Chair for Computer Rm
Science 10 (Media

Computing and Human-

Computer Interaction)

Visual Trace
Debugging of
Smart Home Rules

Master’s Thesis

submitted to the

Media Computing Group

Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

by

Amit Kumar Shaw

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Dr. Ulrik Schroeder

Registration date: 03.08.2023
Submission date: 05.02.2024

RWTH

Zentrales Prifu ngsamt/Central Examination Office

Eidesstattliche Versicherung
Statutory Declaration in Lieu of an Oath

Name, Vorname/Last Name, First Name Matrikelnummer (freiwillige Angabe)
Matriculation No. (optional)

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/

Masterarbeit* mit dem Titel
| hereby declare in lieu of an oath that | have completed the present paper/Bachelor thesis/Master thesis* entitled

selbststandig und ohne unzuldssige fremde Hilfe (insbes. akademisches Ghostwriting)
erbracht habe. Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel benutzt.
Fur den Fall, dass die Arbeit zusatzlich auf einem Datentrager eingereicht wird, erklare ich,
dass die schriftliche und die elektronische Form vollstéandig tbereinstimmen. Die Arbeit hat in

gleicher oder ahnlicher Form noch keiner Prifungsbehérde vorgelegen.

independently and without illegitimate assistance from third parties (such as academic ghostwriters). | have used no other than
the specified sources and aids. In case that the thesis is additionally submitted in an electronic format, | declare that the written
and electronic versions are fully identical. The thesis has not been submitted to any examination body in this, or similar, form.

Ort, Datum/city, Date Unterschrift/signature
*Nichtzutreffendes bitte streichen

*Please delete as appropriate

Belehrung:
Official Notification:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zustandigen Behorde eine solche Versicherung
falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei
Jahren oder mit Geldstrafe bestraft.

Para. 156 StGB (German Criminal Code): False Statutory Declarations

Whoever before a public authority competent to administer statutory declarations falsely makes such a declaration or falsely
testifies while referring to such a declaration shall be liable to imprisonment not exceeding three years or a fine.

§ 161 StGB: Fahrlassiger Falscheid; fahrlassige falsche Versicherung an Eides Statt

(1) Wenn eine der in den 88 154 bis 156 bezeichneten Handlungen aus Fahrlassigkeit begangen worden ist, so
tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Tater die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158
Abs. 2 und 3 gelten entsprechend.

Para. 161 StGB (German Criminal Code): False Statutory Declarations Due to Negligence

(1) If a person commits one of the offences listed in sections 154 through 156 negligently the penalty shall be imprisonment not
exceeding one year or a fine.

(2) The offender shall be exempt from liability if he or she corrects their false testimony in time. The provisions of section 158 (2)
and (3) shall apply accordingly.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:
| have read and understood the above official notification:

Ort, Datum/city, Date Unterschrift/signature

Contents

| Uberblick

[Acknowledgements|

[Conventions|

1 Intr ion

2__Related Workl

[2.3 Solutions using Static Analysis|

[2.4 Solutions using Dynamic Analysis|

B The Debugging Dashboard]

1 rviewl.

xvii

Xix

xx1

xxiii

12

17

vi Contents
[3.2.1 Initial Prototype|. 20
3.2.2 Final Interfacel 21
[3.2.3 DataFiltering| 26

3.3 Client-side Implementation| 27
[3.3.1 Smart Home Manager| 28
[Debugging Dashboard|. 28

[Home and Device Manager| 29
.............. 30

[3.3.2 Device Register{ 30

3.4 Server-side Implementation| 31
................ 31
[3.4.2 Data Storage|. 32
4__Evaluationl 37
4.1 Hypotheses 37
M2 UserStudy|........... 38
421 StudyDesignl 39

Study Setup| 41

422 Procedurel 41
4.2.3 Participants| 42

B3 Resultd 44

Contents

vii

[Debugging Accuracy| .

[Debugging Ditficulty| .

[Debugging Speed|. . .

[4.3.2 Qualitative Results| . .

[5 Summary and Future Work

.1 Summary and Contributions|

A User Study Design Materials|

[B - User Study Documents|

69

75

viii Contents

| Bibliography| 83

[Index 89

ix

List of Figures

[.L1_Dashboard Preview] 3
2.1 TAP diff interfaces by Zhao et al. [2021]| . . . 10
2.2 FortClash interface by |Coppers et al[[2022]] . 13
2.3 Debugging workflows by[Zhang et al[[2023]] 14
2.4 The Whyline interface by Ko and Myers[[2004]] 15
[3.1 System architecture of our web application |

that offers the Debugging Dashboard| 18
(3.2 Initial Prototype of the Debugging Dashboard| 20
[3.3 The user interface of the Debugging Dashboard| 23
3.4 Information when hovering over the dash- |

board’s components.| 25
8.5 Filtered View of the dashboard| 26
3.6 Information highlighting in Filtered View.| . . 27
[3.7 Entity-Relationship diagram of the database |

models. o Lo L 33
4.1 Age distribution of participants.| 43

List of Figures

4.2 Learning effectin user study| 46
4.3 Debugging accuracy percentage per bug.| . . 47
4.4 Debugging ditficulty rating distribution.|. . . 48
4.5 Debugging ditticulty rating per bug.| 48
4.6 Debugging speed perbug|. 51
4.7 User contidence rating distribution,| 52
4.8 User confidence rating perbug.|. 53
4.9 Contflict understanding rating distribution.| . 54
4.10 Contflict understanding rating per bug|. . . . 55
.11 User satisfaction rating distribution| 56
.12 User satisfaction rating per bug|. 57
14.13 Time spent on Filtered View versus Unfiltered |
View during the Filter condition.|. 63

IA.1 Rule sets tor Action Inconsistent bug,| 70
|A.2 Rule sets for Action Reversal bug| 71
IA.3 Rule sets tor Condition Unsatishable bug.| . . . 72
IA.4 Rule sets for Infinite Loopbug| 73
[A.5 Study Instruction Page for Baseline dash- |
[boardtask) 74
IA.6 Study Instruction Page for Filter dashboard |
[task). oo 74
B.1 Informed Consent Form.J 76
[B.2 Demographics survey form (1) 77

List of Figures

xi

[B.3 Demographics survey form (3). 78

B.4 Form to record feedback after each task| . . . 79

[B.5 System Causability Scale questions for Base- |

[linedashboard) 80
[B.6 System Causability Scale questions for Filter |
[dashboard) 81

[B.7 Post Study Questionnaire.| 82

xiii

List of Tables

21

Coppers et al. [2022] created a comprehen-

sive list of 19 different categories of unin-

tended actions by compiling various tax-

onomies. (Table taken from [Coppers et al|

[2022])

B1

HTTP GET endpoints of the REST API

server and the description of each end-

point’s functionality and the type of data

it retrieves. The endpoints are prefixed

with http://server-url/api/ (e.g.,

http://localhost:5001/api/ during

theuserstudy).|

B2

HTTP POST endpoints of the REST API

server and the description of each end-

point’s purpose and the data it pro-

cesses. The endpoints are prefixed

with http://server-url/api/ (e.g.,

http://localhost:5001/api/ during

theuserstudy)|

B3

This table provides descriptions of entities

used in the web application. Each entity is

stored in a separate table in the database.| . .

36

xiv

List of Tables

%

Significant differences in debugging accu-

racy per bug. Rows only show significant

bugs. Significantly different bugs (p <=

0.05) are not connected by the same letter.

The means are rounded to two decimal places| 45

a2

Significant differences in debugging accu-

racy per task. Rows only show significant

tasks. Significantly different tasks (p <=

0.05) are not connected by the same letter.

The means are rounded to two decimal places/| 47

%]

Significant differences in debugging ditfi-

culty per bug. Rows only show significant

bugs. Significantly different bugs (p <=

0.05) are not connected by the same let-

ter. The means and standard deviations are

rounded to two decimal places.| 49

!

Significant differences in debugging diffi-

culty per task. Rows only show significant

tasks. Significantly different tasks (p <=

0.05) are not connected by the same let-

ter. The means and standard deviations are

rounded to two decimal places.| 50

A5

Significant differences in debugging speed

per bug. Rows only show significant bugs.

Significantly different bugs (p <= 0.05) are

not connected by the same letter. The means

and standard deviations are rounded to two

decimal places| 52

16

Significant differences in debugging speed

per task. Rows only show significant tasks.

Significantly different tasks (p <= 0.05) are

not connected by the same letter. The means

and standard deviations are rounded to two

decimal places| 52

List of Tables

XV

17

Significant differences in user confidence per

bug. Rows only show significant bugs. Sig-

nificantly different bugs (p <= 0.05) are not

connected by the same letter. The means and

standard deviations are rounded to two dec-

malplaces|

i3

Significant differences in conflict under-

standing per bug. Rows only show sig-

nificant bugs. Significantly different bugs

(p <= 0.05) are not connected by the same

letter. The means and standard deviations

are rounded to two decimal places|.

55

A9

Significant differences in user satisfaction

per bug. Rows only show significant bugs.

Significantly different bugs (p <= 0.05) are

not connected by the same letter. The means

and standard deviations are rounded to two

decimal places.|

E.10

Significant differences in user satisfaction

per task. Rows only show significant tasks.

Significantly different tasks (p <= 0.05) are

not connected by the same letter. The means

and standard deviations are rounded to two

decimal places.|

BT

The table reports the System Causability

Scale (SCS) ratings for Baseline and Filter ver-

sions of the dashboard]

[A.1 An 8x8 Latin square illustrating the balanced

[distribution of tasks]

xvii

Abstract

Smart homes are revolutionizing our daily lives by using technology to make our
routines more convenient and comfortable. With the help of smart homes, peo-
ple can automate tasks such as turning off lights and adjusting room temperature
based on their preferences without manual operation. Trigger-Action Program-
ming (TAP) allows inexperienced users to define automation and interactions be-
tween smart home devices without requiring extensive technical knowledge. How-
ever, conflicts between TAP rules can lead to unexpected situations, frustrating
users and reducing their trust in the system. Researchers have explored two ap-
proaches to tackle these challenges and user frustrations: static analysis and dy-
namic analysis. Although both methods are effective in their ways, they have their
limitations and need to provide long-term solutions and debugging support.

This thesis explores the potential of visualizing traces of conflicting TAP rules to
identify the root cause of issues in smart homes. Our work builds on previous stud-
ies that have shown the effectiveness of visual aids in understanding TAP rules. In
this thesis, we developed and evaluated a visual debugging dashboard that traces
events associated with activated TAP rules in smart homes and shows the causal re-
lationship between events. We evaluated two dashboard versions - Baseline, which
traces all activated rules without data filtering, and Filter, which incorporates data
tracing and filtering. A within-group user study with 16 participants assessed dif-
ferent TAP debugging aspects. Although the Filter version received higher Sys-
tem Causability Scale ratings, no significant differences in debugging performance
were observed compared to Baseline. The results discovered significant differences
in outcomes based on bug types. This suggests that different bugs require varied
cognitive abilities for effective TAP conflict resolution.

xviii Abstract

xix

Uberblick

Smart Homes revolutionieren unser tégliches Leben, indem sie mithilfe von Tech-
nologie unsere Abldufe bequemer und komfortabler machen. Mit Hilfe von Smart
Homes konnen Menschen Aufgaben wie das Ausschalten des Lichts und die An-
passung der Raumtemperatur nach ihren Wiinschen ohne manuelle Bedienung
automatisieren. Mithilfe der Trigger-Action-Programming (TAP) konnen uner-
fahrene Benutzer Automatisierungen und Interaktionen zwischen Smart-Home-
Gerdten definieren, ohne dass umfangreiche technische Kenntnisse erforderlich
sind. Allerdings konnen Konflikte zwischen TAP-Regeln zu unerwarteten Situ-
ationen fithren, die Benutzer frustrieren und ihr Vertrauen in das System ver-
ringern. Forscher haben zwei Ansdtze untersucht, um diese Herausforderungen
und Benutzerfrustrationen anzugehen: statische Analyse und dynamische Anal-
yse. Obwohl beide Methoden auf ihre Art effektiv sind, haben sie ihre Grenzen
und miissen langfristige Losungen und Debugging-Unterstiitzung bieten.

