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Abstract 

Sensory substitution devices (SSDs) can convey visuospatial information through spatialised 

auditory or tactile stimulation using wearable technology. However, the level of information 

loss associated with this transformation is unknown. In this study novice users discriminated 

the location of two objects at 1.2m using devices that transformed a 16 u 8 depth map into 

spatially distributed patterns of light, sound, or touch on the abdomen. Results showed that 

through active sensing, participants could discriminate the vertical position of objects to a 

visual angle of 1°, 14°, and 21°, and their distance to 2cm, 8cm, and 29cm using these visual, 

auditory, and haptic SSDs respectively. Visual SSDs significantly outperformed auditory and 

tactile SSDs on vertical localisation, whereas for depth perception, all devices significantly 

differed from one another (visual > auditory > haptic). Our findings highlight the high level 

of acuity possible for SSDs even with low spatial resolutions (e.g. 16 u 8) and quantify the 

level of information loss attributable to this transformation for the SSD user. Finally, we 

discuss ways of closing this ‘modality gap’ found in SSDs and conclude that this process is 
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best benchmarked against performance with SSDs that return to their primary modality (e.g. 

visuospatial into visual). 
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Introduction 

 Vision provides an abundance of spatial information, helping to localise individual 

objects, facilitate orientation, and assist navigation within the environment (Urbanski et al., 

2008; Michel & Henaff, 2004; Kelly et al., 2008; Epstein, 2008). Relative to those with 

visual experience (the sighted, late-blind), congenitally-blind individuals who have never 

experienced rich visual information showcase a range of subtle shifts in spatial processing, 

including: A lack of automatic integration between tactile and auditory spatial reference 

frames (Hötting & Röder, 2004; Hötting, Rösler, & Röder, 2004); distorted representations of 

space, compromising the ability to make judgments based on the Euclidean distance between 

auditory targets (Gori et al., 2013); contraction of space resulting in an over-estimation of 

distance (Cappagli, Cocchi, & Gori, 2017; Kolarik et al., 2017); increased difficulty in 

replicating movement in space (Gori et al., 2017); and finally, show a preference for, and 

effective use of, egocentric (self-oriented) representations of external space, but a slower 

processing of allocentric (environment-oriented) representations, which for some but not all 

situations can result in increased errors (Heller & Kennedy, 1990; Pasqualotto & Proulx, 

2012; Iachini, Ruggiero, & Ruotolo, 2014; Corazzini et al., 2010; Ruggiero, Ruotolo, & 

Iachini, 2012; Ruggiero, Ruotolo, & Iachini, 2018; Vercillo, Tonelli, & Gori, 2018), which in 

turn, can result in an impaired spatial memory for the congenitally-blind (Pasqualotto et al., 

2013). Overall, the experience of vision continues to influence our representation of space 

even if no visual input is currently available. As such, providing structured spatial 

information to the fully-blind not only serves as an intervention to assist in daily tasks 

(Hamilton-Fletcher, Obrist, Watten, Mengucci, & Ward, 2016; Elli, Benetti, & Collignon, 

2014; Maidenbaum, Abboud, & Amedi, 2014; Kristjánsson et al., 2016), but it allows users 

to interpret their remaining senses more accurately (Cappagli, Finocchietti, Baud-Bovy, 



COMPARING SPATIAL SSDS 4 

Cocchi, & Gori, 2017), and explore how our metamodal representation of space can develop 

through additional sensory stimulation (Pasqualotto & Esenkaya, 2016).  

One modern approach to extending the sensory world of fully-blind individuals is to 

use ‘sensory substitution devices’ that translate the sensory properties of one sense (e.g. 

vision) into another (e.g. hearing or touch). The substituted modality is defined by the 

specificity of the sensory signal (e.g. only vision experiences colour), and the sensorimotor 

contingencies involved (e.g. only vision experiences ‘visual occlusion’ – O’Regan & Noë, 

2001). If only a subset of these visual signals are experienced, such as only conveying spatial 

information, and that the sensorimotor contingencies involved are closest to vision rather than 

veridical hearing or touch, then the information would be described as ‘visuospatial.’ SSDs 

use consistent mappings between the senses in order to allow the user to decode the pattern of 

received signals back into a coherent mental image of the world upon which to act. For SSDs 

converting vision into sound or touch, these received signals can indicate the position, size, 

shape, colour, and motion of visual objects (Gori et al., 2016; Hamilton-Fletcher & Ward, 

