
by
Torben Schulz

Sketchassisted 
Development

Thesis at the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Dr. Horst Lichter

Registration date:   04.03.2014
Submission date:  04.09.2014





iii

I hereby declare that I have created this work completely
on my own and used no other sources or tools than the ones
listed, and that I have marked any citations accordingly.

Hiermit versichere ich, dass ich die vorliegende Arbeit selb-
ständig verfasst und keine anderen als die angegebenen
Quellen und Hilfsmittel benutzt sowie Zitate kenntlich
gemacht habe.

Aachen,September2014
Torben Schulz





v

Contents

Abstract xvii

Überblick xix

Acknowledgements xxi

 Introduction 

. Motivation . . . . . . . . . . . . . . . . . . . . 

.. Attachable to widely used IDE . . . . . 

.. Usability . . . . . . . . . . . . . . . . . 

.. Minimum of Additional Files . . . . . 

 Related Work 

. Exploring Source Code History . . . . . . . . 

. Source Code Visualization Approaches in
Terms of Time and Space . . . . . . . . . . . . 

. Source Code History . . . . . . . . . . . . . . . 

. Code Understanding & Knowledge . . . . . . 



vi Contents

.. Mining . . . . . . . . . . . . . . . . . . 

.. Refactoring Detection . . . . . . . . . . 

.. Whiteboard and Sketches . . . . . . . 

 Initial study 

. Meeting with Development Heads . . . . . . . 

. Meeting with Design Team . . . . . . . . . . 

. Meeting with Developer . . . . . . . . . . . . 

. Daily Meeting . . . . . . . . . . . . . . . . . . 

. Meeting with Quality Manager . . . . . . . . 

. Meeting with Development Assistant . . . . . 

. Summary . . . . . . . . . . . . . . . . . . . . . 

 Prototypes 

. Implementation . . . . . . . . . . . . . . . . . 

.. IDE Extension . . . . . . . . . . . . . . 

.. Sketch History . . . . . . . . . . . . . . 

.. AST . . . . . . . . . . . . . . . . . . . . 

.. IBOutlet Connection . . . . . . . . . . 

.. Syntax Highlighting . . . . . . . . . . 

.. Source Code History and Diff . . . . . 

. Layout and Functionality . . . . . . . . . . . . 

.. CodeShape . . . . . . . . . . . . . . . . 



Contents vii

IBOutlet alike Connections . . . . . . 

.. Azurite . . . . . . . . . . . . . . . . . . 

Modifications . . . . . . . . . . . . . . 

.. Chronos . . . . . . . . . . . . . . . . . 

 Evaluation 

. Preparation . . . . . . . . . . . . . . . . . . . . 

. Execution . . . . . . . . . . . . . . . . . . . . . 

. Analysis . . . . . . . . . . . . . . . . . . . . . . 

.. Participants . . . . . . . . . . . . . . . 

.. Tactics to Find a Version . . . . . . . . 

.. Task Completion Times . . . . . . . . . 

.. Initial Navigation Time . . . . . . . . . 

.. Sketch Inspection Time . . . . . . . . . 

.. Feedback and Suggestions . . . . . . . 

 Summary and Future Work 

. Summary and Contributions . . . . . . . . . . 

.. Limitations . . . . . . . . . . . . . . . . 

. Future work . . . . . . . . . . . . . . . . . . . 

.. Improve the prototypes . . . . . . . . . 

.. Sketch and source code entity consis-
tency . . . . . . . . . . . . . . . . . . . 



viii Contents

Parallax . . . . . . . . . . . . . . . . . . 

iPad App . . . . . . . . . . . . . . . . . 

A Informed Consent Form 

B User Study Form 

C Task Completion Time Graphs 

D Navigation Time Graphs 

E Source Code of decorateCommit 

F Initial Study Questionnaire 

G Sketch Inspection Time Graphs 

H Sketches 

Bibliography 

Index 



ix

List of Figures

. Software Prototype Functionality Brain-
storming . . . . . . . . . . . . . . . . . . . . . 

. ASCII Sketch . . . . . . . . . . . . . . . . . . . 

. GraphTrail image se . . . . . . . . . . . . . . . 

. Mobile App Wireframe . . . . . . . . . . . . . 

. Valid Method Implementation . . . . . . . . . 

. IBOutlet Connection . . . . . . . . . . . . . . 

. Determine IBOutlet Connection Rectangle . . 

. IBOutlet Connection sketch V . . . . . . . . 

. GitX Application . . . . . . . . . . . . . . . . 

. Mockup of IBOutlet Connection . . . . . . . . 

. Xcode application . . . . . . . . . . . . . . . . 

. Ipad Prototype . . . . . . . . . . . . . . . . . . 

. IBOutlet Connection Sketch V . . . . . . . . 

. Connect Sketch to a Source Code Entity . . . 



x List of Figures

. CodeShape Sidebar . . . . . . . . . . . . . . . 

. CodeShape Explorer - right click context menu 

. CodeShape Explorer - Timeline Highlighting 

. CodeShape Explorer Diff - Addition, Dele-
tion, Update Selected . . . . . . . . . . . . . . 

. CodeShape Explorer Diff - Addition, Dele-
tion Selected . . . . . . . . . . . . . . . . . . . 

. CodeShape Explorer Diff - Addition Selected 

. CodeShape Explorer Diff - Nothing Selected . 

. CodeShape Single Click Interaction . . . . . . 

. CodeShape Explorer . . . . . . . . . . . . . . . 

. Azurite - Eclipse Plugin . . . . . . . . . . . . . 

. Extended Azurite . . . . . . . . . . . . . . . . 

. Chronos History Slicing GUI . . . . . . . . . . 

. Git Tree . . . . . . . . . . . . . . . . . . . . . . 

. Screenshot of CodeShape Plugin . . . . . . . . 

. Screenshot of Azurite Plugin . . . . . . . . . . 

. Screenshot of Chronos Plugin . . . . . . . . . 

. Screenshot of Chronos Plugin and Sketch . . 

. Task .. Tukey HSD . . . . . . . . . . . . . . 

. Task Completion Graph Task .. . . . . . . 

. Task Completion Graph Task .. . . . . . . 



List of Figures xi

. Task .. Tukey HSD . . . . . . . . . . . . . . 

. Task Completion Graph Task .. . . . . . . 

. Task .. Tukey HSD . . . . . . . . . . . . . . 

. Task Completion Graph Task .. . . . . . . 

. Task .. Tukey HSD . . . . . . . . . . . . . . 

. Task Navigation Graph Task .. . . . . . . . 

. Task .. Tukey HSD . . . . . . . . . . . . . . 

. Task Navigation Graph Task .. . . . . . . . 

. Task .. Tukey HSD . . . . . . . . . . . . . . 

. Task Navigation Graph Task .. . . . . . . . 

. Task .. Tukey HSD . . . . . . . . . . . . . . 

. Task Navigation Graph Task .. . . . . . . . 

. Task .. Tukey HSD . . . . . . . . . . . . . . 

. Task Navigation Graph Task .. . . . . . . . 

. Task .. Tukey HSD . . . . . . . . . . . . . . 

. Eclipse Compare Editor . . . . . . . . . . . . . 

. NSSlider vs CodeShape Slider . . . . . . . . . 

. Azurite Rectangle Popup . . . . . . . . . . . . 

. Modified Azurite Screenshot . . . . . . . . . . 

. Azurite Vertical Slider . . . . . . . . . . . . . 

. Chronos information loss issue . . . . . . . . 



xii List of Figures

. Chronos History Slicing Connection Image
Section . . . . . . . . . . . . . . . . . . . . . . 

C. Task Completion Graph Task .. . . . . . . 

C. Task Completion Graph Task .. . . . . . . 

C. Task Completion Graph Task .. . . . . . . 

C. Task Completion Graph Task .. . . . . . . 

C. Task .. Tukey HSD . . . . . . . . . . . . . . 

C. Task Completion Graph Task .. . . . . . . 

C. Task Completion Graph Task .. . . . . . . 

C. Task Completion Graph Task .. . . . . . . 

C. Task Completion Graph Task .. . . . . . . 

C. Task .. Tukey HSD . . . . . . . . . . . . . . 

C. Task Completion Graph Task .. . . . . . . 

C. Task Completion Graph Task .. . . . . . . 

C. Task Completion Graph Task .. . . . . . . 

C. Task .. Tukey HSD . . . . . . . . . . . . . . 

C. Task Completion Graph Task .. . . . . . . 

C. Task Completion Graph Task .. . . . . . . 

C. Task Completion Graph Task .. . . . . . . 

C. Task Completion Graph Task .. . . . . . . 

C. Task Completion Graph Task .. . . . . . . 

C. Task Completion Graph Task .. . . . . . . 



List of Figures xiii

C. Task Completion Graph Task .. . . . . . . 

C. Task Completion Graph Task .. . . . . . . 

C. Task Completion Graph Task .. . . . . . . 

C. Task Completion Graph Task .. . . . . . . 

C. Task .. Tukey HSD . . . . . . . . . . . . . . 

D. Task Navigation Graph Task .. . . . . . . . 

D. Task Navigation Graph Task .. . . . . . . . 

D. Task Navigation Graph Task .. . . . . . . . 

D. Task Navigation Graph Task .. . . . . . . . 

D. Task Navigation Graph Task .. . . . . . . . 

D. Task .. Tukey HSD . . . . . . . . . . . . . . 

D. Task Navigation Graph Task .. . . . . . . . 

D. Task .. Tukey HSD . . . . . . . . . . . . . . 

D. Task Navigation Graph Task .. . . . . . . . 

D.Task Navigation Graph Task .. . . . . . . . 

D.Task Navigation Graph Task .. . . . . . . . 

D.Task Navigation Graph Task .. . . . . . . . 

D.Task .. Tukey HSD . . . . . . . . . . . . . . 

D.Task Navigation Graph Task .. . . . . . . . 

D.Task .. Tukey HSD . . . . . . . . . . . . . . 

D.Task Navigation Graph Task .. . . . . . . . 



xiv List of Figures

G. Sketch Inspection Time Graph - Task .. . . 

G. Task .. Tukey HSD . . . . . . . . . . . . . . 

G. Sketch Inspection Time Graph - Task .. . . 

G. Task .. Tukey HSD . . . . . . . . . . . . . . 

G. Sketch Inspection Time Graph - Task .. . . 

G. Task .. Tukey HSD . . . . . . . . . . . . . . 

G. Sketch Inspection Time Graph - Task .. . . 

G. Task .. Tukey HSD . . . . . . . . . . . . . . 

G. Sketch Inspection Time Graph - Task .. . . 

G. Sketch Inspection Time Graph - Task .. . . 

G. Task .. Tukey HSD . . . . . . . . . . . . . . 

H. Inkling sketch for commit bfccb . . . . . . 

H. Inkling sketch for commit bbeedd . . . . . . 



xv

List of Tables

. ANOVA of task completion time, compar-
ing Chronos History Slicing, CodeShape and
Azurite. . . . . . . . . . . . . . . . . . . . . . . 

. Tukey HSD post hoc test of task completion
time comparing (A)zurite, Chronos (H)istory
Slicing and (C)odeShape . . . . . . . . . . . . 

. ANOVA of navigation time comparing
Chronos History Slicing, CodeShape and
Azurite . . . . . . . . . . . . . . . . . . . . . . 

. Tukey HSD post hoc test of initial navigation
time comparing (A)zurite, Chronos (H)istory
Slicing and (C)odeShape . . . . . . . . . . . . 

. ANOVA of sketch inspection time compar-
ing Chronos History Slicing, CodeShape and
Azurite. . . . . . . . . . . . . . . . . . . . . . . 

. Tukey HSD post hoc test of sketch inspection
time comparing (A)zurite, Chronos (H)istory
Slicing and (C)odeShape . . . . . . . . . . . . 

. Compares ratio of mean sketch inspec-
tion time and mean task completion
time(A)zurite, Chronos (H)istory Slicing and
(C)odeShape . . . . . . . . . . . . . . . . . . . 





xvii

Abstract

Every software developer has been confronted with unknown source code. Several
resources are consulted to obtain a deeper understanding and in order to get the
rationale. The web and the source code itself, with its history of versions and API’s
serve as a primary resource.

Sketches are often used to depict overall ideas, assist discussions and reduce com-
plexity. Commonly they are drawn on whiteboards, but are rarely found in source
code repositories. Digitizing and retrieving those sketches with today’s tools is
tedious. So far hand-drawn sketches have been added in form of image files,
which only allow visual interpretation. A possible link to source code has to be
established manually. General software development environments do not sup-
port hand-drawn sketches, assisting the development process.

The ability to connect hand-drawn sketches to versions of source code entities was
added to the development environment Xcode. I tested three software prototypes
for sketch assisted source code history exploration against each other, but only in
a few tasks significant results in task completion and navigation time have been
observed. Every participant stated that they are most convinced of CodeShape,
after they tried all three on different tasks.

The thesis begins with the motivitation to connect sketches to versions of source
code entities. Preliminary studies in the form of an interview were held at a soft-
ware company. Next I developed and extended three software prototypes, which
are evaluated in the subsequent chapter. The thesis ends with a summary and some
suggestions for future work.



xviii Abstract



xix

Überblick

Jeder Software Entwickler wurde bereits mit Quelltext oder gesamten Projekten
konfrontiert, die nicht von ihm selbst entwickelt wurden. Um bei einem derar-
tigen Projekt Verständnis zu erlangen, greift man in der Regel auf alle zur Ver-
fügung stehenden Informationen zu. Seien es beispielsweise Kommentare, API’s,
Dokumentationen, Skizzen, Suchmaschinenergebnisse und die Historie die einem
weiterhelfen können.

Das Problem bei Skizzen ist, dass sie meist nur lokal vorliegen. Zudem können
Skizzen für außenstehende Entwickler zu komplex sein und eine Zuordnung von
mehreren Zeichnern bei einer Skizze ist im Nachhinein auch nicht mehr möglich.

Ohne visuelle Interpretation einer Skizze lässt sich keine oder nur schwer eine
Verbindung zu einem Projekt oder einzelnen Entitäten eines Projekts ziehen.
Skizzen landen beispielsweise oft in einem Sammelordner und verlieren ihre
Verbindung.

In meiner Arbeit werden zwei modifizierte Prototypen und eine eigene Imple-
mentierung vorgestellt und miteinander verglichen. Die Prototypen wurden um
Skizzenfunktionalität erweitert und ermöglichen Navigation und Interaktion mit
der Historie. Beim Vergleich der Prototypen in einer Benutzerstudie konnte nur in
seltenen Fällen ein signifikantes Ergebnis bei der Bearbeitungsdauer und intialer
Navigationszeit festgestellt werden. Die Umsetzung von CodeShape hat allen 
Teilnehmern am besten gefallen, nachdem alle drei Prototyen getestet wurden.

Die Arbeit beginnt mit den Beweggründen Skizzen mit Versionen von Quelltexten-
titäten, zu verbinden. Danach folgt die Betrachtung und Auswertung von bereits
existierender Forschung in diesem Gebiet. Anschließend folgt eine Zusammenfas-
sung einer externen Studie, die zu einem frühen Zeitpunkt meiner Forschungsar-
beit durchgeführt wurde. Als Nächstes folgt die Entwicklung von drei Prototypen,
die im darauf folgenden Kapitel getestet und verglichen werden. Als Letztes folgt
eine Zusammenfassung und ein Ausblick auf weitere mögliche Schritte.





xxi

Acknowledgements

I thank all developers who participated in my study and I want to thank my parents
for supporting me during my whole studies, their considerations and endurance.
Next I want to thank my girlfriend who had to be able to spare me from time to
time.







Chapter 

Introduction

Based on the work by Lukas Spychalski “Communication
Of Source Code Designs Through Sketching” [], I came
up with the idea of integrating sketch functionality into
an integrated development environment (IDE) and connect
sketches to a particular version of a source code entity.

Figure . shows a brainstorming of functionality that I performed a

functionality

brainstorming

should be further studied and combined in order to de-
velop a software prototype for sketch-supported source
code history exploration.



  Introduction

software prototype 
functionality

IDE extension
source code history

sketch history

make use of AST

git diff

syntax highlighting

Figure .: Software Prototype Functionality Brainstorm-
ing

. Motivation

During the process of finding a thesis topic, I participatedMy work is based on

“Communication Of

Source Code Designs

Through Sketching”

in a user study, conducted by Lukas Spychalski. Thereafter
I came up with some thoughts on how to improve his work,
forming the basis for my thesis. What follows is a list of
ideas/questions that arose.

• How can sketches be drawn naturally, without tech-
nical limitations, but still offer possibilities of their
digital counterparts?

• When was a sketch committed and which version
does it belongs to?List of upcoming

questions after I

participated in a user

study

• Who removes a non valid sketch?

• How can a sketch be integrated into source code his-
tory?

• Is there a possibility for detecting a non valid/rele-
vant sketch automatically?



. Motivation 

• How can the process of connecting a sketch to a
source code entity or vice versa be optimized?

• Is it possible to attach a prototype into a widely used
IDE?

• Why does committing sketches with code not suffice?

entity:
According to Godfrey and Zou [] a “software entity”
can be a “... function, class, or file [...] that occurs in
a particular version of a software system”. Or an even
smaller part like “a declaration or body part of a method”
[].

Definition:

entity

Two of those questions were embedded in the following
paragraphs, revealing problems and needs of someone ex-
ploring the source code history.

When was the sketch committed and which version does
it belongs to? This question would be asked by someone, Developer Dave is

confronted with an

unknown repository

who is unfamiliar with a repository. Let us call this some-
one Dave (the developer) and imagine the following situ-
ation. Dave looks through an unknown repository for the
first time and finds some image files containing sketches.

sketch:
“...simplified and structured visual representation that
show entities and relationships representing the archi-
tecture or implementation of a software system.” Cheru-
bini et al. []

Definition:

sketch

He observes functionality related to the project and the
timestamp reveals that they are one-year-old.

The meaning of all identifiers in the sketches and their link
to other files remain indistinct in this early phase.

Dave performs a checkout of the commit to which one of
the sketches was added, with the intention to find the files
and identifiers.



  Introduction

commit:
A commit [Chacon, , p.ff] represents a snapshot of

files (here source code files) and is unmistakable identi-
fied with a SHA- (secure hash algorithm, whereas  in-
dicates that it is the second iteration of this algorithm). A
SHA- is calculated by using a file or directory structures
and consists of  hexadecimal characters[Chacon, ,
p.]. In a single project SHA’s are often referenced in a
shortened form with a minimum of  characters instead
.

Definition:

commit

After failing to find any of those, he only examines the
source code.

The reason that Dave could not find any identifiers is thatSketch was added to

an “unsuitable”

commit

the sketches had been added to an “unsuitable” commit.
The sketch includes functionality and identifiers that were
already deleted or renamed in the source code. Someone
decided that the sketches contain worthwhile information
and added them to this “unsuitable” commit, but did not
check for validity of the identifiers. Although the identi-
fiers have been renamed the sketch still makes sense.

What is also missing are connections from the sketch fileA connection

between sketch and

source code file is

missing

to source code files, beside the visual representation in the
sketch.

If the sketch had been added to a commit together with
the source code files, where the identifiers match, it would
have become more explanatory and maybe he would not
have given up. But just adding sketches to commits seems
to be a non ideal solution.

If there had been a textual hint in a documentation file,
it would still require interpretation and manually mainte-
nance.

Linking a sketch to a certain revision of a source code entity
is bijective and would be an improvement.

Establishing this connection, should be as simple as drag-
ging a connection from the sketch to the line(s) of interest
or vice versa.



. Motivation 

Who removes the sketch, if it is no longer valid?
Another problem about a connectionless sketches is that When does a sketch

becomes invalid?you do not notice when it becomes less important. The file
has to be opened and the sketch reinterpreted. Next it has
to be checked manually if the identifiers referring to source
code entities still exist.

In the source code that was used in my user study (see chap- connection issue

ter ), I found a comment line which suffers from a similar
issue:

// ^^ I don’t know what that means anymore :(

This line was introduced in an early commit in  and remaining artifacts

still can be found in the current commit. The line it re-
ferred to was long gone, but nobody deleted the above com-
ment. The issue is that both the sketch to source code and
the comment to source code situation suffer from a missing
connection. For both situations there exist circumstantial
solutions to recover.

Issues to tackle I conducted an initial study (see chapter
) and a subsequent prototype should tackle the following:

• Attachable to a widely used IDE (e.g., Xcode, Android
Studio, Visual Studio), no additional tool/IDE

• Easy to use, i.e. a few mouse clicks should enable user
to connect a sketch to source code entities of a partic-
ular version List of issues to

tackle in the

implementation
• Sketches from whiteboard, notebook or any other

medium should be usable, without redrawing and
without much extra effort

• Meta files, listing the connection between sketches
and files, should not clutter the working directory

.. Attachable to widely used IDE

Sketch capabilities should be offered without extra soft-
ware, which was a requirement mentioned in an initial



  Introduction

Figure .: The figure shows an ASCII sketch of the oper-
ating system API and its layers created with GUIIO plugin
for Microsoft Visual Studio

study (see chapter ). My goal was to develop a plugin
which can be attached to a widely used IDE and no addi-
tional software is required. Simpson and Terry [] used
the American Standard Code for Information Interchange
(ASCII) to draw sketches inside code, trying to dispose of
the requirement of additional sketch software (see Fig..).
I anticipate that this approach closes the connection gap,Attachable into IDE

(e.g. Xcode, Android

Studio, Visual

Studio), no

additional tool/IDE

because the sketch can be placed directly to the position
where it belongs, without depending on additional files. It
requires a plugin, which was developed for Microsoft Vi-
sual Studio and it is restricted to a fixed set of UI compo-
nents (buttons, windows etc.) that are converted to ASCII.
It still misses the freedom of natural drawing and limits the
user to predefined UI elements.

The plugin was integrated into Xcode [e], because I am
most familiar with it. IDE’s like eclipse are often used andeclipse is frequently

used in research,

whereas Xcode is

rarely used

extended in research studies and Xcode is less common.
For example, Azurite [b] is an eclipse plugin and will
be discussed in ... Entering the keyword eclipse in the
digital library of the Association for Computing Machinery
ACM returns∼. results, whereas for example the key-
word Microsoft Visual Studio returns . and Xcode only

http://dl.acm.org/


. Motivation 

.

As a source code language Java is often the language of Java is the language

of choice in researchchoice (just like Azurite [b] and Chronos [], see
.. and ..). Again the ACM results return .
entries for Java and only . for Objective-C. The main
reason for those results is may be the fact that eclipse is
open source and Java often used in programming classes,
although the tools and languages are equally powerful. I
decided to use Xcode and Objective-C, because I wanted
to further explore those relatively unknown IDE’s and lan-
guages in respect of sketches and source code history re-
search.

I was curious if it is possible to extend Xcode with my own Is it possible to

extend Xcode?functionality and thus I explored the prior research about
extending it, which is subsequently described.

Apple does not formally support plugin development for There is no offical

documentation on

how to attach a

plugin to Xcode

Xcode and there is no official source showing how to do it.
Two drawbacks arise from this fact. The first one is that
whenever Apple updates Xcode it is possible, that a plugin
developed for Xcode stops working. The second drawback
is that there is no public documentation about the internals
of Xcode, which makes it hard to attach a plugin to it.

It was developed respecting the fact that the plugin might CodeShape was built

in such a way that it

can be used with

other tools, beside

Xcode

not be usable in a further version of Xcode, so less program-
ming effort is needed to integrate it into open source editors
like Textmate  [].

As Apple does not provide any information on plugin de-
velopment for Xcode, I found websites like nshipster.com
[] and maniacdev.com [] that attested the exis-
tence of third party plugins for Xcode and provide hints
on how to implement one on your own [].

