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Abstract

Learning new physical activities in different domains, such as sports, health care,
or activities in everyday life, can prove to be difficult. Oftentimes, providing
immediate feedback to the students is not possible. The reasons for that could
be a spacial separation between the student and the instructor while performing
specific activities such as snowboarding, but also the absence of an instructor.
Therefore, sometimes most people learn new activities autonomously. To make
progress quickly, most people often choose the easiest and fastest way for learning
new movements. Based on this fact, even the basic movements might be learned
and performed in a wrong way. In health care, wrong movements can lead to
injuries, while athletes, who learned different techniques by themselves, can reach
a point where further improvements become difficult. By using sensors and
actuators mounted on the student’s body, wrong movements might be detected
and feedback could be provided immediately.

The goal of this thesis is the development of a supporting low-cost wearable
sensor/actuator system that recognizes basic movements and gives feedback to
the user automatically. Due to the fact that the system recognizes simple move-
ments and sequences of them, the system can be used for different applications. We
developed a robust and mobile hardware platform that allows to connect different
sensors and actuators easily. In addition, we implemented a comprehensive Java
ME library that allows rapid programing of mobile phone applications for this
sensor /actuator system.
Guggenmos [2007] presented a first approach towards a wearable Snowboard
Assistant that should detect common mistakes in snowboarding. We continued the
work presented by Guggenmos and evaluated our system in the snowboarding
domain. Furthermore, we developed the first version of a wearable Snowboard
Assistant that recognizes two common beginner mistakes as well as analyses the
descend of the snowboarder.
This work is not only to be regarded as a further step towards a wearable Snow-
board Assistant, but also, based on the diversity of applications that can be built
with this system, as an initial step towards a mobile toolkit for the development of
wearable computing systems.
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Überblick

Das Erlernen neuer physischer Aktivitäten in verschiedenen Bereichen, wie Sport,
Medizin, oder Aktivitäten im Alltag, kann sich als schwierig erweisen. Oftmals
ist ein sofortiges Feedback an den Schülers nicht möglich. Die Gründe dafür
könnten eine räumliche Trennung zwischen dem Schüler und des Lehrers sein
während einer bestimmten Aktivität, wie etwa beim Snowboarden, aber auch
die Abwesenheit des Lehrers. Demzufolge erlernen die meisten Menschen neue
Aktivitäten selbständig. Um schnell Fortschritte zu erzielen, wählen die meisten
oft den einfachsten und schnellsten Weg beim Erlernen neuer Bewegungen. Auf-
grund dieser Tatsache könnten bereits einfache Bewegungen falsch gelernt und
ausgeführt werden. In der Medizin können falsche Bewegungen zu Verletzungen
führen, während Sportler, die sich verschiedene Techniken selbst beigebracht
haben oft an einen Punkt gelangen, wo es schwierig wird seine eigene Leistung
noch weiter zu verbessern. Mit Hilfe von Sensoren und Aktuatoren, welche am
Körper des Schülers befestigt sind, könnten falsche Bewegungen erkannt und
sofort Feedback gegeben werden.

Das Ziel dieser Diplomarbeit ist die Entwicklung eines kostengünstigen trag-
baren Sensoren/Aktuatoren Systems, welches einfache Bewegungen erkennen
und Feedback an den Benutzer geben soll. Aufgrund der Tatsache, dass dieses
System einfache Bewegungen oder Sequenzen dieser erkennt, kann es in ver-
schiedenen Bereichen angewandt werden. Wir entwickelten hierfür eine robuste
und mobile Hardwareplattform an der man leicht Sensoren und Aktuatoren
anschließen kann. Zusätzlich implementierten wir eine umfangreiche Java ME
Bibliothek, welche eine schelle Programmierung von Handyaplikationen für
dieses Sensoren/Aktuatoren System erlaubt.
Guggenmos [2007] präsentierte einen ersten Ansatz in Richtung eines tragbaren
Snowboard Assistenten, welcher bekannte Anfängerfehler beim Snowboarden
erkennen soll. Wir setzten die Arbeit von Guggenmos fort und evaluierten unser
System im Bereich des Snowboardens. Des Weiteren entwickelten wir die erste
Version eines tragbaren Snowboard Assistenten, der zwei bekannte Anfängerfehler
erkennen sowie auch die Abfahrt des Snowboarders analysieren kann.
Diese Arbeit ist nicht nur als ein weiterer Schritt in Richtung eines tragbaren
Snowboard Assistenten anzusehen, sondern auch aufgrund der Vielfältigkeit der
Verwendungsmögilchkeiten, die man mit dem System bauen kann, als ein er-
ster Schritt in Richtung eines mobilen Werzeugsatzes für die Entwicklung von
Wearable Computing Systemen.
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Conventions

Throughout this thesis we use the following conventions.

The plural ”we” will be used throughout this thesis
instead of the singular ”I”, even when referring to work
that was primarily done by the author.

Unidentified third persons are always described in
male form. This is only done for purposes of readability.

Source code and implementation symbols are written
in typewriter-style text:
public class myClass(){...}

Links to project sites or webpages of mentioned prod-
ucts and applications are shown in a footnote at the bottom
of the page.

The whole thesis is written in American English.
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Chapter 1

Introduction

“Learning is like rowing upstream; not to
advance is to drop back.”

—Chinese Proverb

The best way to learn new physical activities such as Learning with an
instructornew sports is to have an instructor who step by step

demonstrates the basic movements . While practicing these
basics, the instructor can immediately give feedback on
the students’ performance. He can interrupt wrong move-
ments, give constructive criticism and help the student to
perform exercises correctly. No feedback or even delayed
feedback might slow down the students’ learning pace,
increase frustration, and extend the learning time even for
simple exercises. Although students might not learn basics
properly, they could achieve positive short-time successes.
However, in the long run with such self-teaching skills
students could reach a point where further improvements
become difficult.

In sports like tennis or golf the instructor can ob- Close
student-instructor
collaboration

serve and analyze each movement of the student. He
can immediately talk to the student and give advices
on how to perform an exercise correctly. Moreover, the
instructor can guide the student’s hand or his whole body
to demonstrate a specific movement. While receiving this
haptic information and feedback, the student can focus on
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his performance. Figure 1.1 shows Cole Pickavance during
a golf lesson with his father. Having regularly learned golf
with an instructor, Cole is now a top-ranked junior player.

Figure 1.1: The instructor guide the student’s hand to
demonstrate a movement.

In sports like snowboarding, skiing, or surfing a closeSome sports disallow
close collaboration student-instructor collaboration is not possible. The stu-

dent can only receive feedback or advices before or after
he performs an exercise. While practicing, the student
depends on himself and must learn the right movement
only by remembering the instructions.

Another application domain where real-time feed-The oblivion of
rehabilitation patients back is very useful is health care. Patients after an accident

should avoid specific movements. For instance, patients
with sprained or fractured arms should take care of not
stressing their arm too much. Usually, a medic advises the
patient and informs him about wrong movements, which
the patient should avoid. At the beginning, the patient
follows the instruction and takes care of his arm. While
feeling the pain in his arm, he automatically avoids wrong
movements. However, the pain in his arm continuously
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decreases until the pain is completely gone. This phase
is critical, because it seduces the patient to be careless.
Although he is not completely healed, this situation en-
courages him to perform movements that he should not
perform.

Aside from sports and health care, real-time feedback Wrong movements in
everyday lifeis useful in everyday life. Most of the accidents occur in

our everyday life 1. Wrong movements while lifting heavy
things can result in severe injuries. A wrong sitting posture
can cause elbow and back pain. Receiving no feedback
on how to perform correctly daily activities encourages
everyone to choose the simplest way to cope with them,
which is sometimes the wrong way. For example, someone
who rarely lifts heavy things would bend his back to pick
up a box. In contrast to that, a mover would straighten his
back and bend his knees in order to pick up the box.

All in all, real-time feedback while learning new physical Importance of
real-time feedbackactivities is very important. People would benefit from

having an instructor who guides him through the variety
of physical activities. However, only few people can
afford a personal trainer in sports or a non-stop medical
supervisor during the healing process for a longer time
period. A low priced system, which can partially replace
an instructor would be beneficial for all application areas.

Today, several wearable computing projects focus on Basic movements as
common
denominator

this problem of missing feedback and develop systems
that support the users while learning different physical
activities. One problem is that most of the systems are
tailored only to one application domain and cannot be
used directly in any other area. Most physical activities are
too different and too complex to use only one supporting
system for both applications.
One solution is to divide complex movements into smaller
basic ones. Thus, a software that can detect each basic
movement and any combination of them can be adapted to
most situations and can be used among the most applica-
tion domains. For instance, correctly lifting a box up from
the ground consists of elementary movements of bending
and stretching both knees while straightening the back at

1http://www.baua.de/
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the same time. The program which can detect each of these
elementary movements and the combination of them could
provide feedback if the user bended his back while lifting
something up.

Due to the problem of missing feedback in sports, theSnowboard Assistant
Media Computing Group, RWTH Aachen1 started the
wearable computing project Snowboard Assistant2 that
focuses on snowboard beginners. By using mounted
sensors and actuators on the students body, the systems
is intended to detect wrong movements such as common
beginner mistakes, give real-time feedback, and support
students during their learning process.

As a part of the Snowboard Assistant project, we de-SensAct box
veloped a sensor/actuator platform (SensAct box) for
mistake detection in different application domains. By
using the idea of dividing complex movements into ele-
mentary ones, the SensAct box can be used for different
physical activities, detect wrong movements and provide
feedback to the user.

1.1 Goals and Requirements

The main goal of this work is to build a system that pro-
vides feedback to the user based on prior defined gestures
and postures in different application domains. The system
consists of a hardware box, where users can easily attach
sensors and actuators, and different detection algorithms
on a mobile phone, which is an ideal platform for such
applications (Abowd et al. [2005]).

As a subsequent work of Guggenmos [2007], who ini-Evaluation in the
snowboarding
domain

tiated the Snowboard Assistant project, we want to evaluate
the SensAct box in the snowboarding domain. The system
should detect common mistakes of snowboard beginners
and provide, based on the detected mistake, feedback via
actuators.

1http://hci.rwth-aachen.de
2http://hci.rwth-aachen.de/snowboard

http://hci.rwth-aachen.de
http://hci.rwth-aachen.de/snowboard
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Besides the application to snowboarding, the software Software
requirementsshould fulfill the following requirements in order to be us-

able in other domains:

• The software should detect most of the basic move-
ments such as limb bending, weight distribution, and
simple activity recognition.

• It should be easy to combine these basic movements
and build a posture model.

• The software should allow the users to easily connect
the posture model to specific actuators.

• It should be possible to extend the software with new
detection algorithms and feedback patterns.

Based on the diversity of the application domains, the hard- Hardware
requirementsware should be constructed in such a way that it can be

applied to different physical activities. For instance, sport
athletes need a robust system, which can be used outdoors.
Patients prefer small and mobile systems, which do not dis-
turb them in everyday life.

The hardware should comply the following requirements :

• The system must be mobile in order to do not disturb
the user during the physical activity.

• The hardware must be robust and applicable to a va-
riety of physical activities.

• It should be easy to connect different sensors and ac-
tuators at runtime.
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1.2 Structure of the Thesis

This thesis is structured as follows:

Chapter 2—“Related work” provides an overview
about different domain specific wearable computing
systems in health care, sports, or daily life and domain
independent wearable computing toolkits. Finally, we
compare our work with the related work and focus on the
differences between them.

Chapter 3—“A Mobile Sensor/Actuator Platform”
describes the design of the sensor/actuator hardware box
and a further improved version of the box. This chapter
also includes several detection algorithm implementations,
that allow rapidly prototyping of mobile wearable systems.

Chapter 4—“Evaluation in the Snowboarding do-
main” discusses the software algorithms in view of the
application domain of snowboarding.

Chapter 5—“Final Implementation: The First Snow-
board Assistant” provides an overview of the first mistake
detection software that we implemented during this work
by using the developed algorithms. Here, we also focus
on challenges and problems, that we identified during the
implementation of mobile phone applications.

Chapter 6—“Summary and Future Work” gives an
overview about this work, summarizes the identified
software and hardware problems, and proposes solutions,
which should be realized in the near future.

Appendix A—“Software Library Documentation”
contains an sample run of the Snowboard Assistant
application, which we have implemented in this work.
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Appendix B—“First Snowboard Assistant: Sample run”
contains an instruction of a mobile phone application,
which supports the designer by displaying sensor values
as graphs in real-time.

Appendix C—“Sensor Monitor: Sample run” con-
tains an instruction of a mobile phone application, which
allows manually triggering actuators that are connected to
the hardware box.

Appendix D—“Motor Control: Sample run” contains the
mathematical formulation of the smoothing filters that we
used for our algorithms.
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Chapter 2

Related work

“Research is what I’m doing when I don’t know
what I’m doing.”

—Wernher von Braun

Application areas for wearable computing range from Domain specific
wearable computing
systems

e-Health, to sports, to everyday life, whereas each domain
can strongly benefits from wearable computing systems.
Health personnel can use wearable systems for monitor
their patients all the time, athletes can observe and analyze
their performance, and individuals can make their every-
day life easier. However, most of the wearable computing
systems are tailored to the application domain, which
makes these systems unfeasible to other application areas.

