Chair for Computer Science 10 (Media Computing and Human-Computer Interaction)

Fabric Faces: Printer-Aware Foldable Textile Structures

Bachelor's Thesis submitted to the Media Computing Group Prof. Dr. Jan Borchers Computer Science Department RWTH Aachen University

<mark>by</mark> Robert Rudnev

Thesis advisor: Prof. Dr. Jan Borchers

Second examiner: Prof. Dr.-Ing. Ulrik Schroeder

Registration date: 04.02.2022 Submission date: 07.06.2022

Eidesstattliche Versicherung Statutory Declaration in Lieu of an Oath

Name, Vorname/Last Name, First Name

Matrikelnummer (freiwillige Angabe) Matriculation No. (optional)

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/ Masterarbeit* mit dem Titel

I hereby declare in lieu of an oath that I have completed the present paper/Bachelor thesis/Master thesis* entitled

selbstständig und ohne unzulässige fremde Hilfe (insbes. akademisches Ghostwriting) erbracht habe. Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusätzlich auf einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die elektronische Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

independently and without illegitimate assistance from third parties (such as academic ghostwriters). I have used no other than the specified sources and aids. In case that the thesis is additionally submitted in an electronic format, I declare that the written and electronic versions are fully identical. The thesis has not been submitted to any examination body in this, or similar, form.

Ort, Datum/City, Date

Unterschrift/Signature

*Nichtzutreffendes bitte streichen

*Please delete as appropriate

Belehrung: Official Notification:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei Jahren oder mit Geldstrafe bestraft.

Para. 156 StGB (German Criminal Code): False Statutory Declarations

Whoever before a public authority competent to administer statutory declarations falsely makes such a declaration or falsely testifies while referring to such a declaration shall be liable to imprisonment not exceeding three years or a fine.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158 Abs. 2 und 3 gelten entsprechend.

Para. 161 StGB (German Criminal Code): False Statutory Declarations Due to Negligence

(1) If a person commits one of the offences listed in sections 154 through 156 negligently the penalty shall be imprisonment not exceeding one year or a fine.

(2) The offender shall be exempt from liability if he or she corrects their false testimony in time. The provisions of section 158 (2) and (3) shall apply accordingly.

Die vorstehende Belehrung habe ich zur Kenntnis genommen: I have read and understood the above official notification:

Ort, Datum/City, Date

Contents

	Abs	stract	xiii
	Übe	erblick	xv
	Ack	nowledgements	xvii
	Con	iventions	xix
1	Intr	oduction	1
2	Rela	ated work	5
	2.1	Clipped shapes creating 3d objects	5
	2.2	Archiving different surface properties with electrospinning	6
	2.3	Substituting 3D-Prints with laser cutters	8
	2.4	Relation to this work	9
3	Fab	ric Faces Cura Integration	11
	3.1	Blender plugin extension	11
	3.2	Cura plugin	14

		3.2.1	Interlock system	15
		3.2.2	Plugin development	17
4	Eva	luation		23
	4.1	Print t	time and material use evaluation	23
		4.1.1	Setup	23
			Generation of test objects	23
			Preparation for evaluation	26
		4.1.2	Procedure	27
		4.1.3	Discussion	28
	4.2	Impac	rt resistance evaluation	31
		4.2.1	Setup	31
		4.2.2	Procedure	31
		4.2.3	Discussion	34
	4.3	Result	t of the Study	36
5	Sun	nmary a	and future work	37
	5.1	Summ	nary and contributions	37
	5.2	Future	e work	38
Α	Cur	a Plugi	n Workflow guide	39
B	Tecl	nnical S	Study Data Collection	43
	Bib	liograp	hy	47

Index

49

List of Figures

1.1	Unfolded <i>Fabric Faces</i> structure printed on paper	3
1.2	<i>Fabric Faces</i> structure folded back into its intended form	3
2.1	Object creation out of boxels, picture taken from [BSK ⁺ 19]	6
2.2	Series of electrospun tests, picture taken from [BSK ⁺ 19]	7
2.3	<i>Platener</i> example for substitution of 3D-printed parts, picture taken from [BGM ⁺ 15].	8
3.1	Rendered example of different sized connectors	12
3.2	Screenshot of <i>Blender</i> with different frame widths with a connector on top	12
3.3	Screenshot of <i>Blender</i> with different frame widths with a connector embedded	13
3.4	Screenshot of <i>Cura</i> with a oversized <i>Fabric Faces</i> frame.	14
3.5	Screenshot of <i>Cura</i> with a multipart <i>Fabric Faces</i> frame generated with the implemented print bed size limit.	14

3.6	Image of the reusable interlock System	15
3.7	Image of the non reusable interlock System .	15
3.8	<i>Fusion 360</i> sketch of the interlock pin	16
3.9	<i>Cura</i> screenshot of first layer of the non reusable interlock	17
3.10	<i>Cura</i> screenshot of an upper layer of the non reusable interlock	17
3.11	Cura screenshot of the Fabric Faces plugin menu	18
3.12	<i>Cura</i> screenshot of the <i>Fabric Faces</i> interlock pins	20
4.1	<i>Cura</i> screenshot of the <i>Fabric Faces</i> interlock pins	24
4.2	<i>Blender</i> screenshot of a cube after we apply our geometry nodes	25
4.3	<i>Blender</i> screenshot of our modified cube after we apply a remesh	26
4.4	<i>Blender</i> screenshot our modified cube we cut the bottom flat	26
4.5	An unsuccessfully generated <i>Fabric Faces</i> structure	27
4.6	The graph of all times extracted from our gcode files	29
4.7	A model unfolded by <i>Fabric Faces</i>	30
4.8	The graph of the material use estimation ex- tracted from our gcode files	30
4.9	Variant of the izod impact strength built out of aluminium extrusions	32

4.10	Epilog Fusion M2 40 cutting fabric for FabricFacesFaces	33
4.11	<i>Fabric Faces</i> structure printed on a laser cut polyester	33
4.12	Example of the angle measurement	34
4.13	Comparison of impact resistance	34
4.14	Comparison of 100_v , 300_v , <i>Fabric Faces</i> and 120_1 (top to bottom)	35
A.1	First start by generating the interlock pins	39
A.2	Then save and print them. The pins will be automatically removed after slicing	40
A.3	A .svg file of the interlock pins can also be created	40
A.4	Then import your object and generate the <i>Fab-</i> <i>ric Faces</i> structure	41
A.5	At last, use the queue slicer to slice the all parts of the <i>Fabric Faces</i> structure in succes- sion and get the modified gcode files to avoid	
	collision with the interlock pins	41
B.1	Time and material use estimation a	44
B.2	Time and material use estimation b	45
B.3	Impact resitance test data	46

Abstract

Fabric Faces is an alternative way to 3D-print object, by ungolding an object and printing it on a fabric. This structure of the unfolded object can be folded and clipped back into the original form. This can speed up the 3d-printing process, but can also integrate different surface materials with different properties into the print. This thesis will improve accessibility of *Fabric Faces* by integrating it into *Cura* and expand on it by developing an interlock system for the fabric on which the *Fabric Faces* structure is printed on. Furthermore, we will test material use, print time and impact resistance of *Fabric Faces* and compare this to a standard approach to 3d-printing.

Überblick

Fabric Faces is eine alternative Art und Weise zu 3D-drucken, durch auffalten des Objekts und des anschließenden druckens auf Stoff. Die Struktur des aufgefalteten Objekts kann danach wieder zu ihrer ursprünglichen Form zusammengefaltet und geklippt werden. Dies kann nicht nur den Druckprozess verschnelleren, sondern auch neue Oberflächen mit verschiedenen Eigenschaften in den Druckprozess Integrieren. Diese Arbeit wird durch das Integrieren von *Fabric Faces* in *Cura* rein, die Zugänglichkeit davon verbessern. Zusätzlich wird ein Mechanismus entwickelt der den Stoff, auf dem die *Fabric Faces* Struktur gedruckt werden soll, fixiert. Des Weiteren werden wir Tests durchführuen, die Materialverbrauch, Druckzeit und Stoßfestigkeit von *Fabric Faces* testen und diese dann zu einem Standardansatz des 3d-druckens vergleichen.