I studied the source code of some plugins in order be able to Plugins can be

attached to Xcodeimplement and integrate my own plugin into Xcode. Next
I implemented a test plugin, which worked inside Xcode.
After I had been assured, that it was possible to write a
plugin for Xcode, I had started to sketch some prototypes
incorporating the required key points of my initial study.

http://nshipster.com
http://maniacdev.com/Xcode-plugins


  Introduction

.. Usability

easy to use, i.e. few

mouse clicks should

enable user to

connect sketch to

source code

It was emphasized during the initial study (see chapter ),
that connecting a sketch to source code should be possible
with only a few clicks. This aspect was also respected dur-
ing the process of developing a prototype.

On the one hand we have a set of sketches and on the otherKeep mental effort at

a minimum hand we have a set of source code lines. In order to connect
a sketch to some lines the number of clicks and the mental
effort should be as low as possible.

The source code lines and the sketches should be arranged
in a way that they are visible together, so that the user is
not required to remember the lines or sketch selected.

It would be possible to connect both entities, source code
and sketch, with keyboard commands. This has the dis-
advantage that one has to type a range of line numbers,
which identify the source code lines that should be con-
nected with a sketch, which is prone to error.

A user can mistype the line number, which can only be de-Using a keyboard to

connect sketches to

line numbers is

prone to error

tected by comparing the line number with the typed one.
No feedback is given, because only the user knows, if the
line numbers are correct.

Typing a range of line numbers requires additional mental
effort, but the user is only interested in the source code, not
the line number.

The conclusion is to offer some guidance and feedback dur-Provide guidance

and feedback to

reduce error

ing the process of connecting sketches to source code, in or-
der to keep mental effort and possibility of error at a bare
minimum.

Sketch Digitizing Developers draw sketches on white-sketches from

whiteboard and

notebook should be

usable without

redrawing them and

without much extra

effort

boards and notebooks and less often digital ones [].
This was confirmed during my initial study (see chapter ),



. Motivation 

where all offices had a whiteboard attached to the wall and
they were used on a regular basis.

I also found evidence that sketches are drawn into note- digitizing

hand-drawn

sketches requires to

much effort

books or on a piece of paper. These sketches are not dig-
itized, because additional effort is required. In case of the
whiteboards it was mentioned that they sometimes take a
photo of them and store the file in the project folder.

The challenge with sketches is to reduce the extra effort re-
quired to digitize them, but to not restrict the drawing pro-
cess. Drawing should be as natural as before, without or a
minimum of technical limits required for digitizing.

.. Minimum of Additional Files

Project directories already contain a lot of files: “source sketches and files

listing the

connection should

not clutter the

working directory

code, interface, documentation and several other”. The re-
quirement for the software prototype is to keep the number
of additional files, which are needed to connect sketches to
source code, as low as possible.

To address this requirement it needs to be considered how
to hide and separate the files, which are needed to record
the connections that have been established.







Chapter 

Related Work

. Exploring Source Code History

I will look at existing approaches to explore source code
history to integrate sketches and link them to a source code
version. Several GUI’s have been proposed. Bradley and Deep Intellisense vs

RationalizerMurphy [] compare two interfaces, Deep Intellisense
[] and Rationalizer [].

Deep Intellisense presents historical information in differ-
ent views separated from the source code view.

Structural elements under the cursor can be compared, Deep Intellisense

considers structural

elements under the

cursor

whereas the most specific one is chosen. Elements are for
example methods, fields and class declarations.

Deep Intellisense uses source code history, bug reports,
emails or other documents related to the source code ele-
ment.

Opposed to display information in separate views, Ra- Rationalizer

integrates

information columns

in the source code

view

tionalizer displays information integrated into the source
code view. Three columns, “When?”, “Who?” and “Why?”
are added to the right hand side of the source code. In-
formation is line based instead of element based and the
"When?"-column tells the modification date of a line and
the "Who?"-column specifies the author responsible. The



  Related Work

"Why?"-column displays the check-in note of the corre-
sponding revision (a bug report is displayed instead, if
available).

Rationalizer extends information in the breadth, display-Rationalizer in

breadth vs Deep

Intellisense in depth

information display

ing them together for all lines, whereas Deep Intellisense
displays information in depth of one source code element.

Their results show that each tool has its strengths and
weaknesses depending on the task, also user satisfaction
does not clearly state a winner. The idea of integrating in-
formation into the source code view is adapted in my ver-
sioning approach. In the source code view of CodeShape
(see ..) the user can interact with lines, while the mouse
cursor switches to a hand cursor (see Fig.. and .. )

A longitudinal study conducted by Yoon and Myers []A longitudinal study

measured the

number of source

code revert actions

measured the quantity of reverting source code to an earlier
state. It involves exploring the history, in which the version
or lines of code to revert to, have to be found.

The process of reverting to an earlier version is called back-
tracking. They analyzed , hours of fine-grained code
editing logs, gained from  participants. Fine-grained
means that every character-change, all copy & paste actions
and delete operations are logged.

In total , backtrackings have been performed, which,

backtrackings in

, hours have

been observed

results in an average rate of . per hour. A backtracking
can span a character change up to thousands of characters.

Their eclipse plugin provides selective undo. Meaning theeclipse plugin with

selective undo user can pick parts that should be undone and not selected
parts are left untouched. It offers more flexibility opposed
to ordinary undo.

In % of all recorded backtracking instances, backtrack-ratio of different

backtracking types ing was performed manually by deleting or typing code. In
another % a sequence of changing code, running it and
later backtracking it, was observed. The selective undo fea-
ture was used in ,% of the cases.

As a result developers backtracked every six minutes on



. Source Code Visualization Approaches in Terms of Time and Space 

average, including ordinary undo. The undo statistic does
not include minor typo corrections, as the data was cleaned
beforehand. Programmers need better backtracking tools,
because of situations which are not well supported by ex-
isting programming tools.

. Source Code Visualization Ap-
proaches in Terms of Time and Space

A large amount of different source code visualization ap- Source code

visualization is often

based on statistics

proaches exist. Most of them constitute the visualization
based on statistics calculated from existing source code.
The tool Seesoft by Eick et al. [] analyzes each source
code line by its importance.

Each line is represented as a row and colored according to
its age in rainbow color. New lines are colored red and the
oldest lines are colored in blue.

Each row is stored in a column, representing the height of
a file the row belongs to. The y-coordinate of a row repre-
sents the relative position of the row in the column/file.

This visualization technique is similar to Azurite by Yoon Seesoft’s

rainbowcolor

represents time

dimension

et al. [a], where a column represents the source code
file and a row represents a source code line. The rainbow
color represents the time dimension and the y-coordinate
the space dimension.

Azurite focusses on more fine grained changes, where every
character change is taken into account. A rectangle repre-
sents the number of characters involved.

Azurite colors the change according to its type, instead of Azurite’s character

based changes are

colored according to

its type

coloring a change in rainbow color. Green means one or
several characters have been inserted, red means one or
several characters have been deleted and blue means that
at least one character was updated.

The length of a rectangle representing the change equals



  Related Work

the number of characters involved.

The y-coordinate positioning of Azurite is equal to Seesoft,
except that the height of the container (represents a file)
stays fixed in Azurite. In addition the x-coordinate of a
rectangle is defined by the modification. The x-axis repre-
sents a timeline of changes.

Another implementation is called Chronos by Servant andChronos utilizes

History Slicing Jones [] and is based on the technique of history slicing
by Servant and Jones []. Chronos provides a horizontal
timeline, where every history slice is positioned according
to the date of a commit beneath the timeline.

In contrast, to Seesoft and Azurite, the lines which have
changed or are new in a commit are highlighted in blue.
It is not differentiated between an addition or an update,
whereas deletions are not visualized at all.

The GUI can show several history slices side by side, if theyChronos allows for

comparing history

slices close together

in time

are in dense chronological order. This means that two re-
visions of a file must be close to each other in time, which
would be at most some days in between two revisions. If
there is a year or more in between, they both would not fit
together on the screen of an ordinary monitor, which was
observed during my user study (see ..). It is hard to
compare two versions, if they do not fit on the screen.

The compact mode in Azurite removes time intervals, inChronos misses

compressing of

slices

which no changes have occurred (see ..). It compresses
all revisions together. Chronos has nothing comparable.

As opposed to tools that work on a per file basis using diffHistory Slicing’s

selection allows

most degrees in

freedom

[], the user can select slices spanning one or several
files of a revision or some lines of files. Compared to Azu-
rite, Deep Intellisense and SeeSoft, Chronos offers the most
degrees of freedom in terms of selection.



. Source Code Visualization Approaches in Terms of Time and Space 

Figure .: Image section of GraphTrail showing some ag-
gregated papers and their statistics like the frequency of
keywords

history slice:
“We model in history slicing the process through which

developers select the subset of the history of the software
project which is relevant for the lines of interest. The his-
tory slice for a set of lines of code of interest (i.e., slicing
criterion) contains all their equivalent lines of code in all
the past revisions of the software project in which they
were modified. The goal of a history slice is to provide a
reduced amount of information about the history of a set
of lines of code Servant and Jones [].”

Definition:

history slice

GraphTrail [] takes a completely different approach. A GraphTrail is not

comparable to

previously

mentioned

approaches

user interacts with a canvas and is not restricted to source
code entities, but can place anything e.g., research papers
on the canvas (see Fig..).

Research papers can be aggregated and one can choose be-
tween several diagram types representing e.g., citations be-
tween the aggregated set.

User interaction is persisted and visited elements are anno-
tated with a star. As a result a visual history exploration
can be performed, where one can follow a path connecting
aggregated entities.



  Related Work

. Source Code History

Bird et al. [] compare SCM (source code management)
systems like svn with DSCM (decentralized source code
management) systems like git [a]. DSCM’s contain
more history information compared to SCM’s.

No matter which one is chosen, they build the basis for
source code history exploration. As they provide the mech-
anisms to take snapshots of the current working directory,
containing source code or any other files. The snapshots to-
gether form the history of a project and SCM’s and DSCM’s
allow to interact with this history.

The history of SCM’s usually contains only validated code,SCM’s contain less

information without incorrect beginnings or experiments as opposed
to DSCM’s, which could contain code that will never be
merged into the stable version. As a result git’s history con-
tains a larger amount of information.

The authors address git’s possibility to alter history for ex-git allows for

changing the history

wihtout traces

ample with the git rebase command. git rebase enables to
modify history without traces. The reason is that a com-
mit does not contain the information in which branch it
has been created and the fact that git rebase command itself
is logged only in the private log of a developer.

They also describe the use and evaluation of history infor-
mation can indicate the progress of a project and analyzed
the history of source code during a semester project [].
In this case the history information was gained from the
Concurrent Versions System (CVS) of each group.

Goal of analyzing this history information was to find outIs there a correlation

between grade and

degree of

collaboration

if there exists a correlation between grade and degree of
collaboration. By creating diagrams based on historic infor-
mation the functioning and amount of work was compared.
As a result only one team out of five constantly worked
on their project, whereas the rest cumulated all their work
prior to a deadline. The authors conclude procrastination
causes poor software design.



. Code Understanding & Knowledge 

An automated approach of analyzing source code history
based on CVS data is performed by Marmoset []. Mar-
moset is an eclipse plugin, which automatically creates
snapshots of a project, when one saves or adds files to the
project, instead of manually evaluating the student infor-
mation as in the scenario above[]. Marmoset users can
upload a repository to a central server, and get feedback
about how far away the project is from being finished. The
server compiles the project and tests it with JUnit, statical
analysis, a bug finder and a style checker and returns the
results.

. Code Understanding & Knowledge

Fritz et al. [] as the question: “Is the activity per- Fritz et al. conducted

a user study to

determine level of

knowledge about

source code

formed by a developer useful to determine the knowledge
he has about a source code basis?” Based on how often
and contemporary the source code was visited, significant
differences could be determined. They conducted a user
study with  professional Java programmers. To ascertain
knowledge they used an eclipse monitoring in combination
with questionnaires, after a certain amount of interaction
was performed. An interaction is the selection and edit of
source code, open/close of editors, windows and perspec-
tives. The frequency and recency with which parts of the
source code have been visited indicate the knowledge a pro-
grammer has about it.

In a study conducted by Hansen et al. [] it was eval-
uated how experience and notation influences comprehen-
sion of a developer.

He tested about  subjects with an average python- How much is

comprehension

influenced by

experience and

format of source

code?

experience of  years, using  python programs with
mostly less than  lines each and a cyclomatic complex-
ity [] of . The cyclomatic complexity describes the
number of linearly independent paths, which are less than
. Accordingly the programs are well understandable.

Vertically and horizontally formatting the python code in- vertical and

horizontal changes

in format affect

readability and

interpretation

fluences readability and interpretation.



  Related Work

In terms of vertical formatting, line breaks have the effect
that code fragments are mistakenly considered as not be-
longing together, whereas blank lines increase readability.
By determining if a line belongs to a loop, the vertical po-
sitioning of a line largely influences the interpretation.

In consideration of horizontal formatting, blank characters
between arithmetic operators affect the interpretation of
execution sequences.

Also knowledge level influences code understanding. In
situations solving specific errors, experience helps, but ex-
perience can also be a disadvantage in unusual situations.

If a standard operator like “+” is overloaded, an experi-
enced programmer expects standard behavior and not that
it was overloaded, which often leads to misinterpretation.

If something behaves the way it is expected, an experienced
programmer can more efficiently interpret reoccurring pat-
terns.

Ginosar et al. [] developed an IDE extension for Pro-plugin to

automatically

generate source

code examples

cessing, which is capable of creating multistage code ex-
amples. Multistage means that several consecutively ver-
sions of a code example form an example with increas-
ing complexity. More and more concepts are incorporated
from stage to stage. This approach is used in program-
ming books, tutorials and online videos, but the creation
of such examples is tedious. Their extension should assist
authors to create multistage code examples. The idea of
back-propagation of new changes to older versions of a file
can be beneficial in order to understand old versions. Back
propagation can be used in case there is a new sketch at-
tached to a new source code entity. An old version of this
source code entity would use the identifiers used in the new
the sketch, because they would be back-propagated from
the new source code entity. Same holds true for the other
direction and thus back-propagation would ensure consis-
tency of source code and sketch.

http://processing.org/
http://processing.org/
http://processing.org/
http://processing.org/


. Code Understanding & Knowledge 

.. Mining

In contrast to human code analysis and understanding, as
described in the previous section, mining deals with ma-
chine interpretation. Static, dynamic and automated pro-
cedures try to understand source code, comments or iden-
tifiers. Vinz and Etzkorn [] combined all those proce-
dures.

In their approach, comments and identifiers are tokenized
to get domain knowledge, which can contain human con-
cepts and cannot been gained from ordinary source code
analysis methods.

Only half of the available information is used by just iden-
tifying comments and identifiers and they combine the re-
sult of code analysis and tokenization for improvement.

Due to the combination the code to comment metrics can code to comment

metrics try to match

their concepts

be calculated, indicating how much a comment concept
matches a source code concept, but it only considers com-
ments with a distance of at least  lines to a code range.

Another automated approach is carried out by
Sourcerer[], which analyzes open source reposi-
tories in comparison to each other.

The user benefits from identifying, exploring and reusing
existing open source implementations with improved soft-
ware search and retrieval performance.

All mining approaches have in common that they can only if something does

not match a pattern

it is not considered

filter information and make assumptions, which match cer-
tain patterns. The metric cannot been calculated, if for ex-
ample the distance in the code to comment metrics is too
large or the comments can not been found at the antici-
pated location. In these cases they are not considered and
bias the result.



  Related Work

.. Refactoring Detection

Refactoring detection is another automated approach, be-
sides mining and attempts to gain knowledge from source
code by automatically applying rules to detect refactoring.

In his dissertation about historical data from source code
revision histories, Williams et al. [] describe a tool that
was implemented to detect refactorings.

The tool was tested on student projects, apache, httpd and
wine. The number of detected refactorings for each of the
projects is given, but it is not said if this number is equal to
all refactorings that occurred.

Annie Ying delved into association rule mining on a permarket basket

problem file basis. The idea is based on the market basket problem
[] []. The problem occurs when an ordinary con-
sumer buys a product in a supermarket: “When a customer
purchases item x, the customer is likely to also purchase
item y”. One tries to determine all association rules with
the form x => y, lying above a given threshold. This sce-
nario is transferred to source code modification and it is
determined how likely it is, when a source code artifact x is
changed, another artifact y is changed, too.

Zimmermann et al. [] follow a similar but more de-Zimmermann et al.

try to detect

co-changes

tailed approach, but more fine grained. They explored
which files/functions also have to be edited after modifi-
cation to one file/function Zimmermann [].

Their tool ROSE can predict some files and functions that
have to be changed also, after initially changing a file. This
is done by mining all changes for rules. Similarly to Ying
et al. [] their rules have the following form: “code en-
tity a implies that b and c have also to be changed”.

.. Whiteboard and Sketches

My work is based on “Communication Of Source Code De-
signs Through Sketching” [], which has its main focus



. Code Understanding & Knowledge 

on sketches, as ideation tools, depicting several levels of ab-
straction and which support communication about source
code. The value of sketches for developers has been stated
in the work and thus I will not focus my main attention on
it.

In the study conducted by Cherubini et al. [] the use frequency, quality

and quantity of

sketching is

measured

of drawings in software development is evaluated with de-
velopers from Microsoft. The authors analyzed the qual-
ity and quantity of sketches on different drawing surfaces
(e.g. whiteboard, paper, notebook, drawing tool) and dur-
ing different scenarios/phases of development, as well as
how and why sketches are drawn.

The content of sketches can take many forms, e.g., class UML can be rarely

found in sketchesinheritance, data flow, flow charts, state machines, se-
quence diagrams, database tables and relationships be-
tween servers and clients, etc. Price et al. []. Rarely
modeling languages like UML are used, which confirms to
the statements in my initial study (see ).

It was observed that developers use their source code edi- Developer prefer IDE

tools as opposed to

free-hand sketches

tor for design in favor of sketches on a physical medium,
like whiteboard or paper, even it is considered less effec-
tive [a]. This was also observed in my initial study
(see ), where the developers favored IDE tools compared
to hand-drawn sketches. Whiteboards are used for creating
for example presentation brainstormings and during their
daily meetings. Instead of sketches, wireframes are used
for discussion and implementation of a project.



  Related Work

Four different reasons for creating sketches[a]:

. Sharing thoughts with others

. Grounding circumstances which can be ambiguous
without a sketch

. Manipulating cognitive processes by externalizing
mental model

. Free “space” for other thoughts and brainstorming
which can lead for example to new ideas

Except for customer presentation, office whiteboards pre-whiteboards are

widely used dominated as a medium to draw sketches on, in all scenar-
ios (understand, ad-hoc, refactor, design review, on board-
ing, nd stakeholders, customer, hallway art, documenta-
tion), which have been identified in their survey carried out
with Microsoft employees.

In chapter  “I Don’t Understand the Code Well Enoughsketches are drawn

to improve code

understanding

to Change It” of the book by Feathers [], the author
encourages the reader to sketch simple diagrams in order
to get an understanding of the code and mentions similar
aspects like the above four different reasons for creating
sketches by LaToza et al. [a]. He also states that ba-
sic shapes likes lines and blobs are sufficient and UML is
not necessary. If someone else is trying to understand the
source code, discussions based on sketches facilitate code
understanding.

The idea of working together on and with sketches wassketching takes

place in

collaboration

taken up by Sangiorgi et al. [] and extended to support
collaboration. The implemented a sketch collaboration tool
called Gambit. Several people can use their preferred de-
vice (tablets, mobile devices, graphical tables etc.) to draw
sketches together. A projector visualizes the sketches to-
gether on a canvas. The advantage of such an approach op-
posed to IDE tools is, that a user is not restricted to a lim-
ited set of shapes. A disadvantage is that a hardware setup,
including a beamer and a canvas is required. Another dis-
advantage is that tablets and mobile devices still cannot
imitate the naturalness of pen and paper. Pen and paper



. Code Understanding & Knowledge 

are usable everywhere and can be used instantly, whereas
in the Gambit approach certain conditions have to be full-
filled to be able to use it and setup is needed. For transient
ideas coming to mind during work Gambit seems to be non
ideal.







Chapter 

Initial study

To get in touch with work processes of a company in the I visited a mobile IT

company with 

employees and

yearly sales of ,

Mio EUR

mobile IT sector, I visited a company based in Dortmund.
The main company is operating internationally, has 
employees and yearly sales of ,Mio EUR.

I started the day with a meeting I had with the head of During my visit I

could talk to

representatives of all

departments

application development, holding a PhD in computer sci-
ence, Henry, the team leader of iOS development, Iva and
the team leader of Android, Aaron. In the next meeting
I talked to Donna of the design team, who shares the of-
fice with other designers. Afterwards I attended a devel-
oper team which works together on a project, starting two
years ago. Next I could join the developers daily meetings,
which are separated by platform respectively. After that I
was introduced to Quinn, who is responsible for the qual-
ity management. Last I encountered the development as-
sistant Dean.

. Meeting with Development Heads

During the meeting with Henry, Iva and Aaron I presented motivation and

thesis topic

explanation

the idea and topic of my thesis and my motivation to visit
the company they work for. My intention was to get some
insights on the work processes they go through during their



  Initial study

daily work. The focus was on the use of sketches and to
get answers on the questions I noted. I brainstormed some
questions before the meeting (see Appendix F). These ques-
tions served as a reminder. What follows are some of the
questions I asked and the corresponding answers.

“Are sketches drawn and when, what they are drawn
onto?” Henry told me that they do use whiteboards toEvery office has a

whiteboard in use draw sketches, but he thinks that they could make more
excessive use of it.

Henry said that every office has a whiteboard mounted to
the wall and the number of workers in one office lies some-
where between two to eight.

In this context Iva mentioned “whiteboards, capturing in-
put with cameras” and “it would be nice if they had any of
them”.

“Are sketches persisted somehow?” They sometimespictures of

whiteboard sketches

are taken

take pictures of the whiteboard sketches and archive them
in a repository, being separated from the development
repository, where mainly source code is stored.

“Does linking sketches with a certain state and part of
source code or a particular file makes sense?” All threeConnecting sketches

must be possible

with a few clicks

agreed. Iva said that a tool that enables you to connect a
sketch with a source code file in a certain state, must be
easy to use in an IDE. “It should be possible to connect a
sketch with one or two clicks.” “The best would be if it
is as easy as connecting IBOutlet Connections in interface
builder” (see ..). The initial training of new develop-new developers

could benefit of

sketches linked to

source code

ers probably would have been easier, if they had access to
sketches linked to source code.

“Should you just be able to link per method?” Henry,A sketch must be

connectable to any

source code entity

Aaron and Iva answered that it should be possible to con-
nect a sketch to an adjustable part of a source code file. It



. Meeting with Design Team 

should be possible to link a sketch to a complete file, sev-
eral methods or a range of lines.

“What do you think about drawing sketches on an iPad
with an input device?” They could imagine to draw
sketches with it, but they would prefer freehand shapes in-
stead of sophisticated “limited” modeling languages like
UML. Aaron added “...a global overview of the whole in- The screen size of an

iPad does not suffice

for an overview

sketch

frastructure” of a software project with classes and all its
connections “there an iPad screen size is too small” and
would prefer to draw such global views on a whiteboard.
Iva: “drawing a sketch on a device like an iPad makes only
sense in terms of sketches related to methods or parts of a
source code file” and the others agreed on it. They men- digital pens are not

usedtioned digital pens, recording the shapes you draw, but
they do not use them yet.

“Do you also draw database schemes?” Iva: “if a database schemes

are directly

produced in an IDE

database scheme is required, we use the provided IDE
tools, like Xcode’s internal tool to build up the core data
model and our schemes are not complex, so that no sketch
iterations are required.”

. Meeting with Design Team

In a meeting with Donna of the design team, she told me
that their main work consists of producing wireframes,
which are iteratively optimized in consultation with the de-
velopers (see Fig..).