We first intend to present some projects in each appli-
cation domain and show how helpful these wearable
systems can be. Additionally, we point out the close rela-
tionship between wearable systems and the corresponding
application domain before we introduce current domain
independent wearable computing systems. Finally, we
compare all the wearable system with our SensAct box.
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2.1 Health care

Wearable computing can be applied to a variety of med-Wearable systems in
health care ical applications, which vary from observing the patient

and collecting specific medical data, to supporting disabled
people with various tasks. Such wearable systems not only
facilitate the work of medicals but also the convalescence
of patients who do not need to stay in hospital all the time.
One part of wearable systems in health care deals with
monitoring the condition of patients. Since health profes-
sionals cannot observe their patients all day long, wearable
computing allows doctors to get an overview of the patients
state of health over a long time period.

2.1.1 HealthGear

Oliver and Flores-Mangas [2006] have designed a system toDetection of sleep
apnea events monitor, visualize and analyze physiological signals in or-

der to detect sleep apnea events1.Figure 2.1 shows a system
overview of HealthGear.

The system provides Sensors that measure the user’s blood
oxygen level, pulse rate, and plethysmographic2 signals,
while the user is asleep. These data is sent via Bluetooth
to a smartphone, which analyzes the data and displays a
diagnosis on the mobile phone’s screen.

Additionally, the application stores the data on theStoring data for
further studies mobile phone for further studies. The system was able to

identify and to classify every kind of breathing interrup-
tions during the night.

1Breathing interruption while sleeping.
2Plethysmography is a set of noninvasive techniques for measuring

volume changes of different body parts.



2.1 Health care 11

Figure 2.1: System architecture of HealthGear developed
by Oliver and Flores-Mangas [2006]

2.1.2 Wearable System for Visually Impaired Peo-
ple

Besides monitoring systems, wearable computing can also Improving mobility of
visually impaired
people

be used to support elderly or disabled people. Cardin et al.
[2006] proposed an obstacle detection system to improve
the mobility of visual impaired people. The system reacts to
obstacles by providing tactile feedback in such a way that
the user can approximately determine the position of the
obstacle. The hardware consists of four sonar sensors fixed
to the shoulders and eight vibration coin motors around
the chest. The system detects objects up to three meters at
an angle of 60◦. Figure 2.2 shows the sensing range of the
system.

To evaluate the system, Cardin et al. instruct users to walk Successful
evaluationacross a corridor full with dynamic obstacles such as walk-

ing persons or opening and closing doors. They observed
that users with blindfolded eyes need only slightly more
time to pass the corridor than user without any visual lim-
itations.
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Figure 2.2: Sensing map of the 4 sonar sensors (Cardin et al.
[2006]).

2.2 Sports

Sports can be considered as an application domain that con-Fast and complex
sport movements tains lots of fast and complex movements. Thus, wearable

computing systems in sports have to be mobile, robust, and
very accurate.

2.2.1 Recognizing Tai Chi

Kunze et al. [2006] described a first approach how toRecognizing Tai Chi
movements recognize Tai Chi movements with body mounted sensors.

For analyze these movements, Kunze et al. used the XBus
Master System by XSens1 , which will be discussed in this
chapter later on.

After interviews with Tai Chi experts, Kunze et al.
placed the MT9 nodes on the right and left arm, on the
right and left lower leg, on the right and left knee, on the
neck, and on the rear hip of the monitored subject. These
nodes consists of a 3-axis accelerometer, a 3-axis gyroscope,
and a 2-axis magnetic field sensor

1http://www.xsens.com

http://www.xsens.com
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To evaluate their system, Kunze et al. recorded sensor data Distinguish between
Tai Chi exercises and
user skills

from two Tai Chi experts and two Tai Chi amateurs, who
performed three different Tai Chi movements. After having
trained a K-nearst-neighbour algorithm with features such
as the 75% percentile and the frequency range power of the
neck mounted accelerometer x-axis, Kunze et al. were able
to classify the subjects’ expertise with an accuracy of 76%
and to distinguish between two Tai Chi movements with
an accuracy of 85%.

2.2.2 iTrainerTMGolf

Besides scientific approaches to support athletics in dif- iTrainer helps
improving golf swingferent disciplines, Insight Ltd.2 proposed a golf swing

training system, which helps beginners as well as profes-
sionals to improve their game. The system analyses and
improves the golfer’s swing.

The system captures sensor data from a ”Sports Mo- iTrainer hardware
setuption Capture Device” that is mounted on the golf club

shaft. This device consists of gyroscopes, magnetometers
and accelerometers. The hardware can communicate with
a Bluetooth head set, which provides spoken and audio
tone instructions in real-time. Additionally, the user can
analyze his golf training session on a PC.

Currently, Insight Ltd. plans to use up to eight addi-
tional sensors, which should be mounted on the users’
body to measure fine-grained changes of golf swinging
movements. The system is under development and will
enter production in 2008. In addition, Insight Ltd. plans
further training systems for other sports such as Tennis,
Squash, Soccer, etc.

2http://www.insight-sports.com

http://www.insight-sports.com
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2.3 Everyday Life

Although the amount of every day activities is equal to
other application domains, there are not so many projects
in this domain as compared to health care or sports. Never-
theless, there are some promising approaches that support
the user and help him to avoid injuries in the every day life.

2.3.1 Monitoring of Seated Posture

Dunne et al. [2007] described a system that corrects sittingDetecting wrong
sitting postures postures of computer users. Since wrong sitting postures

might lead to back injuries, the system continuously
monitors the sitting posture of the computer user.

The hardware consists of an optical sensor shirt (DunneOptical Sensor Shirt
et al. [2006]) with an integrated plastic optical fiber and
a microcontroller, which collects and sends the data via
Bluetooth to a PC. Figure 2.3 shows the sensor shirt with
the optical bend sensors mounted on the back of the user.
When the users siting postures changes into a wrong one,
the software on the computer alerts the user by changing
the color of an icon in the tray from green to yellow and to
red.

Although the most wearable systems used similarMost wearable
systems are too
domain specific

hardware and detection algorithm software, all theses
systems are tailored to one application domain and cannot
be applied directly to other application areas. In addition,
these wearable systems were basically designed by profes-
sionals and focused more on the engineering phase. In the
next section we will present domain independent systems
that focus primarily on the design of wearable computing
systems.
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Figure 2.3: Optical sensor shirt to detect user’s sitting pos-
ture((Dunne et al. [2006])).

2.4 Domain Independent Wearable Sys-
tem Toolkits

Besides the domain specific wearable computing systems,
there are also projects that focus on the creation of domain
independent systems. These can be used as a toolkit to de-
velop such wearable computing systems that we presented
above.

2.4.1 Construction Kit for Electronic Textiles

Buechley [2006] presented a toolkit that ease the e-textile Toolkit to introduce
novices in e-textileusage and introduce novices to electronics and wearable

computing design. The hardware setup consists of a mi-
crocontroller, light sensors, temperature sensors and pres-
sure sensors, LEDs, vibrating motors, and a IR transre-
ceiver, which can be connected by the user with a conduc-
tive thread. Figure 2.4 shows a subset of the construction
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kit. Additionally, the toolkit offers software libraries in C
to assist the user with programming the microcontroller for
controlling the IO pins, reading data, or communicating via
IR with PDAs or another IR transreceiver.

Figure 2.4: Hardware construction kit to create wearable
computing systems presented by Buechley [2006].

To evaluate the toolkit, Buechley allowed novices to createMost users were able
to complete working
design

their own wearable systems and observed how well the
subjects coped with this toolkit. About 87% of the test
subjects were able to complete working wearable systems,
such as communicating shirts that can communicate with
other shirts via IR, a temperature sensing hat, which
changes the color of the pompom on the top depending on
the temperature, or wearable LEDs, which show different
animations on clothes.

One drawback of this construction kit is that the indi-
vidual devices are not protected or covered. Thus, the
prototypes are not robust and can be damaged easily.
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2.4.2 Rapid Prototyping of Activity Recognition
Applications

Bannach et al. [2008] presented the Context Recognition Visual programming
allows rapid
prototyping

Network (CRN) Toolbox, which allows a fast construction
of multi-modal1 context recognition systems by simplify-
ing the process of creating activity recognition systems. The
system consists of a set of ready-to-use algorithms, which
enable the user to construct complex applications rapidly.
The CRN box offers a visual programming editor for realiz-
ing activity recognition systems simply by connecting and
configuring a set of tasks and algorithms. Figure 2.5 shows
the concept of the CRN Toolbox.

Figure 2.5: Concept of the Context Recognition Network
Toolbox developed by Bannach et al.

To create an activity recognition application, the user just After short training,
the system is ready
to use

needs to specify the input sensor and record the training
data of one activity. After that, the user can include a
classifier and program it with the recorded training data.
Finally, the user determines an output task such as an
image as visual feedback, and the toolbox is ready for
recognizing the trained movements.

The CRN Toolbox runs on different platforms, such as
Linux, Mac OS X, Cygwin, or QBIC3 - Belt Integrated
Computer.

1Sensor data from different types of sensors.
3http://www.qbic.ethz.ch

http://www.qbic.ethz.ch
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2.4.3 The Mobile Sensing Platform

Choudhury et al. [2008] described a mobile sensing plat-Collecting sensor
data from a single
body location

form (MSP), which collects sensor data from different sen-
sor types from a single body location. This platform is a
small device, which consists of a wireless IMote 24 sen-
sor node platform , a microphone, a visible light phototran-
sistor, an accelerometer, a digital barometer, a temperature
sensor, a humidity sensor, a digital compass, and a digital
IR and visible IR light sensor(Figure 2.6).

Figure 2.6: Mobile Sensing Platform developed by Choud-
hury et al.

This node can communicate via Bluetooth and runs onTraining data to build
a motion model batteries for several hours. Before starting to work, a

training process has to be done by collecting sensor data.
This trainings data is used to extract parameter values and
build a motion model, which later is implemented on the
hardware platform.

To evaluate the system, Choudhury et al. implementedDistinguishing
between five types of
activities

a mobile phone application called UbiFit Garden. This
application encourages users to be physically active by

4http://www.xbow.com

http://www.xbow.com/Products/productdetails.aspx?sid=253
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displaying flowers on the mobile phone screen that started
to bloom when the user performs physical activities. The
software distinguishes with an accuracy of 93,8% between
five types of activities such as walking, running, cycling,
using an elliptical trainer, and using a stair machine.

One drawback of the system is that it provides no ac-
tuators and only a set of sensors that cannot be extended
with further sensors.

2.4.4 A Portable Kit for Naturalistic Data Collec-
tion

Tapia et al. [2006] presented a wireless sensing kit for Collecting
multi-modal sensor
data

pervasive computing for collecting multi-modal sen-
sor data in natural surroundings like at home without
disturbing the user’s everyday life. Figure 2.7 shows a
subset of the environmental and wearable sensors. The

Figure 2.7: A subset of sensors of the wireless sensing kit
provided by Tapia et al. [2006].

hardware consists of environmental sensor types such Environmental
sensors and
wearable sensors

as light sensors, temperature sensors, proximity sensors,
and movement sensors. In addition the system provides
wearable sensors like accelerometers, RFID readers, heart
rate sensors, a ultra-violet radiation exposure, and location
beacons.



20 2 Related work

The sensor data can be stored either on a PC or a mo-
bile device in real-time for further analysis. This system
has been used successfully in a couple of application areas
such as medicine, where researchers are using this system
to study the relationship between the user’s heart rate and
certain activities, e.g. television at home.

2.4.5 EduWear

EduWear5 is a project that allows developing simple wear-Wearable computing
system toolkit for
children

able systems for beginners and even children. The hard-
ware setup consists of the Arduino Mini6 , LEDs and Piezo
speakers as actuators, and a set of different sensors, such as
stretch sensors. Programming the Arduino Mini is realized
through the Amici software, a visual programming editor
that supports beginners and children to develop Arduino
programs easily by connecting predefined program blocks.
After developing a small application, the software translate
program into a C-like language for the Arduino. Figure 2.8
shows the visual programming editor that can be used by
children.

Figure 2.8: Amici: The Visual Programming Editor for be-
ginners and children

5http://dimeb.informatik.uni-bremen.de/eduwear
6http://www.arduino.cc/en/Main/ArduinoBoardMini

http://dimeb.informatik.uni-bremen.de/eduwear
http://www.arduino.cc/en/Main/ArduinoBoardMini
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The EduWear project regularly organizes workshops for Workshops for
childrenchildren, where children successfully devise and develop

simple wearable systems. Since the system is for beginners
and children, the toolkit uses only simple techniques and
simple algorithms for developing wearable systems.

2.4.6 Exemplar: Authoring Sensor Based Interac-
tions

Hartmann et al. [2007] presented the program Exemplar7 , Programming by
demonstrationwhich offers new techniques for developing sensor-based

interactions through programming by demonstration. Ex-
emplar is a plug-in for Eclipse8 , which is a free devel-
opment platform for different operating systems. Figure
2.9 shows the graphical user interface of Exemplar. To de-
velop a sensor-based application, the designers only have
to perform an action with some sensors, mark the resulting
sensor data curve as a training example, and test the gener-
ated behavior. Then, the program recognizes trained move-
ments if the actual sensor data matches the selected sensor
data. Therefore the system uses different features such as
thresholds, distance matrices, and dynamic time warping.

