
by
Amit
Kumar
Shaw

Visual
Trace
Debugging
of

Smart
Home
Rules

Master’s Thesis
submitted to the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Dr. Ulrik Schroeder

Registration date: 03.08.2023
Submission date: 05.02.2024

Zentrales Prüfungsamt/Central Examination Office

Eidesstattliche Versicherung
Statutory Declaration in Lieu of an Oath

___________________________ ___________________________

Name, Vorname/Last Name, First Name Matrikelnummer (freiwillige Angabe)
Matriculation No. (optional)

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/

Masterarbeit* mit dem Titel
I hereby declare in lieu of an oath that I have completed the present paper/Bachelor thesis/Master thesis* entitled

__

__

__

selbstständig und ohne unzulässige fremde Hilfe (insbes. akademisches Ghostwriting)

erbracht habe. Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel benutzt.

Für den Fall, dass die Arbeit zusätzlich auf einem Datenträger eingereicht wird, erkläre ich,

dass die schriftliche und die elektronische Form vollständig übereinstimmen. Die Arbeit hat in

gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.
independently and without illegitimate assistance from third parties (such as academic ghostwriters). I have used no other than

the specified sources and aids. In case that the thesis is additionally submitted in an electronic format, I declare that the written

and electronic versions are fully identical. The thesis has not been submitted to any examination body in this, or similar, form.

___________________________ ___________________________

Ort, Datum/City, Date Unterschrift/Signature

 *Nichtzutreffendes bitte streichen

*Please delete as appropriate

Belehrung:
Official Notification:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung

falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei

Jahren oder mit Geldstrafe bestraft.

Para. 156 StGB (German Criminal Code): False Statutory Declarations

Whoever before a public authority competent to administer statutory declarations falsely makes such a declaration or falsely

testifies while referring to such a declaration shall be liable to imprisonment not exceeding three years or a fine.
§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so

tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158

Abs. 2 und 3 gelten entsprechend.

Para. 161 StGB (German Criminal Code): False Statutory Declarations Due to Negligence

(1) If a person commits one of the offences listed in sections 154 through 156 negligently the penalty shall be imprisonment not
exceeding one year or a fine.
(2) The offender shall be exempt from liability if he or she corrects their false testimony in time. The provisions of section 158 (2)
and (3) shall apply accordingly.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:
I have read and understood the above official notification:

___________________________ ___________________________

Ort, Datum/City, Date Unterschrift/Signature

v

Contents

Abstract xvii

Überblick xix

Acknowledgements xxi

Conventions xxiii

1 Introduction 1

2 Related Work 5

2.1 Trigger-Action Programming (TAP) 5

2.2 Conflicts in TAP 6

2.3 Solutions using Static Analysis 9

2.4 Solutions using Dynamic Analysis 12

3 The Debugging Dashboard 17

3.1 Overview . 17

3.2 Debugging Dashboard Design 19

vi Contents

3.2.1 Initial Prototype 20

3.2.2 Final Interface 21

3.2.3 Data Filtering 26

3.3 Client-side Implementation 27

3.3.1 Smart Home Manager 28

Debugging Dashboard 28

Home and Device Manager 29

Rule Manager 30

3.3.2 Device Register 30

3.4 Server-side Implementation 31

3.4.1 REST API 31

3.4.2 Data Storage 32

4 Evaluation 37

4.1 Hypotheses 37

4.2 User Study . 38

4.2.1 Study Design 39

Study Setup 41

4.2.2 Procedure 41

4.2.3 Participants 42

4.3 Results . 44

4.3.1 Quantitative Results 44

Contents vii

Debugging Accuracy 44

Debugging Difficulty 46

Debugging Speed 49

User Confidence 51

Conflict Understanding 54

User Satisfaction 56

System Causability Scale 57

4.3.2 Qualitative Results 59

Filter Feature 59

Rule Timeline 60

Device Timeline 61

Flash Icon 61

Arrows 61

Condition Status Indicator 62

4.4 Discussion . 62

5 Summary and Future Work 65

5.1 Summary and Contributions 65

5.2 Limitations and Future Work 66

A User Study Design Materials 69

B User Study Documents 75

viii Contents

Bibliography 83

Index 89

ix

List of Figures

1.1 Dashboard Preview 3

2.1 TAP diff interfaces by Zhao et al. [2021]. . . . 10

2.2 FortClash interface by Coppers et al. [2022]. . 13

2.3 Debugging workflows by Zhang et al. [2023]. 14

2.4 The Whyline interface by Ko and Myers [2004]. 15

3.1 System architecture of our web application
that offers the Debugging Dashboard 18

3.2 Initial Prototype of the Debugging Dashboard. 20

3.3 The user interface of the Debugging Dashboard. 23

3.4 Information when hovering over the dash-
board’s components. 25

3.5 Filtered View of the dashboard 26

3.6 Information highlighting in Filtered View. . . 27

3.7 Entity-Relationship diagram of the database
models. 33

4.1 Age distribution of participants. 43

x List of Figures

4.2 Learning effect in user study. 46

4.3 Debugging accuracy percentage per bug. . . 47

4.4 Debugging difficulty rating distribution. . . . 48

4.5 Debugging difficulty rating per bug. 48

4.6 Debugging speed per bug. 51

4.7 User confidence rating distribution. 52

4.8 User confidence rating per bug. 53

4.9 Conflict understanding rating distribution. . 54

4.10 Conflict understanding rating per bug. 55

4.11 User satisfaction rating distribution. 56

4.12 User satisfaction rating per bug. 57

4.13 Time spent on Filtered View versus Unfiltered
View during the Filter condition. 63

A.1 Rule sets for Action Inconsistent bug. 70

A.2 Rule sets for Action Reversal bug. 71

A.3 Rule sets for Condition Unsatisfiable bug. . . . 72

A.4 Rule sets for Infinite Loop bug. 73

A.5 Study Instruction Page for Baseline dash-
board task. 74

A.6 Study Instruction Page for Filter dashboard
task. 74

B.1 Informed Consent Form. 76

B.2 Demographics survey form (1). 77

List of Figures xi

B.3 Demographics survey form (3). 78

B.4 Form to record feedback after each task. . . . 79

B.5 System Causability Scale questions for Base-
line dashboard. 80

B.6 System Causability Scale questions for Filter
dashboard. 81

B.7 Post Study Questionnaire. 82

xiii

List of Tables

2.1 Coppers et al. [2022] created a comprehen-
sive list of 19 different categories of unin-
tended actions by compiling various tax-
onomies. (Table taken from Coppers et al.
[2022]) . 7

3.1 HTTP GET endpoints of the REST API
server and the description of each end-
point’s functionality and the type of data
it retrieves. The endpoints are prefixed
with http://server-url/api/ (e.g.,
http://localhost:5001/api/ during
the user study). 34

3.2 HTTP POST endpoints of the REST API
server and the description of each end-
point’s purpose and the data it pro-
cesses. The endpoints are prefixed
with http://server-url/api/ (e.g.,
http://localhost:5001/api/ during
the user study). 35

3.3 This table provides descriptions of entities
used in the web application. Each entity is
stored in a separate table in the database. . . 36

xiv List of Tables

4.1 Significant differences in debugging accu-
racy per bug. Rows only show significant
bugs. Significantly different bugs (p <=
0.05) are not connected by the same letter.
The means are rounded to two decimal places. 45

4.2 Significant differences in debugging accu-
racy per task. Rows only show significant
tasks. Significantly different tasks (p <=
0.05) are not connected by the same letter.
The means are rounded to two decimal places. 47

4.3 Significant differences in debugging diffi-
culty per bug. Rows only show significant
bugs. Significantly different bugs (p <=
0.05) are not connected by the same let-
ter. The means and standard deviations are
rounded to two decimal places. 49

4.4 Significant differences in debugging diffi-
culty per task. Rows only show significant
tasks. Significantly different tasks (p <=
0.05) are not connected by the same let-
ter. The means and standard deviations are
rounded to two decimal places. 50

4.5 Significant differences in debugging speed
per bug. Rows only show significant bugs.
Significantly different bugs (p <= 0.05) are
not connected by the same letter. The means
and standard deviations are rounded to two
decimal places. 52

4.6 Significant differences in debugging speed
per task. Rows only show significant tasks.
Significantly different tasks (p <= 0.05) are
not connected by the same letter. The means
and standard deviations are rounded to two
decimal places. 52

List of Tables xv

4.7 Significant differences in user confidence per
bug. Rows only show significant bugs. Sig-
nificantly different bugs (p <= 0.05) are not
connected by the same letter. The means and
standard deviations are rounded to two dec-
imal places. 54

4.8 Significant differences in conflict under-
standing per bug. Rows only show sig-
nificant bugs. Significantly different bugs
(p <= 0.05) are not connected by the same
letter. The means and standard deviations
are rounded to two decimal places. 55

4.9 Significant differences in user satisfaction
per bug. Rows only show significant bugs.
Significantly different bugs (p <= 0.05) are
not connected by the same letter. The means
and standard deviations are rounded to two
decimal places. 58

4.10 Significant differences in user satisfaction
per task. Rows only show significant tasks.
Significantly different tasks (p <= 0.05) are
not connected by the same letter. The means
and standard deviations are rounded to two
decimal places. 58

4.11 The table reports the System Causability
Scale (SCS) ratings for Baseline and Filter ver-
sions of the dashboard. 59

A.1 An 8x8 Latin square illustrating the balanced
distribution of tasks. 69

xvii

Abstract

Smart homes are revolutionizing our daily lives by using technology to make our
routines more convenient and comfortable. With the help of smart homes, peo-
ple can automate tasks such as turning off lights and adjusting room temperature
based on their preferences without manual operation. Trigger-Action Program-
ming (TAP) allows inexperienced users to define automation and interactions be-
tween smart home devices without requiring extensive technical knowledge. How-
ever, conflicts between TAP rules can lead to unexpected situations, frustrating
users and reducing their trust in the system. Researchers have explored two ap-
proaches to tackle these challenges and user frustrations: static analysis and dy-
namic analysis. Although both methods are effective in their ways, they have their
limitations and need to provide long-term solutions and debugging support.

This thesis explores the potential of visualizing traces of conflicting TAP rules to
identify the root cause of issues in smart homes. Our work builds on previous stud-
ies that have shown the effectiveness of visual aids in understanding TAP rules. In
this thesis, we developed and evaluated a visual debugging dashboard that traces
events associated with activated TAP rules in smart homes and shows the causal re-
lationship between events. We evaluated two dashboard versions - Baseline, which
traces all activated rules without data filtering, and Filter, which incorporates data
tracing and filtering. A within-group user study with 16 participants assessed dif-
ferent TAP debugging aspects. Although the Filter version received higher Sys-
tem Causability Scale ratings, no significant differences in debugging performance
were observed compared to Baseline. The results discovered significant differences
in outcomes based on bug types. This suggests that different bugs require varied
cognitive abilities for effective TAP conflict resolution.

xviii Abstract

xix

Überblick

Smart Homes revolutionieren unser tägliches Leben, indem sie mithilfe von Tech-
nologie unsere Abläufe bequemer und komfortabler machen. Mit Hilfe von Smart
Homes können Menschen Aufgaben wie das Ausschalten des Lichts und die An-
passung der Raumtemperatur nach ihren Wünschen ohne manuelle Bedienung
automatisieren. Mithilfe der Trigger-Action-Programming (TAP) können uner-
fahrene Benutzer Automatisierungen und Interaktionen zwischen Smart-Home-
Geräten definieren, ohne dass umfangreiche technische Kenntnisse erforderlich
sind. Allerdings können Konflikte zwischen TAP-Regeln zu unerwarteten Situ-
ationen führen, die Benutzer frustrieren und ihr Vertrauen in das System ver-
ringern. Forscher haben zwei Ansätze untersucht, um diese Herausforderungen
und Benutzerfrustrationen anzugehen: statische Analyse und dynamische Anal-
yse. Obwohl beide Methoden auf ihre Art effektiv sind, haben sie ihre Grenzen
und müssen langfristige Lösungen und Debugging-Unterstützung bieten.

Diese Arbeit untersucht das Potenzial der Visualisierung widersprüchlicher TAP-
Regeln, um die Grundursache von Problemen in Smart Homes zu identifizieren.
Unsere Arbeit baut auf früheren Studien auf, die die Wirksamkeit visueller Hilf-
smittel beim Verständnis von TAP-Regeln gezeigt haben. In dieser Arbeit haben
wir ein visuelles Debugging-Dashboard entwickelt und evaluiert, das Ereignisse
im Zusammenhang mit aktivierten TAP-Regeln in Smart Homes nachverfolgt und
den kausalen Zusammenhang zwischen Ereignissen aufzeigt. Wir haben zwei
Dashboard-Versionen evaluiert: Baseline, das alle aktivierten Regeln ohne Daten-
filterung verfolgt, und Filter, das Datenverfolgung und -filterung umfasst. In
einer within-group Benutzerstudie mit 16 Teilnehmern wurden verschiedene TAP-
Debugging-Aspekte bewertet. Obwohl die Filterversion höhere System Causabil-
ity Scale-Bewertungen erhielt, wurden im Vergleich zur Baseline keine signifikan-
ten Unterschiede in der Debugging-Leistung beobachtet. Die Ergebnisse zeigten
signifikante Unterschiede in den Ergebnissen je nach Fehlertyp. Dies deutet da-
rauf hin, dass verschiedene Fehler unterschiedliche kognitive Fähigkeiten für eine
effektive TAP-Konfliktlösung erfordern.

xxi

Acknowledgements

I would like to thank Prof. Dr. Jan Borchers and Prof. Dr. Ulrik Schroeder for
examining my thesis.

I would like to thank Adrian Wagner for providing me with dedicated and moti-
vating supervision throughout my work. Your valuable feedback has been instru-
mental in helping me learn and improve. Thank you so much.

I would like to thank everyone who participated in the studies and took the time to
help me with my research. It would not have been possible without their valuable
contribution.

Thank you, Werner and Waltraud. I appreciate your valuable inputs and support
and the time you took to review my thesis.

Thank you to my family and friends for your endless love, unwavering support,
and understanding. You have been my pillars during this journey, and I am grateful
for each one of you.

xxiii

Conventions

Throughout this thesis, we use the following conventions.

Definitions of technical terms or short excursus are set off
in coloured boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

Definition:
Excursus

Named tools and concepts are written in italics.

Dashboard

Source code and implementation symbols are written in
typewriter-style text.

SensorLog

The whole thesis is written in American English.

The first person is written in the plural form. Unidentified
third persons are referred to in the plural form.

1

Chapter 1

Introduction

The advent of smart homes is transforming how we live, Smart home
technology
automates tasks and
improves the quality
of life.

bringing unmatched convenience and comfort. With this
technology, people can easily automate tasks such as
turning off lights after leaving a room or adjusting the
room temperature from the comfort of their bed. Smart
homes significantly benefit independent individuals, as-
sisting those requiring additional care (Marikyan et al.
[2019]). In a smart home, one can program devices like
doors, lights, and heating systems to adjust based on
their preferences without manually operating them (Nikou
[2019]). Smart homes are designed to make our lives easier
and more comfortable by using technology to take care of
everyday tasks and improve our overall quality of life.

The effectiveness of smart home systems depends on how Trigger-Action
Programming (TAP)
simplifies smart
home automation
and can be learned
easily.

different devices interact and function together smoothly.
These interactions are user-defined, often without needing
extensive technical knowledge of the underlying systems.
Trigger-Action Programming (TAP), an end-user develop-
ment paradigm (Lieberman et al. [2006]), enables users
to define these interactions according to their preferences
without requiring significant technical expertise. TAP fol-
lows the ”IF [trigger] WHILE [conditions] THEN [action]”
format, allowing even inexperienced users to create com-
plex behaviors (Ur et al. [2014]). TAP makes smart home
automation accessible and flexible, empowering users to
customize smart home functionalities to their specific needs

2 1 Introduction

and preferences. This showcases the perfect blend of user-
friendliness and technological sophistication of smart home
systems.

Though TAP simplifies smart home automation, it is sus-Conflicts in TAP rules
can create undesired
situations that lead to

user frustration.

ceptible to bugs, like any other programming paradigm.
These bugs arise from conflicts between multiple TAP rules.
Such conflicts can lead to undesired situations where the
smart home system either does things it shouldn’t or fails
to do something when expected. Consequently, this frus-
trates the users and reduces their trust in the smart home
system (Brush et al. [2011], Mennicken and Huang [2012]).

Researchers have explored various methods to tackle theCurrent research
provides limited

solutions for
identifying the

underlying causes of
TAP rule conflicts.

challenges and user frustrations caused by conflicting TAP
rules. They have either used a static or dynamic analysis
approach. Static analysis, as seen in the research by De Rus-
sis and Monge Roffarello [2018] and Corno et al. [2019],
aims to identify inconsistencies and redundancies during
rule creation. While it can catch conflicts early, it may not
eliminate issues in daily usage and lacks debugging sup-
port after a conflict occurs. Dynamic analysis, as explored
by Coppers et al. [2022], predicts potential conflicts dur-
ing system operation and provides temporary solutions to
users. Although these methods are effective in their own
ways, they have their limitations and need to provide long-
term solutions and debugging support. These approaches
highlight the need for a deeper understanding of the root
causes of TAP rule conflicts to develop permanent solutions
and enhance user confidence in smart home technologies.

TRACE-BASED DEBUGGING:
Reiss [1993] introduced trace-based debugging by defin-
ing a debugger ”that incorporates the notion of time to
allow users to easily navigate over the execution of their
systems.”

