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Abstract

Tangibles are physical objects that enable users to interact with digital contents.
They provide haptic feedback and provides users with new ways to interact with a
device. To allow tangible interactions in macOS, MultiTouchKit (MTK) was devel-
oped [Linden, 2015]. However, this framework has poor performance in its touch
processing, causing a huge amount of latency. This leads to poor experience with
tangible interactions using this framework.

This bachelor’s thesis aims to optimize latency in MTK to improve tangible inter-
action in macOS. We optimized the latency by modifying the way MTK receives
touch input by receiving them via USB and how traces are visualized in the MTK.
Our results shows an average latency of 94.97 ms with no trace visualization and
102.23 ms with the new trace visualization. Furthermore, our results also shows
that the newly modified trace visualization had less latency compared to the old
trace visualization.
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Conventions

Throughout this thesis we use the following conventions.

Text conventions

Definitions of technical terms or short excursus are set off
in coloured boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

Definition:
Excursus

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in American English.
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Chapter 1

Introduction

LATENCY/LAG:
The time difference between user input and output re-
sponse of a system [MacKenzie and Ware, 1993].

Definition:
Latency/Lag

Latency or lag is known to impact the usability of devices Latency impacts
usability of devices[MacKenzie and Ware, 1993]. A higher latency can impact

user performance and make systems feel less responsive
and interactive. Therefore, we need to consider how la-
tency affects system interactions and to optimize latency as
much as possible in a system.

Tangibles are physical objects that enable users to inter- Tangibles provide
new input and output
modalities

act with digital contents by coupling together virtual ob-
jects with physical objects [Ishii, 2008]. Tangibles provide
users with haptic feedback, which can increase precision
when manipulating digital objects [Fitzmaurice and Bux-
ton, 1997] and allows for eyes-free interaction [Weiss et al.,
2009].

To enable tangible interactions on macOS, a framework MTK has poor
performance, leading
to huge amounts of
latency

called Multitouchkit (MTK) was developed [Linden, 2015].
This framework allows applications to detect tangibles on
a touch display. However, MTK has a poor performance
in detecting and processing touches, leading to a huge
amount of latency. This leads to a poor user experience
when interacting with tangibles.
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This thesis aims to improve tangible interactions in macOSWe decided to
optimize latency in

MTK
by optimizing latency in MTK. To do this, we modified two
parts of the touch processing that we believe to impact la-
tency the most: how MTK received touch inputs and how
visual feedback is given.

This thesis has the following structure. In the second chap-Thesis structure
ter, we will take a look at some related work on how hu-
mans use the sense of touch in their everyday life, the ad-
vantages and challenges tangible interactions provide, how
latency is measured and the impacts of that latency have
on humans. In the third chapter, we will explore how MTK
processes touch input and the sources of latency that we
discovered in the touch processing. We will show how we
optimized latency in the MTK. In the fourth chapter, we
will measure the latency of the optimized framework and
discuss the results. In the final chapter, we conclude with a
summary and possible extensions of the thesis.
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Chapter 2

Related Work

2.1 Touch and Somesthesis

Similar to all senses, touch is one of the most fundamen- Sense of touch
tal means of contact with the external world [Jenkins and
Lumpkin, 2017]. Touch allows us to feel textures, pain,
heat and others [Field, 2003]. However, unlike other senses,
touch is intimate as it requires direct contact with the skin.

Touch is one of our primary ways to communicate non- Touch is used in
non-verbal
communication

verbally [Gallace and Spence, 2010]. We use touch to so-
cially convey emotions and is essential for our physical and
emotional wellbeing. Despite its importance in communi-
cation, the study of this sensory system as a communication
channel has been given little attention compared to facial
and vocal channels [Stack, 2007].

The sense of touch is part of the somesthetic sense. This Somesthetic sense
sense includes not only cutaneous senses (touch) but also
includes kinesthesia, the ability to sense the movement and
position of our limbs [Craig and Rollman, 1999]. In haptics,
the somesthetic sense is being stimulated through force-
feedback, which is dependant on the the person’s limb
movement.

Somesthesis plays an important role in interacting with ob- Somesthesis is
important in system
interaction

jects in a real or virtual environment [Robles-De-La-Torre,
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2006]. Information received through the somesthetic sense
is crucial for fast and accurate interaction with the environ-
ment. Without this, achieving top performance in tasks that
requires a high level of dexterity is extremely difficult. The
lack of somesthetic capabilities in a person can cause is-
sues such as increase in the difficulty in performing tasks
that involves cognitive and fine motor skills, a major loss of
precision and movement speed, and major increase in the
difficulty of learning motor skills.

A lack of somesthetic feedback can lead to a decrease inLack of somesthetic
feedback can reduce

user performance
user performance [Robles-De-La-Torre, 2006]. User perfor-
mance could worsen if additional sensory information is
lacking. However, there still remains the question to iden-
tify which somesthetic information is required for differ-
ent tasks. As an example, people type quicker on a phys-
ical keyboard compared to a touch display keyboard due
to the haptic feedback that the physical keyboard provides
[Sears, 1991]. Overall, somesthetic feedback is something
that needs to be considered in system interactions.

2.2 Tangible Interactions

Most interactions with the digital world involves GraphicalGUIs are mostly
used today User Interfaces (GUIs). GUIs represent information graph-

ically on the screen through pixels [Jansen, 1998]. We in-
teract and manipulate graphical components in the GUI
by using controllers such as the mouse and keyboard. Al-
though GUIs provide the capability to emulate various me-
dias graphically, our interaction with GUI screens are in-
consistent with our interactions with the physical environ-
ment within which we live [Ishii, 2008].

Tangible interaction allows user to interact with digital con-Tangibles provide
new input and output

modalities
tents on a touch display by manipulating physical objects
by coupling virtual objects with physical objects[Schneider
et al., 2011, Fitzmaurice et al., 1995]. They take advantage
of the human’s capability to grasp and manipulate physical
objects by providing haptic feedback and they also provide
new ways for users to interact with digital content. An ex-
ample can be seen in figure 2.1.