  Initial study

wireframe:
“...wireframes are simply a representation of the skeletal
structure of a mobile application, very often compared
to a building’s blueprints. Being an application’s back-
bone, they lay out the structure, hierarchy and relation-
ship between the elements that make up a mobile ap-
plication. The intention of these structured drawings is
to focus mainly on what the screen does, and not exactly
what it looks like. Wireframes are supposed to lack color,
graphics, or typographic styles; they are not meant to be
viewed as final designs and are certainly intended to be
a part of an iterative process. Mobile application design
could be a long process, and wireframes play a key role in
defining the structural foundation of the product, mak-
ing it easier to understand and refine in the long run.”
(Definition by [Robles, ])

Definition:

wireframe

Donna crafts these wireframes with her colleagues andwireframes are

iteratively optimized hands them over to the developers. If something remains
unclear to the developers or something is impossible to im-
plement, a new iteration of wireframes is produced.

. Meeting with Developer

I had the chance to talk to a developer team of eight, con-
sisting of two iOS developers, three Windows Phone de-
velopers and three Android developers. They shared one
office with a whiteboard mounted to the wall.

If the developers work on the same project they usually are
settled in the same office, which should facilitate commu-
nication. The development ranges over three mobile plat-
forms: iOS, Android and Windows Phone. The number of
developers depends on the size of the project and on the
platforms the customers want to have supported. A toolLinking sketches to

source code must be

possible with all IDE’s

and without

metadata

which is capable of linking sketches to source code must
run on all platforms. One of them said “I do not want
to have the software repository cluttered with additional
metadata”, referring to metadata as a byproduct of linking.



. Meeting with Developer 

Figure .: Example wireframe of a mobile app, which un-
derwent some iterations and already contains color

For the first development step they use the documents pro-
duced during an initial customer meeting and wireframes
of the design team.

They told me that during the entire development process wireframes are the

basis for discussion

during the entire

development

process

they do use and annotate wireframes. These differ from
platform to platform, because of the native UI elements.
As an example, they mentioned the different Navigation el-
ements of iOS compared to Android.

In case the wireframes are not sufficient and to ease com- Besides wireframes

IDE visualization are

used



  Initial study

munication with other developer teammates, tools like
Xcode’s Interface Builder and Storyboard or Android Stu-
dio’s Design View are used to discuss development ques-
tions.

The developer team rarely uses the whiteboard. Some of
them have a notebook to draw sketches into, focussing on
wireframes.

Database models are

directly conceived in

the IDE One of the developers said “if the database model is com-
plex, something went badly wrong”. He added “our
schemes are very simple and the main data source are JSON
files, requested from a server”. They directly use IDE tools
to come up with a database model. Hence, neither they
draw database models on the whiteboard nor sketch it in a
notebook.

Concerning the question if modeling languages like UMLUML is not used by

the developers are used in their sketches, they said that they do not use
UML, rather free-form shapes connected by lines.

The developer team would like to keep using the tools theyconservative

towards new tools got accustomed to and have been skeptical about using an
iPad and about linking sketches to source code in general.

. Daily Meeting

During daily developer meetings, which are separated byplatform dependent

daily meetings platform i.e. Android meetings are lead by Aaron and iOS
meetings are lead by Henry. A whiteboard is used to keep
a statistic of what each of them was occupied with and for
how long.

A meeting starts with Henry and Aaron asking about any
difficulties being encountered, what they have been work-
ing on and what has been finished.



. Meeting with Quality Manager 

. Meeting with Quality Manager

I talked to Quinn, who also appreciates linking sketches
with source code. He could even imagine to use an iPad for
sketching.

Quinn commented a drawing on the whiteboard in his of-
fice: “this was drawn for structuring an external presen-
tation”. It visualizes a brainstorming, in which connected
bubbles guide the presentation flow.

He was the only person I talked to, using UML. He uses Only person using

UMLMagicDraw to build UML representations of the system ar-
chitecture and could imagine to use a drawing device like
a pen for the iPad for sketching.

. Meeting with Development Assistant

At the end of my visit, Dean presented some general in-
formation about the company, how customer meetings
and projects proceed and which customer orientation they
have. Developers sometimes attend those customer meet-
ings, but at least the head of each platform is present.

. Summary

Visiting the company in Dortmund revealed the workflow
of mobile developers and other individuals involved in the
development process. My assumption that sketches are
used for visualization was confirmed by the utilization of
whiteboards, wireframes and sketches. The potential of
sketches is not completely exhausted.

Freeform shapes are preferred, as opposed to tools like
UML. This was already ascertained in chapter . The prob-
lem of persisting whiteboard sketches became apparent
during the interviews. They mentioned the potential ben-
efit of linking sketches to source code and persisting them.



  Initial study

By persisting them, sketches can still be manipulated when
the original whiteboard sketch no longer exists. New devel-
opers can take advantage of it.





Chapter 

Prototypes

. Implementation

This section will deal with implementation decisions. It
precedes the .. section, because some technical detail
is given and it introduces some technical terms, which are
used in the subsequent section.

In order to come up with a history exploration GUI, tech-
nical requirements had to be clarified.

.. IDE Extension

As described in the motivation part (see .) I wanted to I wanted to

implement an Xcode

plugin for history

exploration

integrate a GUI plugin to support history exploration into
Xcode. The plugin should act on top of Xcode and exchange
information with it, extending its capabilities. Xcode al-
ready provides some information which are useful for my
plugin. These are for example, the project(s) currently
open, the source code file visible and of course the paths
to each of them. Also the lines of the source code file, being
in the visible screen section, can be obtained and are used
in my plugin to control the amount of displayed informa-
tion. The problem with these pieces of information are that
they are not open to public and not easily accessible.



  Prototypes

To be able to attach a plugin to Xcode’s internal compo-class-dump is used

in order to get some

information detail of

Xcode

nents, like the source code view, a tool like class-dump
[] is helpful to get at least some implementation de-
tails about the underlying classes. It was a required step
to get for example, variable names, because I wanted to be
able to access the Xcode view containing the source code.

To link something with Xcode’s source code view, one has
to attach an observer to the notification IDESourceCodeEdi-
torDidFinishSetupNotification. When this notification (trig-
gered after Xcode has finished loading the IDE on startup)
is sent to the Xcode application, the source code editor’s
TextView becomes accessible via the variable textView.

This variable of a TextView instance references a DVT-I needed to find a

way to access

Xcode’s source code

view

SourceTextView object. DVTSourceTextView inherits from
NSTextView and represents a class with some extra behav-
ior implemented for Xcode only. NSTextView is a class
which is publicly usable and documented [c]. In gen-
eral NSTextView provides the basic functionality for devel-
opers implementing UI’s using a TextView similar to Java’s
swing component JTextArea[]. I needed access to the
DVTSourceTextView object in order to acquire the source
code text, currently visible.

.. Sketch History

In general a sketches are digitized by taking a photo of it,sketch digitizing is

tedious scanning it or by redrawing it with the help of a computer
software. All these forms of digitizing, except redrawing
with sketch software, lack the ability to step back in the
stroke history of a sketch or it is hard to do so. In case of
taking a photo or scanning it, several photo sessions or scan
iteration have to be performed during sketching. By using
software commonly one has only the ability to undo or redo
a limited number of performed steps.

Here digital pens and their software comes into play, likeThe digital pen

Wacom Inkling was

used to digitize

sketches

for example, the Wacom Inkling [], which was used for
the sketches in my user study (see chapter ). The Inkling
is a digital pen, tracking every stroke. Besides the pen it has



. Implementation 

a small receiver (operating on batteries) that can be clipped
at paper. After sketching it can be plugged into a computer,
in order to open the sketches (stored in WPI files).

Inkling’s file format WPI contains the coordinates of every
stroke made wac [] in a vector format. A stroke entry
in a WPI file consists of a stroke pressure value, tilt value,
a timestamp and a clock valuewpi [].

The data in a WPI file is ordered chronological, so the order
of “when a stroke was drawn” is set, but a single stroke
entry does not contain a timestamp.

The accompanying software shipped with the Inkling is the
Inkling Sketch Manager Wacom []. This software pro-
vides a GUI for browsing all drawn sketches and edit them.
An additional feature is the ability to step through every
single stroke in chronological order.

Three limitations exist with this software in terms of sketch
assisted source code history exploration.

• Again an additional application has to run.

• Inability to link sketches with source code.

• No timing information is used/accessible, except for
the creation date of a sketch.

I implemented a parser that can read in the WPI files binary
data, with the help of some websites [][] and got
a set of coordinates. These coordinates can be used to draw
Bezier curves[], which also exist e.g., in Java. With the
help of those coordinates I was able to draw the sketch or
a thumbnail version of it in every resolution, without the
loss of quality.

The binary data of a WPI file contained a timestamp, de- I implemented a

parser for Inkling

files

scribing the time, when a WPI file is generated. It is gen-
erated, when the first stroke is drawn. Beside the times-
tamp there was also clock data for every stroke entry, which
counts, how many seconds have passed, until a stroke was
drawn. I used this seconds counter as an offset for the



  Prototypes

timestamp. This enabled me not to just get the order of
all strokes, but also determine, when a single stroke was
drawn with an exact timestamp. Now the duration of draw-
ing parts of a sketch can be measured.

As a result, I receive historic information of all sketchesobtain a history of

strokes and their strokes. With this information one is able to over-
come the above described issues of the accompanying soft-
ware. The ability to get the stroke and timing information
of the WPI file, allows to have access to them from inside
the plugin and draw for example, the sketch in Xcode. This
provides the first step to link sketches with source code.

A git alike functionality of branching and merging sketchesRevision control

would be possible

with the obtained

information

can be built up on the history of strokes, because the ba-
sic requirements as described in the work by Chen et al.
[] are fullfilled. The timing information for individual
strokes can be used to further analyze the data. It would
be possible to implement the capability of selecting strokes
for a time range. As for example, the goal “select all strokes
drawn on the th of june  between  and  o’clock and
delete them” would be achievable, but I did not investigate
this any further.

.. AST

In order to achieve IBOutlet alike Connection’s (see ..),
my first idea was to use a regular expression to determine
the screen coordinate bounds of source code entities like
methods. These bounds are required to drag a connection
from a sketch to a source code entity.

The problem with a regular expression approach is, thatregular expression

are not powerful

enough

it is unlikely to come up with one, matching every possible
situation/form a method can be implemented in. If another
source code entity will be required in a future version, then
a new regular expression has to be constructed.

The method implementation in figure . is a valid way to
implement a method and a regular expression must be able
to cope with multi line signatures, which could themselves



. Implementation 

-(void)aMethod
:(NSString 
*)aStringParam
{
    

}

Figure .: One can see an unusual but valid Method im-
plementation. A regular expression matching all unusual
situations is hard to implement

contain lines with comments etc. Because of the difficulty
finding a regular expression matching the great variety of
valid method implementation formats, another approach
had to be considered.

A solution to handle the unusual, but still valid imple- information of the

AST can help to

overcome the

limitations of regular

expressions

mentations of e.g., methods, the AST (Abstract syntax tree)
[] of the source code document can be consulted to
detect the necessary information of the line numbers a
method starts and ends.

The AST of source code documents written in C, C++, Ob-
jective C and Objective C++ can be obtained by using lib-
clang [a]. It is a C interface library that allows for pars-
ing and traversing the AST of source code files [b]. The
library is able to parse a file containing source code and can
output/access the AST of it. One can get the distinct line
numbers, where a method implementation starts and ends
as well as every valid syntactical element in a file with its
type.

To accomplish IBOutlet alike Connection’s and syntax Obtain the exact line

numbers of e.g.,

methods from the

AST

highlighting (see ..) I conducted the AST of each ver-
sion of a source code file. Then, I obtained the line number,
where for example, a method begins and ends, which is a
required information to be able to achieve IBOutlet Con-
nection’s.

In order to provide syntax highlighting, tokenization of the
AST is required and then from every token the type can be
determined and they can be highlighted accordingly.



  Prototypes

Figure .: The user drags an IBOutlet connection from
the button in Interface Builder, labeled with “WARRIOR”,
to the source code view on the right. The blue line indicates
this connection.

.. IBOutlet Connection

Xcode’s Interface Builder provides the ability to link inter-
face objects like a Button to outlets in your source code,
called IBOutlet connections. This procedure is visualized
in figure .. I transferred this idea to the context of
sketches and source code versions. As I wanted to connect
sketches to source code entities of a particular version, the
technique of IBOutlet Connection’s provides a simple way
of connecting elements with source code and the visualiza-
tion guides the user throughout this process. Simplicity in
form of a few clicks was a requirement noticed during my
initial study (see ).

My implementation of IBOutlet alike Connection had toI mimicked the

behavior of IBOutlet

Connection’s

implementing them

from scratch

start from scratch, because no source code of IBOutlet con-
nections is publicly available. It has the benefit of using
my implementation with other IDE’s or text editor’s, with-
out Xcode dependencies.

The implementation required the following steps:

. Get the mouse position coordinates

. Convert mouse coordinates between screen, windows
and view coordinates.



. Implementation 

. Get the pixel range of e.g., a method from its declara-
tion to the last closing bracket

The items . and . can be implemented straightforward
with Cocoa’s provided functionality. “Cocoa is Apple’s
native object-oriented application programming interface
(API) for the OS X operating system” [].

The last item . deals with source code character to pixel po-
sition conversion. In order to get the method extension in Line numbers had to

be converted to pixel

positions

pixels, I first needed to convert the start-line and end-line
of the method to pixel positions. This is possible via lib-
clang. With the help of libclang I can parse the source code
and access its AST. Where as libclang’s AST feature is able
to report the line number(s) of every source code entity, I
am interested in [] (see .. for details).

The line numbers, obtained from the AST, can be converted
to pixel coordinates and compared to the position of the
mouse cursor. This process is depicted in figure ..

As I wanted to imitate the IBOutlet Connection as similar A transparent

window filling the

entire screen was

required

as possible to its original counterpart, a transparent win-
dow on top of Xcode was required to draw/drag the IBOut-
let connection to every possible position on the screen. The
frame of the window is drawn in the sketch of figure ..
It should cover the whole screen while being transparent.
Xcode and all other apps currently running should thus be
“covered”.

The transparent window comes to the front and in focus as
soon as the user left-clicks and hold on a sketch, triggering
the routine for drawing an IBOutlet connection. The start-
ing point for the connection is this particular left-click po-
sition and its endpoint is determined by the position where
user lifts his finger. With such a design the fact that the
plugin should be integrable into other editors is respected,
because there is no deeply coupling and dependence on
Xcode’s core functionality.



  Prototypes

Figure .: Determine IBOutlet Connection Rectangle - On the upper left one can
see a source code file. This source code file is parsed with libclang and then lib-
clang’s output contains the start- and end line of e.g., the method. In the next step,
labeled with  on the bottom right, the start- and end line numbers are converted
to pixel positions. These pixel positions are used in step  to draw a rectangle on
top of the method, when the user hovers it during the connection process.

.. Syntax Highlighting

To enhance readability of source code syntax highlightingI had to come up with

syntax highlighting

for source code

entities

is used, which marks language keywords and other syntac-
tical elements like brackets, in different colors. As I have
access to the currently visible version of source code visi-
ble in Xcode, I could use the coloring of this version for the
identical version in a source code exploration view. This
would have of course be possible, but for the other versions
of the source code file, which are not visible in Xcode at the
moment, my own syntax highlighting is required.



. Implementation 

Figure .: Early IBOutlet Connection sketch - The schematic window of Xcode
can be seen, extended with a sidebar on the right of the application window, con-
taining sketch thumbnails. An IBOutlet Connection is dragged from a thumbnail
to the source code. As the connection endpoint is on top of a source code method,
the entire method is encompassed in a rectangle, indicating to which entity the
connection will be established. On the top a menu item was added beside Xcode’s
ordinary menu items. The whole screen is covered with a transparent window,
serving as drawing canvas for the IBOutlet connections.

To achieve syntax highlighting I could have used one of sev-
eral javascript libraries like et. al [] et al. []. The
drawback is, that a view displaying html would be required
WebView Inc. [], which drastically decreases the inter-
action capabilities opposed to NSTextView Inc. [c].

I could not find any open source project on for example,
github for syntax highlighting, so I inspected how Codeine
Gadina [] achieves syntax highlighting by looking at



  Prototypes

the source code of this project. It achieves syntax highlight-
ing with the help of clang. The source code is tokenized and
the type of the AST entities can be determined and differ-
entiated, as for example a token of type CETokenTypeString
represents a String and can be colored accordingly.

.. Source Code History and Diff

To be able to create or access a version of source code agit is the version

control system used version control system (VCS) is required. I decided to use
git [a], a distributed version control system (DVCS),
allowing the user to have a local repository, which can ex-
change information with remote repositories. Git was ini-
tially developed by Linus Torvalds in  for developing
the linux kernel. It is now one of the most used versioning
control system according to an eclipse community survey
Skerrett [].

To integrate git functionality into my software prototypeobjective-git is a

library to call git

functions in your

own source code

CodeShape, I used the library libgit [] for which
an Objective-C porting/binding objective-git exists [].
Libgit and objective-git provide access to the core methods
of git. They allow for better performance and easier usage
as opposed to calling git’s command line methods.

To access a repository or individual commits amongst other
things, libgit provides an API.

I encountered the

limitations of the git

log algorithm

revision listing issue I encountered the problem that
objective-git could not fetch all revisions of PBGitGrapher-
file in the GitX repository used for my user study (see chap-
ter ). I noticed that some revisions were missing in the re-
vision listing produced by objective-git. First I thought this
problem was related to objective-git only, but by executing
git log –follow Classes/git/PBGitGrapher.mm in console the
same revisions were missing. The –follow-parameter tells
git to list files beyond renames. The problem is that the file
PBGitGrapher.m is deleted in commit cefac and the file



. Layout and Functionality 

PBGitGrapher.mm was added with nearly identical content.
The git log algorithm is not able to detect such changes, al-
though the content remains nearly the same.

git diff The objective-git library allows to call git functions
from within Objective-C and we call git diff functions in
order to calculate file differences.

The git diff functionality is based on the original algo- git diff was used in

order to calculate

version differences

rithm from Douglas McIlroy and James Hunt, who pub-
lished there work in  []. Eugene W. Myers and
Webb later improved the algorithm. Miller []. The
functionality is best described by: “Show changes between
the working tree and the index or a tree, changes between
the index and a tree, changes between two trees, changes
between two blob objects, or changes between two files on
diskTorvalds et al. [b]. It works on a per line basis and
uses a special standardized format for the output Founda-
tion [].

. Layout and Functionality

.. CodeShape

The design of my source code history exploration GUI with GitX served as

design insperationsketch capabilities was inspired by GitX de Bie and James
[] and Xcode Inc. [e].

In figure . GitX is shown, it brings git’s command line
interface to a GUI.

The prototype I designed has a similar functionality of I invented toggling of

diff typeshighlighting lines, but I further extended it. It is thus possi-
ble to toggle between the states of showing deletions, addi-
tions and updates and line interaction is provided. Further
details are given at the end of this section.

In this version of the plugin (see Fig..) there is no thumb-
nail preview of the sketch.



  Prototypes

Figure .: GitX application - In the red rectangle labeled with  the short SHA of
each commit is given. This rectangle is followed by rectangle , which is a visu-
alization of git’s undirected acyclic graph, where each circle represents a commit.
The lines connecting a commit show which commit follows and which one was be-
fore in time. Ordering normally starts from bottom to top, whereas the top most is
the latest commit. The rectangle with label  contains the first line of the commit
message of each commit and lies exactly on the same level as the circle. The next
rectangle labeled with a  contains the date’s of each commit on a per row basis.
Label ) contains the author’s first- & last name. Rectangle with label  encloses a
line diff, similar to git diff. The first line, highlighted with a light red, represents
a deletion. This line was present in the commit before, but not in this particular
commit. To further indicate that it refers to a deletion, a red plus precedes the row.
This is also similar to git diff [a]. The next line, is highlighted in green to mark
it as an addition and again a green plus precedes the line.

Tablet Prototype I also thought of a software prototype
usable on a tablet device like the iPad. In figure . one can
see an early design prototype.

The advantage of a tablet device would be that it is possible
to combine sketch creation and exploration of source code
history as well as sketch history on one portable device.

Further the user can manipulate any already drawn sketch
and it allows for merging & branching of sketches or parts
of it []. This would be harder to achieve with a device



. Layout and Functionality 

Figure .: Mockup of IBOutlet Connection used to con-
nect a WPI file to a source code method

Figure .: Xcode application - , were used as an inspiration for CodeShape

like the Inkling. With an Inkling continuing a sketch, re-
quires the receiver to be attached to the exact same position
as it was before. A person who has no physical access to
the original drawing must also print the sketch and is then
able to continue it, when the exact same position of the re-
ceiver is satisfied. It is thus more inconvenient to continue
a sketch using a digital pen, as opposed to opening your
own sketch or the one drawn by someone else on the iPad



  Prototypes

Figure .: The mockup screen (gray rectangle) on the upper left, shows a git tree
in which a commit circle has been touched, showing a popup beneath the touched
circle. On the upper right of the mockup an overview map is shown, visualizing
which part of the history we currently consider. In the upper right mockup a source
code is shown and on the right there is a directory listing of the files in the reposi-
tory. The two mockups in the middle show how connecting thumbnail sketches to
source code is achieved. In the two mockups on the bottom a drawing canvas for
drawing or extending existing sketches is shown. Basic shapes on the right hand
side, support free-hand drawing.

and just continue work.

Suggesting there would be a mobile app with sketch anda tablet device can

become a

programming

assistant

source code history capabilities, then digitizing a sketch
or drawing it already in the first place on a tablet device,
would allow a developer to browse source code history
and sketch history on a device like the Apple iPad or Mi-



. Layout and Functionality 

Figure .: IBOutlet Connection sketch v - The sketch visualizes the situation in
which a user might want to connect a sketch to a source code entity or vice versa.
The right side of the sketch should represent a sidebar containing thumbnails of
sketches.

crosoft Surface. A developer could use his normal screen
of his desktop PC or laptop for development and the iPad
serves as a development assistant, where the developer can
browse through source code and sketch history besides his
usual programming.

I gave up on the idea of developing an iPad app, because drawing one an iPad

does not feel naturaldrawing on it does not feel as natural as with a digital pen,
the screen is very small-sized and a resulting sketch is less
accurate and precise as using a digital pen. No matter an
iPad app would better support collaboration and history
interaction of sketches.

IBOutlet alike Connections

Related to the prototype I came up with the idea of con-
necting sketches with source code, like IBOutlet Connec-
tion’s in Xcode’s Interface Builder (see ..) [d]. This
idea was inspired by a comment during a meeting in my
initial study (see chapter ).



  Prototypes

Figure .: connect sketch to a source code entity - a user
starts by clicking and holding the mouse button on top
of a sketch thumbnail ) , he would like to connect to a
source code entity (here a method). A dot appears, indi-
cating that the connection will start from the clicked po-
sition. When the user now moves the mouse, a connection
line is drawn. It starts at the first mouse-down position and
ends at the current mouse position. In the next step ) the
user has to release the mouse-down on top of a method,
she would like the sketch to be connected to. It means
that the mouse cursor has to be somewhere in the bounds
of the method, which corresponds to a rectangle starting
from its signature’s leftmost starting character, to its clos-
ing bracket. Whereas the width is equal to the width of the
source code’s text view.

In figure . an early draft of a possible interface of the
plugin can be seen.

In the figure . the process of connecting a sketch to a
source code entity is explained.

Versions / Commits To jump between versions of a
source code entity (a method in this case), I implemented a
sidebar that becomes visible by clicking on a toggle button.
The sidebar contains a table of versions (see Fig..).



. Layout and Functionality 

Another possibility to jump between versions are the blue a blue circle

represents a commitcircles on the bottom of figure .. I choose this particular
size and shape to make them easy clickable, as the size is
a few pixels larger than an ordinary mouse pointer. If a
sketch is attached to a version, it is indicated by a white
icon (widely used symbol for a picture or in a broad sense
artwork in any kind of format, containing an outline of a
sun with a mountain []). To be able to recognize this
icon it size also influenced the size of the circle.