Figure 2.9: The Graphical User Interface of Exemplar (Hart-
mann et al. [2007])

7http://hci.stanford.edu/exemplar
8http://www.eclipse.org

http://hci.stanford.edu/exemplar
http://www.eclipse.org
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To evaluate this program, Hartmann et al. instructed 12All users completed
all tasks participants to build several sensor-based systems. These

systems range from displaying ”Hello World”, while using
a pressure sensor, to developing a motion-based controller
for computer games. All participants completed their
tasks successfully. Furthermore, they observed that most
of the time was spent on design thinking rather then on
implementation.

Exemplar is only the program and Hartmann et al.Exemplar provides
no additional
hardware

provided no additional hardware. However, the program
supports several platforms such as the Arduino1 that we
also used for our work.

2.4.7 TactaBoard

Lindeman and Cutler [2003] developed the TactaBoard, aControlling up to 16
actuators small and robust case (19cm x 11cm x 5.8 cm) that allows

to connect and control up to 16 actuators such as vibrotac-
tile motors. Figure 2.10 shows the TactaBoard with attached
actuators.

The TactaBoard uses the MaxStream9 9XStream-API for controlling
actuators DEVTMwireless development kit for wireless commu-

nication between a host computer and the TactaBoard.
Additionally, Lindeman and Cutler implemented an ap-
plication programing interface (API) that allows to control
all actuators with different intensity levels by using pulse
width modulation (Barr [2001]). The TactaBoard offers the
possibility to store the different output levels on the system.

Basically the TactaBoard is developed to provide touchTouch feedback in
simulations feedback in simulation environments such as virtual real-

ity simulations. Hence, the system offers no connectors for
sensors and can only be used as an extension for existing
systems.

1www.arduino.cc
9http://www.maxstream.net

http://www.maxstream.net
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Figure 2.10: The interior of the TactaBoard developed by
Lindeman and Cutler [2003].

2.4.8 XSens Xbus Kit

XSens10 offers a wearable hardware kit for tracking human Hardware kit for
human motion
tracking

motion similar to system proposed by Kunze et al.. This
kit consists of the Xbus Master box and eight smaller MT9
sensor nodes. Each node includes a 3-axis accelerometer, a
3-axis gyroscope, and a 2-axis magnetometer. The master
box has a Bluetooth transceiver and can be connected to a
PC or a mobile device in order to stream and record sensor
data for an application running on these devices. Addition-
ally, users can connect up to ten MT9 sensor nodes to only
one master box. Figure 2.11 shows how the Xbus Kit can be
mounted and used on the users’ body. The system offers no
possibility to attach actuators. Therefore the system can be
only used for data logging.

10http://www.xsens.com

http://www.xsens.com
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Figure 2.11: XBus Master System, which was used for rec-
ognizing Tai Chi movements.

2.5 Discussion

Wearable computing systems can be used in a diversity ofDomain independent
wearable system
toolkits

application domains. This ranges from sport to health care
and to everyday life. Although these domains differ sig-
nificantly, most of the wearable computing projects use the
same sensor types, similar hardware platforms, and similar
algorithms to detect and recognize specific motions.
Based on this fact, many domain independent wearable
toolkits exist, which reduce the development time and ease
the development of such domain specific systems.

2.5.1 Toolkits preferences

Usability is an important aspect of existing toolkits. There-Important aspects of
toolkits fore, toolkits should support the design and implementa-

tion phase by providing options for rapidly developing sys-
tems as well as allowing quick modifications on the created
prototypes. According to Myers et al. [2000], who evalu-
ated user interface toolkits, wearable toolkits can be char-
acterized by these following aspects:
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1. Development pace(Threshold) is the effort and the
time for developing prototypes including a prior
learning phase.

2. Prototype quality(Ceiling) describes quality aspects
of finished prototypes such as mobility or robustness.
In other words, ceiling describes how much can be
build by using the toolkit.

3. Extensibility is an aspect that defines whether it is
possible to extend the toolkit with new sensors, actu-
ators, and new algorithms.

4. Modifiability focuses on the effort for slight changes
on an existing prototype.

5. Mode of Operation specifies whether the system is
used for data logging or for advising the user.

6. Costs describes the price that the user must pay for
buying or building the toolkit.

Development pace

The time to build functional prototypes successfully is an Development time of
new prototypesimportant preference of these toolkits. This depends on

different aspects such as the usability of the hardware kit,
the simplicity of the software development applications.
Most of the systems fulfill these requirements and allow to
decrease the time required to build new prototypes.

The construction kit for e-textiles (2.4.1) presented by
Buechley [2006] offers a complete set of different hardware
devices and predefined libraries in C to assist the user
during the developing phase.

The CRN Toolbox (2.4.2) allows rapid prototyping through
visual programming. In addition, the system offer a couple
of algorithms that can be chosen by the user can choose for
activity recognition.
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EduWear (2.4.5) simplifies the prototype development
by providing a visual programming GUI, which allows
programming of applications that are comprehensible for
children.

Exemplar (2.4.6) allows rapid prototyping by using
programming through demonstration. Thus, the learning
pace decreases because no programming skills are needed.

Prototype quality

Basically, prototypes are used to proof new conceptsRapidly constructed
prototypes often
have a low quality

quickly(Schrage [1996]). Due to this fact, most prototypes
are constructed rapidly and have a low quality. However,
the following toolkits can be used to build high quality
prototypes that are robust and mobile enough to be tested
in the field.

To build high quality prototypes, the XSens Xbus Kit
(2.4.8) provides a set of robust and mobile hardware, which
can be used for different applications in the field.

The Mobile Sensing Box (2.4.3) is embedded in a hard
case and offers similar quality characteristics as the XSens
Xbus Kit.

Extensibility

One important aspect is the extensibility of such toolkits.Extending toolkits
with new sensors,
actuators, and
algorithms

In other words, extensibility describes the possibility of
extending the set of sensors or actuators with new types of
sensors or actuators.

The construction kit for e-textiles (2.4.1) is one toolkit
that can be easily extended with new types of sensors and
actuators. To add new sensors, only a couple soldering
operations are required.

EduWear (2.4.5) has the same characteristics and allows to
extend the existing set of sensors and actuators.
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Modifiability

The development process consists of multiple Design- Modification on
existing prototypesImplementation-Analyze (DIA) cycles, where several

prototype versions are built and tested. Therefore, toolkits
that allow rapid modifications on prototypes instead of
building new prototypes at each implementation step, de-
creases the developing time of new products. In addition,
toolkits that can be extended with new types of sensors,
actuators, and new algorithms increase the development
pace of new products.

For modifying XSens Xbus Kit (2.4.8) prototypes, the
user can easily displace the sensors on the body and
simply add or remove sensors to an existing prototype.
Based on the user’s needs, the prototype can be adapted
seamlessly to different requirements.

The Portable Kit for Naturalistic Data Collection (2.4.4)
offers similar aspects to users. Since the system was
developed for sensor data logging, users can rapidly
change the sensor configuration by adding, removing, and
displacement of sensors according to the user’s needs.

Mode of Operation

We distinguish between two operation modes of the proto- Operation mode of
the prototypestypes.

1. Data logging systems, which only can be used to col-
lect sensor data for further analysis.

2. Advising systems that additionally provide feedback
in order to teach, warn, or support the user.

The XSens Xbus Kit (2.4.8) and the Portable Kit for Natural-
istic Data Collection (2.4.4) are basically used to monitor the
user and collect sensor data for further processing on the
PC.

The CRN Toolbox (2.4.2) and Mobile Sensing Platform
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(2.4.3) are also used to monitor sensor data, but they offer
some visual feedback by using the display on the PC or a
mobile device. This type of feedback is primarily intended
to provide information to the user and not directly for
teaching or supporting him.

The TactaBoard (2.4.7) and Exemplar (2.4.6) are not complete
toolkits. The TactaBoard can be used in existing systems
in order to extend their functionality. Exemplar is only a
Eclipse plug-in and offers no hardware, but supports some
hardware platforms such as the Arduino. For that reason,
we cannot classify the mode of operation for these systems.

Costs

Costs are an important aspect of toolkits. Prototypes areCosts for realizing a
prototype low-quality pre-versions and should not be more expen-

sive than the final product.

EduWear (2.4.5) is built around Arduino Mini and a
couple of low-costs sensors, which makes the system
affordable. By contrast the XSens Xbus Kit (2.4.8) is a very
expensive toolkit that costs thousand of dollars.

The construction kit for e-textiles (2.4.1) and the Portable
Kit for Naturalistic Data Collection (2.4.4) are also low-cost
toolkits.

2.5.2 Comparison

Most of these toolkits can be used for rapid developmentComparison of all
prototypes of wearable computing prototypes for different application

domains. However, each of these toolkits has small draw-
backs. For instance, toolkits which allow rapid modifica-
tion on existing prototypes are expensive and allow only
develop data logging systems. Toolkits for developing ad-
vising systems do not support quick modifications on ex-
isting prototypes. With our SensAct box we want to close
this gap and provide a low-cost toolkit that fulfill the most
of these requirements.
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Table 2.1 summarizes and compares the characteristics of
related work with the SensAct box.

Developing Prototype Exten- Modifi- Operation Costs
Pace Quality sibility ability Mode

e-Textiles (2.4.1) (!) (!) ! ! advising cheap
CRN Toolbox (2.4.2) ! (!) (!) advising cheap
MSP (2.4.3) ! monitoring adequate
Nat. Data Col. (2.4.4) ! ! (!) ! monitoring cheap
EduWear (2.4.5) ! ! ! advising cheap
Exemplar (2.4.6) ! ! - free
TactaBoard (2.4.7) ! (!) ! ! - cheap
XSens (2.4.8) ! ! ! monitoring expensive
SensAct box ! ! ! ! advising cheap

Table 2.1: Comparison of related toolkits. (!= fulfills, (!) = partially correct)
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Chapter 3

A Mobile
Sensor/Actuator
Platform

“Everything should be made as simple as
possible, but not simpler.”

—Albert Einstein

Before we started to develop our prototype, we thought Requirements for our
systemabout different requirements that should be fulfilled by the

system. On the one side, the system should be applicable
in different domains. In other words, the hardware should
be small and robust in order to do not disturb users during
their activities. Additionally, it should be easy to adapt
the hardware to meet the user’s needs. On the other side,
the software of the system should run on a mobile phone.
Since we have planed to have an open-source system, we
want to switch to Android1 in the near future.

On this account, we chose Java ME as the program- Java ME for mobile
application
programming

ming language for our software, because the transition to
Android is much easier from Java ME than from any other
programming language such as Symbian C or Python. We
followed the DIA cycle and made two iterations in the
hardware and software design.

1http://code.google.com/android

http://code.google.com/android
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3.1 System Design Architecture

As a subsequent work of Guggenmos [2007], we usedSystem architecture
the same system architecture as a starting point for our
work. The system consists of the SensAct box, that allows
connecting sensors and actuators at runtime and a mobile
phone, which runs the software and the algorithms to
detect user gestures and postures.

A two-way Bluetooth Serial Port Profile communica-Two-way Bluetooth
communication tion connects both devices. The SensAct box sends the

raw or preprocessed sensor values to the mobile phone,
whereas the phone responds with several commands, such
as motor control instructions or configuration instructions.

By using Bluetooth communication, our system canConnect up to seven
boxes to one phone be extended with more than only one SensAct box. Due

to the Bluetooth characteristics, we can connect up to 7
SensAct boxes to one mobile phone and increase the amount
of sensors and actuators. First experiments showed that
data streaming and data logging from multiple SensAct
boxes to one mobile phone are possible. Figure 3.1 shows
the system architecture of our hardware prototype.

3.2 Hardware Setup

The SensAct box consists of an open-source ArduinoBT 1Hardware setup of
our system board, which can be programed in a C-like language. This

board offers eight analog input pins and 14 digital in-
put/output pins of which we use the six pulse width mod-
ulation (PWM) pins to control the actuators and addition-
ally two digital pins for experimental usage. Two of the
eight analog input pins cannot be used directly. Therefore,
some soldering operation are needed before we could at-
tached additional two sensors. The ArduinoBT has an AT-
MEGA168 microprocessor running at 16 MHz, 1 KB RAM,
and 14 KB flash RAM for the program code.

1http://www.arduino.cc
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Bluetooth Connection 

Bend Sensors

Coin Motors

Force SensorsAccelerometers

Vibration Motors

LEDs

Figure 3.1: System architecture of the Sensor/Actuator Platform.

We used a custom motor shield that was developed at our Custom motor shield
group on the top of the Arduino. This motor shield allows
direct attachment of sensors and actuators (Figure 3.2).
The shield has a separate electric circuit for the actuators in
order to not influence sensor values.

We used a Nokia N70 mobile phone as a host device
for our detection algorithms. The phone has 32 MB RAM
and an ARM-9 CPU running at 220 MHz.

3.2.1 First hardware prototype

Based on the prior work on the Snowboard assistant by Size and the interior
of the SensAct boxGuggenmos, we chose a different case for our prototype.

