back movements to achieve optimal performance. In this case, localized
stimuli delivered to the back and to the knees could indicate when to move
the back and when to move the knees [Van Erp et al., 2006].

How to move: A tactile stimulus could indicate how to move the limbsA stimulus could

signal how to

move the body.

and the body. For example, to optimize the posture of the back in speed
skating and cycling, a stimulus could signal to lower the shoulders [Van Erp
et al., 2006]. Other works proposed stimuli for indicating deviations from
allowed movements, thereby guiding wrong movements back to the desired
movement path [Lindeman et al., 2006a, Lieberman and Breazeal, 2007].

These applications for artificial tactile stimuli are not limited to sportsWe have focused

on tactile stimuli

that could signal

how to move the

body.

where coaches cannot immediately provide feedback on the posture and on
the timing of body movements, such as in the aforementioned examples or
in snowboarding, skiing, and surfing. In fact, they could guide athletes to
the correct movements in any sport, including martial arts, dancing, and
ballet. In addition, they could support people or patients in correcting
wrong posture in unsupervised situations, for example while gardening or
during rehabilitative exercises at home. The variety of physical activities
that could benefit from tactile instructions inspired us to investigate which
tactile stimuli could be applied as instructions. In particular, our goal was
to find tactile stimuli that could intuitively represent body movements,
similar to the tap at the shoulder that could make us to turn around.

Until now, however, it has not been investigated which artificial tactileThis is the first

investigation into

tactile instructions

for physical

activities.

stimuli can intuitively represent body movements, nor have they been ex-
amined in detail in the context of sports training and daily physical ac-
tivities. Since physical activities are by their nature physically and often
cognitively demanding, they might degrade the ability of people to perceive
these stimuli. For example, athletes experience exhaustion, pain, and mus-
cle strains, whereas clothes create friction on the body. Moreover, athletes
focus their attention on the sport because they have to quickly adjust their
movements and posture to changing situations. This raises the question
which tactile stimuli are appropriate as instructions in active situations.

This dissertation provides the first investigation into artificial tactile stimuli
that can convey instructions how to move the body during physical activ-
ities. A part of this work was done by Jacobs [2008] and Hilgers [2008]
under the guidance of the author. In particular, we have investigated

• how young adults intuitively responded to tactile stimuli delivered
across the body and which body movements they performed,

• how well young adults perceived and recognized tactile instructions
in active situations that were physically and cognitively demanding,

• how tactile instructions compared with spoken instructions delivered
over earplugs,
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• if tactile instructions establish a tactile language (see chapter 7),

• if tactile instructions could enhance the performance and learning of
motor skills (see chapter 8).

The remaining of this chapter is organized as follows:

• Section 6.1 discusses requirements on tactile motion instructions and
introduces a formal notation for documenting artificial tactile stimuli.

• Section 6.2 presents an exploratory study on the intuitive interpreta-
tion of artificial tactile stimuli delivered across the body.

• Section 6.3 and section 6.4 report on the design, perception, and
interpretation of a first set of tactile motion instructions that were
evaluated with young adults in stationary and in active situations.

• Section 6.5 lists a first set of guidelines for designing tactile motion
instruction patterns and presents ten tactile instructions that evolved
from our investigation.

6.1 Informing the Design

The design space of mobile tactile interfaces can be organized along two The design space

of mobile tactile

interfaces

dimensions [Poupyrev et al., 2002]. One dimension specifies the amount of
cognitive load that the device imposes on the user. This dimension denotes
how much conscious attention the user has to spend at the expense of other
tasks. The other dimension denotes how abstract the representation of the
conveyed information is (see Fig. 6.1).

An abstract representation does not have a direct relationship between the Abstract tactile

stimuli can

increase the

amount of

cognitive load

required for

interpreting the

conveyed

message.

tactile stimulus and the conveyed message. Such a message is based on
the coded approach (see section 5.3). Coded messages can represent any
information, but they can increase the amount of cognitive load that is re-
quired for perceiving and interpreting the stimulus. Examples of abstract
messages that do not require a high amount of cognitive load include Am-
bient Touch events for handheld devices [Poupyrev et al., 2002], such as
a tactile notification that could represent an incoming message. If, how-
ever, different tactile notifications were used for representing the type of
the message, which could be represented as Tactons [Brewster and Brown,
2004] or as haptic icons [MacLean and Enriquez, 2003] (see section 5.3), the
amount of cognitive load required for recognizing the message type would
increase. High cognitive load is also required for understanding the tactile
language Vibratese [Geldard, 1957] (see section 5.4.1) or for precise blind
control when the user can only operate a device through touch.

We are interested in tactile stimuli that can be perceived and interpreted Real-world

sensationswith a minimum amount of cognitive load in active situations. In particular,



78 6 Tactile Motion Instructions

Cognitive load

A
bs

tr
ac

ti
on

high

hi
gh

lo
w

low

Precise blind control

Vibrotactile languages
(e.g., Vibratese)

Simulation of real-world
tactile feeling

Tactile feedback for touch screen
(e.g., Active Click)

Tactile feedback for tilting interfaces

Tactile progress bar

Tactile notification

Ambient Touch

Figure 6.1: The design space of mobile tactile interfaces (adapted from
[Poupyrev et al., 2002]).

tactile motion instructions should ideally resemble expressive real-world
sensations, such as pushing and pulling sensations that are unambiguous.
Tactile displays that evoke such sensations on the body do not yet exist.
This leaves localized tactile stimuli as basic building blocks for simulating
sensations that feel realistic. In the following sections, we will discuss our
approach to designing tactile motion instructions based on these stimuli.

6.1.1 Expressive Sensations

We have noted before that we are likely to turn around when we perceiveLocalized stimuli

have been applied

as instructions

and notifications.

a tap at the shoulder, in particular if we expect that a person touches
us. Artificial tactile stimuli, which resembled such a tap, have already
been applied to navigation for signaling in which direction to walk (see
section 5.4.2) and for signaling when users collided with or touched virtual
objects (see section 5.4.6). These examples illustrate that a simple localized
stimulus, such as a pulse, can be effectively applied to the body as an
instruction or a notification that represents an event in a particular context.
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We have focused on physical activities. If we used a pulse in this context, A pulse could

represent a body

movement.

this pulse could represent a body movement. For example, a stimulus at
the right arm could indicate to raise the right arm. A stimulus at the right
wrist could represent a punch with the right fist. Likewise, a stimulus at
the lower left leg could represent a dance step or a kick with the left leg,
whereas stimuli at both thighs could represent flexing or stretching the legs.

Even so, a pulse is abstract. Since a pulse does not inherently describe how A simple pulse is

inexpressive and

requires to learn

its meaning.

to move the body or the limb that was stimulated, the user would have
to learn the mapping between this stimulus and the meaning that it could
represent. Consequently, the amount of cognitive load required to recall
the meaning of this inexpressive stimulus would increase.

Moreover, the location where the pulse is applied to the body could influ- The location of a

stimulus could

influence how

intuitive the user

considers the

conveyed message

and how fast the

user responds.

ence how intuitive the user considers the mapping between the stimulus and
its meaning, and how fast the user responds. For example, Jansen et al.
[2004] reported that a pulse that was applied for 200 ms laterally to the side
of the hand in order to indicate the direction in which to rotate the hand
(extrinsic frame of reference) resulted in faster reaction times than a pulse
that was delivered laterally to the forearm, which stimulated the muscles
that contracted when the hand was rotated (intrinsic frame of reference).
Lateral stimuli, however, would be better suited for indicating a translation
of the hand to the left or right than a rotation [Jansen et al., 2004].

Instead of a simple pulse, a directional line based on sensory saltation Directional lines

could create

expressive

sensations.

evoked across a larger body area could result in an expressive sensation
that could be self-explaining as an instruction how to move the body. For
example, Tan et al. [2000] reported that untrained users could identify the
direction of sensory saltation at the back (see section 5.3). Moreover, such
directional lines were effectively applied to the back in order to signal the
direction to walk [Ertan et al., 1998, Jones et al., 2006]. Also, a series of
signals delivered across multiple actuators could indicate rotation [Gem-
perle et al., 2001], such as around the wrist for signaling the direction in
which to rotate the hand [Lieberman and Breazeal, 2007]. If we expand
on this idea, rotation around the waist could indicate to turn left or right,
and directional lines at the thighs in upward or downward direction could
signal to stretch or to flex the legs.

The intensity and the spatial dimension of tactile stimuli could also help Stimulus intensity

and spatial

dimension

design expressive sensations. For example, an intense sensation perceived
across a large body area could represent a wide and a fast movement, similar
to a strong push through the coach’s hands.

6.1.2 Stimulus Duration and Perception under Workload

Another important issue for designing tactile instructions is the duration Guidelines on the

duration of tactile

stimuli

of the applied stimuli. A tactile instruction should be long enough to be
perceived but short enough to be quickly interpreted such that the user
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can quickly react. Guidelines on the minimum duration of tactile messages
suggest a stimulus of 100 ms [Geldard, 1957]. For directional lines based on
sensory saltation, three pulses per actuator were commonly applied [Gel-
dard, 1975, Cholewiak and Collins, 2000, Tan et al., 2003]. In this case,
pulse durations of 20-300 ms and pauses of 40-60 ms evoked optimal sen-
sations [Geldard, 1985]. These timing values, however, were derived from
a stationary situation and might not apply to active situations.

Related work provides a few hints on the timing values for tactile stimuliCognitive

workload can

degrade the ability

to locate brief

tactile stimuli.

that could be perceived in active situations, including findings of studies
that investigated how well young adults could identify the location of vi-
brotactile pulses under cognitive workload. For example, young adults who
floated in an airplane during parabolic flights had difficulty in identifying
the location of a pulse of 250 ms duration applied to the torso [Bhargava
et al., 2005] and in identifying the direction of sensory saltation applied to
the back [Traylor and Tan, 2002]. This physical activity obviously required
the participants to pay attention to floating in zero gravity and to avoid
bumping into objects, which distracted them from paying attention to the
pulses [Traylor and Tan, 2002, Bhargava et al., 2005]. Even so, the authors
noted that the effect of cognitive load on the ability to pay attention to the
pulses might decrease as one becomes accustomed to the physical task.

The findings of other studies indicate that participants who were involvedThe location of

long pulses and of

short sequences of

pulses could be

identified under

cognitive

workload.

in tasks that required cognitive workload could perceive and identify the
location of a long pulse or of a sequence of short pulses. For example,
middle-aged men were able to identify to which side of the torso pulses of
100 ms duration followed by 200 ms pauses were applied while sitting in a
centrifuge, which simulated high G-load conditions that jet pilots experi-
enced [van Veen and van Erp, 2001]. Also, the location of a 1000 ms pulse
that was applied to different locations around the waist was identified while
navigating a helicopter and a fast boat [van Erp et al., 2005].

Other studies also indicate that participants were able to perceive and toTactile signals

were perceived

during tasks

performed in

flight and driving

simulators.

identify tactile warning and navigation signals applied to the wrist and to
the torso during flight simulator and driving simulator tasks: a 200 ms pulse
[Cardin et al., 2006b]; a 500 ms pulse [Sklar and Sarter, 1999]; a 1060 ms
pulse [Ho et al., 2005]; and sequential pulses of 60 ms with varying pauses
[van Erp and van Veen, 2001]. Also, the location of vibration applied to the
left or to the right arm could be identified while running through a military
obstacle course, but no details on the nature of these stimuli was reported
[Lindeman et al., 2004b].

Overall, the aforementioned findings on the perception of tactile stimuli inWe chose three

pulses as basic

stimulus for

composing tactile

patterns.

active situations suggest using pulse durations around 250 ms or a sequence
of briefer pulses. For these reasons, we have decided to apply three localized
pulses as basic pattern for simulating a tap, based on a burst duration (BD)
of 100 ms and an inter-burst interval (IBI) of 50 ms (IBI denotes the pause
between two bursts). Fig. 6.2 illustrates these timing values for a tap and
for a directional line.
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Figure 6.2: The timing values for tactile stimuli as investigated in this
work. For directional lines that evoked sensory saltation, the three actua-
tors were positioned at different locations in line, as illustrated in Fig. 5.3.
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Figure 6.3: The stimulated body areas for finding tactile motion instruc-
tions. The dots represent the position of actuators as investigated in this
work. Table 6.1 summarizes acronyms that identify these positions.

6.1.3 Stimulus Locations on the Body

The area of the skin that could receive tactile instructions is large. To cut We focused on

body locations

that seemed

appropriate for

pulses and for

directional lines.

down the search space for finding promising locations, we chose body areas
that seemed appropriate for receiving the aforementioned localized pulses
and directional lines (see Fig. 6.2). Fig. 6.3 illustrates these areas, which
comprised the shoulders, the torso, and the thighs (front, back, and lat-
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Table 6.1: Three-letter acronyms denote the position of actuators: first
letter = body location; second letter = left/right/medial; third letter =
ventral/dorsal/lateral (medial = middle, ventral = front, dorsal = back).

Acronym Body location Acronym Body location
SLL Shoulder Left Lateral SRL Shoulder Right Lateral
SLV Shoulder Left Ventral SRV Shoulder Right Ventral
SLD Shoulder Left Dorsal SRD Shoulder Right Dorsal

BLL Body Left Lateral BRL Body Right Lateral
BMV Body Medial Ventral BMD Body Medial Dorsal

TLL Thigh Left Lateral TRL Thigh Right Lateral
TLV Thigh Left Ventral TRV Thigh Right Ventral
TLD Thigh Left Dorsal TRD Thigh Right Dorsal

eral). Since the spatial acuity of the skin varies on the body, we considered
the two-point threshold for determining the minimum distance between
neighboring stimulation points (see section 5.1). We omitted the calves,
which might be inappropriate for tactile stimuli while wearing shoes, and
the arms, which might be moved to different positions in active situations.

6.1.4 A Notation for Tactile Patterns

Related work described and documented tactile stimuli textually and visu-A formal notation

captures the

structure and the

characteristics of

tactile stimuli.

ally. For example, sequences of numbers, such as 111222333, were used to
specify the temporal order in which to activate actuators [Tan et al., 2003],
and arrows represented the spatial order of activation [Jones et al., 2006].
Although these illustrations could visually describe the evoked sensations,
they did not capture all characteristics of the stimuli. For this reason,
we have introduced a formal notation for documenting the structure and
properties of tactile stimuli that could represent tactile motion instructions.

Moreover, this notation can capture the fundamental characteristics of anyThree pattern

categories tactile stimuli and can document three pattern categories: one-element
patterns, compound patterns, and simultaneous patterns. These categories
partly base on design principles introduced for Earcons [Blattner et al.,
1989] and Tactons [Brewster and Brown, 2004].

A one-element pattern will represent a single vibration burst or a temporalOne-element

patterns pattern. We will use P (l) to denote a single pulse applied to the body
location l. P (lx) will identify one specific actuator at this position. P 3(lx)
= P (lx) → P (lx) → P (lx) will represent three sequential pulses delivered
by the same actuator.

Pulses could have different characteristics. For example, they could varyPulse

characteristics the burst duration or the duration of pauses between sequential bursts.
We will specify these characteristics as additional arguments. P (l, d, p) will
denote a pulse at location l with BD = d and IBI = p (in ms) (see Fig. 6.2).
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P (lx, d1, p1)→ P (lx, d2, p2)→ P (lx, d3) will describe a pattern that varies
the duration of the bursts and the pauses. For example, P (SRL, 100)
would laterally stimulate the right shoulder with a pulse of 100 ms, and
P 3(TRV3, 100, 50) would sequentially deliver three pulses with actuator 3
located at the front of the right thigh, using pauses of 50 ms (see Fig. 6.3).

A compound pattern will display one-element patterns in succession. We A compound

pattern is a

sequence of

one-element

patterns

will use P (lx)→ P (ly) to denote pulses that sequentially stimulate different
body locations. For example, P 3(TRV3)→ P 3(TRV2)→ P 3(TRV1) would
sequentially pulse three actuators for three times to render a directional
line in upward direction at the front of the right thigh (see Fig. 6.3). As a
shorthand, we will use the symbol R (“rabbit”) to refer to sensory saltation.
RU and RD will denote saltation in upward and downward direction. For
example, the compound pattern RU (TRL)→ RD(TLL) would start in up-
ward direction laterally at the right thigh and would conclude in downward
direction laterally at the left thigh.

To repeat a pattern, a number n ·(...) will specify how often the pattern will Repeated patterns

be sequentially applied. For example, 2 · (RU (TRL) → RD(TLL)) would
evoke saltation in upward direction laterally at the right thigh and saltation
in downward direction laterally at the left thigh twice (see Fig. 6.3).

A simultaneous pattern will describe stimuli delivered to multiple body Simultaneous

patterns stimulate

different body

locations at the

same time

locations at the same time. We will use P (lx) + P (ly) + P (lz) to de-
note pulses that simultaneously stimulate different locations. For example,
P (SLD) + P (SRD) would stimulate the shoulder blades with a single
pulse, and RU (TRV ) + RU (TLV ) would simultaneously elicit saltation in
upward direction at the front of both thighs (see Fig. 6.3). These patterns
could be used for creating intense and large sensations.

Certain properties of tactile stimuli could be specified in advance and omit- Shorthands

succinctly

describe patterns.

ted for subsequent stimuli. For example, when the body location l has been
named, Px will be a shorthand for identifying actuator x at the given po-
sition. P 3

x will denote three pulses applied to the same location, whereas
P 3
x → P 3

y → P 3
z will denote three pulses sequentially applied in line.

Moreover, tactile stimuli could have additional properties, such as wave- Indices denote

additional

properties of

tactile stimuli.

form, frequency, and amplitude. These properties could be documented
with indices. For example, Psine(l, 200) could denote a 200 ms pulse ap-
plied as sine wave, whereas Psquare could denote a square wave. P200Hz

could specify the frequency of the stimulus, whereas P200Hz,20dB could ad-
ditionally specify the intensity.

6.1.5 Tactile Suit and Hardware Setup

We have used tight-fitting cycling shorts and T-shirts with small pouches A tactile suit with

cylindrical

vibration motors

for actuators as a custom-tailored tactile suit for stimulating the body (see
Fig. 6.4). Off-the-shelf Nokia 3270 cylindrical vibration motors served as
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Figure 6.4: The first design of the tactile suit. Vibration motors were
placed inside small pouches that were sewn on the fabric.

Figure 6.5: Nokia 3270 cylindrical motors were placed inside a plastic
tube to shield the rotating mass. The tube was fixed with insulating tape
and with heat shrinkable tubing. Strictly speaking, these motors create
vibrotactile stimuli because they vibrate (see also section 5.2). Throughout
this work, we will refer to these vibrotactile stimuli as tactile stimuli.
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Figure 6.6: Nokia 3270 vibration motors were controlled by pulse width
modulation to simulate different supply voltages [Barr, 2001]. The fre-
quency range of motor three noticeably differed from those of the other
motors for voltages below four V. The rotating mass of this motor might
have slightly touched the plastic tube, or the layer of shrinking tube might
have affected the vibration.

actuators (see Fig. 6.5). These motors were connected to the SensAct box
(see Fig. 3.5) and were powered by four 1.5 V AA batteries (6 V).

The vibration frequency and intensity of these motors cannot be controlled The frequency

and intensity of

the vibration

depend on the

applied voltage.

independently; the higher the supply voltage is, the higher is the intensity
and the frequency of the vibration. To estimate the characteristics of these
motors, we have measured the vibration frequency of three motors. Each
motor was fixated with superglue to an accelerometer type 4393 V for
vibration measurement [Brüel & Kjær, 2009]. The motors were activated
for 100 ms and were controlled by pulse width modulation at duty cycles
between 0–100% [Barr, 2001], which simulated voltages up to the full supply
voltage of six V. To prevent the motors and the cables from moving around,
they were placed between two layers of foam, which was similar to placing
them inside the pouches of our tactile suit.

Fig. 6.6 illustrates their vibration frequency. Overall, the examined motors The motors

vibrated at

frequencies below

250 Hz.

vibrated at slightly different frequencies. The most notable characteristic
was that voltages above four V yielded frequencies above 150 Hz. At full
supply voltage, the average frequency was 178 Hz. Although these motors
would not optimally stimulate the Pacinian corpuscles, which best respond
to frequencies around 250 Hz (see Table 5.1), we decided to use these motors
and to pulse them at full intensity. In a self-experiment in a static situation,
we found that the evoked sensations were intense. Moreover, these Nokia
3270 vibration motors were comparable to vibration motors reported in
related work on vibrotactile feedback. These motors vibrated at slightly
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lower frequencies without impairing the perception of the tactile stimuli:
80–100 Hz [Jones et al., 2006], 115 Hz [Jones et al., 2007], 142 Hz [Lindeman
et al., 2004a], 160 Hz [Jansen et al., 2004, van Erp et al., 2005].

6.2 Intuitive Interpretation of Tactile Stimuli

Our first investigation in tactile motion instructions addressed the composi-Brainstorming

ideas for

representing body

movements as

tactile stimuli

tion of tactile patterns that could be used for representing body movements
in an intuitive way. Based on the stimuli depicted in Fig. 6.2, we have brain-
stormed various one-element, compound, and simultaneous patterns that
could stimulate the body areas depicted in Fig. 6.3. We have identified 29
patterns that we gauged useful as starting points, including:

• Localized pulses at the torso

P 3(SRL), P 3(SLL), P 3(BMV1), P 3(BMD1)

• Directional lines based on sensory saltation at the torso

RU (BRL), RD(BRL), RU (BMV ), RU (BMD)

• Rotation around the waist

P 3(BMV3)→ P 3(BLL3)→ P 3(BMD3)→ P 3(BRL3)

• Compound directional lines at opposing body sites

RU (TLL) → RD(TRL), RU (TRL) → RD(TLL)

• Simultaneous directional lines at the thighs

RU (TRV ) + RU (TLV ), RD(TRD) + RD(TLD)

A pilot study with two volunteers revealed that directional lines around theA pilot study

allowed us to

identify problems

with the tactile

patterns.

waist were not perceived as continuous movement when using the timing
values illustrated in Fig. 6.2 (BD = 100 ms, IBI = 50 ms). For this reason,
we considered shorter timing values for these patterns (BD = 50 ms, IBI
= 30 ms) and included a pattern that rotated twice around the waist.
Also, we found that testing all patterns was time-consuming. To limit the
experimental time to one hour for each participant, we chose a between-
subjects design and distributed the set of patterns between two user groups.

Based on these patterns, we have conducted an exploratory study in orderExploratory study

on the intuitive

interpretation of

tactile stimuli

to observe how young adults intuitively responded to the tactile stimuli. An
open response paradigm was used such that the participants could freely as-
sign any meaning to the tactile sensations they experienced across the body.
Moreover, they were encouraged to explain their thoughts and reactions.
This qualitative data helped us to find tactile patterns that could naturally
describe how to move the body.
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Table 6.2: Average percentage of vague and concrete responses to all tac-
tile patterns that comprised single localized pulses (P 3), single directional
lines (R), simultaneous patterns (SP), and compound patterns (CP).

Pattern category P 3 R CP SP
Vague responses 35 21 30 37
Concrete responses 65 79 70 63
Concrete movement 1 53 48 56 49
Concrete movement 2 13 22 23 19
Concrete movement 3 6 6 0 3
Other movements 28 24 21 29

6.2.1 Participants and Experimental Setup

Twenty volunteers aged 22–28 years (M = 25.25 years) were recruited from
the local university (eight women). Nineteen volunteers regularly practiced
sport. None of them had problems in perceiving tactile stimuli.

The participants were informed that they would perceive tactile stimuli The participants

stated which body

movements the

tactile stimuli

could represent.

at different locations across the body and that these cues were intended
to represent body movements. Their task was to describe the perceived
sensations and to explain with which body movements they associated these
sensations. They were not aware of the characteristics and the composition
of the stimuli. Neither did they know which body movements these chosen
patterns could represent.

The experimenter used the SensAct Control application (see Fig. 3.9) to
randomly trigger the tactile patterns. The participants stood upright, wore
headphones, and listened to soft music, which blocked the auditory cues
produced by the vibrating motors. This setup prevented the participants
from locating the position of the motors on the body by sound. Upon
perceiving a pattern, the participants took off the headphones and explained
their thoughts. All sessions were videotaped in order to resolve unclear
issues while interpreting the responses during data analysis after the study.

6.2.2 Results

The participants’ intuitive reactions varied. Their responses included con- The answers

varied across the

participants.

crete movements, such as lift the arm, and vague movements, such as move
the arm. For almost all tactile patterns, a few participants stated that they
did not associate the evoked sensations with any specific body movements.

For each tactile pattern, we counted how often the participants assigned the Single directional

lines were most

often associated

with a concrete

body movement.

same, a similar, or a different meaning. This statistics revealed which body
movements were most often named, which patterns were possible candidates
for tactile instructions, and which patterns were too vague to evoke specific
reactions. Table 6.2 summarizes the average percent agreement on body
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Table 6.3: The most frequent responses (in %) to the tactile patterns and
the stimulated body areas.

Location of localized pulses Reactions as body movements
Left or right shoulder lift left arm (30%), move right arm (30%)
Both shoulders pull back the shoulders (50%)
Upper chest lean backward (30%)
Upper back straighten up (50%), lean forward (30%)
Location of directional lines Reactions as body movements
Chest (sternal) lean/go backward (40%)
Back (spine) straighten up (30%), lean forward (20%)

Lateral side of the torso
move arm away (50%), lean upper body
sidewards (40%)

Lateral side of the thighs
shift the weight to the other foot (40%),
move the leg (20%)

Back or front of the thighs bend the legs (60%), jump (20%)
Around the waist turn left or right (60%)

movements for all patterns of the same type. Overall, single directional lines
(R) most often yielded a concrete answer that described a specific body
movement. Several participants stated to prefer these patterns to localized
pulses because they provided clear cues how to move the body. Although
we found that every pattern could represent two or more body movements,
clear trends towards one specific reaction emerged. Table 6.3 summarizes
the most frequent answers and the body area that was stimulated. In
the following paragraphs, we will summarize which tactile patterns the
participants associated with which body movements.

The reactions to localized pulses were often vague and interpreted as requestLocalized pulses

prompted to move

the stimulated

body part.

to move the corresponding body part somehow. Pulses at the left shoulder
prompted to lift the left arm (30%), to lean right, to move the shoulder
forward, or to move the shoulder backward. Pulses at the right shoulder
prompted to move the right arm (30%), to lean left, to lean right, or to
move the shoulder forward, but not to turn around. There was a broad
agreement that pulses at the torso prompted to correct upper body posture,
such as at the upper chest to lean backward (30%), at the upper back to
straighten up (50%) or to lean forward (30%), and at both shoulders to pull
back the shoulders (50%).

The responses to directional lines RU and RD delivered to the back or toThe responses to

directional lines

and to localized

pulses at the back

and the chest

were similar.

the chest yielded similar answers as single pulses. For example, RU (BMV )
was interpreted as lean/go backward (40%) and once as lean forward.
RU (BMD) yielded straighten up (30%), lean forward (20%), and once lean
backward. Three participants followed the directional information rendered
by RU (BMV ) and RU (BMD); they responded with pull the shoulders up.

Pulses and directional lines delivered laterally to the torso, such asLateral stimuli at

the torso or the

thighs often

prompted to lean

sideways.

RU (BRL) and RU (BLL), most often prompted to move the arm away from
the body (50%) and to lean the upper body sidewards (40%). RU (TRL) and
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RU (TLL) delivered laterally to the thigh were interpreted as requests to
lift the leg or to shift the weight from one foot to the other foot (40%), to
move the leg (20%), and once to lean the upper body sidewards.

Compound and simultaneous patterns that were delivered laterally to the Compound

patterns laterally

at the thighs

sometimes evoked

countermove-

ments.

thighs, such as RU (TRL) → RD(TLL) or RU (TRL) + RD(TLL), pro-
duced a similar effect to one-element patterns, such as RD(TLL). Even so,
four participants stated that compound patterns were contradictory; these
patterns evoked countermovements. For example, when they perceived the
pattern RU (TRL) laterally at the right thigh, they were tempted to shift
the weight towards the left foot. They were, however, tempted to shift the
weight back towards the right foot when the vibration RD(TLL) started at
the left thigh. Simultaneous patterns laterally at both thighs demanded
more attention to identify the direction that was displayed on the skin.

About 60% of the participants tended to move away from the particular Moving towards

vs. moving away

from stimuli

side where vibration was delivered to the chest, to the back, and laterally
to the torso or to the thighs. The other candidates tended to move towards
on the side where they perceived the vibration.

RD simultaneously delivered to both thighs was interpreted as bend the legs Directional lines

downward at the

back of the thighs

prompted to flex

the legs.

when the back or the front of the thighs was stimulated (60% vs. 40%).
Although half of the participants could not interpret RU at the back of the
thighs, two participants stated to bend the legs, and two participants stated
to lean forward. Similarly, the responses to RU delivered to the front of
the thighs varied and showed no clear trends to specific movements. Three
candidates responded with lean backward and two with jump upwards.

Simultaneous patterns that activated all motors at the thighs were de- Simultaneous

patterns evoked

strong and less

pleasant

sensations.

scribed as strong and as less pleasant (25%). About half of the participants
could not interpret these patterns. For the other participants, RD mostly
felt like bending the legs (40%), RU like stretching (20%) or jumping (20%).
These patterns were rated to represent more powerful or faster movements
than patterns that stimulated either the back or the front of the thighs.

The directional lines around the waist, which based on the standard tim- Quick directional

lines around the

waist signaled to

turn sideways.

ing values, resembled localized taps and were not perceived as continuous
movement. Even so, they were associated with turn left or turn right a few
times (30%). The patterns that based on the shorter timing values, which
quickly delivered brief pulses and which were rendered twice around the
torso, were more often interpreted as turn left or turn right (60%).

6.2.3 Discussion

This exploratory study on the intuitive interpretation of tactile stimuli re- Tactile stimuli

exist that can

represent body

movements in an

intuitive way.

vealed that young adults associated localized pulses and directional lines
with specific body movements. These stimuli could serve for composing a
general set of tactile patterns that could signal how to move the body.
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Overall, we found that a tactile stimulus applied to a specific body locationThe stimulated

body areas were

moved.

lead to movements of the same body part. Sometimes, neighboring body
parts were moved. This observation indicates that the message conveyed
by a stimulus should be directly related to the stimulated body area.

Although every participant mapped a tactile pattern only to one bodyA tactile pattern

can represent

different

movements.

movement, we found at least two different responses to this pattern across
our user group. Consequently, if these patterns were used as instructions,
the mapping between a pattern and its meaning would be obvious for some
users, whereas other users would have to learn this mapping. Even so,
learning the meaning of these patterns should not be difficult because none
of the associated movements did address distant body locations.

An interesting observation was that about half of the participants preferredA tactile stimulus

can intuitively

indicate a push or

a pull of the body.

to move away from pulses delivered laterally to the torso or laterally to the
thighs, as if they were being pushed away. The other participants tended to
move towards the stimulation, as if they were being pulled. These reactions
also occurred for stimuli delivered to the back and to the chest. These
opposing reactions suggest that tactile motion instructions could base on
two encoding metaphors that represent either a push or a pull of the body.
Moreover, these metaphors would allow us to design expressive sensations
that feel realistic (see section 6.1). To illustrate the difference between these
two approaches, assume that you were instructed to lean your body to the
left. The pull technique would display the impulse on the left side of the
body to pull you to the left. In contrast, the push technique would display
the impulse on the right side of the body to push you to the left.

Moreover, our findings indicate that directional lines delivered across largerDirectional lines

can provide strong

cues how to move

the body, and

they could

represent the

bending radius of

the torso.

body areas could intuitively encode the direction in which to perform a
movement. Many participants preferred these cues because the evoked sen-
sations signaled the direction in which to move, such as downwards for
flexing the legs, or upwards for jumping or for pulling up the shoulders.
When applied laterally to the torso, these patterns resembled the natural
movements of the body when bending sideways. The higher the pulses
traveled upwards, the higher these pulses corresponded to the bending ra-
dius of the torso (see section 5.4.2 and [Rupert, 2000], who mentioned that
an increased tilt of the aircraft to the side could activate actuators located
higher on the corresponding side of the pilot’s torso).

Although a stimulus that is applied laterally to the body could signal to leanStimulating the

lateral sides of the

body in succession

could evoke coun-

termovements.

sideways or to shift the weight to one foot, applying a subsequent stimulus
at the opposing side of the body could result in a countermovement. This
reaction to a compound pattern that stimulates both sides of the body is
plausible if we assume that a user prefers to move either towards or away
from the side where the stimulation occurs. For this reason, it seems to be
beneficial if only one side of the body is stimulated.

The findings of this study can be used for designing tactile motion instruc-Limitations of the

study tions. Even so, the experimental setup influenced and skewed the results.
For example, we have focused on young adults. Consequently, the results
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are less representative for other age cohorts. To limit the time for conduct-
ing the experiment with each participant, we have split the chosen patterns
in two sets, and we have chosen a between-subjects design. Also, some of
the observed reactions were vague and difficult to classify.

The context in which the tactile patterns were tested further influenced The situation

influenced how

the tactile

patterns were

interpreted.

how the participants responded. Our participants stood upright. This
could explain why RU delivered to the thighs was inexpressive and did not
clearly prompt to stretch the legs. In contrast, RU delivered to the torso
resulted in pull the shoulder up, and RD delivered to the thighs resulted
in flex the knees; these movements could be performed while standing up-
right. Moreover, our participants knew that vibration motors generated the
tactile sensations. This could explain why they did not turn around upon
perceiving the pulses at the shoulders or at the back; it was not a person
who touched them from behind. Had we informed the participants that
these stimuli could represent instructions for navigating towards a target,
we surmise that they might have turned around.

Moreover, we have explored only a small set of tactile stimuli and did not The

characteristics of

the tactile stimuli

influenced the

responses.

vary their intensity. All pulses were delivered at full intensity (on or off),
which feels jerky on the skin. Also, vibration over bones, such as at the
ribs or the shoulder blades, feels harder than vibration over soft or muscular
areas, such as at the belly or the thighs. Initially, we have observed sudden
and jerky movements because our participants were not familiar with the
evoked sensations. Moreover, the lateral sides of the torso seemed to be
more sensitive because pulses at these locations were occasionally rated as
ticklish but also as stronger than at other body areas. We surmise that
smoother sensations, which pulses of increasing and decreasing intensities
could evoke, might be associated with fluent body movements. In contrast,
activating several motors simultaneously could create strong sensations that
might represent wider or stronger movements: jumping instead of stretching
the legs; turning around 360◦ instead of turning the upper body around
the spine. In fact, some participants pointed out that such patterns might
represent more powerful and wider body movements.

6.2.4 First Design Recommendations

Based on the participants intuitive responses to tactile stimuli, we can distill
first recommendations for composing tactile patterns that could represent
specific body movements:

• Body location should encode which part of the body to move.

• Directional lines could encode the direction in which to perform a
movement, such as to flex the legs or to turn to the left.

• The mapping between a stimulus and its meaning could represent a
push or a pull of the body towards the direction to move.
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Table 6.4: Ten body movements that could serve as general instructions.
Every movement has a corresponding countermovement.

Body movement Acronym Category
Stretch the legs SL
Flex the legs FL

C1

Shift the weight from the right to the left foot WL
Shift the weight from the left to the right foot WR

C2

Lean the upper body to the left LL
Lean the upper body to the right LR

C3

Lean the upper body forward LF
Lean the upper body backward (straighten up) LB

C4

Turn the upper body to the left TL
Turn the upper body to the right TR

C5

• A sequence of tactile stimuli that starts laterally at one side of the
body and that concludes laterally at the opposing side could evoke
countermovements. These patterns seem to be less appropriate for
signaling lean left (right) and shift the weight to the left (right) foot.