Definition:
Trace-Based

Debugging

In this thesis, we explore the potential of debugging
through the visualization of traces of conflicting TAP rules
to identify the cause of the issue. Our research is inspired
by previous studies that have demonstrated the effective-
ness of using visual aids to understand TAP rule differences

3

Figure 1.1: The figure shows a part of the Debugging Dashboard that represents the
events linked with the activated TAP rules in the sequence of their execution.

and interfaces that offer varying levels of detail visualiza-
tion (De Russis and Corno [2015] and Zhao et al. [2021]). As We investigate the

potential of
visualizing traces of
conflicting TAP rules
to identify the cause
of the issue in smart
homes.

a result, we have developed and assessed a visual debug-
ging dashboard in our work. Our dashboard, which fol-
lows the principles of trace-based debugging (Reiss [1993]),
is designed to trace events associated with activated TAP
rules in smart homes and display them in the order of ex-
ecution, as depicted in Figure 1.1. To illustrate the causal
relationship between events, it uses arrows, similar to the
Whyline debugging interface (Figure 2.4), which has shown
that visualizing runtime events and representing data and
control flow causality can significantly reduce the debug-
ging time (Ko and Myers [2004]). Moreover, the dashboard
provides a filtering feature to trace relevant data that leads
to activating a rule in a smart home. This feature is in-
tended to help users identify the root cause of conflicts in
TAP rules by visualizing data at different levels of detail,
thus enhancing their experience with smart home systems.

This thesis investigates the importance of data tracing in
our visual debugging dashboard. Given the lack of simi-

4 1 Introduction

lar existing tools, to our knowledge, we evaluate our dash-We evaluate the
impact of filtering

and tracing relevant
data by comparing

the Baseline and the
Filter version of the

dashboard.

board by comparing two versions: the Baseline version,
which traces all activated TAP rules in a smart home with-
out offering data filtering, and the Filter version, which al-
lows for filtering and tracing relevant data. Hence, we ad-
dress the following questions in our research:

RQ1 Does filtering and tracing relevant data assist in accu-
rately identifying the cause of conflicts in TAP rules?

RQ1.1 Does filtering and tracing relevant data make it
easier to identify the cause of conflicts in TAP
rules?

RQ1.2 Does filtering and tracing relevant data reduce
the time taken by users to identify the causes of
conflicts in TAP rules?

RQ2 Does filtering and tracing relevant data impact the
user’s confidence in identifying the cause of conflicts
in TAP rules?

RQ2.1 Does filtering and tracing relevant data have an
impact on user’s understanding of the conflict-
ing situation?

RQ3 Does filtering and tracing relevant data impact user
satisfaction when identifying the cause of conflicts in
TAP rules?

In the following, we describe the related work in Chapter 2.This thesis is divided
into five chapters. There, we discuss the development of TAP, different con-

flicts in TAP rules, and existing solutions using static and
dynamic approaches. In Chapter 3, we will explain the de-
bugging dashboard’s design choices and implementation
details. In Chapter 4, we will discuss the user study con-
ducted to evaluate the dashboard and discuss the study’s
results. Finally, we conclude in Chapter 5 with a summary
and suggestions for future work.

5

Chapter 2

Related Work

This chapter looks at related work in TAP debugging be-
fore this thesis. First, we introduce and discuss the devel-
opment of TAP. Then, we look at different types and defi-
nitions of undesired conflicts in TAP rules. Finally, we go
through various existing research offering solutions to re-
solve TAP conflicts using static and dynamic analysis ap-
proaches and also look at some visualizations of TAP rules.

2.1 Trigger-Action Programming (TAP)

Trigger-Action Programming (TAP), an end-user develop- Trigger-Action
Programming (TAP)
simplifies smart
home automation by
allowing users to
specify automation
rules based on a
trigger and a
predefined action.

ment paradigm (Lieberman et al. [2006]), has evolved as
a pivotal concept in the realm of smart home automation,
offering a user-friendly way to program smart home en-
vironments. This approach allows users to specify au-
tomation rules in a format where a specified trigger leads
to a predefined action. TAP’s structure is simple: ”IF
[trigger], WHILE [conditions], THEN [action],” for exam-
ple, ”IF light is switched on, WHILE room temperature is
above 26°C, THEN turn on the AC.” Consequently, TAP
is adopted by IFTTT1, Home Assistant2, Samsung Smart-

1https://ifttt.com (last accessed on February 2, 2024)
2https://www.home-assistant.io/ (last accessed on February 2, 2024)

https://ifttt.com
https://www.home-assistant.io
https://www.samsung.com/us/smartthings
https://www.samsung.com/us/smartthings
https://www.samsung.com/us/smartthings
https://www.samsung.com/us/smartthings
https://www.samsung.com/us/smartthings

6 2 Related Work

Things3, Philips Hue4 and other commercial platforms.

Existing research has demonstrated the significance of TAPTAP is significant for
smart homes and

easy for novice users
to learn and create
rules, as concluded

by studies.

within smart homes. It has been proven capable of repre-
senting the majority of behaviors that potential users may
desire (Ghiani et al. [2017], Nacci et al. [2018], Woo and
Lim [2015]). According to the study conducted by Ur et al.
[2014], it was found that novice users could quickly learn
TAP and create rules for expressing smart home behaviors.
The researchers developed an interface similar to IFTTT
with multiple triggers and actions. Users were asked to
mention the smart home behaviors they wanted, and the
study found that all behaviors that required programming
could be expressed in a trigger-action format. The study
concluded that users could correctly create a set of rules
about 80% of the time.

Ur et al. [2016] analyzed 224,590 trigger-action programs onStudies revealed that
TAP systems have
evolved to support

complex conditions
and user

preferences.

IFTTT. The study revealed that many users are creating a
diverse range of TAP rules, indicating the increasing popu-
larity of TAP in the real world. Early iterations of TAP sys-
tems focused on simple, singular relationships between a
trigger and an action. However, TAP systems have evolved
to support more complex conditions, integrating multiple
triggers and actions (Ur et al. [2014]), and considering con-
text and user preferences (Ghiani et al. [2017]).

2.2 Conflicts in TAP

As mentioned in the previous chapter, TAP rules are proneTAP rules are prone
to bugs, and users
find distinguishing

between events and
states difficult,

leading to confusion.

to bugs, leading to conflicts in smart home use. A paper
by Huang and Cakmak [2015] demonstrated that users find
distinguishing between events and states difficult. Events
are specific occurrences at a particular moment, while states
are conditions that remain true over an interval of time.
This distinction is crucial because it can lead to confusion
when defining TAP rules (Brackenbury et al. [2019]). Brack-
enbury et al. [2019] identified and categorized ten classes of

3https://www.samsung.com/us/smartthings (last accessed on
February 2, 2024)

4https://www.philips-hue.com (last accessed on February 2, 2024)

https://www.samsung.com/us/smartthings
https://www.samsung.com/us/smartthings
https://www.samsung.com/us/smartthings
https://www.philips-hue.com

2.2 Conflicts in TAP 7

TAP bugs, grouping them under control flow bugs, timing
bugs, and inaccurate user expectations.

Unintended Behavior Description
Action duration disregarded Rule does not take into account action’s duration
Action incorrect Action is configured to operate outside entity’s

capabilities
Action reversal Action is automatically reversed by another rule
Action reversal missing Action is never reversed by another rule
Actions inconsistent Contradictory actions on same entity
Actions redundant Similar actions executed on same entity
Condition bypass Other rule with less strict condition is executed

instead
Condition unsatisfiable Condition can never evaluate to true
Effects inconsistent Contradictory effects on same environmental

property
Entity unavailable Action cannot be executed when entity is no

longer accessible
Events redundant Multiple events created by same sensor in a spe-

cific time window
Loop Actions of multiple rules cyclically trigger each

other
Race condition Execution order affects which rules are triggered
Rule incomplete Rule does not consider all possible sensor values
Rule set overtrust User trusts set of rules that is not configured prop-

erly
Trigger incomplete Some trigger parameters are not specified
Triggers redundant Trigger is activated multiple times by similar

events
Trigger overtrust User trusts trigger that is not configured properly
Violated constraint Violation of user-defined boolean expression

Table 2.1: Coppers et al. [2022] created a comprehensive list of 19 different cate-
gories of unintended actions by compiling various taxonomies. (Table taken from
Coppers et al. [2022])

As detailed by Brackenbury et al. [2019], control flow bugs Brackenbury et al.
[2019] identify three
control flow bug
types: infinite loop,
contradictory action,
and repeated
triggering.

include three types. First, the infinite loop bug occurs when
rules trigger each other continuously, similar to infinite
loops in traditional programming languages. Both static
and dynamic analyses can detect this bug. Second, contra-
dictory action bugs represent scenarios where rules conflict
over time, such as a system alternating between heating
and air conditioning without stabilizing. Third, repeated

8 2 Related Work

triggering happens when a rule is expected to activate once
but triggers multiple times. Static analysis can identify po-
tential cases of repeated triggering but may not always de-
termine if the triggering is intentional.

Timing bugs comprise two types (Brackenbury et al.Timing bugs have
two types,

nondeterministic
timing, and extended
action bugs, and can
be identified through

static and dynamic
analyses.

[2019]). Nondeterministic timing bugs arise from the un-
predictable order in which a system processes simultane-
ous triggers. Both static and dynamic analyses can identify
these bugs. Extended action bugs occur with actions ex-
tending over time rather than instantaneous. For instance,
a coffee brewing rule might cause excessive coffee produc-
tion if it reactivates during the brewing process.

Inaccurate user expectations comprise five bug typesInaccurate user
expectation bugs
comprise missing

reversals,
secure-default bias,
time-window fallacy,

priority conflicts, and
flipped triggers.

(Brackenbury et al. [2019]). One is the missing reversal,
where users fail to specify a rule for reversing an action,
expecting automatic reversion, a common misconception.
Static analysis can detect but not always correct these bugs.
Secure-default bias bugs occur when users incorrectly as-
sume systems default to a safe state. The time-window
fallacy involves users misinterpreting the time window in
a ruleset, particularly in complex temporal rules. Priority
conflict bugs emerge when users struggle to prioritize mul-
tiple rules affecting the same device. Finally, flipped trig-
gers occur when users mix up a trigger’s event and state
components, resulting in rules that behave unexpectedly.

The bug types identified by Brackenbury et al. [2019]Coppers et al. [2022]
compiled a list of 59

conflict types and
categorized them

into 19 unique
unintended
behaviors.

present the common TAP bugs. Meanwhile, Coppers
et al. [2022] compiled a list of 59 conflict types based on
the works of Al Farooq et al. [2019], Brackenbury et al.
[2019], Ma et al. [2017], Magill and Blum [2016], and Wang
et al. [2019]. They then categorized these conflicts into
19 unique unintended behaviors, as detailed in Table 2.1.
Coppers et al. [2022] noted that the table they presented
needs to be more comprehensive. They expect to dis-
cover additional conflict types as the trigger-condition-
action paradigm evolves and becomes more advanced.

2.3 Solutions using Static Analysis 9

2.3 Solutions using Static Analysis

A study by De Russis and Monge Roffarello [2018] presents De Russis and
Monge Roffarello
[2018] proposed a
debugging method
using Semantic Web
and Petri Nets for
trigger-action rules,
successfully
identifying
inconsistencies and
loops.

a debugging approach using Semantic Web and Petri Nets
to assist users in defining trigger-action rules for smart de-
vices and web services. The approach involves translat-
ing rules into corresponding Petri nets to detect loops, in-
consistencies, and redundancies in rules, followed by anal-
ysis for conflict detection. The study’s evaluation sug-
gests that users successfully used this debugging method to
identify and understand inconsistencies and loops in TAP
rules. However, users perceived redundancies as less criti-
cal, sometimes choosing to retain them.

Building on the works of De Russis and Monge Roffarello EUDebug helps
end-users debug
TAP rules by
detecting potential
issues during rule
composition and
simulating rule
behavior with a web
interface.

[2018], Corno et al. [2019] designed EUDebug to assist end
users in debugging trigger-action rules by identifying con-
flicts and simulating rule behavior. EUDebug automatically
detects potential issues during rule composition and shows
conflicts with existing rules at the end of the process. Its
main component is a semantic-colored Petri net (SCPN)
for modeling and simulation and a web interface for rule
composition and problem analysis. The interface includes
features for rule composition, problem checking, and step-
by-step explanation, enhancing user understanding of rule
conflicts and run-time behavior. It simplifies rule creation
and helps users grasp the implications of their configura-
tions. Corno et al. [2019] evaluated EUDebug for its effec-
tiveness in helping users understand and identify problems
in their trigger-action rules. Participants perceived loops
and inconsistencies as significant issues, while redundan-
cies were comparatively more acceptable. The loop was
the most challenging problem, leading participants to uti-
lize the step-by-step explanation feature frequently. While
only highlighting detected issues was often insufficient, the
step-by-step simulation of rules notably aided in under-
standing the problems.

The paper by Zhao et al. [2020] introduces a set of proto-
type interfaces designed to visualize and clarify the differ-
ences in variants of TAP rules. The interfaces assist users,
regardless of their experience, in understanding the dif-

10 2 Related Work

Figure 2.1: TAP diff interfaces demonstrate both a conventional method of present-
ing differences in program text (left) as well as innovative techniques of displaying
differences in program outcomes (center) and properties (right). (Image taken from
Zhao et al. [2021])

ferences in rule changes. These interfaces offer three lev-
els of granularity: textual differences in the rules, differ-
ences in system actions under specific scenarios, and prop-
erty differences. Inspired by code diff utilities and collab-Zhao et al. [2020]

introduce prototype
interfaces that

visualize and clarify
differences in

variants of TAP rules,
assisting users in

understanding rule
changes and system

behavior.

orative word-processing tools, these interfaces provide a
comprehensive view of TAP rule variants, helping debug
and understand the behavior of smart devices and sys-
tems. The text difference interface, inspired by GitHub’s
diff views, highlights syntax differences in TAP rules, cate-
gorizing rules as ”added,” ”removed,” or ”modified.” The
flowchart-based interface assists users in understanding
behavioral differences between rules under specific scenar-
ios, like different actions triggered by the same event. It
depicts how various system states evolve, highlighting dif-
ferences in device states and actions taken by each rule.
This approach helps in clarifying complex interactions and
redundancies in TAP rules. Additionally, the paper intro-
duces a form-based interface for comparing multiple TAP
rules. This interface uses a multiple-choice form to present
scenario-specific questions, helping users choose between
actions taken by different rules. It identifies the rule(s) most
aligned with user preferences based on their responses.
The interface also explores property differences, compar-
ing long-term system patterns that address the challenge of
manually analyzing rules.

In another paper, a user study conducted by Zhao et al.
[2021] extended their previous work (Zhao et al. [2020])
on prototype interfaces to visualize the differences in vari-
ants of TAP rules by evaluating the interfaces as shown in

2.3 Solutions using Static Analysis 11

Figure 2.1. The user study revealed that users could find The study suggests
semantic-difference
interfaces perform
better than traditional
rules for more
extended and
complex programs.

differences by examining rules alone for short, simple pro-
grams. However, participants using semantic-difference
interfaces performed better for longer, more complex pro-
grams than those using traditional rules or text-difference
interfaces. The outcome-difference flowchart interface was
better in tasks requiring the identification of specific differ-
ences, while the property-difference interface was better for
abstract differences. The study highlights the importance
of interfaces to visualize information with various levels of
detail.

A paper by Yusuf et al. [2022] introduces RecipeGen, an ap- RecipeGen uses
deep learning to
generate accurate
TAP rules from
natural language
descriptions,
resulting in more
relevant and
conflict-free rule
creation.

proach to generating TAP rules using natural language de-
scriptions, employing a deep learning framework. It di-
verges from previous studies by framing TAP rules as a
sequence learning task rather than a classification one, uti-
lizing Transformer sequence-to-sequence architecture. This
method allows RecipeGen to capture the intricate relations
among various elements of the rules, leading to more accu-
rate and relevant rule generation. The key to RecipeGen’s
effectiveness is its use of pre-trained autoencoding mod-
els, which enhances its understanding of rule descriptions.
RecipeGen evaluation demonstrates high performance in
generating TAP rules. This advancement marks a signif-
icant contribution to the field, offering to avoid conflicts
during rule creation.

AutoTap by Zhang et al. [2019] helps create TAP rules AutoTap automates
creating and
repairing TAP rules,
reducing human
error and ensuring
compliance with
user-defined
properties.

by allowing users to define properties and rules through
a graphical interface, making it more accessible to non-
technical users. It automates the creation and repair of TAP
rules to ensure compliance with specified properties pro-
vided by the user. This feature reduces the risk of human
error in TAP rules. AutoTap uses linear temporal logic to
translate user-specified properties into formal models. It
then synthesizes TAP rules that are compliant, accommo-
dating, and valid using an algorithm. This approach en-
sures that the smart home system adheres to user-defined
properties while reducing TAP rule conflicts.

Trace2TAP by Zhang et al. [2020] also helps in TAP rule cre-
ation. However, it analyzes user behavior traces to gener-

12 2 Related Work

ate TAP rules. It identifies device actions to be automatedTrace2TAP
generates TAP rules

by analyzing user
behavior traces,

helping users align
device automation

with their
preferences.

that align with the user’s intent and uses symbolic execu-
tion and SAT-solving to create relevant TAP rules. The sys-
tem clusters and ranks these rules to help users select the
most suitable ones. Trace2TAP was evaluated through a
field study in office settings, showing its effectiveness in
aligning user intent with automated actions. Additionally,
Trace2TAP helps in debugging by generating patches to re-
fine existing rules based on user interactions, further align-
ing device automation with user preferences.

2.4 Solutions using Dynamic Analysis

Coppers et al. [2020] introduce FORTNIoT, a tool designedFORTNIoT predicts
smart home behavior

by simulating TAP
rules and

self-sustaining
predictions, helping

users better
understand and

manage their smart
home systems.

to predict the future behavior of smart homes using existing
TAP rules. It simulates these rules in conjunction with self-
sustaining predictions, like weather forecasts or sun posi-
tions, to deduce the future states of the smart home. FORT-
NIoT’s algorithm integrates these predictions with smart
home rules, enabling users to understand the complex in-
teractions within their smart home systems. The process
involves continuously updating predictions based on real-
time data and simulating various scenarios. A between-
group study by Coppers et al. [2020] revealed that FORT-
NIoT helps non-experienced users better understand and
feel more confident about smart home behaviors. It shifts
user responsibility from assembling answers to simply ver-
ifying them. They remarked that predictions improve ac-
countability and comprehension of smart homes, help re-
solve conflicts, and manage smart home behaviors. Addi-
tionally, they highlighted that visualization tools help trou-
bleshoot past malfunctions and could benefit future smart
home behavior research.