2013). Over time, these can even evoke a qualitative shift in user perception, so that sound or 

touch can allow the user to perceive spatialized patterns of light (Ward & Meijer, 2010; Ortiz 

et al., 2011), a form of synthetically acquired synaesthesia comparable to vision (Ward & 

Wright, 2014). SSDs not only have the potential to provide access to new spatial information 

and shift metamodal representations of space, but interviews with users suggest a range of 

practical benefits outside of the lab including enhanced safety, independence, and facilitating 

curiosity of the environment, further encouraging spatial exploration (Hamilton-Fletcher, 

Obrist, et al., 2016). Visuospatial SSDs tend to fall under two main types of feedback, haptic 

(the active use of touch), or auditory (the sense of listening), and while we explore specific 

examples of these SSDs below, wider overviews of SSDs are available (Gori et al., 2016; 

Hamilton-Fletcher & Ward, 2013). 
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            Haptic (also known as tactile) devices were first popularised in 1969 with the Tactile 

Vision Sensory Substitution (TVSS) device (Bach-y-Rita et al., 1969).  This device used a 

television studio camera (which users could manipulate) connected to vibrating solenoids, 

positioned in the back of a dentist’s chair, arranged in a matrix that resembled the camera’s 

pixels. Bach-y-Rita and his research group continued to improve their design throughout the 

following decades, experimenting with electro-tactile stimulation, and, most notably, leading 

to the creation of the Tongue Display Unit (Sampaio, Maris, & Bach-y-Rita, 2001); an SSD 

that converts 2D greyscale images into a spatialized pattern of electro-tactile stimulation on 

the tongue in real-time. The output is constrained to a 12 u 12 matrix with users able to reach 

a visual acuity of up to 20/430 for single objects (for comparison 20/20 is optimal, and 

20/200 is the threshold for blindness). More recently the BrainPort has utilised a 20 x 20 

matrix; however, there is no recorded increase in visual acuity from this (Nau, Bach, & 

Fisher, 2013; Stronks et al., 2016). 

          Since Bach-y-Rita’s work, vibrotactile technology has progressed with the use of three-

dimensional (3D) cameras and mobile computer processing. What once required a film crew, 

many hands and a somewhat unwieldy dentistry chair can now fit into a single-unit wearable 

vest (Ertan et al., 1998; Wacker et al., 2016). Many different haptic feedback vests have been 

developed over the past few years (Ertan et al., 1998; Rochlis, 1998; Jones, Nakamura, & 

Lockyer, 2004; Spanlang et al., 2010), with the VibroVision among the most recent (Wacker 

et al., 2016). Like most haptic vests, the VibroVision contains an input source, in this case, a 

three-dimensional sensor to record the necessary visuospatial information; an image 

processing unit, that coverts the visuospatial information into values that drive, finally, a 

tactile output, through a series of vibrating motors arranged in a 16 u 8 matrix on the users’ 

abdomen (Wacker et al., 2016). 
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 While visuospatial-into-audio devices were created much earlier (e.g. Noiszewski’s 

Elektroftalm in 1897 – Starkiewicz & Kuliszewski, 1963) they only gained in popularity for 

scientific research after the introduction of ‘the vOICe’ (Meijer, 1992). This software 

converts 2D greyscale images into sounds played through headphones, utilising stereo 

playback and time for the horizontal axis (scanning from left to right over time), pitch 

changes to represent verticality (higher pitches = higher locations), and volume indicating 

brightness (louder = brighter). In combination this image . ∕.. would produce a low-pitched 

tone in the left ear that rises to a high-pitched tone in the right ear. The vOICe is still 

considered one of the higher resolution auditory devices, with the device typically outputting 

at a resolution of 176 u 64 and allowing a perceptual resolution bordering on 20/200 on 

single object discrimination (Striem-Amit, Guendelman, & Amedi, 2012; Haigh et al., 2013). 