Acknowledgements

I would like to thank Prof. Dr. Jan Borchers first for allowing me to write my bachelor thesis at his chair.

I would also like to thank Prof. Dr. Ulrik Schroeder for being my second examiner.

For his excellent support and guidance, I would also like to thank my supervisor Adrian Wagner.

Next I would like to thank René Schäfer for his explanations and introductions to the machines in the FabLab and in extension, i would also like to thank the Hiwi's working at, and maintaining the FabLab.

Furthermore, I would like to thank my family and friends for supporting me for the last few months and years of studying.

Conventions

Throughout this thesis we use the following conventions.

Text conventions

Definitions of technical terms or short excursus are set off in coloured boxes.

EXCURSUS: Excursus are detailed discussions of a particular point in a book, usually in an appendix, or digressions in a written text.

Names of concepts or programmes are written in *italic*

Source code and implementation symbols are written in typewriter-style text.

myClass

The whole thesis is written in american english.

Definition: Excursus

Chapter 1

Introduction

3D-*Printing* , especially *FFF* (fused filament fabrication [CUBTO⁺19]) *3D*-*Printing* (commonly known as filament printing), is getting more accessible in personal and industrial spaces for example to create prototypes or low volume spezialized parts.

The big advantage of *3D-Printing* is the possibility to create objects with shapes which would be difficult or impossible to produce with casting or subtractive manufacturing techniques like *CNC-Milling*. And without the need of creating new manufacturing equipment like molds to produce a new variation of an object, *3D-Printing* allows for faster prototyping with lower turnaround time between variations [IG15]. One disadvantage of *FFF 3D-Printers* is the low print speed and the bad physical scalability of prints.

Fabric Faces is a new approach to *FFF 3D-Printing* for rapid prototyping and integration of new surface materials. With *Fabric Faces* an object is reduced to its wireframe (or skeleton) and unfolded to be printed flat on the print bed (fig. 1.1). The walls will be left empty and will be replaced by a fabric material on which this unfolded wireframe could be printed on. The resulting model is comparable to a foldable paper model, which can be folded to its intended shape (fig. 1.2). Connectors are also generated to make the sides clip together.

3D-Printers are great at low quantity production runs, but hard to scale

Fabric Faces is an unfolded wireframe printed on a fabric

Fabric Faces is a Blender plugin, which handles the unfolding procedure	Currently <i>Fabric Faces</i> can be accessed through a <i>Blender</i> plugin, there parameters can be set to adjust the width of the skeleton structure and the size and type of the connectors and a preview will be generated. This preview will show the generated skeleton and the placements of all connector pieces. If the object could not be unfolded in one single structure, further skeletons will be generated and shown next to each other. After the skeleton structures where generated, they can be exported as a <i>.stl</i> file (one commonly used file format for 3d objects), and imported to a slicer to prepare them for printing.
First goal is to integrate <i>Fabric</i> <i>Faces</i> into a slicer	One goal of this work will be to extend <i>Fabric Faces</i> to increase the accessibility by reducing the number of steps a user has to take, to get from an initial model, to a ready to print gcode file of the <i>Fabric Faces</i> structure. This will be archived by integrating <i>Fabric Faces</i> into a slicer, which will use this <i>Blender</i> plugin in the backend. This slicer plugin will handle the configuration of the <i>Fabric Faces</i> generator (to ensure the generated structure will be printable), will import the generated structure into the slicer itself will modify the created gcode file, to ensure the part will be printable on a fabric.
An interlock system for the fabric will be developed	Another feature will be the development of an interlock system. Printing on fabric is a major feature of <i>Fabric Faces</i> , so an easy to use interlock system will improve accessibility by providing a solution to fix the fabric in place, without the need of modifying the <i>3D-Printer</i> .
Second goal is to conduct a technical study and compare <i>Fabric Faces</i> to standard prints	Another goal of this work will be a technical analysis of <i>Fabric Faces</i> to determine its technical properties like strength print time and material use by comparing it to a standard approach of <i>3D-Printing</i> with different slicer settings to determine in which circumstances <i>Fabric Faces</i> could be beneficial form a point of rapid prototyping, overall print time saving or more efficient material use.
	In the beginning of this thesis, we will present selected re- lated work to show the current state of Fabric Faces and com- pare it to our expected work flow. Then we will go through the development of the slicer plugin and the changes that has to be made to the <i>Blender</i> plugin . At the end we will con- duct a two parted technical study to evaluate the technical

2

properties of Fabric Faces and discuss our results.

Figure 1.1: Unfolded Fabric Faces structure printed on paper

Figure 1.2: *Fabric Faces* structure folded back into its intended form

Chapter 2

Related work

The basic idea of *Fabric Faces* is the creation of a 3D object from a 2D shape with the utilization of a base fabric. In this chapter we will present related approaches to similar problems, focusing on the workflow aspect and integration of different systems.

We will start by presenting a similar approach to *Fabric Faces* to create 3D models out of folded 2D shapes. Next we will investigate an approach of combining *3D-Printing* with an additional system, namely electrospinning, to get different surface finishes and properties. Furthermore, we will examine research, where *3D-Prints* are substituted by laser cut plates.

At the end we will show how this work compares to our own work, and where they differ.

2.1 Clipped shapes creating 3d objects

To illustrate related work on the unfolding of 3D objects into 2D shapes and the reassembly of it, we first present the interactive editing system *Kyub* by Patrick Baudisch et. al. [BSK⁺19]. This systems allows for the creation of objects in 3D, which will be unfolded into plates designed to be laser

basic idea of *Fabric Faces* is the unfolding of an object

We will present three distinct papers, first *Kyub*, second *Desktop Electrospinning* and last *Platener* as related work cut and reassembled.

Kyub utilizes laser cutters to create 3D structures out of 2D plates Their idea is to utilize the high speed of laser cutters, compared to the rather low speed of other rapid prototyping techniques like *3D-Printing* and create plates which could be cut and clipped securely together. To archive this they created a construction system based on closed box structures they called *boxels*. By assembling the 3D model with those boxels (fig. 2.1), it remains a box like shape, and will be easily assemblable after it is been cut out.

Figure 2.1: Object creation out of boxels, picture taken from [BSK⁺19]

On export, *Kyub* will automatically break down the model into plates, which are then layed onto a sheet. Each sheet will be exported as a separate vector graphics file.

All in all, *Kyub* is providing a full system in which the user can create 3D models and export them in a ready to cut format, which enhances accessibility.

2.2 Archiving different surface properties with electrospinning

While *Fabric Faces* archives different surface finishes and properties, by printing the *Fabric Faces* structure onto a fabric, *Desktop Electrospinning* by Michael L. Rivera et. al. [RH19] utilizes a new type of *3D-Printer*. This printer combines a classical plastic print with melt electrospinning.

With electrospinning, different surface finishes can be created By applying high electrostatic potential to a molten or dis-

solved polymer, thin electrospun fibers are created. By varying the federate, temperature, infill density or electrostatic spin different surface finishes with different properties can be created (fig. 2.2).

Figure 2.2: Series of electrospun tests, picture taken from [BSK⁺19]

This kind of integration of different surface properties, while having the potential to create everything on one machine, is not easily accessed due to the requirement of a modified *3D-Printer* and is therefore not ideal for broad adoption at this point in time.

2.3 Substituting *3D-Prints* with laser cutters

Like *Fabric Faces*, which uses fabric to subsidize wall material of a 3D-print, *Platener* by Dustin Beyer. et. al [BGM⁺15] provides a system for intermediate subsidization of 3Dprints with laser cut parts (fig. 2.3). By specifying a fidelity-

Figure 2.3: *Platener* example for substitution of 3D-printed parts, picture taken from [BGM⁺15]

Platener approximates a 3D printable part with 2D shapes

speed trade of, *Platener* will try to approximate the 3D object with 2D shapes while trying to preserver the requested amount of fidelity. *Platener* can also handle curved surfaces, by using small plates connected by joints or with one long plate by assuming the part could bended.