Expanding on their work on FORTNIoT, Coppers et al.FortClash uses a
two-step process and

breadth-first
algorithm to predict

unintended smart
home behaviors.

[2022] introduces FortClash, which uses a two-step process
for predicting unintended smart home behaviors. Initially,
it robustly forecasts the smart home’s future behavior us-
ing TAP and external prediction services, like weather fore-
casts. Then, unlike FORTNIoT’s depth-first approach, it
employs a breadth-first algorithm to detect potential unin-

2.4 Solutions using Dynamic Analysis 13

Figure 2.2: FortClash predicts and allows smart home users to temporarily suspend
one-time exceptions for a rule’s action at a specific moment. (Image taken from
Coppers et al. [2022])

tended behaviors accurately. This algorithm ensures that
all potential outcomes of the rules are considered indepen-
dently and sequentially, thus improving the accuracy of
the predictions. Users can then identify potential issues
through a dashboard, as shown in Figure 2.2. FortClash ex-
amines the predicted states, rule executions, and a causality
graph to spot unintended behaviors like loops or inconsis-
tencies. If a state participates in multiple unintended be-
haviors, FortClash merges them until resolution. Users can
control outcomes through a visualization interface, which
allows them to suppress specific actions. For example,
unchecking a box linked to an action prevents its execution,
removing its effects from future predictions. This process
feeds back into the prediction algorithm, which maintains
a list of suppressed actions to ensure they do not reoccur
in future simulations. FortClash also allows users to mod- FortClash lets users

control, modify, and
plan actions through
a visualization
interface to address
predicted unintended
behaviors.

ify action parameters instead of simply suppressing them.
Users can adjust parameters like partially raising window
covers and delaying action execution. These temporary
modifications are stored in a list and considered by the
prediction algorithm, overriding the default action param-
eters. This change helps meet the current needs without al-
tering the rule’s overall settings for future executions. Fort-
Clash also allows users to manually plan action executions,
addressing situations where rules fail to trigger. Users can
select execution times directly on the timeline visualization,
using configurations of existing actions or setting new ones.

14 2 Related Work

Figure 2.3: Debugging workflows by Zhang et al. [2023] provide a history visual-
ization interface (left), patch synthesis output interface (center), and patch behavior
visualization (right). (Image taken from Zhang et al. [2023]

Users can also ignore system warnings about potential un-
intended behaviors once or always. Ignored instances are
recorded, and future matching predictions are updated ac-
cordingly.

The paper by Zhang et al. [2023] introduces new interfacesExplicit-Feedback
and

Implicit-Feedback
workflows by Zhang

et al. [2023]
outperformed the

Control workflow in
debugging TAP rules.

and algorithms for debugging TAP rules, focusing on the
end-to-end process of resolving conflicts in smart homes.
These interfaces include identifying unexpected behaviors,
locating faults in TAP rules, proposing modifications, and
refining these changes. The authors developed two work-
flows, Explicit-Feedback and Implicit-Feedback, each using
different methods for gathering user feedback on system
misbehavior. A Control workflow was also implemented,
representing traditional manual TAP debugging without
tool support. The Explicit-Feedback workflow uses user an-
notations on automation misbehaviors to suggest correc-
tive patches for the rules. Users mark incorrect automa-
tion via a history visualization interface, and the system
generates potential patches, as shown in Figure 2.3. These
patches are then presented to the user with detailed visu-
alizations for informed decision-making in selecting and
refining patches. On the other hand, the Implicit-Feedback
workflow automatically infers system misbehaviors by an-
alyzing user interactions, such as manual device actua-
tion or reversing automation. Unlike the Explicit-Feedback
workflow, it does not require users to annotate misbehav-

2.4 Solutions using Dynamic Analysis 15

Figure 2.4: The answer provided by Whyline displays a visual representation of the
runtime actions at the bottom of the figure. Users can utilize the time cursor to
navigate through the execution history. (Image taken from Ko and Myers [2004])

iors explicitly. This workflow identifies potential issues
like under-automation (automated events that should have
occurred but did not) and over-automation (unnecessary
automated events). Users still get to decide which de-
vice actions are incorrect, helping accurately identify false
negative and false positive misbehaviors. Upon evalua-
tion, Zhang et al. [2023] found that the Explicit-Feedback
and Implicit-Feedback groups performed better than the Con-
trol group in problem-solving tasks. Without tool support,
the Control group struggled more, particularly in complex
tasks. However, usability scores were similar across all in-
terfaces, but the Implicit-Feedback group required fewer clar-
ifications. Time spent on tasks varied, with the Explicit-
Feedback interface requiring more time due to additional
feedback steps.

Zhang et al. [2023] pointed out two categories of TAP
conflicts: over-automation (unnecessary automated events)

16 2 Related Work

and under-automation (automated events that should have
occurred but did not). The first question that comes toWhyline helps

programmers debug
code by allowing

them to ask specific
questions about

runtime bugs, which
significantly reduces

debugging time.

users’ minds is why over-automation actions occur and
why under-automation events do not occur. Ko and My-
ers [2004] answered similar questions with their prototype
Whyline. Whyline introduces an interrogative debugging
paradigm to debug code, allowing programmers to ask
specific why did or why didn’t questions about runtime bugs.
Whyline visualizes runtime events for the slice of the pro-
gram relevant to these questions, along with connected ar-
rows to represent data and control flow causality, as shown
in Figure 2.4. A user study by Ko and Myers [2004] showed
that Whyline significantly reduced debugging time for pro-
grammers.

17

Chapter 3

The Debugging
Dashboard

This chapter will discuss the Debugging Dashboard designed
as part of this thesis. We will start by providing an
overview of the application that incorporates the dash-
board in Section 3.1. Then, we will discuss the Debugging
Dashboard interface and its design choices in Section 3.2. Fi-
nally, we will discuss implementing the application and the
dashboard in detail.

3.1 Overview

We implemented a web application to create virtual smart Our application
simulates conflict
situations in TAP
rules, offering the
Debugging
Dashboard to
identify the causes of
those conflicts.

home setups, simulating conflict situations in TAP rules
and offering the Debugging Dashboard to identify the causes
of these conflicts. The application allows for creating
and simultaneously running various smart home config-
urations with different conflict scenarios. The application
is implemented in a client-server architecture, as shown
in Figure 3.1. The client-side developed using React1, a
Javascript2 library, offers an interactive user interface for
managing and debugging smart homes. It primarily in-

1https://react.dev (last accessed on February 2, 2024)
2https://www.javascript.com (last accessed on February 2, 2024)

https://react.dev
https://www.javascript.com

18 3 The Debugging Dashboard

Figure 3.1: System architecture of our web application that offers the Debugging
Dashboard. It shows the interaction between client-side components, server-side
components, and the database and data flow within the smart home debugging
system.

cludes the Smart Home Manager and the Device Register. The
Device Register allows us to add virtual smart devices to the
application. The added devices can then be used when con-
figuring the virtual smart homes. The Smart Home Manager,
on the other hand, includes the following components:

a. Debugging Dashboard: It displays the activated rules
in the smart home to assist in finding the cause of the
rule conflicts. We will discuss design choices in Sec-
tion 3.2 and implementation of the dashboard in Sec-
tion 3.3.1.

b. Device Manager: It manages devices within the smart
home ecosystem, allowing users to add and modify
device settings.

c. Rule Manager: It helps create TAP rules, providing an
interface for users to define triggers, conditions, and
actions for their smart home devices.

The client communicates with the server side via Hyper-
text Transfer Protocol (HTTP) requests to a Representa-
tional State Transfer (REST) Application Programming In-
terface (API). The server-side is implemented in Flask3,

3https://flask.palletsprojects.com (last accessed on February 2, 2024)

https://flask.palletsprojects.com

3.2 Debugging Dashboard Design 19

a lightweight and flexible Python4 web framework. The
Flask API processes client requests, handling the applica-
tion’s logic and interacting with the SQLite5 database. This
database stores data related to smart home devices, TAP
rules, and other relevant information needed for debug-
ging. The architecture is designed to manage and debug
smart home rules efficiently.

Before moving on to the interface design, we must con-
sider the context of using the application and the debug-
ging dashboard. We should determine which TAP rules
and devices to use in the application. This is important
to ensure the dashboard can handle the complexities and
variations in smart home systems.

As discussed in Section 2.2, distinguishing between events We use TAP rules
with a single trigger,
single action, and
optional condition
groups for multiple
conditions.

and states can be confusing in TAP rules. Therefore, for
clarity, we use TAP rules with a single event-based trigger
and a single event-based action, and an optional condition
group, when present, groups multiple state-based condi-
tions in the AND/OR chain.

A smart device can have sensors, actuators, or both Our application
supports smart
devices with sensors,
actuators, or both.

(Hribernik et al. [2011]). Sensors collect environmental
data, such as temperature or light brightness levels, while
actuators perform actions based on this data, like adjust-
ing thermostats or closing blinds. Our application supports
smart devices with sensors, actuators, or a combination of
both. We use the common term Device property to refer to
both sensors and actuators.

3.2 Debugging Dashboard Design

The Debugging Dashboard serves as the core component of
our application. This section looks into the interface’s ele-
ments, the reasoning behind their design, and their role in
supporting the debugging process.

4https://www.python.org (last accessed on February 2, 2024)
5https://www.sqlite.org/index.html (last accessed on February 2,

2024)

https://www.python.org
https://www.sqlite.org/index.html

20 3 The Debugging Dashboard

Figure 3.2: Initial Prototype of the Debugging Dashboard. This early version of the
dashboard shows a timeline of TAP rule events, visual representations for triggers,
conditions, and actions, and a display of smart home devices with status changes
over time.

3.2.1 Initial Prototype

We aimed to create an effective dashboard interface that im-We created a
dashboard prototype,

including a timeline
of TAP rule events
and device status

change visualization.

plements trace-based debugging, as defined in Chapter 1,
to assist users in debugging TAP rules in their smart home
environments. Our focus was on integrating essential el-
ements that would make the process easier. To meet our
requirements, we designed an initial prototype, as shown
in Figure 3.2, that includes a timeline displaying TAP rule

3.2 Debugging Dashboard Design 21

events chronologically for users to follow the sequence of
triggers, conditions, and actions. We represented each TAP
rule event, including triggers, conditions, and actions, us-
ing different shapes to make them distinguishable. We
also added a visualization of all smart home devices and
their status changes, which is crucial in showing how each
device’s state changes and correlates with activating TAP
rules. Although we included a visualization for all user
statuses in our prototype, we excluded it in our final dash-
board to keep the interface simple and easy to debug.

3.2.2 Final Interface

When designing our final dashboard interface, we made The final interface
includes some minor
changes to improve
the debugging
process.

some minor adjustments to the initial prototype while still
retaining most of the original design elements. As men-
tioned earlier, we decided to exclude the visualization
for user statuses. We refined the representation of TAP
rule events by using rectangular boxes instead of differ-
ent shapes, which makes it easier to read the textual in-
formation inside those shapes while still being distinguish-
able based on the column headers provided for each col-
umn. Additionally, we added labels to make it visually
clear when the device value changes. To provide additional
details, we included mouse hover options. In the follow-
ing paragraphs, we will explain the detailed design of each
component.

The final dashboard interface is divided into two main sec- The dashboard
interface is divided
into two main
sections: the Rule
Timeline and the
Device Timeline.

tions: the Rule Timeline (the left half) and the Device Time-
line (the right half), as shown in Figure 3.3. The Rule Time-
line displays the activated rules in the order of their execu-
tion, following the visual approach of Whyline’s methodol-
ogy (Ko and Myers [2004]). On the other hand, the Device
Timeline is inspired by FortClash’s (Coppers et al. [2022]) and
Zhang et al. [2023]’s techniques, which illustrate the status
of connected smart devices over time. This layout ensures
that the execution of rules and the reaction of devices to
these rules are clearly understood, helping in the debug-
ging process.

22 3 The Debugging Dashboard

The dashboard’s leftmost column displays the timestampsThe Rule Timeline
displays the

sequence of rule
activations over time,

with a visual
grouping of rule

components and
arrows indicating the
control flow between

different rules.

for each activated rule, arranged horizontally on the Rule
Timeline. This design enables users to observe the sequence
of rule activations over time easily. The timestamps are not
displayed to scale to minimize empty spaces between rules
that are activated at widely different times and to provide
additional space to avoid overlapping of simultaneously
activated rules. The Rule Timeline portrays each compo-
nent of the rule—trigger, action, conditions, and condition
groups—as separate events within a unified box. This vi-
sual grouping indicates that they jointly form a single rule.
Arrows link these components to display the sequence and
causality of rule execution. Furthermore, actions that acti-
vate other rules are connected to the triggers of subsequent
rules with arrows, demonstrating the control flow between
different rules.

Each rule on the dashboard has a display box with the
rule name shown at the top-left corner, clarifying its func-
tion. The information displayed for all rule components
reflects the information needed to form the rule, ensuring
that users understand the rules.

The trigger box shows data in the format of ”<Room name>
<Device name> <Device property> changed to <operator>
<new state>,” for example, ”Bedroom Light Brightness
changed to <= 70%.” The action box shows data in the
format of ”<Room name> <Device name> change <De-
vice property> to <new state>,” for example, ”Bedroom Light
Change Brightness to 70%.” The action box also displays ”Ac-
tion executed ✓” if the action was carried out successfully
and ”Action not executed ×” if the action failed due to failed
conditions.

The condition box shows data in the format of ”Is
<Room name> <Device name> <Device property> <opera-
tor> <condition state>?,” for example, ”Is Bedroom Light
Brightness <70%?” Additionally, the condition box informs
the user if the condition is met. It displays ”Yes.” if the
condition is met, and ”No. <Device property> is <Cur-
rent state>” otherwise, for example, ”No. Brightness is
80%.”

3.2 Debugging Dashboard Design 23
A

B
⑧

8.
.

Fi
gu

re
3.

3:
T

he
us

er
in

te
rf

ac
e

of
th

e
D

eb
ug

gi
ng

D
as

hb
oa

rd
hi

gh
lig

ht
s

th
e

R
ul

e
Ti

m
el

in
e

(A
),

w
hi

ch
di

sp
la

ys
th

e
ac

ti
va

te
d

ru
le

s
in

th
e

or
de

r
of

th
ei

r
ex

ec
ut

io
n,

an
d

th
e

D
ev

ic
e

Ti
m

el
in

e
(B

),
w

hi
ch

sh
ow

s
th

e
st

at
us

of
co

nn
ec

te
d

sm
ar

t
de

vi
ce

s
ov

er
ti

m
e.

24 3 The Debugging Dashboard

Boxes representing AND condition groups display ”CheckCondition Status
Indicator is designed
to help users quickly

determine if
conditions are met

and whether an
action was executed.

if ALL conditions hold.” Conversely, boxes for OR con-
dition groups show ”Check if ANY condition holds.” A
”Passed”/”Failed” indicator highlighted with green and
red backgrounds, known as the Condition Status Indica-
tor, for each condition and condition groups, provides a
quick visual cue to users, enabling them to quickly deter-
mine whether specific conditions were met without read-
ing through all the text. Additionally, the interface features
a red cross over the arrow that connects a failed condition
group to its corresponding action. This indicates that the
action was not executed due to the failure of the condition
group, helping the user understand the rule execution pro-
cess.

The Device Timeline displays the state of each De-The Device Timeline
displays the state of

each
Device property in
separate columns,
which change over

time.

vice property in separate columns, which change over time.
At the top of each column, the Device name and the corre-
sponding Device property are displayed. A small box called
the Device State Label showing the new value is marked
whenever a Device property changes state. Device State La-
bels for automated state changes also include a flash icon ()
to differentiate them from manual or environmentally trig-
gered state changes. A thick vertical line colored uniquely
according to the state value extends from the Device State
Label to represent the unchanged state over time until the
following state change occurs. Unique colors are assigned
to each distinct state of Device properties with fixed states,
such as Power (On/Off), while for Device properties with a
range of states, e.g., Brightness ranging from 0% to 100%,
extreme values are assigned unique colors, which are in-
terpolated for intermediate values within the range. The
design is inspired by Zhang et al. [2023].

As mentioned earlier, the timeline is not to scale. This de-The dashboard’s
timeline is not to

scale, which helps to
avoid overlapping

visual elements.

sign also prevents overlapping Device State Labels in cases
where changes occur in rapid succession. Furthermore, the
Device State Label that triggers a rule is displayed slightly
above the corresponding rule on the Rule Timeline of the
dashboard. This visual difference can help users infer the
sequence of events, as the timestamps are nearly identical.
Similarly, state changes in Device properties resulting from a
rule’s action are visually positioned slightly lower, helping

3.2 Debugging Dashboard Design 25

Figure 3.4: Additional information is displayed to assist with debugging when
hovering over different components. (A) An information icon appears in the ac-
tion box’s top right corner if a rule’s action does not modify the state of the De-
vice property. (B, C, and D) Hovering over the Device State Labels will reveal the
cause and exact timestamp of the change. (E and F) Display the state of the De-
vice property before and after a Device State Label.

understand the cause-and-effect relationship.

We display additional information using the mouse hover
feature to enhance the debugging process, as depicted
in Figure 3.4. Hovering over Device State Labels reveals
the change’s cause and exact timestamp. For automated
changes in Device properties, the display reads ”Changed au-
tomatically by <Rule name> at <Timestamp>,” like ”Changed
automatically by Rule 2 at 12:34:56.” Manual changes show The mouse hover

feature provides
additional information
for debugging.