This case (15cm x 8cm x 5cm) is a little bit larger than
the prototype of the prior work and offers space for the
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Figure 3.2: ArduinoBT and the custom motor shield on the
top. This shield offers connectors for six sensors, eight ac-
tuators, a LED, and an externel power supply for the actu-
ators.

ArduinoBT, the custom motor shield, two batteries for
the ArduinoBT, and four batteries connected to the motor
shield for the actuators.

To provide an easy way to connect sensors and actu-TRS connectors for
sensors and TS for
actuators

ators, we chose 2.5mm TS (tip/sleeve) connectors for the
actuators and 2.5mm TRS (tip/ring/sleve) connectors for
the sensors. Thus, we can combine different sensors and
actuators to adapt our hardware to a specific application
domain.

Finally, the first hardware prototype had six sensorAdditional hardware
parts of the SensAct
box

connectors, eight actuator connectors, an ON/OFF button
and a status LED, which offers the user information
about the state of the hardware, such as booting, running,
streaming, or low battery status.

Figure 3.3 displays the first version of the SensAct box.
We attached all connectors on the front of the box and
chose the upper row for the sensors and the lower row for
the actuators. We mounted the status LED also on the front
of the case and ON/OFF button on the left side.
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Figure 3.3: First Hardware Prototyp

Discussion

We tested the box while recording sensor data from snow- Evaluation on an
indoor slopeboarders on the indoor slope SnowWorld2 in Landgraaf.

For recording sensor data, we chose a sampling rate of 50
Hz. By using the TRS connector, we could easily choose
which sensors we want to use for the next recording. The
box was robust enough for outdoor use, since the box
survived all downfalls of some snowboarders during the
recordings. Figure 3.4 shows a snowboarder with the
first SensAct box during two exercises. The snowboarder
wears all sensors at once. Thus, for recording different
sensor configurations, we only needed to attach the specific
sensors.

However, during the recording phase we identified
two important problems. One drawback was that the TRS connectors are

error-proneused TRS connectors are not suited to attach sensors to
our platform. The box often crashed while connecting or
replacing sensors between two runs. The reason for that
was a short circuit triggered by the plug, which connects
two poles. This made us to switch-off the box before every
changes of the sensor configuration.

2http://www.snowworld.com

http://www.snowworld.com
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Figure 3.4: First hardware prototyp in a bumbag on the
slope.

A further drawback was that these connectors cannotLoose connectors
cause signal noise fasten the sensors to the box properly. It is possible to

move these connectors slightly, which leads to wrong
sensor values. We observed these sensor value noises
after evaluating the sensor recordings that sensor values
suddenly raise up to the maximum value when we move
these connectors.

Finally, the box offered only 6 analog inputs and didDrawbacks made the
box unfeasible for
outdoor use

not allow to sense both feet with each three force sensors
and both knees at the same time. We realized that the box
is usable in the field conditionally, but suitable in the lab.
Hence we decided to build an improved SensAct box that
overcomes these problems.

3.2.2 Improved hardware prototype

During the recording phase we decided to build quickly
a new version of the SensAct box. Due to the connectorImproved box with

new connectors problems, we decided to use another type of connectors
for sensors. The new connectors should solve the prob-
lems of short circuits and the sensor value noises caused
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by slightly moving connectors. Furthermore, it should
be possible that sensors can be fixed to the box. Since
we noticed no problems with the TS connectors for the
actuators, we decided to change only the sensor connectors.

Thus, we chose 9-pin D-Sub (DE-9) connectors for D-Sub connectors for
sensorsthe sensors and built an improved hardware prototype. We

combined more sensors to one connector, which, however,
leads to a small limitation of the variety of sensor configu-
rations. For instance, one connector for three force sensors,
one connector for two bend sensors, and one connector for
a 3-axis accelerometer. In contrast to the first SensAct box, it
is not possible to use only one force sensor with only one
bend sensor with the improved box.

Figure 3.5 displays the first version of our improved Additional hardware
parts of the SensAct
box

SensAct box, which has three D-Sub connectors for the
sensors, eight TRS connectors for the actuators, and a
status LED on the front. The ON/OFF button remained in
the same position. This version of the SensAct box contains
an unmodified ArduinoBT board that only offers six sensor
connections.

Figure 3.5: Second Hardware Prototype: First version with
only six sensor connectors.

The first version of the improved SensAct box we built out Improved box built
out of necessityof necessity. During the evaluation phase, we realized the
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error-proneness of the first SensAct box and we immedi-
ately needed an new box that overcome these problems.
Therefore, we quickly built this first improved version as a
transition box before we develop the final one.

Figure 3.6 shows the final improved version of theFinal version of the
SensAct box SensAct box, which differs in the amount of now eight sen-

sor connectors and the space-saving connector placement
on the box. By using an modified ArduinoBT board, we
increased the amount of sensor connections. Based on
the fact that the first improved version of the SensAct box
has the same connectors, we want also extend the amount
of sensors that could be attached to the first improved
SensAct box. Comparing to the first improved version, the
connectors are arranged in a space saving way. That is very
important, since the SensAct box is a really small case that
offers not so much space. That was also the reason for the
placement of the status LED on the left side. However, due
to the convex form, the LED is still visible from the front of
the box.

Figure 3.6: Second Hardware Prototype: Final version with
up to eight sensor connectors.

Discussion

Since we developed the improved SensAct box during theEvaluation on an
indoor slope
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recordings, we could evaluate the new hardware prototype
in the same recording phase. This time we did not notice
any of the problems that we had experienced with the first
SensAct box. We had no system crashes caused by short
circuits as well as no sensor value problems caused by
slightly moving connectors.

The improved prototype allowed changing the sen- All hardware
problems were
solved

sors at runtime. It was possible to record several runs
with different sensor configuration without restarting the
hardware. The box worked properly during the whole
recordings, that often took several hours. Due to the fact
that we used D-Sub connectors, it was possible to fasten
the sensors to the box.

Finally, we modified the ArduinoBT and made it possible Increasing the
amount of sensors
that can be
connected

to attach further two sensors. Thus, the final version of our
box offered the possibility to attaching and streaming from
up to eight sensors at the same time.

3.2.3 Sensor and Actuator Configuration

Besides the SensAct box and the mobile phone, the system A small set of
sensors and
actuators

consists of different sensors and actuators. To made the
sensors and actuators usable with the SensAct box, we had
to prepared them with the same connectors like the boxes
have. Therefore, we provided a variety of sensors, such as
force sensors on insoles, bend sensors for measuring limb
bending, and an accelerometer to detect different activities.

According to the used box, we had sensors with TRS Sensors for all types
of boxesconnectors as well as D-Sub connectors. Depending on

the mistakes, which the algorithm should detect, the user
can choose among a set of sensors and adapt the sensor
configurations to his own needs.

Force Sensors

To calculate the weight distribution and other movements Force sensors for
detecting weight
distribution

depending on the weight distribution, we used force



40 3 A Mobile Sensor/Actuator Platform

sensitive resistors (FSR) and investigated, which positions
under the feet are most suitable for detecting weight distri-
bution. The FSR sensors reacts on pressure and the higher
the pressure, the higher the sensor value. We attached
sensors under the heel, the inner and outer ball, and toe of
each foot and analyzed the sensor values.

We tried several combination of different sensor place-Investigation of force
sensor positions
under the feet

ments under the feet and found out that using ball and
the heel of each foot was sufficient for detecting weight
distribution. Force sensors under the toe are not suited
for mistake detection, since the user can move his toe
and influence the sensor value without any other body
movements. We did not investigate sensor data from the
outer ball FSR more precisely, but we supposed that this
position could be also useful for weight distribution.

Figure 3.7 shows the different force sensor positions
under the feet. The red circles specify the positions that
we used for detecting weight distribution. The blue circles
describes the positions under the toe and the outer ball
that we either recorded and dismissed or recorded and not
investigated more precisely.

Figure 3.7: Force sensor placement under the feet. The red
circles specify the position that we used for the weight dis-
tribution detection.
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Optical Bend Sensors

To detect limb bending, bend sensors are well suited. Optical bend sensors
Common bend sensors have not a linear response and
sometimes offers not so precise sensor values. Since
such bend sensors are partially suited for detecting limb
bending, we used optical fiber sensors (Kuang et al. [2002])
for detecting limb bending. Such optical bend sensors
are well suited, because they offer highly linear response.
Additionally, optical bend sensors are thicker and more
robust than the common bend sensors, which makes them
less error-prone.

The optical bend sensors consists of a LED and a photo cell, Sensor configuration
and a fiber cable, that is abraded at the middle, between
them. The LED flashes through the fiber cable to the photo
cell. While bending the fiber cable, the abraded section
leads to the reduction of the light intensity that is used
as an indicator for bending. The more the fiber cable is
bended, the more light is lost at the abraded part of the
cable. To protect these sensors, we enclosed them into a
foam cover, which is shown in Figure 3.8. For the power
supply of the LEDs, the actuator connectors can be used.
We combined two bend sensors to one D-Sub connector.

Figure 3.8: Optical bend sensors in a foam cover.
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Accelerometers

Accelerometers can measure the the tilt as well as the accel-
eration in different directions. We used 3-axis accelerom-Accelerometer used

for activity
recognition

eters for detecting activities such as standing or walking
as well as for detecting back postures. To find an optimal
placement for this accelerometer, we investigated different
positions on the body such as the user’s ankle, chest, or
back. Finally, we used the position on the back between
both shoulders to detect back postures. For detecting sim-
ple activities, we could used either the back or the chest of
the user. We attached one 3-axis accelerometer to one D-
Sub connector.

Actuators

In addition to the sensors, we prepared a set of actuators inLEDs and vibration
motors as actuators order to use it with the SensAct box. Therefore, we attached

to cylindrical vibration motors and to LEDs TS connectors,
which allows to connect these actuators to the box easily.
Figure 3.9 shows the cylindrical vibration motors that we
used for our system and the final version with a cable that
can be connected to the SensAct box. By using the PWM
output pins of the ArduinoBT for the actuators, the inten-
sity for each actuator can be adjusted.

3.3 Software Implementation

Guggenmos [2007] used a Python script on the mobilePython for data
logging, Java ME for
data processing

phone to record sensor data. Python is a high-level pro-
gramming language, which can be used to create full func-
tional programs and prototypes rapidly. However, Python
works slowly and is unsuitable for real-time signal process-
ing.
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Figure 3.9: The cylindrical vibration motors that we used
for the SensAct box. On the right side is the prepared motor
that can be directly connected to the box.

Thus, we chose Java ME for detecting movements and mis-
takes because it fulfills the following requirements. Java
ME

• is fast enough for signal processing that we used in
our work. We conducted several initial tests before
starting with the implementation.

• offers a high level and a low level UI to display
rapidly additional domain specific information on the
mobile phone screen.

• applications run on different mobile platforms that
we tested with different mobile phones (Nokia N70
and SonyEricsson W800i). This eases the transition to
newer mobile phones.

• eases the transition to Android. This is important, be-
cause we want to have an open-source system in the
near future.

The software should be applicable to different applica- Algorithms for basic
movement detectiontion areas such as sports, health care, or the everyday

life. Therefore, the recognition algorithms should not be
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tailored on one specific domain. We wanted to implement
a number of small algorithms that can detect basic move-
ments, such as bending limbs, and can be combined to
detect more complex movements like lifting something up.

The collection of basic movements, that can be detected by
the system, consists of:

• Weight Distribution: Our software distinguishes be-
tween the left and right weight distribution as well as
the front and back weight distribution.

• Limb Bending: Here, the system detects bending
and straightening limbs.

• Back Bending: Our software recognizes back pos-
tures. Thereby, it differentiates between forward and
sidewards back bending postures.

• Simple Motion Recognition: This function detects
simple body movements and can be used to distin-
guish between activities such as standing, walking or
running.

Although the collection of the basic movements is small,
the system can be adapted to lots of different physical
activities in different application areas. The reason is that
our system seamlessly allows any combination of the
algorithms.

For developing our recognition algorithm, we investi-iSense as a forge for
our algorithms gated several methods on recorded off-line sensor values

by using the application iSense (Figure 3.10). This program
was written for the Snowboard Assistant project and allows
testing several filters and arithmetic operations on the sen-
sor values. We used iSense as a testbed for new algorithms
that we implemented for the mobile phone later on.

3.3.1 Preprocessing sensor data

Based on different characteristics of application domains,Raw sensor signals
contain lots of noise especially fast movements in sports, most of our detection
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Figure 3.10: iSense: A testbed for our algorithms that offers a couple of mathemat-
ical tools for sensor value modifications.

algorithms cannot operate on raw sensor values. These raw
signals contain lots of noise, which occur under different
circumstances while performing specific physical activities.
For example, in snowboarding small bumps on the slope
disturb the sensor value of the force sensors under the feet.
Therefore, we had to preprocess the data in order to filter
such interferences. To reduce the signal noise, we used two
types of low-pass filters.

• Simple Moving Average (SMA)

• Exponential Moving Average (EMA)

Both smoothing filters are described in the appendix E.