2.4 Relation to this work

As we have shown, each of these projects are providing an all in one solution, to access the system they developed. *Fabric Faces* does not have such a system yet. To use *Fabric Faces* you have to use at least two separate programs, *Blender* and a slicer. We want to integrate *Fabric Faces* into a slicer to improve the accessibility. We also plan to allow for integration of other systems like laser cutters, like shown in 2.3 to, to support preprocessing steps.

Chapter 3

Fabric Faces Cura Integration

To make *Fabric Faces* more accessible, we have to reduce the number of steps and complexity of the process. We will integrate *Fabric Faces* into one of the most popular slicers [pop22], *Ultimaker Cura*. This plugin will configure and generate *Fabric Faces* structures, by using the *Blender* plugin , that will be printable with the current slicer settings regarding build volume and nozzle size. It will also contain a generator for an interlock system, to fix the fabric in place. A *Cura* plugin will be developed, to make *Fabric Faces* more accessible

3.1 Blender plugin extension

To let the slicer settings determine our *Fabric Faces* parameters, we first have to start with the extension of the *Blender* plugin , beginning with the introduction of a few global variables with default parameters:

printer_bed_width = 230
printer_bed_height = 230
printer_nozzle_size = 0.4
printer_layer_height = 0.2

These variable allow us to calculate the frame thickness and the connector size, so that everything can be printable.

First, we will start with limiting the minimal size of the connectors, because they will be the smallest features generated on the frame. By comparing different widths and heights (fig. 3.1), we determined that the width should be at least 5 times the nozzle width and the height should be at least 5 times the layer height, to ensure the connectors printable while also retaining the ability to clip together.

Figure 3.1: Rendered example of different sized connectors

With the minimal connector size determined, the minimal thickness of the frame has to be 10 times the nozzle width, so that the connectors can fully rest on the frame (fig. 3.2), and can also be fully embedded into it (fig. 3.3).

Figure 3.2: Screenshot of *Blender* with different frame widths with a connector on top

Minimal connector size is set to be 5 time nozzle width and 5 times layer height

Minimal frame width is set to be 10 times the nozzle width

Figure 3.3: Screenshot of *Blender* with different frame widths with a connector embedded

Continuing with limiting the maximum frame size to avoid generating oversized frames (fig. 3.4). To limit the size of the frame we have to modify the already existing grow_island function.

GROW_ISLAND:

This function is responsible for deciding, whether or not the frame could be extended, starting with a frame of one face and checking if the growth of the frame, by including a neighbouring face, results in an intersection with itself. If no intersection is detected, the frame is extended and the procedure repeated. If an intersection is detected the frame is not extended and other possibilities are checked. If growth is no longer possible without generating intersections a new separate frame part will be generated and the growth procedure repeated until all faces are included in one of the generated frames.

Furthermore, we add an additional verification to the intersection check of the grow_island function to determine whether or not the bounds of the extended frame will exceed the print bed. To calculate the bounding box (the smallest rectangle which completely encases the part) we take the smallest and biggest x and y coordinate of the vertices of the frame. If this bounding box exceeds the print bed size, this extension will not be allowed (fig. 3.4). Definition:

grow_island is extended to check if the bounding box of the frame exceeds the print bed size

Figure 3.4: Screenshot of *Cura* with a oversized *Fabric Faces* frame.

Figure 3.5: Screenshot of *Cura* with a multipart *Fabric Faces* frame generated with the implemented print bed size limit.

3.2 Cura plugin

With the *Blender* plugin able to constrain our object to our slicer settings we can start the development of the *Cura* plugin.

3.2.1 Interlock system

We first have to choose, what kind of interlock systems we would like to use. To improve the accessibility we decided to use a printed interlock system, which could be 3d printed on the print bed and hold the fabric in place. Here we test to approaches, a reusable (fig. 3.6) and a non reusable. (fig. 3.7)

Figure 3.6: Image of the reusable interlock System

Figure 3.7: Image of the non reusable interlock System

For the reusable approach we designed a pin (fig. 3.8) which is printed around the build plate (each pin can be printed in succession with the *Cura* print setting "Print Sequence: Once at Time"). The pins can be printed in about 10 minutes with the default *Cura* print 0.2 mm settings for PLA and can fixate flexible and stiff fabrics.

The non reusable approach is a two staged print. First, two thin strips are printed in parallel on the print bed (fig. 3.9). Then the printer is paused to wait for the user to lay

Reusable interlocks: Pins are printed on the build plate, which can hold the fabric in place

Non reusable interlocks: Fabric is fused to the print bed with a strip of printed plastic

Figure 3.8: Fusion 360 sketch of the interlock pin

down the fabric by using the gcode command M0. After the user confirmed to the printer, that the fabric is in place, a few layer are printed on top of the fabric and the strip (fig. 3.10) to secure them in place by fusing the fabric to the strip. Testing revealed that this approach struggled with elastic materials, which has to be hold in place while the printer fuses it to the strips, while also taking 30 minutes with default 0.2 mm settings for PLA.

Therefore, the reusable approach is chosen to be integrated in the *Cura* plugin, because of its higher reliability and faster print times.

A svg exporter for the interlocks will be created, to ease up preprocessing To be able to use the interlocks the fabric has to be precut, which adds one additional step to the preprocessing of the print. To support the user in this step, we will integrate a function within the plugin, which creates a .svg (vector graphics) file that contains the places which have to be cut. With this .svg file a template or a stencil could be created, to aid the preprocessing step or make use of other machines to precut the fabric, like a laser cutter (if the fabric can be cut safely).

Figure 3.9: *Cura* screenshot of first layer of the non reusable interlock

Figure 3.10: *Cura* screenshot of an upper layer of the non reusable interlock

3.2.2 Plugin development

The *Cura* plugin will provide an interface (fig. 3.11) to access the *Fabric Faces* structure generation and the creation and slicing of the interlock system with the svg exporter, to provide a vector graphics file of the positioning of the interlocks. Another feature will be a queue slicer to automate the slicing of the *Fabric Faces* structure, even if it is a multipart

An Interface will be created in *Cura* to access all the *Fabric Faces* features structure, this queue slicer will modify all generated gcode to avoid possible interlock points.

E <u>x</u> tensions	P <u>r</u> eferences <u>H</u> elp			
Cura B	ackups	•		
Fabric	Faces	•	Generate Skeleton	
Post P	rocessing	•	Slice Everything in Queue	Г
Pythor	n Console	•	Interlock Preset: Generate	
Update	e Checker	•	Interlock Preset: Save	
Autod	esk Inventor plugin	•	Interlock Preset: export SVG	
Auto C	Drientation	•	Fabric Faces: Save To	
Sotting	ar Guida	I		

Generate Skeleton

Starting with the *Fabric Faces* skeleton generation (this will handle the conversion of the base part into a *Fabric Faces* structure), we first have to write a script, which will be handling all blender operations. This script will expect 7 arguments:

- plugin_path: path of the Fabric Faces Blender plugin
- unfold_filepath: path of the base object
- save_filepath: save path for the Fabric Faces strucure
- pb_width: width of the print bed
- pb_height: height of the print bed
- p_nozzlesize: nozzle width
- p_layerheight: layer height

We create a script which will be executed in blender to handle the unfolding and configuring of *Fabric Faces* With these arguments given we begin the implementation: We start by importing and enabling the *Blender* plugin from the given plugin_path to make sure we can access *Fabric Faces*. Next we delete all objects which are in the scene to have a clean slate. Then we import our object from the unfold_filepath. We now have to rebuild our scene context:

```
new_context = bpy.context.copy()
```

new_context['area']=
[a for a in bpy.context.screen.areas
if a.type=="VIEW_3D"][0]

This step is necessary in the current *Blender* 3.0 version if *Blender* is stated in headless mode (which it will be). If we do not rebuild our context, the *Fabric Faces* algorithm crashes due to missing information on the rotating of the connectors.