Considering the participants’ most frequent responses to the investigatedTen body

movements as

instructions

tactile patterns, we have chosen ten body movements that could serve as
a general set of instructions in various physical activities (see Table 6.4).
To represent these instructions as tactile patterns, we have chosen single
directional lines, which our participants tended to prefer to localized pulses.
Also, our findings indicated that simultaneous and compound patterns did
not provide additional benefits over single directional lines.

Fig. 6.7 illustrates the locations where these directional lines could stimu-The first set of

tactile motion

instruction

patterns

late the body and describes the possible meaning of these patterns. The
formal notation for these patterns is (see Fig. 6.3 for the acronyms on body
locations and Table 6.4 for the acronyms on body movements):

Stretch the legs, flex the legs:

• SL = RU (TRV ) +RU (TLV ) at the front of the thighs

• FL = RD(TRD) +RD(TLD) at the back of the thighs

Shift the weight to the left / right foot:

• WL = RU (TRL) laterally at the right thigh

• WR = RU (TLL) laterally at the left thigh
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legsstretch

right - turn - left

shift weight
to right foot

lean forwardlean backward

shift weight
to left foot

flex legs

lean
right

lean
left

Figure 6.7: The first set of tactile motion instruction patterns, based on
directional lines. The arrows indicate the direction of the evoked sensa-
tions. The lateral stimuli in upward direction at the torso and the thighs,
and the stimuli applied to the front and back of the torso could be de-
scribed to represent the increased bending radius of the body when leaning
sideways, forward, or backward. The mapping between these patterns and
their meaning bases on the push metaphor, which would prompt to move
the body away from the side where the vibration is perceived. The stimuli
at the front and back of the thighs resemble the pull metaphor; they could
be described to pull flexed legs upwards or to pull stretched legs downwards.

Lean upper body to the left / right:

• LL = RU (BRL) laterally at the right side of the torso

• LR = RU (BLL) laterally at the left side of the torso

Lean upper body forward / backward:

• LF = RU (BMD) at the back
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• LB = RU (BMV ) at the chest

Turn upper body to the left / right:

• TL = 2 · (P 3
3 (BMV )→ P 3

3 (BLL)→ P 3
3 (BMD)→ P 3

3 (BRL))

• TR = 2 · (P 3
3 (BMV )→ P 3

3 (BRL)→ P 3
3 (BMD)→ P 3

3 (BLL))

The duration of these patterns is 1300 ms (BD = 100 ms, IBI = 50 ms, see
Fig. 6.2). TL and TR last for 1890 ms (BD = 50 ms, IBI = 30 ms).

These design recommendations and the tactile patterns are not yet definite.
They were derived from a stationary situation and do not consider how well
they can be perceived and recognized in active situations.

6.3 Tactile Motion Instructions in Stationary and
in Active Situations

We have noted that cognitive workload can degrade the ability to identifyPerception of

tactile stimuli

under physical

activities

the location of tactile pulses applied to the torso and the direction of sensory
saltation applied to the back (see section 6.1.2). In the studies that investi-
gated these stimuli, however, only a small area of the skin was stimulated.
Moreover, demanding physical activities that could occur, for example, in
sports training were not considered. To address these limitations of related
work, we have investigated if young adults could perceive and identify our
first set of tactile patterns while practicing sports that were physically and
cognitively demanding. The findings of our studies provided additional
guidelines for refining the chosen tactile motion instruction patterns.

We have focused on snowboarding and on horseback riding because bothSnowboarding and

horseback riding

as example

activities

activities do not allow coaches to always provide instructions in time or to
physically move by hand the athlete’s body into correct position. Moreover,
in both sports, athletes experience cognitive workload, natural forces, and
vibration that could influence how they perceive artificial tactile stimuli.
Snowboarders wear thick, tight-fitting clothes and boots that create natural
tactile sensations. The harsh environment leads to cold limbs, pain, and
muscle strains. Snowboarders also have to quickly adjust their posture for
maintaining balance, and they have to choose a riding path that does not
endanger other winter sport practitioners. Although horseback riding is
physically less demanding than snowboarding, this sport involves different
body movements and puts a different cognitive workload on equestrians.

6.3.1 Perception under Increasingly Realistic Conditions

Before conducting field experiments, we have evaluated our first set of tac-We used the Wii

balance board to

simulate an active

situation.
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Figure 6.8: The cognitive and physical workload condition of the experi-
ment required the participants to respond to tactile motion instructions on
the Wii balance board. The actuator boxes were placed inside a backpack.

tile patterns under laboratory conditions. The Nintendo Wii Fit balance
board [Nintendo, 2010] and the game Slalom Snowboard served to simulate
an active situation similar to real snowboarding (see Fig. 6.8). Standing
on a short and narrow static board that represented the snowboard, our
participants had to redistribute their weight between the toes and the heels
for passing between flags shown on a 40-inch display. To maintain balance,
they had to slightly flex the legs and to move the upper body and the arms.
Shifting the weight to the front foot accelerated the snowboard, whereas
shifting the weight to the back foot decreased its speed. In contrast to real
snowboarding, playing this game was physically less exhausting and did not
require the participants to wear thigh and thick clothes.

A pilot study with two volunteers revealed that almost all movements were The participants

had to utter the

perceived

instructions and

to perform the

movements.

spasmodic and difficult to classify. Moreover, the experimenter could not
accurately differentiate if the participants moved their bodies as response
to tactile instructions or if these movements were required in the current
gameplay situation. Therefore, we asked our participants to first utter
which instruction they perceived before executing this instruction. These
additional verbal responses, however, increased the cognitive workload on
them while playing the game.

Participants and Experimental Setup

Twenty volunteers aged 19–30 years (M = 24.83 years) were recruited from
the local university (four women). All volunteers regularly practiced sport,
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such as jogging or fitness exercises. Three participants snowboarded. Five
participants had already played with the balance board. Nine volunteers
had participated in our first study on the intuitive interpretation of tactile
stimuli (see section 6.2).

If tactile instructions were applied in a realistic setting during sports train-We have

compared the

perception of

tactile motion

instructions in

stationary and

active situations.

ing, such as during a snowboarding course, snowboard students would first
learn the meaning of these instructions before they would respond to them
during exercises. Therefore, our goal was to investigate how physical and
cognitive workload influenced the ability to perceive and discriminate be-
tween tactile instructions immediately after learning the meaning of the
tactile patterns. We chose a within-subjects design with two conditions:

1. Stationary situation

2. Active situation (Wii balance board)

We chose the push metaphor as mapping between the patterns and theirThe participants

learned the tactile

instructions and

practiced the

game.

meaning in order to keep the instructions consistent for all participants
(see Fig. 6.7). The participants learned the meaning of the ten patterns for
up to ten minutes by pressing buttons on the GUI of the SensAct Control
application (see Fig. 3.9). Each button represented an instruction, such as
Flex the legs, and triggered the corresponding tactile stimuli. This training
phase concluded with two to three practice runs on the balance board,
which allowed all participants to become familiar with the game.

Testing all patterns necessitated five SensAct boxes (see Fig. 3.5), whichUpper and lower

body instructions

were tested

separately.

were uncomfortable to wear in a backpack and which could hinder the
participants in moving their bodies. To increase the participants’ freedom
of movement while playing the game, we decided to reduce the weight of
the backpack. We used three boxes and applied the instruction sets for the
upper and lower body separately. The order in which these instruction sets
were applied was counterbalanced across the participants.

In the first condition, we measured how accurately randomly delivered in-The stationary

situation served as

baseline for

optimal

perception.

structions were recognized in a stationary situation while standing still.
These measurements represented the baseline for the optimal perception
of tactile instructions. The participants stood upright and listened to soft
music played back through headphones, which blocked the auditory cues
from the vibrating motors. Their task was to state which instructions they
had perceived and to perform the corresponding body movements. All
instructions were applied for two times.

For the second condition, the candidates were asked to first say out aloudThe participants

uttered the

recognized

instructions while

playing the game.

the perceived instructions and then to perform the corresponding move-
ments while playing the game. The experimenter randomly triggered all
instructions, using a random delay of 10–15 seconds after the participants
uttered their responses. The participants replayed the game until all in-
structions were applied for two times. After the experiment, we informed
the participants which instructions they had misinterpreted.
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Table 6.5: Average accuracy in identifying instructions in a stationary
situation and in an active situation on the Wii balance board (in %, with
standard deviation).

Situation Group A Group B Both groups

Day 1
stationary 96.11 (6.97) 98.13 (2.59) 97.06 (5.32)

active 91.67 (8.30) 97.50 (5.35) 94.41 (7.48)
both 93.89 (7.78) 97.81 (4.07) 95.74 (6.53)

Day 2
stationary 97.78 (5.06) 94.38 (9.04) 96.18 (7.19)

active 92.78 (6.67) 95.63 (5.63) 94.12 (6.18)
both 95.28 (6.29) 95.00 (7.30) 95.15 (6.68)

The experiment was repeated on the following day in order to assess how The experiment

was repeated on

the following day.

well the participants recalled the meaning of the tactile patterns in both
situations. Therefore, we asked the participants if they could return for an
additional experiment. To avoid practicing the meaning of the patterns at
home, we did not tell them the purpose of the follow-up experiment.

Results

Three volunteers were not able to participate on the second day and were The participants

were split into two

groups to consider

their previous

experience with

artificial tactile

stimuli.

excluded from data analysis. The other participants were split into two
groups to consider their previous experience with artificial tactile stimuli in
relation to our technology. Group A comprised the nine volunteers who were
new to these stimuli. Three participants had tried the balance board before.
One participant snowboarded. Group B comprised the eight volunteers
who had participated in the first study on the intuitive interpretation of
tactile stimuli. Although they did not know the final composition of the
patterns, they might have benefitted from their previous experience with
these stimuli. Two participants had tried the balance board before. Two
participants snowboarded.

None of the volunteers used the allotted time of ten minutes for learning the Short learning

timemeaning of the instructions. On average, they finished after 3–4 minutes.

The participants did not miss instructions. They perceived and responded All instructions

were perceived,

but some were

misinterpreted

when responding

verbally.

to all instructions in the stationary and active situation. Even so, some par-
ticipants misinterpreted a few instructions with the corresponding counter-
instructions. One participant explained that he had difficulties in articulat-
ing the meaning of the patterns. Although he recognized the instructions,
he tended to mix up the directions when responding verbally. For example,
he noticed to answer left instead of right and right instead of left. Moreover,
some volunteers stated that they preferred to express the meaning of the
patterns with gestures of the hands and arms in order to avoid speaking.

Table 6.5 summarizes the average percentage of recognized instructions for Previous

experience with

tactile stimuli did

not significantly

improve the

performance.

each group. A mixed between-within ANOVA revealed no significant main
effect of the group, F (1, 15) = 1.20, p = .29, r = .27. This indicates that
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the ability to recognize instructions was in general the same for participants
who did not have previous experience with tactile stimuli in relation to our
technology (group A) and for participants who had participated in our first
experiment on the intuitive interpretation of tactile stimuli (group B).

There was no significant main effect of the day, F (1, 15) = .12, p = .73, r =Instructions were

recognized with

similar accuracy

on both days and

in both situations.

.09, indicating that instructions were recognized with similar accuracy on
both days. There was no significant main effect of the situation, F (1, 15) =
2.75, p = .12, r = .39, indicating that the ability to respond to instructions
was in general the same in the active and stationary situation.

There was no significant interaction effect between the day and the group,No interaction

effect for day ×
group, situation ×
group, and day ×
situation.

F (1, 15) = 1.07, p = .32, r = .26. This indicates that both groups recog-
nized instructions with similar accuracy on both days. There was no sig-
nificant interaction effect between the situation and the group, F (1, 15) =
3.59, p = .08, r = .44. Although this indicates that both groups recognized
instructions with similar accuracy in both situations, group A recognized
fewer instructions than group B in the active situation, but this difference in
performance was not significant. There was no significant interaction effect
between the day and the situation, F (1, 15) = .08, p = .78, r = .07. This
indicates that on both days the instructions were recognized with similar
accuracy in both situations.

The day × situation × group interaction was not significant, F (1, 15) =Overall, neither

the situation nor

the day nor the

experience with

tactile instructions

significantly

influenced the

participants’

performance.

.27, p = .61, r = .13. This suggests that the ability to recognize tactile
instructions did not depend on the situation, on the day, or on the par-
ticipants’ previous experience with tactile stimuli. Although the average
number of recognized instructions was in general lower for group A than
for group B and lower in the active situation than in the stationary situ-
ation, this difference in performance between the groups and between the
situations was not significant. In addition, the participants remembered
the meaning of the ten instructions on the following day without practice
in-between. Even so, the participants were told after the experiment on
the first day which instructions they had misinterpreted, which could have
affected their responses on the second day.

Fig. 6.9 shows which instructions group A recognized. Amongst all instruc-Upper body

rotation and knee

flexion/extension

were most often

misinterpreted.

tions, Turn left and Turn right were most often misinterpreted in both
situations and on both days. Stretch (flex) the legs were most often mis-
interpreted on the first day. Fig. 6.10 shows which instructions group B
recognized. On the first day, only the instructions Turn left, Turn right,
and Lean right were misinterpreted a few times. This group’s performance
slightly degraded on the second day when two participants additionally
misinterpreted Stretch (flex) the legs in both situations. The ability to
recognize the other instructions was similar between the groups.

On average, in the stationary situation on day 1, group A recognized theThe profiles of the

recognized

instructions did

not significantly

differ between the

groups on day 1.

instructions with similar accuracy (M = 96.11%, SE = 1.67%) as group B
(M = 98.13%, SE = .95%); the difference between the profiles of the recog-
nized instructions was not significant t(14.33) = −1.05, p = .31, r = .24 (in-
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Figure 6.9: Average percentage of recognized instructions for group A
(with standard error).
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Figure 6.10: Average percentage of recognized instructions for group B
(with standard error).

dependent t-test, two-tailed, equal variances not assumed). In the active sit-
uation on day 1, group A recognized fewer instructions (M = 91.67%, SE =
2.90%) than group B (M = 97.5%, SE = 1.38%), but the difference be-
tween the profiles was not significant t(18) = −1.82, p = .09, r = .39 (inde-
pendent t-test, two-tailed, equal variances assumed).

On average, in the stationary situation on day 2, group A recognized The profiles of the

recognized

instructions did

not significantly

differ between the

groups on day 2.

more instructions (M = 97.78%, SE = 1.23%) than group B (M =
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Table 6.6: Number of participants who misinterpreted at least once an
instruction (see Table 6.4 for categories). The row “distinct users” denotes
the number of different participants across both situations.

Situation C1 C2 C3 C4 C5

Group A

day 1
stationary 1 2

active 2 1 2 5
distinct users 2 6

day 2
stationary 1 1

active 1 1 1 6
distinct users 6

Group B

day 1
stationary 1 2

active 1 1
distinct users 2 2

day 2
stationary 2 1 1

active 2 1 2
distinct users 3 2

94.38%, SE = 2.86%); the difference between the profiles was not sig-
nificant t(18) = 1.09, p = .29, r = .25 (independent t-test, two-tailed,
equal variances assumed). In the active situation on day 2, group A
recognized fewer instructions (M = 92.78%, SE = 3.10%) than group B
(M = 95.63%, SE = 1.88%); the difference between the profiles was not
significant t(18) = −.79, p = .44, r = .18 (independent t-test, two-tailed,
equal variances assumed).

Table 6.6 summarizes the number of participants who misinterpreted in-Group A had

difficulty in

recognizing the

direction of

rotation around

the waist in the

active situation.

structions. Five to six members of group A had difficulties in discriminating
the instructions of category C5 (Turn left or right) in the active situation
on both days, whereas only two members of group B misinterpreted these
instructions. Two to three members of either group misinterpreted the in-
structions of category C1 (Stretch or flex the legs). One to two members of
each group misinterpreted other instructions. One member of group A and
two members of group B—one snowboarder—recognized all instructions.

All participants responded to all instructions. Even so, some participantsRotational

patterns required

paying attention

to the stimuli.

mentioned that although they had perceived vibration around the waist,
they could not identify in which direction to turn without paying attention
to these stimuli. Those volunteers who balanced on the board for the first
time apparently had more difficulties than those who had already played
with the board. Also, the anatomy of the body influenced the perception
of the stimuli while playing the game. Some participants pointed out that
they had noticed vibration at the belly and the upper back but seldom at
the lower back and the chest. This indicated that our tactile suit was less
appropriate for displaying directional lines along the spine and sternum.
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Discussion

This study investigated if young adults could perceive and identify tactile The balance task

did not degrade

the perception of

tactile stimuli.

instructions in a stationary situation and in an active situation during a
balance task. These instructions were based on directional lines that were
rendered across the entire body. Overall, all participants quickly learned
and recalled the meaning of the tactile patterns over a period of two days.
They recognized most of the instructions with high accuracy in the station-
ary and in the active situation, independent of their pre-experience with
artificial tactile stimuli. Moreover, they did not miss instructions in the
active situation.

These findings indicate that the physical effort and the cognitive workload Some tactile

patterns were

misinterpreted.

experienced during the balance task did not degrade the ability to perceive
the tactile stimuli. Even so, several participants misinterpreted some in-
structions, in the active situation in particular. This indicates that the
balance task degraded their ability to identify and to name the meaning
of the patterns compared to the stationary situation. The instructions for
turning left (right) and for stretching (flexing) the legs were most often
misinterpreted, but the reasons why these instructions were misinterpreted
are different.

The tactile patterns that represented Turn left and Turn right were deliv- The patterns for

turn left and turn

right have to be

modified.

ered to the same body location and only differed in their direction around
the waist. In general, patterns that share actuators are difficult to discrim-
inate [Geldard and Sherrick, 1965, Cholewiak and Collins, 1995]. In our
case, six members of group A misinterpreted these patterns. At first sight,
it seems that members of group B benefitted from their previous experience
with artificial tactile stimuli because only two of them misinterpreted these
patterns. The characteristics of these patterns, however, suggest that group
B had less difficulty in paying attention to the direction of these patterns
while balancing on the board than group A. Therefore, these patterns have
to be modified to ensure that end-users can discriminate between them
regardless of the workload that they might experience in active situations.

In contrast, the patterns that represented Stretch (flex) the legs stimulated The instructions

are easy to learn,

but the practice

session could be

longer.

opposing body sites and did not share actuators. Only a few members of
either group misinterpreted these instructions, which indicates that these
patterns are discriminable. Even so, a few participants misinterpreted these
instructions in the stationary situation when they did not experience cog-
nitive workload that could have degraded their ability to pay attention to
these distinct stimuli. This indicates that these participants might have
benefitted from more training for learning the meaning of these patterns.

Besides these issues, our participants uttered the meaning of the instruc- Speaking

distracted during

the game.

tions, which could have lead to misinterpretations while playing the game.
Many people have trouble telling left from right (left-right confusion) [Han-
nay et al., 1990], in particular under time pressure. In fact, one participant
pointed out that he had recognized the instructions but had mixed up the
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directions while speaking. Also, some participants might have benefitted
from executing the instructions before speaking, which would have put a
different cognitive workload on them. With hindsight, we can attribute
delayed responses to the fact that speaking required attention.

Moreover, we assume that our experimental setup could have influencedRandom

instructions might

have interfered

with the required

movements for

playing the game.

the participants’ responses. Since all instructions were randomly delivered
during the game, they did not occur at times when corrections were re-
quired. For example, the message to turn the body to the right could have
interfered with turns to the left while passing the flags on the screen, which
could have lead to incorrect responses.

The instructions for leaning sideways, forwards, and backwards were basedThe push

metaphor did not

cause problems.

on the push metaphor to indicate in which direction to move. Since only
a few of these instructions were misinterpreted, we can conclude that this
encoding metaphor did not cause problems. Even so, the effects of the
encoding metaphor should be further investigated because our previous
results indicated that some people intuitively prefer to move towards the
points of stimulation instead of away (see section 6.2).

In conclusion, our findings indicate that the active situation did not degradeOur findings

indicate that

tactile motion

instructions can

be perceived and

recognized with

high accuracy in

an active

situation.

the ability to perceive the chosen tactile stimuli on the body compared to
the static situation. The findings also indicate that those volunteers who
had participated in our first experiment on the intuitive interpretation of
tactile stimuli did not benefit from their previous experience with these
stimuli. Even those volunteers who were new to the tactile patterns quickly
learned and recalled the instructions. Moreover, the profiles of the recog-
nized instructions did not significantly differ between the groups, which
indicates that both groups recognized the ten instructions with similar ac-
curacy in the static and active situation. Even so, the ability to recognize
the direction of rotation around the waist degraded in the active situation.
Also, several participants misinterpreted some instructions when they ut-
tered the meaning of the patterns while playing the game.

6.3.2 Perception under Real-World Conditions:
Snowboarding

The previous study was conducted in the laboratory and considered a bal-We tested tactile

instructions on

the slope.

ance task for controlling a virtual snowboard. We decided to repeat the
experiment under realistic conditions with users on the slope, as this envi-
ronment initially motivated us to design tactile motion instructions. This
study was conducted by Jacobs [2008] under the guidance of the author.

Overall, we expected that the ability to perceive and to interpret the de-
signed tactile patterns would degrade compared to the laboratory condition.
Snowboarders have to continuously pay attention to maintaining balance.
They face exciting situations, they wear thick and tight clothes, and they
experience muscle strains and pain. These conditions could degrade the
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Figure 6.11: A backpack stored the SensAct boxes during the ride.

perception of tactile pulses, as indicated in related work (see section 6.1.2).

To estimate if the composed tactile patterns were appropriate as instruc- We compared

tactile instructions

to spoken

instructions.

tions during physical activities, we have introduced spoken instructions
played back over earplugs. Spoken instructions are commonly used for
teaching motor skills, and they might be preferred by athletes. The accu-
racy in recognizing these messages served as baseline for optimally perceiv-
ing instructions during descents.

Participants

Ten snowboarders aged 23–28 years (M = 25.4 years) were recruited over Ten snowboarders

with different

riding skills

participated.

e-mail with help from the local university’s sports center (four women).
On a scale ranging from level one (beginner) to level five (expert), two
volunteers rated their skills as level two (advanced beginner), six as level
three (advanced), and two as level four (proficient). They snowboarded
between one and three weeks per year during holidays. One advanced
snowboarder had previously participated in the initial study on the intuitive
interpretation of tactile stimuli (see section 6.2).

Hardware Setup

The participants carried three SensAct boxes (see Fig. 3.5) in a backpack
(see Fig. 6.11) and two time-synchronized Nokia N70 mobile phones in their
pockets. One of the Nokia N70 ran a Python script that controlled the
boxes and that triggered the tactile instructions. Alternatively, this host
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Table 6.7: Eight instructions were rephrased and adapted to metaphors
used in snowboard training (see Table 6.4 for the original wordings). The
column “Duration” denotes the length of the German wordings in seconds.

English wording German wording Duration Acronym
Fries Pommes 0.8 SL
Burger Burger 0.8 FL

Pressure towards the nose Die Nose belasten 1.7 WL
Pressure towards the tail Das Tail belasten 1.7 WR

Lean towards the nose Zur Nose lehnen 1.7 LL
Lean towards the tail Zum Tail lehnen 1.7 LR

Lean upper body forward Nach vorne lehnen 1.5 LF
Straighten up Aufrichten 1.1 LB

Hello valley Hallo Tal 1.1 TL
Hello mountain Hallo Berg 1.1 TR

device played back spoken instructions. All instructions were time-stamped
and logged for off-line data analysis. The other Nokia N70 recorded the
participants’ utterances using a microphone that was attached to the collar
of the jacket. This setup was necessary because it was too difficult for
the experimenter to manually trigger the instructions while descending the
slope and to observe if the participants performed the required movements.

Experimental Setup

The study took place in the indoor ski resort SnowWorld Landgraaf, The
Netherlands. The slope was 520 m (1700 ft) long. This slope was open to
other winter sport practitioners during the experiment. The temperature
was −5◦C.

The meaning of the instructions was rephrased to represent snowboardingThe wording of

the instructions

was adapted to

resemble real

exercises.

exercises that coaches would issue during courses (see Table 6.7). Moreover,
these wordings guided the snowboarder’s attention to the external effects
of the movements instead of to the body, which is considered beneficial for
training [Wulf, 2007] (section 8.1 discusses why the wording of feedback is
an important factor in motor skill learning).

The tactile patterns that represented upper body rotation (TL, TR) wereThe patterns for

turning left (right)

were modified.

modified to provide additional cues in which direction to turn. These new
patterns based on the push metaphor: pulses that started and ended at
the right side of the abdomen signaled to turn left; pulses that started and
ended at the left side of the abdomen signaled to turn right. The duration
of these patterns (2130 ms) reached the maximum length of two seconds
that was recommended for tactile messages [Geldard, 1957].

A pilot study with two male volunteers revealed that the underclothes,Localized pulses

at the shoulder

blades signaled to

lean forward.

which winter sport practitioners typically wear, degraded the perception of
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the directional line rendered along the spine. This line signaled to Lean
forward (LF). To ensure that this instruction was perceived, we replaced
this line with three localized pulses at the shoulder blades (400 ms).

The formal notation of these three modified patterns is (see Fig. 6.3 for the
acronyms on body location):

• LF = P 3(SLD) + P 3(SRD)

• TL = 2 · (P 3
3 (BRL) → P 3

3 (BMV ) → P 3
3 (BLL) → P 3

3 (BMD)) →
P 3

3 (BRL)

• TR = 2 · (P 3
3 (BLL) → P 3

3 (BMV ) → P 3
3 (BRL) → P 3

3 (BMD)) →
P 3

3 (BLL)

We chose a within-subjects design with two conditions:

• Tactile instructions

• Verbal instructions played back over earplugs

The experiment comprised eight descents, which were scheduled for the Four descents

addressed tactile

instructions; four

descents

addressed verbal

instructions.

morning and after the lunch break. Four descents addressed tactile in-
structions. The other four descents addressed spoken instructions. For
each modality, two descents addressed the instructions for the upper body,
whereas the other two descents addressed the instructions for the lower
body. The order in which the modality and the two instruction sets were
applied was counterbalanced across the participants.

The participants learned the meaning of the tactile patterns before the
corresponding descents. The experimenter triggered each instruction twice
and demonstrated the body movements. The instructions were repeated on
request until the participants were sure to have memorized their meaning.

The host device was programmed to randomly trigger the instructions with The participants

uttered the

instructions and

performed the

movements.

a random delay of 5–10 seconds until the program was manually stopped.
The participants’ task was to say out aloud which instruction they perceived
and to perform the corresponding movement unless this movement hindered
their riding technique. After the experiment, they answered a questionnaire
asking their view on tactile and spoken instructions while snowboarding (see
Appendix B).

Results

The audio recordings revealed wind-noise and the noise of the snowboard
shoving snow away. This allowed us to differentiate when the participants
descended and when they stopped at the end of the slope. Overall, each
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Correct Misinterpreted Missed 

Figure 6.12: Average percentage of recognized tactile instructions while
snowboarding.

participant experienced every instruction at least once in both conditions.
Nevertheless, since the participants descended the slope at different speed,
the number that an instruction was applied slightly differed among the
participants. For this reason, we have considered all instructions that were
applied after starting to descend and before coming to a halt.

Spoken instructions were perceived with near-perfect accuracy. On average,The perception of

verbal instructions

was near-perfect.

the participants recognized 97.15% (SD = 4.24%), missed 1.60% (SD =
2.61%), and misinterpreted 1.25% (SD = 2.64%) of these messages.

Fig. 6.12 shows the profile of tactile instructions. On average, 87.06%A few tactile

instructions were

missed or

misinterpreted.

(SD = 8.03%) of instructions were recognized, 9.13% (SD = 9.18%) were
misinterpreted, and 3.81% (SD = 5.42%) were missed. One woman rec-
ognized all patterns. The modified pattern for Lean forward (LF) was
recognized in all trials. Four snowboarders (three women) did not respond
a few times to the instruction Lean backward (LB), which was delivered
along the sternum.

The participants most often misinterpreted the instructions Turn right andUpper body

rotation and knee

flexion were most

often

misinterpreted.

Turn left (71.43% and 81.82% were recognized). They also had difficulty
in differentiating between Flex the legs and Stretch the legs (83.33% and
87.80% were recognized). Overall, four volunteers misinterpreted the in-
structions of category C1, two misinterpreted C2, three misinterpreted C3,
and six misinterpreted C5 (see Table 6.4 for categories).

On average, the difference between the time stamps when an applied in-Tactile

instructions lead

to faster verbal

response times.

struction ended and the time stamps when the participants started to utter
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Instructions during the ride are helpful
(strongly disagree ... strongly agree)

I think instructions were intuitive
(strongly disagree ... strongly agree)

1 2 3 4 5

The signal quality was
(very poor ... very good)

I could map instructions to movements
(strongly disagree ... strongly agree)

I felt incited to perform movements
(strongly disagree ... strongly agree)

I felt distracted during the ride
(strongly disagree ... strongly agree)

1 2 3 4 5

min -[1st quartile - median - 3rd quartile]- max

Wearing the system was
(very uncomfortable ... very comfortable)

The evoked sensation was
(very unpleasant ... very pleasant)

Figure 6.13: Likert scale ratings of tactile instructions (continuous, black)
and of verbal instructions (dashed, blue).

a response was lower for the tactile channel (M = 1.01 sec, SE = 0.16 sec)
than for the audio channel (M = 1.98 sec, SE = 0.14 sec). This differ-
ence was significant t(9) = 6.30, p < 0.01 and did represent a large effect
r = 0.90.

Fig. 6.13 shows the answers to the questionnaire, regarding the two exper- Both tactile and

audio instructions

were considered

useful during

descents.

imental conditions. Some participants did not like to wear the standard
Nokia N70 earplugs used during the study because they were big and un-
comfortable. Both tactile and spoken instructions were good to perceive,
but one participant felt disturbed by spoken instructions. In general, the
tactile sensations were pleasant. Neither modality was superior in intu-
itively representing body movements or in inciting the participants to per-
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form these movements. On average, however, tactile instructions were rated
as being slightly less distracting than spoken instructions. Overall, both
modalities were considered useful for providing feedback during descents.

For question four, which addressed how well the participants could mapSpoken

instructions were

easier to interpret

and could be

repeat word for

word.

instructions to movements, a Wilcoxon signed-rank test revealed that spo-
ken instructions were rated significantly higher (Mdn = 4.5) than tactile
instructions (Mdn = 4), T = 0, n = 7, p = .011, r = −.13. Overall, six par-
ticipants stated that spoken instructions were easier to interpret. In partic-
ular, these instructions were simply repeated word for word. This was not
the case with tactile instructions, which required additional cognitive effort
for translating the perceived stimuli into words. Even so, the other four
participants (three women, two advanced beginners, two advanced riders)
preferred tactile instructions; these commands were subtler, less annoying,
and less stressfully to wait for. Also, the external noises while descending
the slope did not interfere with the tactile stimuli.

Three volunteers commented that the mapping between the tactile patternsThree participants

preferred the pull

metaphor.

and their meaning was less obvious. They expected to move towards the
vibration, as would be the case for instructions based on the pull metaphor.
Even so, they did not have difficulty in learning the chosen mapping.

All participants stated that they could clearly identify the locations whereDirectional lines

were easy to

localize, but their

direction was

difficult to notice.

the tactile stimuli were applied to the body. When asked whether they
could recognize the direction that the patterns displayed on the skin, the
experienced snowboarders stated that they could perceive these directions.
Even so, the less skilled snowboarders stated that they did not recognize
the direction. Also, the rotational patterns were perceived as localized
taps and less as continuous movement. This sensation made it difficult to
recognize in which direction to turn. Overall, the intensity of the stimuli
felt weaker during the ride compared to the learning phase while standing
still. Four participants suggested that we should increase the intensity of
the vibration, which could make the tactile patterns easier to perceive.

To increase the vibration intensity, two participants proposed to activateAdditional

comments neighboring actuators simultaneously instead of sequentially. One partici-
pant suggested larger sensations across the body. For example, stimuli that
started at the thighs and that ended at the torso could indicate Stretch the
legs. Two participants did not like to wear the backpack with boxes and
further suggested to remove the wires in future systems.

The experimenter descended together with the participants to observe ifThe experimenter

observed

movements during

descents.

they performed the movements as requested. Although she did not know
when the system triggered an instruction nor which instruction this was, she
observed movements that obviously originated from the randomly delivered
instructions. One participant fell twice and explained that she had tried
hard to shift her weight towards the tail of the snowboard upon perceiving
the instruction Lean towards the tail (in fact, this movement can lead to
falls, as it is a common mistake in snowboarding, see section 4.2). The
two proficient snowboarders commented that they were annoyed to execute
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instructions at inappropriate times. Since these instructions often interfered
with their riding technique, they did not move as requested.

Overall, the wearable platform worked reliably on the slope, but the mobile
phone that recorded the utterances stopped working during three descents.
These descents were repeated.

Discussion

The findings of this study provided the first estimate on the perception and The ability to

recognize

instructions on

the slope was

slightly lower than

on the Wii

balance board in

the laboratory.

interpretation of tactile motion instructions under real-world conditions.
Overall, neither the ability to perceive nor the ability to interpret these
instructions did severely degrade compared to the laboratory study. A few
instructions were missed (3.81%), yet we cannot state if the participants did
not perceive the stimuli or if they were too distracted to answer. Regarding
the profile of the instructions, the average correct score measured on the
slope (M = 87.06%, SD = 8.03%) was slightly lower than the score measured
on the Wii balance board for participants who were new to these tactile
stimuli (group A: M = 91.67%, SD = 2.90%) (see section 6.3.1).

The patterns that represented upper body rotation were most often mis- Rotational

patterns around

the waist are

inappropriate as

instructions.

interpreted, as was also the case on the Wii balance board. The modified
patterns that were delivered around the waist were perceived, but they were
still too difficult to differentiate. In particular, the less skilled snowboarders
did not notice the direction that these patterns displayed on the skin. For
this reason, these rotational patterns were inappropriate as tactile instruc-
tions. They should be replaced with stimuli that can be discriminated.

Four participants misinterpreted the instructions Stretch (flex) the legs, Longer training

sessions for

learning the

meaning of some

tactile patterns

although these tactile patterns were delivered to opposing body sites. This
indicates that some users might benefit from longer training in order to
learn the meaning of these stimuli. In particular, the directional line at the
front of the thighs might be less obvious as instruction, as this pattern was
seldom associated with Stretch the legs in the initial study (see section 6.2).

Spoken instructions were superior to tactile instructions regarding their Tactile

instructions can

replace spoken

instructions.

perception and interpretation. Also, six participants preferred spoken in-
structions, stating that they could better map these messages to body move-
ments. Even so, the high recognition accuracy of tactile instructions and
the answers to the questionnaire indicate that tactile instructions could
replace spoken instructions. Moreover, four participants preferred tactile
instructions, stating that these instructions were less distracting and eas-
ier to perceive in the noisy environment. Other aspects between spoken
and tactile instructions did not significantly differ. Regarding comfort, dis-
traction, and intuitiveness, the ratings were similar but revealed a slight
preference for tactile instructions. For these reasons, users should have the
option to choose over which modality to receive instructions.
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Tactile instructions lead to faster verbal response times than spoken in-The vibration

location quickly

conveyed the

meaning of the

stimuli.

structions. This faster response time is an advantage for sports that require
quick reactions. We assume that the participants started to interpret tac-
tile instructions as soon as they noticed vibration at a specific body site,
which characterized these unique patterns. In contrast, spoken instruc-
tions required the participants to listen to the whole utterances in order to
perceive the meaning of these messages.