”Changed manually by user at <Timestamp>,” while environ-
mental changes display ”Changed by environment at <Times-
tamp>.” Additionally, when a rule’s action does not alter
the Device property state (e.g., a light turned on by a rule

26 3 The Debugging Dashboard

Figure 3.5: Dashboard’s Filtered View displays only the relevant rules and devices
involved in the success or failure of a particular action.

when it was already on), an information icon appears in
the action box’s top right corner, displaying ”Device value
unchanged!” upon hovering.

3.2.3 Data Filtering

The dashboard displays a detailed view of the smartThe dashboard has a
data filtering feature

to help users identify
the cause of over and

under-automation
events.

home’s TAP rules and smart device events. To simplify de-
bugging, we introduced a data filtering feature inspired by
Whyline (Ko and Myers [2004]). This feature allows users
to focus on specific actions, presenting a Filtered View, illus-
trated in Figure 3.5, that traces only the rules and devices
involved in that action’s success or failure. This filtering
approach aims to answer why actions of over-automation
occur and under-automation events do not, helping users
quickly identify the cause of the issue.

In the Filtered View, the dashboard enhances the debuggingThe Filtered View
supports debugging

by highlighting
trigger, condition,

and action changes,
helping users trace

issues more
effectively.

process by enabling highlighting based on trigger, condi-
tion, and action. Selecting a trigger box highlights the cor-
responding Device property state change that initiated the
rule. Similarly, clicking an action box highlights the resul-

3.3 Client-side Implementation 27

Figure 3.6: In Filtered View, clicking trigger, condition, or action highlights relevant
information for debugging. The figure shows that clicking on the failed condition
highlights the latest Device State Label of the Device property in the failed condition
and the responsible rule.

tant Device property state change. For conditions, selecting
a box highlights the most recent state change of the De-
vice property used in the condition evaluation. Additionally,
if an earlier activated rule caused that state change, then
that rule is also highlighted. This feature will help users
trace the root cause of issues more effectively.

3.3 Client-side Implementation

The client-side of the application is implemented using Re-
act6, as mentioned in Section 3.1 for building user inter-
faces, and Bootstrap7, a well-known CSS framework. This
combination helped develop custom components needed
for our design and ensured a responsive, consistent inter-
face. This section describes implementing two primary
components: the Smart Home Manager and the Device Reg-
ister. The Smart Home Manager allows the configuration

6https://react.dev (last accessed on February 2, 2024)
7https://getbootstrap.com (last accessed on February 2, 2024)

https://react.dev
https://react.dev
https://getbootstrap.com

28 3 The Debugging Dashboard

of multiple virtual smart homes to simulate different TAP
conflict scenarios and offers the Debugging Dashboard. The
Device Register adds virtual smart devices into the appli-
cation, which can be used in these smart home setups.
The client is accessible at http://client-url/ (e.g.,
http://localhost:3000/ during the user study).

3.3.1 Smart Home Manager

The Smart Home Manager consists of the Debugging Dash-
board, the Home and Device Manager, and the Rule Manager,
as described in Section 3.1.

Debugging Dashboard

The Debugging Dashboard for each smart home can beThe Debugging
Dashboard is

implemented using
D3 JS library.

accessed at http://client-url/case/homeId, where
homeId is the unique identifier of the home. The dash-
board was developed using D3 JS8, a JavaScript library
known for its flexibility in creating custom data visualiza-
tions. By utilizing this library, we were able to develop
a custom visualization that met our dashboard interface
design requirements, as detailed in Section 3.2. Data for
the dashboard is retrieved via an HTTP GET request to
http://server-url/api/unfiltered-trace-data/homeId,
server-url is described in Section 3.4. The response
data, described in Section 3.4.1, is then visualized using D3
JS.

A boolean variable canFilter controls the activation of
the Filter feature, as described in Section 3.2.3, allowing
us to evaluate the feature during user study. On clicking
the action of the activated rules, the filtered information
is visualized in fullscreen Bootstrap Modal. The fil-
tered information is retrieved via an HTTP GET request to
http://server-url/api/trace-data/homeId/ruleId,
where ruleId is the unique identifier of the activated rule.
The response data is described in Section 3.4.1.

8https://d3js.org (last accessed on February 2, 2024)

https://d3js.org

3.3 Client-side Implementation 29

When a user clicks on the action of an activated rule, the
filtered information is displayed in a full-screen Bootstrap
Modal. This data is fetched using an HTTP GET request to
http://server-url/api/trace-data/homeId/ruleId,
where ruleId is the unique identifier of the activated
rule. The response data from this endpoint are detailed in
Section 3.4.1. This method ensures that users can access
detailed, rule-specific information without leaving or
reloading the Debugging Dashboard page.

Home and Device Manager

The Home and Device Manager supports the creation of The Home and
Device Manager
enables users to
create virtual smart
homes, modify
device values, create
rules, and access the
Debugging
Dashboard.

virtual smart homes, enabling users to add rooms and
devices and update device values to simulate different
smart home scenarios. New homes are registered through
a form at http://client-url/register-home,
where users specify the home name and add multi-
ple rooms. By default, each home includes an Out-
door room for devices monitoring external conditions
like weather. After registration, home details, includ-
ing device and rule configurations, are accessible at
http://client-url/home-details/homeId, where
homeId is the unique identifier of the home. This page
also offers options to add devices, create rules (see Section
3.3.1), modify device values, and access the Debugging
Dashboard (see Section 3.3.1).

Devices can be added to the home by accessing the form at
http://client-url/add-device-to-room/homeId.
Users can then add multiple devices, configured using
Device Register (see Section 3.3.2), into the rooms of the
home. The added devices are listed under the Devices tab
on the home details page, initially set to their default states
from registration. The Device property value of the devices
can be changed using Change Device Value button, which
opens a Modal. Users can select the Device property from a
Dropdown, view its current value, and input a new value
in the provided field.

30 3 The Debugging Dashboard

Rule Manager

The Rule Manager helps create TAP rules with aThe Rule Manager
allows the creation of

TAP rules with a
single trigger,

multiple conditions,
and a single action
for a smart home.

single trigger, multiple conditions, and a single ac-
tion for a smart home. The form accessible at
http://client-url/create-rule/homeId requires
a name for each rule. Triggers are set by selecting a De-
vice property, a comparison operator (=, !=, <, >, <=, >=),
and a trigger value. Actions are defined by selecting a De-
vice property and the desired new value. Conditions are
formed using AND/OR groups and are implemented us-
ing React Query Builder9. The React Query Builder sup-
ports complex queries that match our need to build condi-
tion groups of TAP rules. Each condition can be set simi-
larly to triggers. Created rules are listed under the Rules
tab on the home details page.

3.3.2 Device Register

The Device Register page, accessible at
http://client-url/register-device, provides
a form for adding new devices. Users input the device
name and can add multiple Device properties (sensors and
actuators). Each Device property requires a name, state typeThe Device Register

allows users to add
new devices with

multiple sensors and
actuators.

(Fixed or Range), state values, and corresponding colors
for the dashboard interface. For fixed states, users input
concrete values and colors, with the first state as the default
configured when the device is added to a smart home.
Minimum and maximum values with colors are needed for
ranged states, along with a default value. The application
automatically adds a Power State actuator with fixed On
(green) and Off (red) states, minimizing user input and
ensuring at least one Device property per device. On the
Device Register page, users can view a list of configured
devices beneath the device registration form. This list
displays each device’s name, its Device properties, and their
default values.

9https://react-querybuilder.js.org (last accessed on February 2, 2024)

https://react-querybuilder.js.org

3.4 Server-side Implementation 31

3.4 Server-side Implementation

The server-side of the application is implemented us- The server-side of
the application is
developed using
Flask and SQLite to
provide HTTP

endpoints for data
exchange and
storage of persistent
data.

ing Flask10 for building REST API and SQLite11 database
management, as described in Section 3.1. This combina-
tion helped develop this thesis’s lightweight and complete
backend application. Flask also offers future expansion of
the application using extensions as needed. This section de-
scribes implementing two primary components: the REST
API and the Database. The REST API provides HTTP GET
and POST endpoints to support data exchange between the
server and the client. The Database is used for storing
persistent data and logs of the smart homes. The server
endpoints are accessible at http://server-url/ (e.g.,
http://localhost:5001/ during the user study).

The server implements the check rule method to auto- check rule method
automates rule
triggering in a smart
home by evaluating
triggers and
conditions.

mate rule triggering in a smart home. This method is in-
voked whenever the state of a device’s Device property is
updated. It takes the updated Device property as a param-
eter and checks if this state change triggers any rules. If a
rule is triggered, the method evaluates any configured con-
ditions defined in the rule. Upon meeting these conditions,
it updates the Device property according to the action de-
fined in the rule. Additionally, the method logs all actions
performed during this process in the database, later visual-
ized on the Debugging Dashboard.

3.4.1 REST API

The REST API of the server offers two HTTP methods: GET The REST API offers
GET and POST

methods and
communicates with
the client via JSON.

and POST. GET requests retrieve data from the server. POST
requests, on the other hand, require payload data to be
sent to the server, used for submitting data to be processed
and stored. The REST API uses Flask-SQLAlchemy12,
an ORM (Object Relational Mapper) extension for Flask,

10https://flask.palletsprojects.com (last accessed on February 2, 2024)
11https://www.sqlite.org/index.html (last accessed on February 2,

2024)
12https://flask-sqlalchemy.palletsprojects.com (last accessed on

February 2, 2024)

https://flask.palletsprojects.com
https://www.sqlite.org/index.html
https://flask-sqlalchemy.palletsprojects.com

32 3 The Debugging Dashboard

to support interactions with the database. Communica-
tion between the server and client is handled using JSON
(JavaScript Object Notation)13 for data exchange. The
implemented GET endpoints are described in Table 3.1,
and the POST endpoints are described in Table 3.2. The
endpoints are prefixed with http://server-url/api/
(e.g., http://localhost:5001/api/ during the user
study).

3.4.2 Data Storage

Our application utilizes SQLite14, a compact and efficientThe application uses
SQLite as a

database engine to
store and organize

persistent data.

database engine to organize and store data. This choice
aligns well with our Flask-based REST API server, support-
ing quick data operations and handling small data quanti-
ties of our thesis. Data is structured into entities for orga-
nized storage and easy retrieval. Table 3.3 describes these
entities. We present the Entity-Relationship (ER) diagram,
as shown in Figure 3.7, which visually represents the re-
lationships between these data entities, providing a clear
understanding of the system’s data structure.

13https://www.json.org/json-en.html (last accessed on February 2,
2024)

14https://www.sqlite.org/index.html (last accessed on February 2,
2024)

https://www.json.org/json-en.html
https://www.json.org/json-en.html
https://www.sqlite.org/index.html

3.4 Server-side Implementation 33

Figure 3.7: Entity-Relationship diagram of the database models - This diagram vi-
sually represents the structure and relationships of the database entities used in the
smart home debugging web application.

34 3 The Debugging Dashboard

Endpoint Description
get-homes Returns a list of all homes configured in

the application, including each home’s
ID, name, number of rooms, total de-
vices across all rooms, and the number
of associated rules.

get-devices Returns a list of all devices registered
by the Device Register, detailing each de-
vice’s name, state type (Fixed or Range),
value ranges, possible states, and col-
ors.

home-details/homeId Returns information about a specific
smart home, including its name, asso-
ciated rooms, rules, activated rules, and
direct links.

get-home-devices/homeId Returns details about sensors and ac-
tuators of devices in a specified smart
home, including each device’s name,
state type, value ranges, and colors.

unfiltered-trace-data/homeId Returns trace data for all activated rules
and updates logs of sensors and actua-
tors in a specific smart home.

trace-data/homeId/ruleId Returns trace data for the specified ac-
tivated rule in a smart home, includ-
ing information about the rule, directly
linked rules, and logs of involved sen-
sors and actuators.

Table 3.1: HTTP GET endpoints of the REST API server and the description of each
endpoint’s functionality and the type of data it retrieves. The endpoints are pre-
fixed with http://server-url/api/ (e.g., http://localhost:5001/api/
during the user study).

3.4 Server-side Implementation 35

Endpoint Description
register-new-device Registers new smart devices. Requires

data including the device’s name, state
type (Fixed or Range), value ranges, pos-
sible states, and associated colors.

register-home Registers a new smart home in the ap-
plication. Requires data containing the
home’s name and its rooms.

add-device-to-room/homeId Assigns devices to specific rooms within a
smart home. Needs data specifying which
devices to add to each room in the home.

update-device-value/homeId Allows updating the value of De-
vice properties for devices in a smart
home. Requires data containing the
device identifier and the new value to be
set.

create-rule/homeId Creates a new TAP rule in a specific smart
home. It needs data, including the rule’s
name, trigger, and action details, and as-
sociated conditions.

Table 3.2: HTTP POST endpoints of the REST API server and the description of
each endpoint’s purpose and the data it processes. The endpoints are prefixed with
http://server-url/api/ (e.g., http://localhost:5001/api/ during the
user study).

36 3 The Debugging Dashboard

Entity Description
Home Represents a virtual smart home entity.
Room Represents a specific room within a Home.
Device Represents a smart device, which can include

Sensors and Actuators.
Sensor Represents a sensor property of a Device.
SensorState Stores the various fixed states or readings that

a Sensor can support.
SensorLog Logs historical state change data recorded by

Sensors over time.
Actuator Represents an actuator property of a Device.
ActuatorState Stores the various fixed states or readings that

an Actuator can support.
ActuatorLog Logs historical state change data recorded by

Actuators over time.
Rule Represents a TAP rule, with a rule name.
Trigger Specifies the event that triggers a Rule.
ConditionGroup Groups multiple Conditions and Condition-

Groups to determine a Rule’s action execu-
tion.

Condition Represents individual conditions within a
Rule.

Action Defines the action to be performed when a
Rule is triggered and its conditions are met.

ActivatedRule Tracks instances when a Rule is activated in
the system.

ActivatedTrigger Records the Trigger event of ActivatedRule.
ActivatedConditionGroup Records the evaluation of ConditionGroups

in an ActivatedRule.
ActivatedCondition Records the evaluation of individual Condi-

tions in an ActivatedRule.
ActivatedAction Records the execution of Actions in Activate-

dRule.
DirectLink Represents a direct link between the Acti-

vatedAction of an ActivatedRule and the Ac-
tivatedTrigger of a different ActivatedRule,
which is activated because of the previous
rule.

Table 3.3: This table provides descriptions of entities used in the web application.
Each entity is stored in a separate table in the database.

37

Chapter 4

Evaluation

In this chapter, we evaluate the Debugging Dashboard devel-
oped in Chapter 3, focusing on its effectiveness in identi-
fying the cause of conflicts in TAP rules. To evaluate, we
conducted a user study that compares the use of the dash-
board with and without the data filtering feature. In Sec-
tion 4.1, we postulate the hypotheses to be tested during the
study. In Section 4.2, we describe the study designed to test
the hypotheses, the procedure carried out during the study,
and the participant demographics. Both quantitative and
qualitative results are presented in Section 4.3. The chapter
concludes with the evaluation discussion in Section 4.4.

4.1 Hypotheses

To answer our research questions outlined in Chapter 1, we
postulate the following hypotheses to be tested during the
user study:

H1 The use of filtering and tracing relevant data in the
dashboard increases the accuracy of identifying the
causes of conflicts in TAP rules compared to not using
data filtering.

H1.1 Filtering and tracing relevant data in the dash-

38 4 Evaluation

board makes identifying the cause of conflicts in
TAP rules easier than not using data filtering.

H1.2 Filtering and tracing relevant data in the dash-
board reduces the time taken to identify the
causes of conflicts in TAP rules compared to not
using data filtering.

H2 The use of filtering and tracing relevant data in the
dashboard leads to higher confidence among users in
identifying the causes of conflicts in TAP rules com-
pared to not using data filtering.

H2.1 Filtering and tracing relevant data in the dash-
board improves users’ understanding of con-
flicting situations in TAP rules compared to not
using data filtering.

H3 Users are more satisfied in identifying the cause of
conflicts in TAP rules when filtering and tracing rele-
vant data in the dashboard than when not using data
filtering.

4.2 User Study

The user study evaluates the Debugging Dashboard by com-The user study
evaluates the impact

of filtering and
tracing relevant data

on debugging
aspects.

paring its use with filtering and tracing relevant data (the
Filter condition) and without data filtering (the Baseline con-
dition). The focus is on assessing the impact of filtering and
tracing relevant data on various aspects of debugging, in-
cluding accuracy, difficulty, speed, confidence, understand-
ing, and satisfaction, in line with the hypotheses outlined in
Section 4.1. This approach aims to gain insights into how
filtering and tracing relevant data influences the TAP de-
bugging process. We conducted a pilot study involving one
participant to prepare for the user study. This resulted in
minor design modifications for the main study, detailed in
Section 4.2.1. The pilot study participant did not participate
in the main study.

4.2 User Study 39

4.2.1 Study Design

A within-group study design was chosen for its effective- We chose a
within-group study
design to control for
individual differences
among participants
and enhance the
reliability of the
results.

ness in controlling for individual differences among partic-
ipants. This design allows each participant to experience
both conditions (Filter and Baseline) of the study. Doing so
reduces variability caused by differing skills, experiences,
or preferences that individual participants may have. This
approach enhances the reliability of the results, as compar-
isons are made within the same set of participants, giving
a clearer view of the impact of the data filtering feature on
their ability to debug TAP rule conflicts.

The study design involved four bug types in simulating The study design
involved four bug
types in simulating
common TAP rule
conflicts.

common TAP rule conflicts, as identified in Table 2.1 by
Coppers et al. [2022]. We selected action inconsistent, action
reversal, condition unsatisfiable, and infinite loop. These par-
ticular bugs were chosen because they illustrate a range of
issues in TAP systems, from logical inconsistencies to un-
solvable conditions, and their potential to express them us-
ing visualization.