Now that we can access *Fabric Faces* inside *Blender*, we try to unfold the object. If this succeeds we export all generated *Fabric Faces* structures to the <code>save_filepath</code> and exit blender.

Circling back to the *Cura* plugin. We now have to check, if there is a blender version installed, therefore we have to check the windows default install directory of *Blender* (windows was chosen because it is the most used desktop operating system [opS22]), and select the highest version we can find. Afterwards we check if an object is selected, if no or multiples are selected, we throw an error message suggesting to select exactly one object. If an object was selected, we then extract the printer dimensions and slicer settings (we will have to pass to the *Blender* script) to configure *Fabric Faces* . We then execute *Blender* in the background and try to generate the *Fabric Faces* structure. If the structures were generated successfully we then proceed to remove our object from the build plate, and import all generated structures.

Definition: Headless blender

The Generate Skeleton button will execute blender and use Fabric Faces to generate the skeleton and replace the base object with it

Interlock Preset

As discussed previously, the interlocks are pins will be printed on the print bed to fixate a fabric on which we can then print on. An interlock pin is a 3d model, which we created inside *Fusion 360*, to place the interlocks on the build plate we implement the *Interlock Preset Generate* function:

To place our interlocks we first move every object places on the build plate away to the side so that they would not interfere with the interlocks. Afterwards we determine our print bed size to spread out the interlocks at the edge of the build plate. For reliability reasons we choose to have a small offset from the edges of the print bed to compensate for any misalignment a printer could have. We choose 15mm as an offset. With our offset determined, we place the interlocks at the edge of the build plate, with the center of each pin 15mm away from the edge and evenly spread out (fig. 3.12).

Figure 3.12: Cura screenshot of the Fabric Faces interlock pins

The .svg exporter generates a vector graphic which is a 2d representation of the interlock pins With the placement determined we can implement the .svg export function: First, we ask for a save location and name. Then we proceed with generating the vector graphic. We will use the same placement algorithm we use in our interlock generator. With the coordinates known we can draw quads at each position of the pins, and save the .svg file at the chosen location.

Last we add the Interlock Preset: Save function, which slices

Interlocks are places and distributed evenly at the edge of the build plate the interlock pins, and deletes them from the build plate.

Queue Slicer

With our Interlock System, we have to avoid the pins at the start of the print to prevent knocking them over, this requires modification of the gcode file. Additionally, a functionality to slice a multipart model in succession to a save location has also to be implemented to improve the workflow if a multipart *Fabric Faces* structure has been generated. We combine these two requirements into one function: the *Queue Slicer*.

We start by moving all our objects from the build plate and begin slicing each object one by one by moving them onto the build plate in succession. After an object is sliced, we modify the generated gcode, by adding a jump to the gcode. For this we first remove any steps before the first layer of the object starts (this is marked in gcode generated by *Cura* with the comment ; LAYER: 0), then we move the print head up 20mm, next move it to the center and then move it back to its initial height. After this jump the printer moves to its starting position and the print is started. Gcode modification and queue slicing will be implemented together

The queue slicer slices every imported object in secession, and modifies the gcode for avoidance of the interlock points

Chapter 4

Evaluation

After we integrated *Fabric Faces* into *Cura*, it is left to evaluate its performance in comparison to a standard *3D-Printing* approach. We will split this study into two parts, in the first part we will compare the print time and material use of of objects with different print settings to the unfolded *Fabric Faces* version. In the second part of this study, we will compare the impact resistance of an object, printed with different settings and printed with the *Fabric Faces* approach.

4.1 Print time and material use evaluation

Starting with the print time and material use analysis, we first have to acquire a set of sample objects to conduct our evaluation on, and then create a setup for comparing and evaluating of different print settings and approaches.

4.1.1 Setup

Generation of test objects

To get a suitable set ob samples we first have to consider the limitations of *Fabric Faces*. Due to compute time *Fabric* We will split the study into two parts, first the print time and material use analysis, and last the impact resistance test

> Due to the Fabric Faces limit of 100 polygons, we will create our own test sample objects

Faces is limited to 100 polygons. This limits our choices of objects, so a random set of open and freely available samples may not be unfoldable, without modification. So we choose to generate the objects ourselves, which will be created within the 100 polygon limit of *Fabric Faces*, but with enough variability to reflect a broad spectrum of print scenarios.

geometry nodes are used, to create our test samples To generate the objects we will use the *geometry nodes* of *Blender 3.0* combined with some *modifiers* to produce a set of different object. The goal is to create an algorithm, which will create objects with different geometries to reflect different kinds of print, an some challenges like overhangs or sharp edges. Starting with the *geometry nodes*, we begin

Figure 4.1: Cura screenshot of the Fabric Faces interlock pins

with a 20x20x20 cube (fig. 4.1), here we use *distributed points on the faces* of it to mark random spots on each face of the cube with points, the number of them is determent by a random seed number (every random number is derived by this same seed inside this generator). Then we create new cubes instances on top of each point (each cube instance (including our base cube) is randomly rotated and randomly scaled independently in x, y and z direction), the sizes of the individual cubes is driven by a 4d Noise Texture, available as a parameter inside the *geometry nodes*, which produces a satisfying variability in scale in each axis. With the cubes distributed, rotated and scaled we merge all cubes into one objects.

A cube is covered with more cubes, scaled and rotated at random

Figure 4.2: *Blender* screenshot of a cube after we apply our geometry nodes

This leaves a abstract looking object (fig. 4.2), we have to modify to make it more representative of a real part, and make it more printable. Starting with a remesh (fig. 4.3), this smooths the object to a degree, and limits our polygon count, but still generates overhangs or sharp corners we wanted to test.

Secondly we would like to have a flat bottom to make it printable without rotating or en excessive amount of support. In most cases we would ideally have to orient every part so that the amount of support is minimal and the part has the best chance of adhesion to the print bed. To avoid this step every object will have a flat bottom face, this also benefits the standard *3D-Printing* approach, by reducing support structures, because big parts of the objects will be supported by themselves. To achieve this we first move our object from it default position (its center is located at 0.0) up by 10 (to reduce the amount of geometry which will be cut), and perform an intersection Boolean with a big cube (representing a print volume) with its bottom face at z = 0 (fig. 4.4), this generates objects which will be printable inside a predetermine print volume with a flat bottom face. The modified cube is smoothed by remeshing it

The modified cube gets a flat bottom to make it print easier, without further transformations

Figure 4.3: *Blender* screenshot of our modified cube after we apply a remesh

Figure 4.4: *Blender* screenshot our modified cube we cut the bottom flat

Preparation for evaluation

To evaluate the print time and material use, we first have to determine the print settings we will be comparing, for that we will use the *Cura* default settings with some modification to *wall line count* and *infill amount*. As a printer we choose the *Creality Ender 3*, as the most bought and therefor probably one of the most popular 3d printers according to Amazon

[bes22].

We modify the default settings to represent fast and more time consuming prints:

- walls = 2, infill 20%, we call this standard
- walls = 3, infill 20%, we call this slicer option so_203
- walls = 3, infill 0%, we call this slicer option so_003
- walls = 1, infill 20%, we call this slicer option so 201
- walls = 1, infill 0%, we call this slicer option so_001

4.1.2 Procedure

First we start to generate our samples and try to unfold them to get a sample size of 100 objects. We use headless blender with a python script, to generate each object, unfold them with the *Fabric Faces* algorithm, and export both versions of the part. After the generation, each *Fabric Faces* structure has to be checked, whether or not it generated successfully. In some cases a unfavorable object with difficult geometry will lead to an unsuccessful generation (fig. 4.5) of the *Fabric Faces* structure, where only the connectors will be exported, and the skeleton won't full generate. In our case, we had to export 364 samples, to get our desired 100 sample pieces, which translates to an success rate of $\frac{100}{364} \approx 27,5\%$ in our specific scenario, with our generation method.

