
by
Damian Schablowsky

TangibleMike:
Tangible Programming

For High School
Students

Bachelor’s Thesis
submitted to the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Dr. Martina Ziefle

Registration date: 22.04.2016
Submission date: 22.08.2016

Eidesstattliche Versicherung

___________________________ ___________________________

Name, Vorname Matrikelnummer

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/
Masterarbeit* mit dem Titel

__

__

__

selbständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusätzlich auf
einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die elektronische
Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner
Prüfungsbehörde vorgelegen.

___________________________ ___________________________

Ort, Datum Unterschrift

 *Nichtzutreffendes bitte streichen

Belehrung:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung
falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei
Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige fals che Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so
tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158
Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:

___________________________ ___________________________

Ort, Datum Unterschrift

v

Contents

Abstract ix

Überblick xi

Acknowledgements xiii

Conventions xv

1 Introduction 1

2 Related work 5

2.1 Learn Computer Programming 5

2.2 Teaching Systems 7

2.3 Tangibles . 10

3 Design 15

3.1 Concept . 16

3.2 First Iteration 17

3.3 Second Iteration 20

vi Contents

4 Application 25

4.1 Hardware . 25

4.1.1 Operating System 26

4.1.2 Tangibles 26

4.1.3 Tabletop 30

4.2 Software . 30

4.2.1 Design 31

4.2.2 Architecture 33

5 Evaluation 41

5.1 Study Design 41

5.2 Results . 42

5.3 Discussion . 44

6 Summary and Future Work 45

6.1 Summary . 45

6.2 Future work 46

A Appendix for the Application Study 49

Bibliography 57

Index 61

vii

List of Figures

2.1 Lightbot . 8

2.2 Scratch . 9

2.3 Osmo . 10

2.4 SLAP widget 11

2.5 PUC tangible 12

2.6 PERC tangible 13

3.1 DIA cycle . 16

3.2 Drawing for the first paper prototype 18

3.3 First prototype 19

3.4 First loop attempt 20

3.5 Second prototype. 21

3.6 Participant of second evaluation 22

3.7 Different solutions for a single task 23

4.1 Current prototype of the real tangible 28

4.2 Currently used tabletop 31

viii List of Figures

4.3 UI of current version 32

4.4 All game scenes 34

4.5 First level of the game 35

5.1 Results of the questionnaire’s first segment . 43

5.2 Results of the questionnaire’s second segment 43

A.1 Level 1 . 49

A.2 Level 2 . 50

A.3 Level 3 . 50

A.4 Level 4 . 50

A.5 Level 5 . 51

A.6 Level 6 . 51

A.7 Level 7 . 51

A.8 Level 8 . 52

A.9 Level 9 . 52

A.10 Level 10 . 52

A.11 Questionnaire – first page 53

A.12 Questionnaire – second page 54

A.13 Questionnaire – third page 55

A.14 Questionnaire – fourth page 56

ix

Abstract

New technologies are constantly developed, existing companies in the information
technology (IT) sector are expanding or new ones are established. As a result, ad-
ditional to the existing shortage of specialists, the demand for newly graduated IT
specialists is constantly growing. To solve this problem, it is important to motivate
young students to consider a career in the IT sector.

Though computer programming is a major section of the IT, learning it can be chal-
lenging for beginners. We present TangibleMike, a software application to teach be-
ginners the fundamentals of computer programming by using tangibles on multi–
touch screens instead of programming code.

To create the application, we performed three iterations of the DIA cycle. In the first
two iterations we created paper prototypes and performed two studies to evaluate
potential ambiguities in the user interface. In the third iteration we implemented
the actual application and performed a third study. Initially we planned to compare
a tangible version with a non–tangible version in our last study to determine if
tangibles have a positive effect on the learning process. Unfortunately, the used
tangibles had several technical issues and, therefore, we couldn’t use them in a
study. Instead, we further concentrated on improving the user interface and the
gameplay.

The performed study showed that the user interface was generally intelligible,
however, the loop and more importantly the turn–tangible need further refine-
ments in the following iterations.

x Abstract

xi

Überblick

Im Bereich der Informationstechnologie (IT) werden ständig neue Technologien en-
twickelt, neue Unternehmen gegründet oder bestehende expandiert. Dies hat zur
Folge, dass zum bestehenden Mangel an Fachkräften der Bedarf an neuen ständig
ansteigt. Um dieses Problem zu lösen, müssen Schüler schon früh dazu motiviert
zu werden, eine Karriere in der IT in Betracht zu ziehen.

Die Programmierung gehört zu den Hauptbereichen der IT, jedoch stellt ihr
Erlernen eine Hürde für Programmieranfänger dar. In dieser Bachelor Ar-
beit präsentieren wir die Software TangibleMike, welche Programmieranfängern
mit Hilfe von greifbaren Objekten, auch Tangibles genannt, und Multi–Touch–
Bildschirmen die grundlegenden Konzepte der Programmierung beibringt.

Wir haben zunächst zwei Papierprototypen erstellt und deren Unklarheiten und
Schwächen in zwei Studien evaluiert. Anschließend haben wir die Anwendung
implementiert. In unserer dritten Studie sollte mit einem Vergleich evaluiert wer-
den, ob Tangibles einen positiven Einfluss auf den Lernprozess haben, aber diese
Studie konnte jedoch aufgrund von technischen Problemen der Tangibles nicht
durchgeführt werden. Stattdessen lag der Fokus darauf, die Benutzeroberfläche
sowie den Spielablauf zu evaluieren und zu verbessern.

Die Studie hat gezeigt, dass die einzelnen Elemente der Anwendung im Allge-
meinen gut verständlich sind, die Loop- und Turn–Tangibles im nächsten Entwick-
lungsschritt aber verbessert werden müssen.

xiii

Acknowledgements

First and foremost, I would like to thank all testers and friends who participated
in the several user studies conducted for this thesis. I had a good time observing
and talking to you while playing my application. The collected feedback presents
an important part of this thesis.

Secondly, I would like to thank Prof. Dr. Jan Borchers and Prof. Dr. Martina Ziefle
for giving me the opportunity to write this thesis. You always had an open door
and helped wherever you could. Thanks for this.

I would also like to thank Christian Cherek, M.Sc., my supervisor. You offered
valuable support whenever I asked for it and it was a pleasure to work together
with you.

Special thanks to Dr. Dipl.-Inform. Philipp Brauner for supporting me during the
whole thesis. I really appreciated all of your helpful advises, all the help you offered
me and the tips you gave when I got stuck.

And big thanks to Agnes, Danielle, Thomas, my whole family and friends for your
unconditional and continuous help throughout the whole thesis. Thanks for cheer-
ing me up all the time and thank you for keeping your door open.

Thank you all!
Damian

xv

Conventions

Throughout this thesis we use the following conventions.

Names of software or widgets are written in italic text

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in American English.

1

Chapter 1

Introduction

Computers can take several forms like smartphones, Shortage of IT
specialiststablets, and laptops. People are confronted with them ev-

ery day and the computer market is growing constantly:
new technologies are invented and new companies are es-
tablished continuously. As a result, the demand for in-
formation technology (IT) specialists rises. Unfortunately,
there is a huge shortage of IT specialists, especially in Ger-
many. The Bitkom e.V. [2014] reported that about 41,000
IT specialists are missing in Germany. The Bundesagen-
tur für Arbeit [2016] and the Statistisches Bundesamt [2016]
also confirmed the shortage of IT specialists. Even though
new specialists graduate from universities, their number
barely compensate the number of retired specialists. Since
the job market is growing constantly, the shortage keeps on
increasing. The Verein Deutscher Ingenieure [2012] even
assumes that this shortage might compromise Germany’s
competitiveness regarding the IT sector. The main problem
is that too few students plan a career as an IT specialist. It is
important to encourage and motivate the students to deal
with this area of expertise. Additionally, it is necessary to
motivate female students in order to decrease the gender
gap [Beede et al., 2011].

A wide area of the IT sector deals with software creation A programming
language is
composed of
different parts

or maintaining existing ones. Kelleher and Pausch [2005]
stated that learning to program can be a challenge due to
the fact that it consists of several parts. The first part con-

2 1 Introduction

tains general concepts like procedures, loops, function calls,
recursion, and so forth. The second part consists of the syn-
tax and the semantics. The programming language’s syn-
tax can be seen as the language’s grammar, answering the
question: how do I construct a valid sentence? The seman-
tics , on the other hand, describes the meaning of a sentence
and answers the question: is this sentence’s meaning valid?
The syntax and semantic varies from language to language,
although some of them are similar to each other. The next
part is adjusting to the programming environment which
normally consists of a source code editor and a compiler .
The compiler transforms the written code into binary code
that represents computer processor instructions. Learning
all those parts at the same time can be challenging for a be-
ginner and, therefore, intimidating.

To address this problem, we present TangibleMike, an ap-Simple programming
environment plication to teach novices the fundamentals of computer

programming. As stated by Kelleher and Pausch [2005],
programming commands can be seen as blocks that are
aligned in a specific order to create an application. Using
this metaphor, we created a simple programming environ-
ment, where the user creates programs by aligning blocks
instead of using programming code. This way, the novice
can concentrate on the basics and afterwards move to a
general–purpose language.

In our application the novice navigates a figure and solvesTwo versions of
TangibleMike logical tasks. We created two versions of our application.

In the first version the blocks are represented by graphical
objects on a screen. The user interacts with finger gestures
on a multi–touch screen. In the second version the blocks
are represented by tangibles (graspable widgets or objects)
that can be placed on a multi–touch screen. Using tangi-
bles in education can benefit the learning process [Brauner
et al., 2010]. Therefore, in this thesis we want to evaluate
if tangibles can motivate High School students to concern
themselves more with the IT sector or even to plan a ca-
reer as an IT specialist. We created two versions in order to
evaluate the tangible’s benefits over graphical objects.

There is already a number of applications that use graphicalA novel teaching
system objects instead of programming code or use tangibles for

3

educational purpose that will be presented in chapter 2. In
TangibleMike, we are using tangibles on multi–touch screens
to create a novel teaching systems. However, creating this
kind of systems comes with three major challenges:

1. Create distinguishable and persistently trackable tan-
gibles.

2. Setup the communication between the application
and the tangible.

3. Design a simplified programming environment.

We chose the tangibles created by Voelker et al. [2015] and Focus on the third
challengethe MultiTouchKit framework by Linden [2014] in order to

meet the first two challenges. Therefore, we could con-
centrate on the design of a simplified programming envi-
ronment that harnesses the tangible’s potential to motivate
High School students.