More recent SSDs have tended to prioritise 3D information owing to its immediate 

practicality for locating individual objects, segmenting their shape, and utility for navigation 

(Fristot et al., 2012; Stoll et al., 2015; Spagnol, Baldan, & Unnthorsson, 2017; Caraiman et 

al., 2017; Dunai et al., 2013). When objects within the field-of-view of a 3D sensor are 

sonified in a manner that replicates the perception of sounds emanating from the location of 

the object, this process is also referred to as a ‘virtual acoustic space’ (González-Mora et al., 

1999, 2006; Rodríguez-Hernández et al., 2010; Eckert, Blex, & Friedrich, 2018). One modern 

incarnation of this is the ‘Synaestheatre’ which converts a depth image from a 3D sensor into 

realistically spatialized sounds (Hamilton-Fletcher, Obrist, et al., 2016). The sounds are 

spatialized using head-related transfer function (HRTF); which describes how the spatial 

positions of the listener and sound source alter the received sounds in terms of inter-aural 

timing, intensity, as well as distortions created by the head and pinnae (Algazi, Avendano, & 

Duda, 2001; Potisk, 2015; Kulkarni, Isabelle, & Colburn, 1999; Kistler & Wightman, 1992). 

The Synaestheatre produces audio that updates in real-time with sounds that are fully 3D 
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spatialized. As such, the Synaestheatre is similar to the VibroVision in that azimuth and 

elevation are conveyed spatially (rather than through abstract codes), albeit through hearing 

and touch respectively.  

 To date, studies examining how effectively visuospatial information can be converted 

into hearing or touch have been difficult to compare owing to several confounds that obscure 

why such differences exist, as well as lacking a ‘visual’ benchmark to contextualise these 

spatial discrimination abilities. Prior studies examining auditory/haptic approaches (either 

directly, or indirectly) have varied in the following ways: the type of spatial information 

being provided (e.g. 2D luminance vs a single-point depth sensor – Bermejo et al., 2015); the 

spatial resolution being encoded on devices (12 x 12 – Sampaio et al., 2001; 20 x 20 – Nau et 

al., 2013; 176 x 64 - Striem-Amit et al., 2012; Haigh et al., 2013); variations in the temporal 

resolution (TDU/BrainPort updating in real-time; the vOICe updating once-per-second); the 

presentation of information to the user (e.g. ‘all-at-once’ for the TDU/BrainPort or ‘column-

by-column’ for the vOICe); there is also an inconsistent use of abstract mappings (e.g. 

verticality is represented spatially in the BrainPort but via pitch in the vOICe); and finally, 

without a ‘visual’ condition using this same information to contextualise performance it is 

unclear how much information is ‘lost’ in the translation and what the upper-bound of 

performance is likely to be (Cha, Horch, & Normann, 1992). By keeping these aspects 

consistent across visual, auditory, and haptic conditions, it becomes possible to establish the 

extent of information loss that occurs from transforming between modalities while enabling a 

‘fairer’ comparison.  

To address these gaps in knowledge, the present study compares SSDs that output the 

same spatial resolution (16 u 8) into spatially distributed patterns of visual, auditory, or 

tactile stimulation. Users are then evaluated in terms of spatial acuity when using these 

devices in order to determine the extent of information loss incurred from a purely spatial 
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transformation for sensory substitution. The Synaestheatre device (auditory) and the 

VibroVision vest (haptic) were selected for comparison as they can output the same spatial 

resolution into spatialized sound or touch, making them an ideal comparison. In order to 

establish the upper limit possible for using a 16 u 8 depth map, a final condition of viewing 

this information through spatialized patches of light was created (also using the Synaestheatre 

software). To examine their spatial acuity, participants were tasked with identifying which of 

two stimuli was either highest (in the vertical condition) or closest (in the distance condition), 

using the Synaestheatre (visual), VibroVision (haptic), and Synaestheatre (auditory) in turn. 

Through a comparison of visual, haptic, and auditory approaches, the spatial information loss 

attributable to transformations between modalities from using traditional SSD designs can be 

established. 

  

Hypotheses 

 Given that the participants were healthy sighted individuals who will be most familiar 

with using their vision for spatial perception, it is extremely likely that they will be most 

successful at spatial awareness tasks using their eyesight, compared to haptic or auditory 

approaches (H1).  It is also expected that participants will yield a greater accuracy on the 

depth perception tasks compared to verticality (H2) across all sensory modalities; this is due 

to the form of the SSDs’ output, the signal for depth being primarily represented through 

amplitude (brightness, loudness, vibration intensity), compared to verticality which requires 

the user to perform a more complex interpretation of the signal to discriminate positions 

(detailed below). As the spatial resolution is identical for both the Synaestheatre and the 

VibroVision, it is possible that the users will perform equally well on the spatial perception 

tasks (H0) indicating that the technology provides the limit on discrimination, rather than the 

user’s discrimination abilities with each modality.  
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Method 

Participants 

 Right-handed participants (N = 22; age = 24 r 1 years; 16 female, 6 male) were 

recruited via internal university communications and were predominantly of an academic 

background; participation was incentivised by the possibility of winning £25, and an 

opportunity to use novel technology. All the participants read an information sheet about the 

experiment and sign a written form of consent; Ethical clearance was provided by the host 

institution. Participants were also instructed that they may withdraw from the experiment at 

any time of their choosing. Only participants who had normal, or corrected-to-normal, 

eyesight and who explicitly reported normal hearing were accepted. No participants had prior 

experience of using sensory substitution devices.   