Although our findings indicate that tactile instructions could be appliedThe experimental

conditions

probably degraded

the ability to

name the

instructions.

during physical activities, several factors likely influenced the participants’
responses and probably increased the number of mistakes, as was also the
case on the Wii balance board (see section 6.3.1). The instructions were
randomly applied and also occurred at inappropriate times when correc-
tions were not required or when they could have interfered with the rider’s
movements. A few participants indicated that they expected to move to-
wards the vibration instead of away. Moreover, the participants responded
verbally, which increased their cognitive workload and which could have
caused some of them to mix up the directions. Also, the training session
for learning the instructions before descending the slope was short. An-
other issue was that our custom-tailored tactile suit apparently prevented
the motors from directly touching the skin along the sternum, which could
explain why the instruction Lean backward was missed a few times.

6.3.3 Perception under Real-World Conditions:
Horseback Riding

The first study that we have conducted to investigate if tactile motion
instructions could be perceived and recognized during a demanding physical
activity under real-world conditions focused on snowboarding. To broaden
the basis for designing tactile instructions, we have conducted another field
study with equestrians. This study took place at the same time as the field
study with snowboarders and was conducted by Hilgers [2008] under the
guidance of the author.

Equestrians have to maintain a straight vertical line between the head,The correct

posture for sitting

in the saddle and

typical riding

mistakes

the shoulders, the hip, and the heels; the back is straight, the shoulders
are square, and the knees are slightly bent (see Fig. 6.14). This posture
can challenge beginners. Inexperienced riders tend to lean the upper body
forward or backward, or they move the shoulders forward. While riding in
the ring, they tend to lean their torso towards the center of the ring. These
movements shift the center of gravity to a position that makes it difficult
for the rider and for the horse to ride without getting tired or sore. Also,
many beginners keep their legs forward as if they sat on a chair, or they
point their toes outward. In this posture, they loose the contact between
the thighs and the horse such that they cannot guide the animal.

To correct these mistakes, many of the body movements listed in TableThe instruction

set for correcting

wrong posture

6.4 could be applied as instructions. For this reason, we decided to focus
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Figure 6.14: Horseback riders have to maintain a balanced and secure
posture in the saddle.

on these movements, except for upper body rotation. The instructions
WL and WR, which originally prompted to shift the weight to the left or
right foot, were reworded to represent Shift the weight to the left (right).
These new instructions were similar to LL and LR, which prompted to
lean sideways. Furthermore, we introduced an alternative instruction that
signaled Pull the shoulders back (PBS). This instruction simultaneously
pulsed actuators at the upper chest, which were located directly below the
clavicles: PSB = P 3(SLV ) + P 3(SRV ) (see Fig. 6.3 for the acronyms on
body location).

Participants and Hardware Setup

Eight equestriennes aged 12–37 years (M = 22.1 years) were recruited from
a local horse-riding club. On a scale ranging from level 1 (beginner) to level
5 (expert), three participants rated their riding skills as level 2 (advanced
beginner), one as level 3 (advanced), and four as level 4 (proficient). They
weekly practiced horse riding.

All participants wore the custom tactile suit with the vibration motors
over their standard riding dress. Similar to the study on the slope, a back-
pack stored three SensAct boxes during the ride (see Fig. 6.14). A Nokia
N70 mobile phone controlled these boxes. Another mobile phone recorded
the participants’ utterances during the ride with a microphone that was
attached to the rider’s T-shirt.
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Figure 6.15: Average percentage of recognized instructions while riding a
horse (with standard error). Some instructions were misinterpreted at the
beginning while riding at walk but not subsequently while riding at trot.

Experimental Setup

An outdoor riding ring served as location for conducting the experiment.The experiment

took place in an

outdoor riding

ring.

This riding ring was also used by other riders while the study took place. Af-
ter mounting the horse, the participants learned the meaning of the tactile
instructions. Therefore, the experimenter manually triggered the patterns
and explained which body movements they represented. She repeated in-
structions on request until the participants were sure to have memorized
their meaning. The instruction set for the upper and lower body were tested
separately. Their order was counterbalanced across the participants.

The participants’ task was to ride the horse in a balanced position at walk.The participants

uttered the

instructions and

performed the

movements.

Subsequently, they had to increase the speed for riding at trot. For these
two gaits, the host device was programmed to deliver instructions with a
random delay of 5–10 seconds and to apply each instruction twice in ran-
dom order. The participants’ task was to say out aloud which instruction
they perceived and to perform the corresponding movement. After the ex-
periment, they answered a questionnaire asking their view on tactile motion
instructions (see Appendix C).

Results

Fig. 6.15 depicts the profile of the recognized instructions. On average,The participants

did not miss but

misinterpreted a

few instructions.

the participants recognized 88.89% (SD = 16.76%) of the instructions in
the walk and 99.31% (SD = 2.08%) in the trot. Although all instructions
were perceived, six riders misinterpreted the instructions that were applied
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Instructions during the ride are helpful
(strongly disagree ... strongly agree)

I think instructions were intuitive
(strongly disagree ... strongly agree)

1 2 3 4 5

I could perceive tactile feedback
(very poor ... very good)

I could map instructions to movements
(strongly disagree ... strongly agree)

I felt incited to perform movements
(strongly disagree ... strongly agree)

I felt distracted during the ride
(strongly disagree ... strongly agree)

1 2 3 4 5

min -[1st quartile - median - 3rd quartile]- max

Wearing the system was
(very uncomfortable ... very comfortable)

The evoked sensation was
(very unpleasant ... very pleasant)

Figure 6.16: Likert scale ratings of tactile instructions while riding a
horse.

to the thighs while riding at walk: two advanced beginners, one advanced
rider, and two proficient riders misinterpreted once the instructions Stretch
the legs, Flex the legs, and Shift the weight to the left ; one proficient rider
once misinterpreted Shift the weight to the left. Another proficient rider
once misinterpreted Lean forward while riding at trot.

Fig. 6.16 shows the answers to the questionnaire. All participants dis- Tactile motion

instructions could

be useful during

training.

liked wearing the backpack, but the tight-fitting clothes with the motors
did not cause discomfort. The instructions were good to perceive, and the
evoked sensation were pleasant. All participants could map the instruc-
tions to movements and felt incited to perform these movements. Although
seven participants stated that the instructions intuitively represented the
chosen body movements, the instruction set for the upper body was pre-
ferred, whereas lower body instructions did not seem to clearly convey their
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message. Overall, the participants uniformly agreed that if future wearable
systems could detect all riding mistakes, these instructions could help them
to learn how to ride with correct posture. One proficient rider, however,
felt distracted by these instructions because they shifted her focus too much
away from the horse to her own posture.

During debriefing, one participant suggested that we should change theNew suggestions

for tactile

instructions

meaning of the tactile stimuli that were delivered to the thighs. Directional
lines in upward or downward direction at the back of the thighs should
represent Stretch the legs or Flex the legs. While lateral stimuli at the torso
could indicate Lean left and Lean right, lateral stimuli at the thighs should
signal Press the thighs together for increasing the contact to the horse.

The more experienced riders stated that they could recognize the directionStimuli along the

spine and sternum

were barely

noticed.

that the tactile patterns displayed on the skin. In contrast, the less expe-
rienced riders stated that they did not pay attention to the characteristics
of the stimuli during the ride. Moreover, the stimuli that were rendered
along the spine and sternal were more difficult to notice because the body
anatomy and the riding dress beneath the tactile suit prevented the motors
from contacting the skin.

Discussion

The findings of this study indicate that young horse riders did not haveAll instructions

were recognized,

but lower body

patterns need a

different mapping.

difficulty in perceiving and recognizing tactile motion instructions. More-
over, they did not miss instructions, as was the case on the slope. Even
so, the lower body instructions Stretch (flex) the legs and Shift the weight
to the left were more often misinterpreted than on the Wii balance board
(see Fig. 6.9 and Fig. 6.10) or while snowboarding (see Fig. 6.12). This
indicates that for this sport, which required to sit in a saddle, the mapping
between these patterns and their meaning was not obvious. In fact, one
participant proposed alternative mappings that could be more appropriate
for the chosen lower body patterns.

The participants first rode at walk and subsequently at trot. Since theWe observed a

learning effect

after riding at

walk.

order of these riding gaits was not counterbalanced, a learning effect could
be observed. Lower body instructions were misinterpreted at the beginning
while riding at walk but not while riding at trot. Obviously, riding at
walk served as additional learning phase and helped the participants to
remember the meaning of these patterns.

Riding at trot is physically and cognitively more demanding than ridingVerbal responses

did not cause

misinterpretations

when riding at

trot.

at walk. Even so, only one participant misinterpreted an instruction while
riding at trot. For this reason, we assume that responding verbally was less
challenging while horseback riding than while snowboarding. This indicates
that responding verbally is one reason that could have caused misinterpre-
tation while snowboarding (see section 6.3.2).
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Overall, all participants advocated tactile motion instructions during the
ride, stating that equestriennes usually try to improve the gait of their
horses and often practice different figures in the riding ring. A wearable
system that could automatically provide hints for corrections could remind
them to also pay more attention to their own posture during training. Nev-
ertheless, one participant felt distracted by the tactile stimuli. This indi-
cates that the tactile channel might not always be appropriate for providing
instructions during training.

6.3.4 Revised Design Recommendations

Based on the findings of the studies that we have conducted under real- The direction of

lines can be

difficult to

identify.

world conditions, we can revise our first guidelines for designing tactile
motion instruction patterns (see section 6.2.4). Initially, we have proposed
directional lines based on sensory saltation for communicating the direction
in which to perform body movements. While some skilled participants could
pay attention both to the sport and to the characteristics of these stimuli,
the less skilled participants could not identify the direction of these lines.
In particular, the rotation around the waist was difficult to discriminate.
For this reason, directional lines should not be used as primary parameter
for encoding the direction in which to move the body.

Instead, body location should be used as primary parameter for commu- Body location as

primary encoding

parameter

nicating the meaning of an instruction. If all instructions are delivered
to distinct locations, they will be unique and will not require the user to
pay attention to other characteristics of the stimuli. Nevertheless, direc-
tional lines could serve as secondary parameter for encoding information
redundantly, and for intensifying the sensory experience.

We also found that our tactile suit prevented the motors from touching Alternative body

locations and

patterns for

tactile instructions

the skin along the spine and sternum such that tactile stimuli delivered
to these locations were more difficult to perceive. Moreover, some of these
tactile patterns were missed while snowboarding (see section 6.3.2). For this
reason, other body locations should be used for representing Lean forward
and Lean backward. The upper back and the upper chest could be possible
candidates, as localized pulses applied to the shoulder blades and directly
below the clavicles were always perceived while snowboarding and while
riding a horse.

Moreover, the directional lines that were rendered around the waist have
to be substituted with distinct stimuli that can be discriminated in active
situations. Therefore, in the next section, we will explore which alternative
body locations and tactile patterns could be more appropriate for repre-
senting the instructions Turn left and Turn right.
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turn left

turn right

turn right

turn left

right - turn - left

Figure 6.17: Some alternative body locations and tactile patterns that
could represent upper body rotation.

6.4 Instructions for Upper Body Rotation

Our studies have revealed that directional lines around the waist, whichAlternative

patterns for upper

body rotation

signaled Turn left (right), could not be accurately differentiated in active
situations (see section 6.3.1 and 6.3.2). Since these patterns shared all ac-
tuators, our participants had to pay attention to identify in which direction
the pulses moved on the skin. In this section, we will present alternative
body locations and tactile patterns that could represent these instructions.

Initially, we have reported that our volunteers who participated in the studySemicircular lines

around the

shoulders could

extend localized

pulses.

on the intuitive interpretation of tactile stimuli did not associate localized
pulses delivered laterally to the shoulders as request to turn to the left or
to the right (see section 6.2). Although similar stimuli have been applied
as instructions in navigation systems (see section 5.4.2) because they can
intuitively represent spatial direction relative to the position of the body
[van Erp, 2005], in our case, they were inexpressive and were not associated
with turning around. We have also noted that our participants preferred
directional lines to localized pulses because lines provided additional in-
formation how to move. For these reasons, we considered a semicircular
line around the shoulder for balancing the need for expressive stimuli that
could intuitively prompt to turn around and for unique stimuli that users
could discriminate in active situations based on the location of the vibra-
tion. These tactile patterns would resemble localized pulses but would also
move around the shoulder to indicate in which direction to turn.

We conducted a study to investigate how potential users would rate theseWe compared

different patterns

that could prompt

to turn around.

semicircular lines around a single shoulder for representing Turn left and
Turn right in a stationary situation. A directional line applied around
both shoulders and a horizontal line applied to the chest were considered
as reference patterns. We expected that rotation around both shoulders
would be preferred because this pattern was often associated with Turn left
(right) when delivered around the waist (see section 6.2). Also, we expected
that the horizontal line delivered to the chest would be preferred least, as
this pattern could be interpreted differently, such as to lean sideways.
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Table 6.8: Tactile patterns that could represent Turn left (TLx) and
Turn right (TRx), as depicted in Fig. 6.17 (see Table 6.1 and Fig. 6.3 for
the acronyms on the location of these stimuli).

Acronym Duration (seconds) Tactile pattern
TL1 0.4 P (SLV )→ P (SLL)→ P (SLD)
TL2 0.4 P (SRD)→ P (SRL)→ P (SRV )
TL3 1.3 P 3(SLV )→ P 3(SLL)→ P 3(SLD)
TL4 1.3 P 3(SRD)→ P 3(SRL)→ P 3(SRV )
TL5 0.85 TL1 → TL2

TL6 2.65 TL3 → TL4

TL7 1.75 TL5 → TL5

TL8 1.3 P 3(SRV )→ P 3(BMV )→ P 3(SLV )
TR1 0.4 P (SRV )→ P (SRL)→ P (SRD)
TR2 0.4 P (SLD)→ P (SLL)→ P (SLV )
TR3 1.3 P 3(SRV )→ P 3(SRL)→ P 3(SRD)
TR4 1.3 P 3(SLD)→ P 3(SLL)→ P 3(SLV )
TR5 0.85 TR1 → TR2

TR6 2.65 TR3 → TR4

TR7 1.75 TR5 → TR5

TR8 1.3 P 3(SLV )→ P 3(BMV )→ P 3(SRV )

Fig. 6.17 illustrates the sensations that these patterns evoked. Table 6.8 The tactile

patterns based on

apparent

movement or on

sensory saltation.

lists the corresponding stimuli and their duration based on the standard
timing parameters (BD = 100 ms, IBI = 50 ms, see Fig. 6.2). To experiment
with different sensations, we varied the length of these patterns with stimuli
that pulsed the motors either once (P ) or for three times (P 3) (see section
6.1.4 for the notation). With one pulse per motor, these stimuli exploited
the effect of apparent movement, whereas three pulses exploited the sensory
saltation phenomenon (see section 5.3). Note that TL1, TL3, TR1, and TR3

started at the chest, moved along the shoulder, and ended at the back. TL2,
TL4, TR2, and TR4 were reversed—they started at the back and ended at
the chest. TL5, TL6, and TL7, and their counterparts TR5, TR6, and TR7,
resembled the original patterns that were delivered around the waist. TL8

and TR8 rendered horizontal lines to the upper chest.

6.4.1 Participants

Ten volunteers aged 21–27 years (M = 24.1 years, three women) were re-
cruited from the local university. Two candidates had participated in the
first experiment on the intuitive interpretation of tactile stimuli (see sec-
tion 6.2). One candidate had participated in the laboratory study on the
Wii balance board (see section 6.3.1). None of them reported problems
in perceiving tactile stimuli. All participants occasionally practiced sport,
including jogging and fitness exercises.
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6.4.2 Experimental Setup

Two SensAct boxes (see section 3.1.1) were used. These were placed on a
table such that carrying a backpack was not necessary. The participants
stood upright and listened to soft music played back through headphones,
which blocked the auditory cues from the vibrating motors. The experi-
menter first triggered all patterns once in random order to familiarize the
participants with the artificial tactile sensations.

The patterns listed in Table 6.8 were triggered in pairs of two for turningThe patterns were

tested in pairs. left (TLx, TLy) or for turning right (TRx, TRy), 1 ≤ x, y ≤ 8, x 6= y. Since
testing all combinations was too time-consuming, we chose the following
pattern sets in order to compare the key characteristics of the tactile pat-
terns, while limiting the experimental time to one hour for each participant.

• A = {(TL1, TL3), (TR1, TR3)}: Patterns around one shoulder, start-
ing at the chest and ending at the back, based on single pulses (TL1,
TR1) vs. triple pulses per motor (TL3, TR3).

• B = {(TL2, TL4), (TR2, TR4)}: Patterns around one shoulder, start-
ing at the back and ending at the chest, based on single pulses (TL2,
TR2) vs. triple pulses per motor (TL4, TR4).

• C = {(TL5, TL6), (TR5, TR6)}: Patterns around both shoulders,
starting at the chest, based on single pulses (TL5, TR5) vs. triple
pulses per motor (TL6, TR6).

• D = {(TL1, TL5), (TR1, TR5)}: Patterns with single pulses per
motor delivered around one shoulder (TL1, TR1) vs. around both
shoulders (TL5, TR5).

• E = {(TL5, TL7), (TR5, TR7)}: Patterns with single pulses per
motor delivered once around both shoulders (TL5, TR5) vs. twice
around both shoulders (TL7, TR7).

• F = {(TL1, TL8), (TR1, TR8)}: Patterns with single pulses per
motor around one shoulder (TL1, TR1) vs. patterns with triple pulses
per motor at the chest (TL8, TR8).

• G = {(TL3, TL8), (TR3, TR8)}: Patterns with triple pulses per
motor around one shoulder (TL3, TR3) vs. patterns with triple pulses
per motor at the chest (TL8, TR8).

The experimenter used the SensAct Control application (see Fig. 3.9) toForced-choice

paradigm for

answers

randomly trigger the tactile patterns. All fourteen pairs were applied twice.
The order of the pairs and the order of the patterns within each pair were
counterbalanced across the participants. The delay between two patterns
within a pair was three seconds. For each pair (TLx, TLy) or (TRx, TRy),
the participants stated the direction in which they would turn and which
pattern they preferred, based on forced-choice paradigm.
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Table 6.9: The preferred tactile patterns (in %) that could represent Turn
left and Turn right (see Table 6.8).

Pattern set
Turn left Turn right

TLx TLy TRx TRy

A TL1 (40%) TL3 (60%) TR1 (75%) TR3 (25%)
B TL2 (75%) TL4 (25%) TR2 (40%) TR4 (60%)
C TL5 (75%) TL6 (25%) TR5 (60%) TR6 (40%)
D TL1 (30%) TL5 (70%) TR1 (45%) TR5 (55%)
E TL5 (85%) TL7 (15%) TR5 (80%) TR7 (20%)
F TL1 (80%) TL8 (20%) TR1 (85%) TR8 (15%)
G TL3 (80%) TL8 (20%) TR3 (80%) TR8 (20%)

6.4.3 Results

The participants uniformly considered the direction of the patterns for their The direction of

the stimuli on the

skin prevailed over

their location on

the body.

responses and turned in the direction in which the patterns moved on the
skin. For example, TL2 was associated with Turn left, although this pattern
moved from the back to the chest around the right shoulder. Table 6.9
summarizes the percentage of responses to the patterns. A Wilcoxon signed-
rank test revealed that for set E, the participants significantly preferred
more often TL5, which ran once around both shoulders (Mdn = 2.0),
than TL7, which applied TL5 twice around both shoulders (Mdn = 0),
T = 5, n = 9, p = 0.02, r = −.12. Also, for set F , they significantly
preferred more often the pattern TR1, which applied single pulses around
the right shoulder (Mdn = 2.0), than TR8, which applied triple pulses to
the chest (Mdn = 0), T = 5, n = 9, p = 0.02, r = −.12.

The differences between the number of times that the patterns of the other Patterns with

single pulses and

rotation around

both shoulders

were preferred.

pairs were chosen were not significant, but the answers indicated which
patterns were preferred. On average, in set C, patterns with single pulses
around both shoulders (TL5, TR5) were slightly favored over patterns with
triple pulses around both shoulders (TL6, TR6). Surprisingly, the prefer-
ence for patterns with single or triple pulses around one shoulder varied
(sets A and B): at the right shoulder, single pulses (TL2, TR1) were pre-
ferred to triple pulses (TL4, TR3); at the left shoulder, triple pulses (TL3,
TR4) were slightly preferred to single pulses (TL1, TR2). In set D, pat-
terns around both shoulders (TL5, TR5) were slightly favored over those
around one shoulder (TL1, TR1). In set G, patterns around one shoulder
(TL3, TR3) were favored over those at the chest (TL8, TR8). Overall, this
indicates that patterns with single pulses (P ) and rotation around both
shoulders were slightly preferred as instructions.

Debriefing revealed that six participants initially interpreted rotation The stimulus

characteristics

influenced the

responses.

around both shoulders (TL5 and TL6 in sets C and D) and the corre-
sponding counter-patterns (TR5 and TR6) as request to turn the whole
body around 180◦. Three of these participants stated that two rotations
around both shoulders (TL7 and TR7 in set E) enticed to turn around
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360◦. In contrast, the patterns that stimulated only one shoulder repre-
sented less extensive movements, such as turning the torso by 90◦. Also,
three participants stated that three sequential pulses per motor felt slower
and thus seemed to request slower turns compared to patterns that based
on a single pulse per motor. Regarding the patterns that were applied to
the chest (TL8 and TR8 in sets F and G), three participants associated
these stimuli with Lean backward or straighten up. Two other participants
interpreted these patterns as Lean forward. Another participant looked in
the direction that these patterns rendered along the chest.

6.4.4 Discussion

The findings of this study supported our initial observations that we haveRotation around

both shoulders

was favored.

reported on the intuitive interpretation of tactile stimuli (see section 6.2).
First, directional lines can provide effective cues how to move the body if the
direction of the stimuli can be identified. Second, the directional lines that
were sequentially applied around both shoulders, which resembled rotation
around the waist, were favored for representing Turn left (right).

Even so, the direction of rotation around both shoulders could be difficultRotation around

one shoulder

provides unique

and expressive

cues in which

direction to turn.

to differentiate in active situations. For this reason, we propose as instruc-
tions the semicircular lines that were applied either around the left shoulder
(TL1, TL3, TR2, TR4) or around the right shoulder (TL2, TL4, TR1, TR3).
These patterns were unique because they did not share actuators. Although
they were less often chosen than rotation around both shoulders, they were
expressive because the participants followed the direction of these stimuli
regardless of the shoulder that was stimulated. Nevertheless, as with the
other instructions that based on directional lines, the body location should
serve as primary parameter for encoding in which direction to turn. The
displayed direction could serve as secondary parameter to redundantly en-
code the message and to intensify the evoked sensation.

We could describe the semicircular lines around a single shoulder to exploitPush and pull

metaphors for

upper body

rotation.

the push metaphor or the pull metaphor. If these patterns were based
on the push metaphor, they would stimulate the shoulder opposed to the
turning direction, using stimuli that would run from the back to the chest,
either around the right shoulder to signal a turn to the left (TL2, TL4), or
around the left shoulder to signal a turn to the right (TR2, TR4). If they
were based on the pull metaphor, they would stimulate the left shoulder to
signal a turn to the left (TL1, TL3) and the right shoulder to signal a turn
to the right (TR1, TR3), using pulses that would start at the chest and
that would end at the back. Moreover, we could describe these patterns
to exploit both metaphors simultaneously. For example, we could describe
TL2 delivered around the right shoulder to start with a push from the back
towards the left and to conclude with a pull at the chest towards the left.

Overall, single pulses per motor were preferred over triple pulses, whichThe number of

pulses could

encode how fast

the body should

be turned.

felt slower on the skin. Some participants indicated that the duration of
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these stimuli could encode how quick the body should be turned. While
single pulses could indicate rapid turns (TL1, TR1, TL2 and TR2), triple
pulses could indicate slower turns (TL3, TR3, TL4 and TR4). Even so, the
duration of these patterns could be difficult to recognize in active situations,
unless the user could pay attention to the characteristics of the stimuli.

The directional lines that were applied along the chest were inappropriate Pulses at the

chest prompted to

lean forward or

backward.

for representing upper body rotation. We assumed that they could prompt
to lean sideways, but they were associated with leaning forward or back-
ward, as was also the case with localized pulses that were applied to the
chest (see section 6.2). These findings suggests that for the instructions
Lean forward (backward), localized pulses applied to the chest or the back
could replace the directional lines delivered along the spine or sternum.

6.5 Preliminary Design Recommendations

Based on our findings on the perception and interpretation of artificial
tactile stimuli, we can highlight three issues that are relevant for designing
tactile motion instruction patterns for active situations:

• Body location should be used as primary parameter for encoding
which part of the body to move.

• To signal the direction in which to perform a movement, the mapping
between a stimulus and its meaning could represent a push or a pull
of the body.

• Directional lines can create expressive sensations and can intensify the
tactile experience. These lines could be used as secondary parameter
for encoding the direction in which to perform a movement.

We have selected those patterns as instructions that best represented body The revised set of

tactile motion

instruction

patterns

movements and that were unique and well perceivable in active situations.
These patterns comprised the directional lines that were applied laterally
to the torso and laterally to the thighs, to the front and to the back of
the thighs, the semicircular directional lines that were applied around each
shoulder, and the pulses that stimulated the upper chest and the upper
back. Fig. 6.18 illustrates these patterns, considering the pull metaphor,
which would prompt to move towards the vibration.

Directional lines in upward direction laterally to the torso and laterally Directional lines

in upward or

downward

direction

to the thighs could be described to represent the progressively increasing
bending radius of the body when leaning sideways or when shifting the
weight to one foot (see section 6.2.4). This description would be appropriate
for the pull and push metaphor. For the pull metaphor, however, directional
lines that proceed downward could be described to pull the torso or to pull
the weight downward towards the same side where the vibration occurs (see
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legsstretch

shift weight
to left foot

shift weight
to right foot

flex legs

lean
left

lean
right

turn right turn left turn left turn right
lean

backward
lean

forward

Figure 6.18: The revised set of tactile patterns, based on stimuli that
could be described to pull the body in the direction in which to perform
the movements. Directional lines delivered laterally to the torso and to
the thighs could indicate the progressively increasing bending radius of the
body when leaning sideways. The double-circles at the chest and back rep-
resent the localized sensations for the instructions lean forward (backward).

Fig. 6.19). Even so, this description seems to be less appropriate for the
push metaphor because the user would move in the opposite direction that
these lines would indicate. Moreover, the direction of these lines could be
difficult to recognize in active situations such that their actual direction
would be less important in this case.

For the composed tactile motion instruction patterns, the duration of the
localized pulses is 400 ms. The duration of the directional lines is 1300 ms
(see Fig. 6.2). The formal notation for these patters is (see section 6.1.4 for
the notation, Fig. 6.3 for the acronyms on body location, and Table 6.4 for
the acronyms on body movements):

Stretch the legs, flex the legs:
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legsstretch

shift weight
to left foot

shift weight
to right foot

flex legs

lean
left

lean
right

turn right turn left turn left turn right
lean

backward
lean

forward

Figure 6.19: For the pull metaphor, directional lines delivered in down-
ward direction laterally to the torso and to the thighs could alternatively
indicate the direction to lean, thereby pulling the body downward when
leaning sideways (compare to Fig. 6.18).

• SL = RU (TRV ) +RU (TLV ) at the front of the thighs

• FL = RD(TRD) +RD(TLD) at the back of the thighs

Shift the weight to the left / right foot:

• WL = RU (TLL) laterally at the left thigh

• WR = RU (TRL) laterally at the right thigh

Lean upper body to the left / right:

• LL = RU (BLL) laterally at the left side of the torso
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• LR = RU (BRL) laterally at the right side of the torso

Lean upper body forward / backward:

• LF = P 3(SLV ) + P 3(SRV ) at the upper chest

• LB = P 3(SLD) + P 3(SRD) at the upper back

Turn upper body to the left / right:

• TL = P 3(SLV )→ P 3(SLL)→ P 3(SLD) around the left shoulder

• TR = P 3(SRV )→ P 3(SRL)→ P 3(SRD) around the right shoulder

6.6 Closing Remarks

In this chapter, we have focused on finding artificial tactile stimuli that
could represent body movements in an intuitive way. Initially, we have
observed how young adults interpreted localized pulses and directional lines
that were applied to various body locations, and which body movements
they performed. Based on the most frequent responses that were associated
with the same body movements, we have composed tactile patterns that
could be used as instructions for physical activities. We have called these
patterns tactile motion instructions.

To iteratively refine these patterns and to evaluate if they could be per-
ceived and their meaning recognized in active situations, we have focused
on snowboarding and on horseback riding as example activities. We chose
snowboarding because this sport allowed us to estimate how appropriate
the designed tactile patterns would be as realtime instructions for physical
activities that were physically and cognitively demanding. Overall, we have
found that young adults were able to perceive and to identify these pat-
terns with high accuracy. We have also found that tactile instructions lead
to faster response times than spoken instructions. Moreover, about half of
our study participants preferred tactile instructions to spoken instructions
while descending the slope. These findings indicate that tactile motion in-
structions could be applied for correcting wrong posture during physical
activities, in particular when the audio channel would be less appropriate
for providing feedback on performance.

Even so, we have found that several participants sometimes misinterpreted
tactile motion instructions in active situations. These mistakes were prob-
ably caused by the experimental conditions. The instructions were ran-
domly triggered and could occur at inappropriate times when corrections
were not required or when they did not match to the movements that the
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participants already had to perform during the activity. Moreover, some
participants mixed up the responses because they had difficulty in express-
ing the meaning of the patterns in words while moving the body. Also,
a few participants learned to move away from the location where the vi-
bration occurred, although they intuitively preferred to move towards the
vibration. For these reasons, the results reported in this chapter should be
regarded as first estimate on the perception of tactile motion instructions.

The findings of our studies have lead to a set of guidelines for designing
tactile motion instruction patterns. In the next chapter, we will further
evaluate these recommendations, in particular for instructions that could
be described to push or to pull the body. Moreover, we will investigate
how accurately sequences of instructions can be perceived and interpreted
in active situations. Such sequences of tactile instructions could form a
language that conveys longer messages, similar to words that form sentences
in spoken languages.
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Chapter 7

A Language of Tactile
Motion Instructions

“I speak two languages, Body and English.”

—Mae West

In the previous chapter, we have introduced tactile patterns as instructions
how to move the body. These patterns were based on the intuitive inter-
pretation of young adults to artificial tactile stimuli. We have also reported
several user studies that have shown that young adults could perceive and
identify these tactile patterns with high accuracy in active situations.

In this chapter, we will focus on the language aspect of tactile motion A tactile language

for physical

activities could

teach sequences

of body

movements.

instructions. While a single instruction could indicate when and how to
move, a series of instructions could indicate the timing and the order of
a sequence of movements. Such a sequence of tactile motion instructions
would resemble a sequence of words that form sentences in spoken lan-
guages. They could guide the athlete through motion sequences that are
difficult to learn, in particular those that involve various body movements
that have to be coordinated in a specific order. For example, dancers have
to move in accordance with the music and their partners. Dance beginners
typically cannot execute all movements as required—they focus on one as-
pect that challenges them and often forget the complete motion sequence.

Another topic of this chapter is the encoding metaphor, regarding stimuli Push vs. pull

metaphor and

intuitive

interpretation

that either push or pull the body towards a direction. We have investi-
gated how these opposing mappings between a stimulus and its meaning
influenced the ability to identify tactile motion instructions depending on
the user’s preference to being pushed or pulled. Also, we have re-evaluated
which body movements young adults intuitively associated with the chosen
tactile patterns and how well they could learn and recall in the long term the
meaning that we have assigned to these patterns. These findings provided
additional insights into the characteristics of tactile motion instructions and
allowed us to estimate how general the composed instructions were.
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The remaining of this chapter is organized as follows:

• Section 7.1 discusses the concept of languages and reviews related
work on tactile languages. We will highlight similarities and differ-
ences between our tactile language, which focused on physical activi-
ties, and tactile languages for other application domains.

• Section 7.2 describes a study that focused on the perception of sin-
gle and compound instructions in a static and an active situation,
considering the push and pull encoding metaphor.

• Section 7.3 describes a study that re-evaluated how appropriate the
composed tactile patterns were for representing body movements.

7.1 Tactile Languages

The term language refers to systems of communication. These systems in-A language is a

method of

communication.

clude human communication through spoken and written languages, non-
verbal communication through gestures and facial expression, sounds pro-
duced by mammals and birds, and artificial computing languages [Simpson
and Weiner, 2009]. Common to all languages is an alphabet Σ of basic ele-
ments, such as the letters of the Latin alphabet. When these elements are
concatenated according to specific rules, they can form meaningful units,
such as words and sentences. The structure of a language can be formally
defined in a syntactic notation (see Appendix E).

Every tactile communication system, in fact, also establishes a language.Characteristics of

tactile languages Tactile languages can differ in the elements of their alphabet, the artificial
tactile signals that represent these elements, the size of the alphabet, the
intended application domain, and the body areas where the tactile signals
stimulate the skin. We have primarily classified existing tactile languages
based on their basic elements, which can be characters or words.

7.1.1 Characters as Basic Elements

One class of tactile languages uses alphabets that consist of characters andTextual

information

transfer

numerals as basic building blocks for composing messages. These languages
typically aim at textual information transfer. For this reason, the size of
their alphabets tends to be large. The most notable system to demon-
strate that tactile communication is effective and that tactile stimuli can
substitute spoken languages is the Braille alphabet. Braille can be read
by moving the fingertips over a pattern of raised and lowered dots, which
can represent characters, numerals, and punctuation (see Fig. 5.4, left).
Another system that can be applied over the tactile channel is the Morse
code [Geldard, 1957], although this code was originally developed for the
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electric telegraph to transmit letters and numerals as short and long pulses
of electrical current.

Inspired by the idea that the skin could understand a language based on vi- Vibrotactile

languages for text

messages

brotactile stimuli that vary in amplitude, duration, and location [Geldard,
1957], two systems have been invented for encoding written text as tactile
messages (see section 5.4.1). The Vibratese language encoded an alpha-
bet of 45 symbols—letters and numerals—as variations in three intensities,
three durations, and five locations at the chest [Geldard, 1957]. A trained
user could perceive 38 words per minute, twice as much as with Morse
code. The Optohapt system used actuators distributed at the arms, the
legs, and the abdomen for conveying characters as tactile signals [Geldard,
1966]. Although these tactile languages are not established in use, they
demonstrated that sequential and coded data could be processed quickly
and accurately over the tactile sense.

Besides the aforementioned tactile languages, there are alternative methods Visually and

hearing impaired

persons

communicate by

touch

for supporting speech communication. For example, Tadoma is a method
where deaf-blind people place their fingers on the face of the speaker to
pick up movements and vibrations of utterances conveyed through the lips,
cheeks, jaw, and throat [Reed et al., 1985]. Also, Tactaid devices that
converted sound into vibration patterns could support hearing-impaired
people [Weisenberger and Percy, 1994] (see section 5.4.1). These methods
for communication could be regarded to establish tactile languages as well
because the tactile stimuli that are perceived and interpreted serve as an
alphabet of elements that can form meaningful units.