This thesis will describe the process of creating the appli-
cation TangibleMike. Initially, in chapter 2 we will present
existing teaching system and different tangible variants.
Chapter 3 will explain the design process and the first two
performed evaluations. The resulting application and used
hardware will be explained in detail in chapter 4. Chapter 5
will give a detailed description of our third evaluation and
discuss the results, followed by future work in chapter 6.

5

Chapter 2

Related work

Our application TangibleMike interleaves with several other Three different
research fieldsresearch fields. In this chapter, we will present the big

three research fields. The first one is learning computer
programming and investigating the problems novices have
while learning computer programming. The second re-
search field treats approaches to simplify the learning pro-
cess of programming by providing special teaching sys-
tems. The third research field treats tangibles and we will
present the different variants of them.

2.1 Learn Computer Programming

Novices who try to learn computer programming, are con- Too much challenges
for a novicefronted with several challenges, as described by Kelleher

and Pausch [2005]. First, they have to create structured
solutions for a given problem. These structured solutions
contain (for the novice) unknown programming concepts
like sub functions, loops or sequences. Furthermore, the
novices have to translate their solutions into syntactically
correct statements. The problem here is that most pro-
gramming languages have a different syntax. Finally, the
novices have to understand how programs are executed.

6 2 Related work

Kelleher and Pausch created a taxonomy of programmingTaxonomy of
programming

environments and
languages

environments and languages for novice programmers and
described the different methods of how novices can learn
computer programming. The mentioned teaching systems
in their paper have the purpose to prepare novices for
transitioning to general–purpose languages like Java. The
teaching systems concentrate on the mechanics of program-
ming and splits into expressing the novice’s intentions to
the computer and understanding program execution.

There are approaches that start with imparting the under-Understanding
program execution standing of program execution rather than how to enter

code [Lee et al., 2014]. The novice gets a broken program
first and has to debug and fix it before starting to create an
own program from scratch. The results of this approach
were positive and novices learned programming concepts
like conditions or loops in only a couple of hours.

Another method to teach mechanics of programming is byExpressing programs
assisting novices to express their intentions into syntacti-
cally correct statements. This can be achieved by either
simplifying how to enter code or by finding alternatives
to typing programs. Simplifying the code entry can be
achieved by simplifying the language itself or by prevent-
ing syntax errors. In [McIver and Conway, 1999], the self–
proclaimed ”pre–language” dissociates from real–world
syntax of general–purpose language and uses a smaller lan-
guage. Simultaneously, the syntax of GRAIL was simpli-
fied.

Instead of simplifying the code entry, it is also possible toFind alternatives to
typing programs use an alternative way to typing programs. This can be ac-

complished by constructing programs with either graphical
or physical objects. These teaching systems bypass the syn-
tax by encoding the syntax into the shape of objects. Each
of these objects represent a different command and can be
assembled in a special area.

Using physical objects (alias tangibles) to learn computerPhysical objects
programming has a positive influence. Brauner et al. [2010]
tested the effect of tangibles on teaching programming to
seventh graders. Additionally, it was tested how the gender
influenced the learning process. The pupils had to program

2.2 Teaching Systems 7

a robot’s movements. One group got a virtual robot dis-
played on a computer screen, the second group interacted
with a LEGO Mindstorms NXT robot. The results showed
that the tangibles had a positive influence on the seventh
graders. The tangibles put Science, Technology, Engineer-
ing and Mathematic (STEM) topics into a meaningful per-
spective. But the study also confirmed the huge gender gap
with regard to STEM topics. This topic is also important
and has to be dealt with.

The general idea of using physical objects to control vir- Tangibles on screens
tual objects on screens was already introduced in 1995 with
Bricks [Fitzmaurice et al., 1995]. At this time, teaching sys-
tems with tangibles like AlgoBlock [Suzuki and Kato, 1995]
already existed, but without using a screen. The authors
of Bricks built also a prototype to further investigate the UI
concepts. Back then they concluded that this technology
is highly potent and hoped for detailed exploration of it.
Over the years, a great number of applications were created
based on this idea. In section 2.2, we will present some ap-
plications using virtual and physical objects, respectively.

2.2 Teaching Systems

Lightbot1 was created in 2008 and represents a teaching soft- Lightbot
ware for learning computer programming, using virtual
objects instead of programming code. The game can be
played by using a mouse and a touch screen, respectively.
In figure 2.1 the UI of Lightbot is shown to give an idea of
how a teaching software can look like. Programming com-
mands are encoded in each graphical block and user can
built programs by assembling them in a programming grid.
The created program can be executed and the robot moves
according to the used blocks. This game was released for
computers first and over the time, different versions of the
game found their way to multiple platforms, like smart-
phones or tables. In the Google Play Store, the first version
was downloaded between 100,000 and 500,000 times to the
present day and got a very good rating of 4.4/5 stars in 8990

1https://lightbot.com/

https://lightbot.com/

8 2 Related work

Figure 2.1: The game Lightbot uses graphical objects instead
of programming code to teach novices the basic program-
ming concepts.

votes. The iOS version was featured several times by Ap-
ple, e.g. in the categories like ”Best for Learning to Code”
or ”Best in Hot Educational Games”. This does not include
the numbers from computer players or the other released
versions.

Another teaching system was developed at the Mas-Scratch
sachusetts Institute of Technology (MIT) Media Lab
Resnick et al. [2009]. Scratch is a visual programming
language to easily create small games or animations.
This teaching system also uses code blocks instead of
programming code. Unlike Lightbot, the user can use
conditionals and variables. Additionally, drawn pictures
(also called sprites) can be included into the program.
In figure 2.2 Scratch’s UI is shown. The different code
blocks are divided into several categories and the user can
use them by dragging them into the programming area.
Depending on the number of used code blocks, the loop
and conditionals automatically resize. Just as Lightbot,
Scratch started with an application for the computer and
then rolled out a version for children to the Google Play
Store and the Apple App Store with a comparable success.

2.2 Teaching Systems 9

Figure 2.2: Scratch is a visual programming language to cre-
ate small games or animations.

Lightbot and Scratch are only two of many other teaching Teaching systems
with tangiblessystems. However, they concentrate only on visual pro-

gramming with virtual elements. Since physical objects
have a proven positive effect on novice programmers, other
systems were created using physical elements, too. Osmo2

for example uses physical blocks to create programs as
shown in figure 2.3. The tablet uses its front camera to scan
the area right in front of it. After pressing the play button
on the tangible, the scanned program is executed on the
tablet. Google also created a teaching system called Project
Bloks3. Project Bloks is a modular system for tangible pro-
gramming. The tangibles can be connected to create a pro-
gram and since they are modular, they can be customized
to fit in every scenario or application. Another system is
Primo4 with a fixed programming area. Children can plug
blocks into an interface board and create a movement se-
quence for a small robot. The developers also provide a
small map with tasks.

2https://www.playosmo.com/
3https://projectbloks.withgoogle.com/
4https://www.primotoys.com/

https://www.playosmo.com/
https://projectbloks.withgoogle.com/
https://projectbloks.withgoogle.com/
https://www.primotoys.com/

10 2 Related work

Figure 2.3: The game Osmo combines visual programming
with tangibles.

2.3 Tangibles

The mentioned teaching systems use screens solely to dis-Tangibles on screens
play a playing field on it or use them for touch inputs. In
none of them they are used to directly interact with tan-
gibles like in Bricks [1995]. Nevertheless, the idea of us-
ing tangibles on screens was further investigated and three
major technologies emerged from this idea. The first tech-
nology includes visual techniques to detect tangibles using
cameras on the back side of a surface. The second one de-
tects magnetic tangibles with an analog Hall–sensor and
the last one uses capacitive tangibles on capacitive screens
that can be found in smartphones or tablets.

One of the first technology’s approaches is using SiliconDiffuse Illumination
Illuminated Active Peripherals (SLAP) [Weiss et al., 2009]
widgets. The widgets are made of silicon rubber and acrylic
and are detected by the table using a technique called Dif-
fuse Illumination (DI). The table has an acrylic surface and
the SLAP widgets have markers attached to the bottom
side. Infrared (IR) LEDs flood the acrylic surface from be-
low with IR light and a camera detects the light reflected
by the markers. This way the software toolkit detects the
different widgets. However, to detect touch input (for ex-
ample, by a silicon keyboard), a different technique called

2.3 Tangibles 11

Figure 2.4: Acrylic rotary SLAP widget (by Weiss et al. [2009]) on an acrylic surface.

Frustrated Total Internal Reflection (FTIR) is used. With
FTIR, the IR light is fed sideways into the acrylic surface.
A touch disturbs the light and the camera detects the scat-
tered IR light.

GaussStones uses magnetic fields to detect tangibles on Shielded magnetic
tangiblesportable screens. Each tangible possesses a magnet sur-

rounded by a galvanized steel shield to eliminate interfer-
ence between magnetic tangibles. An analog Hall–sensor
is placed beneath the screen and is able to detect multi-
ple magnetic tangibles above the screen. The sensor does
not require touch screens and therefore can be attached to
laptops. Since each magnet creates a magnetic field with
a different intensity and polarization, the tangibles can be
distinguished.

The third major technology involves tangibles on capaci- Capacitive tangibles
tive screens. The capacitive screens can be found, for exam-
ple, in smartphones or tablet. This technology splits again
into three categories. In the first category the tangible has
to be touched in order to be detected. The tangibles of the
second category are detected by the screen without being
touched (so called passive tangibles). Tangibles of the third
category (active tangibles) are also detected without being
touched and also possesses active elements (battery, micro
controller, Bluetooth). With the active elements, the tangi-
ble can be persistently tracked by the screen and provide
additional functions like switches or buttons.