 

Materials 

Synaestheatre 

 The Synaestheatre device converts visuospatial information into an audio signal using 

a 3D camera sensor (Structure Sensor, Occipital, USA) mounted on a virtual reality headset 

(Z4, BOBOVR, China), and a smartphone application (SE, Apple, USA; coded in objective 

C). The application converts the depth image relayed from the sensor into grey-noise. Grey-

noise was chosen as it is perceptually the same loudness across all frequencies, making 

modulation by HRTF easier to identify. The audio sample is filtered by Panorama (version 

5.86, Wavearts, Inc) for Reaper audio software (version 5, Cockos, Inc) which provides 

HRTF modulation to the grey-noise audio samples. To replicate the HRTF characteristics, the 

Panorama plug-in filter creates a virtual sound-source and a virtual listener, then synthesises 

a stereo audio signal to replicate the effect of a sound source 2m away from a human head, 
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varying in azimuth and elevation. In order to align the depth-map and the audio-file HRTF 

locations, the field-of-view (FoV) of the camera (horizontal = 58°; vertical = 45°) was 

separated into a 16 u 8 resolution, allowing us to generate 128 audio files at combinations of 

the following increments; horizontal degrees -29, -25, -21, -17, -14, -10, -6, -2, +2, +6, +10, 

+14, +17, +21, +25, +29; vertical degrees -23, -16, -10, -3, +3, +10, +16, +23. The 

measurements to calculate the HRTF were appropriated from a KEMAR head dummy, 

modelled from the CIPIC HRTF database (Algazi, Duda, Thompson, & Avendano, 2001). 

The sound source was 500ms of grey noise, with HRTF varying its received inter-aural 

timing and intensity (for horizontal localisation), and spectral frequency content (for vertical 

localisation). 

  

Figure 1. Spectrogram of noise at different elevations using head related transfer function, darker 
patches indicate higher amplitudes. Noise at lower elevations suppresses higher frequencies, while at 
higher elevations the higher frequencies are preserved while lower frequencies are suppressed.  
 

 Grey noise is ideal for using HRTF to interpret verticality as it is only possible to 

distinguish the vertical locations of ‘broadband sounds’ which contain a wide range of 

frequencies (e.g., noise, music, or speech). By contrast, it is not possible to tell the vertical 

location of a single frequency from hearing alone (Blauert, 1997). This is due to the shape of 

the pinnae (outer ear). When sound bounces off the pinnae, and the source is from a higher 

vertical place, it preserves more high frequency content, giving the perceived sound a 

‘tinnier’ quality. When the sound source is from a lower place, the higher frequencies are 

suppressed, giving the perceived noise a quality of bass (Parise, Knorre, & Ernst, 2014). 
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Since grey noise is the same loudness across all frequencies, this makes any subtle sound 

changes caused by vertical HRTF easier to discriminate for the user (see figure 1).  Closer 

distances are represented through increasing loudness to the user. The combination of HRTF 

and depth-into-loudness allow the user to locate objects in 3D space. During sonification of 

the depth map, a slight horizontal timing offset is applied to help separate left/right objects; 

however, changes in signal are instantly responsive to movement of the head or objects. In 

the visual condition, participants view the Synaestheatre’s depth map directly through a 

stereo image displayed on an iPhone screen which is mounted in a mobile VR headset (see 

figure 2). For the end user wearing the VR headset, this is experienced as viewing a 2D 

‘screen’ in front of them with a 16 u 8 resolution, the horizontal and vertical position of 

external objects are mapped to their respective horizontal and vertical pixel locations, with 

the proximity of objects being conveyed through the brightness of the pixels on the screen. 