7.1.2 Words as Basic Elements

A different class of tactile languages uses alphabets with elements that rep- Tactile stimuli

that represent

application

domain concepts

resent a high-level concept from the intended application domain. These
elements are expressed as words in spoken languages. In contrast to the
aforementioned languages for textual information transfer, they do not re-
quire high data throughput because they do not convey individual char-
acters as tactile signals for composing messages. For this reason, these
alphabets usually comprise only a few elements. If the generated tactile
signals rely on the accurate perception of the tactile parameters used for
encoding information, data transfer typically takes place over the fingertips.

Some of these languages aim at information transfer in computer interfaces. Tactile languages

for information

transfer in

computer

interfaces.

For example, Tactons (see section 5.3) could represent events in GUIs:
while one-element Tactons could denote commands and objects, such as
“create”,“destroy”,“file”, or“string”, compound Tactons could communicate
messages like “create file” or “destroy string” [Brewster and Brown, 2004].
Likewise, haptic icons [Enriquez et al., 2006] (see section 5.3) could convey
information on the state, function, or content of events or objects with
which people interact. These haptic icons are based on an alphabet of nine
well differentiable stimuli, called haptic phonemes, which are concatenated
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and superimposed to form haptic words. Also, a language for conveying
emotional information such as affection and pain has been investigated
[Benali-Khoudja et al., 2005] (see section 5.4.5). This language is based
on an alphabet of six elements, which were applied to the fingertips and
encoded as tactile stimuli that users associated with specific emotions.

Besides the aforementioned languages for computer interfaces, two otherTactile languages

for navigation

signals and for

hand signals

languages have been explored. One language was based on an alphabet of
eight words and focused on conveying directional information for naviga-
tion, such as move forward, turn around, turn left, turn right, and stop
[Jones et al., 2006] (see section 5.4.2). The other language had an alpha-
bet of seven words and addressed military hand and arm signals [Jones
et al., 2007]. Both interfaces stimulated the lower back for conveying these
commands.

7.1.3 A Tactile Language for Physical Activities

The tactile language introduced in this work uses words and sentences fromTactile stimuli

that represent

body movements

as basic elements

the intended application domain as basic elements of the alphabet. These
elements—tactile motion instructions—represent specific body movements
(see Table 6.4 for the acronyms).

Σ = {SL, FL,WL,WR,LL,LR,LF,LB, TL, TR}

The underlying tactile signals that represent these elements are delivered
to body locations that correspond to the chosen body movements.

Compound instructions are combinations of these basic elements. TheseCompound

instructions

communicate

sequences of body

movements.

combinations could communicate sequences of body movements. For exam-
ple, the sequence FL→ SL would prompt to flex the legs and subsequently
to stretch the legs (see section 6.1.4 for the notation). Overall, the basic
elements of the alphabet and the combinations of these elements establish
a tactile language for physical activities.

7.2 Compound Tactile Motion Instructions

The findings of our previous studies revealed that young adults were ableSingle and

compound

instructions that

based on the push

and pull metaphor

to quickly learn a set of ten tactile motion instructions and to identify these
instructions with high accuracy in active situations (see chapter 6). In this
section, we will report a study that focused on two issues regarding these
instructions. First, we explored if young adults could perceive and iden-
tify compound instructions. In contrast to single instructions, compound
instructions required users to respond to a sequence of messages. Second,
we investigated if the encoding metaphor for these instructions, based on
stimuli that could be described to push or to pull the body, influenced the
ability to respond to single and compound instructions.
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To evaluate an example tactile language for physical activities, we used We evaluated an

example language

in an active

situation on the

Wii fit balance

board.

the Nintendo Wii Fit balance board and the game Slalom Snowboard for
simulating an active situation in the laboratory (see also section 6.3.1).
Since playing this game resembled real snowboarding, we defined compound
instructions that were based on body movements that would also occur in
snowboarding, including movements that were required for basic turns (see
section 4.2). Overall, we have chosen compounds that would not hinder the
participants in moving their bodies while balancing on the board.

This example language L comprised 22 words: the ten basic instructions
from the alphabet Σ (see Table 6.4 for the acronyms)

• SL, FL,WL,WR,LL,LR,LF,LB, TL, TR,

and twelve compound instructions. Four compounds addressed movements
of the lower body and the upper body (shift the weight to one foot, then
turn left or right)

• WL→ TL, WL→ TR, WR→ TL, WR→ TR,

four compounds exclusively addressed upper body movements (lean side-
ways, then turn the upper body)

• LL→ TL, LL→ TR, LR→ TL, LR→ TR,

and four compounds exclusively addressed lower body movements (shift the
weight to one foot, then flex or stretch the legs)

• WL→ FL, WL→ SL, WR→ FL, WR→ SL.

Regarding the encoding metaphor for tactile motion instructions, our ini- Two metaphors

for encoding the

meaning of tactile

instructions: push

vs. pull

tial findings on the intuitive interpretation of tactile stimuli revealed that
our participants preferred to move either towards or away from the vi-
bration (see section 6.2). Even so, we did not consider the participants’
preference to being pushed or pulled in the previous experiments. The
mapping between the stimuli and their meaning was based on the push
metaphor to keep all instructions consistent for all participants. In active
situations, however, some instructions were misinterpreted. We surmised
that the push metaphor might have caused these misinterpretations, be-
sides left-right confusion when responding verbally and randomly applied
instructions that could have interfered with the movements that the partici-
pants already had to perform during the activity. In fact, some participants
stated that they expected the pull metaphor for instructions. Moreover,
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some participants stated that they did not like to execute movements at in-
appropriate times while descending the slope (see sections 6.3.1 and 6.3.2).

To narrow down the possible reasons that could have caused misinterpre-To independent

variables: the

situation and the

mapping for

instructions

tations in the active situation, we investigated if the encoding metaphor
influenced the ability to recognize tactile motion instructions, depending
on whether the instructions represented the participants’ intuitive reac-
tions (pull or push) or counter-intuitive reactions (push instead of pull or
pull instead of push). Overall, we had two independent variables: the situ-
ation (stationary vs. active) and the mapping between the instructions and
their meaning with respect to the participants’ preference to the push and
pull encoding metaphor (intuitive vs. counter-intuitive instructions).

As in our previous studies, the participants were asked to utter the mean-We expected that

counter-intuitive

instructions would

cause more

misinterpretations

than intuitive

instructions in the

active situation

but not in the

stationary

situation.

ing of the perceived messages before executing the instructions because the
experimenter could not always accurately differentiate between body move-
ments that were performed as response to tactile instructions and body
movements that were required in the current gameplay situation. For the
stationary situation, we expected that neither encoding metaphor would
cause many misinterpretations because the participants would not be dis-
tracted when responding verbally. For the active situation, we expected
that the participants would misinterpret instructions, as was also the case
in our previous experiments. We surmised, however, that instructions that
represented the participants’ counter-intuitive reactions would increase the
number of misinterpretations compared to instructions that represented
their intuitive reactions. We argued that the participants’ intuitive re-
actions could interfere with the new mappings that they would learn for
counter-intuitive instructions. If this were the case, the encoding metaphor
would influence their responses with counter-intuitive instructions causing
more misinterpretations than intuitive instructions in the active situation.

The first hypothesis was:

• Alternative hypothesis: In the stationary situation, users who receive
instructions based on their counter-intuitive metaphor (push instead
of pull or pull instead of push) do not perform more mistakes than
users who receive instructions based on their intuitive metaphor.

• Null hypothesis: In the stationary situation, counter-intuitive instruc-
tions cause more mistakes than intuitive instructions.

The second hypothesis was:

• Alternative hypothesis: In the active situation, users who receive in-
structions based on their counter-intuitive metaphor (push instead of
pull or pull instead of push) perform more mistakes than users who
receive instructions based on their intuitive metaphor.

• Null hypothesis: In the active situation, counter-intuitive instructions
do not cause more mistakes than intuitive instructions.
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7.2.1 Participants and Experimental Setup

Twenty volunteers aged 22–29 years (M = 24.60 years, four women) were re-
cruited from the local university. All volunteers stated to regularly practice
sport. Two participants snowboarded. One participant skied. Two par-
ticipants had previously played with the balance board but not with the
snowboarding game. None of the volunteers had previously experienced
artificial tactile stimuli in relation to tactile motion instructions.

The participants wore the custom tactile suit with 30 vibration motors. All instructions

were applied.Five SensAct boxes (see Fig. 3.5) were stored in a backpack such that all
words from the language L could be applied: the ten basic instructions;
and the twelve compound instructions.

To familiarize the candidates with the sensations that the tactile patterns Determining the

preferred encoding

metaphor

evoked on the skin, the experimenter triggered the basic instructions from
the alphabet once. Then, the participants’ preference to moving towards
(pull) or away (push) from the vibration was determined. Based on forced-
choice paradigm, the participants stated in which direction they preferred
to move upon perceiving the stimuli at the chest, at the back, laterally at
the torso, and laterally at the thighs.

A between-subjects design was chosen for assessing if the encoding Intuitive vs.

counter-intuitive

instructions

metaphor would influence the ability to learn and to recognize the tactile
instructions. The participants were divided into two groups: an intuitive
group and a counter-intuitive group. Every second volunteer was assigned
to the counter-intuitive group where the mapping between the tactile pat-
terns and their meaning was counter-intuitive: participants who preferred
the pull metaphor received instructions based on the push metaphor; par-
ticipants who preferred the push metaphor received instructions based on
the pull metaphor. In contrast, the members of the intuitive group received
instructions based on their preferred encoding metaphor.

Fig. 7.1 illustrates the tactile patterns that prompted to move towards the Instructions based

on the pull

metaphor

vibration (pull metaphor), which we have previously illustrated in Fig. 6.18.
Note that directional lines in upward direction at the front of the thighs
were described to pull flexed legs upward (stretch legs), whereas directional
lines in downward direction at the back of the thighs were described to pull
stretched legs downward (flex legs). The directional line around the left
shoulder ran from the chest to the back and signaled to turn left, whereas
the directional line around the right shoulder ran from the chest to the back
and signaled to turn right.

Fig. 7.2 illustrates the tactile patterns that prompted to move away from Instructions based

on the push

metaphor

the vibration (push metaphor). Note that directional lines in downward
direction at the front of the thighs were described to push stretched legs
downward (flex legs), whereas directional lines in upward direction at the
back of the thighs were described to push flexed legs upward (stretch legs).
The directional line around the left shoulder ran from the back to the chest
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legsstretch

shift weight
to left foot

shift weight
to right foot

flex legs

lean
left

lean
right

turn right turn left turn left turn right
lean

backward
lean

forward

Figure 7.1: Tactile motion instructions based on the pull metaphor stim-
ulated the same site of the body in which to perform movements.

and signaled to turn right, whereas the directional line around the right
shoulder ran from the back to the chest and signaled to turn left.

In order to learn their customized instruction sets—the alphabet of ourTraining session

for learning the

alphabet of the

language

example language—the participants stood upright in front of a 40-inch dis-
play and pressed buttons on the GUI of the SensAct Control application,
which triggered the corresponding tactile patterns for the ten basic instruc-
tions (see Fig. 3.9). They were allowed to practice as long as they wished,
but the total training time was limited to ten minutes. After learning the
meaning of the patterns, they played the game for two to three times in or-
der to become familiar with controlling the snowboard on the screen while
balancing on the board.

The experiment started after this training session. The participants wereSingle and

compound

instructions were

tested

informed that they would receive single instructions from the previously
learned set, which were the ten basic elements of the alphabet. Besides
these (basic) single instructions, they would also receive compound instruc-
tions that consisted of two sequentially triggered basic instructions. Since
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legsflex

shift weight
to right foot

shift weight
to left foot

stretch legs

lean
right

lean
left

turn left turn right turn right turn left
lean

backward
lean

forward

Figure 7.2: Tactile motion instructions based on the push metaphor stim-
ulated the opposite site of the body in which to perform movements.

the participants did not learn compound instructions during the training
session, they did not know which combinations of basic instructions to ex-
pect. This allowed us to estimate how well they could make use of the
tactile language in the static and in the active situation.

The participants’ task was to say out aloud the meaning of these messages Two situations for

responding to

instructions

before performing the corresponding movements. The stationary situation
served as baseline for the optimal perception and interpretation of all 22
tactile motion instructions from the language L. The participants stood
still and listened to soft music played back over headphones, which blocked
the auditory cues from the vibrating motors. In the active situation, they
heard the sound of the game played back over loudspeakers while passing
between the flags on the screen as accurately as possible.

The order of the stationary and active situation was counterbalanced across Counterbalanced

situationsthe participants. The experimenter randomly triggered all basic and com-
pound instructions twice in each situation. After recording a participant’s
response, a random delay between 10–15 seconds was chosen before an-



136 7 A Language of Tactile Motion Instructions

Table 7.1: Number of participants who preferred to be pulled or pushed.

Stimulus location Pull Push
Upper chest 13 7
Upper back 11 9
Lateral side of the torso 11 9
Lateral side of the thighs 11 9

other word from the language was triggered. In the active situation, the
participants replayed the game until all instructions were applied.

7.2.2 Results

Table 7.1 shows the participants’ preference to moving towards or awayPreference to the

push or the pull

metaphor

from stimuli. Nine participants intuitively preferred the pull metaphor for
all stimuli that were delivered to the chest, to the back, and laterally to the
torso and the thighs. Seven participants preferred the push metaphor for
these stimuli, yet two of them moved towards pulses delivered to the chest.

Four participants preferred a mixed metaphor: one moved towards stimuliMixed push and

pull metaphor delivered to the chest and back but away from lateral stimuli delivered
to the torso and the thighs; one moved away from stimuli delivered to
the chest and back but towards lateral stimuli delivered to the torso and
the thighs. The other two participants preferred the same metaphor for
stimuli delivered to the chest, to the back, and laterally to the torso, but
they responded differently to stimuli delivered laterally to the thighs: one
moved away, and one moved towards these stimuli. The preferred encoding
metaphor for these participants—push or pull—was chosen based on their
most frequent reactions to avoid mixed mappings in the instruction set.

In the active situation, three participants were absorbed in playing theSeven participants

did not respond to

a few compound

instructions.

game and often answered only on request from the experimenter. To avoid
speaking, some participants expressed the meaning of the instructions with
gestures of their hands and arms. Nine compound instructions were missed:
four members of the intuitive group each missed one compound instruction;
two members of the counter-intuitive group each missed one compound in-
struction, whereas one member missed three. Two members of the counter-
intuitive group correctly recognized all instructions in both situations.

Table 7.2 summarizes the average percentage of recognized instructions. AOverall, both

groups recognized

instructions with

similar accuracy.

mixed between-within ANOVA revealed no significant main effect of the
group, F (1, 18) = .035, p = .85, r = .04, indicating that the ability to
recognize intuitive and counter-intuitive instructions was in general the
same if we ignore the other factors.

There was a significant main effect of the situation, F (1, 18) = 7.14, p =The active

situation degraded

the performance;

basic instructions

were best

recognized.

.016, r = .53, indicating that the ability to recognize instructions degraded
in the active situation compared to the stationary situation. There was
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Table 7.2: Average accuracy in responding to the ten basic instructions
and to the twelve compound instructions encoded based on the participants’
intuitive or counter-intuitive metaphor (in %, with standard deviation).

Situation
Instruction Intuitive Counter-intuitive

Both groups
type group group

Stationary
all 99.77 (0.72) 95.23 (7.38) 97.50 (5.61)

basic 99.50 (1.58) 96.00 (5.68) 97.75 (4.44)
compound 100.0 (0.00) 94.58 (10.40) 97.29 (7.68)

Active
all 90.00 (6.96) 94.32 (4.94) 92.16 (6.28)

basic 97.50 (3.54) 96.50 (4.12) 97.00 (3.77)
compound 83.75 (10.84) 92.50 (7.81) 88.13 (10.23)

Both
all 94.89 (6.95) 94.77 (6.13) 94.83 (6.47)

basic 98.50 (2.86) 96.25 (4.83) 97.38 (4.08)
compound 91.88 (11.19) 93.54 (9.01) 92.71 (10.06)

a highly significant main effect of the type of instructions, indicating that
basic instructions were more often recognized than compound instructions,
F (1, 18) = 14.66, p < .01, r = 0.67.

There was a significant interaction effect between the situation and the The intuitive

group performed

better than the

counter-intuitive

group in the

stationary

situation but

worse in the

active situation.

group, F (1, 18) = 5.04, p = .038, r = 0.47. This indicates that the ability
to respond to instructions in the stationary and active situation differed
between the intuitive and counter-intuitive group if we ignore the type
of instructions. The intuitive group performed better than the counter-
intuitive group in the stationary situation, but the counter-intuitive group
performed better than the intuitive group in the active situation. Although
the counter-intuitive group performed similarly in both situations, the intu-
itive group performed worse in the active than in the stationary situation.

There was no significant interaction effect between the type of instructions Both groups

recognized basic

and compound

instructions with

similar accuracy.

(basic vs. compound) and the group, F (1, 18) = 2.58, p = .13, r = 0.35.
This suggests that the ability to identify basic and compound instructions
was in general the same for the intuitive and counter-intuitive group if we
ignore the situation.

There was a highly significant interaction effect between the situation and Basic instructions

were recognized

well in both

situations;

compounds were

best recognized

while stationary.

the type of instructions, F (1, 18) = 12.44, p < .01, r = 0.64. This indicates
that the ability to respond to basic and compound instructions differed in
the stationary and active situation if we ignore the group. Basic instructions
were recognized with similar accuracy in both situations, but compound
instructions were more accurately recognized in the stationary than in the
active situation. Although the ability to recognize instructions decreased
in the active situation compared to the stationary situation, this decrease
mainly affected compound instructions but not basic instructions.

The situation × instruction type × group interaction effect was significant, The intuitive

group often

misinterpreted

compound

instructions in the

active situation.

F (1, 18) = 5.98, p = .025, r = 0.50. This indicates that the situation ×
instruction type interaction was different for the groups. In the stationary
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Figure 7.3: Average percentage of recognized basic instructions in the
stationary situation (with standard error).

Table 7.3: Number of participants who misinterpreted basic instructions
in the same category (see Table 6.4 for categories). The row “distinct users”
denotes the number of different participants across both situations.

Situation C1 C2 C3 C4 C5

Intuitive group
stationary 1

active 1 2 1 1
distinct users 2

Counter-intuitive group
stationary 1 1 4

active 2 2 1 1
distinct users 2 2 5

situation, the intuitive group recognized basic and compound instructions
with near-perfect accuracy, and the performance of the counter-intuitive
group was slightly worse than the performance of the intuitive group. In
the active situation, the ability to recognize basic instructions was similar
for both groups, although the performance of the intuitive group slightly
decreased, whereas the performance of the counter-intuitive group basically
did not change compared to the stationary situation. The main difference
between the groups concerned compound instructions. Although the abil-
ity to recognize these instructions decreased for both groups in the active
situation compared to the stationary situation, this decrease was more pro-
nounced for the intuitive group than for the counter-intuitive group.

Fig. 7.3 illustrates which basic instructions were recognized in the station-Recognition of

basic instructions ary situation. The counter-intuitive group (M = 96.0%, SE = 1.80%)
performed worse than the intuitive group (M = 99.5%, SE = .5%); the
difference between the profiles of the recognized instructions was signif-
icant t(10.39) = 1.88, p = .045, r = .40 (independent t-test, one-tailed,
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Figure 7.4: Average performance of recognized basic instructions in the
active situation on the Wii balance board (with standard error).

Table 7.4: Number of misinterpreted patterns for compound instructions
(see Table 6.4 for categories). The last two columns show the number of
mistakes for the first and second pattern of compound instructions.

C1 C2 C3 C5 1st 2nd

Intuitive group
stationary

active 2 27 6 7 33 9

Counter-intuitive group
stationary 7 3 1 4 7

active 4 8 6 8 10

equal variances not assumed). Fig. 7.4 illustrates which basic instruc-
tions were recognized in the active situation. The counter-intuitive per-
formed similarly (M = 96.5%, SE = 1.30%) to the intuitive group (M =
97.5%, SE = 1.12%); the difference between the profiles was not significant
t(18) = .58, p = .28, r = .14 (independent t-test, one-tailed, equal variances
assumed).

Table 7.3 summarizes the number of participants who misinterpreted ba- The counter-

intuitive group

misinterpreted

basic instructions

in the stationary

situation.

sic instructions. Although only few participants had difficulties with basic
instructions, half of the members of the counter-intuitive group occasion-
ally misinterpreted the instructions in category C4 (Lean forward and Lean
backward). Four of these participants responded incorrectly in the station-
ary situation but not in the active situation.

Fig. 7.5 shows which compound instructions were recognized in the sta- Recognition of

compound

instructions

tionary situation. The counter-intuitive group performed worse (M =
94.58%, SE = 1.56%) than the intuitive group (M = 100%, SE = 0%);
the difference between the profiles of the recognized instructions was highly
significant t(11) = 3.46, p < .01, r = .59 (independent t-test, one-tailed,
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Figure 7.5: Average percentage of recognized compound instructions in
the stationary situation (with standard error).

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

W
L 
➞
 T

L 

W
L 
➞
 T

R 

W
R ➞

 T
L 

W
R ➞

 T
R 

LL
 ➞

 T
L 

LL
 ➞

 T
R 

LR
 ➞

 T
L 

LR
 ➞

 T
R 

W
L 
➞
 F

L 

W
L 
➞
 S

L 

W
R ➞

 F
L 

W
R ➞

 S
L 

A
ve

ra
g

e
 %

 I
n

st
ru

ct
io

n
s 

R
e
co

g
n

iz
e
d

 

Intuitive group Counter-intuitive group 

Figure 7.6: Average percentage of recognized compound instructions in
the active situation on the Wii balance board (with standard error).

equal variances not assumed). Fig. 7.6 shows which compound instructions
were recognized in the active situation. In contrast to the stationary situa-
tion, the intuitive group performed worse (M = 83.75%, SE = 1.86%) than
the counter-intuitive group (M = 92.50%, SE = 2.50%); the difference be-
tween the profiles was highly significant t(22) = −2.81, p < .01, r = .51
(independent t-test, one-tailed, equal variances assumed). Overall, the
counter-intuitive group performed similarly in both situations, whereas the
intuitive group identified all compound instructions in the stationary situ-
ation but often misinterpreted them in the active situation.
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Table 7.4 summarizes the number of misinterpreted compound instructions. Two members of

the intuitive

group most often

misinterpreted

compound

instructions.

The intuitive group most often misinterpreted the first element of these in-
structions, which was an instruction from the category C2 (Shift weight left
(right)) in eight of the twelve compounds. Overall, two participants had
difficulty with these instructions and performed 41.03% of all mistakes.
Also, the four volunteers who preferred a mixed metaphor were randomly
assigned to this group and performed 33.33% of all mistakes. Even so, this
group correctly recognized all compound instructions in the stationary sit-
uation. In contrast, the counter-intuitive group misinterpreted compound
instructions in both situation, but this group had less difficulty with the
first element of these instructions than the intuitive group.

Both groups recognized the instructions Turn left (right) as single instruc- Upper body turns

were misinterpret-

ed in compound

instructions.

tions in the stationary situation and in the active situation. Even so, both
groups misinterpreted these instructions a few times in the active situation
when these instructions were applied as the second element of a compound.

The participants did not mention to have problems in learning the set of Learning the

instructions was

not problematic.

basic instructions. Even so, some participants stated that they could benefit
from a longer training session, although they practiced less than the allotted
time. The tactile patterns around the shoulders, which represented Turn
left (right), were clear to follow. One former ballet dancer considered tactile
instructions appropriate for dance training; they reminded her of dance
lessons, rotation around the shoulders in particular. Another participant
stated that he liked tactile instructions. He had more fun playing the game
with these instructions than practicing on the Wii balance board without
tactile feedback. Also, he mentioned that these instructions could indicate
which movements to perform in order to guide the user during exercises.

Apart from these positive comments, two participants commented that the The participants

disliked random

instructions and

verbal responses.

instructions did not always match to the movements that they had per-
formed while playing the game, which made it difficult to accurately pass
through the flags and to move the body as instructed. Also, a few par-
ticipants stated that they tended to mix up the directions while speaking,
although they knew what the patterns actually meant.

Two participants who learned instructions based on the push metaphor Stimuli at the

back of the thighs

should indicate

knee flexion.

commented on the nature of the stimuli that were applied to the back of
their thighs, which moved upwards to represent Stretch the legs. Since
these stimuli were close to the hollow of the knees, they would resemble a
slight stroke that would automatically trigger knee flexion. Therefore, they
considered these patterns more appropriate for indicating Flex the legs.

7.2.3 Discussion

In this study, we have investigated if compound tactile motion instructions A tactile language

for physical

activities.

could communicate body motion sequences in a similar way as sentences
can convey instructions in spoken languages. Considering the participants’
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intuitive and counter-intuitive reactions to the chosen tactile patterns, we
have assessed how accurately the participants could recognize basic and
compound instructions in a stationary situation and in an active situation
on the Wii balance board. Overall, our findings indicate that tactile motion
instructions form a simple language and that this language can communi-
cate sequences of instructions that could describe how to move the body in
physical activities.

Considering our participants’ overall performance in responding to tactileBoth encoding

metaphors can be

applied for

encoding in which

direction to move.

instructions in the active situation on the balance board, we can summarize
three main findings. First, both intuitive and counter-intuitive instructions
were recognized with high accuracy. Overall, less than 6% of these in-
structions were misinterpreted. This finding indicates that the encoding
metaphor did not influence the ability to verbally respond to tactile in-
structions. Those participants who preferred to be pushed and those who
preferred to be pulled could learn and identify instructions with reversed
mapping. This suggests that both encoding metaphors can be applied re-
gardless of the user’s preference to moving away or towards the vibration.

Second, basic (single) instructions were more accurately recognized thanCompound

instructions were

longer and

required more

attention to utter

their meaning.

compound instructions. One reason that could have diminished the abil-
ity to identify compound instructions is that compounds were longer than
single instructions. In our case, these compounds required more attention
to remember and to utter their meaning than single instructions. Had our
participants only performed the movements without uttering the mean-
ing of the instructions, we surmise that their ability to identify compound
instructions would have been similar to their ability to identify single in-
structions. Another reason could be that our participants did not know
which compound instructions to expect. Had they also learned the set of
compound instructions when they learned the set of basic instructions, they
might have better recalled the meaning of these instructions.

Third, the active situation degraded the ability to name the instructionsThe active

situation degraded

the ability to

identify

instructions.

compared to the stationary situation. This finding corresponded to the
findings of our previous studies (see section 6.3). Even so, considering the
situation and whether single or compound instructions were applied, the
intuitive and counter-intuitive group performed differently.

In the stationary situation, regarding basic and compound instructions, theCounter-intuitive

basic and

compound

instructions were

misinterpreted in

the stationary

situation.

participants who received these instructions based on their preferred encod-
ing metaphor performed on average fewer mistakes than the participants
who received these instructions based on their counter-intuitive metaphor.
Moreover, the profiles of the recognized instructions significantly differed
between the groups. We did not expect that the groups would perform
differently in the stationary situation because our participants were not
distracted when they responded verbally. For this reason, we have failed to
reject the first null hypothesis, which stated that counter-intuitive instruc-
tions cause more mistakes than intuitive instructions. According to this
finding, intuitive instructions should be applied in stationary situations.
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The results were different in the active situation. Both groups recognized Intuitive

compound

instructions were

misinterpreted in

the active

situation.

basic instructions with similar accuracy. Also, the profiles of these instruc-
tions did not significantly differ between the groups. Even so, the intu-
itive group misinterpreted more than twice as many compound instructions
(16.25%) than the counter-intuitive group (7.50%). This finding was sur-
prising because on average both groups recognized basic instructions with
similar accuracy in both situations. For this reason, we have failed to reject
the second null hypothesis, which stated that counter-intuitive instructions
do not cause more mistakes than intuitive instructions. According to this
finding, counter-intuitive instructions should be applied in active situations.

These findings are contradicting. The post-study analysis, however, re- The groups were

not equally

balanced.

vealed that the intuitive and counter-intuitive groups were not equally bal-
anced regarding the participants’ preference for the encoding metaphor and
their ability to respond verbally to compound instructions while balancing
on the board. Four participants preferred a mixed metaphor. They were
randomly assigned to the intuitive group and had to learn and to respond
to two counter-intuitive instructions. Also, the intuitive group included
two participants who performed poorly for compound instructions but not
for basic instructions. Overall, mainly these six participants misinterpreted
compound instructions in the active situation. Moreover, they had difficulty
in naming the first element of compound instructions, which was further
back in time. This indicates that uttering the meaning of compound in-
structions challenged these participants while playing the game. We assume
that these were the main reasons why the intuitive group performed worse
for compound instructions in the active situation than the counter-intuitive
group, although the intuitive group recognized all compound instructions
in the stationary situation. Had the groups been better matched and had
the participants not responded verbally, we surmise that both groups might
have recognized compound instructions with similar accuracy.

For both groups, the profiles of the recognized basic instructions were simi- The tactile

patterns for upper

body rotation

were correctly

recognized.

lar to the profiles measured with different participants in the first study on
the balance board (see section 6.3.1). In this former study, all participants
received instructions based on the push metaphor, although some of them
might have preferred the pull metaphor. The main difference between the
results of these studies is that in contrast to the directional lines around
the waist, the semicircular lines around the shoulders have been correctly
recognized. This indicates that the semicircular lines were appropriate as
tactile patterns for representing Turn left (right). Moreover, our partici-
pants could learn and recognize these counter-intuitive instructions.

Overall, the findings of this study indicate that tactile motion instructions Random

instructions and

left/right

confusion

influenced the

responses.

can establish a simple language. Also, young adults can perceive and rec-
ognize basic and compound instructions with high accuracy in an active
situation, although the might misinterpret some instructions if they re-
spond verbally. The experimental conditions, however, were the same as in
our previous studies and should be considered when interpreting the afore-
mentioned findings. Randomly applied instructions did not always match
to the movements that were required while playing the game. A few par-
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ticipants mentioned to have mixed up directions when responding verbally,
which increased the cognitive workload on them. Also, our user groups
comprised ten participants; the results might vary for larger groups. For
these reasons, we surmise that the ability to recognize tactile motion in-
structions was better than we could measure with the technology that we
had available. Further studies are required to confirm our assumption once
body movements can be automatically classified without requiring the par-
ticipants to respond verbally, and by applying only instructions that do not
interfere with movements that have to be performed during the activity.

7.3 Characteristics of Tactile Motion Instructions

We have started our investigation into tactile motion instructions by ob-Intuitive

interpretation of

tactile stimuli

serving how young adults intuitively interpreted artificial tactile stimuli
(see section 6.2). These stimuli included localized pulses and directional
lines that were applied to the chest, the back, the shoulders, and the lateral
side of the torso and the thighs. Since our participants did not have previ-
ous experience with artificial tactile stimuli, their answers were unbiased.
Also, they could assign any meaning to the experienced sensations without
referring to a predetermined set of answers that could have influenced or
restricted their responses.

We have found that the reactions to the stimuli often corresponded but alsoThe same

stimulus can

represent different

movements.

differed across the participants. For example, some participants preferred
to move towards points of stimulation, while others preferred to move away;
lateral pulses at the torso prompted to move the arm away from the body
but also to lean sideways; lateral pulses at the thigh prompted to move the
leg but also to redistribute the weight from one foot to the other foot. More-
over, a stimulus that a participant could associate with a specific movement
was sometimes too vague to carry meaning for another participant.

Based on these findings, we have chosen those tactile stimuli as tactileTactile motion

instructions are

not universally

intuitive.

motion instruction patterns that our participants most often associated
with the same or with a similar body movement. Even so, the fact that these
stimuli could be associated with more than one body movement implies
that the mapping between a pattern and its meaning was intuitive for some
participants but ambiguous to others. Consequently, some participants had
to learn the meaning that we had assigned to these patterns.

Moreover, tactile motion instruction patterns have to balance intuitivenessTradeoff between

intuitiveness and

discriminability

and discriminability. We have modified and changed some of the originally
chosen patterns in order to make them perceivable and discriminable in
active situations because some participants could not pay attention to the
characteristics of the stimuli. For example, the directional lines around
the waist, which represented Turn left or Turn right, were replaced with
semicircular lines around the shoulder. These patterns were unique and
discriminable in an active situation (see section 7.2). Even so, in a static
situation they were less preferred than the directional lines around both
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shoulders (see section 6.4), which in fact had the same drawbacks as the
directional lines around the waist because they shared all actuators.

We did not explore whether the volunteers who participated in our sub- Many participants

rated the learned

instructions as

intuitive.

sequent studies regarded the proposed set of tactile motion instructions
patterns as evident or not, but informal feedback from several candidates
supported both views. In general, our participants regarded the instructions
as easy to learn and described the mappings as intuitive. Also, some par-
ticipants commented that stimuli at the back of the thighs should represent
knee flexion. These stimuli occurred close to the hollow of the knees and
naturally prompted to flex the legs, as if it was a knee-jerk reaction—a hint
that this pattern intuitively represented this body movement. Many com-
ments, however, were biased because our participants had already learned
the meaning that we had assigned to the patterns. Also, some partici-
pants mentioned that longer training sessions could help to learn the set
of instructions (see section 7.2), which indicated that they regarded some
mappings as unfamiliar.

The study described in this section re-evaluated how intuitive potential
users regarded the set of tactile motion instruction patterns. In particular,
we have addressed the following questions:

• How intuitive is the mapping between the designed tactile patterns
and the body movements that they represent?

• How long do end-users need to learn these mappings?

• Do end-users recall these mappings after extended time?

Our assumption was that those tactile patterns whose meanings would be
difficult to learn and to remember would be less appropriate for represent-
ing body movements in an intuitive way. These patterns would have to
be modified further. If, however, the patterns were easy to learn and re-
member, we could argue that the designed set of patterns and the assigned
mappings would be justifiable as tactile motion instructions. Moreover, we
could argue that the experimental setup mainly lead to mistakes. In par-
ticular, our participants had to respond verbally, and they had to identify
instructions that did not always match to the movements that they already
had to perform in the active situation.

7.3.1 Participants and Experimental Setup

Nine volunteers aged 19–27 years (M = 22.78 years, two women) were No previous

experience with

artificial tactile

stimuli

recruited from the local university to participate on two consecutive days.
None of them had previously experienced artificial tactile stimuli in relation
to our technology. Neither did they know about the concept of tactile
motion instructions. Eight participants did sports, preferably bicycling,
jogging, table tennis, and climbing.
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The participants wore the custom-tailoerd tactile suit with 30 vibration
motors and a backpack with five SensAct boxes (see Fig. 3.5). Throughout
the study, they wore headphones and listened to soft music that blocked
the auditory cues produced by the vibrating motors. To familiarize the
participants with the tactile sensations, the experimenter first triggered all
ten patterns depicted in Fig. 7.1 once in random order.

Then, each pattern was randomly triggered again. The participants wereIntuitive

interpretation of

tactile stimuli

asked to state with which body movement they would intuitively respond.
An open response paradigm was used for answers such that they could
assign any meaning to the experienced sensations.

Our first study on the intuitive interpretation of vibrotactile stimuli re-Preference to the

push or the pull

metaphor

vealed that some patterns yielded vague or no answers (see section 6.2).
Therefore, in this study, the experimenter re-triggered those patterns that
did not yield a concrete response and that could clearly represent a push or
a pull of the body: pulses at the chest and at the back; and directional lines
laterally at the torso and at the thighs. Based on forced-choice paradigm,
the participants stated in which direction they preferred to move.