The following eight debugging tasks were developed rep-
resenting each bug type under two dashboard conditions
(Filter and Baseline):

AIB Action Inconsistent using Baseline dashboard.

AIF Action Inconsistent using Filter dashboard.

ARB Action Reversal using Baseline dashboard.

ARF Action Reversal using Filter dashboard.

CUB Condition Unsatisfiable using Baseline dashboard.

CUF Condition Unsatisfiable using Filter dashboard.

ILB Infinite Loop using Baseline dashboard.

ILF Infinite Loop using Filter dashboard.

We created a set of conflicting rules for each task to repre-
sent the specific bug. To increase complexity and simulate

40 4 Evaluation

real-world scenarios, we included additional noise rules
alongside the main rule set for each task, resulting in 5–8
rules and 8–11 Device properties per task, aligning with the
study design by Coppers et al. [2020]. These rules were exe-The study used a set

of conflicting rules
with additional noise

rules executed in
random order.

cuted in random order within separate virtual smart homes
using the application to present each task in a realistic yet
non-trivial manner. However, the semantics and execu-
tion order of the rules for each bug were identical under
both dashboard conditions, differing only in room names
and devices used in the rules. This maintained an identi-
cal number of rules and Device properties, ensuring consis-
tent cognitive difficulty for each bug type while introduc-
ing syntactic differences. We used Latin square to counter-
balance the order of tasks presented to participants, miti-
gating any potential order effects. The study design mate-
rials can be found in Appendix A “User Study Design Ma-
terials”.

We created an instruction page to guide participants aboutAn instruction page
was created to

introduce each task
to the participants.

the task to be performed for each task. The task number
was displayed at the top of the page, followed by a table
listing the configured rules in the virtual smart home. This
table provided participants with an overview of the possi-
ble automation. Below the rules table, the task description
outlined what the smart home user expected based on the
rules, followed by a description of the unexpected situa-
tion. Participants were then instructed to identify the cause
of the issue using the dashboard, accessible via a Start but-
ton at the bottom of the page.

We conducted a pilot study with one participant (P0) atThe pilot study
resulted in minor

changes, including
standardizing rule

names, presenting
rules in ascending

order on the
instruction page, and

including task
descriptions at the

top of the dashboard
page.

our lab to prepare and refine the study design for the main
study. P0 did not participate in the main study. The feed-
back from the pilot study resulted in some minor changes.
Clarification was added on the instruction page by labeling
the Filter condition as ”With Filter” and the Baseline condi-
tion as ”Without Filter” to distinguish the available dash-
board types more clearly. The rule names were standard-
ized to ”Rule <rule number>,” with <rule number> repre-
senting a random number. Rules were presented on the in-
formation page in ascending order for clarity. Additionally,
to address the difficulty in remembering the issue and task
description while using the dashboard, the task description

4.2 User Study 41

was included at the top of the dashboard page, eliminating
the need for participants to memorize it.

Study Setup

The user study was conducted in two locations: nine par-
ticipants were in a quiet, closed room at our lab, while the
remaining seven were in a quiet, closed room at the princi-
pal investigator’s residence. In both locations, participants
were provided with a desk and a chair. They performed
the tasks on a 2020 M1 MacBook Air using a wired mouse.
Participants were only allowed to use the mouse to inter-
act with the dashboard for every task. The dashboard was
accessed via Google Chrome in full-screen mode, with the
MacBook’s screen resolution set to 1680 by 1050.

4.2.2 Procedure

The procedure for the user study involved several steps. The user study
involved several
steps, including
signing a consent
form, completing a
demographics
questionnaire, a
training task, and the
main study.

Initially, participants were required to sign a consent form.
Afterward, they completed a demographics questionnaire
to gather background information, including their smart
home, programming, and debugging experience. Next,
they completed a training task with four rules and six De-
vice properties. This task was designed to familiarize them
with TAP rules and the dashboard interface. Addition-
ally, participants were introduced to the Filter feature of
the dashboard. Once the dashboard’s interface components
were explained, the main study started. During the main
study, participants were asked to think aloud to provide in-
sight into their reasoning process. They could take breaks
between tasks but not during them.

In the main study, participants first read the information
page for each task, then clicked on the start button to access
the dashboard to identify the cause of the issue. Time taken
from starting the dashboard to informing the investigator
of task completion was recorded without imposing any
time limit. To evaluate the accuracy of the debugging dash-
board, participants filled out a response sheet after each

42 4 Evaluation

task. This sheet required them to indicate whether they
identified the issue’s cause and describe it. Furthermore,
they evaluated their confidence, understanding, difficulty,
and satisfaction on a 5-point Likert scale (Likert [1932]). For
additional insights, participants were asked to propose po-
tential solutions to the issues and describe their ideas.

After completing all tasks, participants were requestedIn the end,
participants filled out

the System
Causability Scale

and provided
feedback on their

overall experience
with the dashboard.

to fill out the System Causability Scale (Holzinger et al.
[2020]), an adaptation of the broad System Usability Scale
(Brooke [1996]). This scale is specifically designed to eval-
uate the effectiveness of (visual) explanations, particularly
in terms of their quality and clarity. Additionally, partici-
pants provided feedback on their overall experience with
the dashboard. The forms used in the user study can be
found in Appendix B “User Study Documents”.

During the study, participants’ screen and audio wereThe study recorded
the screen and audio

and logged mouse
events.

recorded using OBS1. Consent for recording was ob-
tained through the informed consent form. The record-
ings, stored anonymously, were deleted post-analysis.
Mouse events during dashboard usage were logged
and saved as CSV files via HTTP POST request to
http://server-url/save-mouse-log, an endpoint
used only for user studies. For data analysis, all collected
data was digitized into CSV files and loaded into Jupyter2

Notebooks. To analyze and visualize the data, we used
Python libraries such as Pandas3, SciPy4, Matplotlib5, and
Seaborn6.

4.2.3 Participants

We recruited sixteen participants (nine males, seven fe-
males) to complete our 8x8 Latin square design featuring
eight tasks, repeated twice. The participants ranged in age
from 24 to 60 years (mean = 35.31, median = 28, standard

1https://obsproject.com (last accessed on February 2, 2024)
2https://jupyter.org (last accessed on February 2, 2024)
3https://pandas.pydata.org (last accessed on February 2, 2024)
4https://scipy.org (last accessed on February 2, 2024)
5https://matplotlib.org (last accessed on February 2, 2024)
6https://seaborn.pydata.org (last accessed on February 2, 2024)

https://obsproject.com
https://jupyter.org
https://pandas.pydata.org
https://scipy.org
https://matplotlib.org
https://seaborn.pydata.org

4.2 User Study 43

Figure 4.1: Histogram represents the age distribution of
participants in the user study. The age range spans from
24 to 60 years, with a mean age of 35.31 years, a median age
of 28 years, and a standard deviation of 14.36 years.

deviation = 14.36). They came from diverse backgrounds,
including six from computer science, five from engineer-
ing, and one each from biology, rehabilitation engineer-
ing, floristry, design, and social work. Prior knowledge of Sixteen participants

with diverse
backgrounds and
programming
experience
completed the study,
with only five owning
smart home devices.

TAP, coding, or debugging was optional for participation.
Among the participants, only five owned smart home de-
vices, and three had encountered undesired situations with
their smart homes. Interestingly, one participant who did
not own a smart home shared an experience of their neigh-
bor being accidentally locked out while in the garden. Of
the sixteen participants, thirteen, excluding the florist, de-
signer, and social worker, had some programming experi-
ence from their studies or work. Six participants had over
five years of programming experience, three had three to
five years, and four had less than three years. Regard-
ing debugging experience, five participants had none, three
had less than a year, four had more than five years, two had
three to five years, and two had one to two years.

44 4 Evaluation

4.3 Results

In this section, we will present and discuss both quantita-
tive and qualitative results from our user study.

4.3.1 Quantitative Results

We analyzed the data from our user study to address our re-
search questions. The analysis assessed the significance of
data filtering in debugging accuracy, difficulty, speed, con-
fidence, understanding, and satisfaction.

Debugging Accuracy

We assessed participants’ accuracy in identifying the causeData filtering did not
improve identifying

debugging accuracy
in TAP rules,
rejecting H1.

of TAP rule conflicts in both Filter and Baseline conditions.
The analysis involved comparing the success rates between
these two conditions to address RQ1. We used the Shapiro-
Wilk test to determine the data’s distribution and found
that the success percentages were not normally distributed.
Consequently, we employed the Wilcoxon Signed-Rank
test, a non-parametric statistical method, for the signifi-
cance analysis. This test showed no significant difference
in accuracy between the Filter and Baseline conditions (W =
20.50, p = 0.8028), indicating that data filtering did not sig-
nificantly improve participants’ ability to identify the cause
of conflict in TAP rules correctly. The mean success rates
were 53.12% for Filter and 51.56% for Baseline. Based on
these findings, H1, which suggested that filtering and trac-
ing data improves accuracy in identifying conflicts, is re-
jected.

The analysis revealed no significant difference in accuracyA learning effect was
observed based on
the task order given
to participants, and
different bug types

had varying impacts
on debugging

accuracy.

between the Filter and Baseline conditions. However, a
learning effect was observed based on the task order given
to participants, as shown in Figure 4.2. This learning effect
was anticipated as participants’ familiarity with the dash-
board increased over multiple uses. Additionally, we noted
variations in accuracy across different bug types, as shown

4.3 Results 45

in Figure 4.3, a finding not previously explored in the ex-
isting literature. To investigate further, we conducted the
Friedman test, which demonstrated a significant impact of
bug type on debugging accuracy (χ2 = 11.19, p = 0.0107).
This suggests that the type of bug influences the success
rate in identifying conflicts. The detailed results of the post-
hoc pairwise comparison using the Wilcoxon Signed-Rank
test are presented in Table 4.1.

Bug Significance Mean Accuracy
Action Inconsistent A 62.50%
Action Reversal A 62.50%
Condition Unsatisfiable B 18.75%
Infinite Loop A 65.62%

Table 4.1: Significant differences in debugging accuracy per
bug. Rows only show significant bugs. Significantly differ-
ent bugs (p <= 0.05) are not connected by the same letter.
The means are rounded to two decimal places.

The post-hoc analysis results clearly indicate that the con- The condition
unsatisfiable bug
was the most difficult
to identify accurately,
but data filtering did
not affect accuracy
for specific bug
types.

dition unsatisfiable bug was significantly more challenging
for participants to accurately identify the cause of the is-
sue compared to other bugs. This raises the question of
how data filtering influences accuracy for each specific bug
type. To explore this, we also examined the significance
in accuracy based on the task type, grouping data for each
bug under both dashboard conditions (Filter and Baseline).
The Friedman test revealed a significant impact of task type
on accuracy (χ2 = 24.26, p = 0.0010). The post-hoc pair-
wise comparisons of tasks using the Wilcoxon Signed-Rank
test, detailed in Table 4.2, showed that tasks involving the
condition unsatisfiable bug were significantly more challeng-
ing for participants to identify the cause compared to other
tasks accurately. However, the presence of data filtering
did not significantly affect accuracy for each specific bug
type, indicating that while certain types of bugs inherently
present more difficulty, the debugging method (with or
without data filtering) does not impact accuracy in these
cases.

46 4 Evaluation

Figure 4.2: This line graph depicts the learning effect observed among participants
during the user study. The x-axis represents the order of tasks performed by the
participant. The y-axis represents the average accuracy percentage (top), average
time spent in seconds (center), and average Likert scale ratings for confidence, sat-
isfaction, understanding, and difficulty (bottom).

Debugging Difficulty

The analysis for RQ1.1 involved comparing participants’
self-reported difficulty levels on a 5-point Likert scale in
both Filter and Baseline conditions. The Shapiro-Wilk test

4.3 Results 47

Figure 4.3: Average debugging accuracy percentage for
Overall, Filter, and Baseline conditions per bug. The four
bug types are shown on the x-axis, and the y-axis shows
the average debugging accuracy percentage.

Task Significance Mean Accuracy
AIB A 68.75%
AIF A 56.25%
ARB A 56.25%
ARF A 68.75%
CUB B 18.75%
CUF B 18.75%
ILB A 62.50%
ILF A 68.75%

Table 4.2: Significant differences in debugging accuracy per
task. Rows only show significant tasks. Significantly differ-
ent tasks (p <= 0.05) are not connected by the same letter.
The means are rounded to two decimal places.

48 4 Evaluation

Figure 4.4: Distribution of debugging difficulty rating per task.

Figure 4.5: Average debugging difficulty for Overall, Fil-
ter, and Baseline conditions per bug. The four bug types are
shown on the x-axis, and the y-axis shows the average de-
bugging difficulty ratings.

indicated a non-normal distribution of difficulty levels.Data filtering does
not significantly

impact the difficulty
of identifying the

cause of conflicts,
rejecting H1.1.

Thus, the Wilcoxon Signed-Rank test was used for signif-
icance testing. The results showed no significant difference
in difficulty levels between the two conditions (W = 38.00,
p = 0.2050). The average difficulty levels were 2.53 for Filter
and 2.66 for Baseline, suggesting that data filtering does not
significantly impact the difficulty of identifying the cause
of conflicts, leading to the rejection of H1.1.

4.3 Results 49

The analysis also examined the influence of different bug Bug type significantly
affects difficulty
levels, with condition
unsatisfiable being
less difficult to
identify than action
inconsistent and
infinite loop bugs.

types on the perceived difficulty of identifying conflict
causes. A Friedman test, assessing the impact of bug type
on difficulty levels, showed significant results (χ2 = 16.07,
p = 0.0011). This finding indicates that the type of bug sig-
nificantly affects participants’ difficulty levels. According
to the post-hoc analysis using the Wilcoxon Signed-Rank
test, detailed in Table 4.3, participants found the condition
unsatisfiable bug to be significantly less difficult to identify
compared to the action inconsistent and infinite loop bugs.

Bug Significance Mean Std. Dev.
Action Inconsistent A 2.91 1.02
Condition Unsatisfiable B 2.19 0.78
Infinite Loop A 2.94 0.95

Table 4.3: Significant differences in debugging difficulty
per bug. Rows only show significant bugs. Significantly
different bugs (p <= 0.05) are not connected by the same
letter. The means and standard deviations are rounded to
two decimal places.

We further explored the impact of task type on difficulty The result indicated
variations in difficulty
across different
tasks, with specific
tasks being more
challenging than
others.

levels, categorizing data for each bug under the Filter and
Baseline conditions. A significant impact of task type on
difficulty levels was identified through the Friedman test
(χ2 = 22.73, p = 0.0019), indicating variations in difficulty
across different tasks. Post-hoc pairwise comparisons using
the Wilcoxon Signed-Rank test, detailed in Table 4.4, indi-
cated that while specific tasks were more challenging com-
pared to other tasks, the presence of data filtering did not
significantly affect difficulty levels for specific bug types,
suggesting that the nature of the task influences difficulty
more than the debugging method (with or without data fil-
tering) used.

Debugging Speed

The analysis for RQ1.2 focused on comparing debugging
time in both Filter and Baseline conditions to assess the im-
pact of data filtering on debugging speed. The Shapiro-

50 4 Evaluation

Task Significance Mean Std. Dev.
AIB A 2.94 0.85
AIF A 2.88 1.20
ARF B 2.25 0.77
CUB B 2.25 0.77
CUF B 2.12 0.81
ILB A 3.00 0.97
ILF A 2.88 0.96

Table 4.4: Significant differences in debugging difficulty
per task. Rows only show significant tasks. Significantly
different tasks (p <= 0.05) are not connected by the same
letter. The means and standard deviations are rounded to
two decimal places.

Wilk test confirmed a non-normal distribution of debug-
ging times. Thus, we used the Wilcoxon Signed-Rank testNo significant

difference was found
in debugging time

between Filter and
Baseline conditions,

leading to the
rejection of H1.2.

for significance testing. The results showed no significant
difference in time taken between Filter and Baseline condi-
tions (W = 48.00, p = 0.4955). The average debugging
times were 195.39 seconds for Filter and 188.28 seconds
for Baseline, indicating that data filtering does not signifi-
cantly affect debugging speed, thus leading to the rejection
of H1.2.

The analysis additionally explored the impact of bug typesBug type influenced
debugging times
significantly, with

infinite loop taking
longer and condition
unsatisfiable taking

less time.

on debugging speed using a Friedman test. Significant re-
sults (χ2 = 11.48, p = 0.0094) indicated that the type of bug
significantly influenced participants’ debugging times. The
post-hoc analysis with the Wilcoxon Signed-Rank test, as
detailed in Table 4.5, showed that participants took signif-
icantly more time to debug the infinite loop bug than other
bugs. Conversely, they were significantly faster at debug-
ging the condition unsatisfiable bug than the action inconsis-
tent bug.

We further examined the influence of task type on debug-Task type has a
significant impact on

debugging speed,
while the use of data

filtering did not
significantly affect the
debugging speed for

specific bug types.

ging speed, considering both the Filter and Baseline condi-
tions. The Friedman test showed a significant impact of
task type on debugging speed (χ2 = 18.89, p = 0.0085).
The post-hoc pairwise comparisons, conducted using the
Wilcoxon Signed-Rank test and detailed in Table 4.6, sug-

4.3 Results 51

Figure 4.6: Average debugging speed for Overall, Filter,
and Baseline conditions per bug. The four bug types are
shown on the x-axis, and the y-axis shows the average de-
bugging difficulty ratings.

gested that while specific tasks showed significant differ-
ences in debugging time, the use of data filtering did not
significantly impact the speed for specific bug types. This
finding implies that the nature of the task plays a more cru-
cial role in influencing debugging speed than the debug-
ging method (with or without data filtering) itself.