CodeShape has a source code line interaction context menu CodeShape has a

context menu that

allows for line

interaction

(see Fig..). Selecting one of the menu options, results in
circles that have changed their color to red, blue or green
(see Fig..). The colors indicate that non blue circles con-
tain a change related to the source code line for which the
context menu was activated. Further details to the colors
and the context menu are given in the version differences
paragraph ...

version differences To be able to see what lines are
added, deleted or updated the output of objective-git func-
tions were called in order to highlight lines in which
changes occurred.

I came up with the idea, of toggling between the different
diff change types.

Originally a diff only distinguishes between addition and I consider a new

change type in the

diff visualization

deletion. I noticed that when a line is updated, the diff con-
tains a deletion directly followed by an addition, whereas
the line numbers are the same, but they are placed in two
rows. The new change type can be used to introduce or dif-
ferentiate between three change types: addition, deletion
and update.

The update change type can be further improved using The update change

type leaves room for

improvement

the Levenshtein distance Levenshtein [], which calcu-
lates the character differences of a string sequence. When a
line completely differs from its previous version, one might
consider to show the line diff in its original format, a dele-
tion followed by an addition.



  Prototypes

Figure .: CodeShape Explorer image section: In this fig-
ure CodeShape’s sidebar with its version history is shown
(becomes visible by pressing the show commit info sidebar
button on the top). The leftmost column shows the date
and time, the next column a short SHA of each version,
next the author and in the last column the whole commit
message is visible. The bottom of the figure shows blue cir-
cles, each of them represents a commit and it is another
visualization of the table, more compact and it shows only
the information on hovering a circle with the mouse. A cir-
cle with a white icon inside represents a version to which a
sketch has been attached to.



. Layout and Functionality 

Figure .: CodeShape Explorer - right click context
menu

Figure .: CodeShape Explorer - timeline highlighting -
The upper half of the figure shows the timeline of Code-
Shape, when we have selected the context menu “Highlight
future deletion of this line” (contexmenu step is not shown
here). It marks the commit represented by a circle with red
color and thus we know that there is a deletion of the se-
lected line in this future commit.
The grey triangle alike selector, which is the same as the
one used for NSSlider Inc. [b], indicates which commit
is selected at the moment. In this case the commit, which is
located  commits before the deletion of a line (red circle),
is the currently selected.
In the other direction on the lower half of this figure one
can see, when we have selected “Highlight past changes of
this line” on a line of the current commit, that there is a
green circle. This means that this line is added in this com-
mit. The situation of a line, which is updated, is not shown
in this figure.

The highlighting of updated lines is already visualized by
Kaleidoscope [], which provides a GUI for diff opera-
tions. It also highlights the words that changed in updated
lines, which is impossible with git diff, but the unix tool
wdiff Foundation [] can calculate differences on a word
per word basis. Thus it would be possible to produce an out-



  Prototypes

put similar to Kaleidoscope, where lines containing an up-
date are highlighted and also the individual updated words
of this line.

The problem with highlighting a line as an update is, that
only the new line is shown, so that the old version of the
line is not visible in the diff visualization.

I solved this drawback by providing the aforementioned
toggling states. Another solution would be to show the pre-
vious version together with the currently selected one. In
figure . an assembled image section of the CodeShape
Explorer view is shown. Lines of the source code are visi-
ble, whereas some of them are highlighted.

The advantage of the “newly” introduced update type andone can now tell

apart deleted lines

from updates more

easily

its highlighting is, that one can visually differentiate be-
tween an update and for example, a deleted line, followed
by a line which was added by comparing their coloring.

The original diff output indeed noticed an update, by anno-
tating updated lines with the same line number. A disad-
vantage is that one has to read and compare the line num-
bers, to recognize an update.

Update highlighting decreases the number of shown lines,As opposed to the

original git diff,

update highlighting

reduces number of

required lines

so that the number of lines containing an update is halved,
because only the new content of the line is shown. This re-
sults in that the total number of lines in the source code
document diff decreases by n − nupdate

2 . Where n is the total
number of lines in the diff and nupdate the old number of
lines required to depict updates. Each individual update
consisted of the old line followed by a new line. The de-
nominator  results from the fact, that now only the new
line is displayed. In figure . all states are toggled, in-
cluding the update state. If one is interested in how the
line looked before the update, one just has to deselect the
update button figure .. The output is now equal to the
original git diff, except for the line numbering in this pro-
totype. The prototype contains an issue and lacks to show
equal line numbers in case of an update, instead the num-
ber is increased in every line. This case has to be taken into
account in a feature version of the prototype.



. Layout and Functionality 

Figure .: CodeShape Explorer Diff - addition, deletion,
update selected - On the upper right an enlarged over-
lay, where all buttons are selected, is shown. The “+”
sign represents addition, so when it is selected, all lines
of the source code which have been added in this version,
are highlighted green. It is similar in case of the deletion
button(“-” sign on the right of the “+” sign button), which
highlights a line in red, when this line does not exist in this
version any more, but in the version before.
The button on right of the “-”-button, a circle on which
two arrowheads are drawn, was re purposed, as it normally
stands for refreshing in for example, the web context. A
better suiting icon may be deliberated in future, but I could
not come up with another symbol.

Figure .: CodeShape Explorer Diff - addition, deletion
selected

If one is interested in lines which are new in this version,
one has to select only the “+”-button (similar for the other
cases, see Fig. ., ., .). In case one does not want
to be distracted by the diff, unselecting all toggle buttons
will disable diff-highlighting entirely.

history of lines In contrast, to common git GUI clients
like Tower [], CodeShape allows to track the changes



  Prototypes

Figure .: CodeShape Explorer Diff - Addition Selected

Figure .: CodeShape Explorer Diff - Nothing Selected

of one or multiple lines.

A single click on a line of code brings up a popup above the
commit circle and indicates where the line was changed,
along with commit information (see Fig..).

Double-Clicking a line leads to the commit where the lineJumping to the

commit a line was

implemented,

updated or deleted is

now possible

was implemented first or updated. You can only go back in
time step by step.

To go to a future version of a line a right click context menu
is given in figure .. This menu allows to highlight the
next or previous commit ..

It was considered to highlight every past commit, where
this line was changed, in a “recursive”-manner. Visually
this would result in several highlighted circles, also only
one line was selected. Recursive here means that every ver-
sion containing a change, looks itself for a version, where
the line selected also changed in a prior or future version
now starting from this version. This suggestion was also
made during the study (chapter ) by one of the partici-
pants. This behavior has some drawbacks. Imagine the sit-



. Layout and Functionality 

Figure .: In the figure one can see CodeShape a cursor
(stretched to see it better in this figure). A user clicked on
the source code line and a commit circle,  commits before
the current one, shows a popup above, indicating that in
this version the line has changed.

uation, where the user selects “Highlight past changes of
this line” on for example, a line

int i=;

when the line of a previous version looks like

NSLog("has nothing todo with int i=");

this version would be highlighted too, but it has nothing in only the next or

previous change is

highlighted

common with the line we selected in first place, except for
the same line number. Another version even further in the
past, which is unrelated to both lines, would also be high-
lighted. The situation would be the same for “Highlight
future deletion/update of this line”. As a consequence of
such a situation, where several commits are highlighted,
having nothing in common with the selected line(s), we
limited highlighting to one prior or future commit per line.
This does not solve the issue of unrelated line content, but
it ensures that at most only one version, being unrelated, is



  Prototypes

selected.

With the help of the Levenshtein distance and a to ol like
wdiff it would be possible to come up with an upper bound
threshold. It could be used to highlight only commits with
a and word difference below a certain threshold. Thus only
changes which are related to the originally selected line,
would be highlighted. This might solve the issue, but I did
not investigate this any further.

Another thing to test would be only one context menu en-
try or two, combining future and past change. As it is indi-
cated which current commit we are one, we can tell apart
which of the high lighted circles/commits lay in the past
and which in the future.

In contrast, to the view and sketch arrangement in Lukas’sketches are visible

together with the

source code

work [], I arranged the sketches beside or beneath the
source code view. This is due to the fact that my design
should focus on sketch assisted source code history to get
the rationale behind the code with the help of the sketch.

In Lukas work, where the sketch is presented fullscreen the
source code is not visible. I do not consider the ability to
navigate with the help of the sketch, which requires the
connection points in a sketch (see []) to have certain
size to be easily clickable and to focus on the sketch only.

Instead comprehension of source code with the help of
a sketch and vice versa are of primarily importance.
Sketch and source code are complementary, communicat-
ing knowledge in different forms and thus I considered it
as important to have them side by side. You do not have to
keep information of either the sketch or the source code in
mind, as it would be the case if only one of them is visible
at a time (see Fig..).

.. Azurite

Another plugin considered during my research is Azu-Azurite tracks every

character change rite[b] [c]. Azurite is a selective undo plug-in



. Layout and Functionality 

Figure .: CodeShape Explorer: Number ) shows the Author, date and time, as
well as a short SHA. Number ) is a toggle button to show a sidebar, containing a
table of commits and versions (sidebar itself is not visible in this figure). Number
) shows three toggle buttons for controlling the diff highlighting and the button
on the right is for switching on/off the mouse over highlighting on commit circles
in number ). Number ) shows a sketch control, whereas the left arrow is for
stepping forward one stroke at a time, the next one vice versa, the magnifier with
a plus symbol inside is for zooming into to the sketch, without quality loss and
the other magnifier for zooming out. The last magnifier is for resetting to original
size. Number ) shows a slider to control the strokes in the sketch, allowing to
step through the strokes of the sketch in order of creation order. Number ) shows
the timeline slider for stepping through commits, hovering one of the blue circles
shows a popup (here centered above the th blue commit circle, which contains a
sketch, indicated by the white icon inside).

for eclipse and tracks changes on a per character basis, be-
ing more fine grained then for example, the line based ap-
proach of git.

The individual changes are visualized in a timeline view
(see Fig..).

Azurite differentiates between additions (green rectangles),
deletions (red rectangles) and updates (blue rectangles). If
the user types for example, a “{”, then a green rectangle is
appended on to the timeline. Deleting this results in an



  Prototypes

Figure .: Azurite - eclipse Plugin - the black area at the bottom represents the
timeline view. One can see green, red and blue shapes, representing addition, dele-
tion and update

additional red rectangle.

Every time eclipse is started, a new session is created,
which is visualized with a vertical bar and a date below on
the timeline.

Similar to CodeShape it is possible to select/highlight pastModified Azurite

highlights past

changes in the

timeline

changes. This can be triggered from within the source code
view by selecting several lines and right-click on them. It
brings up a context menu, which contains a menu item
named Azurite. When the user selects this menu item, he
is presented a submenu. The submenu contains an item
“Select Corresponding Timeline View Rectangles” amongst
others. As its label indicates it highlights rectangles in the
timeline view for the lines that have been selected.



. Layout and Functionality 

Figure .: Extended Azurite

Modifications

I omitted some features of the original Azurite plugin. As selective undo was

not needed during

my user study and

thus not

implemented

for example, the selective undo feature, because the task set
of my user study B did not require to undo anything. The
tasks did not require any programming at all, but instead
the participants should explore the source code.

The original Azurite was extended to support sketch capa- The modified Azurite

has the same sketch

capabilities attached

as CodeShape

bilities. The source code view is split in halves, when there
is a sketch available for a particular session and a sketch is
displayed on the right of the source code view. The sketch
view can be seen on the right part of figure .. It is vi-
sually and functional identical to the sketch view of Code-
Shape.

To the original timeline view an additional row, labeled
“Sketch”, was added. The row is required to be able to show
rectangles, indicating that a sketch is available. The rect-
angles vary from the original ones, as they are of fixed size,
quadratic and larger than its original counterparts. This
was done to be able to tell them apart from rectangles rep-
resenting source code changes and to make them more sim-
ply selectable then the small rectangles.

It was observed in the user study, that the original rectan- Azurite’s rectangles

a hard to select with

the cursor

gles are hard to select (). This was one reason to make the



  Prototypes

sketch-rectangles larger, so that at least the whole cursor
fits into it. The width denominator W in Fitts’s law Fitts

[] is increased in this way T = a+ b log2

1 + D
W

 so that

the average movement time T is decreased.

No matter if the user clicks on a sketch-rectangle or on one
representing a source code fragment, the sketch view ap-
pears, when there is a sketch available for a session.

I had to decrease the level of detail from character based
changes to line based changes, because git operates on
line based changes and thus there were no character based
changes available for the example git repository used.

Another drawback resulting from this fact is that git doesThe unique

visualization of the

original timeline can

not be preserved by

using git

not track the time for a line change. It is only possible
to get the time of the commit the line change belongs to.
Thus on the level of an Azurite session it is impossible to
sort the line changes in chronological order. Instead I or-
dered them according to their line number, starting from
the lowest line number to the highest and the distance be-
tween changes is the same for all. This can be seen in figure
., where the changes of a session look like steps of a stair
without gaps in between each change, which is equal to the
compact mode of the original plugin. The compact mode
removes gaps between any two changes.

.. Chronos

In this section the history exploration GUI named Chronos
will be presented. Chronos is a tool visualizing slices of
source code history obtained by the approach named his-
tory slicing Servant and Jones [] (see definition in .).

A history slice can be anything from a single line and con-
tiguous or disparate sets of lines from one or more files.
The selected set of lines is then highlighted in Chronos with
the history from all revisions containing changes in the set
of lines.



. Layout and Functionality 

Figure .: Chronos History Slicing GUI

Inside the GUI zooming, panning and highlighting is possi-
ble and the content is displayed in form of a scalable vector
graphic (svg) (see figure .).

modification Again the plugin is extended to provide
sketch functionality. This time though sketches are shown
beneath the version of source code they belong to. In its
original version Chronos is - like Azurite - an eclipse plu-
gin usable with Java source code. To provide sketch func-
tionality and to make all plugins uniform, I built Chronos
from scratch using Objective-C. The problem was that the
only description and screenshots can be found (see Servant
and Jones []), so my prototype is only based on this
information.

Like its original counterpart it allows for zooming, panning I changed the

implementation and

did not use svg’s in

my implementation

of Chronos

and highlighting, but does not use scalable vector graphic’s.
This was done on purpose, because of the fact that the
sketches are not available in scalable vector graphic’s, also
they could have been converted into svg’s, because the coor-
dinates for the strokes are scalable to every resolution. All
others views would have to be converted to svg’s, too. I con-
sider this as unnecessary, because everything is on its own



  Prototypes

already scalable. For example, the font size of the source
code can be multiplied with a scaling factor and the same
holds true for the other view like the timeline. This has the
advantage - when the views are not converted to svg - that
interaction with the NSTextview, which is again used to dis-
play the source code (like in CodeShape), like selecting text
and searching inside the textview is still possible.

For the user study selecting and searching inside the sourceChronos does not

provide line

interaction

code was disabled, to make the prototype as equal as pos-
sible to its original. It would thus be possible to add a con-
text menu and search capabilities like in CodeShape and
Azurite to our Chronos implementation. Not being able to
search and interact with single lines was reported as cri-
tique during my user study.

Before I conducted the user study, we tested the indi-
vidual prototypes and during this testing period we de-
cided to change hovering to clicking for displaying meta-
information about a version of source code. The reason
for this was that when one moves the mouse from one ver-
sion to another displaying meta-information was triggered,
which was reported as distracting and annoying. To over-
come this issue a single left click is required to show meta-
information about a version.

A first prototype separated the whole window into two hor-Due to a bug I had to

change the design of

Chronos

izontally split scrollable views. One of the scrollviews was
identical to the original plugin and the other scrollview
contained the sketches for each source code, whereas the
appropriate sketch, when there is one available, was dis-
played beneath the source code.

When the user scrolled in one of the views the other oneChronos source code

and GUI are not

available online

scrolled the same amount automatically. This prototype
had the advantage that no matter which lines of source
code the user looks at, the sketch is visible. The problem
was, that when the user zoomed in one view, the applica-
tion crashed and I could not find the reason for this. To
bypass this problem, I removed the bottom scrollview and
displayed sketches beneath the source code. This comes
with the disadvantage that a sketch is only visible for at
most the lower part of source code lines, but when the user



. Layout and Functionality 

scrolls to the top of source code lines, it results in that the
sketch becomes invisible in this part.







Chapter 

Evaluation

I conducted a user study to evaluate three software proto-
types. Therefore I asked graduate and undergraduate com-
puter science students and three external software devel-
opers to participate in my study, which was carried out at
RWTH Aachen University.

. Preparation

The three software prototypes (Chronos History Slicing,  software

prototypes were

tested on different

tasks within 

minutes per

prototype

(see ..), Azurite (see ..) and CodeShape (see ..))
are tested with three main tasks and one task per proto-
type (see Appendix B for the task set). Each of the tasks
consists of two or at most three subtasks and every main
task with its subtasks were scheduled an operating time of
approximately minutes. Each main task was tested with
every condition and the number of participants per main
task and condition was kept balanced. For example, one
study run could look like: participant A tested Azurite on
main task , CodeShape on main task  and Chronos History
Slicing on main task . Another run could look like: partic-
ipant B tested Chronos History Slicing on main task , Code-
Shape on main task  and Azurite on main task  etc.

In a pre-study the time needed to complete a task was
approximated and some minor adjustments were imple-



  Evaluation

mented to both, the user study form (see Appendix B) and
the prototypes.

The tasks were constructed following LaToza’s work “Hard-Tasks are based on

“Hard-to-Answer

Questions about

Code”

to-Answer Questions about Code” [] in which  de-
velopers reported  questions on source code. In a pre-
vious work they already reported some of these questions
[b]. Similar questions, occurring frequently during
history exploration have been observed by Holmes and
Begel [].

In their work LaToza and Brad Myers tried to find the mostmost frequently

asked questions

about source code,

with the categories:

rationale, intent and

implementation,

debugging,

refactoring and

history of source

code

frequently asked questions about source code. I divided
them into the following categories: rationale, intent and
implementation and history.

We defined our tasks based on the following LaToza’s ques-
tions:

Rationale Why wasn’t it done this other way?

Intent & Implementation What does this do in this case?

History When, how, by whom, and why was this code
changed or inserted?

History How has it changed over time?

History Has this code always been this way?

I choose a source code repository hosted on github calledGitX was used as an

example code base GitX [] and used the questions above for creating
specific tasks (see Appendix B). The repository contains a
git GUI client for MacOS X similar to git’s own GUI gitk
[]. It was written in Objective-C and partly in C/C++,
due to performance reasons.

The development (st commit) started in June 
and several developers (+) contributed to this project.

In particular, I constrained the example on a specificonly the history of

the file

PBGitGrapher.m(m)

was considered

during the study

part of the repository, the file PBGitGrapher.m(m) and
its parseCommits method. Later it was (in a subsequent

http://www.github.com


. Preparation 

individual  commits
master branch

featureX branch

time

Figure .: Git tree: One can see a schema of a git tree.
It belongs to the set of directed acyclic graphs, with the
addition that a child can only have one parent. Direction
arrows are not shown in this figure.

commit) renamed to decorateCommit (see Appendix E for
current version of decorateCommit method). The entire
history of the method used has been fetched from the
commit history with the help of objective-git (see ..). It
is responsible to provide the dependencies and structure
needed to draw git’s directed acyclic graph (a visualization
connects individual commits with lines and branches) (see
Fig..) []. I choose the PBGitGrapher class, as it is
responsible for the tree structure. It suits as a good exam-
ple to draw sketches for, because it already has a visual
representation. In the case a participant does not know
much about git, he is at least familiar with graphs and
trees in particular, because everyone of my participants
has a computer scientist background and thus had been
confronted with graphs.

As I could not find any sketches related to this project, I  self hand-drawn

sketches have been

connected

have drawn these eight sketches myself using the Wacom
Inkling (see ..), with which I produced a digital ver-
sion of each sketch (see ..) (see Appendix H for two of
the sketches used: Fig.H., Fig.H.). Sketches have been
connected to versions of the parseCommits/decorateCommit
method, where larger refactoring changes took place in
their source code and where the commit message gives



  Evaluation

some hints about these changes.

The word “commit” is used in the following for versions of
a file or in particular versions of a method. So, the state of
a file or method is equal to the state it had in a particular
commit. I connected eight sketches to eight commits of the
parseCommits/decorateCommit method before the execution
of the study.

I considered  commits in the setup. Each of versions of the

method were used them contained changes to the method parseCom-
mits/decorateCommit and fulfilled the criteria of larger
refactoring and a commit message with some hints about
the changes. Only the number of lines the method spans
are considered during the study, no context was given
like the whole PBGitGrapher file or any other file of the
repository.

Only four out of the eight sketches visualized infor-obfuscate versions

of interest mation that can be used to solve some of the tasks. The
remaining sketches have been connected to make it less
obvious, that a certain commit/sketch is required for a
task. These remaining sketches also describe the source
code they are connected to, but no task requires to consider
them. Four additional sketches have been drawn, because
a user would less likely come up with the idea to look for
commits only, sketches have been connected to. The setup
fulfilled this intention, because none of the participants
clicked through all commits containing a sketch only, not
clicking on a commit without a sketch in between. It seems
like a proper strategy to avoid such a behavior.

In figure . you can see the GUI of our prototype Code-
Shape. This is how the screen looked like, when a partici-
pant had to solve a main task with the help of CodeShape
(in Fig.. the same is shown for Azurite and in Fig.. and
Fig.. for Chronos).



. Execution 

Figure .: Screenshot of CodeShape Plugin - The arrow of ) points to a sketch,
which has been connected in a previous step (not shown) to the source code method
parse_commits on the left. On the bottom one can see a chronological timeline (blue
dots) of all  commits. The arrowhead in ) points to the currently active commit,
visualized with the gray triangular alike indicator. A white icon ) on top of it,
indicates that a sketch is connected to this commit.

. Execution

The study was structured as follows: After introducing
myself, the participants were told that my thesis is about
sketch assisted source code history exploration and some
details about the prototypes (CodeShape, Azurite and
Chronos History Slicing), the GitX repository and the
study in general are given.

During the user study every participant evaluated test usability in a

within-group designthree software prototypes in a within-group design. We
indicated that the study has the purpose to evaluate these
three prototypes and in order to determine its strengths
and weaknesses in comparison to each other and to test
usability in general. It was stated that the study is not



  Evaluation

Figure .: Screenshot of Azurite Plugin - The arrow of ) points to a sketch, which
has been connected in a previous step (not shown) to the source code method
parse_commits on the left. On the bottom one can see a black timeline. A com-
mit is separated by two vertical gray bars. In between those bars are small green,
red and blue rectangles, whereas green represents an addition, red a deletion and
blue an update of a line. The arrowhead in ) points to the currently active commit,
visualized with the yellow outline around a change rectangle, which belongs to the
current commit. A larger green square ), indicates that a sketch is connected to
this commit.

meant to test the users performance.

Every participant was told that the study will take up tostudy duration ∼
minutes approximately minutes (  * minutes + minutes for

filling out a consent form and a discussion about all three
prototypes).

I performed the whole study in a room in which onlyhardware and study

setup one participant and me as the investigator of the study
were present. The hardware setup consisted of a Macbook
Pro attached to an Apple Cinema Display with an external
mouse and keyboard. The Macbook screen was totally
dimmed during the study and every participant sat directly



. Execution 

Figure .: Screenshot of Chronos Plugin - The arrowhead in ) points to the cur-
rently active commit, visualized with the orange connection line. The sketch is not
visible in this screenshot, because it is below the implementation of the method,
outside of the visible part of the window.

in front of the external screen, with me sitting next to them.

Before a subject was presented to the first set of tasks, informed consent

form had to be filled

out

he was asked to fill out an Informed Consent Form (see
Appendix A) to inform him among others that the session
is screen captured and a microphone is used to record the
voices of the subject and the study manager.