These answers determined the preferred encoding metaphor for the instruc-No time limit for

learning the

customized

instruction sets.

tions that the volunteers had to subsequently learn. To retain the mappings
that corresponded to the participants’ intuitive responses, the experimenter
considered mixed metaphors for the patterns that were applied to the chest,
to the back, and laterally to the torso and the thighs. To retain the sen-
sations that were experienced at the beginning of the experiment, the pull
metaphor was used for knee flexion and extension, and for upper body ro-
tation: directional lines in downward direction at the back of the thighs
represented Flex the legs, which initially received the most responses (see
section 6.2) and which were recommended by former participants (see sec-
tion 7.2); lines in upward direction at the front of the thighs represented
Stretch the legs; semicircular lines around the left (right) shoulder from the
chest to the back represented Turn left (right) (see Fig. 7.1). The par-
ticipants learned their customized instruction sets by pressing buttons the
GUI of the SensAct Control application, which triggered the corresponding
tactile patterns (see Fig. 3.9). They practiced as long as they wished, until
they were sure to have memorized all mappings.

After this training session, the ten instructions were randomly applied forShort-term study

for recalling

tactile motion

instructions

four times to record how well the participants remembered the meaning
of the tactile patterns. These responses served as baseline for the optimal
recall of the instructions. To record their long-term recall, we asked the
participants to return on the following day. We did not mention the pur-
pose of this post-test to avoid practice at home. After this post-test, the
participants were asked to rate the mapping between the patterns and their
meaning. In particular, we were interested if they had difficulty in learning
and remembering the ten instructions.

Three months later, the participants were invited by e-mail to participateLong-term study

for recalling

tactile motion

instructions

in a final study on tactile motion instructions. As before, all instructions



7.3 Characteristics of Tactile Motion Instructions 147

Table 7.5: Number of participants who preferred to be pulled or pushed.

Stimulus location Pull Push
Upper chest 5 4
Upper back 5 4
Lateral side of the torso 2 7
Lateral side of the thighs 3 6
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Figure 7.7: Intuitive interpretation of tactile patterns that could repre-
sent body movements. Abscissa labels denote the intended meaning of the
patterns. We accepted both a push and a pull of the body as answers for
stimuli that were applied to the back, to the chest, and laterally to the
torso and the thighs.

were randomly applied for four times to record how well our candidates
could recall the meaning of the tactile patterns.

7.3.2 Results

Table 7.5 shows the participants’ preference to moving towards or away Push, pull, and

mixed metaphorsfrom stimuli. Three volunteers preferred the push metaphor, whereas one
preferred the pull metaphor. The other five participants preferred a mixed
metaphor: three moved towards pulses delivered to the chest and back but
away from lateral stimuli to the torso and the thighs; one moved away from
pulses delivered to the chest and back but towards lateral stimuli to the
torso and the thighs; one moved away from pulses delivered laterally to the
torso but moved towards the other stimuli.

We have classified the participants’ intuitive responses into three categories. Three movement

categoriesIntended movements comprised the answers that exactly represented the
assigned meaning of the patterns (M = 35.56%, SD = 17.21%). Re-
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Table 7.6: The participants’ intuitive answers to the tactile patterns (with
frequency of the responses). For some instructions, we did not find answers
that were related to the intended movements (none).

Intended movements Related movements Different movements

Stretch legs (0) jump upwards (3)
bend legs (2), walk
forward, hop forward,
lift legs, walk backward

Flex legs (4) (none)
walk forward (3), walk
backward, stretch legs

Shift weight left (4)
lift left leg (4) (weight
shifted to right foot)

don’t know

Shift weight right (4)
lift right leg (4) (weight
shifted to left foot)

don’t know

Lean left (5) (none)
turn left (2), lift arm,
don’t know

Lean right (5) (none)
turn right (2), lift arm,
don’t know

Lean forward (3) pushing sensation
don’t know (2), move
shoulders forward, turn
around, breath in

Lean backward (3) straighten up

move shoulders back-
ward (2), move forward,
turn around, don’t
know

Turn left (2)
move left shoulder
backward (3)

move/lift arm (2), lean
left, lift shoulder

Turn right (2)
move right shoulder
backward (3)

move/lift arm, lean
right, lift shoulder,
don’t know

lated movements comprised the answers that resembled or contained the
expected movements (M = 21.11%, SD = 18.48%). Different movements
comprised the answers that differed from the expected results, such as con-
flicting movements or no movements at all (M = 43.33%, SD = 18.48%).
Fig. 7.7 summarizes these responses. Table 7.6 lists all answers.

The answers to directional lines delivered laterally to the torso (55.56%),Instructions that

intuitively

represent body

movements

laterally to the thighs (44.44%), and to the back of the thighs (44.44%)
most often corresponded to their intended meaning. When also related
movements were considered, lateral pulses at the thighs (89%) and rotation
around the shoulder (55.56%) most often corresponded to their intended
meaning. From this viewpoint, on average 5.64 (SD = 2.07) of the ten
patterns could be considered to intuitively represent body movements.

On average, the participants learned the mapping between the tactile pat-On average,

learning the

instructions lasted

around 4 minutes.

terns and their meaning for 3.44 minutes (SD = 1.42 minutes). The min-
imum learning time was two minutes. The maximum learning time was
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Figure 7.8: Average percentage of recalled tactile motion instructions on
the first two days (nine participants) and three months after learning the
instruction set (six participants, with standard error).

six minutes. Overall, these learning times corresponded to the observed
learning times in our previous studies (see sections 6.3.1 and 7.2).

Fig. 7.8 shows which instructions the participants recalled. Six of the nine All except one

participant

correctly

recognized all

instructions.

volunteers returned to participate in the long-term study that was con-
ducted three months after learning the instruction set. On day 90, all par-
ticipants correctly recognized all instructions except one participant who
intuitively preferred a mixed metaphor. This participant preferred the pull
metaphor for stimuli at the chest and at the back, and the push metaphor
for lateral stimuli at the torso and the thighs. He recalled the meaning of
the patterns that were applied laterally to the thighs but misinterpreted
the patterns that were applied laterally to the torso.

On the second day of the experiment, the participants rated the mapping The instructions

were considered

as intuitive and as

easy to learn.

between the patterns and their meaning. These comments comprised:

• “The patterns for leaning to the left and to the right feel most intu-
itive.”

• “The patterns for turning the body represent the movements very
good.”

• “They are easy to learn and to remember.”

• “The patterns are intuitive. Upper body rotation requires learning
because the other patterns made me move away from feedback. It
might be easier for me to switch the patterns at the shoulders.”

• “They are easy to learn but the mixed metaphor makes them harder
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to learn. One metaphor might be easier for me. The duration of the
patterns is quite long.”

• “The patterns are easy to learn. The patterns around the shoulder
do not need the motor at the chest, which first enticed me to lean
sideways. The two motors lateral at the shoulder and at the back
are sufficient. I can remember the patterns well after one day. I also
remember well new techniques in table tennis.”

• “The patterns are easy to learn, especially my intuitive responses.
Directional lines and rotation are good. I do not like the motors to
start and stop abruptly. They should be like a wave and increase
gradually.”

• “Rotational patterns and patterns for leaning, which go upwards on
the body, are good to follow and intuitive. Leaning forward and
backward are less clear because they can be interpreted differently.”

• “The patterns are intuitive, easy to learn, and to internalize. It might
be easier if all patterns showed the direction to move (pull) instead
of being mixed. A mixed metaphor makes sense for single patterns.”

7.3.3 Discussion

The findings of this study confirmed that the intuitive responses to the sameFive instructions

corresponded to

the users’ intuitive

reactions to the

chosen tactile

patterns.

tactile pattern could vary between people, as was also the case in the initial
investigation on the interpretation of tactile stimuli. This supports our
assumption that tactile motion instructions are not universally intuitive.
While some instructions were regarded as intuitive, the meaning of other
instructions had to be learned. On average, our participants regarded five
of the ten instructions as intuitive. They responded with the same body
movements that these patterns were intended to convey.

This does not mean that the mapping between the other five patterns andThe instructions

can be learned

quickly.

their meaning did not make sense. The participants’ comments indicated
that these mappings were plausible as well, although they had to be learned.
Even so, the average time that the participants spent to learn these map-
pings was around four minutes. Moreover, they could recall the meaning
of all patterns after an extended time without practice in-between. These
findings indicate that the designed tactile patterns were appropriate as in-
structions that represented body movements in an intuitive way.

The cut-off point between answers that we have classified as intended move-Many intuitive

reactions were

similar and

resembled the

intended body

movements.

ments, related movements, and different movements is debatable. We have
used a stringent classification scheme to reveal the number of answers that
were associated with the expected body movements. Nevertheless, many
of the other reactions corresponded to these movements for the most part.
For example, we have differentiated between lean backward, straighten up,
and move the shoulders backward, but these movements have something in
common. Considering a less stringent viewpoint, for example by merging
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intended and related movements in Fig. 7.7, this could explain why our
volunteers regarded all instructions as easy to learn and intuitive.

The findings of this study corresponded to our initial findings on the in- In retrospect: The

intuitive

interpretation of

tactile stimuli was

similar across the

different user

groups

tuitive interpretation of tactile stimuli (see Table 6.3). Apart from the
semicircular lines around the shoulders, which seemed to be less expres-
sive than directional lines around the waist or around both shoulders (see
section 6.4), all patterns were similarly interpreted. Also, the directional
lines that were applied to the front of the thighs in upward direction were
associated with jumping a few times, but they were inexpressive otherwise.

This study did not include an active situation. The participants were not The experimental

conditions likely

caused

misinterpretations

in active

situations.

required to speak while moving the body or to interpret instructions that
might have interfered with movements that they would have already per-
formed during the physical activity. Since all instructions were recalled
with optimal accuracy after an extended time, we could argue that our
experimental conditions were the main reasons why our participants misin-
terpreted instructions in active situations, both in the laboratory on the Wii
balance board and in the field while snowboarding and horseback riding.
Nevertheless, we cannot confirm this assumption at this time because we
do not have technology that could automatically classify body movements
or that could provide instructions only when corrections are required.

Despite the fact that our user group correctly interpreted all instructions, The sample size

was small.the number of volunteers was low. Moreover, our user group only included
a subset of potential users. With a larger sample size and with other age
cohorts, the results might vary.

Regarding the encoding metaphor, we have found that five participants Mixed metaphors

are common.preferred a mixed metaphor that included instructions based on the push
metaphor and instructions based on the pull metaphor (see also section
7.2). These participants did not mention to have difficulty in learning and
remembering mixed mappings. Nevertheless, three of them stated that
all instructions should be based on a consistent metaphor, which would
make the set of instructions easier to learn and recall. Considering each
instruction separately, however, the intuitive reactions would make sense.

Regarding the possible origins of the preferred encoding metaphor, some Possible origins of

the preference to

being pushed or

pulled

participants might have previously experienced natural tactile sensations
that biased them to move in a particular direction, such as during sports
training. Also, this preference might have been caused by the way that they
interacted with other people, such as when they were pulled at the arm or
pushed from the back. One participant mentioned that this preference could
relate to the disposition of animals, which are either predators or prey. For
example, horses are prey that respond to pressure by pushing back against
pressure. This is their natural reaction to break loose of a predator’s hold
[Roberts, 1997]. In contrast, other prey animals pull away from pressure
to escape. Humans might intuitively respond in similar ways to pressure,
either by pushing into pressure or by pulling away from pressure.
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7.4 Closing Remarks

In this chapter, we have first focused on the language aspect of tactileTactile motion

instructions

establish a simple

language.

motion instructions. While a single instruction could represent a specific
body movement, compound instructions that convey a sequence of messages
could represent a sequence of body movements. Our findings revealed that
young adults were able to perceive and to identify compound instructions
with high accuracy in an active situation. Overall, this finding indicates
that tactile motion instructions establish a simple language for physical
activities, based on single and compound instructions that resemble words
and sentences in spoken languages.

Another topic of this chapter concerned tactile stimuli that representedThe push and the

pull metaphor can

be used for

encoding

messages.

a push or a pull of the body, in particular how stimuli that represented
the user’s counter-intuitive reaction—push instead of pull and vice versa—
influenced the user’s responses. We found that both encoding metaphors
could effectively encode the messages of tactile instructions. Moreover,
users who preferred to move either towards or away from the vibration
could quickly learn to move in the opposite direction.

Initially, we have based the designed set of tactile motion instruction pat-Some tactile

motion

instructions are

intuitive, whereas

some have to be

learned.

terns on the intuitive responses of young adults to artificial tactile stimuli.
After evaluating these patterns in several user studies and modifying them
based on the gained results, we have re-evaluated if young adults considered
these patterns to intuitively represent the chosen body movements. On av-
erage, each participant regarded half of the designed patterns to intuitively
represent these movements, whereas the meaning of the other patterns was
less obvious because they associated these patterns with different body
movements. Even so, our participants regarded all instructions as plausi-
ble, and they could quickly learn and recall the meaning of the patterns
after an extended time.

Our work so far has shown that artificial tactile stimuli could be appliedLearning of motor

skills as instructions in active situations. In the next chapter, we will focus on
learning of motor skills. We will report a field study where we have applied
tactile motion instructions in a realistic situation during sports training.
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Chapter 8

Learning Motor Skills

“I now realize that the small hills you see on ski slopes are
formed around the bodies of forty-seven-year-olds who tried to

learn snowboarding.”

—Dave Barry

Our previous investigation into tactile motion instructions addressed their Tactile motion

instructions

applied to

snowboard

training

design, perception, and learning. We have shown that young adults could
perceive and recognize ten instructions with high accuracy in active situa-
tions. Moreover, they could quickly learn and remember these instructions
after several weeks. To complement our research, we will now focus on
learning of motor skills. We will report the results of a field study that has
investigated if tactile motion instructions could support snowboarders in
practicing an unfamiliar riding technique, as envisioned in chapter 1.

The study reported here not only reached into an area that is of interest We broke new

ground in research

on motor learning.

to sport scientists but also went beyond current practice. In many sports,
it is impractical to provide feedback on performance during exercises. For
this reason, researchers typically investigated the influence of concurrent
feedback on an athlete’s performance and learning of motor skills in con-
strained settings, such as in the laboratory, using feedback that athletes
received on a computer monitor while moving the body. Moreover, tactile
motion instructions, which represent specific body movements, have not
been explored before. Our study provided the first insights into using this
novel approach for teaching motor skills in a real-world setting, based on
our custom-built wearable system that could automatically signal snow-
boarders which body movements to perform while descending the slope.

Before detailing this experiment and the results, we will briefly summarize
important factors that could influence how well humans can perform and
learn motor skills. These issues explain the design of our study and the
implications of our findings in the larger context of motor learning.
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8.1 Feedback in Motor Skill Learning

Two types of feedback are distinguished in the field of motor learning: in-Intrinsic and

extrinsic feedback trinsic and extrinsic feedback [Winstein, 1991]. Intrinsic feedback relates to
information that athletes naturally perceive while performing movements.
This includes kinesthetic information on the position and movements of the
limbs, derived from receptors inside muscles and joints. Extrinsic feedback,
also called augmented feedback, relates to information that coaches provide
in addition to intrinsic feedback. This feedback could be provided concur-
rently while performing movements, immediately following, or delayed after
performing movements. In contrast to feedback, feedforward is information
provided before performing movements [Winstein, 1991].

Extrinsic feedback comprises knowledge of results and knowledge of perfor-Knowledge of

results and

knowledge of

performance

mance [Winstein, 1991]. Knowledge of results describes how successful the
task was performed compared to the desired outcome. Examples include
statements such as“Well done”or the time that was required for performing
the task. Knowledge of performance addresses the movement patterns and
describes how to correct the posture or how to move the limbs. Examples
include statements such as “Flex the legs a little more” or the deviation in
degrees of the performed movements from the intended movements.

Various studies have been conducted that focused on how extrinsic feedbackExtrinsic feedback

is important for

learning motor

skills.

could influence the performance and learning of motor skills. In general, ex-
trinsic feedback is considered important because it guides the learner to the
correct movements during the following trials [Winstein, 1991, Wulf, 2007].
Even so, many studies that have addressed the effects of the frequency of ex-
trinsic feedback have lead to controversial results. While some researchers
reported that learners could benefit from frequent feedback [Bilodeau and
Bilodeau, 1958, Bilodeau et al., 1959], others argued that too much feed-
back could have negative consequences [Salmoni et al., 1984]. We will briefly
summarize the main arguments as reported in [Wulf, 2007].

According to the guidance hypothesis [Salmoni et al., 1984, Schmidt, 1991],Frequent feedback

could decrease the

performance and

could hinder the

learning of motor

skills.

feedback guides the learner to the correct movements. Even so, frequent
feedback has two disadvantages. First, the learner could neglect the intrin-
sic feedback and could become dependent on the extrinsic feedback. As
a result, the performance could deteriorate after feedback is withdrawn.
Second, frequent feedback could hinder the learner in developing a stable
representation of the movements because it prompts to correct even small
errors that might have been caused by the variability in the motor system.

Concurrent feedback has been shown to have strong guiding effects thatConcurrent

feedback could

block the

processing of

intrinsic feedback.

increase the performance during practice but that block the processing
of intrinsic feedback [Wulf, 2007]. This could decrease the performance
when no feedback is provided, such as in retention tests [Park et al., 2000].
Overall, to decrease the dependency on feedback that is provided frequently
or concurrently, its frequency should be reduced, for example, by providing
feedback only in every second trial [Park et al., 2000, Wulf, 2007].
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The constrained-action hypothesis [Wulf et al., 2001] offered new insights The wording of

feedback

influences the

performance and

learning of motor

skills.

into this topic. This hypothesis states that the wording of feedback guides
the learner’s attention during the execution of movements and influences
the performance and learning of motor skills. Focusing on the movements
(internal focus) disrupts automatic control processes that would normally
regulate the movements effectively and efficiently. In contrast, focusing on
the effects of the movements (external focus) supports unconscious and re-
flexive processes that automatically control the movements. For this reason,
athletes should not try to actively control their movements.

For example, the instruction Flex the legs would induce an internal focus. An external focus

does not hinder

automatic control

processes.

As a result, the athlete would pay attention to consciously flex the legs,
which would constrain automatic processes that would normally regulate
knee flexion. In contrast, the instruction Crouch would induce an external
focus. The athlete would not pay attention to consciously flex the legs.
As a result, the motor system would respond unconsciously, which would
enhance performance and learning.

The assumption that the wording could influence performance and learning Frequent and

concurrent

feedback or

instructions do

not hinder

learning if they

promote an

external focus of

attention.

has lead to studies on the effect of attentional focus. For example, Shea and
Wulf [1999] investigated how accurately participants could balance on a sta-
bilometer platform, which required them to redistribute the weight evenly
between the feet in order to keep the platform horizontally, depending on
whether or not they received concurrent feedback on a computer screen.
This feedback represented the deviation from a balanced position, consid-
ering internal and external focus instructions. In another study, Wulf et al.
[2002] measured how accurately novices and advanced volleyball players
could perform serves depending on the wording of instructions, and how ac-
curately advanced soccer players could perform lofted passes depending on
the frequency and wording of instructions. Overall, the findings indicated
that feedback and instructions improved the performance and learning of
motor skills if they promoted an external focus of attention. Moreover,
frequent and concurrent feedback did not hinder learning.

The majority of studies that have investigated how the wording of feed- Closed skills and

open skillsback influenced the performance of motor skills have addressed closed skills.
These skills involve body movements that are performed in a stable environ-
ment where the environmental conditions do not change. Also, the athlete
can decide when to execute the movements, such as when playing golf. In
contrast, open skills involve body movements that are executed under time
pressure without planning them. Moreover, the environmental conditions
could change while performing the movements, such as when the opponent
influences the trajectory of the ball in soccer or tennis matches.

So far, only few studies have explored how the wording of feedback could External focus

instructions for

open skills

influence the performance of open skills. For example, Maddox et al. [1999]
measured the accuracy of tennis backhand strokes on balls played with
variable trajectories. The results suggested that external focus instructions
could improve the performance of athletes. Even so, more studies are re-
quired to confirm the constrained-action hypothesis for open skills.
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8.2 Concurrent Tactile Motion Instructions for
Learning Motor Skills in Snowboarding

Since the missing realtime feedback on performance while snowboardingWe have focused

on concurrent

feedback for open

skills in a

real-world setting.

originally motivated us to design tactile motion instructions, we have de-
cided to test these instructions in this particular context as an example.
Snowboarding is an interesting and a challenging physical activity for study-
ing concurrent feedback and instructions. This activity involves open skills
because snowboarders move in an unstable environment. They have to
quickly decide when and where to perform turns, and how to move the
body. The movements of the board in the snow, the descents of other skiers
and snowboarders, and environmental forces, including snowfall, wind, and
solar radiation, continually change the characteristics of the slope. From
the perspective of research in motor learning, we have focused on concur-
rent feedback, on knowledge of performance, and on open skills that are
performed under real-world conditions.

Two issues have influenced the design of our study and the motor taskThe wearable

sensing

technology

influenced the

design of the

study.

that we have investigated. First, we were looking for a wearable system
that could automatically provide tactile motion instructions on riding mis-
takes. Since we did not have technology that could detect mistakes, we
have built a system that could sense the riding edge (see chapters 3 and 4)
and that could provide instructions for guiding the snowboarder to the cor-
rect body movements during turns. This experimental setup was similar to
other studies in motor learning [Wulf, 2007], where athletes did not receive
feedback on mistakes but instructions how to perform a motor task.

Second, we were looking for participants with the same skill sets. First-First-time

snowboarders

were too

inexperienced to

participate.

time snowboarders who did not have skills in snowboarding would have
been ideal candidates because it would have been possible to compare their
learning progress and to draw conclusions on the effects of tactile motion
instructions. Novices, however, would have needed introductory lessons
in order to gain the skills that were required for learning how to perform
turns, such as sliding on the edge and turning towards the fall line. Also,
beginners fall frequently. Since snowboarders need to perform a few turns
to gain speed, to accommodate to the slope, and to find a safe riding style
depending on their skills, frequent falls would have prevented them from
experiencing automatic instructions at regular intervals during the ride.

Considering these issues, advanced beginners were more appropriate candi-Advanced

beginners as

participants

dates for studying the effects of tactile motion instructions on motor skill
learning. Even so, advanced beginners have different riding skills. This
made it difficult to find a motor task that challenged all snowboarders and
that allowed to compare their learning progress.

In order to balance the need for experienced candidates who could descendWe decided to

teach advanced

snowboarders how

to ride basic turns

switch.

the slope without frequent falls and for finding a motor task that also
challenged these riders, we have decided to teach advanced beginners how
to ride basic turns switch. Snowboarders prefer to ride either with the left
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shift weight
to left foot

turn left turn right

Figure 8.1: Two vibration motors were placed around each shoulder and
laterally at the thigh that pointed forward while riding switch. The arrows
indicate the direction of the evoked sensations.

foot or with the right foot pointing forward (see Fig. 4.1). This preference
in the stance is similar to being left-handed or right-handed. When riding
switch, the foot that would normally point backward points forward. This
posture would make even experienced riders feel clumsy like beginners.

The correct technique for basic turns involves a sequence of different body Correct posture

for basic turnsmovements (see section 4.2). The rider has to shift the weight to the front
foot and to rotate the upper body towards the new riding direction (see
Fig. 4.3 (b)). The resulting posture would lead the board to follow these
movements, to align to the fall line, and to pivot to the other edge. After
pivoting, the rider has to return to neutral position by redistributing the
weight evenly between both feet and by aligning the upper body parallel
to the board.

This sequence of movements challenges many snowboarders and often re- Proper weight

distribution and

upper body

rotation challenge

many

snowboarders.

sults in two common snowboarding mistakes: incorrect weight distribution
and counter-rotation (see Fig. 4.4). Facing downhill, many riders are afraid
to shift their weight towards the front of the snowboard. Instead, they keep
their weight towards the back foot. This posture makes it difficult to turn
the board and could lead to falls. Also, many riders do not properly align
their torso towards the new riding direction. As a result, they abruptly
turn their upper body for pivoting the board by exerting force.

We have applied two tactile motion instructions as compound instructions Compound

instructions

reminded of

correct posture.

to address these mistakes. Fig. 8.1 illustrates these instructions for a snow-
boarder whose left foot pointed forward while descending the slope. Con-
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riding on the
backside edge

(facing downhill)

riding on the
frontside edge
(facing uphill)

riding on the
backside edge

(facing downhill)

WL  TL (Hello valley)

riding on the
backside edge

(facing downhill)

riding on the
frontside edge
(facing uphill)

riding on the
backside edge

(facing downhill)

WR  TL (Hello mountain)

WR  TR (Hello valley)

regular stance
(left foot points forward)

goofy stance
(right foot points forward)

WL  TR (Hello mountain)

Figure 8.2: Tactile motion instructions for regular and goofy stance (see
also Fig. 4.1 for the stance and Fig. 4.3 for the correct posture).

sidering the pull metaphor, the first instruction stimulated the left thigh
and prompted to increase the weight towards this foot. The second instruc-
tion stimulated the shoulder that corresponded to the new riding direction
(left or right) and prompted to turn the upper body accordingly. Although
our wearable system could not predict the instant when a snowboarder
intended to begin a turn, the system could provide these compound in-
structions when the snowboard pivoted from one edge to the other edge
(see section 4.4.3). This allowed the participants to descend at their own
pace and to receive tactile instructions while pivoting the snowboard.

We have mentioned that instructions and feedback on performance shouldThe instructions

were worded to

promote an

external focus of

attention.

guide the learner’s attention to the effects of body movements instead of to
the body (see section 8.1). Since the original meaning of our instructions
described body movements, their wording had to be changed to induce an
external focus of attention (see also Table 6.7). The lateral vibration at
the left (right) thigh, which could convey the message Shift your weight
to the left (right) foot, was reworded to WL/WR = Increase the pressure
towards the nose of the snowboard. The vibration around the left (right)
shoulder, which could represent Turn your upper body to the left (right), was
reworded to TL/TR = Hello mountain or TL/TR = Hello valley. These
alternative wordings for TL and TR—mountain or valley—depended on the
riding direction, which could be towards the left or right side of the slope,
and whether the new turn was performed on the frontside or backside edge.
This relationship is explained the following two paragraphs (see Fig. 8.2).

For a rider whose left foot pointed forward (regular stance) and who startedThe instruction

set for regular

stance

to descend on the backside edge towards the left side of the slope, facing
downhill, a subsequent switch to the frontside edge towards the right side
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of the slope, facing uphill, first stimulated the left tight, then the right
shoulder: WL → TR (TR = Hello mountain). The next switch to the
backside edge towards the left side of the slope, facing downhill, stimulated
the left tight and the left shoulder: WL→ TL (TL = Hello valley).

For a rider whose right foot pointed forward (goofy stance) and who started The instruction

set for goofy

stance

to descend on the backside edge towards the right side of the slope, facing
downhill, a subsequent switch to the frontside edge towards the left side
of the slope, facing uphill, first stimulated the right tight, then the left
shoulder: WR → TL (TL = Hello mountain). The next switch to the
backside edge towards the right side of the slope, facing downhill, stimulated
the right tight and the right shoulder: WR→ TR (TR = Hello valley).

Up to now, however, the effect of the wording of feedback on the perfor- Tactile

instructions and

external focus of

attention

mance of motor skills has not been explored for tactile instructions that
stimulated the body. This raised the question if artificial tactile stimuli
could negate the effect of the intended wording, thereby causing an inter-
nal focus of attention. We surmised that these stimuli would not induce an
internal focus because responding to tactile motion instructions seemed to
resemble a knee-jerk reaction that happened automatic. Similar to turning
around upon perceiving a tap at the shoulder, we surmised that the sen-
sation that a tactile instruction evoked was associated with the conveyed
message and not with the stimulated body area.

8.3 Experimental Setup

In this study, we have explored if tactile motion instructions that were ap- We hypothesized

that tactile

instructions will

reduce riding

mistakes.

plied concurrently while descending the slope could support snowboarders
in learning an unfamiliar riding technique. The hypotheses were:

• Alternative hypothesis: Snowboarders will make fewer mistakes when
they ride with tactile motion instructions than when they ride without
these instructions.

• Null hypothesis: The number of mistakes that snowboarders make
will not be lower when they ride with tactile motion instructions than
when they ride without these instructions.

The experiment took place on a slope of 520 m (1700 ft) length in the The participants

learned to ride

switch.

indoor ski resort SnowWorld Landgraaf, The Netherlands. One instructor
from the SNOW SPORT Team of RWTH Aachen University volunteered
to conduct a one-day snowboarding course. He taught how to ride basic
turns switch. This technique required the participants to descend in an
unfamiliar posture: the foot that normally pointed backward on the snow-
board pointed forward. Regular riders who preferred to descend with the
left foot pointing forward became goofy riders who had to descend with the
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insole with FSR

inner boot

outer boot
snowboard

sensor cables

plates

Figure 8.3: The insoles with two force sensors were placed between the
inner and the outer boot to increase comfort.

right foot pointing forward. Goofy riders became regular riders who had to
descend with the left foot pointing forward (see Fig. 4.1).

8.3.1 Hardware Setup

The participants wore our custom tactile suit (see Fig. 6.4) with six vibra-We replaced the

backpack with a

small pouch worn

at the waist.

tion motors, as illustrated in Fig. 8.1. To increase the perceived intensity
of the tactile stimulations, they wore these clothes inside out such that the
motors were slightly pressed against the skin. Since some of our previous
volunteers did not like to wear a backpack (see sections 6.3.2 and 6.3.3),
we have decided for using a small pouch (see Fig. 4.10, right), which was
carried around the waist, and for one SensAct box (see Fig. 3.5). The host
device, a Nokia N70 mobile phone that controlled the box, was inserted in
a pocket of the participants’ jackets.

Since our SensAct box only had connections for six motors, we had toEach tactile

pattern activated

two motors.

reduce the number of motors per tactile pattern from three to two (see
Fig. 8.1). Overall, this restriction did not degrade the indented tactile
experience because two stimulation points are at least required in order to
display directional lines based on sensory saltation (see section 5.3).

The wearable system had to sense the riding edge for detecting the instantTwo force sensors

captured the

weight

distribution.

when the rider pivoted the snowboard (see section 4.4.3). This required us
to use two force sensors per foot, which measured the weight distribution
under the heel and under the ball of each foot. To prevent the participants
from feeling the sensor cables under their feet, we attached the sensors to
felt insoles, 0.5 cm thick, and placed them between the inner and the outer
boot (see Fig. 8.3). Since we expected that this layering could dampen the
measured forces, which could decrease the system’s accuracy in classifying
the riding edge, we placed a thin plastic plate, 3 × 5 cm wide and 0.1 cm
thick, between each sensor and the insole. These plates transferred the
forces that occurred around the small sensors to these sensors’ active areas.
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The program for classifying the riding edge and for triggering the tactile The program was

distributed across

both devices.

instructions was distributed across our wearable platform (see Fig. 3.1).
The SensAct box sampled sensor data and classified the riding edge. When
the riding edge changed, the result was time-stamped and transmitted to
the host device. Depending on the riding edge and stance, a Python script
running on the host triggered the appropriate compound instruction, and
logged this instruction with its own time stamp.

In our previous field study on the slope (see section 4.4), the SensAct box Slow micro-

processor inside

the SensAct box

sampled and streamed force sensor data at 50 Hz. At this sampling rate,
however, the ATMega168 micro-controller of the Arduino BT built inside
the SensAct box (see Fig. 2.2, right), which classified and streamed the rid-
ing edge to the host in realtime, processed the commands that activated the
vibration motors too slowly. The burst duration and the pauses between
consecutive pulses increased significantly, which hampered the tactile ex-
perience. Moreover, the system reported new turns too late.

To keep the system responsive, we lowered the sampling rate. We found 10 10 Hz sampling

rateHz to yield an adequate processing speed that allowed the micro-controller
to sample force sensor data, to classify the riding edge, to send the result
to the host, to process the received commands, and to render the intended
tactile sensations in time.

The following lines show an excerpt from the host device’s data log files
recorded during the study. The box transmitted the time-stamped riding
edge (timestamp in ms; 5 = pivoting, 14 = frontside edge, 16 = backside
edge). The host logged the posture that represented the snowboarder’s
current turn (Hello mountain, Hello valley, goofy stance, timestamp).

2561544;5
2561644;14
Hello mountain goofy at 11-33-49
2570900;5
2571100;16
Hello valley goofy at 11-33-58
2583864;5
2583964;14
Hello mountain goofy at 11-34-11
2596308;5
2596508;16
Hello valley goofy at 11-34-24
2607576;5
2607776;14

8.3.2 Pilot Test with Snowboard Instructor

Before conducting the study, a pilot test revealed the strengths and limita- The snowboard

instructor tested

the wearable

system.

tions of our wearable sensing and feedback system. The snowboard instruc-
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IBI = 50 msBD = 80 ms

actuator
1

active

time (ms)470 ms for a single instruction,
e.g., shift weight to left foot

990 ms for a compound instruction

actuator
1

active

actuator
2

active

actuator
2

active

actuator
3

active

actuator
3

active

actuator
4

active

actuator
4

active

470 ms for a single instruction,
e.g., turn left

Figure 8.4: The reduced timing values for tactile motion instructions that
based on directional lines, as illustrated in Fig. 8.1.

tor tested the hardware on the same slope where we intended to conduct the
experiment. To experience when the tactile instructions were triggered dur-
ing descents and how this feedback felt during the ride, he varied the speed
and switched between different riding techniques, including basic turns,
wide and short turns, carving, and riding switch. His insights helped us to
gauge how well the system would respond to the different riding skills of
potential candidates who would participate in the study. Also, we received
feedback on the composition of the tactile patterns, which allowed us to
adjust the timing values for improving the tactile experience.

The instructor noticed that the compound instructions were too long. Dur-Tactile

instructions were

too long.

ing short turns, they did not match to the movements that the snowboarder
had to perform after pivoting the board—returning to neutral position (see
sections 4.2 and 8.2). Sometimes, they also interfered with the body move-
ments that introduced the next turn.

The length of a single instruction was 850 ms, which sequentially pulsedWe reduced the

duration of

compound

instructions to

990 ms.

two motors for three times, based on our standard timing values (100 ms
for bursts, 50 ms for pauses between bursts). The compound instructions
lasted 1750 ms. To shorten the length of the tactile patterns, we explored
in a self-experiment how fewer pulses per motor, shorter pulse durations,
and shorter pauses between consecutive pulses altered the perceptions on
the skin. We agreed to pulse each motor twice, as at least two pulses per
actuator are required for sensory saltation (see section 5.3), and to maintain
the pauses between the bursts at IBI = 50 ms, which is the optimal timing
value for sensory saltation (see section 5.3). In addition, we lowered the
burst duration to BD = 80 ms. These timing values preserved the intended
tactile experience and reduced the length of a single instruction to 470 ms.
The duration of the compound instructions was 990 ms (see Fig. 8.4).

The instructor reported that he basically perceived instructions during allThe system

correctly

recognized turns,

but tactile

instructions for

backside turns

were slightly

delayed.

turns, which confirmed that our system could detect turns in realtime with
the new sensor layering, with reduced sampling rate, and independent of
the riding speed, riding technique, or edging angle. He stated, however,
that although he received instructions at the very moment when pivoting
the board to the frontside edge, he received instructions shortly after piv-
oting the board to the backside edge. Ideally, the instructions should have



8.3 Experimental Setup 163

occurred at the very moment when the body movements were required.
This was while initiating the turn and while pivoting the snowboard. Even
so, he considered these slightly delayed instructions as less likely to disturb
or to misguide our participants if we shortened the duration of the patterns
to prevent feedback while traversing the slope after pivoting the board.