 

Figure 2: Left image is of a Synaestheatre user, right image is of the Synaestheatre observing two disc 
stimuli that vary in distance to the sensor. In the visual condition, users directly observe the 16 u 8 
depth map. The iPhone shows two identical 16 u 8 depth maps as each one is presented to separately 
to each eye within the VR headset, which is subjectively perceived as a single image. In the ‘auditory’ 
condition users do not receive any visual stimulation and only perceive sounds being played from 
those spatial locations are heard by the subject. 
 

VibroVision 

 The VibroVision vest is a device developed by Wacker and colleagues (2016) that 

converts visuospatial information into a two-dimensional vibration image on the abdomen. 

Like the Synaestheatre device, it converts space into a 16 u 8 depth map matrix (128 depth 
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points), but instead of the output signal being provided as unique sound files, the information 

is outputted through 128 eccentric rotating mass pager motors (see figure 3). For the end user 

the presence of an object picked up by the sensor is felt as a distinct patch of vibration on the 

abdomen, the horizontal and vertical spatial location of the stimuli in the sensor image is 

mapped to the horizontal and vertical position on the abdomen, with closer objects making 

the vibrational patch on the abdomen vibrate more intensely. The spatial information is 

gathered using a 3D camera (Xtion PRO LIVE, ASUS, Taiwan) mounted to the chest area on 

the vest; the depth information is relayed to a small computer (2, Raspberry Pi, UK) and then 

is processed to provide a signal for the vibration motors; processing and vibration motor 

control is coded in Python, using the OpenCV library. Each electric motor vibrates at a 

frequency of between 183-233 Hz and is sized at 2.25 cm2, with an average centre-to-centre 

inter-tactor spacing of 2.98 cm horizontally and 3.04 cm vertically. This creates an overall 

stimulation space of 47cm horizontally by 23.5 cm vertically centred on the subject’s torso. 

The centre-to-centre inter-tactor spacing of the VibroVision vest exceeds the 2 cm two-point 

threshold for the abdomen for the 18-28 age range of our participants (Stevens & Choo, 1996 

– also see Lederman & Klatzky, 2009; Weinstein, 1968). While the spatial acuity for 

vibrotactile stimuli on the abdomen remains an open question (although see Cholewiak, Brill, 

& Schwab, 2004), the spatial discrimination of vibrotactile stimuli on the back using 4 cm 

inter-tactor spacings can reach up to 70-77% correct responses in a 3AFC task (Jóhannesson 

et al., 2017). Since the abdomen has a more sensitive two-point discrimination threshold than 

the back, the abdomen may also have a higher spatial acuity for vibrotactile stimulation. The 

vest was calibrated to the same scale depth map as the Synaestheatre, with the FoV of the 

sensor at 58° (horizontal) and 48° (vertical). For the present study, the vest was powered with 

mains 240 V electricity through a cable; however, an option exists to use a 5 A LiPo battery 

pack for extra manoeuvrability.  
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Figure 3. Left image shows a VibroVision vest user, the chest mounted camera provides 3D 
information that is convey via spatialised vibrations arranged in a 16 u 8 matrix (right image). 

 

 Both the Synaestheatre and VibroVision were given a maximum sensing range of 2m 

so that only stimuli were detected by the sensor. Distance was conveyed to users via a linear 

increase in intensity ramping up from 2m to 0m, manifesting as either light intensity, auditory 

amplitude, or vibrotactile amplitude. In addition, as a result of the visual angle between each 

‘pixel,’ at certain distances (e.g. closer than 96.4 cm) the stimulus discs could be spread 

across additional ‘pixels,’ producing a larger area of stimulation (see figure 4). 

 

Figure 4. How stimuli are perceived by subjects. The top row showcases the depth condition and the 
bottom row showcases the verticality condition. The ‘Stimuli’ column shows visual image examples 
of stimuli disc locations. The ‘Visual SSD’ column showcases the visual images observed by subjects 
while wearing the VR headset, distance information is coded as pixel brightness (closer = brighter). 
The ‘Audio SSD’ column shows which audio files are active (audio icons) and their loudness (sound 
waves) to stimuli locations to the subject, distance information is coded as audio file loudness (closer 
= louder). Examples of the auditory SSD can be found at the following links: 
https://youtu.be/QO2omDc3Orw and https://youtu.be/5_rASaDsg5c. The ‘Haptic SSD’ column shows 
which vibrotactile motors would be active (white blocks) and their vibrotactile intensity (block size) 
to these stimuli locations, distance is coded as vibrotactile intensity. As a result of visual angles, at 

https://youtu.be/QO2omDc3Orw
https://youtu.be/QO2omDc3Orw
https://youtu.be/5_rASaDsg5c
https://youtu.be/5_rASaDsg5c
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certain thresholds (e.g. closer than 96.4 cm) closer stimuli would activate more ‘pixels,’ resulting in a 
larger area of stimulation across all SSDs. Subjects were stationary in all conditions but could ‘look 
around’ by varying the pitch, yaw and roll of the sensor. Subjects were blindfolded in the auditory and 
haptic SSD conditions.  
 