Figure 4.5: An unsuccessfully generated *Fabric Faces* structure

100 Samples are generated

Now that we acquired our sample set, we generate our gcode files by utilizing our queue slicer created for our *Fabric Faces Cura* Plugin. We first import all of our models, set our desired settings, and let this tool generate our files.

For our evaluation we will use the time and material use estimation by *Cura*, which prints them inside a comment in every generated gcode file. To confirm this estimations as usable for this study, we printed the first 3 gcode files, of the standard variant, on an *Creality Ender 3* and we could confirm, that the time estimation is accurate. The Material use (given in meters) is also assumed to be correct, because the esteps of the extruder of this particular printer, are calibrated to the material used, to extrude the exact material amount, the slicer expects. This estimations could vary by different printers, but this evaluation will be still representative, because we will evaluate the relative difference between all printed variants and not the total amount used.

After generating all the gcode files we plot every time and material use estimate into *Excel*, compare then to each other and sort them by print time of the standard setting. An additional point of comparison is derived by a feature of *Fabric Faces*, namely the possibility of parallel printing of frame structures, if some structures could not be generated in one pass, either because the geometry would not allow it, or the resulting frame would not fit on the build plate. So there will be two different comparison point of *Fabric Faces*, the first will assume, that if there are more than one generated frame part, that the parts will be printed in succession and we will call this time *Total Frame Time*, the second will assume, that every part could be printed in parallel, we will call this *Maximum Frame Time*.

4.1.3 Discussion

Beginning with the print time estimation comparison (fig. 4.6) (the graph shows the time estimated in seconds)

• the standard variant (blue)

The time and material use estimations printed in the gcode files will be used for evaluation

The time and material use estimations are evaluated and compared to each other

- the so_001 variant (orange)
- the Fabric Faces Total Frame Time (brown)
- the *Fabric Faces* Maximum Frame Time (dark blue)

Figure 4.6: The graph of all times extracted from our gcode files

We notice, the smaller an object is, the less advantageous Fabric Faces becomes, even adding print time in some cases compared to the other versions, this is due to the increasing amount of bottom layers, which are printed slower in the default Cura slicer options, and an increase of material used, due to a higher density of the part (fig. 4.7), determined by the minimum frame width set in the plugin. We also notice, that the so_001 is mostly as fast or even faster than Fabric Faces printed in parallel, but this advantage decreases with increasing part size, so that, especially for the parallel approach of Fabric Faces, where we see, that due to the size limitation of each frame which could fit on a print bed, this printing technique tends to scale much slower. We also see that, even though the standard variant is mostly the slowest option, Fabric Faces could be slower in specific scenarios, where for example, the part is long and thin, which results in more walls printed on the standard variant, which could be printed faster than the bottom layers needed for Fabric Faces.

Fabric Faces is more advantageous, if the base object is larger, small prints are less efficient as Fabric Faces strucutre

Figure 4.7: A model unfolded by Fabric Faces

Continuing with the material use estimation comparison (the graph shows the length of the filament estimated in meters)

- the standard variant (blue)
- the so_001 variant (orange)
- the so_003 variant (grey)
- the Fabric Faces Total Frame Time (yellow)

Figure 4.8: The graph of the material use estimation extracted from our gcode files

Here we see, that the so_001 is mostly still the most efficient variant, but the difference is not as pronounced compared to *Fabric Faces* as in the time estimations, we can also notice, that again, the bigger the part gets, the more advantageous *Fabric Faces* becomes.

4.2 Impact resistance evaluation

Now that we evaluated the print time and material use estimations, we will test the impact resistance of each print variant, to determine, which printing technique could be the most advantageous, in regards of part strength. We will also evaluate the difference between a frame printed on a fabric, or just left bare. To test the impact resistance we will use a variant of the *Izod impact strength test*, which is an industry standard impact resistance test [MSAA21].

4.2.1 Setup

First we create our test samples, which are 20mm x 20mm x 100mm cuboids. We will print them once in every variant we decided on in our time and material use estimation, and printed the *Fabric Faces* part once on a polyester fabric, and once without a underlining fabric. As a filament we will use *Ultimaker PLA - M0751 Yellow 750*. Additionally, each object not printed as a Frame will be printed once in a horizontal (suffix "h"), and once in a vertical position (suffix "v") to consider layer adhesion.

To test the impact resistance of this parts, we construct a frame out of aluminium extrusions (fig. 4.9), and fix it on a table. We connect a 1.8 meter, 40mm x40mm aluminium extrusion as our hammerio our frame an lubricate the shaft on which its hanged on. Then We fix a wooden plate to the same table, with a rectangular hole cut in it, so that the part, we will fix in it, would be hit by the tip of our hammer arm. we then position a camera on the same height as our rotation axis of the hammer arm focused on the arm and set to record with 100FPS (frames per second), to determine the strength of the energy absorption of each part on impact by evaluating the maximum angle reached by the arm.

4.2.2 Procedure

Before we start printing, we first have to prepare the Fabric

Impact resistance is measured by a variation of the izod impact strength test

20mm x 20mm x 100mm cuboids will be tested for impact resistance

A frame out of aluminium extrusions is created to conduct the test

Fabric is laser cut to reduce preprocessing steps

Figure 4.9: Variant of the izod impact strength built out of aluminium extrusions

our *Fabric Faces* structure could be printed on, for that we used the *Epilog Fusion M2 40* Laser Cutter, to cut out the intersection pin holes. The settings used to cut the polyester fabric where:

- Strength: 80
- Speed: 80
- Frequency: 100

With the fabric prepared, we can print out all our parts (fig. 4.11) and test the impact resistance of each part, fixating the printed parts to the aluminium structure, then lift the hammer arm (to a horizontal position), and letting it go.

We then analyze the amount of absorbed strength as a fraction of an angle the arm could reach after impacting the part

Figure 4.10: Epilog Fusion M2 40 cutting fabric for *Fabric Faces*

Figure 4.11: *Fabric Faces* structure printed on a laser cut polyester

(fig. 4.12). 100% means the arm could not break the part, so we measure an angle of 0° , and 0% means, that there was no strength absorbed, meaning we measured an angle of 90° .

Before we start testing we have to determine a baseline by measuring the friction loss by letting the arm swing without any part in it. Then we can strap in all of our parts, and begin breaking.

Figure 4.12: Example of the angle measurement

4.2.3 Discussion

Figure 4.13: Comparison of impact resistance

Parts with infill could not be broken. *Fabric Faces* is comparable to the 300_h and 300_v versions After conduction the tests, we notice, that our setup was unable to break any part which used the 20% infill setting, on the other variants we can see, that the *Fabric Faces* structures compared pretty favorable with the 300_h and 300_v variant (fig. 4.13), and that the 100_h variant has next to no impact resistance (0 means, that there was no part inserted, so it's basically only friction loss). Here we could also observe on another strength of Fabric Faces. Because everything is printed flat on the print bed, we don't have to worry about layer adhesion. We then proceed to evaluate the damage on the parts themselves. While the parts printed in the classical fashion broke at roughly the point of impact, the *Fabric Faces* Variant printed without a fabric had all of its walls separated from each other because of the lack of support of an underlining fabric, to hold them together. Evaluating the *Fabric Faces* variant printed on a fabric we noticed it was just bend (fig. 4.14), and after checking the inside of the object, we could notice, that it is not broken. So while absorbing some strength while bending, the tensile strength of the fabric prevented the part from breaking.

Figure 4.14: Comparison of 100_v, 300_v, *Fabric Faces* and 120_l (top to bottom)

Fabric Faces could not broken, just bend

4.3 **Result of the Study**

After conducting the two parted study, we now can conclude, that *Fabric Faces*, while not the fastest or the most efficient in every case, can be useful to reduce print speeds and material use, especially with bigger parts while not compromising as much strength as you would have to, if you choose the fastest print settings discussed in this paper.