The reason why feedback was delayed during backside turns could relate to The snowboard

binding influenced

the force sensor

measurements

and the

classification

results.

the front binding and to the threshold value TE , which yielded the riding
edge (see section 4.4.3). The front strap of the binding fixated the front part
of the boot. During backside turns, with increased weight towards the heels,
the frontside edge did not touch the slope. Even so, when the toes were
pulled upwards, the ball of each foot remained in its position, and the force
sensors still measured some pressure. The difference in weight distribution
between the ball of each foot and the heels fell below the threshold value
once the rider exerted more pressure on the heels. This typically occurred
after pivoting the board, which could have slightly delayed the recognition
of backside turns. In contrast, the force sensors located under the heels did
not measure pressure during frontside turns when the weight was towards
the ball of each foot. In this case, the rider could freely lift the heels inside
the boots, which yielded a quick response to frontside turns.

To increase the system’s responsiveness and to decrease the delay of instruc- A low threshold

value increased

the system’s

responsiveness.

tions during backside turns, we lowered the threshold value TE . A lower
value made the algorithm more sensitive to weight shifts. This threshold
value, however, has to be carefully chosen because the system could mis-
classify turns during bumpy rides with low thresholds (see section 4.4.3).

8.3.3 Participants

The experiment was conducted on five consecutive Fridays. For each day, The study lasted

one day and was

repeated over five

weeks. Ten users

participated.

two snowboarders were recruited over e-mail with help from the local uni-
versity’s sports center. These volunteers had to spend almost the entire
day in the ski hall (9:00–15:00). Two women and eight men aged 21–29
years (M = 26.10) participated.

It was not possible to recruit only snowboarders with similar riding skills. Nine participant

had snowboarded

before; six had

already tried to

ride switch.

A few volunteers canceled their appointment on short notice such that we
had to resort to volunteers who had time to participate. On a scale ranging
from level one (beginner) to level five (expert), three participants rated their
skills in snowboarding as level one, four as level two (advanced beginner),
and three as level three (advanced). On average, they snowboarded for 4.2
years (SD = 3.6 years) and between one and three weeks per year. Three
volunteers had previously participated in a snowboarding course to improve
their riding skills. Six volunteers had previously tried to ride switch. Three
volunteers had participated in our studies on vibrotactile feedback. All can-
didates also practiced other sports occasionally, including biking, jogging,
surfing, horse riding, tennis, rowing, and ball games.
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One of these volunteers was a first-time snowboarder. The instructor had toOne first-time

snowboarder

participated.

introduce her to the basics of snowboarding. She practiced how to correctly
fall and how to slide on one edge. She also tried basic turns, riding with her
preferred foot pointing forward. This introductory course lasted one hour.

8.3.4 Experimental Procedure

Four people accessed the ski slope on each day of the experiment: the
snowboard instructor, two participants, and one assistant. The assistant
set up the wearable system and videotaped the descents.

The participants used snowboards with the binding inversely mounted toThe binding was

inversely mounted

for riding switch.

their preferred riding stance. Donning and testing the wearable system on
level ground lasted one hour. After this setup phase, the group descended
the slope once to warm up.

We have chosen a within-subjects design with two experimental conditions:

1. Traditional lessons with spoken instructions (feedforward) issued be-
fore each descent and with spoken feedback after each descent. These
lessons served as control condition.

2. Lessons with spoken instructions issued before each descent, with
automatic tactile motion instructions while descending the slope, and
with spoken feedback after each descent.

Each condition comprised four descents. Overall, the participants de-
scended ten times in this order:

• One descent for reference

• Four descents for one condition

• Four descents for the other condition

• One descent for reference

The first five descents were scheduled for the morning. The other five
descents were scheduled for the afternoon, following a lunch break of 45
minutes. These descents are detailed below.

The first descent in the morning and the last descent in the afternoon servedThe instructor

rated the

participants’

initial and

acquired riding

skills.

for rating the participants’ initial skills in riding switch before the course
and their acquired skills after the course. The participants did not receive
spoken instructions before or spoken feedback after these trials. Neither
did they receive tactile instructions while descending the slope. For fine-
grained ratings, the instructor preferred a scale that ranged from very bad
(1) to very good (10).
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The snowboarding course was conducted during the following eight de- Counterbalanced

experimental

conditions in the

morning and

afternoon

scents. In the morning, one participant (S1) was randomly chosen to de-
scend without tactile instructions (condition 1). The other participant (S2)
descended with tactile instructions (condition 2). During the four descents
after the break, participant S1 received tactile instructions (condition 2),
whereas participant S2 did not receive tactile instructions (condition 1).

To prevent bias on the course instructor’s part, we decided for a blind exper- The course

instructor did not

know which

participant

received tactile

instructions.

iment. The instructor did not know during which descents the participants
received tactile motion instructions, or if they received these instructions
at all. Moreover, both participants wore the wearable system during all
descents. This setup ensured that he treated all participants alike when
teaching how to ride switch, when explaining exercises, and when provid-
ing spoken feedback on their performance after descending the slope. Unlike
the instructor, the assistant knew which participant received tactile instruc-
tions. Before each descent, he operated both host devices to enable sensor
data logging and to either enable or disable automatic feedback.

At the beginning of the course, the instructor introduced his students to Both participants

learned the

instructions at the

start of the

course.

neutral position. He explained how to perform turns for riding switch
and demonstrated the required body movements while standing still. He
mentioned that tactile motion instructions during descents indicated the
correct weight distribution and the correct upper body rotation for pivoting.
Vibration laterally at the thigh that pointed forward signaled to increase the
pressure towards the front of the snowboard. Vibration at the left or right
shoulder signaled the direction to turn the torso, which was either towards
the mountain or towards the valley. The assistant manually triggered the
corresponding compound instructions until both participants were sure to
have memorized the meaning that these instructions represented.

For each of the four runs in the morning, the instructor issued an exercise. The instructor

explained and

issued exercises,

observed the

participants, and

provided feedback

after descents.

He explained and demonstrated the required movements on level ground
at the top of the slope, and slowly descended the first half of the slope to
demonstrate this exercise. He then waived at the first candidate to descend
and to repeat this exercise up to the location where he was waiting. Having
informed this participant on his performance and how to improve the riding
technique, he observed and advised the second participant. Afterwards, the
group descended the remaining half of the slope. This time, however, the
instructor did not correct his students, which was similar to real courses
where instructors cannot provide feedback after every run. Even so, par-
ticipant S2 did receive tactile instructions until the end of the slope.

The course continued after the lunch break. The instructor re-explained the The course

continued in the

afternoon.

meaning of the tactile instructions, and the assistant manually triggered the
corresponding compound instructions. The following four runs resembled
the lessons in the morning: the instructor explained and demonstrated new
exercises, observed the participants during descents, and provided feedback
on their performance after the first half of the slope. In contrast to lessons in
the morning, participant S1 received tactile instructions while descending
the slope, whereas S2 did not receive concurrent instructions.
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During the course, the assistant descended about 230 meters and stoppedThe assistant

videotaped the

descents.

at the edge of the slope, above the instructor’s observation point. He video-
taped the participants from this location. At the end of the slope, he oper-
ated both host devices to save the logged sensor data files. Also, he paused
the application, which prevented unintentional feedback while walking or
waiting for the lift.

During this five-week study, all participants practiced the same exercises inExperienced

participants also

practiced exercises

that were more

demanding.

the morning. Advanced snowboarders, however, soon started to feel under-
challenged after a few descents. For this reason, the instructor issued for
these advanced riders exercises that were more demanding in the afternoon.
For example, he asked them to increase the edging angle of the snowboard,
as required for carved turns. The carving technique, however, also requires
the snowboarder to descend at higher speed, to flex the legs, to keep the
torso parallel to the board, to evenly distribute the weight between the
left and right foot, and to pivot while traversing the slope before passing
the fall line. In this case, the tactile instructions that indicated correct
posture for basic turns would not guide the snowboarder to the posture
and body movements for carving. For this reason, the instructor asked
these riders to regard the instructions as a reminder for avoiding incorrect
weight distribution and counter-rotation, which could also occur in carving.

At the end of the course, the participants answered a questionnaire (seeA questionnaire

gathered the

participants’

opinion.

Appendix D). This questionnaire addressed their previous experience in
snowboarding, their view on riding switch, and their opinion on tactile
motion instructions for learning to snowboard.

8.4 Results

Snowboarders often do not pay attention to their riding technique duringData analysis did

not include the

first turn and the

last few turns of

each descent.

the first and last few turns. At the beginning, they gain speed, whereas
they lower their speed towards the end to stop safely. Therefore, we skipped
the first turn and assessed the participants’ progress in riding switch up to
the point where the camera was positioned. The assistant videotaped the
descents from approximately 25 meters above the instructor’s observation
point such that the participants decelerated after passing the camera.

8.4.1 Classification of the Riding Edge

We have analyzed the sensor recordings and the footage in order to deter-We compared the

sensor logs to the

footage.

mine how accurate our wearable sensing system could classify the riding
edge. The host devices that controlled the SensAct boxes were time syn-
chronized with the video camera to log time stamps at one-second accuracy.
Despite this coarse resolution, these time stamps allowed us to estimate the
time offset between the instant when a new turn was started and when the
instructions were perceived. Unfortunately, we had to exclude three partic-
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pivoting for a
carved turn

pivoting for a
skidded turn

(b)(a)

fall line

Figure 8.5: (a) The crosses indicate the turning points on the rider’s path,
which we marked on footage to count the number of turns and to estimate
the point in time when our system triggered tactile instructions. (b) The
quality of turns can vary during descents. When descending at high speed,
skilled snowboarders could increase the edging angle to pivot their board
to the other edge before passing the fall line (carved turn). Less skilled
snowboarders would typically descend slowly and pivot with a low edging
angle shortly before or when passing the fall line (skidded turn).

ipants from this analysis. A software bug had corrupted the host devices’
time stamps on the first day, and one device was incorrectly synchronized
with the clock of the camera on the last day. Nevertheless, these three par-
ticipants did receive tactile instructions during the corresponding descents.

Our turn detection algorithm recognized new turns and triggered instruc- Turning points on

the riding path

identified new

turns.

tions when the difference in the weight distribution between the toes and
heels exceeded the specified threshold value (see section 4.4.3). This oc-
curred when the snowboarder redistributed the weight between the toes
and heels while pivoting the board from one edge across the fall line to the
other edge. On footage, however, the high uphill recording distance (200
meters) and continuously changing viewing angles on the riding paths often
concealed the instant when the board was pivoted. Therefore, we marked
the locations when the participants passed the fall line during turns, which
we could clearly identify (see Fig. 8.5 (a)). In general, these turning points
coincide with the instant when the board pivots to the other edge, otherwise
the rider would not be able to change the riding direction.
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Table 8.1: (a) T1 and T2 denote the average percentage of correctly clas-
sified turns during descents without and with tactile instructions. Three
participants were excluded from this evaluation due to incomplete data log
files. (b) O denotes the time offset between passing the fall line and the
system triggering instructions (mean and standard deviation in seconds). A
negative value indicates that the instructions were triggered before passing
the fall line as observed on footage. (c) D denotes the duration of turns
when riding with tactile instructions as observed on footage (mean and
standard deviation in seconds).

Participant A B C D E F G H I J

a
T1 – – 100 66.7 100 91.9 47.4 100 – 100
T2 – – 100 87.0 100 100 51.6 100 – 100

b
M(O) – – 0.2 -0.3 -0.1 0.6 -0.2 0.2 – -1.6
SD(O) – – 0.9 1.9 0.9 0.8 1.5 0.9 – 0.6

c
M(D) 5.9 3.3 12.2 4.1 7.7 4.8 6.4 6.5 4.9 4.4
SD(D) 1.2 1.1 4.4 1.2 1.7 1.3 2.7 2.0 1.5 0.8

The participants performed on average 7.44 turns (SD = 2.01, min = 4,90.97% of all

turns were

recognized.

max = 14) while riding switch from the top to the middle of the slope. The
algorithm correctly classified 90.97% of these turns. The descents without
tactile instructions comprised on average 7.68 turns (SD = 2.38, min =
4, max = 12); 90.19% have been recognized. The descents with tactile
instructions comprised on average 7.15 turns (SD = 1.54, min = 5, max =
11); 90.67% of these turns have been recognized. While the participants C,
E, F , H and J received instructions during all turns, the sensing system
worked less accurately for D and G, who received instructions in 87.0% and
51.6% of their turns (see Table 8.1 (a)). Overall, the sensing system missed
less than 10% of turns. For these turns, tactile motion instructions have
not been triggered. Also, we found one false positive.

The average difference between the time stamps of the sensor logs andOn average, our

system triggered

instructions when

the participants

passed the fall line

as observed on

footage.

the time stamps of the turning points on footage indicates that tactile
instructions coincided with the time when the participants passed the fall
line (in seconds: M = −.2, SD = 1.2). These times, however, varied
across the participants. For example, F received instructions on average
0.6 seconds after passing turning points, whereas J received instructions
1.6 seconds before passing turning points (see Table 8.1 (b)). The reason
why these time offsets varied is that the turning points on footage did not
always coincide with the time when the board was pivoted to the other
edge. Snowboarders could switch to the other edge at different points in
time before passing the fall line, which could depend on their riding skills,
edging angle, riding style, and riding speed (see Fig. 8.5 (b)).

To illustrate the point in time when the participants perceived tactile mo-One participant

received delayed

instructions.

tion instructions, we have calculated the average duration of the turns (see
Table 8.1 (c)), based on the time between two turning points as observed on
footage (see Fig. 8.5 (a)). Fig. 8.6 illustrates these average durations and
the period when the participants likely perceived the instructions. Overall,
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C

D

E

F

G

H

J

12.2

4.1

7.7

4.8

6.4

6.5

4.4

M(D)

0.2

-0.3

-0.1

0.6

-0.2

0.2

-1.6

M(O)

Figure 8.6: The estimated period when tactile motion instructions were
perceived relative to passing the fall line. The crosses indicate the turning
points on the rider’s path (see Fig. 8.5 (a)), considering the average duration
of turns as observed on footage (M(D) in seconds, see Table 8.1 (c)). The
rectangles show when the participants perceived the compound instructions
(990 ms), considering the average time offset between passing the fall line
and the system triggering instructions (M(O) in seconds, see Table 8.1 (b)).

this sketch indicates that the instructions were triggered at slightly differ-
ent times. The main reason could be that the participants’ riding skills
differed. On average, the instructions were most delayed for participant F ,
who perceived them after passing the fall line. This could indicate that
he performed skidded turns and that the system detected the riding edge
when he exerted more pressure on this edge while traversing the slope.
Since F ’s turns were short, these delayed instructions could have interfered
with the movements that were required for returning to neutral position
after pivoting the snowboard.

In contrast, participant J perceived the instructions before passing the fall In general, the

instructions were

less likely to

interfere with the

movements that

were required for

returning to

neutral position.

line, which indicates that he carved the turns at high speed (see Fig. 8.5
(b)). The instructions did not interfere with his previous movements for
returning to neutral position as he had already introduced the new turn.
For the other participants, the slightly delayed instructions might not have
interfered with these movements either. Since the compound instructions
lasted one second, the participants had enough time to return to neutral
position while traversing the slope before introducing the next turn.
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Table 8.2: The course instructor’s rating of the participants’ skills in
riding switch before and after the course. The scale ranged from very bad
(1) to very good (10). Some volunteers had previously tried to ride switch
or had attended courses to improve their skills.

Participant A B C D E F G H I J

Rating before course 4 7 2 6 2 2 3 2 2 5
Rating after course 6 8 4 7 4 5 6 4 5 7
Tried switch before yes yes no yes yes yes no no no yes
Prior course yes yes no yes no no no no no no

Table 8.3: Number of falls during descents without tactile instructions
(normal font) and with tactile instructions (bold font). Instructions were
applied either during lessons in the morning (m) or in the afternoon (a).

Participant A B C D E F G H I J

Tactile instructions m a m a m a m a m a
First descent (before course) - - 3 0 0 2 0 0 4 1
All descents in the morning 0 0 1 0 0 2 3 5 4 1
All descents in the afternoon 0 2 2 1 0 0 4 2 1 1
Last descent (after course) 0 0 0 0 0 0 1 0 1 0

8.4.2 The Participants’ Riding Skills (Video Analysis)

The participants did not receive spoken nor tactile instructions for the firstAll participants’

improved their

riding skills.

and last descent. Table 8.2 summarizes the course instructor’s rating of
these rides and the participants’ pre-experience. On average, they received
a rating of Mdn = 2.5 (Q1 = 2, Q3 = 4.75) before the course and a rating
of Mdn = 5.5 (Q1 = 4.25, Q3 = 6.75) after the course. The six volunteers
C, E, F , G, H and I had little or no experience in riding switch.

The course instructor was not available to analyze the footage. We haveAnother instructor

assessed the

participants’

performance.

consulted another instructor from the SNOW SPORT Team, who agreed to
review the footage and to assess the participants’ skills and progress. Un-
informed that half of the descents included tactile instructions, he counted
the number of mistakes and falls, and rated the overall quality of the de-
scents, regarding the weight distribution and the upper body posture while
also considering how dynamic, fluent, and safe these runs were.

Riding Mistakes

The number of falls is a simple metric that shows a snowboarder’s progressThe participants

fell less often after

the course than

before the course.

(see Table 8.3). On average, the participants fell more often during the first
ride before the course (M = 1.25, SD = 1.58) than during the last ride after
the course (M = .25, SD = .46). The number of falls during lessons in the
morning (M = 1.6, SD = .1.84) was similar to the number of falls during
lessons in the afternoon (M = 1.3, SD = 1.25). Also, the number of falls for
riding without tactile instructions (M = 1.5, SD = 1.78) was similar to the
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number of falls for riding with tactile instructions (M = 1.4, SD = 1.35).

The number of falls was not normally distributed (Shapiro-Wilk test). A
Wilcoxon signed-rank test revealed that they were not significantly lower
after the course (Mdn = 0) than before the course (Mdn = .05), T =
1.5, n = 5, p = .10, r = −.1; neither during lessons in the afternoon (Mdn =
1) than during lessons in the morning (Mdn = 1), T = 10.5, n = 7, p =
0.55, r = −.03; neither for riding with tactile instructions (Mdn = 1) than
for riding without them (Mdn = 1), T = 13, n = 7, p = .86, r = −.01.

Table 8.4 summarizes the percentage of riding mistakes while pivoting the The participants

did significantly

fewer mistakes

after than before

the course.

board. On average, the participants counter-rotated their torso more often
during the first ride before the course (M = 54.39%, SE = 12.74%) than
during the last ride after the course (M = 33.32%, SE = 7.15%). This
difference was not significant t(7) = 1.49, p = .179 but almost represented
a large effect r = .49. The average percentage of incorrect weight distri-
butions was higher during the first ride (M = 51.60%, SE = 9.21%) than
during the last ride (M = 21.54%, SE = 5.84%). This difference was highly
significant t(7) = 3.75, p < .01 and did represent a large effect r = .82.

The average percentage of counter-rotations during lessons in the morning Tactile

instructions

significantly

reduced the

number of

counter-rotations.

(M = 34.14%, SE = 5.46%) was higher than during lessons in the afternoon
(M = 29.23%, SE = 3.78%). This difference was not significant t(9) =
.92, p = .38, r = .29. The average percentage of counter-rotations for riding
without tactile instructions (M = 36.45%, SE = 3.72%) was higher than for
riding with tactile instructions (M = 26.92%, SE = 5.15%). This difference
was significant t(9) = 2.07, p = .034 (one-tailed) and did represent a large
effect r = .57.

The average percentage of incorrect weight distributions during lessons in Tactile

instructions

slightly reduced

the number of

incorrect weight

distributions.

the morning (M = 27.37%, SE = 4.35%) was similar to the percentage
of mistakes during lessons in the afternoon (M = 26.72%, SE = 4.36%).
This difference was not significant t(9) = .17, p = .87, r = .05. The aver-
age percentage of incorrect weight distributions for riding without tactile
instructions (M = 28.87%, SE = 4.15%) was higher than for riding with
tactile instructions (M = 25.22%, SE = 4.47%). This difference was not
significant t(9) = .94, p = .19 (one-tailed) but did represent a medium effect
r = .30.

Quality of Descents

Poor descents did not occur except for the last ride of participant G during A few descents

were difficult to

grade.

lessons in the afternoon. This unsafe ride with two falls, counter-rotation,
and incorrect weight distribution received low ratings. Also, two descents
were difficult to grade for participant D in the afternoon. He jumped
while pivoting the board, apparently trying to alternate between flexed
and stretched legs, but his overall posture was less clear to assess according
to the required body movements and resulted in lower ratings.
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Table 8.4 also summarizes the instructor’s overall ratings of the quality of Overall riding

skills were

significantly

better after the

course than before

the course

descents while also considering the posture of the upper and lower body.
A Wilcoxon signed-rank test revealed that the participants received signif-
icantly lower scores for upper body rotation during the first ride before the
course (Mdn = 5) than during the last ride after the course (Mdn = 7.5),
T = 0, n = 7, p = .02, which did represent a large effect r = −.59. Also,
the scores regarding the weight distribution was significantly lower dur-
ing the first ride (Mdn = 4.5) than during the last ride (Mdn = 7),
T = 2, n = 8, p = .02, which did represent a large effect r = −.56.

Regarding upper body rotation, the participants scored similarly during Overall scores for

upper body

rotation were

similar in both

conditions.

lessons in the morning (Mdn = 26.5) and in the afternoon (Mdn = 28.5),
T = 20.5, n = 9, p = .81, r = −.05. Also, they scored similarly for rid-
ing without tactile instructions (Mdn = 26.5) and for riding with tactile
instructions (Mdn = 27.5), T = 14.5, n = 9, p = .34, r = −.21.

Regarding weight distribution, the participants scored similarly during Overall scores for

weight

distribution were

similar in both

conditions.

lessons in the morning (Mdn = 27) and during lessons in the afternoon
(Mdn = 26.5), T = 19, n = 10, p = .38, r = −.19. Also, they scored simi-
larly for riding without tactile instructions (Mdn = 26) and for riding with
tactile instructions (Mdn = 27.5), T = 22, n = 10, p = .57, r = −.13.

Individual Progress

The last descent at the end of the experiment showed that C, E, F and The inexperienced

participants most

benefitted from

the course.

I most benefitted from the course. Inexperienced in riding switch, they
noticeably reduced both mistakes during the last ride compared to the first
ride (see Table 8.4). Three of them (C, F , I) also fell less often after the
course than before the course (see Table 8.3). D, G, H and J improved their
weight distribution, yet G and J made more upper body mistakes. Overall,
the first-time snowboarder H performed best before the course and second
best after the course. During the course, however, her performance was
lower and included several falls. This was also the case with G.

A, C, E, G and I received tactile instructions in the morning. E and G were Two

inexperienced

participants

benefitted from

tactile motion

instructions in the

morning.

inexperienced in riding switch and most benefitted from these instructions.
Their percentage of incorrect upper body posture (E, G) and incorrect
weight distribution (G) was noticeably lower during descents in the morning
than during descents without tactile instructions in the afternoon (see Table
8.4). For G, the overall quality of descents was better in the morning than in
the afternoon, although the number of falls was similar (see Table 8.3). For
E, the overall quality of descents was marginally better in the afternoon.

The performance of the other three participants (A, C, I) did not notice- Three participants

showed a steady

performance with

tactile motion

instructions in the

morning and

without them in

the afternoon.

ably change in the afternoon after riding with tactile instructions in the
morning (see Table 8.4). The percentage of mistakes remained similar for
A (advanced rider), yet the overall quality of descents was better in the
afternoon. For C (inexperienced rider), the percentage of mistakes was
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similar throughout the day, yet the overall quality of descents regarding
weight distribution was lower in the afternoon. Participant I (inexperi-
enced rider) rode more often with wrong upper body posture and fell more
often in the morning than in the afternoon (4 falls vs. 1 fall, see Table 8.3),
yet the percentage of incorrect weight distributions and the overall quality
of descents remained similar throughout the day.

B, D, F , H and J received tactile instructions in the afternoon. D, F andTwo participants

noticeably

improved their

skills in the

afternoon when

riding with tactile

motion

instructions.

H did fewer mistakes during these rides (see Table 8.4). F and H fell less
often than in the morning (see Table 8.3). The overall quality of descents
slightly improved for F (weight distribution) and H (upper body posture)
but slightly worsened for D (upper body posture). B and J did fewer
upper body mistakes but rode slightly more often with improper weight
distribution. B fell twice in the afternoon. Even so, the overall quality of
descents remained similar for B throughout the course but improved for J .

8.4.3 The Participants’ Opinion (Questionnare Results)

Fig. 8.7 shows the participants’ assessment of their skills. Half of the groupHalf of the group

considered riding

switch as difficult;

all participants

benefitted from

the course.

(B, F , H, I, J) considered riding switch as difficult to learn, whereas the
other five participants disagreed. Overall, all participants agreed to have
much improved their riding technique during the course.

Fig. 8.8 summarizes the participants’ view on tactile instructions for learn-
Tactile motion

instructions were

good to perceive.

ing to ride switch. All agreed that they did not have difficulty in perceiving
these instructions. Six participants stated that tactile and spoken instruc-
tions corresponded, whereas for B, D, H and J the tactile instructions
somewhat represented the spoken instructions issued before the ride.

The participants disagreed when asked if these instructions helped themFive participants

rated tactile

instructions as

helpful.

to ride switch with correct posture: A, E, F , G and I considered them as
helpful; B, C, and H were undecided; D and J stated they did not help.
In general, tactile instructions somewhat increased their motivation to ride
with correct posture and somewhat improved the quality of their descents.

Nine participants, except B, agreed that tactile instructions did not distractTactile motion

instructions did

not distract

during the ride.

from carrying out spoken instructions issued before the ride. Even so, four
participants (B, E, H, J) mentioned that it was difficult to pay attention
to the tactile stimuli while carrying out spoken instructions.

Half of the group (A, C, D, E, I) considered tactile instructions importantAll participants

preferred descents

with tactile

motion

instructions for

learning new

riding techniques.

for learning new riding techniques (see Fig. 8.9). B, F , G and H regarded
them as moderately important, whereas the skilled rider J ascribed little
importance to them. Even so, they all stated to prefer lessons enhanced
with tactile instructions (Mdn = 5) over lessons exclusively with spoken
instructions issued before descents (Mdn = 2), T = 0, n = 10, p < .01, r =
−.64 (Wilcoxon signed-rank test, see Fig. 8.9).
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Grade your skills in riding switch
after participating in this study
(very poor ... very good)

1 2 3 4 5

How often do you snowboard per year?
(up to 1 week ... more than 4 weeks)

Learning to ride switch is difficult
(strongly disagree ... strongly agree)

How much did you improve your skills
in riding switch during this study?
(not at all ... to a great extent)

Grade your skills in riding switch
before participating in this study
(very poor ... very good)

1 2 3 4 5

min -[1st quartile - median - 3rd quartile]- max

How often do you practice other sports?
(never ... regularly)

Grade your overall snowboarding skills
(beginner ... expert)

Figure 8.7: Likert scale ratings of the participants’ snowboarding skills
before and after participating in the snowboarding course.

The three beginners E, H and I preferred to receive instructions during Beginners

preferred

continual

feedback.

all trials. The other participants, including both beginners and advanced
riders, disagreed. They preferred to receive feedback only if their posture
was incorrect (see Fig. 8.9).

The snowboard beginner E disliked the system to inadvertently trigger Negative

comments on

tactile motion

instructions

instructions when pausing on the slope. Ideally, the system should only
provide feedback during the ride. Also, he mentioned that although the
tactile instructions were a bit too much when practicing a new exercise,
this feedback was helpful at later stages when repeating the learned move-
ments. Participant D commented that the patterns for upper body rotation
were not distinct enough. Participant I mentioned that he had received in-
structions at the shoulders towards the end of his turns.

Nine participants explained what they liked about tactile instructions: “Di- Positive

comments on

tactile motion

instructions

rect feedback during the ride” (A); “Quite accurate” (B); “Clear enough to
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1 2 3 4 5

Did tactile instructions correspond to
spoken instructions?
(not at all ... to a great extent)

Tactile instructions motivated me to
try harder to correctly ride switch
(not at all ... to a great extent)

Tactile instructions improved the
quality of my ride
(not at all ... to a great extent)

Tactile instructions distracted me from
following spoken instructions
(strongly disagree ... strongly agree)

1 2 3 4 5

min -[1st quartile - median - 3rd quartile]- max

How well did you perceive
tactile instructions during the ride?
(very poor ... very good)

Tactile instructions were helpful
for riding switch with correct posture
(it made no sense ... it was a strong help)

Figure 8.8: Likert scale ratings of tactile motion instructions that signaled
correct posture while riding switch.

notice and locate, but not too strong to distract” (C); “Motors were com-
fortable to wear” (J); “Feedback at the thigh reminded of correct position
and kept me thinking about the weight distribution” (D, F , I); “Feed-
back reminded of correct basic posture when advancing in the course” (E);
“Feedback was an additional clue to activate involved body parts” (H).

Five participants provided further comments on the wearable system and onSome participants

only followed

spoken

instructions.

tactile motion instructions. A was annoyed by the sensor cables inside the
snowboard pants. C and D perceived tactile instructions but carried out
spoken instructions issued before the ride. D concentrated on the speed and
the movements during descents. Participant I concentrated on the tactile
instruction that was applied either to the shoulder or to the thigh. Overall,
he had great fun during the course and would also very much recommend
this system to other snowboarders.

Participant C has never before tried to ride switch. Consequently, sheSome participants

recommended

tactile instructions

for snowboarders

who already had

basic riding skills.

concentrated on keeping her balance to avoid falls. Although she noticed
feedback, she did not react to these instructions: “Since riding switch was
completely new to me, I was very concentrated on not falling (in the begin-
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1 2 3 4 5

I prefer to learn new techniques only
with spoken instructions before the ride
(strongly disagree ... strongly agree)

Tactile instructions should only indicate
correct posture if I do something wrong
(strongly disagree ... strongly agree)

1 2 3 4 5

min -[1st quartile - median - 3rd quartile]- max

Importance of tactile instructions during
the ride for learning new techniques
(unimportant ... very important)

I prefer to learn with spoken instructions
and with tactile instructions
(strongly disagree ... strongly agree)

Figure 8.9: Likert scale ratings of the participants’ opinion on using tactile
motion instructions for learning new riding techniques. The participants
clearly preferred to learn with tactile instructions (framed questions).

ning) and tried to follow spoken instructions. I did not really react to the
tactile instructions, although I noticed them, because there were so many
other things to think about. I guess it would have been easier for me to
regard them as additional instructions after some time of practice, once
the basic way of riding was familiar to me and when I could spend atten-
tion on more exact riding, e.g., at the end of the day.”. Participant J also
mentioned that tactile instructions could help snowboarders to correct and
maintain proper posture once they can ride better.

Table 8.5 summarizes the main results obtained from the questionnaires,
including the participants’ snowboarding skills and their overall opinion on
tactile motion instructions.

8.5 Discussion

8.5.1 The Wearable System

Unlike to our previous field studies on the slope, the wearable system with- We experienced

only minor

problems with the

wearable system.

stood more demanding situations during descents, including falls, a different
layering of force sensors, reduced sampling rate, and simultaneous sensing
and actuation. We did not experience problems with the sensors inside the
boots, nor with the vibration motors. Nevertheless, one host device lost
the Bluetooth connection to its SensAct box during one descent, crashed,
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and lost the corresponding sensor log file. Moreover, one participant wore
a short jacket that did not protect the pouch from snow during falls; the
SensAct box got wet, stopped to function, and had to be replaced.

Our wearable sensing system recognized fewer turns (90.97%) than we have The wearable

system missed 9%

of turns.

expected (96.72%), considering the off-line evaluation of our algorithm for
classifying the riding edge based on force sensor data recorded during de-
scents (see section 4.4). There are several possible explanations for this.
For this field study, we have placed the force sensors between the outer and
inner boot to shield the rider from feeling sensor cables during descents.
This new layering, however, made it more difficult to precisely position the
sensors under the ball of each foot. In addition, the thick material of the
inner boot might have dampened the sensor measurements. Another reason
might have been that the participants did not descend with their preferred
foot pointing forward, as was the case in our first field study. Since rid-
ing switch was unfamiliar to them, tensed muscles of the feet might have
further influenced the force sensor measurements.

All participants performed at least five turns from the top to the middle Nine of ten turns

included tactile

motion

instructions.

of the slope while riding with tactile motion instructions. Therefore, one
descent likely included at least ten turns. On average, the participants
experienced concurrent instructions during nine turns.

The observed turning points on footage often lay between two frames, such Approximate

values for the

duration of turns

as between the time stamps 14:04:49 and 14:04:50. Our participants some-
times quickly passed these points, whereas at other times they rode more
slowly. Furthermore, the host devices logged time stamps at one-second
resolution. Consequently, the duration of turns given in Table 8.1 and
the estimated point in time when the participants perceived tactile motion
instructions are approximate values.

8.5.2 Video Analysis and Questionnaire Results

Unsurprisingly, all participants improved their skills in riding switch. In The course helped

the participants to

improve their

riding skills.

general, the more they practiced, the more correct and safer they descended.
The difference between their riding skills during lessons in the morning
and in the afternoon confirmed a gentle learning effect, which was most
noticeable for upper body rotation. Moreover, their riding skills were sig-
nificantly better after the course: the number of counter-rotations, wrong
weight distributions, and falls were lower during the last descent than the
first descent. Also, the instructor’s rating after the course was higher than
before the course, as were the participants’ ratings of their own skills.

We have previously reported that young adults who were asked to descend a All participants

perceived tactile

motion

instructions

regardless of their

riding skills.

slope without performing specific exercises were able to perceive well tactile
motion instructions, although the less experienced snowboarders could not
pay attention to identify the direction that these stimuli displayed on the
skin (see section 6.3.2). The findings of this study confirmed that all par-
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ticipants, regardless of their riding skills, were able to perceive the applied
instructions, although they faced demanding conditions during the course.
These candidates practiced an unfamiliar riding technique. In addition,
we have shortened the length of the tactile patterns to half a second. For
these reasons, we can conclude that in activities that are physically and
cognitively less demanding than snowboarding, young adults will be able
to perceive the composed tactile motion instruction patterns.

The course instructor explained correct technique and issued exercises andSpoken

instructions could

interfere with

tactile motion

instructions.

instructions before each descent. These spoken instruction apparently in-
fluenced some participants. For example, the participants C and D stated
that they only considered the spoken instructions. Although they did per-
ceive the tactile instructions, they did not pay attention to these cues.
Furthermore, three snowboard beginners (C, E, H) and two advanced rid-
ers (B, J) had some difficulty in paying attention to tactile instructions
while carrying out spoken instructions. This explains in part why they did
not consider tactile instructions helpful for riding switch. Had they not
received spoken instructions before descending the slope, we surmise that
they would have regarded these instructions differently.

Five participants (A, D, F , G, I) did not mention difficulty in paying at-Some

inexperienced

riders could

attend to

concurrent tactile

instructions.

tention to the tactile motion instructions. Moreover, it seems that some of
our inexperienced snowboarders benefitted from this concurrent feedback,
whereas some advanced riders did not. These findings contradict the opin-
ion of the interviewed instructors who stated that tactile feedback during
descents might be useful only for advanced riders (see section 4.1).

Three of the four participants who were less experienced in riding switchThree beginners

preferred to

receive tactile

motion

instructions

during all turns.

(E, H, I) preferred to receive instructions during all turns, whereas the
more experienced riders favored feedback only for incorrect posture. This
indicates that those who had to pay more attention how to move correctly
benefitted from continual feedback. In fact, participant E rode better with
tactile instructions in the morning than without them in the afternoon.