2.2 Tangible Interactions 5

Figure 2.1: Example of tangible interaction from Voelker
et al. [2015a]. This image shows an interactive board game
that uses tangibles to represent Star Wars ships on a capac-
itive touch display.

We will go through some related work to explore the ad-
vantages that tangible interactions provide. Furthermore,
we will explore some of the challenges in creating a tangi-
ble user interface.

2.2.1 Advantages of Tangible Interactions

Here we present four advantages of tangible interactions.

First, tangibles are intuitive to use because of our prehensile Tangibles are
intuitive to usebehavior [Fitzmaurice et al., 1995]. Due to the physicality of

tangibles, they provide a richer affordance compared to vir-
tual objects [Schneider et al., 2011]. These affordances gives
a strong feeling of directness to the tangibles, making them
intuitive to use. Furthermore, due to the tight coupling be-
tween tangibles and virtual objects, tangibles allow us to
take advantage of our innate spatial and environment skills
and our ability to physically manipulate objects [De Raf-
faele et al., 2018].

Second, tangibles increase user performance when per- Tangibles increase
user performance
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forming tasks. A study done by Fitzmaurice and Buxton
[1997] showed an increase in precision when operating tan-
gibles. Additionally, a study done by Voelker et al. [2015b]
showed that users were on average faster and less error-
prone when using tangible objects then virtual objects on a
touch display.

Third, tangibles allow for eyes-free interaction [Weiss et al.,Tangibles allow
eyes-free interaction 2009]. Due to the haptic feedback they provide, users are

able to apply their visual focus elsewhere while operating
tangibles. The experiment by Voelker et al. [2015b] showed
similar user performance when operating tangibles eyes-
free compared to eyes-on.

Fourth, tangibles enhances collaborative activities [Schnei-Tangibles enhance
collaborative

activities
der et al., 2011, Fitzmaurice et al., 1995]. They provide new
forms of collaborative interactions that GUIs do not pro-
vide. Cognitive load is also shown to decrease during col-
laborative activities with tangible interactions [Schneider
et al., 2011]. Furthermore, tangibles are shown to increase
awareness of the action of other users [Cherek et al., 2018].
The study showed that this was possible due to physicality
of the tangible which provides cues through the reflective
properties of the surface, the potential sound the tangibles
create, and awareness of the movements of other users.

2.2.2 Tangible User Interface Challenges

Tangible User Interface (TUI) is an interface that enablesTangible User
Interface tangible interaction. Creating such interface has its own

challenges. Here, we will explore some related work and
present three challenges in creating a tangible user inter-
face.

The first challenge is the process of detecting tangiblesDetecting tangibles is
challenging [Klemmer and Landay, 2004]. There are multiple methods

that were proposed and suggested.

A method to do this is to detect tangibles via a touch dis-Detect tangibles via
touch display play. Passive Untouched Capacitive Widgets (PUCs) (see

figure 2.2) are tangibles that can be detected by unmodi-
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Figure 2.2: Passive Untouched Capacitive Widgets (PUCs).
They are uniquely identified through the pattern of the con-
tact points. [Voelker et al., 2013]

fied capacitive touch displays [Voelker et al., 2013]. To de-
tect them, the interface must be able to recognize a specific
pattern formed by the contact points of the PUCs. Further-
more, PUCs have a problem where they disappear after 5 –
30 seconds due to the filtering mechanism of the touch dis-
play [Voelker et al., 2015a]. This makes it difficult to deter-
mine whether a tangible was filtered out or whether it was
intentionally removed from the touch display. This needs
to be handled by the TUI.

Persistently Trackable Tangibles on Capacitive Multi-Touch
Displays (PERCs) (see figure 2.3) was introduced by
Voelker et al. [2015a] to solve the issue PUCs have. PERCs
has the capability to detect whether it is on a capacitive
touch display or not. To detect PERCs, the TUI must be
able to communicate with the PERCs to determine whether
the PERCs is on the capacitive touch display.

Klemmer and Landay [2004] suggested using computer vi- Detect tangibles
using computer
vision

sion as a technique to detect tangibles. This method can
be characterized as being either the tag variety or the artifi-
cial intelligence (AI) variety. The tag variety uses computer
vision to determine whether an object has a specific prop-
erty that’s predetermined. For example, if an object has a
specific qr code on it, it will be classified as a specific tan-
gible. This variety is deemed to be more robust and com-
putationally cheaper. However, tagging objects can take a
large amount of time and this property must be visible. The
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Figure 2.3: Components of Persistently Trackable Tangibles
on Capacitive Multi-Touch Displays (PERCs). 1) marker
pattern, 2) field sensor, 3) light sensor, 4) micro controller,
5) BLE module, and 6) a lead plate. [Voelker et al., 2015a]

AI variety observes the properties of the object, such as its
color, shape and size, and classifies them informally in a
group based on those properties. However, this method is
deemed to be computationally expensive and not very ro-
bust.

The second challenges is the process of abstracting tangi-Abstracting tangibles
is challenging bles [Klemmer and Landay, 2004]. PUCs are uniquely de-

termined by the geometric patterns of the contact points
[Voelker et al., 2013]. This limits the number of uniquely
identifiable tangibles due to the limited number of contact
point patterns that can be accommodated [Voelker et al.,
2015a]. There is also the potential error where a tangible
is identified due to active touches having the same con-
tact point pattern to a tangible. PERCs do not have this
issue because every PERC contains its own Bluetooth mod-
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ule, making them uniquely identifiable. However, as men-
tioned earlier, the TUI must be able to communicate with
the PERCs. For the computer vision method, is it unknown
whether they could be uniquely identified.

The third challenge involves addressing parallel and con- Tangible interaction
have strict timely
requirements

tinuous interaction [Shaer and Hornecker, 2009]. Due to
the haptic properties of tangible interaction, a strict timely
requirements is required for seamless operation [Schneider
et al., 2011]. Furthermore, a noticeable latency can disrupt
the users perceived coupling between virtual objects and
its corresponding physical object [Fitzmaurice et al., 1995].
Overall, latency needs to be minimized in tangible interac-
tion.