User Confidence

To evaluate participants’ confidence in identifying the No significant
difference was found
in user confidence
levels in identifying
TAP rule conflicts
between the Filter
and Baseline
conditions, rejecting
H2.

causes of TAP rule conflicts, we compared their self-
reported confidence levels using a 5-point Likert scale in
both Filter and Baseline conditions. This analysis aimed
to address RQ2. The Shapiro-Wilk test indicated a non-
normal distribution, leading us to use the Wilcoxon Signed-
Rank test for significance testing. The analysis showed no
significant difference in confidence levels between the con-
ditions (W = 51.00, p = 0.6057), with mean confidence lev-

52 4 Evaluation

Bug Significance Mean Std. Dev.
Action Inconsistent A 187.44 120.60
Action Reversal A B 161.47 102.82
Condition Unsatisfiable B 137.19 78.47
Infinite Loop C 281.25 160.92

Table 4.5: Significant differences in debugging speed per
bug. Rows only show significant bugs. Significantly dif-
ferent bugs (p <= 0.05) are not connected by the same let-
ter. The means and standard deviations are rounded to two
decimal places.

Task Significance Mean Std. Dev.
AIB A D 193.75 99.40
ARB A B 142.12 100.92
ARF A B D 180.81 104.24
CUB B 126.06 65.42
CUF A B 148.31 90.45
ILB C 291.19 163.49
ILF C D 273.31 163.03

Table 4.6: Significant differences in debugging speed per
task. Rows only show significant tasks. Significantly dif-
ferent tasks (p <= 0.05) are not connected by the same let-
ter. The means and standard deviations are rounded to two
decimal places.

Figure 4.7: Distribution of debugging difficulty rating per task.

els at 4.02 for Filter and 3.95 for Baseline. These findings sug-
gest that data filtering does not significantly impact user
confidence in identifying conflicts, leading to rejecting H2.

4.3 Results 53

Figure 4.8: Average user confidence for Overall, Filter, and
Baseline conditions per bug. The four bug types are shown
on the x-axis, and the y-axis shows the average debugging
difficulty ratings.

To understand further the influence of bug types on partic- We found that the
type of bug
significantly affects
participants’
confidence in
identifying the cause
of conflicts, with the
infinite loop bug
resulting in lower
confidence levels.

ipants’ confidence levels, we analyzed the data, as depicted
in Figure 4.8. A Friedman test was conducted to assess the
impact of bug type on confidence levels, which showed sig-
nificant results (χ2 = 9.98, p = 0.0188). The result indicates
that the type of bug significantly affects participants’ con-
fidence in identifying the cause of conflicts. The post-hoc
analysis using the Wilcoxon Signed-Rank test, as detailed in
Table 4.7, showed participants exhibited significantly lower
confidence when identifying the cause of the infinite loop
bug. We also investigated the influence of task type on con-
fidence levels, grouping data for each bug under both Filter
and Baseline conditions. However, the Friedman test indi-
cated no significant impact of task type on confidence lev-
els (χ2 = 12.40, p = 0.0882), suggesting that the type of task
(with or without data filtering) did not significantly affect
participants’ confidence levels.

54 4 Evaluation

Bug Significance Mean Std. Dev.
Action Reversal A 4.19 0.78
Condition Unsatisfiable A 4.12 0.83
Infinite Loop B 3.72 0.73

Table 4.7: Significant differences in user confidence per
bug. Rows only show significant bugs. Significantly dif-
ferent bugs (p <= 0.05) are not connected by the same let-
ter. The means and standard deviations are rounded to two
decimal places.

Figure 4.9: Distribution of conflict understanding rating per task.

Conflict Understanding

In evaluating participants’ understanding of TAP rule con-Data filtering does
not significantly

affect understanding
TAP rule conflicts,

rejecting H2.1.

flicts, we compared their self-reported understanding on a
5-point Likert scale in both Filter and Baseline conditions.
The analysis, aimed at addressing RQ2.1, used the Shapiro-
Wilk test to confirm non-normal distribution and employed
the Wilcoxon Signed-Rank test for significance testing. The
result revealed no significant difference in understanding
levels between the two conditions (W = 31.00, p = 0.5296),
with mean understanding levels of 3.75 for Filter and 3.84
for Baseline. This outcome indicates that data filtering does
not significantly affect understanding TAP rule conflicts.
Consequently, H2.1 is rejected based on these results.

We further analyzed the influence of bug types on partici-
pants’ understanding levels, as shown in Figure 4.10. The
Friedman test indicated a significant impact of bug type
on understanding levels (χ2 = 7.98, p = 0.0465), sug-
gesting bug type significantly affects understanding of TAP

4.3 Results 55

Figure 4.10: Average conflict understanding for Overall,
Filter, and Baseline conditions per bug. The four bug types
are shown on the x-axis, and the y-axis shows the average
debugging difficulty ratings.

rule conflicts. The post-hoc analysis, using the Wilcoxon Bug type significantly
affects the
understanding of
TAP rule conflicts,
with condition
unsatisfiable bug
having a better
understanding than
infinite loop bug.

Signed-Rank test and detailed in Table 4.8, revealed a sig-
nificantly better understanding of the condition unsatisfiable
bug compared to the infinite loop bug. Further investiga-
tion into the influence of task type on understanding lev-
els, however, showed no significant impact (χ2 = 11.82,
p = 0.1067), indicating that the method of debugging (with
or without data filtering) did not significantly affect under-
standing levels.

Bug Significance Mean Std. Dev.
Condition Unsatisfiable A 4.12 0.76
Infinite Loop B 3.72 0.84

Table 4.8: Significant differences in conflict understanding
per bug. Rows only show significant bugs. Significantly
different bugs (p <= 0.05) are not connected by the same
letter. The means and standard deviations are rounded to
two decimal places.

56 4 Evaluation

Figure 4.11: Distribution of user satisfaction rating per task.

User Satisfaction

To address RQ3, we analyzed participants’ self-reportedData filtering does
not significantly

impact satisfaction in
identifying the cause
of conflicts, rejecting

H3.

satisfaction levels using a 5-point Likert scale in both Filter
and Baseline conditions. We found that the satisfaction lev-
els were not normally distributed using the Shapiro-Wilk
test. We used the Wilcoxon Signed-Rank test for signif-
icance testing. Our analysis revealed no significant dif-
ference in satisfaction levels between the two conditions
(W = 33.50, p = 0.3981). The mean satisfaction levels were
3.67 for Filter and 3.56 for Baseline. These findings suggest
that data filtering does not significantly impact satisfaction
in identifying the cause of conflicts, leading to the rejection
of H3.

The analysis further investigated the impact of bug type onBug type significantly
affects participants’

satisfaction in
identifying conflict

causes, and
participants were
significantly more

satisfied when
identifying the cause

of the condition
unsatisfiable bug

compared to other
bug types.

satisfaction levels. The mean satisfaction levels based on
bug types are shown in Figure 4.12. A Friedman test as-
sessing this impact showed significant results (χ2 = 14.18,
p = 0.0027), suggesting that bug type significantly af-
fects participants’ satisfaction in identifying conflict causes.
Post-hoc analysis using the Wilcoxon Signed-Rank test, de-
tailed in Table 4.9, revealed that participants were signifi-
cantly more satisfied when identifying the cause of the con-
dition unsatisfiable bug compared to other bug types. The
results highlight the influence of specific bug characteris-
tics on user satisfaction during the debugging process.

We further explored the influence of task type on satisfac-
tion levels by grouping data for each bug under both the
Filter and Baseline conditions. The Friedman test revealed a
significant impact of task type on satisfaction levels (χ2 =

4.3 Results 57

Figure 4.12: Average user satisfaction for Overall, Filter,
and Baseline conditions per bug. The four bug types are
shown on the x-axis, and the y-axis shows the average de-
bugging difficulty ratings.

17.64, p = 0.0137), indicating that specific tasks were signif- The influence of task
type on satisfaction
levels indicated a
significant impact,
but data filtering did
not significantly affect
user satisfaction for
each bug type.

icantly more satisfactory for participants in identifying the
cause compared to others. However, the post-hoc pairwise
comparisons of tasks using the Wilcoxon Signed-Rank test
show that data filtering did not significantly affect user sat-
isfaction for each specific bug type, as detailed in Table 4.10.
The analysis suggests that while the nature of the task in-
fluences satisfaction, data filtering does not have a consid-
erable effect on this aspect.

System Causability Scale

We used the System Causability Scale (SCS) (Holzinger SCS indicated that
the Filter dashboard
had a better quality
of explanation for
TAP rule conflicts
than the Baseline
dashboard.

et al. [2020]) to evaluate the quality of both the Filter and
Baseline dashboards in explaining the causes of TAP rule
conflicts. The Filter dashboard scored 0.79, while the Base-
line dashboard scored 0.72. The rating distribution was
normal, as confirmed by the Shapiro-Wilk test. A Paired

58 4 Evaluation

Bug Significance Mean Std. Dev.
Action Inconsistent A 3.22 1.10
Condition Unsatisfiable B 4.00 0.80
Infinite Loop A 3.56 0.62

Table 4.9: Significant differences in user satisfaction per
bug. Rows only show significant bugs. Significantly dif-
ferent bugs (p <= 0.05) are not connected by the same let-
ter. The means and standard deviations are rounded to two
decimal places.

Task Significance Mean Std. Dev.
AIB C D 3.31 0.70
AIF D 3.12 1.41
ARF A B C 3.81 0.91
CUB B 3.94 0.68
CUF A B 4.06 0.93
ILB A C D 3.44 0.73

Table 4.10: Significant differences in user satisfaction per
task. Rows only show significant tasks. Significantly dif-
ferent tasks (p <= 0.05) are not connected by the same let-
ter. The means and standard deviations are rounded to two
decimal places.

t-test showed a significant difference between the Filter
(M = 3.90, SD = 0.60); with t(15) = −5.06, p < 0.0001
and the Baseline (M = 3.61, SD = 0.55). The statistically
significantly higher rating for the Filter dashboard than the
Baseline dashboard indicates that the participants found the
quality of explanation on the Filter dashboard better than
the Baseline version.

The analysis of the SCS ratings for each question, as de-
tailed in Table 4.11, showed that the ratings were not
normally distributed, confirmed by the Shapiro-Wilk test.
Therefore, the Wilcoxon Signed-Rank test was used for sig-
nificance testing. The results indicated that participants
rated the Filter dashboard higher than the Baseline dash-
board for the statements ”I could change the level of detail on
demand” (W = 0.0, p = 0.0008) and ”I did not need more

4.3 Results 59

Question Baseline Rating Filter Rating
01. Factors in data 3.94 4.06
02. Understood 4.25 4.13
03. Change detail level 2.25 4.19
04. Don’t Need support 3.50 3.63
05. Understanding causality 3.94 4.25
06. Use with knowledge 3.81 3.81
07. No inconsistencies 4.06 4.18
08. Learn to understand 2.94 3.25
09. Don’t Need references 3.25 3.69
10. Efficient 4.13 4.13
SCS =

∑
iRatingi/50 0.72 0.79

Table 4.11: The table reports the System Causability Scale
(SCS) ratings for Baseline and Filter versions of the dash-
board.

references in the explanations” (W = 0.0, p = 0.0384).

4.3.2 Qualitative Results

In this section, we present the qualitative results of our
study. We discuss participant feedback on the Filter dash-
board and other dashboard components, providing in-
sights into user experiences and perceptions of the dash-
board’s usability and effectiveness in debugging TAP rule
conflicts.

Filter Feature

Out of sixteen participants, six found the Filter feature par- Six participants
found the Filter
helpful for clarifying
causality and
simplifying the
debugging process.

ticularly useful. P01 and P10 appreciated its ability to clar-
ify causality and simplify the debugging process, with P01
stating it ”helped to determine causality” and P10 stating it
”made it easier to find the reason.” P02 and P16 valued the
feature for its data-filtering capability, with P02 liking how
it ”filters out excess event information” and P16 finding the re-
duced information ”convenient.” P08 praised the Filter fea-

60 4 Evaluation

ture for significantly easing problem identification, describ-
ing it as ”very easy to identify the problem & very useful.”

Surprisingly, two participants (P06 and P07) chose not toTwo participants did
not use the Filter

feature, stating that
the Unfiltered View
provided sufficient

information for them.

use the Filter feature. P06, with an engineering background,
felt that the Unfiltered View of the dashboard provided suffi-
cient information without the need for filtering data. They
stated, ”the information on the dashboard is enough for me, I
don’t need to see isolated data...I didn’t see any need for it.” P06
successfully solved 3 out of 4 tasks in the Baseline condition
and 2 out of 4 in the Filter condition. Similarly, P07, from a
computer science background, believed they could under-
stand the rules without the filter feature, saying, ”I was able
to understand the rules without filter, so I didn’t need it.” P07
accurately solved 3 out of 4 tasks in both Baseline and Filter
conditions.

Participant P09, a computer science student, used the FilterTwo participants
used the Filter

feature less and yet
solved tasks
successfully,

indicating that the
Unfiltered View was

sufficient for
debugging.

feature for only one task (ILF) out of the four tasks in the
Filter condition. In a post-study interview, they said, ”I uti-
lized in the beginning as everything was new. Once I got used to
the interface, I was able to filter out without filter feature.” P09
successfully solved three out of the four tasks in both Base-
line and Filter conditions. Similarly, participant P11, a bi-
ologist who used the Filter feature for only two tasks (ARF
and ILF) in the Filter condition, remarked, ”The filter was
not really useful for me. Seeing it in a timeline was enough.”
The feedback suggests that for P11, the standard Unfiltered
View in the Filter condition provided sufficient information
for debugging. Notably, P11 successfully solved three out
of four tasks in the Baseline condition and all four tasks in
the Filter condition, indicating a high level of proficiency in
identifying the cause of TAP rule conflicts regardless of the
dashboard version.

Rule Timeline

In the Rule Timeline of the dashboard, which primarily fo-Participants had
mixed opinions on
the Rule Timeline

aspect of the
dashboard, with

some finding it
helpful and others

confusing.

cused on the causal dependencies of TAP rules, participants
expressed diverse opinions. P04, P05, P06, P10, and P15
found the Rule Timeline aspect of the dashboard to be par-

4.3 Results 61

ticularly useful, with P06 specifically appreciating the vi-
sual representation of causal dependencies between trig-
gers and actions. However, P03 expressed a contrasting
view, finding the Rule Timeline aspect confusing.

Device Timeline

The Device Timeline feature of the dashboard received var- Participants had
mixed feedback on
the Device Timeline
feature; some found
it helpful, while one
did not use it.

ied feedback from participants. Many found it helpful, with
comments focusing on its clarity in understanding device
status changes and their triggers. P03, P10, P11, P12, and
P14 all mentioned using the device status bars to gain in-
sights into the smart home’s functioning. P10 specifically
noted how it helped in identifying triggers. However, P04
reported not using the Device Timeline of the dashboard.

Flash Icon

The flash icon feature of the dashboard was well-received The flash icon
clarified manual
versus automatic
event triggers and
was found helpful by
participants.

for its ability to clarify whether events were triggered man-
ually or automatically. Participants P05 and P15 appreci-
ated the information the icon provided about the nature of
events. Participant P09 found it particularly helpful, stating
that flash icon ”helped me identify if an event was manually or
automatically triggered. Logically, you can figure it out, but vi-
sually, it helps a lot. I would have given up in some cases if not
for that.”

Arrows

The arrows in the dashboard, which illustrate the chain of Participants found
the arrows helpful in
identifying the
sequence of events
and understanding
causality in TAP
rules.

events triggered by TAP rules, received positive feedback
for its use in the debugging process. Participant P09 specif-
ically mentioned the usefulness of these arrows in quickly
identifying the sequence of triggered events. This feature
allowed for an easier and more efficient understanding of
the causality within the smart home system. Similarly, par-
ticipant P14 appreciated the arrows for clearly showing the

62 4 Evaluation

chain of triggering events, enhancing their ability to follow
the flow and impact of actions within the system.

Condition Status Indicator

The Condition Status Indicator of the dashboard was appre-Participants
appreciated the

usefulness of the
Condition Status

Indicator for
clarifying the status

of conditions and
simplifying the

debugging process.

ciated by participants for its utility in clarifying the status
of conditions within TAP rules. Participant P11 valued the
ability to quickly identify which conditions were met and
which were not, highlighting the feature’s role in simplify-
ing the debugging process. Similarly, Participant P14 found
the Condition Status Indicator particularly helpful, providing
clear and direct feedback on the state of rule conditions.

4.4 Discussion

Our research has revealed that the Filter version of the dash-The Filter version of
the dashboard had
better explanation

quality but no
significant difference

in debugging aspects
compared to the

Baseline version.

board received a significantly higher rating on the System
Causability Scale (SCS) than the Baseline version. This im-
plies that the Filter version provided a better quality of
explanation compared to the Baseline version. However,
no significant difference was observed between the two
versions regarding debugging accuracy, difficulty, speed,
confidence, understanding, and satisfaction. This indi-
cates that even though users preferred the Filter version, it
did not provide any additional capabilities or insights that
could improve the debugging of TAP conflicts. The feed-
back from participants P06, P07, P09, and P11 also sup-
ported this. Figure 4.13 presents further analysis of the
amount of time spent by users on the Filtered View during
the Filter condition. The data confirms that most partici-
pants spent little time on the Filtered View and mostly used
the dashboard without filtering data.

Additionally, we observed a learning curve in terms of
debugging accuracy, difficulty, speed, confidence, under-
standing, and satisfaction associated with the dashboard,
as shown in Figure 4.2. This suggests that while partici-
pants appreciated the potential of the Filter version, within

4.4 Discussion 63

Figure 4.13: Time spent on Filtered View versus Unfiltered View during the Filter
condition task per participant. The x-axis shows each participant. The y-axis shows
the time spent in seconds.

the confines of the study, they might not have fully mas-
tered its use, leading to similar results as the Baseline ver-
sion.