This study also has shown, that by using the *queue slicer* to slice large amount of objects, and the .svg exporter, to preprocess the fabric by using a laser cutter , we improve our workflow by saving time and reducing the amount of work needed in preprocessing. The printed interlock pins also showed, that they where reusable and could hold the fabric in place, but they struggled with the prevention of stretching at the center, which resulted in a few failed prints.

Previous papers also discussed the possibility of rapid prototyping, our data suggest if your part has to have some more resistance or is significantly big that this could be a viable approach for this use case, on the other hand, if the focus is just a prototype without any mechanical requirements, than a possible spiralized model (a setting in which a model is printed in one go with one outer wall, often used for printing vases) might be the best possible option.

The queue slicer and laser cutter improved the workflow of *Fabric Faces*

> Fabric Faces could be used for rapid prototyping, if the object is large enough

Chapter 5

Summary and future work

At last, we present a summary of this thesis and show our contributions to *Fabric Faces*. Additionally we will examine ideas for future studies, which could expand on *Fabric Faces* and this thesis.

5.1 Summary and contributions

In this bachelor theses we expanded *Fabric Faces* by integrating it into *Cura* and allowing the creation of *Fabric Faces* structures inside the slicer itself. We introduced an interlock system for fabrics, which can be printed on the print bed and lock the fabric in place. We also included a .svg exporter, to create a vector graphic of the interlock points to improve the prepossessing by either including systems like laser cutting or the creation of a precise template for cutting by hand. We also modified *Fabric Faces* to be printer aware. Further we integrated a queue slicing feature, which handles necessary gcode modification for a print using the interlock system, while also providing the possibility to slice every object imported to *Cura* in succession.

We integrated Fabric Faces into Cura, and extended it with the printable interlock system and improved workflow

We also tested *Fabric Faces* mechanical and qualitative prop-

We conducted a two parted technical study erties, by comparing print time and material use to a standard approach to printing, and testing the impact strength of these printing methods.

Our results showed the workflow of *Fabric Faces* could be improved ,with the inclusion of *Fabric Faces* into *Cura* and the other features shown in this thesis, especially interlock system integration. Further we showed that *Fabric Faces* can be a viable option for rapid prototyping if the model is large enough or optimized for *Fabric Faces*, but for smaller prints other methods could be more advantageous.

5.2 Future work

In future works, the over all mechanical properties of *Fabric Faces* could be examined in more detail, with comparison between different fabrics and their effect on the properties. At the moment we have one comparison point, the impact resistance, so a more detailed analysis could present interesting properties of *Fabric Faces*.

Further a user study for workflow analysis of *Fabric Faces* including the *Cura* plugin and integrating other systems like laser cutter or preprinted fabric will be necessary to conclude whether or not the workflow could be improved significantly with this integration.

Another possible future development could be an extension to interlock .svg exporter, by including the first layer of the print in the vector graphic too.

We conclude that the workflow could be improved by including *Fabric Faces* into *Cura Fabric Faces* can be viable for rapid prototyping in special cases

More mechanical

tested

properties should be

A user study could

test the new workflow

Appendix A

Cura Plugin Workflow guide

Figure A.1: First start by generating the interlock pins

Figure A.2: Then save and print them. The pins will be automatically removed after slicing

Figure A.3: A .svg file of the interlock pins can also be created

Figure A.4: Then import your object and generate the *Fabric Faces* structure

Figure A.5: At last, use the queue slicer to slice the all parts of the *Fabric Faces* structure in succession, and get the modified gcode files to avoid collision with the interlock pins

Appendix B

Technical Study Data Collection

C1 4 4				4 3.69789	614	0 9.3198	14 1032	102 7.4540	091 80	5253 4,52	18638 6	3992 2,:	8,3983	9123	187
				3 3,69838	9 613	3 8,64449	52 962	138 7,541	866 81	5170 4,32	94949 6	4429 2,9	8,09644	8805	195
9		3,65149	6137	6 5,76984	5 928	3 8,8436	17 954	734 7,093;	285 7.	5607 4,25	06033 5	4041 2,0	8,04691	8788	79
7				4 4,11585	9 709	2 8,5649	51 953	372 7,3926	429 75	5096 4,26	79932 6	4256 2,	7,98378	8675	97
				7 3,82705	3 626	3 8,1452	97 921	170 7,229	776 80	5347 4,38	,2446 6	4920 3	7,69458	8615	95
6				0 3,66758	7 613	3 8,5101	21 937	351 7,465	532 75	5165 4,42	11603 6	4504 3,	7,99102	8591	94
6				9 3,64569	7 605	3 8,3575	51 934	356 7,23t	212 78	5027 4,21	80739 6	4268 2,8	7,80195	8550	ω
59				9 3,54662	3 590	5 8,17538	91 903	81 7,0999	353 76	5812 4,12	77227 5	4201 2,	7,64092	8338	294
45		2,70666	4561	4 0,440391	2 92	4 7,689	54 884	152 6,6080	851 74	5938 4,0	73242 5	4296 2,	7,15452	8112	201
1048		3.9638	6414	3 6.21052	5 1048	5 8.485	14 924	720 6.594	846 67	5253 4.12	75969 5	3682 1.	7.55223	7877	317
43				3 2,65016	437	4 7,1371/	25 803	795 6.1562	355 67	5264 3.72	19059 5	3821 2.4	6,65059	7404	40
59				6 3.61479	1 592	9 7.28074	76 800	12 6.345	229 65	5335 3.91	74125 5	3921 2.	6.81623	7392	183
43				2 2,62826	434	6 7,0517	37 792	713 6,0683	384 67	5191 3,63	39797 5	3776 2.3	6,56838	7317	270
58		3,53768	5886	2 3,28278	1 565	8 7,1334	18 799	70 6,032	805 65	5244 3,7	10234 5	3604 2,4	6,58625	7244	176
56		3,37626	5635	2 3,16959	536	7 6,8430	38 770	135 5,9929	147 66	5191 3,64	57898 5	3956 2,5	6,42713	7198	200
56				8 3,32931	2 567	3 6,7229	74 769	19 5,8000	258 65	5102 3,57	42101 5	3789 2,4	6,26451	7090	290
86				3 4,99786	9 868	5 7,153	51 801	011 5,426t	919 60	1895 3,70	54366 4	3584 1,5	6,30427	6916	364
44				2 2,74379	7 447	7 6,3575	75 713	339 5,421	213 55	4731 3,40.	22805 4	3369 2,2	5,89351	6522	334
460				7 2,82136	9 460	9 6,36299	58 704	301 5,3785	236 58	4538 3,31	08343 4	3209 2,0	5,87913	6413	297
104				3 0,514702	5 104	2 5,8454	82 675	742 5,0438	397 57	4600 3,25	24655 4	3417 2,	5,44773	6228	221
436				3 2,65469	5 436	7 5,698	17 641	188 4,759	058 51	4117 3,02	84361 4	2904 1,8	5,2325	5759	140
98 7703	3282 1,9719	2,17777	3736	3 4,65203	7 770	5 5,8681	35 670	926 4,3443	902 49	1160 3,18	27995 4	3293 1,	5,11912	5718	330
4789				9 2,92158	2 478	6 5,3495	13 614	164 4,594	069 51	1262 3,13	18666 4	3133 2,1	4,97281	5644	348
7812				2 4,65528	3 781	7 5,3503	04 602	146 4,5660	903 50	3994 2,90	92695 3	2927 1,5	4,96047	5506	273
4345				5 2,62674	1 434	3 5,2862	54 600	326 4,438t	896 49	3947 2,88	82695 3	2828 1,8	4,86608	5437	105
2566				6 1,44011	4 256	6 5,249	08 596	319 4,3640	119 48	3901 2,90	78898 3	2670 1,	4,81113	5369	52
4455				5 2,65483	2 445	2 5,1991.	03 582	786 4,4020	813 47	3776 2,79	79951 3	2683 1,	4,80466	5285	240
11625				5 7,02211	1 1162	2 5,0793	32 575	306 4,3408	675 48	3829 2,79	87267 3	2772 1,8	4,71342	5263	32
4185		2,42138	4185	1 0,337138	1	0 5,1250	73 581	726 4,256	812 47	3788 2,79	70887 3	2633 1,	4,69606	5252	168
825				5 0,377269	82	0 4,75073	96 560	55 3,9919	731 45	3909 2,75	30624 3	2764 1,8	4,37725	5095	175
7469		4,46955	7469	5 2,43382	404	0 4,7139	75 539	131 3,939	961 43	3609 2,60	53955 3	2572 1,0	4,3308	4878	301
4494				4 2.62816	449	5 4.4888	15 519	193 3.70	526 40	3444 2.53	55261 3	2367 1.	4.10118	4581	146
4808				8 2,74497	480	8 4,39020	75 532	140 3,190	246 39	3540 2,53	12825 3	2769 1,0	3,80241	4545	15
3383				3 2,00988	338	2 4,26840)9 504	102 3,493.	807 40	3444 2,42	,4816 3	2320 L, 2434 1	3,84230	4318	57
3874				4 2,29437	387	5 4,1032	39 475	903 3,445	918 35	3358 2,36	54536 3	2439 1,	3,77846	4314	103
8474				4 5,05454	7 847	0 4,1274.	43 469	782 3,411/	962 31	3168 2,34	45523 3	2233 1,/	3,77526	4232	67
3850				0 2,29607	2 385	0 3,9299	93 449	573 3,2799	134 36	3097 2,29	47399 3	2244 1,4	3,60791	4053	360
3732				2 2,23189	3 373	4 3,8386	17 437	502 3,2301	666 36	3054 2,23	47546 3	2233 1,4	3,53751	3986	197
3170				0 1,87958	1 317	0 3,4218	95 403	214 2,7899	494 32	2871 2,04	25376 2	2041 1,:	3,10991	3601	100
2358				8 1,39413	3 235	1 2,9301	57 355	762 2,3185	354 27	2537 1,8	206696	1945 1,0	2,62954	3152	223
2574				4 1,52276	2 257	2 3,0399	28 341	700 2,485	625 27	2291 1,75	06165 2	1831 1,0	2,76601	3041	291
15 5103	5103 3,0671	2,7461	4733	1 1,44935	9 241	5 2,96049	95 335	579 2,3679	445 25	2229 1,71	71471 2	1823 0,9	2,66847	2950	1
4952				2 2,92884	3 495	4 2,6414	39 301	332 2,1198	301 23	2041 1,56	10028 2	1693 0,9	2,38448	2662	227
4068		2,40358	4068	8 1,35044	2 225	0 2,5784;	58 296	269 2,03t	428 22	2003 1,53	55897 2	1704 0,85	2,31183	2591	109
225				7 1,30005	1 225	5 2,2827	97 264	147 1,8189	808 20	1824 1,38	05805 1	1566 0,80	2,05456	2334	189
9200		5,62975	9200	0 1,24535	1 215	4 2,1115	37 247	390 1,6678	699 18	1716 1,30	50992 1	1499 0,75	1,89324	2172	70
1886				6 1,07197	9 188	3 1,5672	36 188	176 1,2328	729 14	1349 1,01	98748 1	1209 0,5	1,40294	1653	124
11407		2.39429	3975	7 6.75187	1140	7 1.1165	37 139	108 0.8605	614 10	1082 0.76	14528 1	920 0.44	0.99143	1222	173
1040															