2.3 Latency

Latency is an unavoidable part of any system [MacKenzie Latency is
unavoidableand Ware, 1993]. This is caused by a combination of the

input device, software and the output device.

To further understand the importance of optimizing la-
tency, we will go through some related work and explore
some methods to measure end-to-end latency for touch in-
teractions, the impacts of latency on user interactions and
how well humans are able to perceive them.

2.3.1 Measuring Latency

Kaaresoja and Brewster [2010] introduced a method to mea- Measure latency with
high speed camerasure latency by using a high speed camera to capture a high

frame rate video to detect visual feedback. The method
uses a make-up mirror to see the touch occurrence from a
side-view (see figure 2.4). This solution is simple to im-
plement and can be implemented on both capacitive and
resistive touch displays. However, this method requires a
manual analysis of to measure latency which is time con-
suming and can cause potential errors.
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Figure 2.4: Hardware to measure latency by Kaaresoja and
Brewster [2010]. A touch display is placed on the table
along with a mirror beside it. A camera is mounted to
capture a slow-motion video with both the mirror and the
touch display in the frame.

The study also provided other suggestions. A pro-Other suggestions
grammable robot arm with a force gauge was initially sug-
gested to measure when touch occured. However, this
method was too expensive to implement, unportable, and
challenging for a capacitive touchscreen to detect the touch.
An alternative approach was to build a stylus-like device
with a sensitive switch on the tip and an LED on the other
end to measure when touch occured. With this approach,
the LED would light up as soon as the stylus touches the
display. However, this approach requires building new
hardware and was challenging for a capacitive touchscreen
to detect the touch.

Casiez et al. [2017] presented another method to measureMeasure latency
using vibration

sensor and
photo-diode

end-to-end latency for a touch display or for a physical
button. For this method, an Arduino Leonardo1, a vibra-
tion sensor and a photo-diode is used (see figure 2.5). A
vibration sensor is used to detect when a touch or button
click occurred and is attached to the user’s finger, mimick-
ing the interaction. The photo-diode is used to detect when
the screen responds and is attached to a part of the touch

1https://docs.arduino.cc/hardware/leonardo

https://docs.arduino.cc/hardware/leonardo
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Figure 2.5: Hardware to measure latency by Casiez et al.
[2017]. The vibration sensor is attached to the users finger
and is connected to the Arduino board. The photo-diode
is attached to the touch display and is connected to the Ar-
duino board

display, which flashes upon detecting touch input. The la-
tency measured is the time difference between the time the
vibration sensor reacts and when the photo-diode reacts.
This solution is automated and cheap to implement.

Bérard and Blanch [2013] proposed two methods to mea- Measure latency
using dragging taskssure latency in touch-enabled systems. For both methods,

latency is estimated by measuring the gap between the the
leading trace on the display and the current position of
the touch. Automated data processing is included for both
methods. The first method is called the High Accuracy Ap-
proach which provides a large sample set of accurate la-
tency measurements but requires an external camera and
careful calibration. The second approach is called the Low
Overhead approach which does not offer much accuracy
compared to the former approach (latency differs no fur-
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Figure 2.6: Graph from MacKenzie and Ware [1993] showing an increase in both
movement time (MT) (left) and error rate (right) in relation to the index of difficulty
(ID) over 4 levels of lag.

ther than 4 ms) but is simpler to implement.

2.3.2 Impact of Latency

Lag can negatively impact motor-sensory tasks on interac-Lag decreases user
performance tive systems. MacKenzie and Ware [1993] conducted an ex-

periment to measure and model the effect of lag on speed,
accuracy, and bandwidth of human motor-sensory perfor-
mance in interactive tasks. The study showed that a higher
latency increased both movement time and error rate (see
figure 2.6). The effect worsens as the difficulty of task in-
creases. The study concluded that the effect of 75 ms lag
can easily be measured, and a 225 ms lag caused a signifi-
cant decrease in performance.

Latency can negatively impact the brain activity of users.Latency can impact
brain activity A study done by Somei et al. [2023] measured the brain ac-

tivity to investigate the effects of latency on brain activity.
The study concluded that a latency of 150 ms leads to a
reduction in the operator’s sense of urgency – the feeling
that the operator is the one controlling their actions. The ef-
fect worsens as latency increases. Additionally, an increase
in latency causes users to feel more stressed when operat-
ing the device. However, the perception of stress and brain
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activity differs depending on how well latency was recog-
nized.

Lag is shown to have a negative impact in real-life appli- Lag has negative
impact in real-life
applications

cations. In a gaming context, lag can cause a game to feel
unresponsive, leading to a reduction in player performance
and their quality of experience [Liu and Claypool, 2022]. In
a surgical setting, performing remote surgery with high la-
tency can be dangerous [Rayman et al., 2005].

2.3.3 Perception of latency

The negative impact mentioned earlier only occurred when
the lag was perceived in the first place. Here we see how
well latency is perceived in touch-enabled systems.

To analyse user’s perception in touch-based systems, Deber Lag is easily
perceived in direct
touch systems

et al. [2015] conducted an experiment to measure latency
perception for direct and indirect input systems for both
tapping and dragging tasks. Indirect input systems sepa-
rates the input device and the output device while direct
input systems allows users to provide input directly on the
touch display. In this experiment, users use their fingers to
perform the corresponding tasks. The first experiment con-
cluded that 11 ms for direct touch and 55 ms for indirect
touch were the thresholds for perceiving latency for drag-
ging tasks. For tapping tasks, 69 ms for direct touch and
96 ms for indirect touch were the thresholds. These results
indicate that it was easier to perceive lag in direct touch
systems compared to indirect touch systems.