In the next step I explained the first prototype and its functionality

introduction to each

participant

functionality by showing each of the available features
(e.g., context menu to navigate in version history, high-
lighting in case of comparing (see diff ..) two versions).
The new prototype that should be used for this set of tasks
was shown, before a new main task. The functionality and
usage of this new prototype was explained. Afterwards it
was asked if something remained unclear.

The participants were not told, which prototype was the



  Evaluation

Figure .: Screenshot of Chronos Plugin and Sketch- The arrow of ) points to a
sketch, which has been connected in a previous step (not shown) to the source code
method parse_commits above.

one I designed from scratch and which one was extended
by me in order not to influence them in any way during
the study. This becomes obvious when several participants
mistakenly identified for example Azurite as the prototype
designed by me. In case of Azurite (see Fig..) the time-
line at the bottom (a javascript implementation used to-
gether with HTML), was taken from the original Azurite
plugin with some minor adjustments. I implemented the
rest and connected it with a timeline. As Chronos has no
open source version available, the whole prototype was im-
plemented based on the textual and visual information of
the paper by Servant and Jones [].

After the prototype introduction I handed out the first setone task sheet was

handed out at a time



. Analysis 

(..-..) of tasks and told the participant that these
tasks are meant as a “warm-up phase” to get familiar with
the prototype they were assigned to for this task.

I orally communicated that the source code, the commit Participants were

orally reminded that

commit message

and sketch can

contain valuable

information

message and the sketches, can be used to answer the task
or contain information to solve the task.

In addition if something still remains unclear, not behaves
the way expected or any other kind of feedback, were sup-
posed to be communicated at the moment it comes to mind.
The method used was mainly think aloud, but sometimes think aloud and

seldom constructive

interaction were

used

constructive interaction was used [, p.ff], when the
subject needed some guidance, had no idea how to con-
tinue, or had walked into a dead end.

After a participant has finished all tasks (three main tasks inquire feedback

comparing

prototypes

with a different prototype per main task), he was asked
which prototype he prefers using, compared to its com-
petitors. Then, each individual prototype was again shown
to the user and it was discussed what was apparent, what
he likes about and dislikes about it in comparison to the
other ones and how working with it diverges from his usual
workflow.

. Analysis

.. Participants

The study included  participants,  undergraduates and  participants, 

undergraduate and

 graduate

students with .

years programming

experience on

average,

participated

 graduated students. To get some general information
about them a questionnaire was handed out before the study
(see appendix A). Programming experience in years was .
years on average. Five subjects reported that they did not
know about Objective-C and one out of  had no knowl-
edge about git. On average the participants were . years
old, whereas the youngest was  and the oldest .

Two screen capturing video files were corrupted, so that file corruption issue

only  samples can be found in the statistical analysis. In



  Evaluation

order to keep the samples balanced, I carried out another
two studies, because the corrupted files could not be an-
alyzed and only my discussion notes of those two screen
capturings remained.

Although I will report some results as being significant, itThere is a low

sample rate per

condition

has to be considered that there are only five samples per
condition. Thus there is a tendency of having a significant
effect, but for a more robust result further samples have to
be considered.

.. Tactics to Find a Version

The overall tactic to find a commit was very similar amongtactic description

how participants

tried to find a certain

commit

all participants and looked like the following:

. Coarse grained navigation on per date basis

. Fine grained navigation per hour

. Even more fine grained per SHA

A search pattern like a binary search was neither reportedusing Chronos,

finding the right time

and SHA was most

difficult

by the subject nor be observed by myself. Finding the year
of the date was the first sub step taken and then the month
& day were searched in order to find a particular version.
Here Chronos causes the most difficulties, because in cases
the date was similar in hour and day, users clicked through
every connection, drawn between a timeline entry and the
source code belonging to it (see Fig..) and compared the
time and SHA to find the correct one, which were only visi-
ble by clicking on a connection. This is opposed to Azurite,
in which the whole date with its time is given, as its the case
with CodeShape. In addition, CodeShape directly presents
the SHA and the commit message in a list.

When the users tested CodeShape, nearly all, except two,CodeShape users

used sidebar table

for navigation

used the sidebar, containing a list of chronological ordered
commits by date (see Fig.. in ..).

The other two used the horizontal circle timeline of com-
mits to find the version they were looking for. Only in case



. Analysis 

a commit close to the current one has to be considered or
when they used the context menu, then all of the partici-
pants used the lower horizontal timeline.

.. Task Completion Times

In this section the time needed to solve a task will be Task .. was not

statistically covered

on purpose

analyzed. I will not report the task completion time of task
.., because every participant immediately responded
with the answer. The main mental work to solve this task
was already done in task .. (see Appendix B) and so the
participants almost instantly replied. All other tasks are
included in the statistic.

To measure the task completion times screen captur- screen capturing and

audio recordinging together with audio recording were used. As soon as
a participant started reading the task the time was taken
and stopped when the correct answer was given.

The time needed to solve the task includes the initial navi-
gation time, which is evaluated in ...

consistent date format In order not to influence the time date format across

prototypesmeasurement, because of different date formats, I speci-
fied a consistent format among all conditions. Many of the
tasks ( out of ) required the user to navigate to a cer-
tain commit. Where the date in the format DD.MM.YYYY
(DIN ) followed by hh:mm and a short SHA ( char-
acters) was given. This was chosen, because in a pre-study
I found out that the users had difficulties interpreting the
date, when it was given in ISO  format JJJJ-MM-TT and
hh:mm:ss, due to the fact that it is rarely used in Germany.
So, the task and the GUI format had been adjusted to con-
form the DIN  date format. Except for the timeline-
labels of Chronos, where the short date format, the month
following the year with two digits each, was kept like in the
original version of the plugin.

The consistent date format was chosen in order not to bias
the timing among the prototypes.



  Evaluation

dfM dfR F p

task ..   . .
task ..   . .
task ..   . .
task ..   . .*
task ..   . .
task ..   . .
task ..   . .
task ..   . .*
task ..   . .
task ..   . .
task ..   . .**
task ..   . .
task ..   . .
task ..   . .
task ..   . .
task ..   . .
task ..   . .
task ..   . .
task ..   . .
task ..   . .
task ..   . .*

Table .: ANOVA of task completion time, comparing
Chronos History Slicing, CodeShape and Azurite.

Alternative hypothesis HA At least one mean of the time
needed to solve a task with the help of one prototype is
significantly different to the time needed using another
prototype.

A one-way within subjects ANOVA was conducted toANOVA was used to

observe statistical

significance

compare the effect of three software prototypes on time
needed to solve a task, CodeShape, Chronos History Slicing
and Azurite conditions.

Task .. There was a significant effect of task com-
pletion time at the p<. level for the three conditions
[F(2,11) = 6.628,p < .05].



. Analysis 

σA µA σC µC σH µH pC−A pH−A pH−C
task .. . . . . . . . . .
task .. . . . . . . . . .
task .. . . . . . . . . .
task .. . . . . . . .* . .
task .. . . . . . . . . .
task .. . . . . . . . . .
task .. . . . . . . . . .
task .. . . . . . . . . .*
task .. . . . . . . . . .
task .. . . . . . . . . .
task .. . . . . . . .* .*** .
task .. . . . . . . . . .
task .. . . . . . . . . .
task .. . . . . . . . . .
task .. . . . . . . . . .
task .. . . . . . . . . .
task .. . . . . . . . . .
task .. . . . . . . . . .
task .. . . . . . . . . .
task .. . . . . . . . . .
task .. . . . . . . . . .*

Table .: Tukey HSD post hoc test of task completion time comparing (A)zurite,
Chronos (H)istory Slicing and (C)odeShape

Post hoc comparisons using the Tukey HSD test indi- Tukey HSD was used

to spot significant

differences between

a pair of prototypes

cated that the mean score for the CodeShape condition
(M = 121.75,SD = 45.64) was significantly different
from the Azurite condition (M = 239.2,SD = 52.26).
However, the Chronos History Slicing condition
(M = 162.80,SD = 49.57) did not significantly differ
from the Azurite condition and the CodeShape condition.

The results of Tukey HSD are visualized in figure C. .

Task .. There was a significant effect of naviga-
tion time at the p<. level for the three conditions
[F(2,11) = 5.621,p < .05].

Post hoc comparisons using the Tukey HSD test in-



  Evaluation

−200 −150 −100 −50 0 50 100

H−C

H−A

C−A

95% family−wise confidence level

Differences in mean levels of prototype

Figure .: Task .. shows the differences in mean of
Tukey HSD post hoc comparison. The (C)odeShape result
is significantly lower than the (A)zurite result

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

100

150

200

250

300

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure .: Task completion graph task ..



. Analysis 

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

20

40

60

80

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure .: Task completion graph task ..

dicated that the mean score for the CodeShape con-
dition (M = 22.75,SD = 10.14) was significantly dif-
ferent from the Chronos History Slicing condition
(M = 58.00,SD = 17.62). However, the Azurite condition
(M = 50.50,SD = 19.82) did not significantly differ from
the Chronos History Slicing condition and the CodeShape
condition.

The results of Tukey HSD are visualized in figure C..

Task .. There was a significant effect of naviga-
tion time at the p<. level for the three conditions
[F(2,11) = 15.20,p < .05].

Post hoc comparisons using the Tukey HSD test in-
dicated that the mean score for the CodeShape con-
dition (M = 59.75,SD = 20.47) was significantly different
from the Azurite condition (M = 95.00,SD = 15.64). The
mean score for the Chronos History Slicing condition



  Evaluation

−60 −40 −20 0 20 40 60

H−C

H−A

C−A

95% family−wise confidence level

Differences in mean levels of prototype

Figure .: Task .. shows the differences in mean of
Tukey HSD post hoc comparison. The (C)odeShape result
is significantly lower than the Chronos (H)istory Slicing re-
sult.

(M = 37.34,SD = 20.48) was significantly different from
the Azurite condition. However, the History Slicing con-
dition did not significantly differ from the CodeShape con-
dition.

The results of Tukey HSD are visualized in figure C..

Task .. There was a significant effect of naviga-
tion time at the p<. level for the three conditions
[F(2,11) = 4.908,p < .05].

Post hoc comparisons using the Tukey HSD test in-
dicated that the mean score for the CodeShape con-
dition (M = 105.33,SD = 32.04) was significantly
different from Chronos History Slicing condition
(M = 283.00,SD = 125.80). However, the Azurite con-
dition (M = 146.80,SD = 42.55) did not significantly
differ from the Chronos History Slicing condition and the
CodeShape condition.



. Analysis 

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

30

60

90

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure .: Task completion graph task ..

The results of Tukey HSD are visualized in figure C..

General result Taken together, these results suggest that Task completion time

in general lowest

using CodeShape

the prototype does have an effect on task completion time.
Specifically, our results suggest that when we navigate us-
ing CodeShape, the task completion time is lowest in gen-
eral. In two out of  cases it is significantly lower than
Azurite and in another two cases it is significantly lower
than using Chronos History Slicing. For the tasks that have
not been reported above, the graphs in Appendix C show
that the mean of CodeShape is lower than the mean of
Chronos History Slicing and Azurite, but it is not signifi-
cantly lower in general ( out of ).

Interestingly in task .. and task .. Chronos History Finding single

change is fastest

using Chronos

History Slicing

Slicing achieved the best results, also they are not signif-
icantly better than Codeshape’s results. According to my
screen capturing observations these results occur, because
when the user has to consider just one line that has changed



  Evaluation

−80 −60 −40 −20 0

H−C

H−A

C−A

95% family−wise confidence level

Differences in mean levels of prototype

Figure .: Task .. shows the differences in mean of
Tukey HSD post hoc comparison. The (C)odeShape re-
sult is significantly lower than the (A)zurite result and the
Chronos (H)istory Slicing result is significantly lower than
the (A)zurite result

(highlighted in blue in case of Chronos History Slicing), it
can be found fastest using Chronos History Slicing. When
the user has to consider two or more changes in each ver-
sion, than Chronos is not superior any more and the context
menu of CodeShape outperforms it.

.. Initial Navigation Time

The task completion time is sometimes composed of initial
navigation time, which is the amount of time spend to
navigate to a certain commit and focus time, which is the
time spend on a single commit.
We here concentrate on tasks, where the user has to
navigate to a certain commit and then solve the rest of the
task, which I call focus time. It is not included in the initial
navigation time measurement.

I only consider tasks, where it is possible to clearlyTask selection

criteria



. Analysis 

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

100

200

300

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure .: Task completion graph task ..

−100 0 100 200

H−C

H−A

C−A

95% family−wise confidence level

Differences in mean levels of prototype

Figure .: Task .. shows the differences in mean of
Tukey HSD post hoc comparison. The (C)odeShape result
is significantly lower than the Chronos (H)istory Slicing re-
sult



  Evaluation

tell apart navigation time, from focus time. These are the
tasks, where the user has to navigate to only one commit
and the information provided by this particular commit
should suffice to answer the question. Or tasks where nav-
igation to one commit is considered as initial navigation
time and represents the basis. Additional navigation time
required for this task is not added up to this basis.

Set of considered tasks task .., task .., task ..,
task .., task .., task .., task .., task .., task
.., task .., task ..

The initial navigation time can supply evidence to the
hypothesis: with the help of which of the three prototypes,
finding a particular commit is fastest.

Alternative hypothesis HA At least one mean of the ini-
tial navigation time, needed to find a particular version
with the help of one prototype, is significantly different to
the initial navigation time of another prototype.

Again one-way within subjects ANOVA was conductedwithin subjects

ANOVA comparing 

software prototypes

to compare the effect of three software prototypes on
time needed to navigate to a particular version of source
code, CodeShape, Chronos History Slicing and Azurite
conditions.

Task .. There was a significant effect of naviga-
tion time at the p<. level for the three conditions
[F(2,11) = 7.284,p < .001].

Post hoc comparisons using the Tukey HSD test in-
dicated that the mean score for the CodeShape
condition (M = 22.00,SD = 10.23) was significantly
different from the Chronos History Slicing condi-
tion (M = 58.67,SD = 18.32) and Azurite condition



. Analysis 

dfM dfR F p

task ..   . .
task ..   . .
task ..   . .
task ..   . .
task ..   . .*
task ..   . .*
task ..   . .
task ..   . .
task ..   . .*
task ..   . .*
task ..   . .*
task ..   . .

Table .: ANOVA of navigation time comparing Chronos
History Slicing, CodeShape and Azurite

(M = 52.50,SD = 14.15). However, the History Slicing
condition (M = 58.67,SD = 18.32) did not significantly
differ from the Azurite condition (M = 52.50,SD = 14.15).

The results of Tukey HSD are visualized in figure D..

Task .. There was a significant effect of naviga-
tion time at the p<. level for the three conditions
[F(2,11) = 5.30,p < .05].

Post hoc comparisons using the Tukey HSD test in-
dicated that the mean score for the CodeShape con-
dition (M = 12.00,SD = 2.94) was significantly different
from the Azurite condition (M = 35.20,SD = 18.21). The
mean score for the Chronos History Slicing condition
(M = 15.50,SD = 8.19) was significantly different from the
Azurite condition. However, the History Slicing condition
did not significantly differ from the CodeShape condition.

The results of Tukey HSD are visualized in figure D..



  Evaluation

σA µA σC µC σH µH pC−A pH−A pH−C
task .. . . . . . . . . .
task .. . . . . . . . . .
task .. . . . . . . . . .
task .. . . . . . . . . .
task .. . . . . . . .* . .**
task .. . . . . . . .* .* .
task .. . . . . . . . . .
task .. . . . . . . . . .
task .. . . . . . . .* . .
task .. . . . . . . . . .**
task .. . . . . . . . . .
task .. . . . . . . . . .

Table .: Tukey HSD post hoc test of initial navigation time comparing (A)zurite,
Chronos (H)istory Slicing and (C)odeShape

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

20

40

60

80

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure .: Task navigation graph task ..



. Analysis 

−60 −40 −20 0 20 40 60

H−C

H−A

C−A

95% family−wise confidence level

Differences in mean levels of prototype

Figure .: Task .. shows the differences in mean of
Tukey HSD post hoc comparison. The (C)odeShape re-
sult is significantly lower than the (A)zurite result and the
Chronos (H)istory Slicing result

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

20

40

60

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure .: Task navigation graph task ..



  Evaluation

−40 −30 −20 −10 0 10 20

H−C

H−A

C−A

95% family−wise confidence level

Differences in mean levels of prototype

Figure .: Task .. shows the differences in mean of
Tukey HSD post hoc comparison. The (C)odeShape re-
sult is significantly lower than the (A)zurite result and the
Chronos (H)istory slicing result is significantly lower than
the (A)zurite result

Task .. There was a significant effect of naviga-
tion time at the p<. level for the three conditions
[F(2,10) = 4.60,p < .05].

Post hoc comparisons using the Tukey HSD test indi-
cated that the mean score for the CodeShape condition
(M = 19.17,SD = 3.87) was significantly different from the
Azurite condition (M = 37.25,SD = 8.92). However, the
History Slicing condition (M = 35.0,SD = 19.05) did not
significantly differ from the CodeShape condition and the
Azurite condition.

The results of Tukey HSD are visualized in figure ..

Task .. There was a significant effect of naviga-
tion time at the p<. level for the three conditions
[F(2,11) = 7.134,p < .05].

Post hoc comparisons using the Tukey HSD test indi-



. Analysis 

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20

40

60

80

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure .: Task navigation graph task ..

cated that the mean score for the CodeShape condition
(M = 10.50,SD = 4.09) was significantly different from the
Chronos History Slicing condition (M = 27.34,SD = 4.62).
However, the Azurite condition (M = 15.20,SD = 8.84) did
not significantly differ from the Chronos History Slicing
condition (M = 27.34,SD = 4.62) and the CodeShape con-
dition (M = 10.50,SD = 4.09).

The results of Tukey HSD are visualized in figure D..

Task .. There was a significant effect of naviga-
tion time at the p<. level for the three conditions
[F(2,11) = 4.07,p < .05].

Post hoc comparisons using the Tukey HSD test indi-
cated that the mean score for the CodeShape condition
(M = 13.00,SD = 3.74) did not significantly differ than the
Chronos History Slicing (M = 28.00,SD = 5.57) and the
Azurite condition (M = 29.60,SD = 16.29).



  Evaluation

−30 −20 −10 0 10 20 30

H−C

H−A

C−A

95% family−wise confidence level

Differences in mean levels of prototype

Figure .: Task .. shows the differences in mean of
Tukey HSD post hoc comparison. The (C)odeShape re-
sult is significantly lower than the (A)zurite result and the
Chronos (H)istory slicing result is significantly lower than
the (A)zurite result

The results of Tukey HSD are visualized in figure D..

General result Taken together, these results suggest thatoverall CodeShape

has the tendency to

be the fastest

prototype

the prototype does have an effect on initial navigation time.
Specifically, our results suggest that when we navigate us-
ing CodeShape, the navigation time is lowest. In one case
navigation time is significantly lower then Chronos History
Slicing and Azurite. In three out of  cases it was signifi-
cantly faster than Azurite. Another time it was significantly
faster than using Chronos History Slicing. For the tasks
that have not been reported above, the graphs in Appendix
D show that the mean of CodeShape is in general lower as
the mean of Chronos History Slicing and Azurite, but it is
not significantly lower ( out of ).

As described in .. above, Chronos required the partici-Chronos interface

design in case of

several versions per

day causes poor

navigation time

results

pant to click through several connections, if there are sev-
eral commits at one day. Except for the case when the right
commit was found by chance in first place. The situation



. Analysis 

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

10

20

30

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure .: Task navigation graph task ..

−10 0 10 20 30

H−C

H−A

C−A

95% family−wise confidence level

Differences in mean levels of prototype

Figure .: Task .. shows the differences in mean of
Tukey HSD post hoc comparison. The (C)odeShape result is
significantly lower than the Chronos (H)istory slicing result



  Evaluation

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10

20

30

40

50

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure .: Task navigation graph task ..

−30 −20 −10 0 10 20 30

H−C

H−A

C−A

95% family−wise confidence level

Differences in mean levels of prototype

Figure .: Task .. shows the differences in mean of
Tukey HSD post hoc comparison. The result does not differ
significantly



. Analysis 

where several connections have to be clicked through oc-
curred in task .., task .., task .., task .., task
.. and task ... Only in task .. Azurite was even
worse in all other cases Chronos History Slicing required
the most amount of time to find a version.

.. Sketch Inspection Time

The sketch inspection time states the sum of seconds a
participant considers a sketch.
We here concentrate on tasks only, where a sketch was
attached to a commit.

I only consider tasks, where it is possible to clearly Task selection

criteriameasure the sketch inspection time. These are in my
opinion the tasks, where the user moves the cursor “on top
of” the sketch and the cursor is not moved for a certain
amount of time. When the cursor is moved out of the
sketch, the time was stopped. This behavior could be
observed among all participants.

Set of considered tasks task .., task .., task ..,
task .., task .., task ..Whereas task .. has only
one sample per condition and is not considered in table .
and table ., because only one person in each condition
looked at the sketch. In task .. and task .. and task
... the ratio of sketch inspection to overall task comple-
tion time was more than % in case of CodeShape condi-
tion(see table .), but the mean task completion time was
the lowest among all conditions in these cases.

Alternative hypothesis HA At least one mean of the
sketch inspection time, needed to find a particular version
with the help of one prototype, is significantly different to
the sketch inspection time of another prototype.

task .., task .., task .., task .., task .., task
.. There was no significant effect of sketch inspection



  Evaluation

time for the three conditions among all tasks (see Appendix
G for the result graphs).

General result I could not observe a significant effect of
sketch inspection time. This was an expected result, be-
cause all sketches are the same among all tasks. For the
Azurite and the CodeShape condition the sketch interac-
tion functionality was identical, but Chronos History Slic-
ing did not allow stepping through single strokes in order
to reproduce the construction. That the stepping function-
ality did not have an effect is probably due to the fact that
the sketches are rather trivial and consisted of one idea. It
has to be further investigated, if more complex sketches,
which consisted of several ideas and evolved over a longer
period would affect the results. I did not consider more
complex sketches, because of the short task completion
time available in the user study. The sample rate of sketch
inspection time was even lower as for task completion and
initial navigation time. This does not insure authoritative
statements about the effect of sketches on task completion
time. In case of the task completion time in task ..,
where a significant effect between CodeShape and History
Slicing can be observed, the ratio of sketch inspection time
to task completion time is nearly identical . and .,
but only one person inspected the sketch in this task for
the History Slicing condition.

overall CodeShape

has the tendency to

be the fastest

prototype
dfM dfR F p

task ..   . .
task ..   . .
task ..   . .
task ..   . .
task ..   . .*

Table .: ANOVA of sketch inspection time comparing
Chronos History Slicing, CodeShape and Azurite.



. Analysis 

σA µA σC µC σH µH pC−A pH−A pH−C
task .. . . . . . . . . .
task .. . . . . . . . . .
task .. . . . . . . . . .
task .. . . . . . . . . .
task .. . . . . . . . . .

Table .: Tukey HSD post hoc test of sketch inspection time comparing (A)zurite,
Chronos (H)istory Slicing and (C)odeShape

µAs µCs µHs µAc µCc µHc
µAs
µAc

µCs
µCc

µHs
µHc

task .. . . . . . . . . .
task .. . . . . . . . . .
task .. . . . . . . . . .
task .. . . . . . . . . .
task .. . . . . . . . . .
task .. . . . . . . . . .

Table .: Compares ratio of mean sketch inspection time and mean task comple-
tion time(A)zurite, Chronos (H)istory Slicing and (C)odeShape

.. Feedback and Suggestions

This section reports the feedback that was given, including respect

prototype-status of

each prototype

suggestions on how to improve some functionality. Most of
the feedback was given after the participants have finished
the tasks. One has to bear in mind that all three software
artifacts are prototypes, so one cannot expect them to be as
feature rich and polished as final products.