Normalization of the Sensor Values

Most of our algorithms need a reference value to recognize Calibration values in
reference values for
the algorithms

specific mistakes. Due to the fact, that the sensors differ
a little in their behavior, we need a reference value to
compare them directly to each other. Thus, we need to
calibrate the sensors and to normalize the sensor values
before starting mistake detection.
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To calibrate the sensors, we can either take a sensorSensor value
snapshot is not
sufficient as
reference value

value snapshot or calculate the mean of sensor values for
several seconds. A snapshot of the sensor values is not
sufficient as reference, because it could happen that the
user’s posture is wrong at this short moment. Therefore,
we calibrate the sensors by calculating the arithmetic
average of the sensor values in a neutral position for
several seconds. This is a common procedure and is, for
example, practiced by Brunelli et al. [2006]. After that, we
used the calibration values valcal(s) to normalize the raw
sensor values val(s):

valnorm(s) = val(s)− valcal(s)

Thus, the reference values for our mistake detection algo-
rithms becomes zero.

3.3.2 Detecting Weight Distribution

We used the preliminary idea of the snowboard assistantTwo aspects of
weight distribution project to detect the weight distribution of the user and dis-

tinguished between two aspects of the weight distribution:

1. Left-Right Weight Distribution that distinguishes be-
tween:

• more weight is on the right foot.
• more weight is on the left foot.
• the weight is distributed equally on both feet.

2. Front-Back Weight Distribution that distinguishes be-
tween:

• more weight is on the toes.
• more weight is on the heels.
• the weight is distributed equally between toes

and heels.

Weight Distribution Algorithm

To detect left-right weight distribution, we used the pre-
liminary considerations of Guggenmos [2007]. Before the
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algorithm started to work, all corresponding force sensors
(FSR) have to be calibrated:

• Calibrating the sensor values from all FRS sensors,
while the user is standing in a neutral position.

1. Left Foot:

left ball: F cal
lb = CAL(FSRlb)

left heel: F cal
lh = CAL(FSRlh)

2. Right Foot:

right ball: F cal
rb = CAL(FSRrb)

right heel: F cal
rh = CAL(FSRrh)

After having calibrated the sensors, the weight detection
algorithm works as follows:

1. Reading the actual sensor values from all FSR under
the feet:

(a) Left Foot:

left ball: Flb = val(FSRlb)
left heel: Flh = val((FSRlh)

(b) Right Foot:

right ball: Frb = val(FSRrb)
right heel: Frh = val(FSRrh)

2. Normalizing the sensor values by subtracting the cal-
ibrated values from the actual ones. Thus, the refer-
ence value becomes 0.

Fnorm
lb = Flb − F cal

lb Fnorm
lh = Flh − F cal

lh

Fnorm
rb = Frb − F cal

rb Fnorm
rh = Frh − F cal

rh

3. Filtering actual sensor values by using EMA.
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4. Calculating the sum of the sensors of one foot and the
difference between both feet.

ΣFlf = EMA(Fnorm
lb ) + EMA(Fnorm

lh )
ΣFrf = EMA(Fnorm

rb ) + EMA(Fnorm
rh )

∆Flf−rf = ΣFlf − ΣFrf

5. Calculating the SMA of ∆Flf−rf , by determining the
mean weight distribution of a predefined window
size of w samples.

6. The algorithm outputs the weight distribution based
on a predefined threshold T that defines a tolerance
range around the reference value.

Output =






right ,if SMA(∆Flf−rf ) < −T ,

left ,if SMA(∆Flf−rf ) > T ,

center ,otherwise

The front-back weight distribution works similarly and dif-
fers only in step four. To detect the weight distribution to-
wards the front or the back, step four must be replaced by:

ΣFballs = EMA(Fnorm
lb ) + EMA(Fnorm

rb )
ΣFheels = EMA(Fnorm

lh ) + EMA(Fnorm
rh )

∆Fballs−heels = ΣFballs − ΣFheels

Additionally, the algorithm output must be adapted to
front, center, and back.

Discussion

The algorithm calculates the weight distribution and filtersIn the worst case, the
detection takes w

samples
most of the signal noise by using two low pass filters. In
the worst case, the algorithm detects a change of the weight
distribution after w samples. w describes the window size
that the SMA used for the calculation. The reason for that
is the usage of the SMA and a simple threshold value T . To
explain the w samples of the worst case, we provide a small
example. Assuming that w = 10 and T = 40. Furthermore,
the last w − 2 sensor values as well as the actual value are
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41 and the w − 1 (oldest) value is 35. This leads to a SMA
value of 40 that is equal the threshold T = 40. However,
the algorithm detects a change in the weight distribution
only if SMA > T . If the next value is greater than or equal
41 the algorithm calculates a SMA value of 41 and detects
a change in the weight distribution.

In the best case the algorithm detects a change of the In the best case, the
algorithm needs one
sample

weight distribution after one samples. Assuming that
w = 10 and T = 40. Furthermore, the last w − 1 sensor
values are 40. When the actual sensor value is 50, the
algorithm calculates a SMA of 41 and detects, only after
one sample, the change of the weight distribution.

Both examples showed, that the time, which the algo-
rithm needs to detect the weight distribution, ranges from
one to w samples. Basically, both examples only rarely
occur and very often the algorithm detects the weight
distribution with an average of w/2 samples. Based on
the sampling rate and the window size w, the algorithm is
usable for different applications. For instance, we used a
sampling rate of 50 Hz and a window size of w = 25 (0.5
sec.) for snowboarding.

3.3.3 Detecting Limb Bending

Based on the prior work, this algorithm detects the bend Two aspects of limb
bendingof the limbs by processing the data from a bend sensor

mounted on the specific limb. In other words, the algo-
rithm can either be used to detect leg bending or arm bend-
ing. Basically, the mode of operation of this algorithm is
analogous to the weight distribution algorithm.
We distinguished between the two aspects of limb bending:

1. The limb is straight.

2. The limb is bend.
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Limb Bending Algorithm

Besides the FSR sensors, the optical bend sensors (OBS)
offer the same signal noise characteristics. Therefore, we
also used the same low-pass filters EMA and SMA to
reduce the signal noise.

Before being able to work, we need to calibrate the
bend sensor. Therefore, the user must band the cor-
responding limb slightly during the whole calibration
phase:

Ocal
limb = CAL(OBSlimb)

After having calibrated the sensor, the limb bending detec-
tion algorithm works as follows:

1. Reading the actual sensor values from the optical
bend sensor attached to the specific limb.

Olimb = value(OBSlimb)

2. Normalizing the sensor values by subtracting the cal-
ibrated values from the smoothed actual ones. Thus,
the reference value becomes 0.

3. Filtering actual sensor values by using exponential
moving average.

Onorm
limb = EMA(Olimb −Ocal

limb)

4. Calculating the SMA, by determining the mean of the
last w samples.

5. The algorithm detects limb bending based on a pre-
defined threshold T , which defines a tolerance range
around the reference value.

Output =

{
bend ,if SMA(Onorm

limb ) < −T ,

straight ,if SMA(Onorm
limb ) > T
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Discussion

The algorithm works almost similar to the weight detection Same characteristics
as the weight
distribution algorithm

algorithm and filters most of the sensor signal noise, while
retaining a fast reaction time. In the worst case, the detec-
tion takes w samples and only one sample in the best case.
This results can be also explained with an example similar
to the example of the weight distribution algorithm.

3.3.4 Detecting Back Postures

Since accelerometers can be used to measure joint angles Simple back posture
detection by using an
accelerometer

and joint postures (Hansson et al. [2001]), we used an ac-
celerometer and implemented a simple back posture detec-
tion. To detect back postures, the algorithm reads sensor
values from an 3-axis accelerometer which is mounted on
the back between both shoulder blades of the user. Figure
3.11 shows the mounted accelerometer with three axes that
we used for detecting back postures.

Figure 3.11: 3-axis accelerometer mounted on the upper
body of the user.
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For front-back bending the algorithms analyses the y-axis
of the sensor. However, it is also possible to detect the front-
back bending with the z-axis. We distinguished between
two back postures:

1. The back is straight.

2. The back is bend.

Back Posture Detection Algorithm

Before starting to work, we need to calibrate the accelerom-
eter ACC. Therefore, we calibrate the sensors, while the
user slightly bends his back posture.

Acal
y = CAL(ACCy)

Then the algorithm works for the front-back bending (y-
axis) as follows:

1. Reading the actual sensor values from the y-axis of
the mounted accelerometer.

Ay = val(ACCy)

2. Normalizing the sensor values by subtracting the cal-
ibrated values from the actual ones. Thus, the refer-
ence value becomes 0.

3. Filtering actual sensor values by using exponential
moving average.

Anorm
y = EMA(Ay −Acal

y )

4. Calculating the SMA by determining the mean sen-
sor value of the last w samples.

5. The algorithm detects the back posture based on a
predefined threshold T , which defines a tolerance
range around the reference value.

Output =

{
bend ,if SMA(Anorm

y ) < −T ,

straight ,if SMA(Anorm
y ) > T
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Discussion

This algorithm has the same attributes as the other two al-
gorithms before. By using an other axis for the bending
calculation, the algorithm can be used for other back bend-
ing directions. Additionally, in the worst case, the detection
takes w samples and one sample in the best case.

3.3.5 Simple Activity Recognition

Activity recognition by using body mounted accelerom- Simple activity
recognition by using
an accelerometer

eters is realized in lots of different projects (Knight et al.
[2007], Ravi et al. [2005], Yang et al. [2007], Mantyjarvi et al.
[2001]). Some of these approaches presented an activity
recognition system that can detect a variety of different ac-
tivities such as walking downstairs and walking upstairs.
Therefore, some systems use machine learning techniques
such as the Hidden Markov Model and need a training
phase before the system can be used.

Although these algorithm can recognize different move- Standard deviation to
detect simple
activities

ments with a high accuracy, we decided to implement a
simple activity recognition that recognizes simple activi-
ties. The reason for that was, we wanted to have simple
algorithms that can be easily combined among each other
and to run on a mobile phone. Thus, the simple activity
recognition can be used to determine whether the user is
standing, walking, or running. Figure 3.12 shows the algo-
rithm output while running. For distinguishing between
static states and dynamic states, the standard deviation is
an adequate mathematical feature(Baek et al. [2004]).

Simple Activity Recognition Algorithm

Simple activity recognition can be used to automatically ac- Activity recognition
as an automatic
ON/OFF switch

tivate and deactivate the recognition system as well as to
measure the total time that the user was walking or run-
ning. To detect these simple movements the accelerometer
can be mounted at the user’s chest in the same orientation
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Figure 3.12: Sensor values of an accelerometer (y-axis)
while running. By using accelerometer data, we could
clearly distinguish between running and standing posi-
tions.

as we used the accelerometer for the back posture detec-
tion. Based on the moving direction, the accelerometer axis
must be chosen. The SMA is calculated for the standard de-
viation that is used to determine movements. This activity
recognition algorithm requires no calibration and works for
the y-axis direction as follow:

1. Reading the value of the mounted accelerometer.

Ay = val(ACCy)

2. Calculating the moving average SMA(Ay), by deter-
mining the mean sensor value of the last w samples.

3. Calculating the standard deviation at time t of the last
w samples, while using SMA(Ay).

σ =

√√√√ 1
w

w∑

i=1

((Ay)t−i+1 − SMA(Ay))2

4. The algorithm detects movements based on a prede-
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fined threshold T :

Output =

{
standing ,if σ < T1 ,

walking ,if T1 < σ

Discussion

The algorithm recognizes simple activities without requir- The algorithm
distinguishes only
between similar
activities

ing much computational power. In contrast to other activ-
ity recognition algorithms, our algorithm can only detect
and distinguish between similar activities like walking or
running. The algorithm cannot distinguish between dif-
ferent types of movements such as between climbing up-
stairs and sit-ups (Ravi et al. [2005]). By providing an ad-
ditional threshold value, the algorithm can be extended to
distinguish between three similar activities such as stand-
ing, walking, and running.

3.3.6 Software Library Implementation

After having investigated and optimized these algorithms Java ME library
with iSense, we started to implement them with Java ME
(CLDC 1.11, MIDP 2.02)to apply them to mobile phones.
To ease the work with our SensAct box, we implemented
the library mcg.arduino in Java ME that is divided into
three parts:

• mcg.arduino.io

• mcg.arduino.move

• mcg.arduino.pattern

These libraries provide a couple of procedures that increase
the development time of new mobile phone applications
for the SensAct box.

1Connected Limited Device Configuration - a Java ME application
framework

2Mobile Information Device Profile - Profile that contain the API for
mobile phone functions
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mcg.arduino.io

mcg.arduino.io only contains the class ArduinoComm,Classes for system
communication which is the core class for the communication between the

mobile phone and the SensAct box. This class offers lots of
procedures for establishing and controlling the hardware
platform. The user can connect to the SensAct box rapidly
only via Arduino’s MAC address, start and stop the sensor
data stream, and control the attached actuators. Further-
more, the user can adjust the intensity for each attached ac-
tuator.

mcg.arduino.move

mcg.arduino.move is the collection of all motion recog-Classes for motion
detection nition algorithms, which we discussed in section 3.3. Each

algorithm is implemented in one class in such a way
that the user can seamlessly combine them for creating a
wearable prototype.