In the same study by Deber et al. [2015], a second exper- Small improvements
in latency are
noticeable

iment was conducted to investigate how well people per-
ceive small improvements in latency in both direct and in-
direct input systems for both tapping and dragging tasks.
It was shown that improvements in latency as small as 8.3
ms are noticeable, indicating that small improvements in
latency are noticeable in touch-enabled systems.

Ng et al. [2014] conducted an experiment to measure la- Latency impacts
tangible interactionstency perception for dragging and scribbling tasks for sty-
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luses, which can be considered a pen-shaped tangible.
They observed that very low levels of latency can be per-
ceived for both dragging tasks (2 ms – 7 ms) and scrib-
bling tasks (7 ms – 40 ms). This indicates that this notice-
able small improvement in latency does not only apply to
touches conducted by fingers, but applies to tangibles as
well.
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Chapter 3

Latency Challenges in
Tangible Interactions

In this chapter, we will first explore how MTK processes Overview of this
chaptertouch input. Next, we will go through some sources of la-

tency that was discovered during the touch processing and
explain how they caused a large amount of lag. Finally, we
will present how latency was optimize and a problem that
we faced doing this.

3.1 Touch processing

This section is a summary of the touch processing of MTK
from Linden [2015]. This allows us to understand how
MTK receives touch input. Here, we define a touch as any-
thing that is recognized as a touch by the touch display.
This could be a human finger or a tangible.

MTK uses Spritekit1 to render graphics. SpriteKit uses a MTK uses SpriteKit
rendering loop (see figure 3.1) to process and to render con-
tents of a frame. Touch processing occurs in the start of ev-
ery frame, specifically when the update: method is called.
This method is called on the active SKScene, which we will

1https://developer.apple.com/spritekit/

https://developer.apple.com/spritekit/
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Figure 3.1: Rendering loop of SpriteKit. This image was
taken directly from Apple’s official documentation.

call a scene. SKScene is a subclass of SKNode, which we will
call a node.

In SpriteKit, nodes are the building blocks for the contentNodes in SpriteKit
in the scene. The scene is the root node and contents on the
screen gets rendered based on the tree of node objects.

MTK splits the touch process into two parts: the initializa-We focused on the
initialization of touch

processing
tion and the recursive touch processing. We will focus on
the initialization as this is where touch input is being re-
ceived and processed. It consists of the following steps:

1. Update all MTKTraces

2. Call preprocess: of global delegate

3. Update cursors

4. Update tangibles

5. Update global gesture recognizer

6. Distribute traces to SKNodes in scene

7. Call postProcess: of global delegate

8. Start recursive scene processing
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In the first step, MTK updates all MTKTraces. An MTK- Traces are updated
Trace, which we will call a trace, represents the lifetime of a
single touch. A trace contains information such as its iden-
tifier and position and is saved every frame while the touch
was recognized by the touch display. Traces allows MTK to
interpret touch inputs. This step involves creating and up-
dating MTKTraces.

Before the modification, MTK supports two types of input Traces are created
from their input
source

sources: MouseInputSource and JSONInputSource.
MouseInputSource is responsible for converting mouse
events into traces. JSONInputSource is responsible for
interpreting information from a JSON object and convert-
ing them into traces. This is the main input source that al-
lows MTK to receive touch input. The end result is an array
of active traces from all sources. The result is used for the
remaining steps.

In the second step, preprocess: of the global delegate Preprocessing of
tracesis being called. This step allows developers to manipulate

traces before the actual processing begins.

In the third step, cursors are updated. Here, visual feed- Cursors are updated
back is added to the scene to notify users of the current po-
sition of the active traces in the scene. This is mainly used
during debugging and can be disabled during normal use.

There are two ways MTK provides visual feedback for Two types of visual
feedback for tracestraces: cursor visualization and trace visualization. Cur-

sor visualization provides visual feedback on the current
position of the active traces. Trace visualization provides
visual feedback of the current position as well as the past
positions of the active trace. The number of past positions
is determined by the buffer size, which can be configured
in the source code.

In the fourth step, we update tangibles. This step takes all Tangibles are
updatedthe traces and interprets them to recognize tangibles that

were initially registered to the MTK. As of now, MTK sup-
ports PUCs [Voelker et al., 2013] and PERCs [Voelker et al.,
2015a]. It also deals with recovery of tangibles in the case
that the touch points of the tangible disappears for a short
amount of time and provides user with visual feedback for



18 3 Latency Challenges in Tangible Interactions

the tangibles that are active in the scene.

In the fifth step, the global gesture recognizer gets updates.Gestures are
detected The gesture recognizer looks for certain patterns in the path

of the traces and calls a method based on it.

In the sixth step, trace distribution to the nodes occurs inTrace distribution to
nodes the scene. Traces that are not recognized as gestures or tan-

gibles need to be bound to one of the nodes in the scene.
This step deals with distributing traces to the correct nodes.

In the seventh step, postprocess: of the global delegatePost-processing of
traces is called. This step allows developers to manipulate traces

after traces has been processed.

All these steps are performed at the beginning of eachRecursive touch
processing starts frame. After the initialization finishes, the recursive touch

process starts which is a function call of the active scene and
is called recursively by the children of the scene and their
children.

3.2 Sources of latency

After understanding the basics on how MTK receives touch
input, we will now go over some of the latency challenges
that we face with this framework and the reason they occur.

One of the challenges we face is that receiving touch in-Touch processing is
slow put is slow. Obtaining traces from touch input was done

through the JSONInputSource. This input source allows
the MTK to receive touch input data from JSON objects
which is sent via network. This allows for flexibility as this
input source can work with any hardware that can send in-
put data via network. However, this input source provides
a huge latency due to the complex process that occurs be-
fore MTK receives the touch input (see figure 3.2).

To receive touch input, the touch display must first be ablemacOS has no native
support for external

touch display
to send it’s data to the MTK. However, macOS does not
have native support for receiving touch input from exter-
nal touch displays. JSONInputSource was created as an
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Sends touch
data via USB

Sends JSON object
via network

Convert touch data
to JSON object

Figure 3.2: Touch processing using the JSONInputSource.

alternative method to solve this issue.