Diese Arbeit untersucht das Potenzial der Visualisierung widerspriichlicher TAP-
Regeln, um die Grundursache von Problemen in Smart Homes zu identifizieren.
Unsere Arbeit baut auf fritheren Studien auf, die die Wirksamkeit visueller Hilf-
smittel beim Verstdndnis von TAP-Regeln gezeigt haben. In dieser Arbeit haben
wir ein visuelles Debugging-Dashboard entwickelt und evaluiert, das Ereignisse
im Zusammenhang mit aktivierten TAP-Regeln in Smart Homes nachverfolgt und
den kausalen Zusammenhang zwischen Ereignissen aufzeigt. Wir haben zwei
Dashboard-Versionen evaluiert: Baseline, das alle aktivierten Regeln ohne Daten-
filterung verfolgt, und Filter, das Datenverfolgung und -filterung umfasst. In
einer within-group Benutzerstudie mit 16 Teilnehmern wurden verschiedene TAP-
Debugging-Aspekte bewertet. Obwohl die Filterversion hohere System Causabil-
ity Scale-Bewertungen erhielt, wurden im Vergleich zur Baseline keine signifikan-
ten Unterschiede in der Debugging-Leistung beobachtet. Die Ergebnisse zeigten
signifikante Unterschiede in den Ergebnissen je nach Fehlertyp. Dies deutet da-
rauf hin, dass verschiedene Fehler unterschiedliche kognitive Fahigkeiten fiir eine
effektive TAP-Konfliktlosung erfordern.

xxi

Acknowledgements

I would like to thank Prof. Dr. Jan Borchers and Prof. Dr. Ulrik Schroeder for
examining my thesis.

I would like to thank Adrian Wagner for providing me with dedicated and moti-
vating supervision throughout my work. Your valuable feedback has been instru-
mental in helping me learn and improve. Thank you so much.

I'would like to thank everyone who participated in the studies and took the time to
help me with my research. It would not have been possible without their valuable
contribution.

Thank you, Werner and Waltraud. I appreciate your valuable inputs and support
and the time you took to review my thesis.

Thank you to my family and friends for your endless love, unwavering support,
and understanding. You have been my pillars during this journey, and I am grateful
for each one of you.

xxiii

Conventions

Throughout this thesis, we use the following conventions.

Definitions of technical terms or short excursus are set off
in coloured boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

Named tools and concepts are written in italics.

Dashboard

Source code and implementation symbols are written in
typewriter-style text.

SensorLog

The whole thesis is written in American English.

The first person is written in the plural form. Unidentified
third persons are referred to in the plural form.

Definition:
Excursus

Chapter 1

Introduction

The advent of smart homes is transforming how we live,
bringing unmatched convenience and comfort. With this
technology, people can easily automate tasks such as
turning off lights after leaving a room or adjusting the
room temperature from the comfort of their bed. Smart
homes significantly benefit independent individuals, as-
sisting those requiring additional care (Marikyan et al.
[2019]). In a smart home, one can program devices like
doors, lights, and heating systems to adjust based on
their preferences without manually operating them (Nikou
[2019]). Smart homes are designed to make our lives easier
and more comfortable by using technology to take care of
everyday tasks and improve our overall quality of life.

The effectiveness of smart home systems depends on how
different devices interact and function together smoothly.
These interactions are user-defined, often without needing
extensive technical knowledge of the underlying systems.
Trigger-Action Programming (TAP), an end-user develop-
ment paradigm (Lieberman et al. [2006]), enables users
to define these interactions according to their preferences
without requiring significant technical expertise. TAP fol-
lows the "IF [trigger] WHILE [conditions] THEN [action]”
format, allowing even inexperienced users to create com-
plex behaviors (Ur et al,| [2014]). TAP makes smart home
automation accessible and flexible, empowering users to
customize smart home functionalities to their specific needs

Smart home
technology
automates tasks and
improves the quality
of life.

Trigger-Action
Programming (TAP)
simplifies smart
home automation
and can be learned
easily.

1 Introduction

Conflicts in TAP rules
can create undesired
situations that lead to

user frustration.

Current research
provides limited
solutions for
identifying the
underlying causes of
TAP rule conflicts.

Definition:
Trace-Based
Debugging

and preferences. This showcases the perfect blend of user-
friendliness and technological sophistication of smart home
systems.

Though TAP simplifies smart home automation, it is sus-
ceptible to bugs, like any other programming paradigm.
These bugs arise from conflicts between multiple TAP rules.
Such conflicts can lead to undesired situations where the
smart home system either does things it shouldn’t or fails
to do something when expected. Consequently, this frus-
trates the users and reduces their trust in the smart home
system (Brush et al.|[2011], Mennicken and Huang| [2012]).

Researchers have explored various methods to tackle the
challenges and user frustrations caused by conflicting TAP
rules. They have either used a static or dynamic analysis
approach. Static analysis, as seen in the research by De Rus-
sis and Monge Roffarello [2018] and Corno et al.| [2019],
aims to identify inconsistencies and redundancies during
rule creation. While it can catch conflicts early, it may not
eliminate issues in daily usage and lacks debugging sup-
port after a conflict occurs. Dynamic analysis, as explored
by Coppers et al| [2022], predicts potential conflicts dur-
ing system operation and provides temporary solutions to
users. Although these methods are effective in their own
ways, they have their limitations and need to provide long-
term solutions and debugging support. These approaches
highlight the need for a deeper understanding of the root
causes of TAP rule conflicts to develop permanent solutions
and enhance user confidence in smart home technologies.

TRACE-BASED DEBUGGING:

Reiss [1993] introduced trace-based debugging by defin-
ing a debugger “that incorporates the notion of time to
allow users to easily navigate over the execution of their
systems.”

In this thesis, we explore the potential of debugging
through the visualization of traces of conflicting TAP rules
to identify the cause of the issue. Our research is inspired
by previous studies that have demonstrated the effective-
ness of using visual aids to understand TAP rule differences

Action executed v

Bedroom Curtains (i)

Action executed v

Change Brightness

Time Trigger Conditions Action
Rule 2
11:03:15
Bedroom Door Bedroom Light
State Change Power
changed to to Off
= Close
Rule 4
11:03:15-
Bedroom Light / Check if ALL conditions hold
P'c:wer dt Is Outdoor Light Sensor Brightness > 50%? ::h(a:rge S
changed to Yes. oSS
Rule 6
11:24:57-
Outdoor Light Sensor Check if ALL conditions hold Bedroom Light
Brightness / -
Is Bedroom Light Power = On? 5
:h;g%ed L No. Power is Off DL

Action not executed X

Figure 1.1: The figure shows a part of the Debugging Dashboard that represents the
events linked with the activated TAP rules in the sequence of their execution.

and interfaces that offer varying levels of detail visualiza-
tion (De Russis and Corno|[2015] and|Zhao et al.|[2021])). As
a result, we have developed and assessed a visual debug-
ging dashboard in our work. Our dashboard, which fol-
lows the principles of trace-based debugging (Reiss|[1993]),
is designed to trace events associated with activated TAP
rules in smart homes and display them in the order of ex-
ecution, as depicted in Figure To illustrate the causal
relationship between events, it uses arrows, similar to the
Whyline debugging interface (Figure[2.4), which has shown
that visualizing runtime events and representing data and
control flow causality can significantly reduce the debug-
ging time (Ko and Myers| [2004]). Moreover, the dashboard
provides a filtering feature to trace relevant data that leads
to activating a rule in a smart home. This feature is in-
tended to help users identify the root cause of conflicts in
TAP rules by visualizing data at different levels of detail,
thus enhancing their experience with smart home systems.

This thesis investigates the importance of data tracing in
our visual debugging dashboard. Given the lack of simi-

We investigate the
potential of
visualizing traces of
conflicting TAP rules
to identify the cause
of the issue in smart
homes.

1 Introduction

We evaluate the
impact of filtering
and tracing relevant
data by comparing
the Baseline and the
Filter version of the
dashboard.

This thesis is divided
into five chapters.

lar existing tools, to our knowledge, we evaluate our dash-
board by comparing two versions: the Baseline version,
which traces all activated TAP rules in a smart home with-
out offering data filtering, and the Filter version, which al-
lows for filtering and tracing relevant data. Hence, we ad-
dress the following questions in our research:

RQ1 Does filtering and tracing relevant data assist in accu-
rately identifying the cause of conflicts in TAP rules?

RQ1.1 Does filtering and tracing relevant data make it
easier to identify the cause of conflicts in TAP
rules?

RQ1.2 Does filtering and tracing relevant data reduce
the time taken by users to identify the causes of
conflicts in TAP rules?

RQ2 Does filtering and tracing relevant data impact the
user’s confidence in identifying the cause of conflicts
in TAP rules?

RQ2.1 Does filtering and tracing relevant data have an
impact on user’s understanding of the conflict-
ing situation?

RQ3 Does filtering and tracing relevant data impact user
satisfaction when identifying the cause of conflicts in
TAP rules?

In the following, we describe the related work in Chapter[2]
There, we discuss the development of TAP, different con-
flicts in TAP rules, and existing solutions using static and
dynamic approaches. In Chapter 3, we will explain the de-
bugging dashboard’s design choices and implementation
details. In Chapter @} we will discuss the user study con-
ducted to evaluate the dashboard and discuss the study’s
results. Finally, we conclude in Chapter 5|with a summary
and suggestions for future work.

Chapter 2

Related Work

This chapter looks at related work in TAP debugging be-
fore this thesis. First, we introduce and discuss the devel-
opment of TAP. Then, we look at different types and defi-
nitions of undesired conflicts in TAP rules. Finally, we go
through various existing research offering solutions to re-
solve TAP conflicts using static and dynamic analysis ap-
proaches and also look at some visualizations of TAP rules.

2.1 Trigger-Action Programming (TAP)

Trigger-Action Programming (TAP), an end-user develop-
ment paradigm (Lieberman et al. [2006]]), has evolved as
a pivotal concept in the realm of smart home automation,
offering a user-friendly way to program smart home en-
vironments. This approach allows users to specify au-
tomation rules in a format where a specified trigger leads
to a predefined action. TAP’s structure is simple: ”IF
[trigger], WHILE [conditions], THEN [action],” for exam-
ple, "IF light is switched on, WHILE room temperature is
above 26°C, THEN turn on the AC.” Consequently, TAP
is adopted by IFTTTB Home Assistaniﬂ Samsung Smart-

'https:/ /ifttt.com (last accessed on February 2, 2024)
“https:/ /www.home-assistant.io/ (last accessed on February 2, 2024)

Trigger-Action
Programming (TAP)
simplifies smart
home automation by
allowing users to
specify automation
rules based on a
trigger and a
predefined action.

https://ifttt.com
https://www.home-assistant.io
https://www.samsung.com/us/smartthings
https://www.samsung.com/us/smartthings
https://www.samsung.com/us/smartthings
https://www.samsung.com/us/smartthings
https://www.samsung.com/us/smartthings

2 Related Work

TAP is significant for
smart homes and
easy for novice users
to learn and create
rules, as concluded
by studies.

Studies revealed that
TAP systems have
evolved to support

complex conditions
and user
preferences.

TAP rules are prone
to bugs, and users
find distinguishing

between events and

states difficult,
leading to confusion.

Thingsﬂ Philips HueE| and other commercial platforms.