All classes contain only one calculate() function,Motion detection
classes contain only
a calculate() function

which operates on two parameters. The first parameter is
an array with current sensor values. The second parameter
contains a flag array, where each algorithm sets a specific
flag based on its output. Finally, the application can easily
detect a complex movement, which consists of elementary
movements, by analyzing the flag array.

mcg.arduino.pattern

mcg.arduino.move is a small collection of feedbackClasses for simple
feedback patterns patterns, which contains simple feedback patterns for

attached actuators such as motors or LEDs. However,
the pattern collection only contains simple patterns like
ON/OFF pattern or sinusoidal PWM output, but it can be
extended with more feedback patterns.

To demonstrate how simple it is to implement appli-Simple usage of the
library cations, we provide a pseudo code solution for the lifting
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example from the introduction. Most persons bend their
backs and straighten their knees to lift up a box from the
ground. This is a common mistake that the most of us do
regularly. The small pseudo code example demonstrates
how simple it is to build a wearable assistant, which
detects this mistake and provides feedback to the user.

calculateActivity();
if standing then

calculateKneeBending();
calculateBackPosture();
if kneesAreStraigth && backIsBent then

provideTactileFeedback(pattern1);

This application provides only feedback to the user on a
wrong lifting technique when the user is standing. When
the user is walking, the system is deactivated. An overview
of all procedures of the library is available in the appendix
of this thesis (Appendix A).

3.3.7 Supporting Software for Wearable Prototype
Designs

After having developed a hardware platform, which Tools to support the
wearable system
designer

allows the user to attach sensors and actuators easily,
and a software, which allows simple programming of
recognition algorithms, we implemented two tools for the
mobile phone.

These tools can help the user building a wearable
prototype, by supporting him with the adjustment of
sensors and actuators. Additionally, these tools can be
used to perform a system check on the hardware platform.
We developed separate tools for sensors as well as for
actuators.

Sensor Monitor

The Sensor Monitor is a tool that displays sensor values as Displaying sensor
values as graphsgraphs in real-time on the mobile phone’s screen. While
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streaming, the user can choose between the sensor values
that should be displayed on the mobile phone screen.

This tool can help the user to verify the sensors’ func-Verifying the
functionality and
positions of sensors

tionality and correct placement on the body. Figure 3.13
shows the main screen of the Sensor Monitor. While the
user is shaking the accelerometer, the tool displays the
sensor values as graphs in realtime. We often used this tool

Figure 3.13: Sensor Monitor displaying accelerometer data
on a mobile phone in real-time.

during our recording sessions on the slope. Due to the fact
that sometimes the sensors slightly displace their positions
and deliver wrong values, we immediately could identify
this effect before starting the recordings. A small sample
run is shown in the appendix of the thesis (Appendix C).

Motor Control

Motor Control allows verifying the functionality of at-Test the functionality
of actuators tached actuators. The user can test the functionality and

different intensities of the actuators attached to the hard-
ware platform. 3.14 displays the main screen that shows
an image of the SensAct box, whereas the user can use the
mobile phone joystick for triggering the actuators.
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Figure 3.14: Motor Control Application on a mobile phone.

Basically, we used this program to provide a system check
on the actuators after having built or repaired the SensAct
box. A small sample run is shown in the appendix of the
thesis (Appendix D).
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Chapter 4

Evaluation in the
Snowboarding domain

“Fast is fine, but accuracy is everything.”

—Wyatt Earp

As a part of the snowboard assistant project, we chose Snowboard beginner
would benefit from
having a snowboard
instructor

the snowboarding domain for evaluating our sensor /
actuator platform. Based on results of the prior work by
Guggenmos, a snowboard assistant that supervises snow-
board beginners during their learning phase would be very
beneficial for everyone who starts to learn snowboarding.

Therefore, we tested and evaluated the weight distri-
bution algorithm, the simple activity recognition, and the
limb bending algorithm in the context of snowboarding
and investigated how well common beginner mistakes
could be detected. In addition to these algorithms, we im-
plemented and evaluated a new turn detection algorithm
that need no calibration phase before starting to work.

Guggenmos [2007] conducted interviews with snow- Common beginner
mistakesboard instructors and classified four common beginner

mistakes:

• Wrong Weight Distribution: Wrong weight distri-
bution during the ride is a common beginner mis-
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take. Normally, between turns the weight is centered
between the front and the back foot. During a turn,
the weight is more on the front foot. When descend-
ing the slope with a considerable speed, most of the
beginners are afraid on distributing their weight to-
wards the front foot. Moreover, they tend to shift the
weight towards the back foot that often results in loss
of control.

• Straight Knees: Advanced snowboarders bend their
knees for better control their weight distribution dur-
ing the ride as well as to compensate small bumps on
the slope. However, beginners tend to do not bend
their knees or to do nor bend their knees enough.
One reason is that for beginners the situation on the
snowboard is new and unfamiliar. In addition, snow-
board beginners do not have enough perception of
their own body. Indeed some beginners bend their
knees during the ride, but not enough.

• Wrong Upper Body Postures: Beginners often bend
their back in order to look down to the snowboard.
This posture oftentimes leads to lose of balance and
downfall.

• Upper Body Counter Rotation: Beginners some-
times tend to keep their upper body towards the
downhill after riding a turn instead of returning to
the basic snowboarding stance. This leads to counter
rotation between the upper body and the feet, which
can be very stressful for the snowboarder.

In this work, we focused on the weight distribution prob-Algorithms that we
focused on lem, the straight knees mistake and partially on the counter

rotation mistake. We had no sufficient sensors to detect
the upper body counter rotation. Since the counter rota-
tion mistake occurs after the snowboarder riding a turn,
we investigated whether it is possible to detect turns and
the riding edge during the descend. In addition to that,
we tested if our simple activity recognition can be used to
detect the descend of the snowboarder. Based on the re-
sult, this can be used to activate our system automatically
or to measure statistical information such as the time that
the snowboarder needs to ride down the slope.
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4.1 User Study and Experimental Setup

To detect the wrong weight distribution as well as the Experimental setup
of the user studystraight knees of snowboard beginners, we used the

weight distribution and the limb bending algorithm of
our software library. We could also used the weight
distribution algorithm to detect the turns and the riding
edge of the snowboarder on the slope. For the detection of
the snowboarder’s descend, we used a modified version of
our simple activity recognition. Before we could evaluate
the algorithm and determine their detection accuracy, we
conducted a user study and recorded sensor data from
eight subjects on the slope. One participant was a beginner,
two were advanced beginners, three were advanced, two
were professional snowboarders,and one was a snowboard
instructor. Each subject descended two times an about
140 meters long part of the slope with the same sensor
configuration. We recorded data at 50Hz from different
configurations such as three FSR on each foot, 2 FSR on
each foot and bend sensors mounted on the knees, and two
accelerometers attached to the chest and the ankle of the
snowboarder. Thereby, we recorded the sensor data and
videotaped the snowboarder during the whole run.

The recorded sensor values as well as the video footage we Evaluation of
recorded sensor data
with iSense

used to test the algorithms off-line. After having imple-
mented our algorithms by using iSense, we also decided to
use iSense for the evaluation. One feature of this program
is that it can display sensor values and a video footage of
the snowboarder synchronously. We used this feature to
classify the output of the algorithms. We used the first run
of the subjects as the training set for our algorithms and
determined their detection accuracy. To verify these results
of the first run, we tested the algorithm on the second run
that we used as a test set.

4.2 Turn / Edge Detection Algorithm

Before we started to evaluate and determine the accuracy
of this algorithm we distinguished between three cases that
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can occur:

• Correct detection (True positives): An actual turn is
recognized by the algorithm correctly.

• False alarm (False Positives, Type I error): The al-
gorithm spuriously recognizes a turn, although the
snowboarder rode no turn before.

• Missing turns (False Negatives, Type II error): The
algorithm misses a turn that the snowboarder rode.

The calculation of the True Negatives is not possible,Calculation of true
negatives is not
possible

because we do not know the total amount of absent turns.
In other words, it is possible to determine the amount of
turns, but not to determine the amount of riding no turns.

The turn edge detection has two parameters that canRanking system
be adjusted. The first one is the smoothing factor alpha
of the EMA. The second one is the window size w of the
SMA. To evaluate the algorithms, we needed to find the
best algorithm parameter values that provides the highest
detection accuracy. Therefore we used a ranking concept
similar to the system presented by Knight et al. [2007]. We
calculated a ranking R for each parameter configuration as
follows:

R = "CorrectTurns− "FalseAlarms− "MissedTurns

The ranking R indicates the best parameter configuration,
whereas a high ranking corresponds to high detection
accuracy.

To evaluate this algorithm, we instructed all partici-Using the weight
distribution algorithm
to detect turns

pants to descend the slope as they always do. A turn in
snowboarding corresponds to a transition from one riding
edge to another. In other words, the weight distribution
changes from the front to the back or vice versa.

To determine the accuracy of this algorithm, we hadTwo independent
variables to find the best algorithm configuration with the highest

accuracy. Thereby, we hat two independent variables, the
smoothing factor alpha and the window size w. Experi-
mental results allowed us to choose a static window size of
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25 samples (0.5 sec) for the SMA filter and tested different
smoothing factors alpha for the EMA. We observed, that
increasing alpha leads to more missing turns, whereas a
small alpha value causes more false alarms.

Hence, we should find an alpha that decreases both Find the best
parameter settings to
achieve a high
detection accuracy

the missing turns and the false alarms while increasing the
correct detection rate. We investigated alpha values from
[0− 0.9] in 0.1 steps and calculated in each case the ranking
R. Based on R, we could determine the best algorithm
configuration with the highest accuracy.

4.2.1 Results

To evaluate this algorithm, we observed all subjects from All turns were
detected in the
training set

the beginning of their descend to the slow down phase at
the end of the slope. Finally, all subjects rode 56 turns. For
the training set, there were no differences between the sev-
eral alpha values. Moreover, each algorithm configuration
detected all turns. During the whole training set, no false
alarms and no missing turns occurred.

We used the test set to proof the algorithm results Almost all turns were
detected in the test
set

from the training set. Again, we observed the subjects’
ride from the starting point up to the breaking point. This
time all subjects rode 61 turns. The results of the test set
slightly differed from the prior ones. By using a smoothing
factor of 0.9, the algorithm achieved the highest ranking
and accuracy. This time, the algorithm detected 59 of the
61 turns (96, 7%) and reported two false alarms.

4.2.2 Discussion

Figure 4.1 shows the output of the algorithm. The value Threshold value as
sensitivity factor50 corresponds to frontside riding and −50 to backside.

The threshold value of this parameter can be used as an
sensitivity factor. The higher the threshold value, the
more weight the user has to distribute towards the toes
or heels. Therefore, for beginners a lower threshold value
is more suitable. The algorithm detected turns and edges
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with an overall accuracy of 98, 3% with a smoothing factor
alpha = 0.9. By using only four FSR sensors, the algorithm
achieved a high accuracy.

The main drawback is that the algorithm depends onAlgorithm need
calibration values the calibration values of the sensors. A wrong calibration

value immediately decreases the detection accuracy. We
observed that after each run the FSR sensor positions
under the feet slightly changed. Therefore, it is necessary
to calibrate the sensors before each ride in order to preserve
a high accuracy.

Figure 4.1: Algorithm output of the turn/edge detection al-
gorithm. D is the difference between the toes and the heels.
The algorithm output 50 corresponds to frontside and −50
to backside.

4.3 Calibration-free Turn Detection

During the development process of the weight detection al-Turn detection
without calibration gorithm, we noticed that it is possible to detect turns only

by using sensor values from one foot. We saw that a turn
corresponds to an intersection point of the sensor values
from the ball and the heel of one foot. Additionally, we re-
alized that no calibration was needed for the turn detection.
We used the same ranking system that we have used for the
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turn / edge detection. To detect turns, this algorithm works
as follows:

• Reading and smoothing the sensor values from toe
and heel of one foot by using EMA.

• Detecting intersection points as an indicator for an
turn.

• The mean duration between two turns across all sub-
jects were 3.4 sec. Based on this fact, the algorithm
dismisses all consecutive intersection points that oc-
cur within a specific time interval after the last in-
tersection point. The higher this interval, the higher
the amount of missed turns. By using a short inter-
val, the amount of false alarms increases. Experimen-
tal results allowed us to choose a 25 sample interval
that corresponds to 0.5 sec. Since it is improbable to
ride two turns within a half second, the algorithm dis-
misses all intersection points that occur 500 ms after
the last one.

Figure 4.2 shows the algorithm output. The intersection
points after the first detection are filtered by the 25 samples
interval that is extended automatically after each consecu-
tive intersection point.

4.3.1 Results

We evaluated different smoothing factors alpha by using Using the ranking
system for evaluationthe same ranking R as we used for the turn / edge de-

tection distribution algorithm. Thereby, we differentiated
between the front and the back foot. By using sensor
values from the back foot and alpha = 0.9, the algorithm
detected turns with an accuracy of 91, 67% for the training
set. By contrast, the algorithm accuracy for the front foot
was significantly lower with 59, 62% (p < 0.05, Student’s
t-test).

Since the turn detection was significantly better on
the back foot, we only evaluated the back foot in the
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Figure 4.2: Algorithm detects two turns and dismisses con-
secutive intersection points.

training set. This time the algorithm detected 49 of 53 turns
and achieved an accuracy of 92.45%. Additionally, the
algorithm missed four turns but had no false alarms.