General feedback All of the  participants stated that
they are most convinced of CodeShape, after they tried
all three on the different tasks. After that nearly all par-
ticipants stated Azurite second behind CodeShape and
Chronos was last.

They remarked that they are pleased with the appearance
compared to the other two and that it is the fastest proto-
type for navigation between versions. Chronos inability to
interact with lines and the resulting manual scrolling both-



  Evaluation

ered them most.

Nearly all participants wanted to have a functionality toimplement

SHA-search in all

prototypes in future

releases

filter/search for SHA’s. We already thought about imple-
menting it and it was also discussed in my pre-study. The
problem is that all plugins must have had this feature then
and this would have a drastic impact on performance com-
pared to the original versions. Another problem with this
approach is, that we would not have been able to observe a
“real” search strategy. Users would just have typed in the
SHA’s and it would lead them directly to the version they
wanted. The SHA was more thought as a help in order to
know that one has found the right commit.

Participant: “an indicator where one was before would befeature request:

history of

exploration itself

nice” This comment was made twice. One person reported
this as a wished feature for CodeShape and another for
Azurite. I already thought of this feature for CodeShape
beforehand, which provides browser alike functionality,
meaning that the user can go to some previous commit and
then step back and forth between commits. I implemented
this feature in my prototype, in consequence of some issues
and bugs related to this the buttons where hidden during
the study, so that this feature was not usable in the study.

CodeShape Feedback A participant did not notice thatUsers suggested

that version

highlighting has to

be more

eye-catching

a commit circle was highlighted, after having triggered a
context menu command. This was reported another two
times and the subjects suggested, that the highlighting
must be more eye catching. For example, the circles should
blink for a short period and maybe increase the size in this
period.

One user requested a diff view like in the eclipse IDE (seeA diff view should

show two versions

side by side

Fig..), placing two versions side by side. He is most fa-
miliar with this layout. In CodeShape he was not sure to
which versions the diff output belongs. It compares the
current version with the previous one. He suggested that
you can select an arbitrary second file for side by side com-
parison. It would be superior to choose between side by
side comparison and single version diff, as it is possible in
Kaleidoscope [].



. Analysis 

Figure .: Eclipse compare editor - Compare two differ-
ent files and show their differences (or two different ver-
sions of a file, which is not shown)

Two users did not expect that the sidebar automatically
faded away, when a commit is selected.

Three user asked me, why the context menu command to Three user asked for

a consecutive

highlighting of

changes

highlight a future or past version, did not highlight all com-
mits where something has changed. So, that you can step
through them, without activating the context menu for ev-
ery version. This is a technical limitation, which was al-
ready discussed before the user study. The problem is that
a line that has nothing in common with the current one,
would get highlighted, too. An improvement would be to
calculate the Levenshtein distance for two lines and high-
light only those beneath a given threshold, which is further
described in ...

Two participants requested an indication beneath the time- The timeline should

have time labelsline. For example, a label written beneath intervals span-
ning a year.

Three participants reported: “how do I know which version Partly reconstructing

native UI elements

leads to confusion

I am looking at on the timeline” It indicates that redesign-
ing native UI elements (here Cocoa’s NSSlider [b])
can lead to misinterpretation, because it was perceived
as a completely new element. Redesigned tick marks
caused this effect. The tick marks have been redesigned
to “commit-circles”. The indicator, showing which commit
one is currently looking at, was not modified. This should



  Evaluation

Figure .: On top one can see the original NSSlider, with-
out any modifications and on the bottom one can see the
modified version used in CodeShape to navigate through
commits. Blue circles are used with white icons on top of
these, to visualize that there is a sketch available, instead
of the original small gray tick marks.

be improved in a future version, making the slider knob
more stand out. In figure . one can see them both in
comparison, at the top there is the original NSSlider and at
the bottom the modified one.

Azurite Feedback Most of the users said something likeAzurite’s small-sized

rectangles affect

usability

“the rectangles should be larger, because they are hard to
hit with the mouse”. My observations showed that on aver-
age two to three clicks on a rectangle are required, until it
was selected, which affirmed their statments. One problem
is the small size of a rectangle, which can become as small
as  pixel in width and  pixel in height. This roughly cor-
responds to one third of the MacOS X default mouse cur-
sor(see Fig..).

The level of detail should be reduced, because there are tooThere are to many

rectangles visible

during navigation,

requiring much

scrolling

many rectangles in every session. Relating to that one par-
ticipant suggested to aggregate changes. Contiguous line
numbers of the same change type can be aggregated into a
single change. Indeed Azurite implements a compact mode
(see ..), compressing the timeline by removing gaps in
between each change, but the number of rectangles and its
size stays the same. Azurite can be improved by integrating
a filter that reduces the number and size of rectangles.

The information provided by the popup, which occursThe popup should

contain more self

explanatory

information



. Analysis 

Figure .: Azurite rectangle popup: The blue rectangle,
where the mouse points on, is an edit operation performed
at :pm, //. It replaced a constant "" with a
variable named "width". The date formatting corresponds
to the original one, not the one used in my study.

when one hovers a rectangle in Azurite, was not helpful
to one user. Another one suggested to add the line number
in front of the changed line, in order to make the popup
more helpful.

Sometimes the timeline scrollbar stopped working and in The scrollbar

sometimes stopped

working

this case only restarting the plugin solved this problem.
This happened twice and I also observed it during the
preparation of a new study. It is probably an issue related
to Azurite itself, as it only affects the original scrollview of
Azurite (see Fig..).

Nearly all participants did not discover the vertical slider It was not obvious

that there exists a

hidden vertical slider

and thus its functionality remained unknown. The slider
. appears by clicking on the bottom of the timeline. I
found this slider by accident and two months later I could
not remember how to bring it up. It took me some time to
figure it out again.

Only one participant discovered the slider.



  Evaluation

Figure .: In the screenshot the modified Azurite plugin
can be seen, with its original timeline at the bottom.

Figure .: The figure shows an image section of Azu-
rite. The orange vertical bar in middle, with an arrowhead
alike top pointing downwards, represents the Azurite ver-
tical slider. It only becomes visible by clicking on the gray
area at the bottom.

Chronos Feedback The majority of participants re-Chronos needs

search and

interaction

capabilities like a

context menu

quested a search feature and a context menu, similar to the
one of CodeShape and Azurite. In task .. (see ) all par-
ticipants asked me, if there exists search functionality, but
the variable row can only found, by reading lines. In Code-
Shape and Azurite searching is possible by pressing “cmd
+ f”.



. Analysis 

In my re-implementation of Chronos I used NSTextView,
which allows for searching and line interaction. During the
user study searching and line interaction was disabled, be-
cause it is impossible in the original plugin. The reason for
that is, that the original implementation uses an svg instead
of a NSTextView.

Another aspect, which was reported is to get rid of unnec- Chronos should hide

unnecessary

information

essary and tedious scrolling.

Double clicking on a vertical bar in Chronos should auto-
matically scroll to the source code view. Related to that five
people said that time intervals, where no changes occur,
should be stripped away. It has to be further investigated
if this removes the visual uniqueness of every repository. A
gap in development, could help the user to remember the
repository more easily. The user should be able to toggle a
compact mode like in Azurite.

Also the date labels have been explained to every partici- The unusual date

format causes

trouble

pant, it led to confusion, because users did not remember,
which part of the date , in for example, “\” represents
the month and which one the year. During a study I was
asked several times, if I can explain the format again. It
would be more explanatory if the year is written in a  digit
format and when the date is formatted according to the par-
ticipants locale.

During the use of Chronos I observed that the participants Users unknowingly

skipped useful

information

just scrolled horizontally in task .. to find out how the
last two lines have changed. In doing so they skipped over
some versions, because they are not in the visible part of
the view. These versions have fewer lines than the other
versions and would only become visible by also scrolling
vertically.

This problem is visualized in figure ..

By coincidence there were no change to the last two lines
of task .. in an “invisble” version. If there had been
changes, chances would have been high that the user would
have missed and scrolled over them.



  Evaluation

Figure .: Chronos information loss issue - The green
semitransparent rectangle represents the visible area of the
screen, when a user scrolls horizontally. The third and the
fifth gray rectangle from the left have no indication in the
visible area that they exist.

To overcome this issue Azurite needs some indication thatThere should be an

indicator, which

reminds the user of

remaining, but

currently not visible

versions

there is an "invisible" version. An overview map like the
one being used in Sublime Ceriu [], Xcode’s mini map
plugin Ceriu [] or another indication could help to
solve this issue.

Two problems occurred among all participants. The firstOrientation change

and hidden detail

cause confusion

problem is that connections are revisited, because partici-
pants forget, that they already checked them.

The second problem is that participants do not know how
vertical connections are ordered (from top to bottom or vice
versa). The orientation is changed from vertical to horizon-
tal. In case of several connections for the same day, one
does not know if the earliest commit in terms of time is
the up most or the one at the bottom. Several participants
annotated this issue (see Fig..).

Sketch Value “Did the sketches helped solving the tasks“Sketches definitely

help. . . ” and did they help in general.” “Could you imagine to use
sketch functionality?” On answer was: “They would defi-
nitely help, but she or her colleagues would probably not
redraw a sketch.”. If sketches are drawn with a digital pen,
no redrawing is required.

More than the half of the participants reported that the
sketches helped a lot to solve the tasks and that they could
see the potential benefit during their usual work as a devel-



. Analysis 

Figure .: Modified version of Chronos History Slicing:
The blue connections start at a date entry of the gray time-
line at the top (two blue vertical bars reach the top gray
bar). The position indicates, that they belong to November
, because on right one can see /, which indicates
that there the month December begins. One of the blue
connections has been selected (highlighted in orange) and
the date, time and SHA is only shown for this selection

oper. One participant reported that: “the sketches helped
a lot, sometimes more then reading and understanding the
code. Sketches are a good additional support”.

A few participants tried to move the sketch with the mouse, familiar mouse

interaction of

sketches for a future

version

which is impossible in the prototypes. They suggested to
integrate the ability to move sketches with the mouse in-
stead of using the scrollbars.

Some users had difficulties reading some words in the The use of Inkling

resulted in some

quality drawbacks

sketch, when strokes were missing, because occassion-
ally the Inkling did not track individual strokes. As a
conclusion the quality and accuracy of digital pens like
the Inkling should be improved and the digitized version
should be exactly equal as the version drawn on paper.

I observed that experienced git users had fewer problems
with sketch interpretation. A reason for this can be that



  Evaluation

they are more familiar with git terminology and thus can
fill in the missing strokes/words. Same holds true for re-
served Objective-C names in the sketch, were the level of
experience in Objective-C resulted in improved readability,
when something was hardly readable.

The sketches have been used to explain the answers. Some
participants hovered with the mouse cursor over a part
of a sketch and verbalized the part. This illustrates that
sketches can support discussion.

Another aspect observed was that participants rarely
switched back and forth between source code and sketch
interpretation. Switching between them occurred at most
three times. I observed that nearly all participants had a
phase considering the source code in a first step and then
a phase where the sketch was considered. A comparison of
source code lines with sketch indentifiers was not observed.





Chapter 

Summary and Future
Work

In this Chapter I will briefly summarize my results and
contributions. After that some ideas on future work are
given.

I presented and compared three software prototypes, Azu-
rite, Chronos History Slicing and CodeShape, that support
source code history exploration. All of them access the
source code history of a git repository and provide differ-
ent visualization approaches to navigate through history.
An exploration is assisted with sketches, providing differ-
ent sources of information.

. Summary and Contributions

Based on the work by Spychalski [], I came up with the connect sketches to

source code entitiesidea of integrating sketch functionality into an integrated
development environment (IDE) and connect sketches to a
particular version of a source code entity and tried to im-
prove process.

I brainstormed functionality and improvements that have
to be included in a prototype, attaching to Lukas ideas. It



  Summary and Future Work

formed the basis for the analysis of related work, in which I
explored source- and sketchhistory related topics and ways
of automation. I visited a mobile IT company, which devel-A mobile IT company

was visited and

interviews have been

conducted

ops mobile applications mainly for the financial services
industry. First I had a meeting with the head of application
development and the team leaders of the different mobile
platforms they support. Together we discussed sketches
combined with source code. Next I talked to a person of
the design team, which told me that wireframes are the
primary source used for discussions with the developers.
Thereafter I observed the developer team. They rarely draw
sketches, because they receive the wireframes of the design
team and if this does not suffice the interface builders of the
respective platform is used for ideation. Every office has a
whiteboard attached to the wall and all employees make
use of it, except for the developers.

Based on the impressions and conceptions from the ini-I implemented a

Xcode plugin called

CodeShape

tial meeting, I designed and implemented CodeShape from
scratch. CodeShape is functional Xcode plugin and pro-
vides the ability to parse sketches drawn with the Wacom
Inkling and connect them to source code entities like a
method in a source code file. Next I implemented and re-
purposed IBOutlet connections [d], enabling the user
to connect Inkling sketches to source code entities.

A source code history exploration window of CodeShape,CodeShape provides

a sketch- and source

code history

parses the repository in order to find the versions in which
a source code entity changed. A chronological list of source
code entities is than displayed to the user, including ver-
sions to which sketches have been connected to. The user
can step through the history of a sketch, connected to a
source code entity, or through the history of a source code
entity. Also a user can interact with source code lines of an
entity. A context menu provides the ability to show a past
or future version of one or several lines.

The software prototype Chronos was implemented basedtwo additional

prototypes have

been implemented

and extended with

sketch capabilites

on information of a research paper []. My Azu-
rite implementation makes use of its original timeline
view, whereas the rest was implemented from scratch.
Chronos and Azurite were extended with sketch capabil-
ities, whereas the capabilities for Azurite are identical to



. Summary and Contributions 

CodeShape and Chronos just allows zooming into a sketch.

In my user study I evaluated these three prototypes on a set a user study

compared the three

prototypes on a set

of invented tasks

of tasks, which I derived from LaToza and Myers [].
Only in a few cases a significant result was observed. Thus
there is no overall evidence that CodeShape outperforms
the other two prototypes, which might be due to the small
sample size and larger differences among those samples,
but it can also be the reason that CodeShape does not have a
significant effect. All of the  participants stated that they
are most convinced of CodeShape, after they tried all three
on the different tasks. After that nearly all participants
stated Azurite second behind CodeShape and Chronos was
last.

.. Limitations

Our approach has some inherent limitations. One limita- usual IDE

functionality was not

usable during the

study

tion arose from the fact, that the prototypes just consider its
own functionality, without integrating the usual function-
ality like for example the ordinary version editor of Xcode
or the one of eclipse.

The participants were only presented with the history of a
method, without its context. Other behavior in solving the
tasks might have observed, when the rest of the file or the
whole repository would have been available to the partici-
pants.

Another limitation is that my sketches have been drawn by self drawn sketches

might have biased

the result

myself, with the task set already in mind, as I could not
find any sketches for the repository considered in my initial
study. This might have biased the results. Same holds true
for the task set itself.



  Summary and Future Work

. Future work

.. Improve the prototypes

In section .. several improvements for each of the proto-
types were proposed, according to problems that occurred
during the user study.

The sketch capabilities are rather limited at the moment,git alike functionality

for sketches but research has shown that branching & merging of
sketches would be possible []. As an example, one can
come up with collaborative sketching, offering more flexi-
bility as Gambit [], and further explore the history of
sketch data.

There are already tools that can detect refactorings of
source code elements, but no comparable tools exist for
sketches. Combining source code and sketch refactoring
detection would provide the possibility to adjust one of the
two entities in case of change. Also connections can be au-
tomatically removed in the case they become invalid.

.. Sketch and source code entity consistency

It is hard to determine, when identifiers like method names
used in a sketch have become invalid. Invalid means that
the identifiers in the sketch have become inconsistent with
the source code, because of refactored code. Ginosar et al.a tool by Ginosar et

al. can probably be

repurposed to

ensure sketch

consistency

[] developed a tool to create multistage source code ex-
amples. The back propagation functionality used in their
tool could be utilized in case there is a new sketch attached
to a new source code entity. An old version of this source
code entity would use the identifiers utilized in the new
the sketch, because they would be back propagated from
the new source code entity to the old one. Same holds true
for the other direction and thus propagation can be a way
to ensure consistency of source code and sketch. This could
improve the lack of ordinary source code refactoring detec-
tion to determine if a connected sketch has become incon-
sistent with the source code.



. Future work 

Parallax

I considered an iPad prototype for drawing sketches during
an early phase of my thesis (see ..), but it still has some
disadvantages.

The problem with todays display surfaces like the one of
the iPad is that they all suffer from a more or less intense
parallax effect, resulting in a drawing experience that does
not feel as natural as drawing with a normal pen.

There should be neither an electronic parallax nor a visual Drawing on todays

displays feels

unnatural, because

of the parallax effect

parallax effect. Visual parallax depends on the thickness
of the screen cover glass. As a user it feels unnatural and it
is harder to draw precise shapes and strokes touching each
other.

Electronic parallax is caused due to the fact that the
electromagnetic (EM) digitizer is behind the display and
its counterpart, the coils inside a pen, are not directly on
the tip of it Rodriguez []. This enforces the effect
of unnatural drawing with a feeling of distance between
the touching point of the pen tip and the actual drawing
visualization.

If it becomes possible to reduce the parallax effect to a bare
minimum, then an iPad prototype may become a superior
replacement to ordinary or digital pens.

iPad App

Every stroke in a sketch, should be automatically persisted An iPad app should

offer a lot more

degrees of freedom

as opposed to pen &

paper

and editable. Editable in this context means that a stroke
should be removable, transformable (change shape, color,
z-index etc.) and it should be possible to label strokes,
group them together to build up a polyline object.

Basic shapes should be available for selection. So, you can
drag an ellipse, a rectangle and a triangle onto the canvas
area of the surface. If strokes had been persisted, the user
should be able to browse through and edit the history of his



  Summary and Future Work

set of strokes and shapes.





Appendix A

Informed Consent Form



INFORMED CONSENT FORM

Evaluation of history exploration assisted by sketches Principal Investigator: Torben
Schulz, Media Computing Group, RWTH Aachen University

PURPOSE OF THE STUDY

This study is conducted in relation to my master thesis at RWTH Aachen University.
The goal of the study is to evaluate different representations of history exploration soft-
ware prototypes and the usefulness of sketches connected to certain history revisions
in order to answer questions about the intention and history of source code entities of
a software repository (i.e. file, class, method).

PROCEDURE

You will be asked to perform two tasks per condition in which you should navigate
through source code history. You will be asked to answer some questions. The study
will take up to 50 minutes.

RISKS / ALTERNATIVES TO PARTICIPATION

There are no risks associated with participation in the study. Participation in this study
is voluntary. You are free to withdraw or discontinue the participation at any time.

CONFIDENTIALITY

All information collected during the study period will be kept strictly confidential. You
will be identified through identification numbers. No publications or reports from this
project will include identifying information on any participant.

� I have read and understood the information on this form

� I agree to being filmed during the study (screencapturing & audio recording)

Date:
participant’s signature

gender �male � female

age years

occupation

programming experience years



Do you know about Objective-C? �yes �no

Do you know about the version control system git? �yes �no

� I want to take part in the lottery to win a 50e itunes or play store gift card.

email address







Appendix B

User Study Form



Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department RWTH Aachen University

sketchassisted development

user study

Comparison Of Three Source Code Visualizations

Torben Schulz

DATE: 24th June 2014

Torben Schulz Page 1 of 10



24th June 2014

1 CONDITION I (15 MINS)

1.1 INTRODUCTION TASK (5MINS)
1. Please navigate to the code that was implemented at DATE 24.11.2008 22:54 (com-

mit SHA e570c3e )

2. How do you know that you have found the right point in time?

3. The change introduced the use of struct & malloc (LINE 8). Why was that done?

Torben Schulz Page 2 of 10



24th June 2014

1.2 FIRST TASK (INTENT AND IMPLEMENATATION, 5MINS)
1. Have a look at Line 61 to 66 in commit with DATE 18.09.2008 01:27 (commit SHA

6e978dc ). What happens when the number of parents of the current commit in
the if-block is equal to 0?

2. Please find out if somebody fixed this and when it was fixed the first time?

Torben Schulz Page 3 of 10



24th June 2014

1.3 SECOND TASK (HISTORY, 5MINS)
1. The line:

Listing 1: source code line
int maxLines = (previousLanes ->size() + nParents +2)*2;

can be found e.g. in the commit at DATE 02.12.2010 02:08 in LINE 9 (commit
with SHA 9488afc ) . Who added/introduced this line with some minor changes?

2. How were the last 2 lines of the method changed over time? Just consider textual
changes before the last closing bracket(s).

3. Why was PBGitLane at DATE 28.08.2008 00:25 introduced and what does current
lane means in this context? It was introduced at commit with SHA a294d91 .

Torben Schulz Page 4 of 10



24th June 2014

2 CONDITION II (15 MINS)

2.1 INTRODUCTION TASK (5MINS)
1. Please navigate to the code that was implemented at DATE 27.08.2008 21:51 (com-

mit SHA bbeedd1 )

2. The change introduced the use of PBLine (e.g. LINE 29 or 43). Why do we need
PBLine?

Torben Schulz Page 5 of 10



24th June 2014

2.2 FIRST TASK (INTENT AND IMPLEMENATATION, 5MINS)

1. Have a look at line 102 in commit with DATE 27.08.2008 23:31 (commit SHA
727e42f ). What happens when we delete this line or comment it? Does the

the software stops working or crashes?

2. Please find out when LINE 4 int row=0; is not used anymore?

Torben Schulz Page 6 of 10



24th June 2014

2.3 SECOND TASK (HISTORY, 5MINS)
1. The line:

Listing 2: source code line
PBGitLane *currentLane = NULL;

can be found e.g. in the commit at DATE 25.11.2008 18:12 in LINE 11 (commit
with SHA 777f70f ) . Who added/introduced this line?

2. How has the first line of the method changed over time until last commit?

3. Why was git_oid introduced? It was introduced at DATE 24.11.08 22:54 in LINE

68 (commit with SHA 8372aee ).

Torben Schulz Page 7 of 10



24th June 2014

3 CONDITION III (15 MINS)

3.1 INTRODUCTION TASK (5MINS)
1. Please navigate to the code that was implemented at DATE 22.03.2010 19:09 (com-

mit SHA 6599ce1 )

2. The change introduced the use of:

Listing 3: source code LINE 20 and 21
if(!*it) // This is an empty lane , created when the lane

// previously had a parentless(root) commit
continue;

Why do we need these lines?

Torben Schulz Page 8 of 10



24th June 2014

3.2 FIRST TASK (INTENT AND IMPLEMENATATION, 5MINS)
1. Have a look at LINE 9 and LINE 10 in commit with DATE 05.07.2010 (commit SHA

69827e9 ). What happens when we set maxLines to 0? Does the the software
stops working or crashes?

2. Please find out when LINE 9 int maxLines = (previousLanes->size() + nParents + 2)
* 2; was slightly changed? So when was the size of the upper bound changed?

Torben Schulz Page 9 of 10



24th June 2014

3.3 SECOND TASK (HISTORY, 5MINS)
1. The line:

Listing 4: source code line
PBGitLane *currentLane = NULL;

can be found e.g. in the commit at DATE 01.12.2010 09:40 in LINE 13 (commit
with SHA 0edbc05 ) . Who added/introduced this line?

2. Consider the following line:

Listing 5: source code LINE 50
// ^^ I don’t know what that means anymore :(

There exist commits where there is a line directly beneath this line. Try to find at
least one of them.

3. Why was [lane index] introduced? It was introduced at DATE 28.08.08 00:25 (com-

mit with SHA a294d91 ).

Torben Schulz Page 10 of 10







Appendix C

Task Completion Time
Graphs



 C Task Completion Time Graphs

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

25

50

75

100

125

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure C.: task completion graph task ..





●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

50

100

150

200

250

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure C.: task completion graph task ..



 C Task Completion Time Graphs

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

100

200

300

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure C.: task completion graph task ..

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

100

150

200

250

300

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure C.: task completion graph task ..