A setup is required before this input source can be used. Complex setup is
neededFirst, a Windows computer is required to read touch input

from the touch display. The Windows computer requires a
client to read the touch data from the touch display, convert
the data to a JSON object, and send the JSON object to a
specified IP address and port. The IP address and port also
needs to be configured in the MTK to receive JSON objects
from the Windows computer. Finally, the touch display is
connected to the Windows computer via USB and MTK is
ready to receive touch input from JSONInputSource.

Upon receiving the touch input, the client on the Windows Complex process to
receive touch inputcomputer reads the touch data through the USB and con-

verts the data to a JSON object. This JSON object is format-
ted in a specific way, which is specified in the MTK. After
the conversion, the client sends the JSON object to the MTK
with the specified IP address and port. After receiving the
packet via network, MTK unpacks the packets and inter-
prets the touch input from the JSON object. After this, MTK
finally receives a set of touch inputs.

This method of receiving touch input requires a lot of con-
verting and abstracting of data, which leads to a huge
amount of latency. Furthermore, this input source brings
in complexity to the setup process.

Another challenge is the heavy processing required to visu- Trace visualization is
heavy
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Figure 3.3: Trace visualization in MTK. This is mostly used
during debugging to allow developers to see the history of
traces and its path. White circles represents past location of
traces.

alize traces. To provide visual feedback to the user, nodes
for trace visualization are added to the scene. These nodes
come in the form of circles and lines (see figure 3.3). How-
ever, these nodes have no reference to its trace. This means
that MTK does not know which trace visualization nodes
to delete when a trace disappears. To allow for this, all
nodes for trace visualization are deleted at the start of ev-
ery frame. If a trace remains active, temporary nodes are
created again for all past locations inside the buffer. This
process repeats every frame.

This method is simple implement but caused a huge
amount of latency due to the overhead in deleting and
adding nodes to the scene every frame. Although trace vi-
sualization is primarily used for debugging, improving la-
tency here will lead to a better debugging experience.

Another challenge is hardware limitation. One hardwareHardware limitation
that can cause additional latency is the touch display,
specifically the refresh rate of the display. The refresh rate
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of a display shows how frequently the display updates the
screen. A higher refresh rate allows the touch processing
loop to occur more frequently as well as allowing the dis-
play to update more often. It was also shown that doubling
the refresh rate can reduce latency by up to 15.5 ms [Casiez
et al., 2017]. Another hardware that can impact latency is
the processor. A fast processor will be able to process things
more quickly and efficiently, leading to less latency. Un-
fortunately, hardware limitations cannot be compensated
through software.

3.3 Solution

In this section, we will explain our implementation to opti-
mize latency in MTK. We did this by modifying how touch
input is received and how trace visualization works.

3.3.1 Receiving Touch Input via USB

To omit the complex process of the touch processing done Receive touch input
via USBby JSONInputSource, we decided to modifiy MTK to re-

ceive touch input data directly through USB. We added a
new input source called TouchInputSource, which will
be responsible for receiving touch input via USB and con-
verting them to traces. To do this, a framework called
Touch Up was integrated into the MTK.

HUMAN INTERFACE DEVICE:
A user interface for types of computer device that are op-
erated by humans. Commonly referred to as ”HID”. This
definition is taken from the Device Class Definition for
HID 1.11.

Definition:
Human Interface
Device

Touch Up2 is a framework that provides access to active Touch Up framework
touches that is recognized by the touch display. Touch Up
uses the IOHIDManager3 API collection. This API is pro-

2https://hci.rwth-aachen.de/touchup
3https://developer.apple.com/documentation/iokit/iohidmanager h

https://hci.rwth-aachen.de/touchup
https://developer.apple.com/documentation/iokit/iohidmanager_h
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vided by Apple and provides tools for developing drivers
for human interface devices. IOHIDManager allows Touch
Up to detect touch input by accessing the HID interface of
the touch display, which acts as a bridge for the communi-
cation between macOS and the touch display. This allows
macOS to receive data packets directly from the touch dis-
play via USB.

Most touch displays follows the Windows Touchscreen
Collection4 protocol. This protocol is used for touchscreenWindows

Touchscreen
Collection

reporting in Windows 10 and later operating system. Touch
Up uses IOHIDManager to receive data packets via USB
and interprets the data based on the protocol.

Before touch processing begins, MTK starts theReceiving touch
input via USB TouchInputManager. This is imported from Touch Up.

TouchInputManager is responsible for receiving touch
input from the touch display and interpreting the data
based on the Windows Touchscreen Collection protocol.
Once the touch processing begins, TouchInputManager
reads data coming in from the touch display via USB every
frame, interprets them and stores the touch data in a set in
the MTK. The set contains the contact ID and a normalized
global coordinate of every active touch in that frame.

To obtain traces from the set of touch inputs received, MTKTouch input gets
converted into traces first converts the coordinate of every touch into a pixel-

based global coordinate in the macOS coordinate system.
This is due to the different origin points of the coordinate
system in macOS, which is in the bottom-left corner, and in
Touch Up, which is in the top-left corner. For every touch
input, the pixel-based global coordinate is then converted
into a pixel-based local coordinate of the scene. This al-
lows MTK to check if all active touches are inside the scene.
Touches that are outside of the scene will not have a trace
created for it. Finally, MTK receives a set of traces that are
active in the scene.

4https://learn.microsoft.com/en-us/windows-
hardware/design/component-guidelines/touchscreen-required-hid-
top-level-collections

https://learn.microsoft.com/en-us/windows-hardware/design/component-guidelines/touchscreen-required-hid-top-level-collections
https://learn.microsoft.com/en-us/windows-hardware/design/component-guidelines/touchscreen-required-hid-top-level-collections
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Advantage of using USB

Although JSONInputSource provides us with flexibility
due to its compatibility with all input sources, there are a
couple of advantages that receiving touch input using the
new source provides over the old input source.