Although our study showed no significant differences in The study showed
significant
differences in
debugging based on
bug type.

debugging between the Baseline and Filter versions, it high-
lighted significant differences in outcomes based on bug
types. This discovery highlights the critical impact of a
bug’s nature on the debugging process, suggesting that dif-
ferent types of bugs demand varied cognitive abilities for
effective conflict resolution. This finding is particularly in-
sightful as it brings to light an aspect of TAP bugs, to the
best of our knowledge, not explored in existing research,
opening a new direction for understanding the complexi-
ties inherent in debugging different bug types.

After analyzing the results based on bug type, it was found Participants were
accurate with infinite
loop but less so with
condition
unsatisfiable;
however, they were
confident and
satisfied in identifying
the latter despite it
being more complex.

that participants were most accurate in identifying the
cause of the infinite loop bug and least accurate in identi-
fying the cause of the condition unsatisfiable bug. Surpris-
ingly, participants reported higher confidence, satisfaction,
and understanding and less difficulty identifying the cause
of the condition unsatisfiable bug compared to the infinite loop
bug. Additionally, participants were fastest in completing

64 4 Evaluation

condition unsatisfiable bug tasks and slowest in completing
the infinite loop task. The results indicate that even though
some bugs in TAP rule systems are inherently more com-
plex to solve, this complexity does not necessarily reduce
the confidence or satisfaction of the participants working
to resolve these issues. This means that participants may
feel confident and satisfied in their approach to solving a
complex problem, regardless of the actual difficulty of the
problem itself.

65

Chapter 5

Summary and Future
Work

To conclude this thesis, we will summarize our research
and contributions to smart home debugging. Additionally,
we will discuss the potential limitations of our work and
suggest directions for future research to build upon our
findings.

5.1 Summary and Contributions

Our thesis investigated the potential of trace-based debug- The thesis explored
trace-based
debugging for
resolving conflicting
TAP rules.

ging to debug conflicting TAP rules. To begin with, we
conducted a comprehensive review of previous research in
this area, including the evolution of TAP. Subsequently, we
examined various undesirable conflicts in TAP rules, their
types, and definitions and explored different solutions pro-
posed in existing research using static and dynamic analy-
sis approaches.

Our work focused on developing and evaluating a visual We developed and
evaluated a visual
trace debugging
dashboard to identify
TAP rule conflicts.

trace debugging dashboard that helps identify the root
causes of conflicts in TAP rules. We provided an overview
of the web application incorporating the dashboard. Then,
we discussed the Debugging Dashboard’s interface, design

66 5 Summary and Future Work

choices, and the application and dashboard implementa-
tion in detail. We evaluated two versions of the dashboard:
the Baseline version without data filtering feature and the
Filter version with data filtering feature.

The evaluation involved a user study with 16 participants,The study found no
significant

differences between
Baseline and Filter

versions despite
higher SCS ratings

for the Filter version.

assessing the dashboard’s impact on various aspects of de-
bugging, such as accuracy, difficulty, speed, confidence, un-
derstanding, and satisfaction. Interestingly, despite higher
System Causability Scale ratings for the Filter version, no
significant differences were observed between the Baseline
and Filter versions across debugging parameters. This re-
sult suggests that while users appreciated the potential of
the Filter version, they did not fully utilize its capabilities
within the study’s context.

One of the key findings of the study was that user perfor-The study suggests
that different bugs

require different
cognitive strategies

for resolution,
indicating a need for

further research.

mance varied significantly depending on the type of bug
encountered, indicating that different bugs require differ-
ent cognitive strategies for resolution. This insight opens
new avenues for future research, particularly in enhancing
user interaction with debugging tools and developing more
effective approaches for handling diverse bug types in TAP
systems.

5.2 Limitations and Future Work

This thesis provides an evaluation of a visual debugging
dashboard for TAP rules. However, the study had some
limitations that suggest potential opportunities for future
research.

One of the limitations of the study was that while the Fil-Participants
underutilized the

Filter feature,
highlighting a need

for more intuitive and
engaging ways to

present filtered data.

ter feature was innovative, not all participants utilized it
fully. Future development could focus on making this fea-
ture more intuitive and engaging. Investigating different
ways to present filtered data could significantly enhance in-
teraction and understanding.

Another limitation was that the study focused only on four
bug types. Our study revealed significant differences in

5.2 Limitations and Future Work 67

debugging performance based on the type of bug encoun- Further research on
diverse TAP bugs
could reveal
significant
differences.

tered. Future research could broaden this scope by incor-
porating a diverse array of bugs. This expansion could in-
volve simulations of complex smart home environments,
including more complex scenarios that reflect real-world
applications.

Moreover, the study’s participant pool was relatively small Future studies can
involve a large
participant pool with
various backgrounds.

and might not represent the diverse demographic of TAP
system users. Future studies could target a wider audience,
including users from various expertise backgrounds.

Lastly, the constrained interaction time with the dashboard Extending interaction
time and training
sessions in
subsequent studies
could provide richer
data on long-term
user engagement
and learning curves
for the dashboard.

in this study might have prevented participants from fully
adapting to its features. Subsequent studies could extend
these interaction periods or include detailed training ses-
sions. Such an approach could use longitudinal studies or
interactive workshops, giving users ample time to famil-
iarize themselves with the dashboard’s functionalities and
providing richer data on long-term user engagement and
learning curves.

Each of these suggestions presents unique challenges but
also offers the potential for significant advancements in un-
derstanding and improving user interactions with TAP sys-
tems and their debugging processes.

69

Appendix A

User Study Design
Materials

Table A.1 shows an 8x8 Latin square design, replicated
twice, to assign tasks to all 16 participants of our user study.

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8
ILB ILF AIB ARF CUB ARB CUF AIF
ILF ARF ILB ARB AIB AIF CUB CUF
ARF ARB ILF AIF ILB CUF AIB CUB
ARB AIF ARF CUF ILF CUB ILB AIB
AIF CUF ARB CUB ARF AIB ILF ILB
CUF CUB AIF AIB ARB ILB ARF ILF
CUB AIB CUF ILB AIF ILF ARB ARF
AIB ILB CUB ILF CUF ARF AIF ARB

Table A.1: An 8x8 Latin square illustrating the balanced
distribution of tasks.

Figures A.1, A.2, A.3, and A.4 present the rule sets designed
for the four bug types used in our user study. Each bug
type includes two sets of rules, one each for Baseline and
Filter tasks.

Figures A.5 and A.6 show the instruction page for Baseline
and Filter tasks, respectively.

70 A User Study Design Materials

Figure A.1: Rule sets for Action Inconsistent bug. Set 1 is used for the Baseline version
and Set 2 for Filter version of the dashboard. Conflicting rules are highlighted.

71

Figure A.2: Rule sets for Action Reversal bug. Set 1 is used for the Baseline version
and Set 2 for Filter version of the dashboard. Conflicting rules are highlighted.

72 A User Study Design Materials

Figure A.3: Rule sets for Condition Unsatisfiable bug. Set 1 is used for the Baseline
version and Set 2 for Filter version of the dashboard. Conflicting rules are high-
lighted.

73

Figure A.4: Rule sets for Infinite Loop bug. Set 1 is used for the Baseline version and
Set 2 for Filter version of the dashboard. Conflicting rules are highlighted.

74 A User Study Design Materials

Figure A.5: Study Instruction Page for Baseline dashboard task.

Figure A.6: Study Instruction Page for Filter dashboard task.

75

Appendix B

User Study Documents

We present the documents used during the user study. Fig-
ure B.1 shows the informed consent form signed by each
participant before the start of the user study. Figures B.2
and B.3 show the demographics survey form completed by
each participant before the user study. Figure B.4 shows the
feedback form filled out by the participants after complet-
ing each task. Figures B.5 and B.6 show the System Caus-
ability Scale questions for Baseline and Filter dashboards, re-
spectively. Figure B.7 shows the feedback form filled out by
the participants at the end of the user study.

76 B User Study Documents

Informed Consent Form
Visual Trace Debugging of Smart Home Rules

Principal investigator: Amit Kumar Shaw
Email: amit.shaw@rwth-aachen.de

Advisor: Adrian Wagner

Purpose: The goal of this survey is to evaluate solutions suitable for debugging rules in smart
homes through a series of questions.

Procedure: Participation in this survey involves observing a series of events and situations created
with the help of visual elements and answering a number of questions based on these situations. The
investigator will present certain events to the participant and a short interview will follow.

Questions asked and information received throughout the interview process will be logged. All
information will be confidential. (See ‘Confidentiality’ below for details.)

Risks/Discomfort: The survey is expected to last no longer than 60-80 minutes. If you become
fatigued during the course of your participation in the survey feel free to take as many breaks as
necessary during the allotted timeframe. Should the completion of the task become distressing to
you, it will be terminated immediately.

Confidentiality: All information collected during the study will be kept strictly confidential.
Results will be aggregated, and more specific information will be pseudonymized. After evaluation
we will delete all audio and screen recordings of the study session. If you agree to participate in this
survey, please sign your name below.

Addendums: Participation in this study is voluntary. You are free to withdraw or discontinue the
participation. Participation in this study will involve no cost to you and you will be given
compensation in form of sweets.

☐ I have read and understood the information on this form.
☐ I have had the information on this form explained to me.
☐ I grant permission to the researcher to audio tape me as part of this research.
☐ I grant permission to the researcher to record the screen as part of this research.

Participant’s Name Participant’s Signature Date

Principal Investigator Date

Figure B.1: Informed Consent Form.

77

Visual Trace Debugging of Smart Home Rules

Our focus in this study is on debugging smart home rules using visual elements. So, in this study,
we explore whether visual representations of smart home rules can help in understanding and
troubleshooting unexpected scenarios. The scenarios are created using Trigger-action programming
(TAP) rules. TAP rules are of the following form: “IF [trigger] WHILE [conditions] THEN
[action]”.

During this study, you will be presented with visual models depicting a few rule-based scenarios.
Your task is to interact with and analyze the presented scenario and answer a few questions related
to the scenario.

DEMOGRAPHICS

1. To which gender identity do you most identify?

2. Your age:

3. Your Profession:

4. Do you own any smart home devices?
☐ Yes
☐ No

(Answer only if pervious answer is yes)
5. Did you configure your smart home devices?
☐ Yes
☐ No

6. How often do you configure your smart home devices?
☐ Several times a week ☐ Weekly
☐ Several times a month ☐ Monthly
☐ Several times a year ☐ Yearly
☐ Almost never ☐ Never

7. When you configure your smart home devices with which applications do you come in contact?
☐ Amazon Alexa
☐ Google Nest/Home
☐ Philips Hue
☐ Apple HomeKit
☐ Others:

Figure B.2: Demographics survey form (1).

78 B User Study Documents

8. Have you ever experienced unexpected or undesired outcomes from smart home configuration?
☐ Yes
☐ No
If yes, please describe it briefly:

9. Do you have any experience in programming?
☐ Yes
☐ No
If yes, please describe it briefly:

10. For how long have you been programming?
☐ Less than 1 year
☐ 1-2 years
☐ 3-5 years
☐ More than 5 years

11. Do you have any experience in debugging?
☐ Yes
☐ No
If yes, please describe it briefly:

12. For how long have you been debugging?
☐ Less than 1 year
☐ 1-2 years
☐ 3-5 years
☐ More than 5 years

13. How often do you engage in debugging activities?
☐ Several times a week ☐ Weekly
☐ Several times a month ☐ Monthly
☐ Several times a year ☐ Yearly
☐ Almost never ☐ Never

14. Which debugging tools or platforms have you used previously?

Figure B.3: Demographics survey form (2).

79

Scenario 1

1. Were you able to identify the cause of the issue in the presented scenario?
☐ Yes
☐ No
If yes, please describe it briefly:

2. How confident are you in the answer given above?

3. How easy was it to understand the scenario with the presented data in the tool?

4. How difficult was it to identify the cause of the issue in the given scenario?

5. How satisfied are you with the data presented in the tool to identify the cause of the issue?

6. Can you offer a solution to solve the issue in the scenario?
☐ Yes
☐ No
If yes, please describe it briefly:

☐ very confident ☐ confident ☐ somewhat confident ☐ unconfident ☐ very unconfident

☐ very easy ☐ easy ☐ somewhat difficult ☐ difficult ☐ very difficult

☐ very easy ☐ easy ☐ somewhat difficult ☐ difficult ☐ very difficult

☐ very satisfied ☐ satisfied ☐ somewhat satisfied ☐ unsatisfied ☐ very unsatisfied

Figure B.4: Form to record feedback after each task.

80 B User Study Documents

Post-study Survey

I. Please answer the following questions in the context to the tool without the option to filter
data.

1. I found that the data included all relevant known causal factors with sufficient precision and
granularity.

2. I understood the explanations within the context of my work.

3. I could change the level of detail on demand.

4. I did not need support to understand the explanations.

5. I found the explanations helped me to understand causality.

6. I was able to use the explanations with my knowledge base.

7. I did not find inconsistencies between explanations.

8. I think that most people would learn to understand the explanations very quickly.

9. I did not need more references in the explanations.

10. I received the explanations in a timely and efficient manner.

☐ strongly disagree ☐ disagree ☐ neutral ☐ agree ☐ strongly agree

☐ strongly disagree ☐ disagree ☐ neutral ☐ agree ☐ strongly agree

☐ strongly disagree ☐ disagree ☐ neutral ☐ agree ☐ strongly agree

☐ strongly disagree ☐ disagree ☐ neutral ☐ agree ☐ strongly agree

☐ strongly disagree ☐ disagree ☐ neutral ☐ agree ☐ strongly agree

☐ strongly disagree ☐ disagree ☐ neutral ☐ agree ☐ strongly agree

☐ strongly disagree ☐ disagree ☐ neutral ☐ agree ☐ strongly agree

☐ strongly disagree ☐ disagree ☐ neutral ☐ agree ☐ strongly agree

☐ strongly disagree ☐ disagree ☐ neutral ☐ agree ☐ strongly agree

☐ strongly disagree ☐ disagree ☐ neutral ☐ agree ☐ strongly agree

Figure B.5: System Causability Scale questions for Baseline dashboard.

81

II. Please answer the following questions in the context to the tool with the option to filter
data.

1. I found that the data included all relevant known causal factors with sufficient precision and
granularity.

2. I understood the explanations within the context of my work.

3. I could change the level of detail on demand.

4. I did not need support to understand the explanations.

5. I found the explanations helped me to understand causality.

6. I was able to use the explanations with my knowledge base.

7. I did not find inconsistencies between explanations.

8. I think that most people would learn to understand the explanations very quickly.

9. I did not need more references in the explanations.

10. I received the explanations in a timely and efficient manner.

☐ strongly disagree ☐ disagree ☐ neutral ☐ agree ☐ strongly agree

☐ strongly disagree ☐ disagree ☐ neutral ☐ agree ☐ strongly agree

☐ strongly disagree ☐ disagree ☐ neutral ☐ agree ☐ strongly agree

☐ strongly disagree ☐ disagree ☐ neutral ☐ agree ☐ strongly agree

☐ strongly disagree ☐ disagree ☐ neutral ☐ agree ☐ strongly agree

☐ strongly disagree ☐ disagree ☐ neutral ☐ agree ☐ strongly agree

☐ strongly disagree ☐ disagree ☐ neutral ☐ agree ☐ strongly agree

☐ strongly disagree ☐ disagree ☐ neutral ☐ agree ☐ strongly agree

☐ strongly disagree ☐ disagree ☐ neutral ☐ agree ☐ strongly agree

☐ strongly disagree ☐ disagree ☐ neutral ☐ agree ☐ strongly agree

Figure B.6: System Causability Scale questions for Filter dashboard.

82 B User Study Documents

Post-study Survey

I. Please answer the following questions in the context to the tool without the option to filter
data.

1. I found that the data included all relevant known causal factors with sufficient precision and
granularity.

2. I understood the explanations within the context of my work.

3. I could change the level of detail on demand.

4. I did not need support to understand the explanations.

5. I found the explanations helped me to understand causality.

6. I was able to use the explanations with my knowledge base.

7. I did not find inconsistencies between explanations.

8. I think that most people would learn to understand the explanations very quickly.

9. I did not need more references in the explanations.

10. I received the explanations in a timely and efficient manner.

☐ strongly disagree ☐ disagree ☐ neutral ☐ agree ☐ strongly agree

☐ strongly disagree ☐ disagree ☐ neutral ☐ agree ☐ strongly agree

☐ strongly disagree ☐ disagree ☐ neutral ☐ agree ☐ strongly agree

☐ strongly disagree ☐ disagree ☐ neutral ☐ agree ☐ strongly agree

☐ strongly disagree ☐ disagree ☐ neutral ☐ agree ☐ strongly agree

☐ strongly disagree ☐ disagree ☐ neutral ☐ agree ☐ strongly agree

☐ strongly disagree ☐ disagree ☐ neutral ☐ agree ☐ strongly agree

☐ strongly disagree ☐ disagree ☐ neutral ☐ agree ☐ strongly agree

☐ strongly disagree ☐ disagree ☐ neutral ☐ agree ☐ strongly agree

☐ strongly disagree ☐ disagree ☐ neutral ☐ agree ☐ strongly agree

Figure B.7: Post Study Questionnaire.

83

Bibliography

Abdullah Al Farooq, Ehab Al-Shaer, Thomas Moyer, and
Krishna Kant. Iotc2: A formal method approach
for detecting conflicts in large scale iot systems. In
2019 IFIP/IEEE Symposium on Integrated Network and
Service Management (IM), page 442–447, April 2019.
URL https://ieeexplore.ieee.org/abstract/
document/8717844.

Will Brackenbury, Abhimanyu Deora, Jillian Ritchey, Ja-
son Vallee, Weijia He, Guan Wang, Michael L. Littman,
and Blase Ur. How users interpret bugs in trigger-action
programming. In Proceedings of the 2019 CHI Confer-
ence on Human Factors in Computing Systems, CHI ’19,
page 1–12, New York, NY, USA, May 2019. Associa-
tion for Computing Machinery. ISBN 978-1-4503-5970-2.
doi: 10.1145/3290605.3300782. URL https://dl.acm.
org/doi/10.1145/3290605.3300782.