Clip–on gadgets [Chang et al., 2012] are part of the first cate- Clip–on gadgets
gory. All tangibles of this category are only detected by the
screen when they are touched by a user. This effect is called

12 2 Related work

Figure 2.5: PUCs (by Voelker et al. [2013]) are detected by
a capacitive screen without being grounded or touched by
human fingers.

capacitive coupling [Zimmerman et al., 1995]. Capacitive
touch screens detect grounded electrical conductors close
to them. This grounded conductor can be a human finger.
The Clip–on gadget consists of conductors that are connected
to buttons (conductive rubber). The conductors are con-
nected to the capacitive screen and every time the rubber
button is touched by a human finger (or grounded), the ca-
pacitance gets changed and the conductor is sensed. The
gadgets only need a small area and the screen and does not
hide it.

Tangibles of the second category can be detected withoutPassive tangibles
being grounded or touched by a human finger. Passive Un-
touched Capacitive Widgets (PUCs) [Voelker et al., 2013]
are an example for this category. These tangibles also use
the capacitive coupling effect in order to be detected by a
capacitive touch screen. But in contrast to tangibles of cat-
egory one, these tangibles utilize capacitive coupling on a
second area. Each area is created by conductive pads at the
bottom of the PUCs that are electrically connected to each
other. Using this construction, active intersections on the
screen [Barrett and Omote, 2010] are coupled to inactive in-
tersections. The inactive intersections serve as ground and
as a result, the tangible is detected by the screen. But the
passive tangibles suffer from the issue that capacitive touch
screens filter stationary touches after some time [Voelker
et al., 2013] and they are no longer detected.

2.3 Tangibles 13

Figure 2.6: Design of a PERC tangible by Voelker et al.
[2015]: (1) marker pattern, (2) field sensor, (3) light sen-
sor, (4) micro controller, (5) Bluetooth element, and (6) lead
plate.

To solve the filtering issue, the PUCs were further devel- Active tangibles
oped to active tangibles. The Persistently Trackable Tan-
gibles (PERCs) [Voelker et al., 2015] have additional active
elements (micro controller, battery, Bluetooth) and several
sensors integrated. The PERC tangible uses a field sensor
(figure 2.6) to detect whether it is on a capacitive touch
screen or not. This characteristic is sent regularly to the ap-
plication. Furthermore, using a light sensor and the marker
pattern, it is possible to detect the orientation of the tangi-
ble. In addition, analog components, like switches or but-
tons, can be connected to the micro controller and create
new applications for the tangible. The tangibles use the in-
tegrated Bluetooth element to communicate with other pe-
ripherals and to exchange data. The tangible can be con-
nected, for instance, to a computer or a smartphone. Since,
in contrast to GaussStones, PERCs does not require any fur-

14 2 Related work

ther peripherals, they can be used on all capacitive touch
screens.

In order to benefit from the Bluetooth communication andMultiTouchKit
framework further features of the tangibles, the MultiTouchKit frame-

work (MTK) was created by Linden [2014]. The MTK de-
tects active and passive tangibles with the special marker
pattern ([Voelker et al., 2015]) and establishes the Blue-
tooth connection with active tangibles. It serves as the in-
terface between an application and the tangibles and han-
dles all the communication. For every tangible connected
to the screen, the application gets an object with all rel-
evant information (position, orientation and so forth) for
further processing. Additional, the framework can process
various types of input sources like touches by human fin-
gers, UITouch (iOS touch events), JavaScript Object Nota-
tion (JSON) objects or mouse clicks. The data from all in-
put sources is converted to so called MTKTraces and passed
to the application. Several demo applications have already
been created with the framework for multiple devices (55”
capacitive screen from Microsoft, iPhone, iPad) and con-
firmed the support for various types of capacitive screens.

15

Chapter 3

Design

Gould and Lewis [1985] introduced three key principles for Key principles for
designing a UIdesigning systems and UIs for people. Since the system

and the UI are created for people, it is advisable to involve
them into the designing process, which leads to the first
principle. The first one states to ”Early Focus on Users and
Tasks”. In other words, the designer has to understand the
characteristics of the user and, in general, who the user will
be. The system has to be matched to the performed work.
The second principle suggests to let the users work with
actual prototype. This way, their behavior, reactions, and
performance can be documented and analyzed. The last
key principle states to use an iterative process, a cycle, to
create systems and UIs. Each iteration consists of designing
the system, implementing it, measuring data and analyzing
them. This can be generalized into three main steps per
iteration: design, implement, analyze.

The Design–Implement–Analyze (DIA) cycle is widely DIA cycle
used to create UIs and applications for people. This pro-
cess involves the target group already in early stages of
projects. The observed behavior, performance, and reac-
tions of the participants can be considered in the next iter-
ation of the cycle to improve the iteration. The benefit of
the iterative is that with each additional iteration, the ap-
plication is further accommodated to the target group and
potential design mistakes can be eliminated in early stages
of the project.

16 3 Design

Figure 3.1: The DIA cycle is used to create the application
TangibleMike. Three iterations were performed.

We made use of the DIA cycle while creating our applica-Three iterations of
the DIA cycle

performed
tion TangibleMike to benefit from the advantages of the iter-
ative and user involved design. We performed three itera-
tions of the cycle. The results of the first two iterations were
paper prototypes and will be described in this chapter. In
the third iteration we created the actual application. This
iteration will be explained further in section 4.2.

3.1 Concept

In this section we will describe the general concept of ourGeneral game
concept application TangibleMike. TangibleMike is a game for stu-

dents in High Schools (secondary schools) and has the pur-
pose to teach them basic programming concepts to them.
The game serves as a simple programming environment
and renounces complicated and unintuitive syntax.

In this game, the students have to solve levels by navigatingScenario of
TangibleMike a builder called Mike. Mike starts at a certain point on a

street and has to reach the end of the road. On his way to
the finish, he approaches several dirty streets that were left

3.2 First Iteration 17

behind after a construction site. All dirty streets have to be
cleaned in order to solve the level.

The user can control the main character by aligning blocks Navigate Mike with
blocksin special programming grids. Each blocks presents a dif-

ferent action and all actions can be split into two categories:
movement actions and programming concepts. Blocks of
the first category directly manipulate the movement of
Mike (move forward, turn, clean dirty road). Blocks of the
second category present different programming concepts
that can be used (sub functions and loops). In later levels,
the different kind of blocks have to be combined in order to
solve them.

There will be two versions of our game. The first one will Graphical objects
and tangibles as
blocks

use graphical objects as blocks. The blocks can be used with
touch gestures on a multi–touch tabletop. The second ver-
sion will use tangibles, to be more precise PERCs, as blocks.
The user can place them in the programming grid and cre-
ate programs with them.

3.2 First Iteration

Since in the first iteration of the application there was no The DIA cycle starts
with paper
prototypes

basic construct for the UI, we based our first design on the
game Lightbot, presented in chapter 2. These kinds of games
can improve the learning experience of programming lan-
guages [Kazimoglu et al., 2012] and looking at the number
of downloads and rating, Lightbot is a good representative
for this game category. At this point of the process, we still
lacked a suitable scenario for our application and therefore
temporarily adopted the scenario from Lightbot. Figure 3.2
shows the first drawing of our prototype. Mark (1) refers to
the virtual version of the tangibles. Those tangibles can be
assigned to particular cells in the main grid (alias the main
function) (2). The second grid (3) can be used as a function
call in order to execute repeatedly used commands. The
buttons (4) act as the controls to execute the created pro-
gram, stop the execution, and abort the game. (5) illustrates
the playing field and exposes the assigned task to the user.
The goal of every level is to navigate a virtual figure. This

18 3 Design

Figure 3.2: First basic UI of our application based on Lightbot. (1) tangibles, (2) main
function, (3) sub function, (4) controls, (5) playing field.

figure has to reach the finish and perform one or several
tasks on its way.

Having a first idea of how the application should look like,Implementation of
the first prototype the first prototype was built. The prototype in figure 3.3

illustrates the tangible version of the application. The gras-
pable tangibles (1) are made of cardboard, since it is faster
to create new ones or alter them. The drawn tangibles
(2) just represent an explanation for every type of tangi-
ble. In this version, the information should be displayed
permanently, in further versions as a non–permanent ele-
ment triggered by a button tap. The first attempt of a loop
looks like a clock (3). The user can place real or drag vir-
tual tangibles onto this virtual element and adjust the num-
ber iterations of the respective tangibles. In this early ver-
sion of the prototype, we didn’t decide yet how to imple-
ment loops in our solution. Therefore, we initially allowed
only function calls P1 and P2 to be repeatedly executed, as
shown in figure 3.4. The playing field (4) and the controls
(5) were adopted from the sketch with the exception that
both switched places.

After preparing 20 cardboard–tangibles with the size ofFirst evaluation of the
prototype 50x50mm and two different levels, we let four users make

their first experience with our prototype. In this study we
concentrated on the appearance and handling of our UI to-

3.2 First Iteration 19

Figure 3.3: First prototype based on the drawing in figure 3.2. (1) cardboard tangi-
bles, (2) tooltips, (3) loop area, (4) playing field, (5) controls.

gether with the comprehension of our application. In the
first two studies we didn’t prepare a questionnaire. In-
stead, we annotated the behavior, reactions and perfor-
mance of the participants and asked them afterwards about
their general opinion

The first two users studied computer science and therefore Participants differed
in experiencehad experiences in programming. Both of them understood

the basic concepts of programming represented by the tan-
gibles and had several suggestions how to improve the tan-
gibles. The other two users were total beginners and had
struggle understanding the concepts of programming, es-
pecially with function calls and loops. With a little assis-
tance, all managed to solve the first two levels of the game.

The first evaluation showed that our loop attempt had to Results of the first
evaluationbe improved. It was not clear how to create loop with sev-

eral tangibles. Proposal was to create a further tangible spe-
cially for loops together with the possibility to mark all tan-
gibles that are inside the loop. Another misunderstanding
involved the turn–tangible. This tangible was either inter-
preted as turn movement or as the turn movement with a
following forward movement. We initially planned to just
make a turn without any further movements. Additionally,

20 3 Design

Figure 3.4: First implementation of a loop. The tangible
has to be placed or dragged on this element to adjust the
number of iterations.

we got the suggestion to hide the tooltips and show them
only if requested. The other elements, like the forward–
tangible, were positively evaluated. The participants had
no struggle to understand and use them. With the helpful
suggestions of the participants, we decided to make a sec-
ond prototype before we started to create the application.