Existing research has demonstrated the significance of TAP
within smart homes. It has been proven capable of repre-
senting the majority of behaviors that potential users may
desire (Ghiani et al.|[2017], Nacci et al|[2018], Woo and
Lim| [2015]). According to the study conducted by |Ur et al.
[2014], it was found that novice users could quickly learn
TAP and create rules for expressing smart home behaviors.
The researchers developed an interface similar to IFTTT
with multiple triggers and actions. Users were asked to
mention the smart home behaviors they wanted, and the
study found that all behaviors that required programming
could be expressed in a trigger-action format. The study
concluded that users could correctly create a set of rules
about 80% of the time.

Ur et al.| [2016] analyzed 224,590 trigger-action programs on
IFTTT. The study revealed that many users are creating a
diverse range of TAP rules, indicating the increasing popu-
larity of TAP in the real world. Early iterations of TAP sys-
tems focused on simple, singular relationships between a
trigger and an action. However, TAP systems have evolved
to support more complex conditions, integrating multiple
triggers and actions (Ur et al. [2014])), and considering con-
text and user preferences (Ghiani et al.[[2017]).

2.2 Conflicts in TAP

As mentioned in the previous chapter, TAP rules are prone
to bugs, leading to conflicts in smart home use. A paper
by Huang and Cakmak [2015] demonstrated that users find
distinguishing between events and states difficult. Events
are specific occurrences at a particular moment, while states
are conditions that remain true over an interval of time.
This distinction is crucial because it can lead to confusion
when defining TAP rules (Brackenbury et al. [2019]). Brack-
enbury et al. [2019] identified and categorized ten classes of

*https:/ /www.samsung.com/us/smartthings (last accessed on
February 2, 2024)
*https:/ /www.philips-hue.com (last accessed on February 2, 2024)

https://www.samsung.com/us/smartthings
https://www.samsung.com/us/smartthings
https://www.samsung.com/us/smartthings
https://www.philips-hue.com

2.2 Conflicts in TAP

TAP bugs, grouping them under control flow bugs, timing
bugs, and inaccurate user expectations.

Unintended Behavior

Description

Action duration disregarded

Action incorrect

Action reversal

Action reversal missing
Actions inconsistent
Actions redundant
Condition bypass

Condition unsatisfiable
Effects inconsistent

Entity unavailable
Events redundant
Loop

Race condition
Rule incomplete

Rule set overtrust

Trigger incomplete
Triggers redundant

Trigger overtrust
Violated constraint

Rule does not take into account action’s duration
Action is configured to operate outside entity’s
capabilities

Action is automatically reversed by another rule
Action is never reversed by another rule
Contradictory actions on same entity

Similar actions executed on same entity

Other rule with less strict condition is executed
instead

Condition can never evaluate to true
Contradictory effects on same environmental
property

Action cannot be executed when entity is no
longer accessible

Multiple events created by same sensor in a spe-
cific time window

Actions of multiple rules cyclically trigger each
other

Execution order affects which rules are triggered
Rule does not consider all possible sensor values
User trusts set of rules that is not configured prop-
erly

Some trigger parameters are not specified
Trigger is activated multiple times by similar
events

User trusts trigger that is not configured properly
Violation of user-defined boolean expression

Table 2.1: Coppers et al.|[2022] created a comprehensive list of 19 different cate-
gories of unintended actions by compiling various taxonomies. (Table taken from

Coppers et al.| [2022])

As detailed by Brackenbury et al. [2019], control flow bugs
include three types. First, the infinite loop bug occurs when
rules trigger each other continuously, similar to infinite
loops in traditional programming languages. Both static
and dynamic analyses can detect this bug. Second, contra-
dictory action bugs represent scenarios where rules conflict
over time, such as a system alternating between heating

Brackenbury et al.
[2019] identify three
control flow bug
types: infinite loop,
contradictory action,
and repeated
triggering.

and air conditioning without stabilizing. Third, repeated

2 Related Work

Timing bugs have
two types,
nondeterministic
timing, and extended
action bugs, and can
be identified through
static and dynamic
analyses.

Inaccurate user
expectation bugs
comprise missing

reversals,
secure-default bias,
time-window fallacy,
priority conflicts, and
flipped triggers.

Coppers et al.|[2022]
compiled a list of 59
conflict types and
categorized them
into 19 unique
unintended
behaviors.

triggering happens when a rule is expected to activate once
but triggers multiple times. Static analysis can identify po-
tential cases of repeated triggering but may not always de-
termine if the triggering is intentional.

Timing bugs comprise two types (Brackenbury et al.
[2019]). Nondeterministic timing bugs arise from the un-
predictable order in which a system processes simultane-
ous triggers. Both static and dynamic analyses can identify
these bugs. Extended action bugs occur with actions ex-
tending over time rather than instantaneous. For instance,
a coffee brewing rule might cause excessive coffee produc-
tion if it reactivates during the brewing process.

Inaccurate user expectations comprise five bug types
(Brackenbury et al.| [2019]). One is the missing reversal,
where users fail to specify a rule for reversing an action,
expecting automatic reversion, a common misconception.
Static analysis can detect but not always correct these bugs.
Secure-default bias bugs occur when users incorrectly as-
sume systems default to a safe state. The time-window
fallacy involves users misinterpreting the time window in
a ruleset, particularly in complex temporal rules. Priority
conflict bugs emerge when users struggle to prioritize mul-
tiple rules affecting the same device. Finally, flipped trig-
gers occur when users mix up a trigger’s event and state
components, resulting in rules that behave unexpectedly.

The bug types identified by [Brackenbury et al| [2019]
present the common TAP bugs. Meanwhile, Coppers
et al| [2022] compiled a list of 59 conflict types based on
the works of |Al Farooq et al. [2019], [Brackenbury et al.
[2019], Ma et al.| [2017], Magill and Blum| [2016], and Wang
et al| [2019]. They then categorized these conflicts into
19 unique unintended behaviors, as detailed in Table [2.1
Coppers et al| [2022] noted that the table they presented
needs to be more comprehensive. They expect to dis-
cover additional conflict types as the trigger-condition-
action paradigm evolves and becomes more advanced.

2.3 Solutions using Static Analysis

2.3 Solutions using Static Analysis

A study by|De Russis and Monge Roffarello [2018] presents
a debugging approach using Semantic Web and Petri Nets
to assist users in defining trigger-action rules for smart de-
vices and web services. The approach involves translat-
ing rules into corresponding Petri nets to detect loops, in-
consistencies, and redundancies in rules, followed by anal-
ysis for conflict detection. The study’s evaluation sug-
gests that users successfully used this debugging method to
identify and understand inconsistencies and loops in TAP
rules. However, users perceived redundancies as less criti-
cal, sometimes choosing to retain them.

Building on the works of |De Russis and Monge Roffarello
[2018], Corno et al.| [2019] designed EUDebug to assist end
users in debugging trigger-action rules by identifying con-
flicts and simulating rule behavior. EUDebug automatically
detects potential issues during rule composition and shows
conflicts with existing rules at the end of the process. Its
main component is a semantic-colored Petri net (SCPN)
for modeling and simulation and a web interface for rule
composition and problem analysis. The interface includes
features for rule composition, problem checking, and step-
by-step explanation, enhancing user understanding of rule
conflicts and run-time behavior. It simplifies rule creation
and helps users grasp the implications of their configura-
tions. (Corno et al.| [2019] evaluated EUDebug for its effec-
tiveness in helping users understand and identify problems
in their trigger-action rules. Participants perceived loops
and inconsistencies as significant issues, while redundan-
cies were comparatively more acceptable. The loop was
the most challenging problem, leading participants to uti-
lize the step-by-step explanation feature frequently. While
only highlighting detected issues was often insufficient, the
step-by-step simulation of rules notably aided in under-
standing the problems.

The paper by |Zhao et al|[2020] introduces a set of proto-
type interfaces designed to visualize and clarify the differ-
ences in variants of TAP rules. The interfaces assist users,
regardless of their experience, in understanding the dif-

De Russis and
Monge Roffarello
[2018] proposed a
debugging method
using Semantic Web
and Petri Nets for
trigger-action rules,
successfully
identifying
inconsistencies and
loops.

EUDebug helps
end-users debug
TAP rules by
detecting potential
issues during rule
composition and
simulating rule
behavior with a web
interface.

10

2 Related Work

I

© Alice Falls Asleep

R Front Door Lock
Unlocks

1 Front Door Lock
Unlocks

ht Program B

v

(+ Rules only in the right program)

while...

O Alice is Asleep

O Itis Nighttime

then...

B Lock Front Door
Lock

I Lock Front Door
Lock

R Lock Front Door
Lock

@ with Program A

@ with Program B

Program B

v

(+Patterns that only the right program has)

With this program, what would

or happen?

be @ Locked while

be @ Locked while

R Lock Front Door 4 Locked
Lock

@ Front Door Lock will be @ Locked while
@ Itis Nighttime

Figure 2.1: TAP diff interfaces demonstrate both a conventional method of present-
ing differences in program text (left) as well as innovative techniques of displaying
differences in program outcomes (center) and properties (right). (Image taken from

Zhao et al.|[2021])

Zhao et al.|[2020]
introduce prototype

interfaces that
visualize and clarify

differences in
variants of TAP rules,
assisting users in
understanding rule
changes and system

behavior.

ferences in rule changes. These interfaces offer three lev-
els of granularity: textual differences in the rules, differ-
ences in system actions under specific scenarios, and prop-
erty differences. Inspired by code diff utilities and collab-
orative word-processing tools, these interfaces provide a
comprehensive view of TAP rule variants, helping debug
and understand the behavior of smart devices and sys-
tems. The text difference interface, inspired by GitHub’s
diff views, highlights syntax differences in TAP rules, cate-
gorizing rules as “added,” “removed,” or “modified.” The
flowchart-based interface assists users in understanding
behavioral differences between rules under specific scenar-
ios, like different actions triggered by the same event. It
depicts how various system states evolve, highlighting dif-
ferences in device states and actions taken by each rule.
This approach helps in clarifying complex interactions and
redundancies in TAP rules. Additionally, the paper intro-
duces a form-based interface for comparing multiple TAP
rules. This interface uses a multiple-choice form to present
scenario-specific questions, helping users choose between
actions taken by different rules. It identifies the rule(s) most
aligned with user preferences based on their responses.
The interface also explores property differences, compar-
ing long-term system patterns that address the challenge of
manually analyzing rules.

In another paper, a user study conducted by |Zhao et al.
[2021] extended their previous work (Zhao et al.| [2020])
on prototype interfaces to visualize the differences in vari-
ants of TAP rules by evaluating the interfaces as shown in

2.3 Solutions using Static Analysis

11

Figure The user study revealed that users could find
differences by examining rules alone for short, simple pro-
grams. However, participants using semantic-difference
interfaces performed better for longer, more complex pro-
grams than those using traditional rules or text-difference
interfaces. The outcome-difference flowchart interface was
better in tasks requiring the identification of specific differ-
ences, while the property-difference interface was better for
abstract differences. The study highlights the importance
of interfaces to visualize information with various levels of
detail.

A paper by |Yusuf et al. [2022] introduces RecipeGen, an ap-
proach to generating TAP rules using natural language de-
scriptions, employing a deep learning framework. It di-
verges from previous studies by framing TAP rules as a
sequence learning task rather than a classification one, uti-
lizing Transformer sequence-to-sequence architecture. This
method allows RecipeGen to capture the intricate relations
among various elements of the rules, leading to more accu-
rate and relevant rule generation. The key to RecipeGen's
effectiveness is its use of pre-trained autoencoding mod-
els, which enhances its understanding of rule descriptions.
RecipeGen evaluation demonstrates high performance in
generating TAP rules. This advancement marks a signif-
icant contribution to the field, offering to avoid conflicts
during rule creation.