Figure B.1: Time and material use estimation a.

73	89	81	314	7	28	180	43	170	159	316	224	2	82	63	320	163	243	352	169	332	88	263	102	312	328	53	249	271	111	59	325	21	309	274	220	247	204	8	78	245	160	217	323	6	184	218	248	key star
35870	33940	33613	27836	26132	26056	25228	22839	21688	20842	20357	20058	19390	19175	17734	16772	16582	16509	15853	15628	15175	14269	14140	13986	13322	13044	13007	12310	12278	12206	12154	12010	11539	11509	11447	10649	10528	10407	10212	10203	10120	10093	6686	9633	9343	9308	9194	9180	ndard_t s
38,135	34,756	35,620	29,393	26,514	26,514	26,158	22,108	21,368	19,613	20,25	19,117	17,709	17,550	16,804	15,539	15,530	14	15,274	14,243	14,476	13,463	13,328	13,324	12,28	12,21	12,187	12,15	11,086	11,134	11,36	11,701	10,581	10,669	10,625	9,9102	9,4119	8.814	9,2965	9,4608	9,091	8,4588	9,3143	8,9746	8,6040	8,5695	8,3782	8,3393	standard_I
153	125	111	13 106	l6 123	16 123	38 71	14 97	90	14 105	4 95	95	6 101	26 81	12 7.	7 76	17 73	.7 8.	16 6	9 76	1 64	60	55	11 73	55	5	2 58	5 48	51	6	51	4	.8	55	6	5	5	5	5	40	5	i6 46	50 43	5 49	4	4	41	45	001_t
815 8,940	i 193 7,581	6,87	588 6,521	328 7,30	367 7,302	365 5,475	719 5,659)31 5,144	6,35	69 5,571	524 5,237	118 6,133	274 5,446	780 4,615	521 4,712	33 3,985	735 5,209	737 3,88	512 4,652	199 3,717	208 3,531	970 3,337	185 4,916	903 3,272	104 3,994	324 3,422	338 2,81	127 4,151	161 3,916	113 2,879	734 2,896	3,930	340 3,601	235 4,161)12 3,240	44 3.64	73 3.525	376 3,578	36 3,195	286 3,419	524 2,613	303 2,293)15 3,269	706 3,125	i07 2,962	143 2,161	47 2,906	001
067 156	169 147	776 158	193 142	022 153	215 152	581 137	996 114	172 123	501 118	123 120	752 108	343 124	577 103	579 105	293 112	<u>96</u> 90	945 103	385 97	207 103	776 89	145 89	771 82	548 95	257 89	113 82	257 90:	197 78-	164 85	519 83-	901 76	526 78	035 80	162 80	181 79	023 71	74	595 72	306 71	511 69	998 71	327 72	364 59	912 66	538 64	212 65	111 64	512 63	003_t
14 12,114	25 11,468	39 12,099	94 10,419	18 10,463	24 10,462	51 10,294	54 8,3512	16 8,83	09 8,172	50 8,3948	38 7,8664	35 8,216	34 7,3220	59 7,4019	35 8,0488	50 6,8216	55 6,892	02 6,9213	33 6,9370	21 6,479	11 6,418;	89 6,0950	76 6,9049	00 6,101	19 5,8802	27 6,479	41 5,8860	01 5,8305	45 5,7102	45 5,6935	37 5,8420	39 5,5270	51 5,5840	37 5,6093	32 4,996;	11 5.0660	19 4.7589	55 5,0018	26 4,804:	30 4,8943	06 4,790;	61 4,5702	55 4,653	28 4,519	57 4,6029	19 4,5322	92 4,3993	003_1
19 36658	37 31968	32 3095	99 2713:	27 26459	26 2648	18 22875	21 2106	17 1983	77 20538	36 20450	16 18973	74 18348	09 1783	95 16702	37 15283	53 15038	52 15583	32 1437:	06 14510	94 13750	22 12743	1 1262	52 13048	72 11973	27 12042	99 11560	08 10830	55 11480	28 11313	58 1083	54 10674	08 10778	59 1048;	33 1070	26 982.)3 9794	96 9740	33 952	18 9438	34 9413	12 9019	28 8683	31 8949	19 8588	96 8440	28 805	33 8355	201_t
3 36,8975	3 32,8034	7 33,2731	1 28,0147	9 25,6841	7 25,6841	5 24,1529	7 20,6778	7 19,7794	3 18,803	19,3766	3 17,9657	3 16,8189	7 16,4925	2 15,8017	3 14,1939	3 14,1976	3 13,9113	1 13,969) 13,3241	13,2404	3 12,2074	3 12,0977	3 12,5282	3 11,1138	2 11,38	10,9533	5 10,9176	10,4146	3 10,4085	1 10,1796	1 10,509	3 9,94739	2 9,86964	7 10,0395	2 9,19316	1 8.84006	8.31124	8,7239	3 8,81123	8,49709	7,56968	8,30283	5 8,41829	8,04155	7,91172	5 7,41856	5 7,73968	201
35366	32691	. 34787	29570	. 28227	28185	27276	22208	22975	20729	21966	20160	20218	18597	18878	18515	16679	16832	16967	16698	15889	15322	14903	15070	14770	13685	14710	14064	13125	13093	13226	13653	12417	12617	12195	11510	11241	10957	10952	11015	10878	11137	10596	10364	10056	10194	10392	9954	203 t
39,3544	35,8252	37,4278	31,0642	28,1333	28,1333	27,9931	22,7846	22,7209	20,2171	21,5836	20,0379	18,4665	17,9657	17,9855	16,8567	16,4346	15,2444	16,3856	15,1472	15,4366	14,5109	14,2959	14,1109	13,3782	12,8704	13,3928	13,3687	11,7546	11,8396	12,4283	12,8688	11,2189	11,4532	11,1999	10,5955	9.97232	9.29282	9,86021	10,0939	9,67566	9,3128	10,1167	9,52621	9,15483	9,21922	9,31011	8,92875	203 1
8201	8705	6123	5499	9775	4432	7651	5643	8878	3959	7480	10396	1587	10655	7383	3828	4868	8852	5038	1611	624	7580	7517	8010	8611	7498	3861	5162	8665	3963	3642	4761	4110	720	7900	6565	7468	3066	9239	6408	7440	1924	6766	6229	6371	6331	2281	6204	
4,88414	5,3333	3,46224	3,3975	6,03114	2,65238	4,66856	3,35585	5,20793	2,37952	4,67901	6,15634	0,924217	6,40983	4,42028	2,14736	2,88011	5,49369	3,0017	0,882808	0,273019	4,62147	4,63526	4,74334	5,06346	4,4217	2,30953	3,0095	5,08922	2,32218	2,21721	2,88184	2,44446	0,302889	4,73019	3,97638	4.40205	1.64303	5,37239	3,83445	4,35669	1,04445	4,12212	3,83742	3,8293	3,90452	1,34318	3,70878	