First, the new input soruce allows MTK to receive touch Less processes
requiredinput directly from the touch display via USB. This method

requires less processes than JSONInputSource, leading to
a reduction in latency.

Second, receiving touch input via USB dismisses the com- Setup is easier
plex setup required when using JSONInputSource. Be-
cause USB is designed to be compatible with all computers,
getting touch input from a touch display with the MTK is
as simple as plug and play.

Problems with using USB

Despite all the latency advantages that receiving touch in- MTK cannot detect
all touches on
Surface Hub

put via USB provides, there exists one problem. MTK is not
capable of detecting all touches from certain touch displays.
We will explain this problem with an example involving the
Surface Hub.

The Surface Hub has two modes that allows it to send touch Surface Hub has two
modes to receive
touch input

input to an external device: Projection Mode and Guest
Mode. Projection mode is activated when the operating
system of the Surface Hub detects an external device that is
connected to the Surface Hub. Guest Mode is activated by
manually switching the display input source to the source
that is connected to the computer. The difference is that the
user interface of the Surface Hub is still active in Projection
mode while it is inactive in Guest Mode.

The Microsoft Surface Hub can support up to 100 touches
simultaneously5. From our analysis, this only occurs in We focused on

Guest Mode
5https://support.microsoft.com/en-us/surface/surface-hub-tech-

spec-4b57f72c-dc1c-28d7-959f-3d95eda7708f

https://support.microsoft.com/en-us/surface/surface-hub-tech-spec-4b57f72c-dc1c-28d7-959f-3d95eda7708f
https://support.microsoft.com/en-us/surface/surface-hub-tech-spec-4b57f72c-dc1c-28d7-959f-3d95eda7708f
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Guest Mode. In Projection Mode, the Surface Hub can have
a maximum of 10 active touches. We focused on using the
Guest Mode to take advantage of the maximum number of
touches that the Surface Hub supports.

Touch Up is only able to detect a maximum of 5 touches de-Touch Up can only
detect 5 touches spite the maximum number of contact points that the Sur-

face Hub supports. To further understand this, we analysed
the data that is being sent and received through the HID
interface on a Windows computer. We analysed the HID
report descriptor, which determines the expected structure
of every available HID in the Surface Hub, and discovered
that for touch input, every packet is expected to contain a
maximum of 5 contact points. This is due to the Packet Re-
porting Mode of the Surface Hub.

The Packet Reporting Mode6 are the different ways inPacket Reporting
Mode which touch data is sent to the operating system. The Sur-

face Hub uses a hybrid mode. This means that every report
contains less than the maximum number of contacts that
the device supports. For the Surface Hub, every packet sent
must contain a maximum of 5 contact points. As an exam-
ple, if there are 15 active touches, the Surface Hub will send
3 separate packets to the operating system, each containing
5 touches.

The reason why MTK is not able to detect all the touchPacket is not sent
with the correct

format
input lies in how the Surface Hub sends its touch data to
macOS. macOS expects to receive a packet that contains a
maximum of 5 touches. However, our analysis showed that
the Surface Hub sends out one packet containing all those
touches in Guest Mode. As an example, if there are 15 ac-
tive touches, a single packet that contains all 15 touches is
sent to the operating system. This does not comply with
the structure of the packet that macOS expects and the re-
maining touches gets ignored by macOS.

To solve this issue, we tried to modify Touch Up. InsteadWe tried to solve this
issue of using IOHIDManager, we tried using the IOUSBLib7 li-

6https://learn.microsoft.com/en-us/windows-
hardware/design/component-guidelines/touchscreen-packet-
reporting-modes

7https://developer.apple.com/documentation/iokit/iousblib h

https://learn.microsoft.com/en-us/windows-hardware/design/component-guidelines/touchscreen-packet-reporting-modes
https://developer.apple.com/documentation/iokit/iousblib_h
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brary. This library allows us to access hardware device in-
terface, allowing applications to communicate and control
the hardware from outside the kernel. We thought by using
this framework, we would be able to read and interpret all
the data that is sent through the interface ourselves, includ-
ing the data that was ignored by macOS when using IO-
HIDManager. Unfortunately, this framework did not grant
us access to the HID interface of the Surface Hub and we
were not able to interpret the data coming in from the USB
ourselves.

As mentioned earlier, we experienced this problem only MTK can detect all
touches on other
touch displays

occurred when working with the Surface Hub. From our
analysis, MTK is able to take advantage of the maximum
number of contact points on other touch displays that sends
packets in the expected structure that is predefined by the
touch display.

3.3.2 Improving Trace Visualization

We modified how trace visualization works so that nodes Modify trace
visualizationonly get processed when necessary. To do this, we imple-

mented a queue which will contain nodes for trace visual-
ization.

The queue contains nodes for trace visualization and is Queue for trace
visualizationsorted in a timely order (see figure 3.4). Every trace con-

tains this queue. The tail of the queue contains the node
which shows the current position of the trace while the
head of the queue shows the earliest recorded trace. Every
node in the queue is attached to the scene and has a direct
reference to its trace. This reduces the number of nodes that
is being processed for trace visualization compared to the
old implementation.

This is the current implementation of trace visualization. Delete nodes for
traces that disappearBefore adding nodes to the scene, MTK checks if any traces

disappeared from the last frame. When a trace disappears,
all nodes in the queue of that trace gets deleted from the
scene.
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Head Tail

C C C CL L L

Dequeue

Queue

L

L

Figure 3.4: Queue for trace visualization. C represents a cir-
cle and L represents a line that connects together 2 circles,
showing the path of the trace. An example is shown in fig-
ure 3.3

Next, MTK checks if there are any new traces or if a traceAdd nodes for active
traces remains active. For new traces, a C node is pushed into

the queue and added to the scene. For traces that remained
active, an L node is pushed into the queue followed by a C
node. Both nodes are then added to the scene. When the
queue reaches its maximum capacity, the queue pops the
first 2 elements and removes those nodes from the scene.
Then, the latest L and C nodes are pushed into the queue
and added to the scene.
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Chapter 4

Evaluation

4.1 Measurement

We performed a series of measurements to evaluate the Latency
measurementend-to-end latency of the MTK. We referred to the method

proposed by Casiez et al. [2017]. We decided to use this
method due to the low cost and automation it provides.
For this method, a vibration sensor is used to detect when
to touch occurred and a photo-diode is used to detect when
the screen responds. Latency is measured by calculating
the difference between both occurrences. An image of the
setup can be seen in figure 4.1.