AutoTap by [Zhang et al| [2019] helps create TAP rules
by allowing users to define properties and rules through
a graphical interface, making it more accessible to non-
technical users. It automates the creation and repair of TAP
rules to ensure compliance with specified properties pro-
vided by the user. This feature reduces the risk of human
error in TAP rules. AutoTap uses linear temporal logic to
translate user-specified properties into formal models. It
then synthesizes TAP rules that are compliant, accommo-
dating, and valid using an algorithm. This approach en-
sures that the smart home system adheres to user-defined
properties while reducing TAP rule conflicts.

Trace2TAP by Zhang et al.|[2020] also helps in TAP rule cre-
ation. However, it analyzes user behavior traces to gener-

The study suggests
semantic-difference
interfaces perform
better than traditional
rules for more
extended and
complex programs.

RecipeGen uses
deep learning to
generate accurate
TAP rules from
natural language
descriptions,
resulting in more
relevant and
conflict-free rule
creation.

AutoTap automates
creating and
repairing TAP rules,
reducing human
error and ensuring
compliance with
user-defined
properties.

12

2 Related Work

Trace2TAP
generates TAP rules
by analyzing user
behavior traces,
helping users align
device automation
with their
preferences.

FORTNIoT predicts
smart home behavior
by simulating TAP
rules and
self-sustaining
predictions, helping
users better
understand and
manage their smart
home systems.

FortClash uses a
two-step process and
breadth-first
algorithm to predict
unintended smart
home behaviors.

ate TAP rules. It identifies device actions to be automated
that align with the user’s intent and uses symbolic execu-
tion and SAT-solving to create relevant TAP rules. The sys-
tem clusters and ranks these rules to help users select the
most suitable ones. Trace2TAP was evaluated through a
field study in office settings, showing its effectiveness in
aligning user intent with automated actions. Additionally,
Trace2TAP helps in debugging by generating patches to re-
fine existing rules based on user interactions, further align-
ing device automation with user preferences.

2.4 Solutions using Dynamic Analysis

Coppers et al. [2020] introduce FORTNIoT, a tool designed
to predict the future behavior of smart homes using existing
TAP rules. It simulates these rules in conjunction with self-
sustaining predictions, like weather forecasts or sun posi-
tions, to deduce the future states of the smart home. FORT-
NIoT’s algorithm integrates these predictions with smart
home rules, enabling users to understand the complex in-
teractions within their smart home systems. The process
involves continuously updating predictions based on real-
time data and simulating various scenarios. A between-
group study by Coppers et al.|[2020] revealed that FORT-
NIoT helps non-experienced users better understand and
feel more confident about smart home behaviors. It shifts
user responsibility from assembling answers to simply ver-
ifying them. They remarked that predictions improve ac-
countability and comprehension of smart homes, help re-
solve conflicts, and manage smart home behaviors. Addi-
tionally, they highlighted that visualization tools help trou-
bleshoot past malfunctions and could benefit future smart
home behavior research.

Expanding on their work on FORTNIoT, Coppers et al.
[2022] introduces FortClash, which uses a two-step process
for predicting unintended smart home behaviors. Initially,
it robustly forecasts the smart home’s future behavior us-
ing TAP and external prediction services, like weather fore-
casts. Then, unlike FORTNIoT’s depth-first approach, it
employs a breadth-first algorithm to detect potential unin-

2.4 Solutions using Dynamic Analysis

13

/Q\ Steve Home
I-__é Front door Unlocked Locked
I Weather Sunny Cloudy
B window covers Raised Lowered A\ Raised / lowered
%2 IF cloudy AND somebody home Conflict

RL THEN raise the window covers

IF door locked AND no storm

@z loor no stor

THEN lower the window covers

Figure 2.2: FortClash predicts and allows smart home users to temporarily suspend
one-time exceptions for a rule’s action at a specific moment. (Image taken from

Coppers et al.|[2022])

tended behaviors accurately. This algorithm ensures that
all potential outcomes of the rules are considered indepen-
dently and sequentially, thus improving the accuracy of
the predictions. Users can then identify potential issues
through a dashboard, as shown in Figure FortClash ex-
amines the predicted states, rule executions, and a causality
graph to spot unintended behaviors like loops or inconsis-
tencies. If a state participates in multiple unintended be-
haviors, FortClash merges them until resolution. Users can
control outcomes through a visualization interface, which
allows them to suppress specific actions. For example,
unchecking a box linked to an action prevents its execution,
removing its effects from future predictions. This process
feeds back into the prediction algorithm, which maintains
a list of suppressed actions to ensure they do not reoccur
in future simulations. FortClash also allows users to mod-
ify action parameters instead of simply suppressing them.
Users can adjust parameters like partially raising window
covers and delaying action execution. These temporary
modifications are stored in a list and considered by the
prediction algorithm, overriding the default action param-
eters. This change helps meet the current needs without al-
tering the rule’s overall settings for future executions. Fort-
Clash also allows users to manually plan action executions,
addressing situations where rules fail to trigger. Users can
select execution times directly on the timeline visualization,
using configurations of existing actions or setting new ones.

FortClash lets users
control, modify, and
plan actions through
a visualization
interface to address
predicted unintended
behaviors.

14

2 Related Work

Bedroom #3
L - Roller Shades

We suggested the following fixes: %

m Suggested Fix 2/4

Bedroom #3
L - Roller Shades

If... while... then...
+ (Bedroom #3 (outside Open
Brightness Sensor Brightness Bedroom #3
(Analogue)) Sensor Roller Shades e
Surrounding (Analogue))
brightness falls Surrounding
below level 1 brightnessis
above level 0

Figure 2.3: Debugging workflows by Zhang et al.| [2023] provide a history visual-
ization interface (left), patch synthesis output interface (center), and patch behavior
visualization (right). (Image taken from|Zhang et al.|[2023]

Explicit-Feedback
and
Implicit-Feedback
workflows by |Zhang
et al.|[2023]
outperformed the
Control workflow in
debugging TAP rules.

Users can also ignore system warnings about potential un-
intended behaviors once or always. Ignored instances are
recorded, and future matching predictions are updated ac-
cordingly.

The paper by |[Zhang et al.|[2023] introduces new interfaces
and algorithms for debugging TAP rules, focusing on the
end-to-end process of resolving conflicts in smart homes.
These interfaces include identifying unexpected behaviors,
locating faults in TAP rules, proposing modifications, and
refining these changes. The authors developed two work-
flows, Explicit-Feedback and Implicit-Feedback, each using
different methods for gathering user feedback on system
misbehavior. A Control workflow was also implemented,
representing traditional manual TAP debugging without
tool support. The Explicit-Feedback workflow uses user an-
notations on automation misbehaviors to suggest correc-
tive patches for the rules. Users mark incorrect automa-
tion via a history visualization interface, and the system
generates potential patches, as shown in Figure These
patches are then presented to the user with detailed visu-
alizations for informed decision-making in selecting and
refining patches. On the other hand, the Implicit-Feedback
workflow automatically infers system misbehaviors by an-
alyzing user interactions, such as manual device actua-
tion or reversing automation. Unlike the Explicit-Feedback
workflow, it does not require users to annotate misbehav-

2.4 Solutions using Dynamic Analysis 15

N (A
|) Resume || B stop || ? why.. ‘
@3 Light -
@) Ground l a
Qm When Pac is within 1 ter of Big Dot becomes true ‘—
[Ghost Do in order
QDO" Big Dot set isShowing to false — more... ‘
QDMZ ’— Big Dot.isEaten set value to true nmw...;J
Dot3 > =
« y |
Pac’s details
camera focuses on subject of question
properties || [@ World.move Pac / J
| current direction = forwa =8| World.move Pac No paramet tooltips show properties’
Pac move Pac.current direction 3 met duration =1 style uunn{'ue-‘nlmu... -
=] If both Pac is within 2 of Ghost and not Big Dot.isEaten
color L .
access to previous
opacity = 1(100%) Pac resize 0.5 more...)
questions and answers
vehicla = RS D fer Do together| “IfElse| L While For all
T DI B 2thel se P
< ﬁ » 0 In order 0 logether SE oop Nile or all In o COde fe/afed [O rhe
- - selection is highlighted
{ runtime actions [<} Questions I've asked
3821010 / 854011
causality arrows
Big Dot.isEaten set to true ”t,
d

true
Pac is within 2 of Ghost » and

oing else > 4

“ isEaten |\ ¢,
e

talse false

not
| time cursor traverses execution history ’|

Figure 2.4: The answer provided by Whyline displays a visual representation of the
runtime actions at the bottom of the figure. Users can utilize the time cursor to
navigate through the execution history. (Image taken from Ko and Myers [2004])

,
\

iors explicitly. This workflow identifies potential issues
like under-automation (automated events that should have
occurred but did not) and over-automation (unnecessary
automated events). Users still get to decide which de-
vice actions are incorrect, helping accurately identify false
negative and false positive misbehaviors. Upon evalua-
tion, |[Zhang et al.| [2023]] found that the Explicit-Feedback
and Implicit-Feedback groups performed better than the Con-
trol group in problem-solving tasks. Without tool support,
the Control group struggled more, particularly in complex
tasks. However, usability scores were similar across all in-
terfaces, but the Implicit-Feedback group required fewer clar-
ifications. Time spent on tasks varied, with the Explicit-
Feedback interface requiring more time due to additional
feedback steps.

Zhang et al| [2023] pointed out two categories of TAP
conflicts: over-automation (unnecessary automated events)

16

2 Related Work

Whyline helps
programmers debug
code by allowing
them to ask specific
questions about
runtime bugs, which
significantly reduces
debugging time.

and under-automation (automated events that should have
occurred but did not). The first question that comes to
users” minds is why over-automation actions occur and
why under-automation events do not occur. Ko and My-
ers [2004] answered similar questions with their prototype
Whyline. Whyline introduces an interrogative debugging
paradigm to debug code, allowing programmers to ask
specific why did or why didn’t questions about runtime bugs.
Whyline visualizes runtime events for the slice of the pro-
gram relevant to these questions, along with connected ar-
rows to represent data and control flow causality, as shown
in Figure A user study by Ko and Myers|[2004] showed
that Whyline significantly reduced debugging time for pro-
grammers.

17

Chapter 3

The Debugging
Dashboard

This chapter will discuss the Debugging Dashboard designed
as part of this thesis. We will start by providing an
overview of the application that incorporates the dash-
board in Section Then, we will discuss the Debugging
Dashboard interface and its design choices in Section[3.2 Fi-
nally, we will discuss implementing the application and the
dashboard in detail.

3.1 Overview

We implemented a web application to create virtual smart
home setups, simulating conflict situations in TAP rules
and offering the Debugging Dashboard to identify the causes
of these conflicts. The application allows for creating
and simultaneously running various smart home config-
urations with different conflict scenarios. The application
is implemented in a client-server architecture, as shown
in Figure The client-side developed using Reaciﬂ a
Javascript’| library, offers an interactive user interface for
managing and debugging smart homes. It primarily in-

'https:/ /react.dev (last accessed on February 2, 2024)
*https:/ /www.javascript.com (last accessed on February 2, 2024)

Our application
simulates conflict
situations in TAP
rules, offering the
Debugging
Dashboard to
identify the causes of
those conflicts.

https://react.dev
https://www.javascript.com

18 3 The Debugging Dashboard

React Web Application

(\ Smart Home Manager

‘ Debugging Dashboard

SQlite ¢ | Flask REST b J
Database » Server API HTTP Request/Response
| Device Manager Rule Manager

- Device Register

A

Server-side Client-side

Figure 3.1: System architecture of our web application that offers the Debugging
Dashboard. It shows the interaction between client-side components, server-side
components, and the database and data flow within the smart home debugging
system.

cludes the Smart Home Manager and the Device Register. The
Device Register allows us to add virtual smart devices to the
application. The added devices can then be used when con-
tiguring the virtual smart homes. The Smart Home Manager,
on the other hand, includes the following components:

a. Debugging Dashboard: It displays the activated rules
in the smart home to assist in finding the cause of the
rule conflicts. We will discuss design choices in Sec-
tion [3.2land implementation of the dashboard in Sec-
tion 3.3

b. Device Manager: It manages devices within the smart
home ecosystem, allowing users to add and modify
device settings.