Stimuli  

Each stimulus consisted of a wooden base (20 cm u 20 cm x 4 cm) with a 1.2 cm hole 

drilled in the centre. A dowel rod (1.2 cm u 150 cm), marked in 1 cm increments, was 

inserted in the hole flush with the bottom of the base of the stimuli. The final piece of each 

stimulus (the head) was a cardboard disc (diameter = 34 cm) with a peg attached to the 

centre, to allow the circle to be moved to any position on the dowel and, therefore, measure 

verticality. Two parallel tape measures (200 cm from the participant test mark) were placed 

on the floor at 100 cm apart to measure depth. 

 

Procedure 

Participants were given minimal training and instruction to ensure that results were 

indicative of device intuition and not meticulous practice. This focus on initial user abilities 

expands upon our earlier work on the initial impressions of SSDs by potential blind users, 

who expressed a desire for devices that intuitively conveyed spatial information (Hamilton-

Fletcher, Obrist, et al., 2016). A positive initial user experience can bypass the difficulties 

cited by current SSD experts during their initial learning phase and lower the barrier-to-entry 

for long-term adoption and accessing the benefits of SSD expertise (Ward & Meijer, 2010). 

Participants were shown depth map representations of the disc stimuli (see figure 2) 

while not blindfolded to aid them in understanding how they would perceive the stimuli once 

sight was removed. The presentation of stimuli for all practice trials and conditions was fully-

randomised in Microsoft Excel as to whether the left or right disc stimulus was the correct 

answer (i.e. higher, or closer). Before completing the experimental trials, each participant 
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would complete two practice trials using each device, in which they would receive feedback 

as to whether they made a correct guess. During the experimental trials, the participants 

received no feedback as to whether they made correct guesses.  

 The experiment followed a within-subject staircase design, with all participants using 

every device to complete both depth and verticality spatial perception tasks. All distances and 

measurements described with relation to the stimuli are using their central points. The depth 

task involved standing on a mark on the floor in front and centre of the two parallel stimuli 

(at 100 cm apart); the disc stimuli were set 100 cm from the floor; and the ‘central point’ 

from which the disc stimulus locations varied was set 120 cm from the participants’ location 

(see figure 5). The participant was then required to answer the question which stimuli they 

thought was closer to them (their left, or right), by indicating verbally with ‘left’ or ‘right’. 

The experimenter writes down each response, which also informs them as to whether the 

difficulty is increasing or decreasing for the subsequent trial. The distance between the 

stimuli was initially set at +/- 50 cm (e.g. the right stimuli would be set 50 cm closer from the 

central point, and the left stimuli would be 50 cm further from the central point). This 

distance would reduce by 15 cm for every correct guess, thereby increasing the difficulty in 

identifying the difference between the stimuli. When the participant eventually made a 

mistake, a reversal would occur, increasing the distance by 5 cm. From then on, each correct 

guess would decrease the difference by 5 cm, and each incorrect guess increases the 

difference by 5 cm. The stimuli would always increase or decrease relative to the central 

point; this was done to ensure a uniform increase/decrease in difficulty across all devices and 

participants. There were ten trials for depth perception for each of the devices. The benefits 

of following this type of adaptive staircase procedure, as opposed to the standard ‘3-down-1-

up’ method (Cornsweet, 1962), is that the number of trials could be decreased drastically. 

Due to the manual movement of stimuli, each trial was time costly; Therefore, it was 
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practical to reduce the number of trials to minimise the overall experimentation time. 