3.3 Second Iteration

With a second paper prototype, we intended to improveChanges in the
second paper

prototype
the UI further and clear the confusion about the tangibles.
We took all the suggestions from the first evaluation into
account and started to create the second paper prototype
as shown in figure 3.5. The first improvement was the sce-
nario of the application. We discarded the scenario of Light-
bot and created our own, where a builder called Mike has
to cross streets and arrive at the finish. On his way, he ap-
proaches several broken streets. In order to pass them, the
broken streets have to be repaired. The light–up–tangible
was replaced with the repair–tangible.

3.3 Second Iteration 21

Figure 3.5: Second prototype influenced by the suggestions of the first prototype:
(1) both versions of the turn tangible, (2) optional tooltips.

The second improvement involved the loops. We dropped New concept for the
loop–tangiblethe idea to adjust the number of iterations in a special area

and instead created a loop–tangible. With this new tangi-
ble, the user has the ability to adjust the number of iter-
ations directly on the tangible. This idea can be realized
with real tangibles by mounting an analo rotary controller
on top of the tangible. Furthermore, the range of this tan-
gible is indicated by a green area surrounding the tangibles
inside the loop. Every time a new tangible is placed inside
the loop, its range grows by an additional cell.

Next we changed the symbol of the turn–tangible (1) (figure New symbol for the
turn–tangible3.5) to clarify that the figure only turns on the spot instead

of making a further forward movement. For the evaluation,
we used the old and new turn–tangible to compare both
versions. Finally, we adopted the idea to hide the tooltips
and show them temporarily after pressing the button (2).

Six new users participated in the second evaluation of the Second evaluation of
the prototypepaper prototype. Here, again, half of them had experiences

in programming and the other half consisted of program-
ming beginners. Just like in the first evaluation, we ex-

22 3 Design

Figure 3.6: A participant is participating in the second eval-
uation.

emplary created levels for the users (in this case only one
level). This was sufficient since this evaluation was primar-
ily concerned with the design of the UI. Furthermore, this
level was designed, so that it could be solved in several dif-
ferent ways, such as using only the main function or using
function calls together with loops. To increase the difficulty
and to encourage the users to use programming concepts,
only two repair–tangibles were provided.

Although this evaluation was performed to improve theResults of the
second evaluation UI, it was still interesting to experience how the users pro-

ceeded to solve the given task. To begin with, figure 3.7
shows the level the users had to solve. They could either
choose a shorter way with three repair tasks or a longer way
with only a single repair task. Out of the six users, four of
them chose the shorter way with multiple repair tasks.

Solution (2) in figure 3.7 was provided by an experiencedDifference between
experienced

programmers and
beginners

programmer, (1) and (3) by beginners. The experienced
participant realized already at the beginning of the level
that the number of forward- and repair–tangibles needed
was insufficient for either ways and used loops and func-

3.3 Second Iteration 23

Figure 3.7: Different approaches to solve a single task. (2)
was solved by an experienced programmer and (1), (3) by
beginners.

tion calls. The other two experienced programmers be-
haved the same way and were additionally curious about
the limitations of this game. They tried movements that led
their virtual figure outside of the playing field to see the
subsequent process or tried advanced concepts like recur-
sion. All the beginners, however, tried to solve the level by
using a single sequence in the main function. After some
time, they also realized the problem with the limited num-
ber of tangibles and started to make use of programming
concepts. User (1) remained in the main function and used
a loop–tangible to accomplish the level whereas (3) used
function calls. Every participant solved the level with a dif-
ferent set of tangibles. However, it is possible to direct the
user to use the programming concepts by limiting the num-
ber of usable tangibles. By providing only a single repair–
tangible in a level, where at least two broken streets have
to be repaired, the user is forced to use at least a loop or a
sub function. The difficulty can be further increased by de-
activating the number of usable cells in the three functions
(main, P1 and P2).

24 3 Design

Additionally, to the observations made in this second eval-Further suggestions
for the UI uations, the participants had several suggestions for the UI

and issues understanding the repair–tangible. The users
were not sure when exactly to use the repair tangible. The
first possibility was to repair the broken street when stand-
ing right before it, the second one when standing on top of
it. We initially planned to repair the street when standing
on top of it, however, most participants commented that it
would be more intuitive to repair the broken street before
walking on it.

Furthermore, the users struggled with the design of theResults for the
turn–tangible were

still not satisfying
turn–tangible. For them, both variants of this tangible were
still not appropriate. Since we couldn’t achieve any suc-
cesses with the new symbol, we had to think of a new one.

Five out of six users suggested to rearrange the whole UI.Most used elements
were too far away The elements of the UI used most the main function, the

controls, and the tangibles. The tangibles are supposed to
lie next to the tabletop. The main function and the controls,
however, are fixed and cannot be rearranged while playing
the game. The suggestion was to switch the position of the
main function and the P1 and P2 functions and move the
controls down to the bottom of the screen. The consequence
would be that the most used elements are within easy reach
and the user would be more comfortable.

25

Chapter 4

Application

This chapter will explain the technical details of the created Third iteration of the
DIA cycleapplication. It can be considered as the third iteration of

the DIA cycle. The first both iterations were illustrated in
chapter 3 and revealed several weaknesses in our initial de-
sign. One of them was the design of the turn–tangible. It
wasn’t clear if it only executes a turn movement or a turn
movement with a forward movement afterwards. Addi-
tionally, the assembly of the UI wasn’t ideal. The primarily
used main function and the controls were on the upper side
of the screen and therefore not within easy range. Further-
more, we made a slight change to scenario and changed the
corresponding tangible as explained in section 4.2.

To begin with, in section 4.1 we are going to explain the Structure of this
chapterwhole hardware setup, including the used operating sys-

tem (OS), the used tangibles, and the tabletop. Afterwards,
in section 4.2, the latest design and architecture of the ap-
plication will be presented.

4.1 Hardware

The hardware setup of this application splits into three dif- The hardware splits
into three connected
components

ferent components cooperating with each other. At first,
the most important part is the integrated development en-

26 4 Application

vironment (IDE), where the software is developed. Due to
Apples restrictions of the IDE, the application can only be
developed on Macintosh personal computers (PCs). Fur-
ther details will be provided in section 4.1.1. The second
component is the tangibles interacting with the tabletop
and finally the used tabletop itself.

4.1.1 Operating System

Our application TangibleMike is based on the MultiTouchKitMacOS is currently
the only choice for

development
framework (MTK) created during the Master’s thesis of
Linden [2014]. The framework was created with Apples
IDE XCode and the programming language Objective–C .

Nevertheless, an additional OS was needed in order to getAn additional OS to
capture the touch

points
the touch points from the 55” Microsoft Surface Hub. We
used Microsoft Windows 8.1, running inside a virtual ma-
chine (VM) on the iMac that is connected to the tabletop.
The VM captures the touch points and passes them to the
application for further processing.

4.1.2 Tangibles

In chapter 2, we have already presented different kinds ofRequirements for the
tangible tangibles. Since we are using a capacitive tabletop, the op-

tical and magnetic variants are unsuitable. The tangibles
needed had to be persistently trackable, distinguishable,
support analog controller, and posses a communication in-
terface.

Persistently trackable. It can take several minutes to solveStationary touches
are filtered within

seconds on
capacitive displays

a level when playing TangibleMike and, therefore, the tan-
gibles have to be persistently trackable by the application.
However, as stated by Voelker et al. [2015], the capacitive
displays have filtering mechanisms that remove stationary
touches after a short period of time. As a consequence, the
user would have to move all the used tangibles every few
seconds. This would lower the experience for the user dra-
matically and the game would be unusable. Therefore, the

4.1 Hardware 27

tangibles need to be persistently trackable without any user
action.

Distinguishable. In the latest version of TangibleMike we The full set contains
at least six different
tangibles

are using six different tangibles. Each of these six tangibles
execute unique commands (forward, turn, loop et cetera).
Therefore, each of these tangibles needs to be distinguish-
able. Furthermore, there are multiple copies of each of
them. The number differs in each level to adjust the dif-
ficulty. Five of the six tangibles execute simple commands
and it is not necessary to distinguish among themselves.
But each loop–tangible can have a different number of itera-
tion and it is important to distinguish them. Using a full set
of tangibles with a single copy of the loop–tangible requires
the application to recognize 6 different tangibles and with
each additional loop–tangible the number increases by one.
Depending on the level–difficulty, the number can increase
further. Additionally, in future work, the application can
be extended and new tangibles can be introduced, which
results in a higher number of different tangibles.

Support analog controllers. The loop–tangible in our sec- Loop–tangible with
analog controllersond paper prototype possessed an analog rotary controller

to adjust the number of iterations. The evaluated users ap-
proved this. In order to adopt this idea in our actual ap-
plication, the real tangibles also have to possess this rotary
controller. Furthermore, we already mentioned new tan-
gibles in the last paragraph. This could be, for example,
a turn–tangible with a small switch to change the turn–
direction. This would also require the tangible to accept
analog input and to pass this information to the applica-
tion.

Communication interface. Any kind of input, such as the Use Bluetooth 4.0 to
save energy and
distinguish the
tangibles

number of set iterations, has to be transferred to the ap-
plication. This could be done with a wire or rather wire-
less. The two well–known wireless technologies are WiFi
and Bluetooth. Version 4.0 of the Bluetooth Core Specifi-
cation introduced Bluetooth Low Energy (BLE) to save en-
ergy and, therefore, we choose this technology to guaran-
tee a longer playtime. Using Bluetooth for every tangible,
it is possible to distinguish each tangible via its individual
Bluetooth identifier (ID).

28 4 Application

Figure 4.1: Current prototype of a PERC tangible. This one
was used to test our application.

Considering the four mentioned requirements, we choosePERCs as the
tangibles of our

choice
PERCs (chapter 2) for our application. First of all, using
a field sensor, PERCs can detect whenever they are on the
tabletop or not. Furthermore, a Bluetooth adapter is im-
plemented and therefore data can be exchanged between
the application and the tangible. Additionally, the tangi-
bles can be distinguished via the Bluetooth ID. Last but
not least, PERCs are using micro controllers and possess in-
put/output ports. Analog components such as rotary con-
trollers can be connected. PERCs fulfill all requirements
and additionally comes with a framework to support all
functions in our application. To distinguish the tangibles
visually, the transparent top case can be opened and a piece
of paper with the respective symbol can be inserted.