¢. Rule Manager: It helps create TAP rules, providing an
interface for users to define triggers, conditions, and
actions for their smart home devices.

The client communicates with the server side via Hyper-
text Transfer Protocol (HTTP) requests to a Representa-
tional State Transfer (REST) Application Programming In-
terface (API). The server-side is implemented in Flaskﬂ

*https:/ /flask.palletsprojects.com (last accessed on February 2, 2024)

https://flask.palletsprojects.com

3.2 Debugging Dashboard Design

19

a lightweight and flexible Pythorﬁ web framework. The
Flask API processes client requests, handling the applica-
tion’s logic and interacting with the SQLit database. This
database stores data related to smart home devices, TAP
rules, and other relevant information needed for debug-
ging. The architecture is designed to manage and debug
smart home rules efficiently.

Before moving on to the interface design, we must con-
sider the context of using the application and the debug-
ging dashboard. We should determine which TAP rules
and devices to use in the application. This is important
to ensure the dashboard can handle the complexities and
variations in smart home systems.

As discussed in Section distinguishing between events
and states can be confusing in TAP rules. Therefore, for
clarity, we use TAP rules with a single event-based trigger
and a single event-based action, and an optional condition
group, when present, groups multiple state-based condi-
tions in the AND/OR chain.

A smart device can have sensors, actuators, or both
(Hribernik et al. [2011]). Sensors collect environmental
data, such as temperature or light brightness levels, while
actuators perform actions based on this data, like adjust-
ing thermostats or closing blinds. Our application supports
smart devices with sensors, actuators, or a combination of
both. We use the common term Device_property to refer to
both sensors and actuators.

3.2 Debugging Dashboard Design

The Debugging Dashboard serves as the core component of
our application. This section looks into the interface’s ele-
ments, the reasoning behind their design, and their role in
supporting the debugging process.

*https:/ /www.python.org (last accessed on February 2, 2024)
*https:/ /www.sqlite.org/index.html (last accessed on February 2,
2024)

We use TAP rules
with a single trigger,
single action, and
optional condition
groups for multiple
conditions.

Our application
supports smart
devices with sensors,
actuators, or both.

https://www.python.org
https://www.sqlite.org/index.html

20 3 The Debugging Dashboard
TiMe TRIGHERS CONDTIONS ACTIONS 0ee 1 USER 2| Lihs AC CURTAWS
i >
] % -~ % 7 7
7 o
_ # 5 :
i L P / >
e = oml\s £ ap s y| TORM OFE ; 7
1 \,\z.m? on L\ YT 7 / %
i -
o - 1
i ' L~
_ : , / 2 e Ve -
] . - - - j
] . .
. (‘ “ 5 / ? L
i ‘ /] 3 0 0
i ‘ ’
— TEMPE RATURE. I % £ €
i y e o s / N
" % g
3
0
| . 1N
i ¢ 7 7z
/ b > %)
l / " ¥ 1
i L 3 7 é]
t
.-l Aaly
N ', ; %
i ' - 4 L
| v L L/ A
i 0 L
N 0
N ROOM 7 Pz [
BRAGYTNESS TuRn o8 3
1 LeveL 7| Lt 4 »
] Low L/ - »
4 - 4 %z
g
10 0 ~— 0 -
% - >

Figure 3.2: Initial Prototype of the Debugging Dashboard. This early version of the
dashboard shows a timeline of TAP rule events, visual representations for triggers,
conditions, and actions, and a display of smart home devices with status changes

over time.

We created a
dashboard prototype,
including a timeline
of TAP rule events
and device status
change visualization.

3.2.1 Initial Prototype

We aimed to create an effective dashboard interface that im-
plements trace-based debugging, as defined in Chapter
to assist users in debugging TAP rules in their smart home
environments. Our focus was on integrating essential el-
ements that would make the process easier. To meet our
requirements, we designed an initial prototype, as shown
in Figure that includes a timeline displaying TAP rule

3.2 Debugging Dashboard Design

21

events chronologically for users to follow the sequence of
triggers, conditions, and actions. We represented each TAP
rule event, including triggers, conditions, and actions, us-
ing different shapes to make them distinguishable. We
also added a visualization of all smart home devices and
their status changes, which is crucial in showing how each
device’s state changes and correlates with activating TAP
rules. Although we included a visualization for all user
statuses in our prototype, we excluded it in our final dash-
board to keep the interface simple and easy to debug.

3.2.2 Final Interface

When designing our final dashboard interface, we made
some minor adjustments to the initial prototype while still
retaining most of the original design elements. As men-
tioned earlier, we decided to exclude the visualization
for user statuses. We refined the representation of TAP
rule events by using rectangular boxes instead of differ-
ent shapes, which makes it easier to read the textual in-
formation inside those shapes while still being distinguish-
able based on the column headers provided for each col-
umn. Additionally, we added labels to make it visually
clear when the device value changes. To provide additional
details, we included mouse hover options. In the follow-
ing paragraphs, we will explain the detailed design of each
component.

The final dashboard interface is divided into two main sec-
tions: the Rule Timeline (the left half) and the Device Time-
line (the right half), as shown in Figure The Rule Time-
line displays the activated rules in the order of their execu-
tion, following the visual approach of Whyline’s methodol-
ogy (Ko and Myers| [2004]). On the other hand, the Device
Timeline is inspired by FortClash's (Coppers et al.|[2022]) and
Zhang et al.|[2023]’s techniques, which illustrate the status
of connected smart devices over time. This layout ensures
that the execution of rules and the reaction of devices to
these rules are clearly understood, helping in the debug-
ging process.

The final interface
includes some minor
changes to improve
the debugging
process.

The dashboard
interface is divided
into two main
sections: the Rule
Timeline and the
Device Timeline.

22

3 The Debugging Dashboard

The Rule Timeline
displays the
sequence of rule
activations over time,
with a visual
grouping of rule
components and
arrows indicating the
control flow between
different rules.

The dashboard’s leftmost column displays the timestamps
for each activated rule, arranged horizontally on the Rule
Timeline. This design enables users to observe the sequence
of rule activations over time easily. The timestamps are not
displayed to scale to minimize empty spaces between rules
that are activated at widely different times and to provide
additional space to avoid overlapping of simultaneously
activated rules. The Rule Timeline portrays each compo-
nent of the rule—trigger, action, conditions, and condition
groups—as separate events within a unified box. This vi-
sual grouping indicates that they jointly form a single rule.
Arrows link these components to display the sequence and
causality of rule execution. Furthermore, actions that acti-
vate other rules are connected to the triggers of subsequent
rules with arrows, demonstrating the control flow between
different rules.

Each rule on the dashboard has a display box with the
rule name shown at the top-left corner, clarifying its func-
tion. The information displayed for all rule components
reflects the information needed to form the rule, ensuring
that users understand the rules.

The trigger box shows data in the format of ” <Room_name>
<Device_name> <Device_property> changed to <operator>
<new_state>,” for example, "Bedroom Light Brightness
changed to <= 70%.” The action box shows data in the
format of ”<Room_name> <Device_name> change <De-
vice_property> to <new_state>,” for example, " Bedroom Light
Change Brightness to 70%.” The action box also displays ”Ac-
tion executed v if the action was carried out successfully
and ”Action not executed x” if the action failed due to failed
conditions.

The condition box shows data in the format of "Is
<Room_name> <Device_name> <Device_property> <opera-
tor> <condition_state>?,” for example, "Is Bedroom Light
Brightness <70%?” Additionally, the condition box informs
the user if the condition is met. It displays ”Yes.” if the
condition is met, and “No. <Device_property> is <Cur-
rent_state>" otherwise, for example, "No. Brightness is
80%.”

23

3.2 Debugging Dashboard Design

aun

JDAO SITASP JTRUWIS PIJIIUUO0D JO SNJLIS) SMOYS YdTYM “(g) au1jaui1], a010a(]) PUe ‘UOTINIAXS IIdL]} JO IOPIO S} UI SINI
pareande ay3 sAedsip yorym ‘() auyaui] apmyf auyd SWSIYSTY pivoqysv(] Sur88nqga(9yj Jo a0eJIdjul 19sn aYyJ, :¢'¢ dInJig

85010 4

2500
A.s

suieund
wooipag

simesadws)

1e3s0ULIBY |
wooipag

2s0|9

es

MOPUIM
woolpag

2s0|9

uadQ

aes

J00Q
wooipag

Jamod

oV
woolpag

ssouybug Jomod

pULTn]
wooipag

%6¢C

ssaupybug

10SUBS 146!
100pINQ

X P81NJaxe J0U Uonoy
%08 01

ssaujybug abueyd
617 woolpag

10 Sl Jomod "ON

£UQ = Jamod b1 wooipag s|
PIOY SUORIPUOD TTV 41 984D \

A PaIN0BXd UOHIY

e Emm: 6119 Josuas b1 100 :.mwM
aje)s abueyy %09 1y6ug S 4B J00pING S|
(© suienn) wooupag {/» possed] PIOY SUOIIPUOD TV 41 493YD

%0€ >
0} pabueyd
ssauybug

J1osuas 1ybi7 JoopIng

g any

Ho=

0} pabueyd
Jamod

Y617 wooipag

ﬁ v any

/> PRINJaXa uondy
H4O 0}

Jamod abueyd
Y617 wooipag

A PaIndaxa uonoy [passed] S9N
uQ 0} £9S0[Q = 9)E1S MOPUIM WooIpag S|
Jamod abueyd -
v WooIpg . uadQ s! 91e1s "'ON
£9s0[Q = 9)e]S JooQ Woolpag S|
[/ passed] SP|OY UORIPUOD ANV # %934D
£0092 < dinjesadwa) 1eIsowIay | wooipag s|
(/ Passed] PIOY SUORIPUOD TV J1 19840 \
uonoy suonipuoy

aso0|Q =
0} pabueyd
alers
JooQ wooipag
zony

up =

0} pabueyd
Jamod

14617 wooipag

L3Iy

196611

[LS:P2:LL

[SL:€0:LL

[SL:€0:LL

[7¥:00:LL

sl

-0

24

3 The Debugging Dashboard

Condition Status
Indicator is designed
to help users quickly

determine if
conditions are met
and whether an
action was executed.

The Device Timeline
displays the state of
each
Device_property in
separate columns,
which change over
time.

The dashboard’s
timeline is not to
scale, which helps to
avoid overlapping
visual elements.

Boxes representing AND condition groups display ”Check
if ALL conditions hold.” Conversely, boxes for OR con-
dition groups show ”“Check if ANY condition holds.” A
"Passed” /”Failed” indicator highlighted with green and
red backgrounds, known as the Condition Status Indica-
tor, for each condition and condition groups, provides a
quick visual cue to users, enabling them to quickly deter-
mine whether specific conditions were met without read-
ing through all the text. Additionally, the interface features
a red cross over the arrow that connects a failed condition
group to its corresponding action. This indicates that the
action was not executed due to the failure of the condition
group, helping the user understand the rule execution pro-
cess.

The Device Timeline displays the state of each De-
vice_property in separate columns, which change over time.
At the top of each column, the Device_name and the corre-
sponding Device_property are displayed. A small box called
the Device State Label showing the new value is marked
whenever a Device_property changes state. Device State La-
bels for automated state changes also include a flash icon (¥)
to differentiate them from manual or environmentally trig-
gered state changes. A thick vertical line colored uniquely
according to the state value extends from the Device State
Label to represent the unchanged state over time until the
following state change occurs. Unique colors are assigned
to each distinct state of Device_properties with fixed states,
such as Power (On/Off), while for Device_properties with a
range of states, e.g., Brightness ranging from 0% to 100%,
extreme values are assigned unique colors, which are in-
terpolated for intermediate values within the range. The
design is inspired by [Zhang et al.|[2023].