The setup is slightly different compared to the proposed Technical setup
method. We used an Arduino Uno1 instead of an Arduino
Leonardo, which is also connected to a separate computer.

For the touch display, we worked with an 84” Microsoft
Surface Hub from 2016. As we are using Guest Mode, the
Surface Hub ran with a refresh rate of 60Hz. The touch
display is connected to a Mac Mini which runs MTK. This
version of the Mac Mini contains the M2 chip.

We also considered the USB ports as a potential source of USB port can impact
latencyoverhead. The Mac Mini has two USB-A and two Thun-

1https://docs.arduino.cc/hardware/uno-rev3

https://docs.arduino.cc/hardware/uno-rev3
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Figure 4.1: Technical setup to measure end-to-end latency.
The vibration sensor is attached to the user’s finger. The
photo-diode is placed on the screen (right of the hand) and
covered to prevent unwanted external light from interrupt-
ing the measurement.

derbolt 4 ports. However, the USB-A ports are connected
together via a USB Hub which can cause a bit of latency
[Ramadoss and Hung, 2008]. Although the effect is mini-
mal, we connected the Mac Mini to the touch display via
the Thunderbolt 4 port to avoid this overhead.

For this evaluation, we measured the latency for threeWe measured
latency for three

kinds of interactions
kinds of interactions: single touch, five touches, and tangi-
ble detection with 3 touches. Single touch will allow us to
determine the base latency for a single touch. Five touches
will allow us to determine the latency for the maximum
number of touches that the MTK supports on the Surface
Hub. This will also allow us to analyse the relationship be-
tween latency and the number of touches. To see the effects
of the processing for tangible detection, we also measured
the latency to detect PUCs, which have three contact points.
We decided to measure the latency of detecting PUCs due
to its simplicity.
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For each of these interactions, we measured the latency We measured
latency for three
types of visualization

with no trace visualization, with the old trace visualization
and the new trace visualization. Latency with no trace visu-
alization will represent the latency during normal use. We
will also compare the latency of the old and new trace vi-
sualization to evaluate if there is an improvement. We did
100 touches for each trial, adding up to a total of around
900 measurements for the entire evaluation.

For single touch, we measured the time difference between Measurement
approachwhen a single touch occurs and when the screen reacts.

For five touches, we measured the time difference between
when the fifth touch occurs and when the screen reacts. The
first four touches stayed active for at least two seconds for
the buffer of all traces to reach its max capacity. For tangible
detection, we measured the time difference between when
the third touch occurs and when the screen reacts. The first
two touches also stayed active for at least two seconds to
fill up the buffer of the traces. The buffer size of trace can
contain a maximum of 120 touches. All touches were per-
formed with fingers.

For latency measurement with single touch interaction, the Buffer for single
touch measurement
is not filled

buffer of the traces could not completely fill up with a
single touch. However, we decided to conduct this mea-
surement to form a baseline to compare with other interac-
tions. Furthermore, this measurement can be used to anal-
yse whether just enabling trace visualization could increase
latency.

4.2 Results

The latency was calculated by subtracting the time when
the vibration sensor detected a touch from the time the
photo-diode reacted to the screen flash. Furthermore, 5.7
ms was added to due to the reaction time of the vibration
sensor [Casiez et al., 2017]. The in-depth latency measure-
ments for the all combinations of interaction and trace vi-
sualization can be seen in Appendix A.

With no trace visualization, we obtained an average latency Latency with no trace
visualization
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of 94.97 ms for all three interactions. Latency for the three
different interactions can be seen in figure 4.2. We observed
that single touch interaction has the lowest latency out of
the three. We also observe an increase in average latency of
2.16 ms with five touches compared to single touch. Fur-
thermore, we observe an even slightly higher average la-
tency of 2.58 ms with tangible detection compared to sin-
gle.

With the old trace visualization, we obtained an average la-Latency with old
trace visualization tency of 107.56 ms for all three interactions. For all interac-

tions, we observe an increase in average latency compared
to without trace visualization (see figure 4.3). We observed
a slight increase in latency with single touch (4.29 ms) and
a noticeable increase in latency for both five touches (23.32
ms) and tangible detection (10.17 ms) compared to no trace
visualization. Unlike without trace visualization, average
latency with five touches is higher then tangible detection.

With the new trace visualization, we obtained an averageLatency with new
trace visualization latency of 102.23 ms for all three interaction. Similar to the

latency measured with the old trace visualization, we ob-
serve an increase in average latency compared to without
trace visualization. We also observed a slight increase in la-
tency with single touch (1.43 ms) and a noticeable increase
in latency for both five touches (14.04 ms) and tangible de-
tection (6.32 ms). However, this increase in latency is lower
than the old trace visualization (see figure 4.3)

4.3 Discussion

The measurements showed the latency for three interac-Latency by receiving
touch input via USB tions with three ways of visualizing traces. Without trace

visualization, we observed an average latency of 94.97 ms
which is below 100 ms. This means that on average, the
screen response will be perceived immediately in relation
to when a touch occurs according to Bloch’s law [Gorea,
2015] during normal use. However, with the new trace vi-
sualization, we observed an average latency of 102.23 ms
which is slightly above the threshold of what Bloch’s law
considered something to be immediately perceivable. Both
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Figure 4.2: Latency without trace visualization for three interactions. Numbers
represent the average increase in latency in milliseconds and error bars represent
the standard deviation.