Unfortunately, the PERCs are still in development andIssues with PERCs
therefore several problems come up. While implementing
TM, we had struggles to persistently track the PERCs. After
several seconds they were not recognized by the tabletop,
while an older version of the tangibles worked without any

4.1 Hardware 29

issues. After many hours of debugging and troubleshoot-
ing, we found out that a faulty feature in the MTK frame-
work filtered the recent version of PERCs. Usually, a field
sensor detects whether the tangible is on the tabletop or not.
Additionally, the light sensor was brought in as a backup
solution for this purpose. But the latest software running
on the micro controller of the tangible was not compatible.
By removing this function from the MTK, we were able to
solve this problem. Another problem was the transmitted
flood of data via Bluetooth. The tangible sent its informa-
tion many times per seconds. Using only a handful of them
was no problem at all, but TangibleMike was designed to
support up to 20–30 tangibles or even more (if supported
by the tabletop). Using this many tangibles could lead to
serious performance issues. Since the tangibles are mainly
straying at the same place, requesting the needed informa-
tion by the application would reduce the data flood.

In order to eliminate this and several other small issues, the Renewal of the
tangiblesinner life of the tangibles is currently being renewed. The

tangible benefits from this remake since new functionalities
will be added. The new design includes a power switch
and a universal USB port. Currently, it is only possible to
power off or reset the tangible by unplugging a connector.
This method was very inconvenient and time–consuming
when dealing with a higher number of tangibles. Imple-
menting the switch would simplify this process. The uni-
versal USB port could be used both for charging the tan-
gible and also for updating the software of the micro con-
troller. At this point, a special adaptor is needed to charge
the battery and an additional micro controller to update the
software. However, the renewal of the tangibles is not part
of this thesis and won’t be further discussed.

Since the tangibles are still in development, it is not possi- PERCs are still not
ready for use in
combination with
TangibleMike

ble to use them in combination with TangibleMike. A cus-
tomized prototype of them was working with our appli-
cation, but it is still uncertain if a greater number of them
will work smoothly with our application. We tested four of
them simultaneously and could not detect any issues, but
we already experienced the mentioned problem in relation
to the powering of the tangibles. It was time–consuming
to power on and reset them. Up to this point, student as-

30 4 Application

sistants built the tangibles and technical issues while sol-
dering could not be ruled out. But the built process will
be outsourced to a manufacture in order to prevent techni-
cal issues and reduce the size of the inner life. Once this
is done, we can test the compatibility with our application
further and perform an extensive study to evaluate the us-
age of tangibles.

4.1.3 Tabletop

The MTK framework by Linden [2014] was mainly createdCapacitive
multi–touch tabletop and tested on a 55” Microsoft Surface hub and after the

small adjustment has proven to be reliable regarding the
recognition of the tangibles. Therefore, we used the same
model for this thesis. The tabletop has a capacitive multi–
touch screen and detects up to 100 touch points at the same
time. Furthermore, the tabletop has an integrated and full–
fledged computer. However, we only captured the touch
points using the screen and passed them to our application
that was running on an iMac. The developers designated
the tabletop to be used in an upright position. For our pur-
pose, however, a special frame was built and the tabletop
was mounted on top of the frame in order to use it in a hor-
izontal position (figure 4.2).

4.2 Software

In this section we will describe the latest working versionThird iteration of the
DIA cycle of our application TangibleMike in detail. The application is

part of the third iteration of the DIA cycle. This iteration is
based on the prior iterations and eliminates the problems
and misunderstandings of the paper prototypes. In section
4.2.1, we will detail the changes of the design between the
latest paper prototype and the actual application. Section
4.2.2 will describe the underlying architecture of our appli-
cation and how the individual parts collaborate with each
other.

4.2 Software 31

Figure 4.2: 55” Microsoft Surface Hub lying on a specially
constructed frame.

4.2.1 Design

The latest version of our application consists of two differ- TangibleMike
consists of two
different game
modes

ent game modes. Both modes only differ in the variant form
of tangibles, everything else is equal. The first mode uses
”virtual” tangibles, just like Lightbot. The user is dragging
the tangibles from the pool (1) in figure 4.3 to the program-
ming areas (2) or (3). In the second mode PERCs are used
as tangibles and therefore the pool of virtual tangibles (1) is
deactivated. The user can choose the mode in the options
menu. We implemented the virtual mode in order to evalu-
ate the real tangible. Performing a study with real tangibles
only would provide results, but without any reference val-
ues we wouldn’t be able to make a statement whether the
results are positive or negative. And since we want to eval-
uate if tangibles can motivate young students to learn pro-
gramming, the participants will play both modes one after
another and compare them afterwards.

In the evaluation of the second paper prototype we stated Modified scenario of
the gamethat the participants had struggle to find the right time to

use the repair–tangible. It was not clear if the tangible had

32 4 Application

Figure 4.3: This is the UI of the third iteration of the DIA cycle and the latest version
of the application.

to be used before stepping on the broken road or after-
wards. Therefore, we thought of a slightly different and,
hopefully, more intuitive scenario. In our new scenario,
the protagonist Mike still has to reach the finish. But now,
instead of broken roads, there are dirty roads Mike has to
clean in order to accomplish the level. The conceptual dif-
ference here is that something broken cannot be used until
it is repaired. But it is still possible to use something dirty
or step on a dirty road. Therefore, Mike has to step on the
dirty road first and clean it afterwards. The repair–tangible
was changed to the more suitable clean–tangible with an
appropriate symbol.

Participants initially complained that the angular design ofNew symbol for the
turn–tangible the arrow would indicate a turn movement with a closing

forward movement, therefore we again changed the turn–
tangible’s symbol The second symbol with the four circular
arrows was associated as a loop–tangible. After looking up
several symbols for a turn movement in different games,
we adopted finally the symbol from Lightbot. Lightbot was
released in 2008 and, since then, has proved to be success-
ful. The new symbol combines the single arrow of our first

4.2 Software 33

attempt with the round shape of our second one.

The participants proposed to rearrange the whole UI. In ev- Newly arranged UI
for TangibleMikeery single level the main function has to be used to create a

program, even if it is merely used to call the P1 or P2 sub
functions, containing the remaining commands. Further-
more, the control buttons (4) in figure 4.3 are also used in
every level to execute the built program. Since we are using
a 55” tabletop, it may be hard to reach the constantly used
elements, especially for smaller people. Hence, we moved
the control buttons to the lower part of the UI and switched
the main function with the sub functions. The playing field
does not require any actions from the user (except for the
built program) and therefore remained at the same place.

4.2.2 Architecture

The architecture of our applications is composed of sev- The architecture
consists of six partseral independent parts. In this section, each of these parts

will be explained and pointed out how they work collabo-
ratively with each other. The parts are as follows:

• storyboard

• playing field

• tangibles

– virtual

– real

• programming grids

• program execution

• data logging

Storyboard. The storyboard is the base frame of the appli- Storyboard as the
base frame of the
application

cation and controls the flow of the play. To do so, we are us-
ing the State Machines from Apple’s GameplayKit [2016].
Each scene in figure 4.4 stands for a different state. Each

34 4 Application

Figure 4.4: All scenes in TangibleMike: (1) options menu, (2) main menu, (3) game
finished, (4) pause menu, (5) game scene, (6) level solved.

time the state machine changes to another state, the accord-
ing scene is shown to the user. Scene (2) is the main menu
from which the user can start the game or head to the op-
tions menu (1). In the options menu, the user can choose
between real or virtual tangibles. Furthermore, the user ID
can be set for the purpose of logging user data. Scene (5)
is the actual game and from this state it is only possible to
enter the pause menu (4) by touching the according but-
ton or the game over scene (5) by finishing the level. In-
side the paused state, the level can be resumed, restarted,
or aborted by moving to the main menu. The game over
scene shows two different messages depending on whether
the final level was solved (3) or a previous one (6). Solving
a level prior to the final one gives the option to abort the
game, repeat the last solved level or move to the next one.
Finishing the last level of the game gives only the option to
move to the main menu.

Playing field. The playing field is a multidimensional ar-Multidimensional
array as the playing

field
ray with eight rows and nine columns. The dimension can
be easily changed by modifying the appropriate variable
in the code. For the existing levels, the current size was
sufficient. Each cell of the resulting grid is an object and
stores several important information. These are: own posi-
tion and size, whether it is active or not, possible directions
if active, pointers to all direct and active neighbor–cells, and

4.2 Software 35

Figure 4.5: This is the resulting level from the code in List-
ing 4.1

flag if it is the last cell on the road (finish).

A cell can be activated by assigning a sprite to its object. Activate a cell by
assigning a spriteThere are eleven different street segments and each of

them comes with a second variant. The distinction of each
segment is made between a clean and a dirty street. The
dirty variant has an additional sprite representing dirt. In
order to simplify the creation of the level and prevent logic
errors by creating wrong links between the cells, most of
the procedure is atomized. In this version, the creating of a
new level still has to be done in the code. An example for a
level can be seen in the code below.

Listing 4.1: Code for the first level of TM
1 i f (number == 1)
2 {
3 [[s e l f returnCellAtRow : 3 andColumn : 2] addTextureWithNameToCell :@”01”] ;
4 { . . .}
5
6 d i f f i c u l t y S e t t i n g s F o r L e v e l = [NSDictionary dictionaryWithObjectsAndKeys :
7 [NSNumber numberWithInt : 3] , @”Forward” ,
8 [NSNumber numberWithInt : 0] , @”Turn Right ” ,
9 [NSNumber numberWithInt : 0] , @”Turn L e f t ” ,

10 [NSNumber numberWithInt : 0] , @”Loop” ,
11 [NSNumber numberWithInt : 0] , @”Clean” ,
12 [NSNumber numberWithInt : 0] , @”P1” ,
13 [NSNumber numberWithInt : 0] , @”P2” ,
14 [NSNumber numberWithInt : 3] , @”MainGrid” ,
15 [NSNumber numberWithInt : 0] , @”P1Grid” ,
16 [NSNumber numberWithInt : 0] , @”P2Grid” , n i l] ;
17
18 f i r s t C e l l = [s e l f returnCellAtRow : 3 andColumn : 2] ;
19 l a s t C e l l = [s e l f returnCellAtRow : 3 andColumn : 5] ;
20 }

Line 3 shows exemplarily how sprites are assign to cells and Purposes of the
program instructionsthus activate them. The following lines set the difficulty of

the first level by limiting the amount of usable tangibles
and the number of active cells in the respective program-

36 4 Application

ming grids. Lines 18–19 set the first and last cell. This has to
be declared since the builder Mike starts at the first cell and
the level is finished, when all cells are cleaned and the last
cell is reached. Applying this configuration, the level in fig-
ure 4.5 is created. As already said, the connections between
the cells are set automatically and therefore the creator does
not have to take any more actions.