4.3.2 Discussion

The algorithm used FSR senors only from one foot and
detected turns and edges with an overall accuracy of
92, 06%. In addition to that, the algorithm worked clearly
better on the back foot. One reason could be that the
subjects distributed their weights toward the back foot,
which is a common snowboard beginner mistake. One
drawback of this algorithm is that is only detect turns, but
not the riding edge of the snowboarder.

Although the algorithm works without any calibra-Algorithm not
implemented in the
library

tion, we did not include it in our library collection. The
reasons for that was the lower accuracy and the fact that
the algorithm was too domain specific. The algorithm
can only be used for snowboarding or similar sports such
as surfing or skating. Nevertheless, we realized that it
is possible to detect specific movements without a prior
calibration.
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4.4 Stop/Go Detection Algorithm

Basically, we intended to use our simple activity recogni- Simple activity
recognition to detect
stop and go

tion for detecting the descend of a snowboarder. Based
on the result, this algorithm can be used either to activate
the Snowboard Assistant automatically or to measure the
time that the snowboarder needs to descend the slope.
For the stop and go algorithm evaluation, we instructed
the subjects to take short breaks five seconds during their
ride. We wanted to test whether it is possible to detect the
snowboarder’s descend with our simple activity recogni-
tion algorithm (3.3.5).

However, we noticed that the amplitude of only one Small modifications
of the simple activity
recognition algorithm

axis of the accelerometer that we mounted on the user’s
chest cannot be used to detect the descend on the slope.
Therefore, we modified this algorithm slightly by consid-
ering two accelerometer axes and calculated the sum of the
standard deviation of the x axis and y axis. To evaluate and
determine the accuracy of this algorithms, we had to find
the threshold value that clearly distinguishes with a high
accuracy between stopping and riding.

4.4.1 Results

Figure 4.3 shows the output of the algorithm when ap- Snowboard
beginners need a
smaller threshold
value

plied to the sensor values of the accelerometer. The green
curve shows the sum of the standard deviation of the x
axis and the standard deviation of the y axis. Due to sen-
sor problems, we evaluated only seven runs with overall
18 pauses from four different subjects. To evaluate the al-
gorithm, we considered besides the several stops also the
slow down phase before one pause and the acceleration af-
ter that. Experimental results allowed us to use a window
size of 25 samples (0.5 sec) for the calculations of both stan-
dard deviations. We tested several threshold values and
observed that for snowboard beginners a small threshold is
suitable, whereas the threshold for advanced snowboard-
ers can be higher. To calculate the accuracy of the algo-
rithm, we chose an average threshold T = 7. Thus, the
algorithm detected 77, 7% of all transitions from riding to
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Figure 4.3: Algorithm output of the stop/go detection al-
gorithm.

standing and 83% of all transitions between standing to rid-
ing. Hence, the algorithm detects movements with an over-
all accuracy of 80, 5%.

4.4.2 Discussion

We observed, that it is very had to adjust this algorithmDifficult to achieve a
high accuracy for
everyone

in order to work equally well for all snowboarders. One
reason for that, is the descending speed of different skilled
snowboarders. While advanced snowboarders ride down
the slope quickly, beginners tend to be careful and decrease
their riding speed regularly.

In addition, beginners cannot control the snowboardSnowboard
beginners often ride
slowly

as well as advanced snowboarders. Thus, beginners cannot
brake or accelerate properly, which leads to a wrong output
of the algorithm, especially during the slow down phase.
Figure 4.4 shows a typical error during the slow down
phase of snowboard beginners.

Based on the observation, the best way for is to differenti-
ate between snowboarder’s skills before starting this algo-
rithm.
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Figure 4.4: Detection error of the algorithm during the slow
down phase.

4.5 Weight Distribution Algorithm

Wrong weight distribution during the ride is a common Evaluation is not
possible without
visual comparison

mistake of snowboard beginners. This algorithm detects
the wrong weight distribution of the snowboarder during
the descend. Evaluating the wrong weight distribution
was not directly possible, because we did not have a visual
comparison like in the other algorithm before. Therefore,
the weight distribution of the snowboarder was not rec-
ognizable on the video footage. Thus, evaluating the best
algorithm parameter was not possible with the same eval-
uation methods that we used for the turn/edge detection
or the stop/go detection. NHowever, the evaluation of
this algorithm should be possible with other evaluation
methods.

Nevertheless, we act on the assumption that the accu- Assumption on the
detection accuracyracy of this algorithm is as well as the accuracy of the

turn/edge detection algorithm. The reason for that is that
both algorithms are almost identical and only differ in
the detected direction of the weight distribution (3.3.2).
Additionally, informal user tests in the lab, which all were
successful, confirmed the high accuracy of this algorithm.
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4.6 Straight Knees Detection Algorithm

This algorithm detects the knee bending of the snow-Evaluation is not
possible without
visual comparison

boarder. Some snowboard beginners bend their knees
not enough, which is a common beginner mistake. The
evaluation of this algorithm offered the same problems
as the weight distribution algorithm. Due to the thick
snowboarder clothes, we could not directly determine on
the video footage whether the knees are bent enough or
not. Therefore, we could not evaluate the algorithm and
determine the detection accuracy with the same evaluation
methods that we used for the other algorithms.

However, informal tests in the lab were all successful.Assumption on the
detection accuracy In addition, we observed at the recorded sensor data, that

it is possible to detect straight knees during the descend on
the snowboard. We instructed the subjects to straight their
knees after each turn. Since it was not always possible
to recognize the straight knees on the video footage, the
sensor curves of both bend sensors shown in Figure 4.5
made it possible to detect straight knees while descending
the slope.

Figure 4.5: Sensor curves of both bend sensors during the
descend on the slope. Lower sensor values correspond to
bending knees.



4.7 Summary and Discussion 73

Another aspect that allowed us to assume a high detection
accuracy is the fact that the algorithm core of the bend de-
tection algorithm is almost similar to the weight distribu-
tion algorithm. Thus, we suppose a similar high detection
accuracy, but as long as we cannot proof this, we cannot
determine this assumption exactly.

4.7 Summary and Discussion

Finally, we want summarize all algorithms with all the pa-
rameter values and detection accuracies that we developed
and evaluated in the thesis. Table 4.1 shows an overview
of all results of the algorithm evaluation. Since we could
not evaluate the weight distribution as well as the straight
knee detection, this table contains no values for the both al-
gorithms. Nevertheless, we only know that a calibration of
the sensors is needed before starting to work.

Window Size Alpha Calibration Detection
(SMA) (EMA) Accuracy

Turn/Edge 25 samples(0.5 sec) 0.9 ! 98, 3%
Detection (4.2)
Calibration-free - 0.9 92, 06%
Turn Detection (4.3)
Stop / Go 25 samples(0.5 sec) 0.0 80, 5%
Detection (4.4)
Weight - - ! -
Distribution 4.5
Straight Knees - - ! -
Detection 4.6

Table 4.1: Summary of all algorithms, best parameter settings, and detection accu-
racies. (!= needed, - = not verified )

The turn/edge algorithm detects with a respective accu-
racy the most of the turns and the riding edge of the snow-
boarder. The weight distribution algorithm should have
similar accuracy than the turn/edge detection, because the
functioning of both is equal. To determine the accuracy
of the straight knees algorithm, we should find other ex-
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perimental methods. One solution could be to attached or
marked the outer side of the legs with stripes that could
indicate knee bending on the video footage. To recog-
nize wrong weight distribution on the video footage, such
stripes could be attached on the front and the back of the
legs. Although we dismissed the calibration-free turn de-
tection algorithm as a result of lower accuracy than the
turn/edge detection, this algorithm shows that achieving
high detection accuracy without calibration is possible.
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Chapter 5

Final Implementation:
The First Snowboard
Assistant

“Theory is knowledge that does not work.
Practice is when everything works and you do not

know why.”

—Hermann Hesse

After developing and evaluating the detection algorithm,
we started to implement the first version of the wearable
Snowboard Assistant proposed by Guggenmos [2007]. Since
most human movements are below 18 Hz and even below
10 Hz in quite standing (Mathie et al. [2004], Brunelli et al.
[2006]), we chose a sampling rate of 20 - 25 Hz for mistake
detection.

5.1 First Version of a Wearable Snowboard
Assistant

Interviews with snowboard instructors yielded that begin- Beginners should
practice only one
exercise at once

ners should practice only one exercise at once. Receiving
too much feedback, while preforming more exercises at
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one time, might lead to confusion.

Inspired by prior work, we designed our software in
such a way, that users are able to train or analyze one
exercise at once. In addition, we wanted that users are
able to change or analyzes the exercises at runtime without
restarting the system.

One problem, which could be classified out of theVisual feedback
support for the
calibration

prior work was that the calibration often yielded in wrong
calibration values. The reason for that was that snowboard
beginners were not able to distribute their weight equally
on the board during the calibration phase. Thick clothes,
the snowboard shoes, and the unfamiliar situation on
the snowboard made it difficult to stand properly in the
basic stance during the calibration phase,. Additionally,
the snowboarder received no feedback in order to correct
his posture. Based on this problem, we implemented a
function which provides visual feedback and supports the
user to distribute his weight equally. Figure 5.1 displays
visual calibration aid that is provided by our application.

Figure 5.1: Snowboard Assistant: Calibration mode. The
user can switch between (a) the visual weight distribution
feedback and (b) the raw sensor values. The red circles in-
dicate the weight distribution on the snowboard as well as
the weight distribution for each foot.

After having calibrated all sensors, the user is able to
choose among four different functionalities:
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• Riding Edge Detection and Turn Counter

• Stop and Go Detection

• Weight Distribution

• Bending Knees

5.1.1 Turn/Edge Detection

This function analyzes the descend of the snowboarder and Using the weight
distribution algorithm
to detect the riding
edge

counts the turns and the times of the different snowboard
edges which the user needs to descend the slope. The
core of this function is the front back weight distribution
algorithm (3.3.2), which is used to determine the riding
edge. Figure 5.2 shows the display output of the algorithm.
Before descending the slope, the snowboarder only needs

(a) (b)

Figure 5.2: Snowboard Assistant: Edge Detection and Turn
Counter function. It shows the starting screen with reseted
values (a) and the visual output of the application during
the run (b). The thick red line indicates the riding edge. The
turn counter is shown on the snowboard.

Simple usage of the
functionto press the start button. After he arrives at the end of the

slope, the used can stop and analyze his ride by reading the
information on the mobile phones display. If the user wants
to repeat this performance again, he only needs to press the
start button again. Thus, the old results will be deleted and
the application restart the analysis of the ride.



78 5 Final Implementation: The First Snowboard Assistant

The default settings for this algorithms are the parameter
settings that achieved the highest accuracy during our eval-
uation. Nevertheless, the user can modify all predefined al-
gorithm parameters to adapt the algorithm more to his own
needs.

5.1.2 Stop and Go Detection

This function calculates the riding time and the rest periodUsing the simple
activity recognition to
detect movements

of the rider, while descending the slope. Additionally, the
user can verify how often he took a rest. Basically, the func-
tion uses the simple activity recognition algorithm (3.3.5)
to detect movements of the snowboarder. The functional-
ity is similar to the edge detection, and allows the user to
perform more exercises in a row. Additionally, the user can
modify predefined algorithm parameters to adapt the algo-
rithm more to his own needs. Figure 5.3 shows the display
output of the function.

(a) (b)

Figure 5.3: Snowboard Assistant: Stop/Go Detection. It
shows the starting screen with reseted values (a) and the
visual output of the application during the run (b). In ad-
dition to both timers, the counter is displayed on the snow-
board that indicates the amount of stops during the ride.
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5.1.3 Weight Distribution

This function uses haptic feedback to inform the user Provide tactile
feedback on wrong
weight distribution

about wrong weight distribution. Therefore, we used the
left right distribution algorithm (3.3.2), to determine the
weight distribution on both feet. Again, the handling of
this function is conform to the other functions.

Since this function supports the user with tactile feed-
back, we provided no visual information on the phone
display. This function triggers on wrong movements
specific vibration motors that the snowboarder can chose
before each performance. Similar to the other functions,
the user can also modify each default parameter.

5.1.4 Bending Knees

The last function analyzes knee bending and uses tactile Provide tactile
feedback on straight
knees

feedback to inform the user, when he does not sufficiently
bend his knees. Similar to the weight distribution function,
we provided no visual output and the user can also modify
each parameter between the exercises.

A small sample run of this application is shown in
the appendix of the thesis (Appendix B).

5.2 Implementation Challenges

In contrast to desktop computers, implementing such Challenges of
application
programming for
mobile devices

applications for mobile devices with low computational
power is quite different. We realized, that we quickly
reached the limits of the mobile phone as well as the
programming language Java ME.

While developing our algorithms, we tested them on
the mobile phone at the same time. Therefore, we imple-
mented a test application, which helps us to identify the
challenges of programming such mobile applications in
Java ME:
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• Timer Accuracy - Time is an important aspect in mis-
take detection applications, which is essential for syn-
chronized working in milliseconds intervals. How-
ever, the timer of Java ME is not so accurate and tends
to slight variances. Based on the fact that we only
used one SensAct box, we observed no significant in-
fluence of the algorithms’ output. This might change,
when streaming from more then one box. Here, it is
necessary to synchronize the input streams in order
to detect mistakes accurately.