Besides E, G also rode noticeably better with tactile motion instructionsTwo beginners

rode better with

tactile

instructions.

in the morning than without them in the afternoon. In general, practice
runs in the morning should have reduced mistakes in the afternoon but
these participants performed more mistakes. In addition, they confirmed
that these instructions were helpful, although they did not consider riding
switch as difficult. E considered the instructions as motivating and stated
they improved the quality of his descents to a great extent. G considered
them as somewhat motivating. Therefore, we can attribute E’s and G’s
superior performance in the morning to tactile motion instructions.

The riding skills of the other three participants who received tactile motionThree participants

apparently did not

make progress

during the course

but valued tactile

motion

instructions in the

morning.

instructions in the morning (A, C, I) remained substantially the same
throughout the course. Participant I, however, fell less often and improved
upper body posture in the afternoon, which indicates a learning effect due
to previous practice runs. Even so, A and I stated that these instructions
helped with riding switch. C was undecided if the instructions were helpful,
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but she only carried out spoken instructions. She regarded tactile feedback
as helpful after some time of practice, once she could pay attention to riding
that was more exact.

All five participants who received tactile motion instructions in the after- One inexperienced

snowboarder

benefitted from

tactile motion

instructions in the

afternoon.

noon improved their skills after the break: D, F and H did noticeably
fewer mistakes; B and J improved upper body posture, although they rode
more often with improper weight distribution. These participants could
have improved their skills because of previous practice runs in the morning
and because of concurrent instructions. Even so, the questionnaire indi-
cates that only F benefitted from tactile motion instructions. Although he
was inexperienced in riding switch, and although he received delayed in-
structions after passing the fall line (see Fig. 8.6), he did not feel distracted
and stated that these instructions were helpful. The first-time snowboarder
H did not feel distracted either. Nevertheless, she had difficulty in paying
attention to these concurrent instructions while carrying out spoken in-
structions. This indicates that she mainly improved her skills because of
her previous descents in the morning.

The participants B, D and J , who had some experience in riding switch, The more

demanding

exercises in the

afternoon were

less suited for the

chosen tactile

instructions.

probably did not take advantage of tactile instructions in the afternoon.
After the break, they also practiced exercises that were less appropriate for
the chosen tactile instructions. These exercises certainly influenced their
performance and opinion. Overall, their statements that tactile instructions
somewhat corresponded to spoken instructions and that this feedback did
not help with riding switch indicates that their previous practice runs in
the morning mainly helped them to improve their skills in the afternoon.

Even so, we can reject the null hypothesis that tactile motion instructions We can reject the

null hypothesis.do not reduce riding mistakes in snowboarding compared to descending
without these instructions. On average, these instructions significantly re-
duced the number of counter-rotations and reduced the number of incor-
rect weight distributions (see section 8.4.2). This indicates that concurrent
tactile motion instructions did improve the performance in riding switch.
Overall, the results of our study support the findings of sport scientists
who have shown that concurrent feedback on performance could improve
performance and learning of motor skills [Shea and Wulf, 1999, Wulf, 2007].

In summary, nine of ten participants considered tactile motion instructions All except one

participant saw a

benefit in tactile

instructions.

as important or as moderately important for learning new riding techniques
in snowboarding. Even so, their view on these concurrent instructions as
experienced in this experiment varied. Five participants (A, E, F , G, I),
four inexperienced and one slightly advanced in riding switch, mentioned
that the instructions helped them to improve their skills. The instructions
were less helpful for the other five participants (B, C, D, H, J): three
advanced riders also practiced exercises that were less suited for the chosen
instructions; two inexperienced and three advanced riders had difficulty
in paying attention to these instructions, in particular when carrying out
spoken instructions.
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8.5.3 Study Limitations

Our findings indicate that providing tactile motion instructions during de-
scents could support snowboarders in learning an unfamiliar riding tech-
nique. This study, however, had some limitations that should be considered.

People have different learning abilities. While some quickly learn new mo-The participants’

skills varied. tion sequences, others need long practice. We were not able to recruit
only volunteers with similar pre-experience in snowboarding and in riding
switch. Consequently, our participants’ performance varied and likely in-
fluenced their opinion if tactile motion instructions were helpful. Even so,
we have received valuable insights from a broader user base.

Our participants’ performance also depended on factors that we were notConfounding

factors able to control. For example, they descended at different speed, they chose
different riding paths, and the slope was open to other winter sport prac-
titioners who crossed and influenced our participants’ riding paths. More-
over, fatigue after several descents is common in snowboarding and could
have degraded their performance in the afternoon.

In general, snowboarding requires lots of practice. This field study lastedThis short-term

study had few

participants.

one day and comprised eight descents with about ten turns per trial. Four
descents included tactile instructions. Although all participants could im-
prove their technique during the course, four descents on a slope of 520
meters (1700 ft) length might not provide representative data on learning
success, in particular because our user group was small. Also, due to time
constraints for conducting this study, the instructor assessed the partici-
pants’ acquired skills in riding switch immediately after the course, which
did not reveal long-term learning effects.

Studies on motor skill learning typically involve a between-subjects designStudies on motor

learning measure

performance and

learning over

several days.

with one group for each experimental condition. To account for the vari-
ability in performance, as many as thirty participants per group perform
several trials on two consecutive days. Moreover, a retention test measures
long-term learning effects on the third day or later.

Another issue is that tactile motion instructions provided additional infor-Tactile motion

instructions

conveyed

information that

was not available

in the control

condition.

mation how to move the body. This information was not available in the
control condition and could be one reason why descending with tactile mo-
tion instructions reduced the average number of riding mistakes. Future
studies should compare, for example, concurrent tactile motion instruc-
tions to concurrent spoken instructions. This approach would ensure that
the participants receive the same amount of feedback during all trials.

Other limitations concern our wearable sensing and feedback system. ThisThe participants

also experienced

tactile motion

instructions

during turns with

correct posture.

system could not detect riding mistakes. For this reason, we have pro-
grammed the host device to automatically issue tactile motion instructions
during all turns such that our participants also experienced concurrent in-
structions when their posture was correct. Consequently, we cannot gen-
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eralize the reported findings to situations when athletes will only receive
feedback or instructions on incorrect posture and body movements.

Moreover, our participants did not receive tactile motion instructions at Tactile motion

instructions were

slightly delayed.

the very moment when they had to execute the body movements while
introducing a turn and while pivoting the snowboard. Instead, they re-
ceived instructions after introducing a turn, as soon as the system detected
that the board has been pivoted to the other edge. In fact, participant
J received instructions after passing the fall line, and participant I stated
that he perceived feedback at the shoulders towards the end his turns. Our
course instructor who initially tested the system also mentioned that some
instructions were delayed. Since these delayed instructions did not match
to the movements that were required in the current riding situation, our
participants were less likely to execute these instructions, which could have
influenced their performance and opinion.

All participants experienced tactile motion instructions for the first time. The novelty of the

system likely

influenced the

performance in

snowboarding and

the participants’

opinion.

The unfamiliar wearable technology with artificial tactile stimuli probably
influenced their opinion as well. Moreover, they knew that we observed and
videotaped their descents (Hawthorne effect) [Landsberger, 1968]. There-
fore, it is possible that those snowboarders who rode better with tactile
instructions than without them intentionally paid more attention to cor-
rect their posture. Also, even those participants who mentioned that these
instructions were not helpful for riding switch stated to prefer lessons aug-
mented with tactile instructions to traditional lessons. A long-term study
might help to avoid such unfavorable experimental effects, in particular
once the participants become accustomed to the new technology.

It is easy to observe how feedback influences the accuracy of basketball The instructors’

ratings were

biased.

shots, soccer passes, tennis strokes, or volleyball serves—the ball either
hits or misses the target area. In snowboarding, however, it is often dif-
ficult to accurately assess a rider’s posture from a distance because some
movements remain concealed, even on footage. Also, coaches could have
slightly different views on what constitutes correct riding technique. Unless
snowboarders noticeably counter-rotate their torso or ride with too much
weight towards the back foot, the threshold between incorrect and correct
posture is debatable. For these reasons, our results were partially biased
towards the viewpoint of the instructor who analyzed the footage. For ex-
ample, the percentage of riding mistakes did not always seem to correspond
to the overall ratings of the descents where the instructor also considered
how safe and dynamic the participants descended the slope.

Our findings require further investigation, considering other physical activ- Further studies

are required.ities and motor skills that can be measured objectively. Nevertheless, we
can state that tactile motion instructions could support athletes in improv-
ing their performance and in learning motor skills if the athletes have free
cognitive resources to pay attention to these artificial tactile stimuli.
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legsstretch

shift weight
to left foot

shift weight
to right foot

flex legs

lean
left

lean
right

turn right turn left turn left turn right
lean

backward
lean

forward

Figure 8.10: The final set of tactile motion instructions, based on stimuli
that could be described to pull the body in the direction in which to perform
the movements. The double-circles at the chest and back represent the
localized sensations for the instructions lean forward (backward).

8.6 A General Set of Tactile Motion Instructions

In this thesis, we have iteratively designed and evaluated artificial tactileTen general

instructions how

to move the body

stimuli that could serve as instructions how to move the body during physi-
cal activities. These stimuli comprised localized pulses and directional lines
that young adults could intuitively associate with body movements when
they perceived the evoked tactile sensations across the body for the first
time. Based on the sensations that were most often associated with specific
body movements, and considering the sensations that could be perceived
and differentiated in active situation, we have composed ten tactile patterns
as a general set of tactile motion instructions.

Fig. 8.10 illustrates these patterns and their possible meaning. In thisInstructions based

on the pull

metaphor

sketch, the mapping between the evoked sensations and their meaning is
based on the pull metaphor, which would prompt to move the body towards
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the vibration. The formal notation of these patterns is (see Fig. 6.3 for
the acronyms on body location and Table 6.4 for the acronyms on body
movements):

Stretch the legs, flex the legs:

• SL = RU (TRV ) +RU (TLV ) at the front of the thighs

• FL = RD(TRD) +RD(TLD) at the back of the thighs

Shift the weight to the left / right foot:

• WL = RU (TLL) laterally at the left thigh

• WR = RU (TRL) laterally at the right thigh

Lean upper body to the left / right:

• LL = RU (BLL) laterally at the left side of the torso

• LR = RU (BRL) laterally at the right side of the torso

Lean upper body forward / backward:

• LF = P 3(SLV ) + P 3(SRV ) at the upper chest

• LB = P 3(SLD) + P 3(SRD) at the upper back

Turn upper body to the left / right:

• TL = P 3(SLV )→ P 3(SLL)→ P 3(SLD) around the left shoulder

• TR = P 3(SRV )→ P 3(SRL)→ P 3(SRD) around the right shoulder

Fig. 8.11 illustrates these patterns and their possible meaning considering Instructions based

on the push

metaphor

the push metaphor. The mapping between the evoked sensations and their
meaning would prompt to move the body away from the vibration. The
patterns for the instructions to flex and to stretch the legs are the same as in
Fig. 8.10, as several of our study participants recommended this mapping.
The formal notation of these patterns is (see Fig. 6.3 for the acronyms on
body location and Table 6.4 for the acronyms on body movements):
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legs
flex
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to right foot

shift weight
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lean
right

lean
left
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backward
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forward

Figure 8.11: The final set of tactile motion instructions, based on stimuli
that could be described to push the body in the direction in which to
perform the movements. The double-circles at the chest and back represent
the localized sensations for the instructions lean forward (backward).

Stretch the legs, flex the legs:

• SL = RU (TRV ) +RU (TLV ) at the front of the thighs

• FL = RD(TRD) +RD(TLD) at the back of the thighs

Shift the weight to the left / right foot:

• WL = RU (TRL) laterally at the right thigh

• WR = RU (TLL) laterally at the left thigh

Lean upper body to the left / right:
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• LL = RU (BRL) laterally at the right side of the torso

• LR = RU (BLL) laterally at the left side of the torso

Lean upper body forward / backward:

• LF = P 3(SLD) + P 3(SRD) at the upper back

• LB = P 3(SLV ) + P 3(SRV ) at the upper chest

Turn upper body to the left / right:

• TL = P 3(SRD)→ P 3(SRL)→ P 3(SRV ) around the right shoulder

• TR = P 3(SLD)→ P 3(SLL)→ P 3(SLV ) around the left shoulder

In section 6.1, we have argued that tactile motion instructions should re- In retrospect: the

initial design

requirements

semble real-world sensations; they should be expressive; and they should
demand low conscious attention such that users could perceive and recog-
nize these artificial tactile stimuli in active situations. Some of the com-
posed tactile patterns fulfilled these requirements, whereas other patterns
fulfilled them in part. We will now review these requirements.

Overall, our findings indicate that the amount of cognitive load that these Users do not have

to spend much

conscious

attention to

perceive and

interpret the

instructions.

tactile patterns imposed on the user was low. All ten patterns were per-
ceived in active situations that were physically and cognitively demanding,
for example while snowboarding, while riding a horse, and while balancing
on the Wii fit balance board. Moreover, the messages that these unique
patterns conveyed could be identified by the location where the tactile stim-
uli were applied to the body. A few patterns were misinterpreted, yet our
findings indicate that the experimental conditions mainly caused these mis-
takes and not the characteristics of these patterns or the chosen mappings.

Directional lines evoked expressive sensations that intensified the sensory Directional lines

create expressive

sensations that

indicate how to

move the body.

experience and that provided additional information how to move the body:
the semicircular lines delivered around the shoulders (TL, TR); the lines
delivered in downward direction to the back of the thighs (FL) and in
upward direction to the front of the thighs (SL); and the lines delivered in
upward direction laterally to the thighs (WL, WR) and laterally to the torso
(LL, LR). While the patterns for TL, TR, FL and SL could be described to
signal the direction in which to perform a movement, the patterns for WL,
WR, LL, and LR could be described to represent the increased bending
radius of the body when leaning sideways. Alternatively, considering the
pull metaphor, directional lines in downward direction delivered laterally to
the torso and laterally to the thighs (WL, WR, LL, LR) could be described
to pull the body downward when leaning sideways (see Fig. 6.19).
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Six patterns evoked sensations that were intuitively regarded to push theTactile motion

instructions

resemble

real-world pushing

and pulling

sensations.

body or to pull the body (WL, WR, LL, LR, LF, LB). This characteristic of
the artificially created tactile stimuli was advantageous because the evoked
sensations resembled real-world pushing and pulling sensations. Also, FL
stimulated the area close to the hollow of the knees where tactile sensations
could naturally prompt to flex the legs, as if they were knee-jerk reactions.

All ten patterns were applied to those body locations that were primarilyIntuitive

instructions involved in performing the intended movements. When perceived for the
first time, on average five of these patterns were associated with these
movements or were partially included in these movements. For this reason,
the meaning that we have assigned to these patterns did not require much
learning. The meaning of the other five patterns, however, was less obvious
when they were perceived for the first time. The meaning of these patterns
had to be learned. Even so, we found that all instructions could be quickly
learned and recalled after an extended time.

Based on our participants’ responses upon perceiving the designed tactile
patterns for the first time, we can rank how intuitive the instructions were
regarded to represent body movements (in descending order):

1. Shift the weight to the left foot or to the right foot (WL, WR)

2. Lean left or right; turn left or right (LL, LR, TL, TR)

3. Lean forward or backward; flex the legs (LF, LB, FL)

4. Stretch the legs (SL)

This ranking is based on the viewpoint of a few young adults and mightThe meaning that

tactile motion

instructions

convey should

consider the

movements that

are required

during the

physical activity.

vary for other users and age cohorts. Obviously, there is room for improving
the designed instructions. In particular, SL was perceived as being less
obvious, and the representation of this body movement as a tactile pattern
seems to be more abstract than for the other body movements. Even so,
the mapping that we have chosen between the composed patterns and their
meaning is not fixed. The meaning of the patterns should consider the
posture and the body movements that have to be performed during the
intended physical activity, as this activity can influence how intuitive the
instructions are regarded and how well they can be learned and recalled.
For example, we have found that for horseback riding, the directional lines
that were applied laterally to the thighs (WL,WR) would have been more
appropriate to represent Press the thighs together for increasing the contact
to the horse than Shift the weight to the left (right) (see section 6.3.3).

Based on the findings on the perception and interpretation of the composedWe represent

tactile motion

instructions by a

larger footprint in

the design space

of mobile tactile

interfaces.

tactile patterns in active situations, we can reconsider the design space of
mobile tactile interfaces. For some users, the chosen mapping between
these patterns and their meaning might be less obvious. Also, the users’
abilities in paying attention to these stimuli might vary depending on how
demanding the physical activity is. For example, novices who learn new
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Figure 8.12: Some of the composed tactile motion instructions resemble
real-world tactile sensations, whereas others are more abstract. Our set
of instructions is best characterized by a larger footprint inside the design
space. The users’ intuitive interpretation of the tactile patterns and their
abilities in perceiving these stimuli in active situation could vary (design
space of mobile tactile interfaces adapted from [Poupyrev et al., 2002]).

sports could have difficulty to perceive these stimuli when they concentrate
on various aspects of the sports’ techniques and on keeping balance while
moving the body. For these reasons, we have represented the introduced
set of tactile motion instructions by a larger footprint in the design space
(see Fig. 8.12). The size of this footprint considers how intuitive a user
might regard the artificial tactile stimuli to represent body movements and
how much attention a user might have to spend in order to perceive and to
recall the meaning that has been assigned to these stimuli.
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Table 8.6: Preference to being pushed or pulled (in percent), based on
the intuitive responses of 29 participants.

Stimulus location Pull Push
Upper chest 62.1 37.9
Upper back 55.2 44.8
Lateral side of the torso 44.8 55.2
Lateral side of the thighs 48.3 51.7

8.7 Design Recommendations for Tactile Motion
Instructions

The main findings from our empirical studies are summarized below, con-
sidering user comments and insights into the perception and interpretation
of localized pulses and of directional lines that have been applied across the
body in stationary and in active situations.

In general, a tactile stimulus that was perceived at a specific body areaThe same tactile

stimulus can

represent several

body movements

in an intuitive

way.

prompted to move the same body area or neighboring areas or limbs. The
range of reactions varied. Some reactions were concrete, whereas other
reactions were vague. This indicates that a tactile stimulus that is applied
to a specific body location can represent several body movements in an
intuitive way. Even so, some people will have to learn the chosen mapping
between the stimulus and its meaning because their intuitive reaction might
differ when they perceive this stimulus for the first time.

Directional lines drawn on the body can intensify the sensory experienceDirectional lines

create expressive

sensations that

can indicate how

to move the body.

and can create expressive sensations that can indicate in which direction
to perform a movement. Our participants preferred these lines, and they
provided more responses and more concrete responses than to localized
pulses. Even so, the direction of movement on the skin can be difficult to
identify in active situations, in particular when the cognitive workload that
the physical activity imposes on the user is high. For this reason, directional
lines should not be used as primary encoding parameter for the meaning
of an instruction. Instead, directional lines should be used as secondary
parameter to redundantly encode the message.

Certain tactile stimuli can prompt to move towards or away from the vi-A tactile stimulus

can represent a

push or a pull of

the body.

bration, as if the body was pulled or pushed: stimuli applied to the chest,
to the back, laterally to the torso, and laterally to the thighs. These stimuli
can be used as instructions that are based on the push or the pull metaphor,
thereby signaling the direction in which to move the body. The mapping
assigned to these stimuli—push or pull—can be quickly learned and re-
called after an extended time, even if the user might intuitively move in the
opposite direction upon perceiving these stimuli for the first time. Table
8.6 shows the preference to moving towards or away from these stimuli,
based on the answers from 29 participants (see section 7.2 and section 7.3).
Overall, we can see an almost equal proportion to both reactions, indepen-
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dent of the location where the stimuli were applied. At the chest, however,
tactile stimuli most often prompted to move towards the vibration.

The duration of localized pulses was 400 ms, which comprised three sequen- The duration of

compound

instructions might

be too long.

tial pulses of BD = 100 ms bursts with IBI = 50 ms pauses. The duration
of directional lines was 1300 ms, which stimulated three neighboring loca-
tions in line, each with three localized pulses (see Fig. 6.2). Both patterns
were perceived in active situations. Moreover, these durations are short
such that the user can quickly execute the required body movements. Even
so, for compound instructions based on directional lines, which would se-
quentially apply two or more messages, the total duration of these patterns
could be too long when quick reactions are required.

Based on our observations and the findings of our studies, we found that Directional lines

can be shortened

without impairing

their perception.

the burst duration, the pauses, and the number of bursts could be reduced
further without degrading the perception of the stimuli. In particular,
reducing the number of stimulation points from three to two, and using
two sequential pulses with a burst duration of BD = 80 ms did not impair
the perception of the stimuli (see Fig. 8.4). Even so, for tactile motion
instructions to be well perceivable and discriminable in active situations, the
minimum duration of a pulse and the minimum number of pulses that might
be required could vary depending on the physical activity and on the user’s
cognitive ability to pay attention to artificial tactile stimuli. Therefore,
these minimum values require further investigation.

We can state four guidelines for designing tactile motion instructions: Recommendations

for designing

tactile motion

instructions• Body location should be used as primary parameter for encoding the
meaning of tactile motion instruction patterns. This requires applying
all patterns to unique body locations, which would allow users to
differentiate between these patterns without paying attention to other
characteristics of the tactile stimuli.

• The mapping between a stimulus and its meaning can represent a
push or a pull of the body, thereby signaling the direction in which
to perform the movement. For large instruction sets, a consistent
metaphor should be applied in order to decrease the likelihood of
misinterpreting the instructions.

• Directional lines can create expressive sensations that can indicate
the direction in which to perform a movement. In a static situation,
the direction of the sensation can be well perceived. Even so, in active
situations, the direction could be difficult to identify. For this reason,
directional lines should not be used as primary encoding parameter.
They should be used as secondary parameter to redundantly encode
the message and to intensify the sensation.

• While 100 ms is recommended as the minimum duration for a tactile
message in a stationary situation (see section 5.3), for active situations
we recommend two to three sequential pulses around 100 ms and



192 8 Learning Motor Skills

pauses around 50 ms. If these stimuli are applied to opposing body
sites, they can be well perceived and localized.

8.8 Closing Remarks

In this chapter, we have presented the first field study that investigated ifThe first field

study on motor

skill learning with

tactile motion

instructions

tactile motion instructions could support athletes in learning motor skills.
During a one-day snowboarding course, ten snowboarders practiced an
unfamiliar riding technique. They experienced and compared traditional
lessons, where the snowboard instructor provided spoken instructions before
and feedback on performance after descents, with lessons where a wearable
system additionally provided tactile motion instructions while descending
the slope. These artificial tactile stimuli instructed the athletes how to
move the body during turns.

Our findings indicate that tactile motion instructions applied during de-Tactile

instructions

reduced mistakes

during descents.

scents could help snowboarders to correct their posture and to avoid two
typical snowboarding mistakes. Moreover, the majority of our participants
considered these instructions useful for learning. Even so, the benefits that
they could provide during training also depend on the learner’s cognitive
ability to pay attention to these artificial tactile stimuli. While some people
can focus their attention on concurrent tactile instructions during exercises,
others might have difficulty in processing this additional sensory informa-
tion, in particular when also carrying out spoken instructions.

Research in motor learning indicates that instructions and feedback on per-This work

contributed to

research in motor

learning.

formance that are provided while executing body movements could improve
the skills of athletes. Our findings support this claim and demonstrate that
the tactile sense could be an alternative channel for conveying concurrent
feedback and instructions, apart from the auditory and the visual channel.
In particular, our work indicates that concurrent tactile instructions could
support athletes in learning open skills under real-world conditions.

In addition, we have successfully demonstrated the first wearable assistantPremiere of a

wearable

snowboard

training system

for snowboard training. This system used force sensors inside the boots
to sense the weight distribution and to recognize the movements of the
snowboard. Based on this context information, the system automatically
triggered tactile motion instructions that guided the snowboarder to the
correct posture and to the correct body movements during turns.

Finally, we have presented a set of recommendations for designing tactileRecommendations

for designing for

tactile motion

instructions

motion instruction patterns, and we have presented a set of patterns that
could be applied as instructions how to move the body during physical
activities. These recommendations and the tactile patterns based on the
findings on the perception and interpretation of artificial tactile stimuli that
were iteratively evaluated with young adults in stationary and in active
situations, considering laboratory conditions and real-world conditions.
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Part III

Conclusion
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Chapter 9

Conclusions

“I have not failed. I’ve just found 10,000 ways that won’t
work.”

—Thomas A. Edison

In sports training, feedback on wrong posture and body movements is es- Feedback on

performance in

sports training

and on wrong

posture and body

movements during

physical activities

is often delayed or

missing.

sential for learning motor skills. Even so, coaches often cannot provide
feedback in time because they are spatially separated from athletes. To ad-
dress this issue, we envisioned a wearable system that sensed and analyzed
posture and body movements, and that automatically provided instructions
how to correct wrong posture and how to move the body. Since spoken in-
structions delivered over earplugs are often inappropriate especially in noisy
environments, we envisioned small vibration motors that delivered artificial
tactile feedback to those body areas that had to be adjusted. Such a wear-
able system could also supervise posture during daily physical activities
and warn of harmful posture and movements that could lead to injuries.

This idea motivated us to investigate if tactile stimuli could be applied as Tactile stimuli

instruct how to

move the body.

instructions during physical activities. Our research addressed

• if tactile stimuli exist that could represent body movements in an
intuitive way,

• if these stimuli could be perceived and recognized in active situations
that were physically and cognitively demanding,

• how tactile instructions compared to spoken instructions delivered
over earplugs,

• how intuitive tactile instructions were rated and how well they could
be learned and recalled, and

• if tactile instructions could improve the performance of athletes dur-
ing sports training.
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In order to find tactile stimuli that could inherently represent body move-We have based

our investigation

on the intuitive

interpretation of

tactile stimuli.

ments, we have investigated how young adults intuitively interpreted local-
ized tactile pulses and directional lines rendered across their bodies, and
which of the evoked sensations they associated with specific body move-
ments. Based on the stimuli that most often prompted to move in a specific
way, we have composed ten tactile motion instruction patterns that could
represent body movements in various physical activities.

We have conducted several empirical studies to iteratively refine these pat-Tactile motion

instructions are

perceived in active

situations.

terns and to evaluate if young adults could perceive and recognize these
patterns in a stationary situation and in active situations that were physi-
cally and cognitively demanding. Our findings revealed that our volunteers
could perceive tactile motion instructions almost as well as they could per-
ceive spoken instructions delivered over earplugs. A few instructions were
misinterpreted, but we assume that these mistakes were mainly caused by
the experimental conditions. These conditions required the participants to
respond verbally and also to perform body movements that did not always
match to the movements that they already had to perform in the active
situation during the experiment.

An important finding was that tactile motion instructions significantly re-Tactile motion

instructions are

quickly

recognized.

duced the response times compared to spoken instructions. Since tactile
instructions directly stimulated specific body areas, the conveyed messages
could be interpreted as soon as the vibration was perceived. In contrast,
spoken instructions normally had to be listened in their entirety to inter-
pret their meaning. Overall, this faster response time is an advantage in
particular for sports where athletes have to quickly move their bodies.

Another benefit of tactile motion instructions is that they constitute a sim-Tactile motion

instructions

establish a

language for

teaching motor

skills.

ple language where a sequence of instructions would resemble a sequence
of words or sentences in spoken languages. Our experiments revealed that
young adults could recognize these compound instructions in active situa-
tions. This indicates that tactile motion instructions could be applied for
teaching motor skills that are complicated and difficult to learn. For exam-
ple, they could guide athletes who practice sports that would require them
to perform various body movements in a specific order.

To evaluate if this tactile language could assist in teaching motor skills,Tactile motion

instructions

improved

performance in

snowboarding.

we have conducted a field study using snowboarding as example applica-
tion domain. During a one-day snowboarding course, ten snowboarders
learned an unfamiliar riding technique. This user group included begin-
ners, advanced beginners, and advanced snowboarders. They experienced
traditional lessons where the coach provided verbal instructions before and
verbal feedback after descents, and lessons augmented with tactile motion
instructions while descending the slope. All participants were able to per-
ceive tactile motion instructions during descents, independent of their riding
skills. Moreover, practicing with tactile motion instructions significantly re-
duced the number of snowboarding mistakes compared to traditional lessons
where feedback on performance was delayed.
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Overall, the young adults who participated in our user studies considered End-users valued

tactile motion

instructions.

tactile motion instructions to be intuitive, and they consistently rated them
to be potentially valuable as immediate feedback during training. Even so,
some participants preferred to receive tactile instructions, whereas others
preferred to receive spoken instructions played back over earplugs. For
this reason, users should have the option to choose between tactile motion
instructions and spoken instructions.

This research was the first investigation into the design and evaluation of We have

presented design

guidelines for

tactile motion

instructions.

artificial tactile stimuli that could represent body movements in an intu-
itive way. The findings of our empirical studies have lead to guidelines for
designing tactile motion instructions and have resulted in a general set of
tactile patterns whose meaning could be quickly learned and recalled after
an extended time.

This work also described a wearable sensing and feedback device for pro- We have

presented a

wearable assistant

for snowboard

training.

totyping wearable computing applications. Based on this device, we devel-
oped the first wearable assistant for snowboard training. This system could
sense the movements of the snowboard and could provide tactile motion in-
structions that guided the snowboarder while descending the slope.

The findings of this research indicate that tactile motion instructions ap- Tactile motion

instructions could

be applied for

correcting posture

and for teaching

motor skills in

various physical

activities.

plied while moving the body during physical activities could improve the
performance of athletes and could support athletes in learning motor skills.
This work has focused on snowboarding as example activity. Nevertheless,
tactile motion instructions could also be applied to other physical activities
where immediate feedback on wrong posture and movements is important
but often delayed or missing. These activities range from sports training
to daily physical activities and to rehabilitative exercises. We hope that
this dissertation will inspire researchers to continue our work and to build
in particular wearable computing technology that could ease the learning
of challenging sports, as demonstrated in this work.
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Chapter 10

Future Work

“Go for it now. The future is promised to no one.”

—Wayne Dyer

This work contributed to research in the field of wearable computing, of
tactile communication systems, and of motor learning. We have already
mentioned several challenges that we have faced, and we have addressed
some opportunities for future work at appropriate passages in this thesis.
In this chapter, we will recapitulate and expand on these issues.

10.1 Wearable Computing

The design and development of wearable computing applications is chal- Designing

wearable

computing

applications is

challenging.

lenging. Wearable devices have to balance several issues, including physical
robustness, portability, reliability, and power consumption. Since off-the-
shelf sensing devices were designed for specific purposes, researchers and
application designers often have to build custom devices and tools that ad-
dress their needs. This condition can increase the threshold to prototype,
to test, and to deploy wearable systems and applications, such as sensing
and feedback devices for physical activities as proposed in this work.

For desktop systems, GUI development toolkits have lead to a prolifera- Wearable

computing lacks

prototyping tools.

tion of software, and scripting and visual programming languages also en-
abled nonprofessionals to easily write applications. To advance the field of
wearable computing, we need similar tools for rapid prototyping and test-
ing of systems and applications. In particular, these tools should provide
means to experiment with various sensors, to visualize and analyze sen-
sor data, and they should enable developers to iteratively modify and test
prototype systems under real-world conditions. For motion- and posture-
based interactions, we envision systems that will be programmed by per-
forming the required body movements. This technique—programming by
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demonstration—would hide application code and sensor data from design-
ers, and would also empower nonprofessionals to quickly prototype and
explore wearable applications [Hartmann et al., 2007].

This work has proposed wearable technology for physical activities thatWe need sport

technologies for

sensing and

analyzing the

athlete’s

performance.

could automatically analyze posture and body movements and that could
provide tactile instructions for corrections. As an example, we have demon-
strated posture and motion recognition for snowboarding in realtime, based
on a custom-built sensing system and an off-the-shelf mobile device. We
have also demonstrated that tactile instructions could be applied automat-
ically during descents, considering the snowboarder’s weight distribution.
Even so, to deploy wearable systems that can provide feedback on incorrect
posture and movements during sports training, it is necessary to sense body
movements and to build a posture and motion model that can be evaluated
according to specific sports techniques in realtime.

The algorithms that we have developed set thresholds on sensor signals toUser independent

motion and

posture

recognition is

challenging in

realtime.

recognize simple movements, such as transitions between stretched or flexed
legs, or increased weight distribution towards the toes or the heels. This
approach was fast and could accurately classify live sensor data obtained
during descents. Even so, this method cannot classify movements that con-
tinuously change over time. To recognize such movements, machine learn-
ing techniques are required, as demonstrated by Kwon and Gross [2005]
and Kunze et al. [2006], but these techniques do not yet run in realtime.
Overall, we envision wearable devices that can determine posture and body
movements independent of the athlete and of the performed activity, sim-
ilar to speech recognition systems that can process speech independent of
the speaker’s voice characteristics and background noise.

Also, our systems did not detect riding mistakes but relied on the transitionsPosture and

motion models for

sports training are

required.

between the recognized postures and used the correct posture sequence that
had to be performed as basis for deciding when and which instructions to
trigger during the descent. Transitions between postures, however, can-
not reveal incorrect sequences of continuous body movements. To analyze
such movements necessitates a motion model that can describe the correct
movement patterns. Such a model could be based, for example, on body
movements that were performed by instructors.

10.2 Tactile Motion Instructions

This work is the first investigation into artificial tactile stimuli that couldThe design space

of tactile motion

instructions has

not been fully

explored yet.

represent body movements in an intuitive way. Our findings have lead to
a first set of guidelines for designing tactile motion instruction patterns.
This design space should be explored further to determine which other pa-
rameters for tactile information transfer could be appropriate for composing
messages that could represent body movements, considering stationary and
active situations, and various physical activities.
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Our initial study on the intuitive interpretation of tactile stimuli relied on an A forced-choice

paradigm could

help refine the

interpretation of

tactile stimuli.

open response paradigm such that our participants could state any meaning
that they associated with a stimulus. Although this approach allowed us to
collect unbiased answers, some responses were often vague and difficult to
classify. A forced-choice paradigm, based on a set of predetermined body
movements as answers, might help refine the view which tactile stimuli
would be suitable for representing a specific body movement.

We have focused on body locations that seemed appropriate for represent- Alternative

parameters for

tactile messages

ing a specific body movement, but we did not fully explore the available
skin area. Also, we have investigated localized pulses and directional lines
that were based on certain timing values for pulses and on a constant vibra-
tion intensity. Future studies could explore with which body movements
other sensations are associated, and if the characteristics of these alterna-
tive tactile stimuli can be perceived and differentiated in active situations.

For example, the timing values for directional lines can influence the per- Tactile motion

instructions could

exploit other

durations,

intensities, and

body locations.

ceived smoothness or the length of the evoked sensations [Cholewiak and
Collins, 2000]. Quickly increasing and decreasing intensity levels might also
evoke smooth sensations, which might represent fluid instead of jerky body
movements. The stimulus duration and the intensity might encode how
quick or wide to perform the movement. In addition, strong pulses de-
livered across a large area might be more appropriate for representing in-
structions based on the push metaphor than soft pulses, whereas directional
lines that extend over the entire body might result in more expressive sen-
sations than short lines that stimulate either the torso or the thighs. For
physical activities that do not involve high cognitive and physical load such
that variations in these parameters could be differentiated, tactile patterns
might exploit such stimulus characteristics for encoding messages.