Tangibles. We moved the most used elements to the lowerVirtual tangibles
area of the screen, therefore, we also positioned the virtual
tangibles in this area. In figure 4.3 (1) they can be seen on
the lower left side, right above the control buttons. The
number of usable tangibles is predefined in the level editor
and the corresponding tangibles are drawn on the scene.
Each tangible has a counter, displaying the number of re-
maining tangibles of each kind. After the last one of a kind
is used, the starting position remains empty, until one of
used tangibles is removed from the programming grid. The
user can move the tangibles by dragging and releasing the
touch. After releasing the touch, there are three options. If
the tangible is inside one of the programming grids, it is
assigned to the cell next of its center position. If the cell
is occupied, the tangible is reset to its starting position on
the lower left side of the scene. Finally, if the tangible is re-
leased outside one of the programming grids, it is automat-
ically reset to its starting position. Additionally, to remove
a tangible from the programming grid, the user just has to
drag it outside the grid. The only exception is the loop–
tangible. As already explained, it possesses an own area,
where the number of iterations is set. This area is behaving
like programming grid and only accepts loop–tangibles.

The real tangibles, however, reside next to the tabletop, inReal tangibles
a small basket, for example. Every time a real tangible is
placed on the screen, the number of remaining tangibles of
this kind is decremented. At this point, there is no visi-
ble counter of remaining tangibles. Actually this is done by
providing the maximum number of real tangibles individu-
ally for each level. As already mentioned, the loop–tangible
has its own area to set the number of iterations. Currently,
the number of iterations is reset, when the loop–tangible is
lifted from the screen. This can be changed in future work,
so that it is stored in the application for each loop–tangible

4.2 Software 37

until the application is exited.

Programming grids. Each programming grid consists of a Each grid is an array
of cellssingle array and each position in the array contains a cell.

Just as the cells from the playing field, these cells also stores
a number of information needed. First of all, each cell can
be active or inactive. Inactive cells are used to set a higher
difficulty by reducing the overall number of available cells
in the grid. Tangibles cannot be placed inside inactive cells
and are reset to its starting position if tried. When deacti-
vating a cell, every following cell in the respective grid is
also inactive. When successfully placing a tangible inside a
cell, the border–color is set. An empty cell has no glowing
border. A cell with a tangible has a light blue border and
the loop–tangible is highlighted with a green border–color
as well as all tangibles inside a loop. This is done to differ-
entiate the tangibles that are inside a loop (and inside the
loop–block) and the ones that are not.

Initially, we hadn’t specified how to assign tangibles to a Latest attempt for the
loop–tangibleloop–block. A possibility was to extend the loop–block by

manually marking the cells, but we decided to do this au-
tomatically to lighten the user’s workload. When a new
loop–tangible is assigned to a cell, the next cell is automat-
ically added to the loop–block. However, when the next
cell is already occupied, all following cells are added to the
loop–block until a free cell or the last active cell is reached.
By skipping the last (free) cell of the loop–block, the loop
is closed in a transferred sense. When removing the loop–
tangible, all green highlighted cells are turned back to nor-
mal (no color or blue).

From the beginning, we deactivated the possibility to use Recursion was
deactivatedrecursion. The recursion is an advanced programming con-

cept and we are concentrating on the basics. But still it
would be possible to implement it. At the moment, we dis-
abled the possibility to place a P1 or P2 tangible in any of
the sub functions. By enabling it, recursion would be pos-
sible. Since the execution stops when the finish is reached
or the builder Mike steps outside the street, no break con-
dition would be needed. But the drawback would be that
once the recursion has started no further tangible could be
executed after the recursion.

38 4 Application

Program execution. The execution of the program isProcedure of the
program execution started by touching the play button on the lower left side of

the scene. Once this is done, all elements except the pause
and stop button are deactivated. During the execution, the
user can still enter the pause menu. By doing this, the ex-
ecution is aborted. By touching the stop button, the exe-
cution is also aborted and Mike is reset to his starting po-
sition. In a real IDE, changes to the code won’t affect the
actual execution and therefore we deactivated all other el-
ements. Since it is not possible to prevent the user from
moving the real tangibles, a snapshot of the current state of
all programming grids is made. All used tangibles are writ-
ten to a new array that is used by an execution algorithm to
execute each action. The outcome of the created program is
defined during the execution. In other words, at the begin-
ning of the execution it is not certain if the program will fail
or succeed. Before each forward movement, the execution
algorithm checks whether the next movement is possible
or not. If not, the program fails and Mike is reset to his
starting position and an animated red X informs the user.
If the next movement is possible, the algorithm executes it
and checks afterwards if the finish is reached. That being
the case, it is checked if all dirty streets are cleaned. If so,
the level is finished and the application moves to the next
scene. Otherwise, the animated red X is shown and Mike is
reset to his starting position. Using the clean–tangible mul-
tiple times on the same spot does not affect the outcome of
the level. This means that the user can’t fail by cleaning the
same spot over and over again. On a clean street, this action
is ignored, since people can sweep a clean spot repeatedly
in real life, even if it doesn’t serve a purpose.

Data logging. Due to the lack of enough real tangibles, weData logging is
already implemented

in the latest version
still cannot perform an extended study. But as a matter
of prudence, we have already implemented a mechanism
to log important data for the upcoming study. Since it is
possible to change the identifier of the test person, we can
differentiate the results of each test person without having
to close the application and save the results manually. For
each individual identifier (starting by 1), two comma–
separated value (CSV) files are created.

4.2 Software 39

The first file stores the results for each level (one dataset per Two separate files for
logginglevel). Each dataset contains the following items: times-

tamp, user ID, level number, start and ending time, num-
ber of failures, number of each tangible and the snapshots
of each programming grid. The second CSV file contains
information about each pass of each level. Every time the
play button is touched, a new dataset is created and ap-
pended to the file. The second file contains the follow-
ing items: timestamp, user ID, level number, iteration, the
number of used tangibles and also a snapshot of each pro-
gramming grid. By using the CSV file format, the results of
the study can be directly imported into a software package
for statistical analysis.

41

Chapter 5

Evaluation

5.1 Study Design

At the end of the third iteration of the DIA cycle, we once Evaluating the third
iteration of the DIA
cycle

more performed a study to evaluate our application. Ini-
tially, we planned to involve real tangibles in our study,
but as already mentioned in section 4.1.2, the tangibles are
still being improved and we hadn’t a sufficient number of
working ones. Therefore, we altered our initial plan and
reduced the extent of this study. Instead of evaluating the
benefits of using tangibles instead of graphical objects, we
continued to concentrate on improving the UI of Tangi-
bleMike.

Since the application’s general functions are working prop- Study setup
erly (including the tangible support), we concentrated on
smaller bugs, the gameplay, and the appearance of the UI.
The best method to find those bugs and to gather opinions
is to let the participants play the actual game. This is a
common method and used by game designers and software
engineers, respectively. Therefore, we created ten different
levels.

We created the levels, just as for the extended study, with Level design
an increasing difficulty. The created levels can be seen in
the Appendix A. The first five levels intend to introduce
all the different kinds of tangibles and are kept short and

42 5 Evaluation

simple. Although level five introduced the sub functions,
level six showed an example of how they can be used in a
program. From level seven onwards, the user had to use
a combination of different programming concepts to solve
the level.

After signing the consent form, the study continued withProcedure of the
study the explanation of the subject, the goal, and the procedure

of the study. After answering potential questions, the user
started playing TangibleMike. In the first level, we gave a
detailed explanation of the UI and explained how to create
and execute a program and how to solve a level. Further-
more, in the first five levels, we explained the functions of
each new tangible. This was necessary, since we haven’t
implemented tooltips and an introduction yet. The partici-
pant always had the possibility to ask us questions or abort
the study. During the game, we notated potential com-
ments of the user. After completing the game, the user had
to fill out a short questionnaire (Appendix A).

5.2 Results

A total of eight participants, aged between 21–31 (M = 24.5,Eight subjects with
programming

expertise
participated in the

study

one female). took part in this study. All of them were uni-
versity students and, except for one, studying computer
science. The remaining participant studied technical com-
munication with computer science as the second subject.
Furthermore, all participants had between 3–15 years (M
= 7.4) of experience in computer programming and rated
their own experience on a scale of 1 to 7, where 1 is very
unexperienced and 7 very experienced, with an average of
5.25. After the personal questions, the questionnaire split
into two segments. The first segment covered questions
about the application in general whilst in the second seg-
ment the participant had to rate the different tangibles.

In the first segment the participants had to rate the im-Application in
general plementation of the scenario, indicate whether they under-

stood the task and could identify the learning objective, in-
dicate if the UI was generally clear, and rate the overall im-
pression of the application. The results are shown in figure

5.2 Results 43

Figure 5.1: Results of the questionnaire’s first segment.

5.1. In general, the application made a good impression on
the participants. All participants understood the assigned
task and could identify the learning objective of each level.
The UI, however, will need further refinements in the fol-
lowing iterations of the DIA cycle. The border between P1’s
and P2’s programming grids, for example, was ambiguous
and hard to see. Furthermore, the UI needs a remake to
improve the visual appeal.

Figure 5.2: Results of the questionnaire’s second segment.

44 5 Evaluation

In the second segments we asked to participants to rateComprehension of
the tangibles the comprehension of each tangible (figure 5.2). As ex-

pected, the forward–tangible and the P1–/P2–tangibles
were highly rated. Participants of both previous studies al-
ready had no problems understanding these tangibles. Af-
ter the recent change of the scenario the clean–tangible was
also maxed out. However, the turn–tangible and the loop–
tangible still need further refinements. Despite the expla-
nation of the loop–tangible, it still wasn’t clear how to set
the number of iterations. Additionally, this process is un-
intuitive. Finally, some participants stated that the turn–
tangible is missing an indicator that shows how far Mike is
rotating.