• Time-consuming Operations - Before implementing
applications that work in milliseconds intervals, it is
important to know, which operations of the applica-
tion consume the most time. We identified several
time-consuming and computational intensive opera-
tions, such as object instantiating or several drawing
operations. Based on this knowledge, we could avoid
or relocate such events to parts of the program that
are not so much time depended.

• Garbage Collector - In contrast to C/C++, Java uses
the garbage collector for deallocating unused objects
and variables. This automatic memory management
system is controlled by the Java Virtual Machine,
which can influence the algorithms’ run. Although
Java ME offers no possibility to prevent the garbage
collector, we could anyway influence the garbage col-
lector schedule. Java ME offers a function that the al-
lows the user to recommend a garbage collector acti-
vation. We used this function in parts of the program
that are not so depend on time.

• Java Predefined Functions - Java offers lots of prede-
fined function that can be used to implement different
applications. Working in milliseconds intervals does
not allow to use each of this function. For instance, to
gain sensor values as integers out of the input stream,
we realized that the predefined Java function is not
suitable. Therefore, we have to find and implemented
a workaround for this problem.

• Java Virtual Machine Java programs were compiled
into bytecode that is interpreted by the Java Virtual
Machine. This leads to the fact that Java programs has
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a poor performance in contrast to applications written
in programming languages such as C. Thus, our ap-
plications became unstable and crashed while stream-
ing with more then 30 Hz. The reason for that was of-
ten an overflow in the input stream buffer. Addition-
ally we observed that while increasing the amount of
connected SensAct boxes, the sampling rate that al-
lows stable functionality decreases.
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Chapter 6

Summary and Future
Work

“The future influences the present just as much
as the past.”

—Friedrich Nietzsche

In this chapter we want to summarize the results of our
work and focus on identified and solved problems as well
as on open challenges that should be solved in the near fu-
ture.

6.1 Summary and Contributions

In this thesis we developed a mobile sensor/actuator plat-
form that is usable in different application domains. There-
fore, we developed three different versions of the Sens-
Act box and four different detection algorithms. We devel-
oped a software library that allows easy and rapid devel-
opment of mobile phone applications for our systems. Fi-
nally, we evaluated our hardware platform in the domain
of snowboarding and conducted a user study to determine
the accuracy of our detection algorithms. Considering the
requirements for the hardware and software (1.1—“Goals
and Requirements”) we reached the following results:
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Hardware Setup We developed a mobile and robust hard-
ware box that allows easy connection of sensors and
actuators. After evaluating the box, we identified
problems and build an improved version.
Finally, we build four SensAct boxes:

• two of the first version boxes

• one first improved version box

• one final version box

Thus, we established a small set of hardware boxes
that can be used for prototype development.

Software Implementation We implemented different de-
tection algorithms that recognize specific gestures
and postures. In addition, the structure of the im-
plementation allows to combine more of these algo-
rithms in order to detect more complex movements.
We implemented a software library in Java ME that
consists of useful procedures, functions and algo-
rithms. This library eases the development and in-
crease the development pace of new prototypes. Fi-
nally, to help the designer with the prototype de-
velopment, we implemented two supporting mobile
phone applications (3.3.7 , 3.3.7)that offer different
functions for sensors and actuators.

Snowboarding Domain We evaluated our system in the
snowboarding domain and investigated most of our
library algorithms. Additionally, we implemented an
algorithm only for snowboarding, which shows the
applicability of our system besides the library algo-
rithms. To evaluate our algorithms we recorded sen-
sor data of eight subjects that we later used to deter-
mine the detection accuracy, by using iSense.

Final Implementation To complete our thesis, we devel-
oped the first version of a Snowboard Assistant. There-
fore, we considered the results that were investigated
by Guggenmos and implementing a supporting fea-
ture for calibrate the sensors. Based on the conducted
interviews with snowboarders, the application offers
only one functionality at once in order to not confuse
the user with too much feedback at once.
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This application detects two common snowboard be-
ginner mistakes and provides tactile feedback. Fur-
thermore, the application analyses the descend of a
snowboarder by counting turns or the riding time.

6.2 Future Work

Although our work can be already used as a toolkit for de-
veloping mobile wearable prototypes, there are still lots of
challenges that should be solved in the near future.

Hardware Setup The SensAct box was sufficient for eval-
uation in the snowboarding domain. The system was
not obtrusive and did not disturb the snowboarders
during the descend. Nevertheless, while using the
system, users must wear a bum bag. Additionally,
mounting the sensors and actuators with subsequent
calibration often takes over half an hour. Basically,
the most common problem was the displacement of
the sensors while dressing the snowboarder.
One solution would be to use LilyPad Arduinos
(Buechley and Eisenberg [2008]) and integrated the
hardware completely into clothes with snap buttons
as connectors for sensors and actuators similar as
used in the project EduWear (2.4.5).

Upper Body Posture To detect the back posture, we
simply used an accelerometer and measured the
smoothed value of one accelerometer axis. This can
be used to detect static postures. Once the user started
to move, the algorithm would calculate wrong re-
sults. The reason for that is the signal noise pro-
duced by the accelerometer value amplitude caused
by the user’s movements. Therefore, this algorithm
cannot be used to detect wrong upper body postures
while snowboarding. One solution is to used a simi-
lar system to detect upper body postures as proposed
by Mattmann et al. [2007]. This system uses novel
strain-sensitive sensors (Silveira et al. [2006]) and dis-
tinguishes between 27 different upper body postures.
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Set of Sensors/Actuators In this thesis we attached con-
nectors to a set of different sensors such as accelerom-
eters, force sensors, and bend sensors and allowed an
easy way to connect them to the SensAct box. Besides
the sensors, our platform offered different actuators
such as LEDs and vibration motors. Additionally, the
user can use the mobile phone speaker and display as
actuator.
To establish the creation of more complex prototypes,
the system should provide a higher variety of differ-
ent sensors and actuators.

Evaluation Methods We were not able to evaluate with
our methods the detection accuracy of the straight
knee detection algorithm (3.3.3)as well as the weight
distribution algorithm 3.3.2). Therefore, we must in-
vestigate new evaluation methods to proof all the
algorithms that are not directly verifiable by using
video footage. These could be a visual aid on the
clothes of the snowboarder, such as stripes on the
legs, that makes it possible to identify bend knees or
the weight distribution on the video footage.

Feedback Patterns The feedback pattern library contains
only simple tactile feedback patterns such as simple
ON/OFF or a sinusoidal PWM output. The next step
is to investigate different feedback patterns that users
can intuitively understand. Finally, these intuitive
patterns can be used to extend the pattern library.

Detection Algorithms The algorithm library consists of
four different algorithms, but we demonstrated that
it is easy to create own algorithms (4.3). However,
the library should be extended to provide a higher
variety of algorithms that can be used for prototyp-
ing. The new algorithm should follow the structure
of the existing ones in order to be usable in combina-
tion with other algorithms.

Calibration Problem One drawback of our algorithms
is the calibration phase before they started to work.
Most of our algorithms need accurate calibration val-
ues in order to detect mistakes with a high accuracy.
Based on the fact that the calibration process is error-
prone and sometimes results in wrong calibration val-
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ues, using calibration-free algorithms would be one
solution in order to keep the mistake detection ac-
curacy on a high level. In the thesis we developed
a calibration-free detection algorithm that recognizes
turns with an adequate accuracy. We observed that
it is possible to work without calibrating the sensors.
Thus, calibration-free algorithms could overcome the
calibration problem. However, the algorithm that we
developed is too domain specific and we do not know
whether other algorithms exists that can be generaliz-
able on different application domains.

Haptic Communication The connection library offers
only the possibility to connect one mobile phone with
up to seven SensAct boxes. However, the system does
not allow connections between two mobile phones.
By providing the possibility of connection between
two phones, we could establish a communication pro-
tocol between two sensor / actuator platforms. Since
there a many researches on haptic interpersonal com-
munication (Brave and Dahley [1997], Rovers and van
Essen [2004], Chang et al. [2002], the system could be
also used as a toolkit for wireless haptic interpersonal
communication prototypes.

Algorithm Complexity Due to the fact that mobile
phones become more and more powerful, we should
focus on more complex algorithms. Complex algo-
rithms are able to distinguish between different ac-
tivities without changing the hardware configuration
(Ravi et al. [2005]). Thus, the system would allow
to create more complex prototypes by increasing the
amount of basic movements that can be detected.

Finally, after realizing all these challenges the last question
would be how much designers can benefit from this toolkit
while developing new wearable computing systems.
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Appendix A

Software Library
Documentation

• mcg.arduino.io

– mcg.arduino.io.ArduinoComm()

∗ public void connectToArduino(String address);

∗ public void sendToArduino(String text);

∗ public void cancel();

∗ public boolean isConnected();

∗ public byte receiveFromArduino();

∗ public void startStreaming();

∗ public void stopStreaming();

∗ public void calibrateSnapshot();

∗ public void calibrateAverage();

∗ public void startMotorDigital(int num);

∗ public void stopMotorDigital(int num);

∗ public void startMotorAnalog(int num, int val);

∗ public void stopMotorAnalog(int num);

∗ public void skipBytes(int num);

∗ public void readSensorValues(int[] sensorValues);
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• mcg.arduino.move

– mcg.arduino.move.BendBack(int windowSize,
int threshold, int connector, int outputFlagPos);

∗ public void calculate(int[] sensorValues,
int[] flagArray);

– mcg.arduino.move.BendKnee(int windowSize,
int threshold, int connector, int outputFlagPos);

∗ public void calculate(int[] sensorValues,
int[] flagArray);

– mcg.arduino.move.FrontBackWeightDistribution
(int windowSize, int threshold, int connectorLeft,
int connectorRight, int outputFlagPos);

∗ public void calculate(int[] sensorValues,
int[] flagArray);

– mcg.arduino.LeftRightWeightDistribution
(int windowSize, int threshold, int connectorLeft,
int connectorRight, int outputFlagPos);

∗ public void calculate(int[] sensorValues,
int[] flagArray);

– mcg.arduino.StopGoDetection
(int windowSize, int threshold, int connector, int
outputFlagPos);

∗ public void calculate(int[] sensorValues,
int[] flagArray);
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• mcg.arduino.pattern

– mcg.arduino.pattern.FeedbackPattern
(ArduinoComm aComm, int motorNum, int patternNum);

∗ public void run();

Mobile phones must support MIDP 2.0 and CLDC 1.1 to run applications that use
this software library.
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Appendix B

First Snowboard
Assistant: Sample run

Figure B.1: Before starting to work, the
user can choose among a set of Arduinos
to establish a connection with a SensAct
box. Besides the predefined set of SensAct
boxes, the user can search for new Blue-
tooth devices. By pressing the Connect
button, the application goes to the next
step.

Figure B.2: After connecting to a SensAct
box the user needs to specify his stance
on the snowboard. This is important
for the weight distribution algorithm as
well as for the edge / turn detection. By
pressing the Set button, the application
goes one step and allows to calibrate the
sensors.
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Figure B.3: After selecting a stance,
the user needs to calibrate the sensors.
Therefore, he can switch between the vi-
sual help screen that displays the weight
distribution or the raw sensor values.

Figure B.4: After calibrating the sen-
sors, the user can choose between the
four functions. By following the inter-
views with snowboard instructors, only
one function can be used at once.

Figure B.5: The Edge / Turn detection
displays the current riding edge as well
as the riding time. Furthermore, the user
can adjust the algorithm parameters be-
fore starting with an exercise.

Figure B.6: The Stop / Go detection dis-
plays the riding time as well the standing
time. Furthermore, the user can adjust
the algorithm parameters before starting
with an exercise.

Figure B.7: Although the weight dis-
tribution provides no visual output, the
user can adjust all algorithm parameters
and specify multiple actuators for the
tactile feedback.

Figure B.8: The bend knee detection of-
fers the possibility to adjust all algorithm
parameters. In addition to the parame-
ters, the user can specify multiple actua-
tors for each leg.
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Appendix E

Smoothing filters

E.1 Simple Moving Average (SMA)

The Simple Moving Average (SMA) works similar to a
first-order low-pass filter and reduces signals with high
frequencies. In other words, SMA reduces the sensor noise
and smooths the sensor curve.

SMA simply calculates the arithmetic mean of the previous
n sensor values val(s). Therefore, the SMA value SMA(s)
at time t is

SMA(s)t =
val(s)t + val(s)t−1 · · · + val(s)t−n+1

n

=
∑i=n−1

i=0 val(s)t−i

n

The size of the n previous data samples describes the de-
gree of the filtering.
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E.2 Exponential Moving Average (EMA)

The Exponential Moving Average (EMA) also works sim-
ilar to a first-order low-pass filter. The EMA is calculated
by using the prior EMA value and the actual sensor value
val(s) at time t.

EMA(s)t =α ∗ EMA(s)t−1 + (1− α) ∗ val(s)t

, whereas α ∈ [0; 1] and EMA(s)0 = val(s)0

The smoothing factor alpha describes the degree of
the filtering. When using a high alpha value, the previ-
ous data sample EMA(s)t−1 becomes more relevant. In
contrast a low alpha factor emphasizes the actual value
val(s)t.
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