−200 −150 −100 −50 0 50 100

H−C

H−A

C−A

95% family−wise confidence level

Differences in mean levels of prototype

Figure C.: Task .. shows the differences in mean of
Tukey HSD post hoc comparison. The (C)odeShape result
is significantly lower than the (A)zurite result

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

200

400

600

800

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure C.: task completion graph task ..



 C Task Completion Time Graphs

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

50

100

150

200

250

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure C.: task completion graph task ..

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

100

150

200

250

300

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure C.: task completion graph task ..





●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

20

40

60

80

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure C.: task completion graph task ..

−60 −40 −20 0 20 40 60

H−C

H−A

C−A

95% family−wise confidence level

Differences in mean levels of prototype

Figure C.: task .. shows the differences in mean of
Tukey HSD post hoc comparison. The (C)odeShape result
is significantly lower than the Chronos (H)istory Slicing re-
sult.



 C Task Completion Time Graphs

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

100

200

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure C.: task completion graph task ..

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

100

150

200

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure C.: task completion graph task ..





●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

30

60

90

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure C.: task completion graph task ..



 C Task Completion Time Graphs

−80 −60 −40 −20 0

H−C

H−A

C−A

95% family−wise confidence level

Differences in mean levels of prototype

Figure C.: task .. shows the differences in mean of
Tukey HSD post hoc comparison. The (C)odeShape re-
sult is significantly lower than the (A)zurite result and the
Chronos (H)istory Slicing result is significantly lower than
the (A)zurite result





●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

100

150

200

250

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure C.: task completion graph task ..

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

100

200

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure C.: task completion graph task ..



 C Task Completion Time Graphs

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

150

200

250

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure C.: task completion graph task ..

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20

30

40

50

60

70

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure C.: task completion graph task ..





●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

50

100

150

200

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure C.: task completion graph task ..

●

●
●

●

●
●●
●

●

●●

●

●

●

●

●

●

●

●

100

200

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure C.: task completion graph task ..



 C Task Completion Time Graphs

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

0

100

200

300

400

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure C.: task completion graph task ..

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

50

100

150

200

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure C.: task completion graph task ..





●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

50

100

150

200

250

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure C.: task completion graph task ..

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

100

200

300

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure C.: task completion graph task ..



 C Task Completion Time Graphs

−100 0 100 200

H−C

H−A

C−A

95% family−wise confidence level

Differences in mean levels of prototype

Figure C.: task .. shows the differences in mean of
Tukey HSD post hoc comparison. The (C)odeShape result
is significantly lower than the Chronos (H)istory Slicing re-
sult





●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

25

50

75

100

125

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure D.: task navigation graph task ..

Appendix D

Navigation Time Graphs



 D Navigation Time Graphs

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

20

40

60

80

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure D.: task navigation graph task ..

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

20

40

60

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure D.: task navigation graph task ..





●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20

40

60

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure D.: task navigation graph task ..

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

20

40

60

80

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure D.: task navigation graph task ..



 D Navigation Time Graphs

−60 −40 −20 0 20 40 60

H−C

H−A

C−A

95% family−wise confidence level

Differences in mean levels of prototype

Figure D.: task .. shows the differences in mean of
Tukey HSD post hoc comparison. The (C)odeShape re-
sult is significantly lower than the (A)zurite result and the
Chronos (H)istory Slicing result

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

20

40

60

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure D.: task navigation graph task ..





−40 −30 −20 −10 0 10 20

H−C

H−A

C−A

95% family−wise confidence level

Differences in mean levels of prototype

Figure D.: task .. shows the differences in mean of
Tukey HSD post hoc comparison. The (C)odeShape re-
sult is significantly lower than the (A)zurite result and the
Chronos (H)istory slicing result is significantly lower than
the (A)zurite result



 D Navigation Time Graphs

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

20

30

40

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure D.: task navigation graph task ..

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20

40

60

80

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure D.: task navigation graph task ..





●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20

40

60

80

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure D.: task navigation graph task ..

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

10

20

30

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure D.: task navigation graph task ..



 D Navigation Time Graphs

−10 0 10 20 30

H−C

H−A

C−A

95% family−wise confidence level

Differences in mean levels of prototype

Figure D.: task .. shows the differences in mean of
Tukey HSD post hoc comparison. The (C)odeShape result is
significantly lower than the Chronos (H)istory slicing result

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10

20

30

40

50

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure D.: task navigation graph task ..





−30 −20 −10 0 10 20 30

H−C

H−A

C−A

95% family−wise confidence level

Differences in mean levels of prototype

Figure D.: task .. shows the differences in mean of
Tukey HSD post hoc comparison. The result do not differ
significantly

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

20

40

60

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure D.: task navigation graph task ..







Appendix E

Source Code of
decorateCommit



Page 1 of 2

- (void) decorateCommit: (PBGitCommit *) commit
{

int i = 0, newPos = -1;
LaneCollection *currentLanes = new LaneCollection;
LaneCollection *previousLanes = self.pl;
NSArray *parents = [commit parents];
int nParents = [parents count];

int maxLines = (previousLanes->size() + nParents + 2) * 2;
struct PBGitGraphLine *lines = (struct PBGitGraphLine *)malloc(sizeof(struct PBGitGraphLine) * maxLines);
int currentLine = 0;

PBGitLane *currentLane = NULL;
BOOL didFirst = NO;
const git_oid *commit_oid = [[commit sha] git_oid];

// First, iterate over earlier columns and pass through any that don't want this commit
if (self.previous != nil) {

// We can't count until numColumns here, as it's only used for the width of the cell.
LaneCollection::iterator it = previousLanes->begin();
for (; it != previousLanes->end(); ++it) {

i++;
if (!*it) // This is an empty lane, created when the lane previously had a parentless(root) commit

continue;

// This is our commit! We should do a "merge": move the line from
// our upperMapping to their lowerMapping
if ((*it)->isCommit(commit_oid)) {

if (!didFirst) {
didFirst = YES;
currentLanes->push_back(*it);
currentLane = currentLanes->back();
newPos = currentLanes->size();
add_line(lines, &currentLine, 1, i, newPos,(*it)->index());
if (nParents)

add_line(lines, &currentLine, 0, newPos, newPos,(*it)->index());
}
else {

add_line(lines, &currentLine, 1, i, newPos,(*it)->index());
delete *it;

}
}
else {

// We are not this commit.
currentLanes->push_back(*it);
add_line(lines, &currentLine, 1, i, currentLanes->size(),(*it)->index());
add_line(lines, &currentLine, 0, currentLanes->size(), currentLanes->size(), (*it)->index());

}
// For existing columns, we always just continue straight down
// ^^ I don't know what that means anymore :(

}
}
//Add your own parents

// If we already did the first parent, don't do so again
if (!didFirst && nParents) {

const git_oid *parentOID = [(GTOID*)[parents objectAtIndex:0] git_oid];
PBGitLane *newLane = new PBGitLane(_laneIndex++, parentOID);
currentLanes->push_back(newLane);
newPos = currentLanes->size();
add_line(lines, &currentLine, 0, newPos, newPos, newLane->index());

}

// Add all other parents

// If we add at least one parent, we can go back a single column.
// This boolean will tell us if that happened
BOOL addedParent = NO;

int parentIndex = 0;
for (parentIndex = 1; parentIndex < nParents; ++parentIndex) {

const git_oid *parentOID = [(GTOID*)[parents objectAtIndex:parentIndex] git_oid];
int i = 0;
BOOL was_displayed = NO;
LaneCollection::iterator it = currentLanes->begin();
for (; it != currentLanes->end(); ++it) {

i++;
if ((*it)->isCommit(parentOID)) {

add_line(lines, &currentLine, 0, i, newPos,(*it)->index());
was_displayed = YES;
break;

}
}
if (was_displayed)

continue;

// Really add this parent
addedParent = YES;
PBGitLane *newLane = new PBGitLane(_laneIndex++, parentOID);
currentLanes->push_back(newLane);
add_line(lines, &currentLine, 0, currentLanes->size(), newPos, newLane->index());

}

if (commit.lineInfo) {



Page 2 of 2

self.previous = commit.lineInfo;
self.previous.position = newPos;
self.previous.lines = lines;

}
else

self.previous = [[PBGraphCellInfo alloc] initWithPosition:newPos andLines:lines];

if (currentLine > maxLines)
NSLog(@"Number of lines: %i vs allocated: %i", currentLine, maxLines);

self.previous.nLines = currentLine;
self.previous.sign = commit.sign;

// If a parent was added, we have room to not indent.
if (addedParent)

self.previous.numColumns = currentLanes->size() - 1;
else

self.previous.numColumns = currentLanes->size();

// Update the current lane to point to the new parent
if (currentLane) {

if (nParents > 0)
currentLane->setSha( [(GTOID*)[parents objectAtIndex:0] git_oid]);

else {
// The current lane's commit does not have any parents
// AKA, this is a first commit
// Empty the entry and free the lane.
// We empty the lane in the case of a subtree merge, where
// multiple first commits can be present. By emptying the lane,
// we allow room to create a nice merge line.
std::replace(currentLanes->begin(), currentLanes->end(), currentLane, (PBGitLane *)0);
delete currentLane;

}
}

delete previousLanes;

self.pl = currentLanes;
commit.lineInfo = self.previous;

}







Appendix F

Initial Study
Questionnaire



Fragebogen                                                  !                                                                                                      

Mitarbeiterinteraktion!!
! Kommt es vor, dass Mitarbeiter bei anderen Mitarbeitern ins Büro kommen, 
! um Fragen zu stellen?!
! !!!
! Werden dabei Skizzen angefertigt, oder andere Hilfsmittel benutzt?!!
! Wenn Skizzen angefertigt werden:!
! ! mit was für einem Medium (Whiteboard, Papier, Notizblock ?)!!
! ! wird UML verwendet oder andere festgelegte Strukturelemente oder nur 
! ! frei gezeichnete Formen?!!!
! Was für 3rd party tools werden neben XCode, Android Studio usw. eingesetzt 
! (Photoshop , Skizzentool o.ä)?!!!

! Wie werden neue Mitarbeiter eingearbeitet, sprich wie werden sie an ein   
Projekt  herangeführt und welche Hilfsmittel werden verwendet?!!!

! Was passiert:!
! ! wenn ein Mitarbeiter einen Bug o.ä. eines anderen Mitarbeiters findet?!!
! ! wenn es zu einem Merge-Conflict kommt?!!!
! !!!
Meetings!!
! Wie oft gibt es Meetings?!!!
! Wird bei Meetings ein Whiteboard verwendet oder eine Präsentation (was für 
! ein Inhalt, Skizzen, Bilder, Wireframes, Statistiken)?!!
! Mit wem werden Meetings abgehalten( alle Mitarbeiter, Team, Kunde)?!!
! !
Entwicklungsunterstützung!!
! Liefert Kunde Skizzen, Spezifikation o.ä.?!!
! Werden nur Photoshop-Wireframes als Vorlage benutzt?!!
! Wird eine Dokumentation, Wiki o.ä. angelegt?!!!



Fragebogen                                                  !                                                                                                      

!
! Wie werden Datenbankschemata bei Android dargestellt, sprich Relationen, 
! Zusammenhänge usw. von sqlite-Datenbanken?!!

! Mit was für Ressourcen wird gearbeitet um Dinge nachzugucken, sprich !  
Bücher, Websites (stackoverflow, API‘s) oder evtl. auch Videos (WWDC, !
Google IO)!!

! Wird primär, sekundär Monitor um Dokumentationen, Skizzen o.ä. anzuzeigen, 
! verwendet?!!
! Werden Handskizzen gemacht?!!!!
! Arbeitet jeder mit git? !!!
! Wenn ja auf Konsolenbasis, GUI-Client oder über die IDE?!!
! !
! ! !
Projekt!
! Wie viele Leute arbeiten an einem Projekt?!!!
! Wie lang wird meist an einem Projekt gearbeitet?!
! mehrere Monate !
! !

! Werden mehrere Projekte parallel entwickelt, sprich was passiert beim !
context  switching, wenn versucht wird das mental model zu „reaktivieren“.!!!

! Wird/Muss dokumentiert werden? Wenn ja, manuell oder mit z.b. doxygen?!!!
! Was bekommen die Mitarbeiter für die Umsetzung eines Projekts an Material?!!!
! !!
Zukunftsfragen!
! Könntet ihr euch vorstellen Skizzen mit dem Quelltext zu verknüpfen und so 
! zu archivieren?!!

! Was für ein Medium würdet ihr am liebsten zur Erstellung verwenden !
(Whiteboard, Papier, Wacom Zeichenboard)?!!

! !
! Haltet ihr es generell für sinnvoll Skizzen mit Quelltext zu verbinden !  
(Einwände, ! andere Idee?)!!



Fragebogen                                                  !                                                                                                      

!
! Wenn ihr wüsstest, dass die Fehlerrate sinkt und es weniger duplizierten !  
Code  gäbe, wäre ! dies ein Argument für euch, um Skizzen mit Quelltext zu 
! verbinden?!!

! Was müsste so ein Tool können?!
! !!

! Würdet ihr Photos von Skizzen machen, wenn diese sich dann mit dem !
Quelltext verbinden lassen?!!

! Was wäre eure Idee/Wunsch um schneller Code zu verstehen bzw. schneller 
! das  mental model aufzurufen?!!





Appendix G

Sketch Inspection Time
Graphs



 G Sketch Inspection Time Graphs

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

20

40

60

80

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure G.: Sketch Inspection Time graph - task ..

−60 −40 −20 0 20 40 60

H−C

H−A

C−A

95% family−wise confidence level

Differences in mean levels of prototype

Figure G.: The graph of task .. shows the differences
in mean of Tukey HSD post hoc comparison.





●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

25

50

75

100

125

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure G.: Sketch Inspection Time graph - task ..

−50 0 50

H−C

H−A

C−A

95% family−wise confidence level

Differences in mean levels of prototype

Figure G.: The graph of task .. shows the differences
in mean of Tukey HSD post hoc comparison.



 G Sketch Inspection Time Graphs

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

30

60

90

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure G.: Sketch Inspection Time graph - task ..

−100 −50 0 50

H−C

H−A

C−A

95% family−wise confidence level

Differences in mean levels of prototype

Figure G.: The graph of task .. shows the differences
in mean of Tukey HSD post hoc comparison.





●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

40

60

80

100

120

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure G.: Sketch Inspection Time graph - task ..

−60 −40 −20 0 20 40

H−C

H−A

C−A

95% family−wise confidence level

Differences in mean levels of prototype

Figure G.: The graph of task .. shows the differences
in mean of Tukey HSD post hoc comparison.



 G Sketch Inspection Time Graphs

●

●

●

●

●

●●

●

●20

25

30

35

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure G.: Sketch Inspection Time graph - task ..





●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

0

20

40

60

80

A C H
prototype

ta
sk

 c
om

pl
et

io
n 

tim
e 

[s
]

prototype

●

●

●

A

C

H

Figure G.: Sketch Inspection Time graph - task ..

−50 0 50 100

H−C

H−A

C−A

95% family−wise confidence level

Differences in mean levels of prototype

Figure G.: The graph of task .. shows the differences
in mean of Tukey HSD post hoc comparison.







Appendix H

Sketches



 H Sketches

Figure H.: Inkling sketch for commit bfccb





Figure H.: Inkling sketch for commit bbeedd used in task ..







Bibliography

Paths. https://developer.apple.com/library/

mac/documentation/Cocoa/Conceptual/

CocoaDrawingGuide/Paths/Paths.html, . [Online;
accessed -Augsut-].

libgit - the Git linkable library. https://github.com/

libgit/libgit, . [Online; accessed -Augsut-
].

Xcode Plugins. http://nshipster.com/xcode-plugins/,
. [Online; accessed -Augsut-].

Objective-C bindings to libgit. https://github.com/

libgit/objective-git, . [Online; accessed -
Augsut-].

Wacom Inklink. http://www.wacom.com/de-de/de/

creative/inkling, . [Online; accessed -Augsut-
].

libdpen. https://github.com/bakercp/libdpen/blob/

master/docs/ELI_FileSpec.md, . [Online; ac-
cessed -Augsut-].

Rakesh Agrawal, Tomasz Imieliński, and Arun Swami.
Mining association rules between sets of items in large
databases. SIGMOD Rec., ():–, June .
ISSN -. doi: ./.. URL
http://doi.acm.org/./..

Mike Ash. Introduction to lib-
clang. https://mikeash.com/pyblog/

friday-qa----introduction-to-libclang.
html, . [Online; accessed -Augsut-].

https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CocoaDrawingGuide/Paths/Paths.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CocoaDrawingGuide/Paths/Paths.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CocoaDrawingGuide/Paths/Paths.html
https://github.com/libgit2/libgit2
https://github.com/libgit2/libgit2
http://nshipster.com/xcode-plugins/
https://github.com/libgit2/objective-git
https://github.com/libgit2/objective-git
http://www.wacom.com/de-de/de/creative/inkling
http://www.wacom.com/de-de/de/creative/inkling
https://github.com/bakercp/libdpen/blob/master/docs/ELI_FileSpec.md
https://github.com/bakercp/libdpen/blob/master/docs/ELI_FileSpec.md
http://doi.acm.org/10.1145/170036.170072
https://mikeash.com/pyblog/friday-qa-2014-01-24-introduction-to-libclang.html
https://mikeash.com/pyblog/friday-qa-2014-01-24-introduction-to-libclang.html
https://mikeash.com/pyblog/friday-qa-2014-01-24-introduction-to-libclang.html


 Bibliography

Font Awesome. fa-picture-o. http://fortawesome.

github.io/Font-Awesome/icon/picture-o/, .
[Online; accessed -Augsut-].

C. Bird, P.C. Rigby, E.T. Barr, D.J. Hamilton, D.M. Ger-
man, and P. Devanbu. The promises and perils of min-
ing git. In Mining Software Repositories, . MSR ’.
th IEEE International Working Conference on, pages –,
May . doi: ./MSR...

Alexander W.J. Bradley and Gail C. Murphy. Support-
ing software history exploration. In Proceedings of
the th Working Conference on Mining Software Reposi-
tories, MSR ’, pages –, New York, NY, USA,
. ACM. ISBN ----. doi: ./
.. URL http://doi.acm.org/./
..

Stefan Ceriu. Sublime Text. http://www.sublimetext.

com/, . [Online; accessed -Augsut-].

Stefan Ceriu. Xcode MiniMap plugin. https://github.

com/stefanceriu/SCXcodeMiniMap, . [Online; ac-
cessed -Augsut-].

Scott Chacon. Pro git (expert’s voice in software develop-
ment), . URL https://github.s.amazonaws.com/
media/progit.en.pdf.

Hsiang-Ting Chen, Li-Yi Wei, and Chun-Fa Chang. Non-
linear revision control for images. ACM Trans. Graph.,
()::–:, July . ISSN -. doi:
./.. URL http://doi.acm.org/

./..

Mauro Cherubini, Gina Venolia, Rob DeLine, and An-
drew J. Ko. Let’s go to the whiteboard: How and why
software developers use drawings. In Proceedings of
the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’, pages –, New York, NY, USA,
. ACM. ISBN ----. doi: ./
.. URL http://doi.acm.org/./
..

Oracle Corporation. Class JTextArea. http:

//docs.oracle.com/javase//docs/api/javax/

http://fortawesome.github.io/Font-Awesome/icon/picture-o/
http://fortawesome.github.io/Font-Awesome/icon/picture-o/
http://doi.acm.org/10.1145/1985441.1985469
http://doi.acm.org/10.1145/1985441.1985469
http://www.sublimetext.com/
http://www.sublimetext.com/
https://github.com/stefanceriu/SCXcodeMiniMap
https://github.com/stefanceriu/SCXcodeMiniMap
https://github.s3.amazonaws.com/media/progit.en.pdf
https://github.s3.amazonaws.com/media/progit.en.pdf
http://doi.acm.org/10.1145/2010324.1965000
http://doi.acm.org/10.1145/2010324.1965000
http://doi.acm.org/10.1145/1240624.1240714
http://doi.acm.org/10.1145/1240624.1240714
http://docs.oracle.com/javase/8/docs/api/javax/swing/JTextArea.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/JTextArea.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/JTextArea.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/JTextArea.html


Bibliography 

swing/JTextArea.html, . [Online; accessed
-Augsut-].

Craig. Common Xcode Plugin Techniques.
http://www.blackdogfoundry.com/blog/

common-xcode-plugin-techniques/, . [On-
line; accessed -Augsut-].

Pieter de Bie and Rowan James. gitx. https://github.

com/rowanj/gitx), .

Johann Dowa. Xcode Plugin Listing. http://maniacdev.

com/xcode-plugins, . [Online; accessed -Augsut-
].

Cody Dunne, Nathalie Henry Riche, Bongshin Lee, Ronald
Metoyer, and George Robertson. Graphtrail: Analyz-
ing large multivariate, heterogeneous networks while
supporting exploration history. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Sys-
tems, CHI ’, pages –, New York, NY, USA,
. ACM. ISBN ----. doi: ./
.. URL http://doi.acm.org/./
..

Stephen G. Eick, Joseph L. Steffen, and Eric E. Sumner,
Jr. Seesoft-a tool for visualizing line oriented soft-
ware statistics. IEEE Trans. Softw. Eng., ():–,
November . ISSN -. doi: ./.
. URL http://dx.doi.org/./..

Herbert Ellebruch. Wacom Inklink WPI File Format. http:
//www.useful-tools.de/EN-WPI-Format-Downloads.

html, . [Online; accessed -Augsut-].

Ivan Sagalaev et al. Syntax highlighting for the Web.
https://highlightjs.org, . [Online; accessed -
Augsut-].

Lea Verou et. al. Prism is a lightweight, extensible syntax
highlighter, built with modern web standards in mind.
It’s a spin-off from Dabblet and is tested there daily by
thousands. http://prismjs.com/, . [Online; ac-
cessed -Augsut-].

http://docs.oracle.com/javase/8/docs/api/javax/swing/JTextArea.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/JTextArea.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/JTextArea.html
http://www.blackdogfoundry.com/blog/common-xcode4-plugin-techniques/
http://www.blackdogfoundry.com/blog/common-xcode4-plugin-techniques/
https://github.com/rowanj/gitx)
https://github.com/rowanj/gitx)
http://maniacdev.com/xcode-plugins
http://maniacdev.com/xcode-plugins
http://doi.acm.org/10.1145/2207676.2208293
http://doi.acm.org/10.1145/2207676.2208293
http://dx.doi.org/10.1109/32.177365
http://www.useful-tools.de/EN-WPI-Format-Downloads.html
http://www.useful-tools.de/EN-WPI-Format-Downloads.html
http://www.useful-tools.de/EN-WPI-Format-Downloads.html
https://highlightjs.org
http://prismjs.com/


 Bibliography

Michael Feathers. Working Effectively with Legacy Code.
Prentice Hall PTR, Upper Saddle River, NJ, USA, .
ISBN .

Paul Fitts. Fitts’s law. http://en.wikipedia.org/wiki/

Fitts’s_law, . [Online; accessed -Augsut-].

B. Fluri, M. Wursch, M. Pinzger, and H.C. Gall. Change
distilling:tree differencing for fine-grained source code
change extraction. Software Engineering, IEEE Transac-
tions on, ():–, Nov . ISSN -.
doi: ./TSE...

Free Software Foundation. wdiff - front end to diff for
comparing files on a word per word basis. http://www.
gnu.org/software/wdiff/, . [Online; accessed -
Augsut-].

Free Software Foundation. Detailed Description of
Unified Format. http://www.gnu.org/software/

diffutils/manual/html_node/Detailed-Unified.

html#Detailed-Unified, . [Online; accessed
-Augsut-].

fournova Software GmbH. Version control with Git - made
easy. In a beautiful, efficient, and powerful app. http:

//www.git-tower.com/, . [Online; accessed -
Augsut-].