John Brooke. Sus: a “quick and dirty’usability. Usability
evaluation in industry, 189(3):189–194, 1996.

A.J. Bernheim Brush, Bongshin Lee, Ratul Mahajan, Sharad
Agarwal, Stefan Saroiu, and Colin Dixon. Home au-
tomation in the wild: challenges and opportunities. In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’11, page 2115–2124, New York,
NY, USA, May 2011. Association for Computing Ma-
chinery. ISBN 978-1-4503-0228-9. doi: 10.1145/1978942.
1979249. URL https://dl.acm.org/doi/10.1145/
1978942.1979249.

Sven Coppers, Davy Vanacken, and Kris Luyten. Fortniot:
Intelligible predictions to improve user understanding of

https://ieeexplore.ieee.org/abstract/document/8717844
https://ieeexplore.ieee.org/abstract/document/8717844
https://dl.acm.org/doi/10.1145/3290605.3300782
https://dl.acm.org/doi/10.1145/3290605.3300782
https://dl.acm.org/doi/10.1145/1978942.1979249
https://dl.acm.org/doi/10.1145/1978942.1979249

84 Bibliography

smart home behavior. Proceedings of the ACM on Inter-
active, Mobile, Wearable and Ubiquitous Technologies, 4(4):
124:1–124:24, December 2020. doi: 10.1145/3432225.

Sven Coppers, Davy Vanacken, and Kris Luyten. Fortclash:
Predicting and mediating unintended behavior in home
automation. Proceedings of the ACM on Human-Computer
Interaction, 6(EICS):154:1–154:20, June 2022. doi: 10.1145/
3532204.

Fulvio Corno, Luigi De Russis, and Alberto Monge Rof-
farello. Empowering end users in debugging trigger-
action rules. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems, CHI ’19, page
1–13, New York, NY, USA, May 2019. Association for
Computing Machinery. ISBN 978-1-4503-5970-2. doi: 10.
1145/3290605.3300618. URL https://dl.acm.org/
doi/10.1145/3290605.3300618.

Luigi De Russis and Fulvio Corno. Homerules: A tangi-
ble end-user programming interface for smart homes. In
Proceedings of the 33rd Annual ACM Conference Extended
Abstracts on Human Factors in Computing Systems, CHI EA
’15, page 2109–2114, New York, NY, USA, April 2015. As-
sociation for Computing Machinery. ISBN 978-1-4503-
3146-3. doi: 10.1145/2702613.2732795. URL https:
//dl.acm.org/doi/10.1145/2702613.2732795.

Luigi De Russis and Alberto Monge Roffarello. A debug-
ging approach for trigger-action programming. In Ex-
tended Abstracts of the 2018 CHI Conference on Human Fac-
tors in Computing Systems, CHI EA ’18, page 1–6, New
York, NY, USA, April 2018. Association for Comput-
ing Machinery. ISBN 978-1-4503-5621-3. doi: 10.1145/
3170427.3188641. URL https://dl.acm.org/doi/
10.1145/3170427.3188641.

Giuseppe Ghiani, Marco Manca, Fabio Paternò, and Car-
men Santoro. Personalization of context-dependent ap-
plications through trigger-action rules. ACM Transactions
on Computer-Human Interaction, 24(2):14:1–14:33, April
2017. ISSN 1073-0516. doi: 10.1145/3057861.

Andreas Holzinger, André Carrington, and Heimo Müller.
Measuring the quality of explanations: The system caus-
ability scale (scs). KI - Künstliche Intelligenz, 34(2):

https://dl.acm.org/doi/10.1145/3290605.3300618
https://dl.acm.org/doi/10.1145/3290605.3300618
https://dl.acm.org/doi/10.1145/2702613.2732795
https://dl.acm.org/doi/10.1145/2702613.2732795
https://dl.acm.org/doi/10.1145/3170427.3188641
https://dl.acm.org/doi/10.1145/3170427.3188641

Bibliography 85

193–198, June 2020. ISSN 1610-1987. doi: 10.1007/
s13218-020-00636-z.

Karl A. Hribernik, Zied Ghrairi, Carl Hans, and Klaus-
Dieter Thoben. Co-creating the internet of things —
first experiences in the participatory design of intel-
ligent products with arduino. page 1–9, June 2011.
URL https://ieeexplore.ieee.org/abstract/
document/6041235.

Justin Huang and Maya Cakmak. Supporting mental
model accuracy in trigger-action programming. In Pro-
ceedings of the 2015 ACM International Joint Conference on
Pervasive and Ubiquitous Computing, UbiComp ’15, page
215–225, New York, NY, USA, September 2015. Associa-
tion for Computing Machinery. ISBN 978-1-4503-3574-4.
doi: 10.1145/2750858.2805830. URL https://dl.acm.
org/doi/10.1145/2750858.2805830.

Amy J. Ko and Brad A. Myers. Designing the whyline:
a debugging interface for asking questions about pro-
gram behavior. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’04, page
151–158, New York, NY, USA, April 2004. Association
for Computing Machinery. ISBN 978-1-58113-702-6. doi:
10.1145/985692.985712. URL https://dl.acm.org/
doi/10.1145/985692.985712.

Henry Lieberman, Fabio Paternò, Markus Klann, and
Volker Wulf. End-User Development: An Emerging
Paradigm, page 1–8. Human-Computer Interaction Se-
ries. Springer Netherlands, Dordrecht, 2006. ISBN 978-1-
4020-5386-3. doi: 10.1007/1-4020-5386-X 1. URL https:
//doi.org/10.1007/1-4020-5386-X_1.

Rensis Likert. A technique for the measurement of atti-
tudes. Archives of psychology, 1932.

Meiyi Ma, Sarah Masud Preum, and John A. Stankovic.
Cityguard: A watchdog for safety-aware conflict detec-
tion in smart cities. In Proceedings of the Second Inter-
national Conference on Internet-of-Things Design and Im-
plementation, IoTDI ’17, page 259–270, New York, NY,
USA, April 2017. Association for Computing Machin-
ery. ISBN 978-1-4503-4966-6. doi: 10.1145/3054977.

https://ieeexplore.ieee.org/abstract/document/6041235
https://ieeexplore.ieee.org/abstract/document/6041235
https://dl.acm.org/doi/10.1145/2750858.2805830
https://dl.acm.org/doi/10.1145/2750858.2805830
https://dl.acm.org/doi/10.1145/985692.985712
https://dl.acm.org/doi/10.1145/985692.985712
https://doi.org/10.1007/1-4020-5386-X_1
https://doi.org/10.1007/1-4020-5386-X_1

86 Bibliography

3054989. URL https://dl.acm.org/doi/10.1145/
3054977.3054989.

Evan Magill and Jesse Blum. Exploring conflicts in rule-
based sensor networks. Pervasive and Mobile Computing,
27:133–154, April 2016. ISSN 1574-1192. doi: 10.1016/j.
pmcj.2015.08.005.

Davit Marikyan, Savvas Papagiannidis, and Eleftherios
Alamanos. A systematic review of the smart home lit-
erature: A user perspective. Technological Forecasting and
Social Change, 138:139–154, January 2019. ISSN 0040-1625.
doi: 10.1016/j.techfore.2018.08.015.

Sarah Mennicken and Elaine M. Huang. Hacking the
Natural Habitat: An In-the-Wild Study of Smart Homes,
Their Development, and the People Who Live in Them, vol-
ume 7319 of Lecture Notes in Computer Science, page
143–160. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2012. ISBN 978-3-642-31204-5. doi: 10.1007/
978-3-642-31205-2 10. URL http://link.springer.
com/10.1007/978-3-642-31205-2_10.

Alessandro A. Nacci, Vincenzo Rana, Bharathan Balaji,
Paola Spoletini, Rajesh Gupta, Donatella Sciuto, and Yu-
vraj Agarwal. Buildingrules: A trigger-action–based sys-
tem to manage complex commercial buildings. ACM
Transactions on Cyber-Physical Systems, 2(2):13:1–13:22,
May 2018. ISSN 2378-962X. doi: 10.1145/3185500.

Shahrokh Nikou. Factors driving the adoption of smart
home technology: An empirical assessment. Telematics
and Informatics, 45:101283, December 2019. ISSN 0736-
5853. doi: 10.1016/j.tele.2019.101283.

Steven P. Reiss. Trace-based debugging. In Peter A. Fritz-
son, editor, Automated and Algorithmic Debugging, Lecture
Notes in Computer Science, page 305–314, Berlin, Hei-
delberg, 1993. Springer. ISBN 978-3-540-48141-6. doi:
10.1007/BFb0019416.

Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and
Michael L. Littman. Practical trigger-action program-
ming in the smart home. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI

https://dl.acm.org/doi/10.1145/3054977.3054989
https://dl.acm.org/doi/10.1145/3054977.3054989
http://link.springer.com/10.1007/978-3-642-31205-2_10
http://link.springer.com/10.1007/978-3-642-31205-2_10

Bibliography 87

’14, page 803–812, New York, NY, USA, April 2014. As-
sociation for Computing Machinery. ISBN 978-1-4503-
2473-1. doi: 10.1145/2556288.2557420. URL https:
//dl.acm.org/doi/10.1145/2556288.2557420.

Blase Ur, Melwyn Pak Yong Ho, Stephen Brawner, Jiyun
Lee, Sarah Mennicken, Noah Picard, Diane Schulze, and
Michael L. Littman. Trigger-action programming in the
wild: An analysis of 200,000 ifttt recipes. In Proceed-
ings of the 2016 CHI Conference on Human Factors in Com-
puting Systems, CHI ’16, page 3227–3231, New York,
NY, USA, May 2016. Association for Computing Ma-
chinery. ISBN 978-1-4503-3362-7. doi: 10.1145/2858036.
2858556. URL https://dl.acm.org/doi/10.1145/
2858036.2858556.

Qi Wang, Pubali Datta, Wei Yang, Si Liu, Adam Bates,
and Carl A. Gunter. Charting the attack surface of
trigger-action iot platforms. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS ’19, page 1439–1453, New York, NY,
USA, November 2019. Association for Computing Ma-
chinery. ISBN 978-1-4503-6747-9. doi: 10.1145/3319535.
3345662. URL https://dl.acm.org/doi/10.1145/
3319535.3345662.

Jong-bum Woo and Youn-kyung Lim. User experience in
do-it-yourself-style smart homes. In Proceedings of the
2015 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, UbiComp ’15, page 779–790, New
York, NY, USA, September 2015. Association for Com-
puting Machinery. ISBN 978-1-4503-3574-4. doi: 10.
1145/2750858.2806063. URL https://dl.acm.org/
doi/10.1145/2750858.2806063.

Imam Nur Bani Yusuf, Lingxiao Jiang, and David Lo. Accu-
rate generation of trigger-action programs with domain-
adapted sequence-to-sequence learning. In Proceedings
of the 30th IEEE/ACM International Conference on Program
Comprehension, ICPC ’22, page 99–110, New York, NY,
USA, October 2022. Association for Computing Machin-
ery. ISBN 978-1-4503-9298-3. doi: 10.1145/3524610.
3527922. URL https://dl.acm.org/doi/10.1145/
3524610.3527922.

https://dl.acm.org/doi/10.1145/2556288.2557420
https://dl.acm.org/doi/10.1145/2556288.2557420
https://dl.acm.org/doi/10.1145/2858036.2858556
https://dl.acm.org/doi/10.1145/2858036.2858556
https://dl.acm.org/doi/10.1145/3319535.3345662
https://dl.acm.org/doi/10.1145/3319535.3345662
https://dl.acm.org/doi/10.1145/2750858.2806063
https://dl.acm.org/doi/10.1145/2750858.2806063
https://dl.acm.org/doi/10.1145/3524610.3527922
https://dl.acm.org/doi/10.1145/3524610.3527922

88 Bibliography

Lefan Zhang, Weijia He, Jesse Martinez, Noah Bracken-
bury, Shan Lu, and Blase Ur. Autotap: Synthesizing
and repairing trigger-action programs using ltl proper-
ties. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), page 281–291, May 2019. doi:
10.1109/ICSE.2019.00043.

Lefan Zhang, Weijia He, Olivia Morkved, Valerie Zhao,
Michael L. Littman, Shan Lu, and Blase Ur. Trace2tap:
Synthesizing trigger-action programs from traces of be-
havior. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 4(3):104:1–104:26,
September 2020. doi: 10.1145/3411838.

Lefan Zhang, Cyrus Zhou, Michael L. Littman, Blase Ur,
and Shan Lu. Helping users debug trigger-action pro-
grams. Proceedings of the ACM on Interactive, Mobile, Wear-
able and Ubiquitous Technologies, 6(4):196:1–196:32, Jan-
uary 2023. doi: 10.1145/3569506.

Valerie Zhao, Lefan Zhang, Bo Wang, Shan Lu, and Blase
Ur. Visualizing differences to improve end-user under-
standing of trigger-action programs. In Extended Ab-
stracts of the 2020 CHI Conference on Human Factors in
Computing Systems, CHI EA ’20, page 1–10, New York,
NY, USA, April 2020. Association for Computing Ma-
chinery. ISBN 978-1-4503-6819-3. doi: 10.1145/3334480.
3382940. URL https://dl.acm.org/doi/10.1145/
3334480.3382940.

Valerie Zhao, Lefan Zhang, Bo Wang, Michael L. Littman,
Shan Lu, and Blase Ur. Understanding trigger-action pro-
grams through novel visualizations of program differ-
ences. In Proceedings of the 2021 CHI Conference on Hu-
man Factors in Computing Systems, CHI ’21, page 1–17,
New York, NY, USA, May 2021. Association for Com-
puting Machinery. ISBN 978-1-4503-8096-6. doi: 10.
1145/3411764.3445567. URL https://dl.acm.org/
doi/10.1145/3411764.3445567.

https://dl.acm.org/doi/10.1145/3334480.3382940
https://dl.acm.org/doi/10.1145/3334480.3382940
https://dl.acm.org/doi/10.1145/3411764.3445567
https://dl.acm.org/doi/10.1145/3411764.3445567

89

Index

Action . 5, 19
Action Inconsistent . 39
Action Reversal . 39
Actuators . 19
AIB . 39
AIF . 39
API . see Application Programming Interface
Application Programming Interface . 18
ARB . 39
ARF . 39
Arrows . 22
AutoTap . 11

Baseline . 4
Bugs . 6–8

Causal relationship. .3
Condition . 5, 19
Condition group . 19
Condition Status Indicator . 24
Condition Unsatisfiable . 39
Conflicts . 6–8
Contradictory action . 7
Control flow bug . 7
CUB . 39
CUF . 39

Data filtering . 26–27
Debugging Dashboard . 17, 18, 29
Device Manager . 18
Device Register . 18, 30
Device State Label . 24
Device Timeline . 21, 24
diff . 10
Dynamic analysis . 2, 12–16

EUDebug . 9
Events . 6
Explicit-feedback . 14

90 Index

Extended action bug . 8

Filter . 4, 28
Filtered View . 26
Flash icon . 24
Flipped triggers . 8
Flowchart-based interface . 10
Form-based interface . 10
FortClash . 12
FORTNIoT . 12
Future work . 66–67

History visualization . 14
Home and Device Manager . 29
HTTP . see Hypertext Transfer Protocol
Hypertext Transfer Protocol . 18
Hypotheses .37–38

ILB . 39
ILF . 39
Implicit-feedback . 14
Inaccurate user expectations .8
Infinite Loop. .7, 39
Interrogative debugging . 16

Latin square .40, 42, 69
Likert scale . 42
Linear temporal logic . 11

Missing reversal . 8

Nondeterministic timing bug . 8

Over-automation . 15, 16

Priority conflict . 8
Prototype. .20–21

RecipeGen . 11
Repeated Triggering. .7
Representational State Transfer . 18
Research Questions . 4
REST . see Representational State Transfer
REST API. .31–32
Rule Manager . 18, 30
Rule Timeline . 21
Runtime events . 3

SCS . see System Causability Scale
Secure-default bias . 8
Sensors . 19

Index 91

Smart home . 1
Smart Home Manager . 18, 28–30
States . 6
Static analysis . 2, 9–12
System Causability Scale . 42, 57–59
System Usability Scale . 42

TAP . see Trigger-Action Programming
TAP rules . 6
Time-window fallacy . 8
Timing bug . 8
Trace-based debugging . 2
Trace2TAP . 11
Trigger . 5, 19
Trigger-Action Programming . 1, 5–6

Under-automation . 15, 16
Unfiltered View . 60

Visual debugging . 3

Whyline . 3, 16

Typeset February 2, 2024

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Related Work
	Trigger-Action Programming (TAP)
	Conflicts in TAP
	Solutions using Static Analysis
	Solutions using Dynamic Analysis

	The Debugging Dashboard
	Overview
	Debugging Dashboard Design
	Initial Prototype
	Final Interface
	Data Filtering

	Client-side Implementation
	Smart Home Manager
	Debugging Dashboard
	Home and Device Manager
	Rule Manager

	Device Register

	Server-side Implementation
	REST API
	Data Storage

	Evaluation
	Hypotheses
	User Study
	Study Design
	Study Setup

	Procedure
	Participants

	Results
	Quantitative Results
	Debugging Accuracy
	Debugging Difficulty
	Debugging Speed
	User Confidence
	Conflict Understanding
	User Satisfaction
	System Causability Scale

	Qualitative Results
	Filter Feature
	Rule Timeline
	Device Timeline
	Flash Icon
	Arrows
	Condition Status Indicator

	Discussion

	Summary and Future Work
	Summary and Contributions
	Limitations and Future Work

	User Study Design Materials
	User Study Documents
	Bibliography
	Index