Moreover, this work has initially focused on three localized pulses of 400 Compound

instructions need

further

investigation.

ms duration and on directional lines of 1300 ms duration. For single in-
structions, these durations are short, and they and would allow athletes
to quickly react upon perceiving the vibration. For compound instruc-
tions, however, the total duration required for perceiving sequential mes-
sages might be too long when body movements have to be quickly executed,
as was the case in our study on learning of motor skills in snowboarding.
Future work should investigate if athletes can perceive shorter timing val-
ues and fewer number of pulses in active situations. These values, however,
could vary depending on the physical activity and on the user’s cognitive
abilities to paying attention to artificial tactile stimuli. Also, we have fo-
cused on compound instructions that consisted of two sequential messages.
Future studies should evaluate compounds that consist of longer sequences.

One challenge that we have faced was to accurately measure if our partici- Automatic motion

and posture

classification

could help

evaluate tactile

motion

instructions.

pants could perceive and identify tactile motion instructions in active situ-
ations. For this reason, we asked our participants to utter their responses.
This experimental condition was not optimal for evaluating tactile motion
instructions because some participants tended to mix up the messages when
responding verbally. Moreover, they also had to interpret randomly applied
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instructions that did not always match to the movements that they already
had to perform in the investigated activities. In order to avoid verbal
responses and in order to provide instructions that do not interfere with
other body movements, future studies should consider technology that can
automatically sense and classify body movements.

An interesting finding of our studies was that our volunteers preferred toFeedback displays

that create

realistic pushing

and pulling

sensations

move either towards or away from the vibration. Therefore, we have based
tactile motion instructions on two encoding metaphors: stimuli that pulled
the body; and stimuli that pushed the body. Nevertheless, instead of as-
signing different meanings to the same stimulus, which actually evokes the
same sensation on the skin, wearable displays should create pushing and
pulling sensations that feel realistic. Such devices do not yet exist, ex-
cept for a force-feedback handheld device that creates pulling sensations as
navigation cues [Amemiya et al., 2008].

Also, instead of indicating the direction in which to move the body byStimulating key

muscles required

for performing

movements.

stimulating the body area that has to be moved, a different approach could
directly stimulate the muscles that would be required for performing the
movements. Related work indicated that this approach was less effective
and less intuitive for representing hand rotation [Jansen et al., 2004]. Even
so, this finding cannot be generalized to other body movements and should
be investigated further.

10.3 Motor Learning

In the last two decades, research in motor learning has shown that theHow do tactile

motion

instructions

influence the

attentional focus

of athletes?

wording of feedback and of instructions can influence an athlete’s perfor-
mance. To improve the performance and learning of motor skills, the word-
ing should guide the learner’s attention to the outcome of the performed
movements instead of to the body and how to coordinate body movements.
Since tactile instructions directly stimulate the body, future work should
examine if these artificial stimuli do not negate the effect that the wording
of the conveyed message is supposed to induce.

During a one-day snowboarding course, we have compared realtime tac-Tactile motion

instructions have

to be evaluated in

other physical

activities.

tile motion instructions during descents to the traditional teaching method
where students only received spoken instructions before and spoken feed-
back after exercises. Although our findings indicated that tactile instruc-
tions could support athletes in learning motor skills, long-term studies
should investigate how effective this realtime feedback is compared to tra-
ditional teaching methods. Tactile instructions should also be evaluated in
other physical activities, such as dancing, martial arts, and rehabilitative
exercises. Moreover, we have evaluated these instructions with young adults
and with few users. Future studies should consider larger user groups, and
they should include users of other age cohorts because the ability to learn,
to perceive, and to interpret tactile stimuli could vary between people.
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Future work should also compare tactile motion instructions to spoken in- Comparing tactile

to spoken

instructions

structions for learning motor skills, and could investigate if tactile motion
instructions that complement spoken instructions are beneficial to learn-
ing. Also, since spoken messages could be too long as realtime instructions,
shorter messages should be explored, such as single words. This raises the
questions how short the wording of a message could be to remain effective
as an instruction, and if athletes would prefer to map a single spoken word
or a brief tactile stimulus to a specific body movement.

One intriguing application for wearable training assistants is to sense and Athletes could

experience the

instructor’s body

movements.

to transmit the instructor’s body movements to the athletes’ body. For
example, if the coach flexed the legs during demonstrations, the athletes
would perceive tactile instructions at their thighs that signaled to flex the
legs. Besides observing the coach during demonstrations, this direct tactile
feedback would allow athletes to immediately experience how the instructor
moves and which movement sequences are correct.
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Part IV

Appendix
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Appendix A

Motor Shield Schematic

The developed motor shield was a printed circuit board that could be
plugged on top of the Arduino BT. This board could controls six actu-
ators by pulse width modulation [Barr, 2001]. The circuit of the motor
shield (see Fig. A.1) comprised the following electrical components:

• Power MOSFET IRLD024

• 100 Ω resistors

• 100 nF capacitor

• 1 µF electrolytic capacitor
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Figure A.1: The circuit schematic of the motor shield.
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Appendix B

Post-Study Questionnaire:
Comparing Tactile
Instructions to Audio
Instructions While
Snowboarding

Your Personal Data

Thank you very much for participating in our user study on real-time au-
dio and tactile instructions. Please take 15 minutes time to answer the
following questions. Please note that if we use any of your responses in re-
ports or presentations, your real name will not be used, and any personally
identifying data will be changed or omitted.

Your Personal Data

What is your name?

Are you a boy or a girl?

How old are you?

What is your profession?

Did you experience artificial tactile instructions before this study?
( ) No
( ) Yes

Do you have a disease or skin damages that could influence your tactile
perception?



210
B Post-Study Questionnaire: Comparing Tactile Instructions to Audio Instructions While

Snowboarding

( ) No
( ) Yes

How would you grade your snowboarding skills?
( ) Beginner
( ) Advanced beginner
( ) Advanced
( ) Proficient
( ) Expert

Audio instructions

I could understand audio instructions during the ride (quality of audio):
( ) Very Good
( ) Good
( ) Barely Acceptable
( ) Poor
( ) Very Poor

I could map audio instructions to body movements:
( ) Strongly Agree
( ) Agree
( ) Undecided
( ) Disagree
( ) Strongly Disagree

Having perceived an audio instruction, I felt incited to perform the
movement:
( ) Strongly Agree
( ) Agree
( ) Undecided
( ) Disagree
( ) Strongly Disagree

Audio instructions distracted from focusing on riding:
( ) Strongly Agree
( ) Agree
( ) Undecided
( ) Disagree
( ) Strongly Disagree

I think audio instructions are helpful during the ride:
( ) Strongly Agree
( ) Agree
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( ) Undecided
( ) Disagree
( ) Strongly Disagree

Tactile instructions

I could perceive tactile instructions during the ride:
( ) Very Good
( ) Good
( ) Barely Acceptable
( ) Poor
( ) Very Poor

The sensation of tactile instructions was:
( ) Very pleasant
( ) Somewhat pleasant
( ) Neither pleasant nor unpleasant
( ) Somewhat unpleasant
( ) Very unpleasant

I could map tactile instructions to body movements:
( ) Strongly Agree
( ) Agree
( ) Undecided
( ) Disagree
( ) Strongly Disagree

Tactile instructions were intuitive:
( ) Strongly Agree
( ) Agree
( ) Undecided
( ) Disagree
( ) Strongly Disagree

Having perceived a tactile instruction, I felt incited to perform the
movement:
( ) Strongly Agree
( ) Agree
( ) Undecided
( ) Disagree
( ) Strongly Disagree

Tactile instructions distracted from focusing on riding:
( ) Strongly Agree
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Snowboarding

( ) Agree
( ) Undecided
( ) Disagree
( ) Strongly Disagree

I think tactile instructions are helpful during the ride:
( ) Strongly Agree
( ) Agree
( ) Undecided
( ) Disagree
( ) Strongly Disagree

Your overall impression

Which feedback channel do you prefer for corrections? Please explain why.
( ) Audio
( ) Tactile

Wearing the system was...
( ) Very comfortable
( ) Somewhat comfortable
( ) Neither comfortable nor uncomfortable
( ) Somewhat uncomfortable
( ) Very uncomfortable

Further comments:
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Appendix C

Post-Study Questionnaire:
Perception of Tactile
Instructions While
Horseback Riding

Your Personal Data

Thank you very much for participating in our user study on real-time tactile
instructions. Please take 15 minutes time to answer the following questions.
Please note that if we use any of your responses in reports or presentations,
your real name will not be used, and any personally identifying data will
be changed or omitted.

Your Personal Data

What is your name?

Are you a boy or a girl?

How old are you?

What is your profession?

Did you experience artificial tactile instructions before this study?
( ) No
( ) Yes

Do you have a disease or skin damages that could influence your tactile
perception?
( ) No
( ) Yes
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How would you grade your equestrian skills?
( ) Beginner
( ) Advanced beginner
( ) Advanced
( ) Proficient
( ) Expert

Tactile instructions

I could perceive tactile instructions during the ride:
( ) Very Good
( ) Good
( ) Barely Acceptable
( ) Poor
( ) Very Poor

The sensation of tactile instructions was:
( ) Very pleasant
( ) Somewhat pleasant
( ) Neither pleasant nor unpleasant
( ) Somewhat unpleasant
( ) Very unpleasant

I could map tactile instructions to body movements:
( ) Strongly Agree
( ) Agree
( ) Undecided
( ) Disagree
( ) Strongly Disagree

Tactile instructions were intuitive:
( ) Strongly Agree
( ) Agree
( ) Undecided
( ) Disagree
( ) Strongly Disagree

Having perceived a tactile instruction, I felt incited to perform the
movement:
( ) Strongly Agree
( ) Agree
( ) Undecided
( ) Disagree
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( ) Strongly Disagree

Tactile instructions distracted from focusing on riding:
( ) Strongly Agree
( ) Agree
( ) Undecided
( ) Disagree
( ) Strongly Disagree

I think tactile instructions are helpful during the ride:
( ) Strongly Agree
( ) Agree
( ) Undecided
( ) Disagree
( ) Strongly Disagree

Your overall impression

Wearing the system was...
( ) Very comfortable
( ) Somewhat comfortable
( ) Neither comfortable nor uncomfortable
( ) Somewhat uncomfortable
( ) Very uncomfortable

Further comments:
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Appendix D

Post-Study Questionnaire:
Learning New Motor Skills

Thank you very much for participating in our user study on real-time tactile
instructions. Please take 15 minutes time to answer the following questions.
Please note that if we use any of your responses in reports or presentations,
your real name will not be used, and any personally identifying data will
be changed or omitted.

Your Personal Data

What is your name?

Are you a boy or a girl?

How old are you?

What is your profession?

Which sports other than snowboarding do you practice?

How often do you practice these other sports?
( ) Never
( ) Seldom
( ) Sometimes
( ) Often
( ) Regularly

Your Previous Experience With Artificial Tactile Feedback

Did you experience artificial tactile feedback before this study (for example,
other studies on tactile feedback)?
( ) No
( ) Yes
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Do you have a disease or skin damages that could influence your tactile
perception (for example, burns of the skin)?
( ) No
( ) Yes

Your Snowboarding Skills

For how many years do you snowboard?

How often do you snowboard on average per year?
( ) Up to 1 week
( ) 1–2 weeks
( ) 2–3 weeks
( ) 3–4 weeks
( ) More than 4 weeks

How would you grade your overall snowboarding skills?
( ) Beginner
( ) Advanced beginner
( ) Advanced
( ) Proficient
( ) Expert

Did you participate in a course (3 or more days) to improve your skills?
( ) No
( ) Yes

Have your tried to ride switch before this study?
( ) No
( ) Yes

Would you say it is difficult to learn to ride switch?
( ) I strongly disagree
( ) I disagree
( ) Don’t know
( ) I agree
( ) I strongly agree

How much would you say that you improved your skills in riding switch
during this study?
( ) Not at all
( ) Very little
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( ) Somewhat
( ) Much
( ) To a great extent

How would you rate your skills in riding switch BEFORE participating in
this study?
( ) Very poor
( ) Poor
( ) Barely acceptable
( ) Good
( ) Very good

How would you rate your skills in riding switch AFTER participating in
this study?
( ) Very poor
( ) Poor
( ) Barely acceptable
( ) Good
( ) Very good

Real-time Tactile Instructions During Your Ride

The tactile instructions that you have received during descents indicated
important body movements for riding switch with correct posture.

When did you get tactile instructions during the ride?
( ) In the morning, before the break
( ) In the afternoon, after the break

How well did you perceive tactile instructions during the ride?
( ) Very poor
( ) Poor
( ) Barely acceptable
( ) Good
( ) Very good

Before the descent, your instructor explained how to correctly ride switch.
Would you say that tactile instructions during the ride corresponded to
the spoken instructions?
( ) Not at all
( ) Very little
( ) Somewhat
( ) Much
( ) To a great extent
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Would you say that tactile instructions were helpful for you to ride switch
with correct posture?
( ) It absolutely made no sense to me
( ) It was no help
( ) Don’t know
( ) It was useful
( ) It was a strong help

Would you say that riding with tactile instructions motivated you to
try harder to correctly ride switch as opposed to riding without tactile
instructions?
( ) Not at all
( ) Very little
( ) Somewhat
( ) Much
( ) To a great extent

Would you say that riding with tactile instructions improved the quality
of your ride as opposed to riding switch without tactile instructions?
( ) Not at all
( ) Very little
( ) Somewhat
( ) Much
( ) To a great extent

Would you say that tactile instructions during the ride distracted you from
following the spoken instructions from your instructor?
( ) I strongly disagree
( ) I disagree
( ) Don’t know
( ) I agree
( ) I strongly agree

What did you NOT like about tactile instructions during the ride? Write
whatever you think.

What did you like about tactile instructions during the ride? Write what-
ever you think.

Real-time Tactile Instructions For Learning New Riding Tech-
niques

Imagine that you were learning another snowboarding technique that you
have never tried before (Hochschwung/Tiefschwung, Carving, etc.).

How important would you consider tactile instructions that indicated
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correct posture during the ride?
( ) Unimportant
( ) Of little importance
( ) Moderately important
( ) Important
( ) Very important

I would prefer to learn new techniques only with spoken instructions before
the descent:
( ) I strongly disagree
( ) I disagree
( ) Don’t know
( ) I agree
( ) I strongly agree

I would prefer to learn new techniques with spoken instructions before the
descent and with tactile instructions during the ride:
( ) I strongly disagree
( ) I disagree
( ) Don’t know
( ) I agree
( ) I strongly agree

I would prefer tactile instructions that indicated correct posture only if I
did something wrong.
( ) I strongly disagree
( ) I disagree
( ) Don’t know
( ) I agree
( ) I strongly agree

Additional comments: Write whatever you think.
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Appendix E

The Structure of Languages

In this appendix, we will briefly describe the formal syntactic notation that
defines the structure of formal languages. Additional information on this
topic can be found in Rozenberg and Salomaa [1997].

A language is based on a finite alphabet Σ. The elements of the alphabet “A language is a

set of finite words

of symbols from a

finite alphabet.”

are called letters or symbols. A finite sequence of zero or more letters is
called a word or a string (w = u1u2...un, n ∈ N, ui ∈ Σ). The empty word
is called λ or ε (w0). The concatenation of two words v and w form the
word vw. Σ∗ is the infinite set of all finite words over Σ. Σ+ = Σ∗ \ {λ}
is the infinite set of all nonempty finite words. Based on these concepts, a
formal language over Σ is defined as a finite or infinite subset of Σ∗. This
subset contains finite words from its alphabet.

All languages, in particular written languages, can be though of as formal An example

languagelanguages. Consider the Latin alphabet reduced to lowercase letters and
whitespace Σ = {a, b, c, ..., z, }. This set of symbols suffices to describe
words in natural languages, such as in English and German. For example,
“bbb”, “star”, and“the sun is shining”are words over Σ. One finite language
over this alphabet is L = {bbb, star, the sun is shining}, which we define
by listing all of its words.

In the example language L given above, “bbb” is a valid word from L but Formal grammars

its form and meaning would not make sense in spoken languages, such as
in English. Formal grammars can be used to define how to form strings
from the elements of the alphabet. We will not discuss this issue here as it
is not relevant for our work.
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mund, and Lothar Thiele. Prototyping Wireless Sensor Network Appli-
cations with BTnodes. In EWSN ’04: Proceedings of the 1st European
Workshop on Sensor Networks, 2920, pages 323–338, Berlin / Heidelberg,
2004. Springer-Verlag.

Anu Bhargava, Michael Scott, Ryan Traylor, Roy Chung, Kimberly Mrozek,
Jonathan Wolter, and Hong Z. Tan. Effect of Cognitive Load on Tac-
tor Location Identification in Zero-g. In WHC ’05: Proceedings of the
1st Joint EuroHaptics Conference and the Symposium on Haptic Inter-
faces for Virtual Environment and Teleoperator Systems, pages 56–62,
Washington, DC, USA, 2005. IEEE Computer Society.

http://www.arduino.cc/
http://www.arduino.cc/


Bibliography 227

Edward A. Bilodeau and Ina McD. Bilodeau. Variable frequency of knowl-
edge of results and the learning of a simple skill. Journal of experimental
psychology, 55(4):379, 1958.

Edward A. Bilodeau, Ina M. Bilodeau, and Donald A. Schumsky. Some
effects of introducing and withdrawing knowledge of results early and
late in practice. Journal of Experimental Psychology, 58:142–144, 1959.

Meera M. Blattner, Denise A. Sumikawa, and Robert M. Greenberg.
Earcons and Icons: Their Structure and Common Design Principles. Hu-
man Computer Interaction, 4(1):11–44, 1989.
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Frank Clemens. Recognizing Upper Body Postures using Textile Strain
Sensors. In ISWC ’07: Proceedings of the IEEE International Symposium
on Wearable Computers, pages 1–8. IEEE Computer Society, 2007.

Measurand Inc. ShapeWrap III, 2010. URL http://www.measurand.com/.

Florian Michahelles and Bernt Schiele. Sensing and Monitoring Professional
Skiers. IEEE Pervasive Computing, 4(3):40–46, 2005.

Bruce J. P. Mortimer, Gary A. Zets, and Roger W. Cholewiak. Vibrotactile
transduction and transducers. The Journal of the Acoustical Society of
America, 121(5):2970–2977, 2007.

Florian ’Floyd’ Mueller, Frank Vetere, Martin R. Gibbs, Jesper Kjeldskov,
Sonja Pedell, and Steve Howard. Hug Over A Distance. In CHI ’05:
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 1673–1676, New York, NY, USA, 2005. ACM Press.

Brad Myers, Scott E. Hudson, and Randy Pausch. Past, Present, and Fu-
ture of User Interface Software Tools. ACM Transactions on Computer-
Human Interaction (TOCHI), 7(1):3–28, 2000.

Akio Nakamura, Sou Tabata, Tomoya Ueda, Shinichiro Kiyofuji, and Yoshi-
nori Kuno. Dance Training System with Active Vibro-Devices and a
Mobile Image Display. IROS ’05: Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pages 3075–3080,
2005.

Nintendo. Nintendo Wii Balance Board, 2010. URL http://www.
nintendo.com/wii/what/accessories/balanceboard.

Masataka Niwa, Yasuyuki Yanagida, Hurao Noma, Kenichi Hosaka, and
Yuichiro Kume. Vibrotactile Apparent Movement by DC Motors and
Voice-coil Tactors. In ICAT ’04: Proceedings of the 14th International
Conference on Artificial Reality and Telexistence, pages 126–131, 2004.

NOAD2. The New Oxford American Dictionary. Oxford University Press,
2nd edition, May 2005.

Ian Oakley, Marilyn Rose McGee, Stephen Brewster, and Philip Gray.
Putting the Feel in ‘Look and Feel’. In CHI ’00: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pages
415–422, New York, NY, USA, 2000. ACM Press.

R. Ohmura, F. Naya, H. Noma, and K. Kogure. B-Pack: A Bluetooth-
based Wearable Sensing Device for Nursing Activity Recognition. In
ISWPC’06: 1st International Symposium on Wireless Pervasive Com-
puting. IEEE Communications Society, 2006.
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Enhancing the Learning of Sport Skills Through External-Focus Feed-
back. Journal of Motor Behavior, 34(2):171–182, 2002.

Xsens Technologies B.V. MTx and MVN - Inertial Motion Capture, 2010.
URL http://www.xsens.com/.

Xing-Dong Yang, Walter F. Bischof, and Pierre Boulanger. Validating the
Performance of Haptic Motor Skill Training. In Proceedings of the 2008
Symposium on Haptic Interfaces for Virtual Environment and Teleoper-
ator Systems, pages 129–135. IEEE Computer Society Washington, DC,
USA, 2008.

Hiroaki Yano, Tetsuro Ogi, and Michitaka Hirose. Development of Haptic
Suit for Whole Human Body Using Vibrators. Transactions of the Virtual
Reality Society of Japan, 3(3):141–148, 1998.

Andreas Zinnen and Bernt Schiele. A New Approach to Enable Gesture
Recognition in Continuous Data Streams. In ISWC ’08: Proceedings
of 12th IEEE International Symposium on Wearable Computers, pages
33–40. IEEE, 2008.

http://www.xsens.com/


245

Index

AA batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24, 83
abstract mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67, 77
accelerometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see sensor, accelerometer
active situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76, 80, 94, 132
activity recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15, 17, 44, 54
actuator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19, 24, 62, 207

- inertial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
- linear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
- piezoelectric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
- shape memory alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see mechanoreceptors, rate of adaptation
alphabet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128, 223

- Braille . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68, 128
amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see encoding parameters, intensity
ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97, 136
apparent movement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66, 117
Arduino BT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18, 24, 48, 161, 207
artificial tactile stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see tactile stimuli
athlete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4, 6, 76, 153
ATMega168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17, 161
attentional focus

- external . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104, 155, 159
- internal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155, 159

augmented feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see feedback, extrinsic
automatic control processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

back foot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
backpack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96, 103, 111
backside edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36, 41, 44, 47, 159
backside turn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36, 41, 44, 156
balance board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94, 130
basic instructions. . . . . . . . . . . . . . . . . . . . . . . . . . .see tactile motion instructions, basic
basic stance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see neutral position
basic turn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37, 130, 157
BD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see burst duration
bend sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see sensor, bend
between-subjects design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86, 90, 133, 182
blind experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164, 170
Bluetooth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17, 18, 20, 23, 27, 41
body movements . . . . . . . . . . . . . . . see tactile motion instructions, body movements
bones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65, 91
Braille alphabet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see alphabet, Braille
burst duration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80

car drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70, 80
carving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50, 166, 167



246 Index

circuit schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24, 207
classification of context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see context recognition
coach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3, 154, 183
coded approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67, 77
cognitive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77, 79, 187
cognitive workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80, 94, 95, 101, 110, 190
compass heading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17, 39, 42
compound instructions . . . . . . . . . . . . . . . . see tactile motion instructions, compound
constrained-action hypothesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155
context recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15, 23, 27
context-aware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14, 16, 19, 24
corpuscles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see mechanoreceptors
counter-rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see snowboarding, counter-rotation
counterbalanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96, 105, 112, 114, 118, 135, 164
countermovement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89, 91
cutaneous rabbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see sensory saltation
cutaneous sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

D-sub connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
daily physical activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .see physical activities
dancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 127, 141
dermis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
design guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64, 80, 91, 115, 121, 190
design space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77, 188
desktop computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14, 18
direct approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see pictorial approach
directional cues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see navigation
directional lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66, 80, 86, 91, 121, 190
dorsal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Earcons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65, 67, 82
earplugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 105
edging angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 38, 50, 163, 167
electro shock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
emotional communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68, 72
encoding metaphor

- counter-intuitive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132, 142
- intuitive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132, 142
- mixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136, 146, 147, 149, 151
- push and pull . . . . . . . . . . . . . . . . . . . . . . . . . . 90, 92, 120, 133, 147, 151, 157, 191

encoding parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
- body location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65, 67
- duration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65, 67, 79, 80
- frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64, 85
- intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64, 65, 67
- primary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
- rhythm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65, 67
- waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65

environmental audio cues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 108
epidermis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
equestrienne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see horseback riding
exponential smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47, 51
expressive sensations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78, 90, 187, 190
external focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .see attentional focus, external
extrinsic frame of reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

fakie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see riding switch



Index 247

fall line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37, 167
feedback

- audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, 13
- concurrent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1, 153–156, 159, 181
- delayed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 34, 154
- extrinsic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
- force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 62, 72
- frequent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 154, 155
- immediate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 34, 154
- intrinsic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
- tactile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 5, 6, 19, 24, 62
- visual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, 155, 181

feedback on performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 154
feedforward. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154, 164
fitness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
force feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see feedback, force
force sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see sensor, force
force-sensitive resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see sensor, force
forced-choice paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118, 133, 146
front foot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36, 157
frontside edge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36, 41, 44, 47, 159
frontside turn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36, 41, 44, 156
FSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see sensor, force

gesture recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
goofy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see stance, goofy
GoWear fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29, 129
GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see Graphical User Interface
guidance hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
gyroscope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .see sensor, gyroscope

haptic device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see feedback, force
haptic guidance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
haptic icons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30, 67, 77, 129
haptic phonemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see haptic icons
Hawthorne effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
HCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see Human-Computer Interaction
headphones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87, 96, 118, 135, 145
hearing impaired persons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62, 69, 129
Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15, 19
horseback riding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
Hug Shirt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Human-Computer Interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
hypodermis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59

I-CubeX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
IBI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see inter-burst interval
inertial measurement unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15, 16
instructor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see coach
inter-burst interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
interactive throwing sleeve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
internal focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see attentional focus, internal
interviews with snowboard instructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34, 43
intrinsic frame of reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
intuitive . . . . . . . . . . . . . . . . . . see tactile motion instructions, intuitive interpretation
iSense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



248 Index

iterative design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18, 27

kinesthetic sense. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
knee pads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
knee-jerk reaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .see reflex action
knowledge of performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
knowledge of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

language
- formal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128, 223
- spoken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
- tactile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69, 127

lateral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Latin alphabet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
left-right confusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101, 131, 143
letters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128, 223
Likert scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107, 113, 174
localized pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see localized stimuli
localized stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75, 78, 80, 88
low-pass filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see exponential smoothing
lumbago . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Mac OS X. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
magnetometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see sensor, magnetometer
martial arts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, 17
masking effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
mean shifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47, 51
mechanoreceptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

- frequency range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
- Meissner’s corpuscles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
- Merkel’s discs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
- Pacinian corpuscles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
- rate of adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61, 67
- receptive field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
- receptor density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
- Ruffini’s corpuscles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
- spatial resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

medial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Meissner’s corpuscles . . . . . . . . . . . . . . . .see mechanoreceptors, Meissner’s corpuscles
Merkel’s discs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see mechanoreceptors, Merkel’s discs
metaphorical approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
micro-controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17, 161
misinterpretation. . . . . . . . . . . . . . .see tactile motion instructions, misinterpretation
mobile device

- interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
- Nokia N70 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27, 40, 103, 111, 160

Morse code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
motion capture suit, MVN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
motion model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 54
motion recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
motion tracker, MTx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see vibration motor
Motor Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
motor shield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24, 45, 207
motor skill learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 5, 154



Index 249

motor skills
- closed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
- open . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155, 156

movement initiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
moving average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47, 52
muscles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79

natural audio cues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see environmental audio cues
navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69, 70, 75, 79, 80, 130
neutral position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36, 40, 46
Nike + iPod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Nintendo Wii Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see balance board
noisy environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Nokia 3270 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see vibration motor, Nokia 3270
Nokia N70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .see mobile device, Nokia N70
notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see tactile patterns, notation

obstacle detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
open response paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86, 146
Optacon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67, 68
optical bend sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .see sensor, optical bend
Optohapt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69, 129

Pacinian corpuscles . . . . . . . . . . . . . . . . . . . see mechanoreceptors, Pacinian corpuscles
parabolic flights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
patient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 6, 13
pause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see inter-burst interval
personal digital assistant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
personal training device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
physical activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4, 6, 76, 127
physical computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
physical user interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
physically and cognitively demanding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76, 94
piano playing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
pictorial approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
piezoelectric effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
piezoresistive bend sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see sensor, bend
pilots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70, 80
pivoting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37, 167
posture model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 54
posture recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
pouch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40, 45, 160
pressure sensation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .see tactile sense
pressure sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see sensor, force
privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
proactive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
programming by demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 199
prototyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 23

- platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
pull metaphor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see encoding metaphor, pull
pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69, 78, 82
pulse width modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 24, 85, 207
push metaphor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .see encoding metaphor, push
pushing and pulling sensations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 75, 77, 90
PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see pulse width modulation
Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27, 103, 160

rabbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see sensory saltation



250 Index

rapid feedback system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
real-world conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102, 110, 153
real-world sensations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77, 90, 187
receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see mechanoreceptors
reference values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40, 46, 47, 50, 51
reflex action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75, 145, 187
regular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see stance, regular
rehabilitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 76
repeated-measures design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see within-subjects design
response time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106, 109
riding at trot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see riding gaits
riding at walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see riding gaits
riding gaits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112, 114
riding switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
roughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see encoding parameters, waveform
Ruffini’s corpuscles. . . . . . . . . . . . . . . . . . . .see mechanoreceptors, Ruffini’s corpuscles

sampling rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40, 46, 161
semicircular lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116, 120
SensAct box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24, 45, 160
SensAct Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29, 30
sensing device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16, 23
sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

- accelerometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4, 15, 54, 85
- bend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15, 38
- force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39, 45, 160, 163
- gyroscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
- magnetometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
- optical bend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45, 54
- stretch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Sensor Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
sensory saltation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66, 69, 79, 80, 117
sensory substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
sequence of body movements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127, 130
Shake SK6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17, 19, 39
Shapiro-Wilk test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
SIGCHI . . . . . . . . . . . . . see Special Interest Group in Human-Computer Interaction
sine wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63, 65, 83
single instructions . . . . . . . . . . . . . . . . . . . . . . . . . . see tactile motion instructions, basic
Ski Coach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
skiing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, 17
skin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
SMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see moving average
smart clothes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
snowboard training system . . . . . . . . . . . . . . . . . see wearable snowboarding assistant
snowboarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 94, 102, 153

- activity recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
- classification of riding edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46, 166
- context information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
- counter-rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38, 157, 170
- course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159
- knee flexion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38, 42, 51
- mistakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34, 36, 157, 170
- terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
- wrong weight distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38, 157, 170

SnowSport Team . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34, 43, 159, 170
SnowWorld Landgraaf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38, 46, 104, 159



Index 251

solenoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63, 71
Sonic Golf Club . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
spatially separated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 72
spatiotemporal pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29, 66
Special Interest Group in Human-Computer Interaction . . . . . . . . . . . . . . . . . . . . . . . . 7
speech recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
spine and sternum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115, 121
spoken instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 103, 109
spoken language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see language, spoken
sports competitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
sports training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4, 6, 75, 154
square wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65, 83
stabilometer platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
stance

- goofy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36, 159
- regular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36, 159

stationary situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80, 94, 116, 132
stiff posture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34, 38
stretch sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .see sensor, stretch
Suunto G6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see riding switch

TactaBoard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
TactaBox. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Tactaid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69, 129
TactaPack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
tactile display

- device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 23
- technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Tactile Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
tactile feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see feedback, tactile
tactile feedback device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see tactile display, device
tactile icons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see Tactons
tactile instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .see tactile motion instructions
tactile language. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .see language, tactile
tactile motion instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 75

- basic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
- body location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
- body movements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91, 144, 184
- compound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130, 157, 162, 191
- design recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91, 115, 121, 190
- design requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77, 187
- duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80, 162, 191
- final set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
- intuitive interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86, 144
- learning time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
- misinterpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97, 101, 110, 114, 131, 151
- patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91, 116, 121, 184
- primary encoding parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115, 121, 191
- secondary encoding parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115, 121, 191
- upper body rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89, 116

tactile patterns
- compound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83, 89
- design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
- notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
- one-element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
- rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



252 Index

- simultaneous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83, 89
tactile sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
tactile signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see tactile stimuli
tactile stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 5, 30, 75
tactile suit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
tactile vest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Tactons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67, 77, 82, 129
tactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see actuator
Tadoma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
tap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75, 80
tennis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 155
textual information transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68, 128
threshold test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15, 41, 47, 50, 52, 55, 163
timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80, 86, 162
toolkit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
TRS connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24, 45
TS connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
two-point threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61, 65, 82
typing errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

unsupervised situations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 76

ventral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
verbal instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see spoken instructions
verbal responses . . . . . . . . . . . . . . . . . . . 95, 101, 106, 109, 110, 114, 132, 141, 143, 151
Vibratese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69, 77, 129
vibration motor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2, 24, 62, 83

- cylindrical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62, 83
- frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
- intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85, 108, 160
- Nokia 3270 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
- pancake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

vibration sensation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .see tactile sense
Vibrocons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
vibrotactile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62, 84
video analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28, 40, 46, 170
virtual reality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72, 78
visual phi phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see apparent movement
visually impaired persons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68, 129

waist belt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
warning signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70, 71, 80
wearable assistant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
wearable computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 6, 13
wearable sensing and feedback device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 16, 23
wearable snowboarding assistant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 33, 44, 153
Wii Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see balance board
Wilcoxon signed-rank test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108, 119, 170, 171, 174
window size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47, 50, 52
within-subjects design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96, 105, 164
words. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127, 130, 223
workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see cognitive workload
wrong posture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 36
wrong upper body rotation . . . . . . . . . . . . . . . . . . see snowboarding, counter-rotation
wrong weight distribution . . . . . . . . . . see snowboarding, wrong weight distribution

young adults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76, 80, 90, 154, 184



253

Publications

Daniel Spelmezan, Anke Hilgers, and Jan Borchers. A Language of Tactile
Motion Instructions. In MobileHCI ’09: Proceedings of the International
Conference on Human-Computer Interaction with Mobile Devices and Ser-
vices, pages 218–221, New York, NY, USA, September 2009. ACM Press.

Daniel Spelmezan, Mareike Jacobs, Anke Hilgers, and Jan Borchers. Tactile
Motion Instructions for Physical Activities. In CHI ’09: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, pages
2243–2252, New York, NY, USA, April 2009. ACM Press.

Alexander Hoffmann, Daniel Spelmezan, and Jan Borchers. TypeRight:
a Keyboard with Tactile Error Prevention. In CHI ’09: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, pages
2265–2268, New York, NY, USA, April 2009. ACM Press.

Daniel Spelmezan, Adalbert Schanowski, and Jan Borchers. Wearable Au-
tomatic Feedback Devices for Physical Activities. In BodyNets ’09: Pro-
ceedings of the International Conference on Body Area Networks, pages 1–8,
Brussels, Belgium, Belgium, April 2009. ICST.

Daniel Spelmezan, Adalbert Schanowski, and Jan Borchers. Rapid Proto-
typing for Wearable Computing. In ISWC ’08: Proceedings of IEEE Inter-
national Symposium on Wearable Computers, pages 109–110, Washington,
DC, USA, September 2008. IEEE Computer Society.

Daniel Spelmezan and Jan Borchers. Real-time Snowboard Training Sys-
tem. In CHI ’08: Extended Abstratcs of the SIGCHI Conference on Human
Factors in Computing Systems, pages 3327–3332, New York, NY, USA,
April 2008. ACM Press.

Daniel Spelmezan and Jan Borchers. Minnesang: Speak Medieval German.
In CHI ’06: Extended Abstracts of the SIGCHI Conference on Human Fac-
tors in Computing Systems, pages 1355–1360, New York, NY, USA, April
2006. ACM Press.





255

Curriculum Vitae

Personal Data

Daniel Spelmezan

13. August 1976 Born in Bistriţa, Romania
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