However, one potential downside of this method was that if a participant was to make a 

mistake in the first few trials, and this mistake was not indicative of their actual ability at 

using the device, it could be impossible for them to reach their actual performance limit in the 

remaining trials. This was controlled by allowing subjects to return to increasing the 

difficulty in increments of 15cm on correct answers, if a mistake was made in one of the first 

two trials, followed by 3 correct answers in a row. This ensured that a plateau could always 

be reached by the subject within the ten trials. In the study, this rule ended up only being used 

for one subject with one SSD. Our pilot testing used 2 subjects to explore a variety of 

protocols (e.g. performance level at each difficulty; 1-down-1-up only), however, the time 

taken, and number of trials made alternative approaches impractical. Further testing allowed 

us to estimate the number of trials at which a participant would hit their peak performance; 

this typically occurred at trial number six. To further ensure that subjects had reached the 

limit of their spatial discrimination abilities, each participant’s dataset was visually inspected 

to ensure that their performance had reached a plateau; this was the case for all participants 

using each sensory modality.  
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Figure 5: A topdown view of the depth condition. The (a) stimuli consists of two discs of 34 cm 
diameter suspended 100 cm from the floor, and 100 cm horizontally from one another. The task 
involved (b) systematically varying the stimuli in their distance (+/-) from the (c) central point 
indicated by the horizontal red dotted line, which is set to a distance of 120 cm from the (d) 
participants’ location. The participant is tasked with answering whether the left or right stimulus disc 
is closer to them using the provided sensory substitution device (Synaestheatre, VibroVision). 

 

The protocol for testing vertical perception was similar to the protocol used in the 

depth perception condition. The stimuli were placed along the central point at 120 cm from 

the participant. The disc stimuli were offset from one another relative to the ‘middle point’ 

100 cm above floor level, starting at +/- 50 cm from this point for each disc stimulus (see 

figure 6). The measurement for verticality was taken from the centre point of each stimulus 

disc; therefore, considering the disc’s diameter (34 cm), if a participant managed to score an 

accuracy of 20 cm, each stimulus disc would effectively be overlapping the other by 14 cm in 

terms of vertical space. Measurements were taken in this way to diminish the time between 

trials, and to ensure accurate data collection. As with the depth perception, the participant 

would answer which one did they perceive as higher (their left, or right), and the distance 

would reduce by 15 cm until the participant made a mistake. After a reversal, changes to the 

difference would occur at 5 cm increments. All changes in the distance between the stimuli 
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heads were anchored around the 100 cm mark on the dowel rods. There were ten trials for 

vertical perception for each device.  

 

Figure 6: A first-person view of the verticality condition. The (a) stimuli consist of two discs of 34 cm 
diameter, positioned 120 cm in front of the participant’s location, the stimuli are set with a horizontal 
centre-to-centre distance of 100 cm from one another. The task involved (b) systematically varying 
the stimuli in their distance (+/-) from the (c) middle point indicated by the horizontal red dotted line. 
The participant is tasked with answering whether the left or right stimulus disc is higher using the 
provided sensory substitution device (Synaestheatre, VibroVision). 

 

 The first data collected from each participant was in the control condition. The 

participant used the Synaestheatre device with the sound turned off, and the visual depth map 

turned on. This condition provides excellent control data, as both devices were calibrated to 

the same 16 u 8 depth map, therefore, in sighted individuals, this represented the highest 

probable accuracy. The second device that the participants used was the VibroVision vest, 

during this condition, the participants were blindfolded, and wore sound-reducing earplugs 

(to minimise the sound effect of the vibrating motors). The vest was tightly wrapped over one 

layer of participant’s clothing, and if the participant was of a slight build, additional cling-

film was wrapped around the vest to make certain that the motor-matrix had sufficient 

contact with the torso.  Finally, the participants used the Synaestheatre with the visual depth 

map switched off, and the sound switched on. During the tasks, subjects stood in a fixed 

stationary position, from which they could ‘look around’ using the sensor through varying its 
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pitch, yaw and roll. For every device, the participant would complete the verticality trials 

first, followed by the depth trials. The visual condition came first as it was the easiest and 

was useful to familiarize participants with the task.  The head-mounted camera used in the 

visual and auditory conditions caused minor discomfort to wear so was chosen as the first and 

last task. These pragmatic considerations come at the expense of counter-balancing which 

should be considered by future studies. Finally, after each trial, the participant would give a 

confidence rating of their answer from 1-10 (1 = complete guess, 10 = completely certain). 