Thomas Fritz, Gail C. Murphy, and Emily Hill. titledoes
a programmer’s activity indicate knowledge of code?
In Proceedings of the the th Joint Meeting of the Euro-
pean Software Engineering Conference and the ACM SIG-
SOFT Symposium on The Foundations of Software Engineer-
ing, ESEC-FSE ’, pages –, New York, NY, USA,
. ACM. ISBN ----. doi: ./
.. URL http://doi.acm.org/./
..

Jean-David Gadina. C / C++ / Objective-C code edi-
tor. http://www.xs-labs.com/en/projects/codeine/

overview/, . [Online; accessed -Augsut-].

Shiry Ginosar, Luis Fernando De Pombo, Maneesh
Agrawala, and Bjorn Hartmann. Authoring multi-stage

http://en.wikipedia.org/wiki/Fitts's_law
http://en.wikipedia.org/wiki/Fitts's_law
http://www.gnu.org/software/wdiff/
http://www.gnu.org/software/wdiff/
http://www.gnu.org/software/diffutils/manual/html_node/Detailed-Unified.html#Detailed-Unified
http://www.gnu.org/software/diffutils/manual/html_node/Detailed-Unified.html#Detailed-Unified
http://www.gnu.org/software/diffutils/manual/html_node/Detailed-Unified.html#Detailed-Unified
http://www.git-tower.com/
http://www.git-tower.com/
http://doi.acm.org/10.1145/1287624.1287673
http://doi.acm.org/10.1145/1287624.1287673
http://www.xs-labs.com/en/projects/codeine/overview/
http://www.xs-labs.com/en/projects/codeine/overview/


Bibliography 

code examples with editable code histories. In Proceed-
ings of the th Annual ACM Symposium on User Inter-
face Software and Technology, UIST ’, pages –,
New York, NY, USA, . ACM. ISBN ---
-. doi: ./.. URL http:

//doi.acm.org/./..

M.W. Godfrey and Lijie Zou. Using origin analysis to de-
tect merging and splitting of source code entities. Soft-
ware Engineering, IEEE Transactions on, ():–,
Feb . ISSN -. doi: ./TSE...

Michael E. Hansen, Robert L. Goldstone, and Andrew
Lumsdaine. What makes code hard to understand?
CoRR, abs/., .

Reid Holmes and Andrew Begel. Deep intellisense: A tool
for rehydrating evaporated information. In Proceedings
of the  International Working Conference on Mining
Software Repositories, MSR ’, pages –, New York,
NY, USA, . ACM. ISBN ----. doi:
./.. URL http://doi.acm.org/

./..

J. W. Hunt and M. D. McIlroy. An algorithm for differential
file comparison. Technical Report CSTR , Bell Labora-
tories, Murray Hill, NJ, .

Apple Inc. WebView Class Reference. https://

developer.apple.com/library/mac/documentation/

Cocoa/Reference/WebKit/Classes/WebView_Class/

Reference/Reference.html, . [Online; accessed
-Augsut-].

Apple Inc. git-diff-files - Compares files in the working
tree and the index. https://developer.apple.com/

library/mac/documentation/Darwin/Reference/

Manpages/man/git-diff-files..html, a.
[Online; accessed -Augsut-].

Apple Inc. NSSlider Class Reference. https://developer.
apple.com/library/mac/documentation/cocoa/

reference/applicationkit/classes/NSSlider_

Class/Reference/Reference.html, b. [Online;
accessed -Augsut-].

http://doi.acm.org/10.1145/2501988.2502053
http://doi.acm.org/10.1145/2501988.2502053
http://doi.acm.org/10.1145/1370750.1370755
http://doi.acm.org/10.1145/1370750.1370755
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/WebKit/Classes/WebView_Class/Reference/Reference.html
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/WebKit/Classes/WebView_Class/Reference/Reference.html
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/WebKit/Classes/WebView_Class/Reference/Reference.html
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/WebKit/Classes/WebView_Class/Reference/Reference.html
https://developer.apple.com/library/mac/documentation/Darwin/Reference/Manpages/man1/git-diff-files.1.html
https://developer.apple.com/library/mac/documentation/Darwin/Reference/Manpages/man1/git-diff-files.1.html
https://developer.apple.com/library/mac/documentation/Darwin/Reference/Manpages/man1/git-diff-files.1.html
https://developer.apple.com/library/mac/documentation/cocoa/reference/applicationkit/classes/NSSlider_Class/Reference/Reference.html
https://developer.apple.com/library/mac/documentation/cocoa/reference/applicationkit/classes/NSSlider_Class/Reference/Reference.html
https://developer.apple.com/library/mac/documentation/cocoa/reference/applicationkit/classes/NSSlider_Class/Reference/Reference.html
https://developer.apple.com/library/mac/documentation/cocoa/reference/applicationkit/classes/NSSlider_Class/Reference/Reference.html


 Bibliography

Apple Inc. NSTextView Class Reference. https://

developer.apple.com/library/mac/documentation/

cocoa/reference/applicationkit/classes/

NSTextView_Class/Reference/Reference.html,
c. [Online; accessed -Augsut-].

Apple Inc. Creating an Outlet Connection. https://

developer.apple.com/library/ios/recipes/xcode_

help-interface_builder/articles-connections_

bindings/CreatingOutlet.html#//apple_ref/doc/

uid/TP-CH, d. [Online; accessed
-Augsut-].

Apple Inc. XCode - The complete toolset for building great
apps. . https://developer.apple.com/xcode/, e.
[Online; accessed -Augsut-].

Thomas D. LaToza and Brad A. Myers. Hard-to-answer
questions about code. In Evaluation and Usability of
Programming Languages and Tools, PLATEAU ’, pages
:–:, New York, NY, USA, . ACM. ISBN -
---. doi: ./.. URL
http://doi.acm.org/./..

Thomas D. LaToza, Gina Venolia, and Robert DeLine.
Maintaining mental models: a study of developer work
habits. In ICSE ’: Proceedings of the th international
conference on Software engineering, pages –, New
York, NY, USA, May a. ACM. ISBN ---
. URL http://research.microsoft.com/apps/pubs/

default.aspx?id=.

Thomas D. LaToza, Gina Venolia, and Robert DeLine.
Maintaining mental models: A study of developer work
habits. In Proceedings of the th International Conference
on Software Engineering, ICSE ’, pages –, New
York, NY, USA, b. ACM. ISBN ---. doi:
./.. URL http://doi.acm.org/

./..

Chris Lattner. clang: a C language family frontend for
LLVM. http://clang.llvm.org/, a. [Online; ac-
cessed -Augsut-].

Chris Lattner. libclang: C Interface to Clang. http:

https://developer.apple.com/library/mac/documentation/cocoa/reference/applicationkit/classes/NSTextView_Class/Reference/Reference.html
https://developer.apple.com/library/mac/documentation/cocoa/reference/applicationkit/classes/NSTextView_Class/Reference/Reference.html
https://developer.apple.com/library/mac/documentation/cocoa/reference/applicationkit/classes/NSTextView_Class/Reference/Reference.html
https://developer.apple.com/library/mac/documentation/cocoa/reference/applicationkit/classes/NSTextView_Class/Reference/Reference.html
https://developer.apple.com/library/ios/recipes/xcode_help-interface_builder/articles-connections_bindings/CreatingOutlet.html#//apple_ref/doc/uid/TP40009971-CH15
https://developer.apple.com/library/ios/recipes/xcode_help-interface_builder/articles-connections_bindings/CreatingOutlet.html#//apple_ref/doc/uid/TP40009971-CH15
https://developer.apple.com/library/ios/recipes/xcode_help-interface_builder/articles-connections_bindings/CreatingOutlet.html#//apple_ref/doc/uid/TP40009971-CH15
https://developer.apple.com/library/ios/recipes/xcode_help-interface_builder/articles-connections_bindings/CreatingOutlet.html#//apple_ref/doc/uid/TP40009971-CH15
https://developer.apple.com/library/ios/recipes/xcode_help-interface_builder/articles-connections_bindings/CreatingOutlet.html#//apple_ref/doc/uid/TP40009971-CH15
https://developer.apple.com/xcode/
http://doi.acm.org/10.1145/1937117.1937125
http://research.microsoft.com/apps/pubs/default.aspx?id=74240
http://research.microsoft.com/apps/pubs/default.aspx?id=74240
http://doi.acm.org/10.1145/1134285.1134355
http://doi.acm.org/10.1145/1134285.1134355
http://clang.llvm.org/
http://clang.llvm.org/doxygen/group__CINDEX.html
http://clang.llvm.org/doxygen/group__CINDEX.html
http://clang.llvm.org/doxygen/group__CINDEX.html


Bibliography 

//clang.llvm.org/doxygen/group__CINDEX.html,
b. [Online; accessed -Augsut-].

Vladimir Levenshtein. Levenshtein distance. http:

//en.wikipedia.org/wiki/Levenshtein_distance,
. [Online; accessed -Augsut-].

Y. Liu, E. Stroulia, K. Wong, and D. German. Using CVS
historical information to understand how students de-
velop software. In MRS : International Workshop on
Mining Software Repositories, .

MacroMates Ltd. textmate. https://github.com/

textmate/textmate, . [Online; accessed -Augsut-
].

Thomas J. McCabe. A complexity measure. In Proceed-
ings of the Nd International Conference on Software En-
gineering, ICSE ’, pages –, Los Alamitos, CA, USA,
. IEEE Computer Society Press. URL http://dl.

acm.org/citation.cfm?id=..

Jakob Nielsen. Usability Engineering. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, . ISBN
.

Steve Nygard. class-dump. https://github.com/nygard/
class-dump, . [Online; accessed -Augsut-].

Shawn O. Pearce. gitk - The Git repository browser. http:
//git-scm.com/docs/git-gui/.., . [Online;
accessed -Augsut-].

Black Pixel. Kaleidoscope - spot the differences. http:

//www.kaleidoscopeapp.com/, . [Online; accessed
-Augsut-].

Blaine A. Price, Ronald M. Baecker, and Ian S. Small. A
Principled Taxonomy of Software Visualization. Journal
of Visual Languages & Computing, ():–, Septem-
ber . ISSN X. doi: ./jvlc...
URL http://dx.doi.org/./jvlc...

Jorge Robles. http://chaione.com/the-role-of-wireframing-
in-mobile-app-design/. http://chaione.com/

the-role-of-wireframing-in-mobile-app-design/,
. [Online; accessed -Augsut-].

http://clang.llvm.org/doxygen/group__CINDEX.html
http://clang.llvm.org/doxygen/group__CINDEX.html
http://clang.llvm.org/doxygen/group__CINDEX.html
http://en.wikipedia.org/wiki/Levenshtein_distance
http://en.wikipedia.org/wiki/Levenshtein_distance
https://github.com/textmate/textmate
https://github.com/textmate/textmate
http://dl.acm.org/citation.cfm?id=800253.807712
http://dl.acm.org/citation.cfm?id=800253.807712
https://github.com/nygard/class-dump
https://github.com/nygard/class-dump
http://git-scm.com/docs/git-gui/1.5.4
http://git-scm.com/docs/git-gui/1.5.4
http://www.kaleidoscopeapp.com/
http://www.kaleidoscopeapp.com/
http://dx.doi.org/10.1006/jvlc.1993.1015
http://chaione.com/the-role-of-wireframing-in-mobile-app-design/
http://chaione.com/the-role-of-wireframing-in-mobile-app-design/


 Bibliography

Rick Rodriguez. Microsoft addresses N-
Trig concerns in Reddit response. http:

//surfaceproartist.com/blog////
microsoft-addresses-n-trig-concerns-in-reddit-response,
. [Online; accessed -Augsut-].

Ugo Braga Sangiorgi, François Beuvens, and Jean Vander-
donckt. User interface design by collaborative sketch-
ing. In Proceedings of the Designing Interactive Systems
Conference, DIS ’, pages –, New York, NY, USA,
. ACM. ISBN ----. doi: ./
.. URL http://doi.acm.org/./
..

FABIEN SANGLARD. GIT SOURCE CODE REVIEW:
DIFF ALGORITHMS. http://fabiensanglard.net/

git_code_review/diff.php, . [Online; accessed
-Augsut-].

Peter Savage. A Closer Look At Diffs and Tags. http:

//cbx.github.io/gitt/afterhours-.html, .
[Online; accessed -Augsut-].

F. Servant and J.A Jones. Chronos: Visualizing slices of
source-code history. In Software Visualization (VISSOFT),
 First IEEE Working Conference on, pages –, Sept
. doi: ./VISSOFT...

Francisco Servant and James A. Jones. History slicing: As-
sisting code-evolution tasks. In Proceedings of the ACM
SIGSOFT th International Symposium on the Founda-
tions of Software Engineering, FSE ’, pages :–:,
New York, NY, USA, . ACM. ISBN ---
-. doi: ./.. URL http:

//doi.acm.org/./..

James Simpson and Michael Terry. Embedding interface
sketches in code. In Proceedings of the th Annual
ACM Symposium Adjunct on User Interface Software and
Technology, UIST ’ Adjunct, pages –, New York,
NY, USA, . ACM. ISBN ----. doi:
./.. URL http://doi.acm.org/

./..

Ian Skerrett. Eclipse Community Survey  Re-
sults. http://ianskerrett.wordpress.com///

http://surfaceproartist.com/blog/2014/5/27/microsoft-addresses-n-trig-concerns-in-reddit-response
http://surfaceproartist.com/blog/2014/5/27/microsoft-addresses-n-trig-concerns-in-reddit-response
http://surfaceproartist.com/blog/2014/5/27/microsoft-addresses-n-trig-concerns-in-reddit-response
http://doi.acm.org/10.1145/2317956.2318013
http://doi.acm.org/10.1145/2317956.2318013
http://fabiensanglard.net/git_code_review/diff.php
http://fabiensanglard.net/git_code_review/diff.php
http://cbx33.github.io/gitt/afterhours3-1.html
http://cbx33.github.io/gitt/afterhours3-1.html
http://doi.acm.org/10.1145/2393596.2393646
http://doi.acm.org/10.1145/2393596.2393646
http://doi.acm.org/10.1145/2046396.2046438
http://doi.acm.org/10.1145/2046396.2046438
http://ianskerrett.wordpress.com/2014/06/23/eclipse-community-survey-2014-results/
http://ianskerrett.wordpress.com/2014/06/23/eclipse-community-survey-2014-results/
http://ianskerrett.wordpress.com/2014/06/23/eclipse-community-survey-2014-results/


Bibliography 

/eclipse-community-survey--results/, .
[Online; accessed -Augsut-].

Jaime Spacco, David Hovemeyer, and William Pugh. An
eclipse-based course project snapshot and submission
system. In rd Eclipse Technology Exchange Workshop
(eTX), Vancouver, BC, October , .

Lukas Spychalski. Communication Of Source Code De-
signs Through Sketching. http://hci.rwth-aachen.

de/materials/publications/spychalskia.pdf,
. [Online; accessed -Augsut-].

Linus Torvalds, Shawn O. Pearce, and Junio C. Hamano.
git scm - distributed version control system . http:

//git-scm.com/, a. [Online; accessed -Augsut-
].

Linus Torvalds, Shawn O. Pearce, and Junio C. Hamano.
git-diff - Show changes between commits, commit
and working tree, etc. http://git-scm.com/docs/

git-diff, b. [Online; accessed -Augsut-].

Bradley L. Vinz and Letha H. Etzkorn. Improving pro-
gram comprehension by combining code understanding
with comment understanding. Know.-Based Syst., ():
–, December . ISSN -. doi: .
/j.knosys.... URL http://dx.doi.org/

./j.knosys....

Tommi Virtanen. Git for Computer Sci-
entists. http://eagain.net/articles/

git-for-computer-scientists/, . [Online;
accessed -Augsut-].

Wacom. Inkling Sketch Manager V.. http://www.

wacom.asia/en/inkling-sketch-manager-v-,
. [Online; accessed -Augsut-].

Wikipedia. Cocoa (API). http://en.wikipedia.org/

wiki/Cocoa_(API), . [Online; accessed -Augsut-
].

Wikpedia. Abstract syntax tree. http://en.wikipedia.

org/wiki/Abstract_syntax_tree, . [Online; ac-
cessed -Augsut-].

http://ianskerrett.wordpress.com/2014/06/23/eclipse-community-survey-2014-results/
http://ianskerrett.wordpress.com/2014/06/23/eclipse-community-survey-2014-results/
http://ianskerrett.wordpress.com/2014/06/23/eclipse-community-survey-2014-results/
http://hci.rwth-aachen.de/materials/publications/spychalski2013a.pdf
http://hci.rwth-aachen.de/materials/publications/spychalski2013a.pdf
http://git-scm.com/
http://git-scm.com/
http://git-scm.com/docs/git-diff
http://git-scm.com/docs/git-diff
http://dx.doi.org/10.1016/j.knosys.2008.03.033
http://dx.doi.org/10.1016/j.knosys.2008.03.033
http://eagain.net/articles/git-for-computer-scientists/
http://eagain.net/articles/git-for-computer-scientists/
http://www.wacom.asia/en/inkling-sketch-manager-v11-1
http://www.wacom.asia/en/inkling-sketch-manager-v11-1
http://en.wikipedia.org/wiki/Cocoa_(API)
http://en.wikipedia.org/wiki/Cocoa_(API)
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree


 Bibliography

Chadd Creighton Williams, Doctor Of, and
Chadd Creighton Williams. Using historical data
from source code revision histories to detect source code
properties, .

Annie TT Ying, Gail C Murphy, Raymond T Ng, and
Mark C Chu-Carroll. Using version information for
concern inference and code-assist, . URL http://

www.cs.ubc.ca/~murphy/OOPSLA-Tools-for-AOSD/
position-papers/aying.pdf.

YoungSeok Yoon and Brad A. Myers. A longitudinal study
of programmers’ backtracking. In IEEE Symposium on Vi-
sual Languages and Human-Centric Computing (VL/HCC
), .

YoungSeok Yoon, B.A. Myers, and Sebon Koo. Visualiza-
tion of fine-grained code change history. In Visual Lan-
guages and Human-Centric Computing (VL/HCC), 
IEEE Symposium on, pages –, Sept a. doi:
./VLHCC...

YoungSeok Yoon, B.A Myers, and Sebon Koo. Visualiza-
tion of fine-grained code change history. In Visual Lan-
guages and Human-Centric Computing (VL/HCC), 
IEEE Symposium on, pages –, Sept b. doi:
./VLHCC...

YoungSeok Yoon, Brad A. Myers, and Sebon Koo. Azurite -
Adding Zest to Undoing and Restoring Improves Textual
Exploration. http://www.cs.cmu.edu/~azurite, c.
[Online; accessed -Augsut-].

T. Zimmermann. Changes and bugs, mining and predicting
development activities. In Software Maintenance, .
ICSM . IEEE International Conference on, pages –
, Sept . doi: ./ICSM...

Thomas Zimmermann, Peter Weisgerber, Stephan Diehl,
and Andreas Zeller. Mining version histories to guide
software changes. In Proceedings of the th International
Conference on Software Engineering, ICSE ’, pages –
, Washington, DC, USA, . IEEE Computer So-
ciety. ISBN ---. URL http://dl.acm.org/

citation.cfm?id=..

http://www.cs.ubc.ca/~murphy/OOPSLA02-Tools-for-AOSD/position-papers/aying.pdf
http://www.cs.ubc.ca/~murphy/OOPSLA02-Tools-for-AOSD/position-papers/aying.pdf
http://www.cs.ubc.ca/~murphy/OOPSLA02-Tools-for-AOSD/position-papers/aying.pdf
http://www.cs.cmu.edu/~azurite
http://dl.acm.org/citation.cfm?id=998675.999460
http://dl.acm.org/citation.cfm?id=998675.999460




Index

abstract, xvii
ACM, 
API, 
Apple Cinema Display, 
ASCII, 
association rule mining, 
AST, 
audio recording, 
Azurite, , , , 

back propagation, 
backtracking, 
Bezier curves, 
binary search, 
blue circle, 
branching & merging, 
breadth, 

C/C++, 
CETokenTypeString, 
Chronos, , 
Chronos History Slicing, 
clang, 
class-dump, 
Cocoa, 
code to comment metrics, 
Codeine, 
CodeShape, , , 
commit, , 
compact mode, , 
constructive interaction, 
context menu, , , , 
CVS, 
cyclomatic complexity, 

decorateCommit, , 
Deep Intellisense, 
dense chronological order, 



 Index

depth, 
DIN , 
directed acyclic graph, 
DSCM, 
DVCS, 
DVTSourceTextView, 

eclipse, , 
Electronic parallax, 
entity, 
evaluation, –

fine-grained, 
Fitts’s law, 
future work, –

Gambit, 
git, 
git diff, , 
git GUI client, 
git log, 
git rebase, 
gitk, 
GitX, , , 
GraphTrail, 

history slice, , 

IBOutlet Connection, , , , , 
IDE, 
IDESourceCodeEditorDidFinishSetupNotification, 
initial navigation time, , 
Inkling Sketch Manager, 
iPad, , 
iPad app, 
ISO , 

Java, 
JTextArea, 

Kaleidoscope, 

Levenshtein distance, , 
libclang, , 
libgit, 

Macbook Pro, 
MagicDraw, 
market basket problem, 
Marmoset, 
merging & branching of sketches, 



Index 

Microsoft Surface, 
Microsoft Visual Studio, 
mining, 
motivation, 
multistage code examples, 
multistage source code examples, 

notification, 
NSSlider, 
NSTextView, , , 

Objective-C, , , 
objective-git, , , 
one-way within subjects ANOVA, 
overloaded, 

parseCommits, , 
parser, 
PBGitGrapher, , 
pre-study, 

rainbow color, 
Rationalizer, 
recursive, 
Refactoring detection, 
regular expression, , 
ROSE, 

SCM, 
screen capturing, 
Seesoft, 
selective undo, 
sidebar, 
sketch, 
sketch capabilities, 
sketch inspection time, 
source code visualization, 
Sourcerer, 
structural elements, 
svg, 

task completion times, 
Textmate , 
think aloud, 
timeline, , 
timeline view, 
timestamp, 
Tower, 
tree, 
Tukey HSD test, 



 Index

UML, 

VCS, 
visual parallax, 

Wacom Inkling, , 
wdiff, , 
WebView, 
Windows Phone, 
wireframe, 
within-group design, 
WPI, 

Xcode, , 
Xcode Interface Builder, , 



Typeset September , 


	Abstract
	Überblick
	Acknowledgements
	Introduction
	Motivation
	Attachable to widely used IDE
	Usability
	Minimum of Additional Files


	Related Work
	Exploring Source Code History
	Source Code Visualization Approaches in Terms of Time and Space
	Source Code History
	Code Understanding & Knowledge
	Mining
	Refactoring Detection
	Whiteboard and Sketches


	Initial study
	Meeting with Development Heads
	Meeting with Design Team 
	Meeting with Developer 
	Daily Meeting
	Meeting with Quality Manager
	Meeting with Development Assistant
	Summary

	Prototypes
	Implementation
	IDE Extension
	Sketch History
	AST
	IBOutlet Connection
	Syntax Highlighting
	Source Code History and Diff

	Layout and Functionality
	CodeShape
	IBOutlet alike Connections

	Azurite
	Modifications

	Chronos


	Evaluation
	Preparation
	Execution
	Analysis
	Participants
	Tactics to Find a Version
	Task Completion Times
	Initial Navigation Time
	Sketch Inspection Time
	Feedback and Suggestions


	Summary and Future Work
	Summary and Contributions
	Limitations

	Future work
	Improve the prototypes
	Sketch and source code entity consistency
	Parallax
	iPad App



	Informed Consent Form
	User Study Form
	Task Completion Time Graphs
	Navigation Time Graphs
	Source Code of decorateCommit 
	Initial Study Questionnaire
	Sketch Inspection Time Graphs
	Sketches
	Bibliography
	Index