				3373					9762											1722	8068			1450											6738			3863			6377							-
				1,87903					5,9129											0,971509	5,37570			0,820570											4,0923			2,1689			3,87123							2
				3 5052					-												0.			6056														3869									1	t 3
				2,90157																				3,64711														2.3098										4
~	~	•	((~			10		10				~	(~		~	~				~		-	2				•				•		-							Maximum F
3201	3705	5123	5499	9775	1432	7651	5643	3878	9762	7480	0396	1587	0655	7383	3828	1868	3852	5038	1611	1722	8068	7517	3010	3611	7498	3861	5162	3665	3963	3642	4761	1110	720	7900	5738	7468	3066	9239	5408	7440	5377	5766	5229	5371	5331	2281	5204	ram Total
~	~	•	(0	18	2	~ 1	(~	15		10		10	~ 1	-		~	10			16		~	16	~ 1	(1)		~	0	-	2	-			11			1	•		~							Frame Time
3201	705	5123	5499	3200	1432	7651	5643	3878	3721	7480	1396	1587)655	7383	3828	1868	3852	5038	1611	1346	5488	7517	3010	5117	7498	3861	5162	3665	3963	3642	1761	1110	720	7900	1303	7468	3066	i971	408	7440	301	1766	1229	1371	1331	281	i204	e Total i
,4	(.	_ω	10	10,	2,	4,	ų,	5,	,00	4,	6,	9,0	6,	4,	2,	2,	5		0,8	1,2	,9	4,	4,	9,5	•	2,	102	, S	2,	2,	2,	2	0,3	4	00	4	-	, e	ω	,4	4	4	3	10	3	ب	ω	Frame Leng
88414	5.3333	46224	3,3975	81174	65238	66856	35585	20793	29249	67901	15634	24217	40983	42028	14736	88011	49369	3,0017	82808	44528	99723	63526	74334	31146	1,4217	30953	3,0095	08922	32218	21721	88184	44446	02889	73019	06868	40205	64303	85116	83445	35669	91567	12212	83742	3,8293	90452	34318	70878	th

Figure B.2: Time and material use estimation b.

tupo	Normalized	mid		degrees	
туре	Normalizeu	miu	first	second	third
0	0,0592593	5,3333333	5 <mark>,</mark> 5	5 <mark>,</mark> 5	5
100h	0,0925926	8,3333333	8	9	8
100v	0,1611111	14,5	14	15,5	14
300h	0,2222222	20	-	-	20
300v	0,2666667	24	24	-	-
bare	0,2222222	20	-	20	-
fabric	0,2555556	23	23	-	-
	- : no use	full data could	be extracted	from video	

Figure B.3: Impact resitance test data

Bibliography

- [bes22] Amazon best sellers 3d printers. https://www.amazon.com/ Best-Sellers-3D-Printers/zgbs/ industrial/6066127011, May 2022.
- [BGM⁺15] Dustin Beyer, Serafima Gurevich, Stefanie Mueller, Hsiang-Ting Chen, and Patrick Baudisch. Platener: Low-fidelity fabrication of 3d objects by substituting 3d print with laser-cut plates. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pages 1799–1806, 2015.
- [BSK⁺19] Patrick Baudisch, Arthur Silber, Yannis Kommana, Milan Gruner, Ludwig Wall, Kevin Reuss, Lukas Heilman, Robert Kovacs, Daniel Rechlitz, and Thijs Roumen. Kyub: A 3d editor for modeling sturdy laser-cut objects. In *Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems*, pages 1–12, 2019.
- [CUBTO⁺19] Enrique Cuan-Urquizo, Eduardo Barocio, Viridiana Tejada-Ortigoza, R Byron Pipes, Ciro A Rodriguez, and Armando Roman-Flores. Characterization of the mechanical properties of fff structures and materials: A review on the experimental, computational and theoretical approaches. *Materials*, 12(6):895, 2019.
 - [IG15] Ian Gibson Ian Gibson. Additive manufacturing technologies 3d printing, rapid prototyping, and direct digital manufacturing, 2015.

- [MSAA21] Pradeep Kumar Mishra, P Senthil, S Adarsh, and MS Anoop. An investigation to study the combined effect of different infill pattern and infill density on the impact strength of 3d printed polylactic acid parts. *Composites Communications*, 24:100605, 2021.
 - [opS22] Desktop operating system market share worldwide. https://gs.statcounter. com/os-market-share/desktop/ worldwide, May 2022.
 - [pop22] The top 10 best 3d slicers 2022. https: //www.3dsourced.com/3d-software/ best-3d-slicer-printer-software/ #:~:text=Ultimaker, May 2022.
 - [RH19] Michael L Rivera and Scott E Hudson. Desktop electrospinning: A single extruder 3d printer for producing rigid plastic and electrospun textiles. In *Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems*, pages 1–12, 2019.

Index

blender plugin, 2, 11, 14

connector, 12 Creality Ender 3, 27, 28 cura, xiii, xv, 11, 14–21, 23, 24, 26, 28, 37, 38

FFF, 1

geometry nodes, 24 grow_island, 13

interlock system, 15, 17, 20, 21 izod impact strength test, 31

laser cutter, 32, 36, 37

maximum frame time, 28, 29

PLA, 31

queue slicer, 18, 21, 36, 37

total frame time, 28, 29

Typeset May 16, 2023