As mentioned earlier, the timeline is not to scale. This de-
sign also prevents overlapping Device State Labels in cases
where changes occur in rapid succession. Furthermore, the
Device State Label that triggers a rule is displayed slightly
above the corresponding rule on the Rule Timeline of the
dashboard. This visual difference can help users infer the
sequence of events, as the timestamps are nearly identical.
Similarly, state changes in Device_properties resulting from a
rule’s action are visually positioned slightly lower, helping

3.2 Debugging Dashboard Design

25

Device value unchanged!

(A
Bedroom Curtains (i
. Change State
to Close
Action executed v

O N s

Changed automatically by Rule 2 at 11:03:15
Off

‘il N BN BN
™l
| Changed manually by user at 11:03:15

[
il ||

Changed by environment at 11:24:57

29%*
‘il BN BN

Figure 3.4: Additional information is displayed to assist with debugging when
hovering over different components. (A) An information icon appears in the ac-
tion box’s top right corner if a rule’s action does not modify the state of the De-
vice_property. (B, C, and D) Hovering over the Device State Labels will reveal the
cause and exact timestamp of the change. (E and F) Display the state of the De-

vice_property before and after a Device State Label.

understand the cause-and-effect relationship.

We display additional information using the mouse hover
feature to enhance the debugging process, as depicted
in Figure 3.4, Hovering over Device State Labels reveals
the change’s cause and exact timestamp. For automated
changes in Device_properties, the display reads ”Changed au-
tomatically by <Rule_name> at <Timestamp>,” like "Changed
automatically by Rule 2 at 12:34:56.” Manual changes show
”Changed manually by user at <Timestamp>,” while environ-
mental changes display ”Changed by environment at <Times-
tamp>.” Additionally, when a rule’s action does not alter
the Device_property state (e.g., a light turned on by a rule

The mouse hover
feature provides
additional information
for debugging.

26

3 The Debugging Dashboard

Trace leading to Action "Bedroom Light Brightness to 80%

Time Trigger

Rule 2
11:03:15

Bedroom Door
State

Outdoor Bedroom Bedroom

Light Sensor Light Door

Conditions Action Brightness ~ Power Brightness State
|| upen
On

Close

Bedroom Light
Change Power

changed to
=Close

Rule 6

11:24:57+

changed to
<30%

Outdoor Light Sensor Check if ALL conditions hold
Brightness /

to Off
Action executed v/

Bedroom Light
Change Brightness

to 80%

Action not executed X

Is Bedroom Light Power = On?
No. Power is Off

Figure 3.5: Dashboard’s Filtered View displays only the relevant rules and devices
involved in the success or failure of a particular action.

The dashboard has a
data filtering feature
to help users identify
the cause of over and
under-automation
events.

The Filtered View
supports debugging
by highlighting
trigger, condition,
and action changes,
helping users trace
issues more
effectively.

when it was already on), an information icon appears in
the action box’s top right corner, displaying ”Device value
unchanged!” upon hovering.

3.2.3 Data Filtering

The dashboard displays a detailed view of the smart
home’s TAP rules and smart device events. To simplify de-
bugging, we introduced a data filtering feature inspired by
Whyline (Ko and Myers| [2004]). This feature allows users
to focus on specific actions, presenting a Filtered View, illus-
trated in Figure that traces only the rules and devices
involved in that action’s success or failure. This filtering
approach aims to answer why actions of over-automation
occur and under-automation events do not, helping users
quickly identify the cause of the issue.

In the Filtered View, the dashboard enhances the debugging
process by enabling highlighting based on trigger, condi-
tion, and action. Selecting a trigger box highlights the cor-
responding Device_property state change that initiated the
rule. Similarly, clicking an action box highlights the resul-

3.3 C(lient-side Implementation

27

Trace leading to Action "Bedroom Light Brightness to 80%

Time Trigger Conditions Action
Rule 2
11:03:16
Bedroom Door Bedroom Light
State Change Power
changed to to Off
= Close Action executed v/
Rule 6
11:24:57
Outdoor Light Sensor/ Check if ALL conditions hold Bedroom Light
S:ag:;zzs:) Is Bedroom Light Power = On? E)hgg?: s
i Failed X
<30% HoNRowericioil Action not executed X

Outdoor Bedroom
Light Sensor Light
Brightness ~ Power Brightness

H
On

Bedroom
Door
State

upen

Close

Figure 3.6: In Filtered View, clicking trigger, condition, or action highlights relevant
information for debugging. The figure shows that clicking on the failed condition
highlights the latest Device State Label of the Device_property in the failed condition

and the responsible rule.

tant Device_property state change. For conditions, selecting
a box highlights the most recent state change of the De-
vice_property used in the condition evaluation. Additionally,
if an earlier activated rule caused that state change, then
that rule is also highlighted. This feature will help users
trace the root cause of issues more effectively.

3.3 Client-side Implementation

The client-side of the application is implemented using Re-
acﬂ as mentioned in Section for building user inter-
faces, and Bootstrapﬂ a well-known CSS framework. This
combination helped develop custom components needed
for our design and ensured a responsive, consistent inter-
face. This section describes implementing two primary
components: the Smart Home Manager and the Device Reg-
ister. The Smart Home Manager allows the configuration

Shttps:/ /react.dev (last accessed on February 2, 2024)
"https:/ / getbootstrap.com (last accessed on February 2, 2024)

https://react.dev
https://react.dev
https://getbootstrap.com

28 3 The Debugging Dashboard

of multiple virtual smart homes to simulate different TAP
conflict scenarios and offers the Debugging Dashboard. The
Device Register adds virtual smart devices into the appli-
cation, which can be used in these smart home setups.
The client is accessible at http://client-url/ (e.g.,
http://localhost:3000/ during the user study).

3.3.1 Smart Home Manager

The Smart Home Manager consists of the Debugging Dash-
board, the Home and Device Manager, and the Rule Manager,
as described in Section[3.1]

Debugging Dashboard
The Debugging The Debugging Dashboard for each smart home can be
Dashboard is accessed at http://client-url/case/homeld, where
implemented using homeId is the unique identifier of the home. The dash-
D3 JS library. board was developed using D3]Sﬂ a JavaScript library

known for its flexibility in creating custom data visualiza-

tions. By utilizing this library, we were able to develop

a custom visualization that met our dashboard interface

design requirements, as detailed in Section Data for

the dashboard is retrieved via an HTTP GET request to
http://server-url/api/unfiltered-trace-data/homeld,
server—url is described in Section The response

data, described in Section [3.4.1} is then visualized using D3

JS.

A boolean variable canFilter controls the activation of

the Filter feature, as described in Section allowing

us to evaluate the feature during user study. On clicking

the action of the activated rules, the filtered information

is visualized in fullscreen Bootstrap Modal. The fil-
tered information is retrieved via an HTTP GET request to
http://server-url/api/trace-data/homeId/ruleld,
where ruleIdisthe unique identifier of the activated rule.
The response data is described in Section [3.4.1}

Shttps:/ /d3js.org (last accessed on February 2, 2024)

https://d3js.org

3.3 C(lient-side Implementation 29

When a user clicks on the action of an activated rule, the
filtered information is displayed in a full-screen Bootstrap
Modal. This data is fetched using an HTTP GET request to
http://server—-url/api/trace—-data/homeId/ruleld,
where rulelId is the unique identifier of the activated
rule. The response data from this endpoint are detailed in
Section B.4.1l This method ensures that users can access
detailed, rule-specific information without leaving or
reloading the Debugging Dashboard page.

Home and Device Manager

The Home and Device Manager supports the creation of The Home and
virtual smart homes, enabling users to add rooms and Device Manager
devices and update device values to simulate different enables users to
smart home scenarios. New homes are registered through create virtual smart
a form at http://client-url/register—home, homes, modify
where users specify the home name and add multi- device values, create
ple rooms. By default, each home includes an Out- rules, and access the
door room for devices monitoring external conditions Debugging

like weather. After registration, home details, includ- Dashboard.

ing device and rule configurations, are accessible at
http://client—url/home—details/homeId, where
homeId is the unique identifier of the home. This page
also offers options to add devices, create rules (see Section
B.3.1), modify device values, and access the Debugging
Dashboard (see Section [3.3.1).

Devices can be added to the home by accessing the form at
http://client-url/add-device-to-room/homeId.
Users can then add multiple devices, configured using
Device Register (see Section 3.3.2), into the rooms of the
home. The added devices are listed under the Devices tab
on the home details page, initially set to their default states
from registration. The Device_property value of the devices
can be changed using Change Device Value button, which
opens a Modal. Users can select the Device_property from a
Dropdown, view its current value, and input a new value
in the provided field.

30

3 The Debugging Dashboard

The Rule Manager
allows the creation of
TAP rules with a
single trigger,
multiple conditions,
and a single action
for a smart home.

The Device Register
allows users to add
new devices with
multiple sensors and
actuators.

Rule Manager

The Rule Manager helps create TAP rules with a
single trigger, multiple conditions, and a single ac-
tion for a smart home. The form accessible at
http://client-url/create-rule/homeId requires
a name for each rule. Triggers are set by selecting a De-
vice_property, a comparison operator (=, !=, <, >, <=, >=),
and a trigger value. Actions are defined by selecting a De-
vice_property and the desired new value. Conditions are
formed using AND/OR groups and are implemented us-
ing React Query Builder}, The React Query Builder sup-
ports complex queries that match our need to build condi-
tion groups of TAP rules. Each condition can be set simi-
larly to triggers. Created rules are listed under the Rules
tab on the home details page.

3.3.2 Device Register

The Device Register page, accessible at
http://client-url/register-device, provides
a form for adding new devices. Users input the device
name and can add multiple Device_properties (sensors and
actuators). Each Device_property requires a name, state type
(Fixed or Range), state values, and corresponding colors
for the dashboard interface. For fixed states, users input
concrete values and colors, with the first state as the default
configured when the device is added to a smart home.
Minimum and maximum values with colors are needed for
ranged states, along with a default value. The application
automatically adds a Power State actuator with fixed On
(green) and Off (red) states, minimizing user input and
ensuring at least one Device_property per device. On the
Device Register page, users can view a list of configured
devices beneath the device registration form. This list
displays each device’s name, its Device_properties, and their
default values.

*https:/ /react-querybuilder.s.org (last accessed on February 2, 2024)

https://react-querybuilder.js.org

3.4 Server-side Implementation

31

3.4 Server-side Implementation

The server-side of the application is implemented us-
ing Flas for building REST API and SQLit database
management, as described in Section This combina-
tion helped develop this thesis’s lightweight and complete
backend application. Flask also offers future expansion of
the application using extensions as needed. This section de-
scribes implementing two primary components: the REST
API and the Database. The REST API provides HTTP GET
and POST endpoints to support data exchange between the
server and the client. The Database is used for storing
persistent data and logs of the smart homes. The server
endpoints are accessible at http://server-url/ (e.g.,
http://localhost:5001/ during the user study).

The server implements the check_rule method to auto-
mate rule triggering in a smart home. This method is in-
voked whenever the state of a device’s Device_property is
updated. It takes the updated Device_property as a param-
eter and checks if this state change triggers any rules. If a
rule is triggered, the method evaluates any configured con-
ditions defined in the rule. Upon meeting these conditions,
it updates the Device_property according to the action de-
fined in the rule. Additionally, the method logs all actions
performed during this process in the database, later visual-
ized on the Debugging Dashboard.