Figure 4.3: Increase in latency caused by old and new trace visualization for three
interactions. Numbers represent the average increase in latency in milliseconds
and error bars represent the standard deviation.
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measurements are between 50 ms - 200 ms, which is the av-
erage latency of today’s touch display [Ng et al., 2012].

With no trace visualization, we observed a slight increaseObservation with no
trace visualization in latency with five touches compared to single touch. This

was expected as more touch processing had to be done
by the MTK, which increases latency. Furthermore, we
also noticed a slightly higher average latency with tangi-
ble detection compared to five touches, although only three
touches were being processed instead of five. This indicates
that process of receiving touch input via USB caused less la-
tency than the process for detecting tangibles. Overall, our
implementation of receiving touch input via USB brought
the latency to this level.

Comparing the the average latency of the old and new traceLatency comparison
between old and new

trace visualization
visualization for three interactions, we observed that the
average latency of the new trace visualization is lower then
the old trace visualization for all three interactions. This
can be attributed to the reduction in the number of nodes
that needs to be processed by the MTK compared to the old
trace visualization. Overall, our aim to reduce latency in
this part of the touch processing was a success.

Looking at the latency measurements with trace visualiza-Observation on
latency with trace

visualization enabled
tion enabled, we observed a slight increase in latency with
single touch interaction, although no nodes for trace visu-
alization were being processed before the touch occurred.
This shows that latency increases by just enabling trace
visualization. Unlike the latency measurements with no
trace visualization, we observed a higher latency with five
touches compared to tangible detection. This indicates that
the trace visualization process is heavier than the process-
ing of tangibles. Furthermore, we observed that for old
trace visualization, the latency difference is 5.88 ms be-
tween single touch and tangible detection and 13.15 ms be-
tween five touches and tangible detection. We also see a
similar pattern with the new trace visualization with the
latency difference being 4.89 ms between single touch and
tangible detection and 7.72 ms between five touches and
tangible detection. This indicates that latency compounds
the more touches there are and further supports the case
that the process for trace visualization is heavy.
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We also observed a fairly high range in the latency for ev- Range of latency is
highery trial. An explanation for this situation could be caused

by the rendering loop by SpriteKit. Due to the loop, it is
possible for the touch to occur during a phase where touch
isn’t being detected by MTK. This means that additional la-
tency was caused by waiting for the loop to go back to the
initialization phase.

As mentioned earlier, MTK could only detect PUCs in this Type of tangibles
used may impact
latency

evaluation. Registering additional tangibles in MTK can
possibly cause more latency. We did not perform latency
measurements on PERCs as we focused mainly on im-
proving the latency caused by the touch processing of the
MTK, which PUCs suffices as a test object. However, it
is possible that using PERCs could increase latency due
to the overhead caused by the bluetooth communication
between PERCs and MTK. Generally, we cannot conclude
how much additional latency that the additional process for
communication with PERCs causes.
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Chapter 5

Summary and future
work

5.1 Summary and contributions

To summarize, we optimized latency in MTK based on the We modified MTK
sources of latency that we found. To do this, we modified
the way touch input is being received so that we can ob-
tain touch input directly via USB. We also modified the way
trace visualization works to improve latency when debug-
ging.

We measured and evaluated the latency after modifying Current latency of
the MTKMTK. We observed an average latency of 94.97 ms with no

trace visualization and 102.23 ms with the new trace visu-
alization with all interactions combined. This level of la-
tency can be attributed to receiving touch input via USB.
Furthermore, the new trace visualization had less latency
compared to the old trace visualization.

5.2 Future work

There are some possible future works. Although we are Find an alternate
method for event
distribution

getting an average latency of 94.97 ms with no trace visual-
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ization, this amount of latency is relatively high compared
to other devices [Casiez et al., 2017]. A possible reason is
because of the way events are distributed in the MTK. As
of now, an application needs its scenes to be registered in
the MTKHub, which acts as an intermediary for sending
events. Essentially, events are distributed to the scenes via
the MTKHub. A possible future work is finding an alter-
nate method such that the events can be distributed directly
to the application instead of being delegated through the
MTKHub. This could reduce the complexity of the frame-
work, leading to a possible decrease in latency and setup
process. However, we are not sure if this is possible with-
out changing the architecture of the MTK.

As mentioned in section 3.3.1, we were not able to imple-Receive all available
touch inputs via USB ment a method to detect all touches from the Surface Hub.

A possible future work is to find a method to receive all the
touch inputs from all touch displays via USB. This will al-
low users to take advantage of the maximum contact point
that the touch display provides.

Another possible future work is to reduce the latency per-Reduce user’s
perception of latency ceived in MTK. An example is predicting the direction of

the touch during dragging tasks [Henze et al., 2016]. Over-
all, implementing this could make the system appear more
responsive even though the actual performance remains
unchanged.
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Appendix A

Latency Measurements

Touches Single Touch Five Touches Tangible Detection
Mean 93.39 ms 95.55 ms 95.97 ms
Standard Deviation 5.75 ms 6.54 ms 7.51 ms
Minimum 83.31 ms 80 ms 81.19 ms
Maximum 104.82 ms 107.73 ms 113.444 ms

Table A.1: Latency measurement with no trace visualization.

Touches Single Touch Five Touches Tangible Detection
Mean 97.68 ms 118.87 ms 106.14 ms
Standard Deviation 6.78 ms 9.93 ms 8.06 ms
Minimum 85.44 ms 100.68 ms 82.87 ms
Maximum 120.72 ms 138.31 ms 124.98 ms

Table A.2: Latency measurement with the old trace visualization.

Touches Single Touch Five Touches Tangible Detection
Mean 94.82 ms 109.59 ms 102.29 ms
Standard Deviation 8.43 ms 9.74 ms 8.66 ms
Minimum 80.07 ms 91.27 ms 80.53 ms
Maximum 113.67 ms 129.46 ms 118.27 ms

Table A.3: Latency measurement with the new trace visualization.
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