5.3 Discussion

The three performed studies revealed several weaknesses
of TangibleMike. We could overcome most of them by im-
plementing the participant’s suggestions. However, some
of them like the loop–tangible and turn–tangible are still
present. At the moment it is not possible to tell if tangi-
bles can benefit the learning process of programming be-
ginners. To perform the initially planned study we have to
overcome the remaining weaknesses and wait for the com-
pletion of the PERCs.

However, we could still collect a lot of feedback in these
three studies. We could confirm that all parts of our appli-
cations are working. The support for PERCs was also im-
plemented and successfully tested with some prototypes.
In order to test the limitation of the Bluetooth connection, a
greater number of tangibles is needed.

The participants stated after the study that they had a nice
time playing TangibleMike and offered to participate in the
upcoming study. It will be interesting to see if we can mo-
tivate High School students the same way.

45

Chapter 6

Summary and Future
Work

To conclude this thesis, we will summarize it and name
ideas, how future work could improve our application and
improve the learning process of programming beginners.

6.1 Summary

In order to address the shortage of IT specialists by mo-
tivating High School students to consider a career in the
IT sector, we created an application to teach programming
beginners the fundamental concepts of programming. In
our application TangibleMike we are using PERC tangibles
on capacitive multi–touch screens. TangibleMike is a game,
where the user navigates a figure called Mike and solves
programming tasks. Instead of using programming code,
the user aligns blocks that represent different commands.
These blocks are either graphical objects or tangibles. We
created two versions in order to evaluate the tangible’s ben-
efits over graphical objects.

However, we couldn’t perform the initially planned study
due to technical issues of the tangibles. Instead, we further
concentrated on improving the application and prepare it

46 6 Summary and Future Work

for the final study. We asked several people with program-
ming expertise to play TangibleMike and afterwards rate the
game in general and each tangible in particular.

The study showed that all parts of our application are
working. Additionally, we could successfully test our ap-
plication with several prototypes of the PERC tangible. Tan-
gibleMike made a good overall impression and all partic-
ipants understood the given tasks and could identify the
learning objective of each level. Furthermore, the partici-
pants comprehended most of the tangibles. Only the loop–
tangible and turn–tangible caused difficulties to some par-
ticipants.

6.2 Future work

We already mentioned that the PERCs are being renewed
and with the new tangibles we will able to perform the
comparison between the tangible and the non–tangible ver-
sion of TangibleMike.

However, our application still needs refinements before the
study can be performed. The symbol of the turn–tangible
has to be clarified and the process of setting the loop itera-
tions changed. We could add an additional indicator to the
turn–tangible that shows the number of degrees it is turn-
ing.

In this thesis we presented the idea to attach an analog ro-
tary controller to the tangible to set the number of itera-
tions. This can be realized in further iterations. In order to
have a consistent loop–tangible in both versions of our ap-
plication, the virtual variant of the loop–tangible also has
to be adjusted. In the virtual version the number could be
set by performing a multi–touch rotary gesture directly on
the loop–tangible.

In the latest version of TangibleMike the loop–block is au-
tomatically enlarged. Participants of the study stated that
it would be better to set the size manually. We also no-
ticed that participants intended to place a tangible outside

6.2 Future work 47

the loop–block but accidentally placed them inside it. The
manual enlargement could be achieved by dragging the
area with two fingers from the first cell of the loop–block
to the desired last cell.

New tasks and other programming concepts can be added
to our application. At this point we deactivated the possi-
bility to use loops inside other loops and recursion. Acti-
vating them would provide a new level of complexity.

Finally, our application needs a visual refinement. The lat-
est version is still a prototype to test the implemented el-
ements of the game. In order to distribute TangibleMike to
High School students, it is necessary to improve the appear-
ance of the UI.

49

Appendix A

Appendix for the
Application Study

Appendix A contains the levels of TangibleMike and ques-
tionnaire used for the study of the third iteration of the DIA
cycle.

Figure A.1: Level 1 – objective: forward

50 A Appendix for the Application Study

Figure A.2: Level 2 – objective: turn

Figure A.3: Level 3 – objective: loops

Figure A.4: Level 4 – objective: clean

51

Figure A.5: Level 5 – objective: sub functions

Figure A.6: Level 6 – objective: combination

Figure A.7: Level 7 – objective: combination

52 A Appendix for the Application Study

Figure A.8: Level 8 – objective: combination

Figure A.9: Level 9 – objective: combination

Figure A.10: Level 10 – objective: combination

53

Fi
gu

re
A

.1
1:

Fi
rs

tp
ag

e
of

th
e

qu
es

ti
on

na
ir

e
an

d
in

fo
rm

at
io

n
fo

r
th

e
te

st
us

er
.

54 A Appendix for the Application Study

Fi
gu

re
A

.1
2:

Se
co

nd
pa

ge
of

th
e

qu
es

ti
on

na
ir

e.
Pe

rs
on

al
de

ta
ils

of
th

e
te

st
us

er
.

55

Fi
gu

re
A

.1
3:

Th
ir

d
pa

ge
of

th
e

qu
es

ti
on

na
ir

e.
G

en
er

al
qu

es
ti

on
s

ab
ou

tt
he

ap
pl

ic
at

io
n.

56 A Appendix for the Application Study

Fi
gu

re
A

.1
4:

Fo
ur

th
pa

ge
of

th
e

qu
es

ti
on

na
ir

e.
Q

ue
st

io
ns

ab
ou

te
ac

h
ta

ng
ib

le
in

pa
rt

ic
ul

ar
.

57

Bibliography

Gary Barrett and Ryomei Omote. Projected-capacitive
touch technology. Information Display, 26(3):16–21, 2010.
ISSN 03620972.

David Beede, Tiffany Julian, and David Langdon. Women
in STEM : A Gender Gap to Innovation. U.S. Depart-
ment of Commerce, Economics and Statistics Administration,
pages 1–11, 2011. ISSN 1556-5068. doi: 10.2139/ssrn.
1964782.

Philipp Brauner, Thiemo Leonhardt, Martina Ziefle, and
Ulrik Schroeder. The effect of tangible artifacts, gen-
der and subjective technical competence on teaching pro-
gramming to seventh graders. In Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), volume
5941 LNCS, pages 61–71, 2010. ISBN 3642113753. doi:
10.1007/978-3-642-11376-5 7.

Bundesagentur für Arbeit. Der Arbeitsmarkt in
Deutschland - Fachkräfteengpassanalyse, 2016.
URL https://statistik.arbeitsagentur.de/
Statischer-Content/Arbeitsmarktberichte/
Fachkraeftebedarf-Stellen/Fachkraefte/
BA-FK-Engpassanalyse-2016-06.pdf.

Tzuwen Chang, Neng-Hao Yu, Sung-Sheng Tsai, Mike Y
Chen, and Yi-Ping Hung. Clip-on gadgets: Ex-
pandable Tactile Controls For Multi-touch Devices.
In Proceedings of the 14th international conference on
Human-computer interaction with mobile devices and
services companion - MobileHCI ’12, page 163, 2012.
ISBN 9781450314435. doi: 10.1145/2371664.2371699.
URL http://doi.acm.org/10.1145/2371664.

https://statistik.arbeitsagentur.de/Statischer-Content/Arbeitsmarktberichte/Fachkraeftebedarf-Stellen/Fachkraefte/BA-FK-Engpassanalyse-2016-06.pdf
https://statistik.arbeitsagentur.de/Statischer-Content/Arbeitsmarktberichte/Fachkraeftebedarf-Stellen/Fachkraefte/BA-FK-Engpassanalyse-2016-06.pdf
https://statistik.arbeitsagentur.de/Statischer-Content/Arbeitsmarktberichte/Fachkraeftebedarf-Stellen/Fachkraefte/BA-FK-Engpassanalyse-2016-06.pdf
https://statistik.arbeitsagentur.de/Statischer-Content/Arbeitsmarktberichte/Fachkraeftebedarf-Stellen/Fachkraefte/BA-FK-Engpassanalyse-2016-06.pdf
http://doi.acm.org/10.1145/2371664.2371699$\delimiter "026E30F $nhttp://dl.acm.org/citation.cfm?doid=2371664.2371699
http://doi.acm.org/10.1145/2371664.2371699$\delimiter "026E30F $nhttp://dl.acm.org/citation.cfm?doid=2371664.2371699
http://doi.acm.org/10.1145/2371664.2371699$\delimiter "026E30F $nhttp://dl.acm.org/citation.cfm?doid=2371664.2371699

58 Bibliography

2371699$\delimiter"026E30F$nhttp://dl.
acm.org/citation.cfm?doid=2371664.2371699.

Dieter Westerkamp - VDI Verein Deutscher Inge-
nieure. IT-Standort Deutschland: Mangel an IT-
Fachkräften gefährdet Wettbewerbsfähigkeit, 2012.
URL https://www.vdi.de/uploads/media/
2012-03-05{_}CeBIT-Statement{_}Westerkamp.
pdf.

Bitkom e.V. In Deutschland fehlen 41,000
IT-Experten, 2014. URL https://www.
bitkom.org/Presse/Presseinformation/
In-Deutschland-fehlen-41000-IT-Experten.
html.

G.W. Fitzmaurice, H. Ishii, and W.a.S. Buxton. Bricks: lay-
ing the foundations for graspable user interfaces. Proceed-
ings of the SIGCHI conference on Human factors in comput-
ing systems, pages 442–449, 1995. ISSN 00220221. doi:
10.1145/223904.223964. URL http://portal.acm.
org/citation.cfm?id=223964.

John D. Gould and Clayton Lewis. Designing for Usability:
Key Principles and What Designers Think. Communica-
tions of the ACM, 28(3):300–311, 1985. ISSN 00010782. doi:
10.1145/3166.3170.

Apple Inc. GameplayKit - State Machines, 2016. URL
https://developer.apple.com/library/
ios/documentation/General/Conceptual/
GameplayKit{_}Guide/StateMachine.html.