3.4.1 REST API

The REST API of the server offers two HTTP methods: GET
and POST. GET requests retrieve data from the server. POST
requests, on the other hand, require payload data to be
sent to the server, used for submitting data to be processed
and stored. The REST API uses Flask-SQLAlchem
an ORM (Object Relational Mapper) extension for Flask,

Ohttps:/ /flask.palletsprojects.com (last accessed on February 2, 2024)

Thttps:/ /www.sqlite.org/index.html (last accessed on February 2,
2024)

https:/ /flask-sqlalchemy.palletsprojects.com (last accessed on
February 2, 2024)

The server-side of
the application is
developed using
Flask and SQLite to
provide HTTP
endpoints for data
exchange and
storage of persistent
data.

check_rule method
automates rule
triggering in a smart
home by evaluating
triggers and
conditions.

The REST API offers
GET and POST
methods and
communicates with
the client via JSON.

https://flask.palletsprojects.com
https://www.sqlite.org/index.html
https://flask-sqlalchemy.palletsprojects.com

32

3 The Debugging Dashboard

The application uses
SQLite as a
database engine to
store and organize
persistent data.

to support interactions with the database. Communica-
tion between the server and client is handled using JSON
(JavaScript Object Notationﬁ for data exchange. The
implemented GET endpoints are described in Table
and the POST endpoints are described in Table The
endpoints are prefixed with http://server-url/api/
(e.g., http://localhost:5001/api/ during the user
study).

3.4.2 Data Storage

Our application utilizes SQLiteE‘rL a compact and efficient
database engine to organize and store data. This choice
aligns well with our Flask-based REST API server, support-
ing quick data operations and handling small data quanti-
ties of our thesis. Data is structured into entities for orga-
nized storage and easy retrieval. Table 3.3[describes these
entities. We present the Entity-Relationship (ER) diagram,
as shown in Figure which visually represents the re-
lationships between these data entities, providing a clear
understanding of the system’s data structure.

Bhttps:/ /www.json.org/json-en.html (last accessed on February 2,
2024)

Yhttps:/ /www.sqlite.org/index.html (last accessed on February 2,
2024)

https://www.json.org/json-en.html
https://www.json.org/json-en.html
https://www.sqlite.org/index.html

3.4 Server-side Implementation

33

(il homes

) name varchar(100)

Tiid integer
home_id:id t home_id:id
[direct_links
[source varchar(30)
[Jsource_id integer
[target varchar(30)
[Ditargetiid integer
[3home_id integer
id integer
hom
i rules
rule_id:id 1) name varchar(100)
[ihome_id integer
id integer
wiedid 4 t
rule_id:id le-idid,
[actuator_logs
{1 timestamp datetime
T property_key varchar(100)
{7 property_value varchar(100)
Teventtype varchar(10)
[rule_id integer
{3 actuator_id integer
Tid integer
actuator_id:id
i triggers.
17 property_key varchar(100) ™1
roperty_value rchar(100)
(Bproperty. v (0 rooms
17 property_type varchar(10)
g .
1 actuators 117) comparison_operator varchar(10) (i actions) name varchar(100)
ir! integer
D property_key varchar(100) i T sensor_id integer 1] property_key varchar(100) Jihomejd integer
[property_value varchar(100) €< actuator.id integer 10 property_value varchar(100) integer
1) property_value_type varchar(10) T rule_id integer I3 actuator_id integer)
() min_value integer Tid integer T3 rule_id integer sensor_id:id
I max_value integer 4 acwator_id:id Integer (il devices
D min_color varchar(30) L {_,|10 name varchar(100)
() max_color varchar(30) i activated_triggers [Zroom_id integer
% device_id integer l4———— 2RI [amp datetime i activated_actions integer
fir} integer rchar(100) . N .
id teg 1D property_key varchar(100) 10 timestamp RUBAR Lrue il
g 7] property_value varchar(100) 1T property_key varchar(100) v
177 property_type varchar(10) 1T property_value varchar(100) i sensors
actuatorid:id] _actator_id:id @ condition_groups {7 comparison_operator varchar(10)] executed varchar(10) 17 property_key varchar(100)
@ actuator_states Dloperator varchar(10) 13 trigger_id integer 1] remark varchar(100) i activated_rules D property_value varchar(100)
Dstate varchar(100) (I parent_type varchar(30) 3 sensor_id integer I3 actuator_id nieger | o[timestamp daicime 1) property_value_type varchar(100)
activated _rule jd:
Dcolor varchar(100) 3 rule_id integer (T actuator_id integer [Ractivated_ruleid integer T ['3home_id integer) min_value
[Ractuator_id intege > (I3 parent_group_id inte {73 activated_rule_id integer [3action_id integer 13 rule_id integer 1) max_value
id i id integer 3id integer id integer 0 min_color varchar(30)
parent.group.iqid C sensor_id:id 0 max_color varchar(30)
= A—t‘ .
condi _graup_xd‘ld‘ (w—— device.id
(id
(i conditions (il activated_conditit roups
condition_group_id:id| ol
1] property_key varchar(100) 1 timestamp datetime
[property_value varchar(100)] operator varchar(10) sensor.id:ld
1T comparison_operator varchar(10) [passed varchar(10) [sensor_logs
actuator_id:id| 1 property_type varchar(10)] parent_type varchar(30) 1] timestamp datetime
integer 3 activated_rule_id integer [property_key varchar(100)
integer 113 condition_group_id integer 1 property_value varchar(100)
1% condition_group_id integer (T3 parent_group_id integer [sensor_id integer
id integer id integer I2id integer
4 activated_condition_group,_id:id sensor.id:id
condition_id-id
(il activated_conditions
{0 timestamp datetime
(T property_key varchar(100) sensor_id:id
([property_value varchar(100)

() comparison_operator
I property_type

) passed

(D actual_value
(3 sensor_id
(T3 actuator_id

varchar(10)

ar(10)

char(10)
varchar(100)
integer

integer

{73 activated_condition_group_id integer

n_id

integer

integer

(il sensor_states

[T state varchar(100)

1T color varchar(100)

[T sensor_id |
Toid i

integer

integer

Figure 3.7: Entity-Relationship diagram of the database models - This diagram vi-
sually represents the structure and relationships of the database entities used in the
smart home debugging web application.

34

3 The Debugging Dashboard

Endpoint

Description

get—-homes

get—-devices

home-details/homeId

get—-home-devices/homeId

unfiltered-trace-data/homeId

trace—-data/homelId/ruleld

Returns a list of all homes configured in
the application, including each home’s
ID, name, number of rooms, total de-
vices across all rooms, and the number
of associated rules.

Returns a list of all devices registered
by the Device Register, detailing each de-
vice’s name, state type (Fixed or Range),
value ranges, possible states, and col-
ors.

Returns information about a specific
smart home, including its name, asso-
ciated rooms, rules, activated rules, and
direct links.

Returns details about sensors and ac-
tuators of devices in a specified smart
home, including each device’s name,
state type, value ranges, and colors.
Returns trace data for all activated rules
and updates logs of sensors and actua-
tors in a specific smart home.

Returns trace data for the specified ac-
tivated rule in a smart home, includ-
ing information about the rule, directly
linked rules, and logs of involved sen-
sors and actuators.

Table 3.1: HTTP GET endpoints of the REST API server and the description of each
endpoint’s functionality and the type of data it retrieves. The endpoints are pre-
fixed with http://server-url/api/ (e.g., http://localhost:5001/api/

during the user study).

3.4 Server-side Implementation

35

Endpoint

Description

register—-new-device

register-home

add-device-to-room/homeId

update—device-value/homeId

create—-rule/homelId

Registers new smart devices. Requires
data including the device’s name, state
type (Fixed or Range), value ranges, pos-
sible states, and associated colors.
Registers a new smart home in the ap-
plication. Requires data containing the
home’s name and its rooms.

Assigns devices to specific rooms within a
smart home. Needs data specifying which
devices to add to each room in the home.
Allows updating the value of De-
vice_properties for devices in a smart
home. Requires data containing the
device identifier and the new value to be
set.

Creates a new TAP rule in a specific smart
home. It needs data, including the rule’s
name, trigger, and action details, and as-
sociated conditions.

Table 3.2: HTTP POST endpoints of the REST API server and the description of
each endpoint’s purpose and the data it processes. The endpoints are prefixed with
http://server-url/api/ (e.g., http://localhost:5001/api/ during the

user study).

36 3 The Debugging Dashboard

Entity Description

Home Represents a virtual smart home entity.

Room Represents a specific room within a Home.

Device Represents a smart device, which can include
Sensors and Actuators.

Sensor Represents a sensor property of a Device.

SensorState Stores the various fixed states or readings that
a Sensor can support.

SensorLog Logs historical state change data recorded by
Sensors over time.

Actuator Represents an actuator property of a Device.

ActuatorState Stores the various fixed states or readings that
an Actuator can support.

ActuatorLog Logs historical state change data recorded by
Actuators over time.

Rule Represents a TAP rule, with a rule name.

Trigger Specifies the event that triggers a Rule.

ConditionGroup Groups multiple Conditions and Condition-
Groups to determine a Rule’s action execu-
tion.

Condition Represents individual conditions within a
Rule.

Action Defines the action to be performed when a
Rule is triggered and its conditions are met.

ActivatedRule Tracks instances when a Rule is activated in
the system.

ActivatedTrigger Records the Trigger event of ActivatedRule.

ActivatedConditionGroup | Records the evaluation of ConditionGroups
in an ActivatedRule.

ActivatedCondition Records the evaluation of individual Condi-
tions in an ActivatedRule.

ActivatedAction Records the execution of Actions in Activate-
dRule.

DirectLink Represents a direct link between the Acti-
vatedAction of an ActivatedRule and the Ac-
tivatedTrigger of a different ActivatedRule,
which is activated because of the previous
rule.

Table 3.3: This table provides descriptions of entities used in the web application.
Each entity is stored in a separate table in the database.

37

Chapter 4

Evaluation

In this chapter, we evaluate the Debugging Dashboard devel-
oped in Chapter 3| focusing on its effectiveness in identi-
fying the cause of conflicts in TAP rules. To evaluate, we
conducted a user study that compares the use of the dash-
board with and without the data filtering feature. In Sec-
tiond.1| we postulate the hypotheses to be tested during the
study. In Section 4.2} we describe the study designed to test
the hypotheses, the procedure carried out during the study,
and the participant demographics. Both quantitative and
qualitative results are presented in Section [4.3] The chapter
concludes with the evaluation discussion in Section 4.4l

4.1 Hypotheses

To answer our research questions outlined in Chapter|l} we
postulate the following hypotheses to be tested during the
user study:

H1 The use of filtering and tracing relevant data in the
dashboard increases the accuracy of identifying the
causes of conflicts in TAP rules compared to not using
data filtering.

H1.1 Filtering and tracing relevant data in the dash-

38 4 Evaluation

board makes identifying the cause of conflicts in
TAP rules easier than not using data filtering.

H1.2 Filtering and tracing relevant data in the dash-
board reduces the time taken to identify the
causes of conflicts in TAP rules compared to not
using data filtering.

H2 The use of filtering and tracing relevant data in the
dashboard leads to higher confidence among users in
identifying the causes of conflicts in TAP rules com-
pared to not using data filtering.

H2.1 Filtering and tracing relevant data in the dash-
board improves users’ understanding of con-
flicting situations in TAP rules compared to not
using data filtering.

H3 Users are more satisfied in identifying the cause of
conflicts in TAP rules when filtering and tracing rele-
vant data in the dashboard than when not using data
filtering.

4.2 User Study

The user study The user study evaluates the Debugging Dashboard by com-
evaluates the impact paring its use with filtering and tracing relevant data (the
of filtering and Filter condition) and without data filtering (the Baseline con-
tracing relevant data dition). The focus is on assessing the impact of filtering and
on debugging tracing relevant data on various aspects of debugging, in-
aspects. cluding accuracy, difficulty, speed, confidence, understand-

ing, and satisfaction, in line with the hypotheses outlined in
Section This approach aims to gain insights into how
filtering and tracing relevant data influences the TAP de-
bugging process. We conducted a pilot study involving one
participant to prepare for the user study. This resulted in
minor design modifications for the main study, detailed in
Sectiond.2.1] The pilot study participant did not participate
in the main study.

4.2 User Study

39

421 Study Design

A within-group study design was chosen for its effective-
ness in controlling for individual differences among partic-
ipants. This design allows each participant to experience
both conditions (Filter and Baseline) of the study. Doing so
reduces variability caused by differing skills, experiences,
or preferences that individual participants may have. This
approach enhances the reliability of the results, as compar-
isons are made within the same set of participants, giving
a clearer view of the impact of the data filtering feature on
their ability to debug TAP rule conflicts.

The study design involved four bug types in simulating
common TAP rule conflicts, as identified in Table by
Coppers et al.|[2022]. We selected action inconsistent, action
reversal, condition unsatisfiable, and infinite loop. These par-
ticular bugs were chosen because they illustrate a range of
issues in TAP systems, from logical inconsistencies to un-
solvable conditions, and their potential to express them us-
ing visualization.

The following eight debugging tasks were developed rep-
resenting each bug type under two dashboard conditions
(Filter and Baseline):

AIB Action Inconsistent using Baseline dashboard.
AIF Action Inconsistent using Filter dashboard.
ARB Action Reversal using Baseline dashboard.
ARF Action Reversal using Filter dashboard.
CUB Condition Unsatisfiable using Baseline dashboard.
CUF Condition Unsatisfiable using Filter dashboard.
ILB Infinite Loop using Baseline dashboard.
ILF Infinite Loop using Filter dashboard.

We created a set of conflicting rules for each task to repre-
sent the specific bug. To increase complexity and simulate

We chose a
within-group study
design to control for
individual differences
among participants
and enhance the
reliability of the
results.

The study design
involved four bug
types in simulating
common TAP rule
conflicts.

40

4 Evaluation

The study used a set
of conflicting rules
with additional noise
rules executed in
random order.

An instruction page
was created to
introduce each task
to the participants.

The pilot study
resulted in minor
changes, including
standardizing rule
names, presenting
rules in ascending
order on the
instruction page, and
including task
descriptions at the
top of the dashboard

page.

real-world scenarios, we included additional noise rules
alongside the main rule set for each task, resulting in 5-8
rules and 8-11 Device_properties per task, aligning with the
study design by Coppers et al.|[2020]. These rules were exe-
cuted in random order within separate virtual smart homes
using the application to present each task in a realistic yet
non-trivial manner. However, the semantics and execu-
tion order of the rules for each bug were identical under
both dashboard conditions, differing only in room names
and devices used in the rules. This maintained an identi-
cal number of rules and Device_properties, ensuring consis-
tent cognitive difficulty for each bug type while introduc-
ing syntactic differences. We used Latin square to counter-
balance the order of tasks presented to participants, miti-
gating any potential order effects. The study design mate-
rials can be found in Appendix|A|“{User Study Design Ma-|
fterialsl”.

We created an instruction page to guide participants about
the task to be performed for each task. The task number
was displayed at the top of the page, followed by a table
listing the configured rules in the virtual smart home. This
table provided participants with an overview of the possi-
ble automation. Below the rules table, the task description
outlined what the smart home user expected based on the
rules, followed by a description of the unexpected situa-
tion. Participants were then instructed to identify the cause
of the issue using the dashboard, accessible via a Start but-
ton at the bottom of the page.

We conducted a pilot study with one participant (P0) at
our lab to prepare and refine the study design for the main
study. PO did not participate in the main study. The feed-
back from the pilot study resulted in some minor changes.
Clarification was added on the instruction page by labeling
the Filter condition as ”"With Filter” and the Baseline condi-
tion as “Without Filter” to distinguish the available dash-
board types more clearly. The rule names were standard-
ized to "Rule <rule_number>,” with <rule_number> repre-
senting a random number. Rules were presented on the in-
formation page in ascending order for clarity. Additionally,
to address the difficulty in remembering the issue and task
description while using the dashboard, the task description

4.2 User Study

41

was included at the top of the dashboard page, eliminating
the need for participants to memorize it.

Study Setup

The user study was conducted in two locations: nine par-
ticipants were in a quiet, closed room at our lab, while the
remaining seven were in a quiet, closed room at the princi-
pal investigator’s residence. In both locations, participants
were provided with a desk and a chair. They performed
the tasks on a 2020 M1 MacBook Air using a wired mouse.
Participants were only allowed to use the mouse to inter-
act with the dashboard for every task. The dashboard was
accessed via Google Chrome in full-screen mode, with the
MacBook’s screen resolution set to 1680 by 1050.

4.2.2 Procedure

The procedure for the user study involved several steps.
Initially, participants were required to sign a consent form.
Afterward, they completed a demographics questionnaire
to gather background information, including their smart
home, programming, and debugging experience. Next,
they completed a training task with four rules and six De-
vice_properties. This task was designed to familiarize them
with TAP rules and the dashboard interface. Addition-
ally, participants were introduced to the Filter feature of
the dashboard. Once the dashboard’s interface components
were explained, the main study started. During the main
study, participants were asked to think aloud to provide in-
sight into their reasoning process. They could take breaks
between tasks but not during them.

In the main study, participants first read the information
page for each task, then clicked on the start button to access
the dashboard to identify the cause of the issue. Time taken
from starting the dashboard to informing the investigator
of task completion was recorded without imposing any
time limit. To evaluate the accuracy of the debugging dash-
board, participants filled out a response sheet after each

The user study
involved several
steps, including
signing a consent
form, completing a
demographics
questionnaire, a
training task, and the
main study.

4 Evaluation

42
In the end,
participants filled out
the System

Causability Scale
and provided
feedback on their
overall experience
with the dashboard.

The study recorded
the screen and audio
and logged mouse
events.

task. This sheet required them to indicate whether they
identified the issue’s cause and describe it. Furthermore,
they evaluated their confidence, understanding, difficulty,
and satisfaction on a 5-point Likert scale (Likert/[1932]). For
additional insights, participants were asked to propose po-
tential solutions to the issues and describe their ideas.

After completing all tasks, participants were requested
to fill out the System Causability Scale (Holzinger et al.
[2020]), an adaptation of the broad System Usability Scale
(Brooke| [1996]). This scale is specifically designed to eval-
uate the effectiveness of (visual) explanations, particularly
in terms of their quality and clarity. Additionally, partici-
pants provided feedback on their overall experience with
the dashboard. The forms used in the user study can be
found in Appendix [B| {User Study Documents{’.

During the study, participants” screen and audio were
recorded using OB Consent for recording was ob-
tained through the informed consent form. The record-
ings, stored anonymously, were deleted post-analysis.
Mouse events during dashboard usage were logged
and saved as CSV files via HTTP POST request to
http://server-url/save-mouse-log, an endpoint
used only for user studies. For data analysis, all collected
data was digitized into CSV files and loaded into]upytelﬂ
Notebooks. To analyze and visualize the data, we used
Python libraries such as Panda SciP Matplotli and
Seabornl]

4.2.3 Participants

We recruited sixteen participants (nine males, seven fe-
males) to complete our 8x8 Latin square design featuring
eight tasks, repeated twice. The participants ranged in age
from 24 to 60 years (mean = 35.31, median = 28, standard

'https:/ / obsproject.com (last accessed on February 2, 2024)
https:/ /jupyter.org (last accessed on February 2, 2024)
*https:/ /pandas.pydata.org (last accessed on February 2, 2024)
*https:/ /scipy.org (last accessed on February 2, 2024)

*https:/ /matplotlib.org (last accessed on February 2, 2024)
®https:/ /seaborn.pydata.org (last accessed on February 2, 2024)

https://obsproject.com
https://jupyter.org
https://pandas.pydata.org
https://scipy.org
https://matplotlib.org
https://seaborn.pydata.org

4.2 User Study

43

Count

1 - \ﬁ
0 T T T T T T L]

25 30 35 40 45 50 55 60
Age

Figure 4.1: Histogram represents the age distribution of
participants in the user study. The age range spans from
24 to 60 years, with a mean age of 35.31 years, a median age
of 28 years, and a standard deviation of 14.36 years.

deviation = 14.36). They came from diverse backgrounds,
including six from computer science, five from engineer-
ing, and one each from biology, rehabilitation engineer-
ing, floristry, design, and social work. Prior knowledge of
TAP, coding, or debugging was optional for participation.
Among the participants, only five owned smart home de-
vices, and three had encountered undesired situations with
their smart homes. Interestingly, one participant who did
not own a smart home shared an experience of their neigh-
bor being accidentally locked out while in the garden. Of
the sixteen participants, thirteen, excluding the florist, de-
signer, and social worker, had some programming experi-
ence from their studies or work. Six participants had over
five years of programming experience, three had three to
five years, and four had less than three years. Regard-
ing debugging experience, five participants had none, three
had less than a year, four had more than five years, two had
three to five years, and two had one to two years.

Sixteen participants
with diverse
backgrounds and
programming
experience
completed the study,
with only five owning
smart home devices.

44

4 Evaluation

Data filtering did not
improve identifying
debugging accuracy
in TAP rules,
rejecting H1.

A learning effect was
observed based on
the task order given
to participants, and

different bug types
had varying impacts
on debugging
accuracy.

4.3 Results

In this section, we will present and discuss both quantita-
tive and qualitative results from our user study.

4.3.1 Quantitative Results

We analyzed the data from our user study to address our re-
search questions. The analysis assessed the significance of
data filtering in debugging accuracy, difficulty, speed, con-
fidence, understanding, and satisfaction.

Debugging Accuracy

We assessed participants” accuracy in identifying the cause
of TAP rule conflicts in both Filter and Baseline conditions.
The analysis involved comparing the success rates between
these two conditions to address RQ1. We used the Shapiro-
Wilk test to determine the data’s distribution and found
that the success percentages were not normally distributed.
Consequently, we employed the Wilcoxon Signed-Rank
test, a non-parametric statistical method, for the signifi-
cance analysis. This test showed no significant difference
in accuracy between the Filter and Baseline conditions (W =
20.50, p = 0.8028), indicating that data filtering did not sig-
nificantly improve participants’ ability to identify the cause
of conflict in TAP rules correctly. The mean success rates
were 53.12% for Filter and 51.56% for Baseline. Based on
these findings, H1, which suggested that filtering and trac-
ing data improves accuracy in identifying conflicts, is re-
jected.

The analysis revealed no significant difference in accuracy
between the Filter and Baseline conditions. However, a
learning effect was observed based on the task order given
to participants, as shown in Figure This learning effect
was anticipated as participants’ familiarity with the dash-
board increased over multiple uses. Additionally, we noted
variations in accuracy across different bug types, as shown

4.3 Results

45

in Figure a finding not previously explored in the ex-
isting literature. To investigate further, we conducted the
Friedman test, which demonstrated a significant impact of
bug type on debugging accuracy (x* = 11.19, p = 0.0107).
This suggests that the type of bug influences the success
rate in identifying conflicts. The detailed results of the post-
hoc pairwise comparison using the Wilcoxon Signed-Rank
test are presented in Table

Bug Significance | Mean Accuracy
Action Inconsistent A 62.50%
Action Reversal A 62.50%
Condition Unsatisfiable B 18.75%
Infinite Loop A 65.62%

Table 4.1: Significant differences in debugging accuracy per
bug. Rows only show significant bugs. Significantly differ-
ent bugs (p <= 0.05) are not connected by the same letter.
The means are rounded to two decimal places.

The post-hoc analysis results clearly indicate that the con