Cagin Kazimoglu, Mary Kiernan, Liz Bacon, and Lachlan
Mackinnon. A Serious Game for Developing Compu-
tational Thinking and Learning Introductory Computer
Programming. Procedia - Social and Behavioral Sciences, 47:
1991–1999, 2012. ISSN 18770428. doi: 10.1016/j.sbspro.
2012.06.938. URL http://www.sciencedirect.
com/science/article/pii/S1877042812026742.

Caitlin Kelleher and Randy Pausch. Lowering the barriers
to programming. ACM Computing Surveys, 37(2):83–137,
2005. ISSN 03600300. doi: 10.1145/1089733.1089734.

http://doi.acm.org/10.1145/2371664.2371699$\delimiter "026E30F $nhttp://dl.acm.org/citation.cfm?doid=2371664.2371699
http://doi.acm.org/10.1145/2371664.2371699$\delimiter "026E30F $nhttp://dl.acm.org/citation.cfm?doid=2371664.2371699
http://doi.acm.org/10.1145/2371664.2371699$\delimiter "026E30F $nhttp://dl.acm.org/citation.cfm?doid=2371664.2371699
http://doi.acm.org/10.1145/2371664.2371699$\delimiter "026E30F $nhttp://dl.acm.org/citation.cfm?doid=2371664.2371699
https://www.vdi.de/uploads/media/2012-03-05{_}CeBIT-Statement{_}Westerkamp.pdf
https://www.vdi.de/uploads/media/2012-03-05{_}CeBIT-Statement{_}Westerkamp.pdf
https://www.vdi.de/uploads/media/2012-03-05{_}CeBIT-Statement{_}Westerkamp.pdf
https://www.bitkom.org/Presse/Presseinformation/In-Deutschland-fehlen-41000-IT-Experten.html
https://www.bitkom.org/Presse/Presseinformation/In-Deutschland-fehlen-41000-IT-Experten.html
https://www.bitkom.org/Presse/Presseinformation/In-Deutschland-fehlen-41000-IT-Experten.html
https://www.bitkom.org/Presse/Presseinformation/In-Deutschland-fehlen-41000-IT-Experten.html
http://portal.acm.org/citation.cfm?id=223964
http://portal.acm.org/citation.cfm?id=223964
https://developer.apple.com/library/ios/documentation/General/Conceptual/GameplayKit{_}Guide/StateMachine.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/GameplayKit{_}Guide/StateMachine.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/GameplayKit{_}Guide/StateMachine.html
http://www.sciencedirect.com/science/article/pii/S1877042812026742
http://www.sciencedirect.com/science/article/pii/S1877042812026742

Bibliography 59

Michael J. Lee, Faezeh Bahmani, Irwin Kwan, Jilian Laferte,
Polina Charters, Amber Horvath, Fanny Luor, Jill Cao,
Catherine Law, Michael Beswetherick, Sheridan Long,
Margaret Burnett, and Andrew J. Ko. Principles of
a debugging-first puzzle game for computing educa-
tion. In Proceedings of IEEE Symposium on Visual Lan-
guages and Human-Centric Computing, VL/HCC, pages 57–
64, 2014. ISBN 9781479940356. doi: 10.1109/VLHCC.
2014.6883023.

René Linden. Multitouchkit: A Software Framework for Touch
Input and Tangibles on Tabletops and Mobile Devices. PhD
thesis, 2014. URL https://hci.rwth-aachen.de/
materials/publications/linden2015a.pdf.

Linda M McIver and Damian Conway. GRAIL : A Zeroth
Programming Language. Design, 1999.

Mitchel Resnick, John Maloney, Andrés Monroy-
Hernández, Natalie Rusk, Evelyn Eastmond, Karen
Brennan, Amon Millner, Eric Rosenbaum, J a Y Silver,
Brian Silverman, and Yasmin Kafai. Scratch: Pro-
gramming for All. Communications of the ACM, 52:
60–67, 2009. ISSN 00010782. doi: 10.1145/1592761.
1592779. URL http://search.ebscohost.
com/login.aspx?direct=true{&}db=
bth{&}AN=45021156{&}site=eds-live$\
delimiter"026E30F$nfiles/130/RESNICKetal.
-2009-ScratchProgrammingforAll..pdf.

Statistisches Bundesamt. Datenreport 2016, 2016. URL
https://www.destatis.de/DE/Publikationen/
Datenreport/Downloads/Datenreport2016.
pdf?{_}{_}blob=publicationFile.

Hideyuki Suzuki and Hiroshi Kato. Interaction-level sup-
port for collaborative learning: AlgoBlock—an open pro-
gramming language. In The first international conference on
computer support for collaborative learning, pages 349–355,
1995. ISBN 0-8058-2243-7.

Simon Voelker, Kosuke Nakajima, Christian Thoresen,
Yuichi Itoh, Kjell Ivar \Overg\aard, and Jan Borchers.
PUCs: Detecting Transparent, Passive Untouched Ca-
pacitive Widgets on Unmodified Multi-touch Displays.

https://hci.rwth-aachen.de/materials/publications/linden2015a.pdf
https://hci.rwth-aachen.de/materials/publications/linden2015a.pdf
http://search.ebscohost.com/login.aspx?direct=true{&}db=bth{&}AN=45021156{&}site=eds-live$\delimiter "026E30F $nfiles/130/RESNICK et al. - 2009 - Scratch Programming for All..pdf
http://search.ebscohost.com/login.aspx?direct=true{&}db=bth{&}AN=45021156{&}site=eds-live$\delimiter "026E30F $nfiles/130/RESNICK et al. - 2009 - Scratch Programming for All..pdf
http://search.ebscohost.com/login.aspx?direct=true{&}db=bth{&}AN=45021156{&}site=eds-live$\delimiter "026E30F $nfiles/130/RESNICK et al. - 2009 - Scratch Programming for All..pdf
http://search.ebscohost.com/login.aspx?direct=true{&}db=bth{&}AN=45021156{&}site=eds-live$\delimiter "026E30F $nfiles/130/RESNICK et al. - 2009 - Scratch Programming for All..pdf
http://search.ebscohost.com/login.aspx?direct=true{&}db=bth{&}AN=45021156{&}site=eds-live$\delimiter "026E30F $nfiles/130/RESNICK et al. - 2009 - Scratch Programming for All..pdf
https://www.destatis.de/DE/Publikationen/Datenreport/Downloads/Datenreport2016.pdf?{_}{_}blob=publicationFile
https://www.destatis.de/DE/Publikationen/Datenreport/Downloads/Datenreport2016.pdf?{_}{_}blob=publicationFile
https://www.destatis.de/DE/Publikationen/Datenreport/Downloads/Datenreport2016.pdf?{_}{_}blob=publicationFile

60 Bibliography

Proceedings of the 2013 ACM International Conference on
Interactive Tabletops and Surfaces, pages 101–104, 2013.
doi: 10.1145/2512349.2512791. URL http://doi.acm.
org/10.1145/2512349.2512791.

Simon Voelker, Christian Cherek, Jan Thar, Thorsten Kar-
rer, Christian Thoresen, Kjell Ivar Øvergård, and Jan
Borchers. PERCs: Persistently Trackable Tangibles on
Capacitive Multi-Touch Displays. Proceedings of the
28th Annual ACM Symposium on User Interface Software
& Technology - UIST ’15, pages 351–356, 2015. doi:
10.1145/2807442.2807466. URL http://dl.acm.org/
citation.cfm?id=2807442.2807466.

M. Weiss, J. Wagner, Y. Jansen, R. Jennings, R. Khoshabeh,
J.D. Hollan, and J. Borchers. SLAP Widgets: Bridging
the Gap Between Virtual and Physical Controls on Table-
tops. In Proceedings of the 27th international conference on
Human factors in computing systems, pages 481–490, 2009.
ISBN 9781605582467. doi: http://doi.acm.org/10.1145/
1518701.1518779.

Thomas G. Zimmerman, Joshua R. Smith, Joseph a. Par-
adiso, David Allport, and Neil Gershenfeld. Apply-
ing electric field sensing to human-computer interfaces.
In Proceedings of the SIGCHI conference on Human fac-
tors in computing systems - CHI ’95, number May, pages
280–287, 1995. ISBN 0201847051. doi: 10.1145/223904.
223940. URL http://portal.acm.org/citation.
cfm?doid=223904.223940.

http://doi.acm.org/10.1145/2512349.2512791
http://doi.acm.org/10.1145/2512349.2512791
http://dl.acm.org/citation.cfm?id=2807442.2807466
http://dl.acm.org/citation.cfm?id=2807442.2807466
http://portal.acm.org/citation.cfm?doid=223904.223940
http://portal.acm.org/citation.cfm?doid=223904.223940

61

Index

AlgoBlock, 7
analog controller, 26
Apple, 26
architecture, 33

Bluetooth low energy, 27
Bricks, 7

capacitive coupling, 12
Clip-on gadget, 11
compiler, 2
CSV, 38

data logging, 38
DIA cycle, ix, 15, 30
Diffuse Illumination, 10

framework, 26, 28
Frustrated Total Internal Reflection, 11

GaussStones, 11
GRAIL, 6

Hall-sensor, 11
hardware, 25
High School students, 47

IDE, 26
indicator, 46
infrared, 10
iteration, 21
iterative process, 15

JSON, 14

LEGO Mindstorm NXT, 7
Lightbot, 17, 20

Macintosh, 26
micro controller, 28

62 Index

Microsoft Surface Hub, 26
MTK, 26, 29

Objective-C, 26
operating system, 25
Osmo, 9

PC, 26
PERCs, 28
persistently trackable, 26
playing field, 34
Primo, 9
program execution, 38
programming grid, 37
programming language, 2
Project Bloks, 9
PUC, 12

recursion, 23
rotary controller, 27
rotary gesture, 46

Scratch, 8
second paper prototype, 27
semantics, 2
SLAP, 10
source code editor, 2
stationary touch, 26
storyboard, 33
syntax, 2

tooltips, 21

WiFi, 27
wireless, 27

Xcode, 26

Typeset August 22, 2016

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Related work
	Learn Computer Programming
	Teaching Systems
	Tangibles

	Design
	Concept
	First Iteration
	Second Iteration

	Application
	Hardware
	Operating System
	Tangibles
	Tabletop

	Software
	Design
	Architecture

	Evaluation
	Study Design
	Results
	Discussion

	Summary and Future Work
	Summary
	Future work

	Appendix for the Application Study
	Bibliography
	Index