 

Analysis 

 Final scores were taken as the average from the last three trials of each condition and 

analysed using SPSS (version 23, IBM Corp.). Six dependent variables were created 

including: visual SSDs for vertical tasks (V-Vert), visual SSDs for depth tasks (V-Depth), 

haptic SSDs for vertical tasks (H-Vert), haptic SSDs for depth tasks (H-Depth), auditory 

SSDs for vertical tasks (A-Vert), and auditory SSDs for depth tasks (A-Depth). Any outliers 

(of which there were two) were detected and removed by using the Outlier Labelling Method 

with g = 2.2; the reason for which was due to a relatively small sample size, and other 

methods (including the common Outlier Labelling Method, with g = 1.5) tending to perform 

on the conservative side when dealing with smaller groups (Hoaglin, Iglewicz, & Tukey, 

1986). The data were checked for normality by examining skewness and kurtosis, in addition 

to visually inspecting the plots. Furthermore, to check for any violations of sphericity, 

Mauchly’s Test of Sphericity was employed. A one-way repeated measures analysis of 

variance (ANOVA) was conducted, and subsequent post hoc pairwise comparisons made 

using the Bonferroni correction method. Effect sizes were calculated using Cohen’s d 

formula by dividing the mean difference by the pooled standard deviation. The participants’ 
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confidence scores for each trial were separately compiled with mean scores calculated on a 

trial-by-trial basis.  

Results 

  After data were imported into SPSS, the Outlier Labelling Method (Hoaglin et al., 

1986) established the acceptable bounds for each variable (V-Vert = 0 to 6.34 cm; V-Depth = 

0 to 6.34 cm; H-Vert = 0 to 152.33 cm; H-Depth = 0 to 96.34 cm; A-Vert = 0 to 102.99 cm; 

and A-Depth = 0 to 50.67 cm), and that two outliers existed, which were subsequently 

removed from the dataset. Visual inspection of the data points on a histogram, in addition to 

examining skewness and kurtosis for V-Vert (skewness = 1.54, SE = .51; kurtosis = 3.99, SE 

= 0.99); V-Depth (1.33, SE = 0.51; and 4.41, SE = 0.99, respectively); H-Vert (skewness = 

0.976, SE = 0.51; kurtosis = 0.13, SE = 0.99); H-Depth (skewness = 1.16, SE = 0.51; kurtosis 

= 1.03, SE = 0.99); A-Vert (skewness = 0.86, SE = 0.52; kurtosis = 0.01, SE = 0.99); and A-

Depth (skewness = 0.57, SE = 0.51; kurtosis = 1.24, SE = 0.99), revealed that the visual data 

was not normally distributed (see bolded). However, one-way repeated measures ANOVAs 

are known to be quite robust to violations of normal distribution (Field, 2013, p. 444), with 

the F-statistic relatively unaffected by variations of normality when condition sizes are equal 

(Donaldson, 1968), which is the case here, making transformations unnecessary (Glass, 

Peckham & Sanders, 1972). Therefore, analysis was continued (see table 1).  

Table 1: Mean spatial discrimination scores, visual angle, standard deviations and confidence 
intervals for the visual, haptic, and auditory devices. 

Condition SSDs Mean (cm) Visual angle S.D. (cm) Lower Bound Upper Bound 

Verticality Vision 2.09 0.99° 1.24 1.50 2.66 

 Haptic 44.42 20.97° 29.90 30.42 58.41 

 Auditory 30.08 14.29° 18.88 21.25 38.92 

Depth Vision 2.34 n/a 1.16 1.79 2.87 

 Haptic 28.83 n/a 20.59 19.20 38.47 

 Auditory 8.25 n/a 7.26 4.85 11.65 
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Mauchly’s Test of Sphericity showed that the assumption of sphericity was not met 

for verticality (χ2(2) = 6.43, p = .04) or depth (χ2(2) = 19.97, p < .001), therefore Huynh-Feldt 

and Greenhouse-Geisser estimates of sphericity correction were applied respectively (H = .77 

and H = .60). The repeated measures ANOVA suggested that there were main effects for both 

the verticality (F(1.65, 31.29) = 24.44, p < .001, K2 = .56), and depth tasks (F(1.20, 22.75) = 

26.19, p < .001, K2 = .58), therefore post hoc pairwise comparisons were made using a 

Bonferroni adjustment (see table 2 for mean differences for verticality, and table 3 for mean 

differences for depth).  

 

Table 2: Mean difference between devices for verticality. 
 Mean Difference (Xi – Xj) (cm) 

 Vision Haptic Auditory 

Vision - 42.33** 28.00** 

Haptic 42.33** - 14.33 

Auditory 28.00** 14.33 - 

Note: ** = p d .001; * = p d .05. Repeated values in grey. 

 

For discriminating verticality, users were significantly more accurate with visual 

SSDs than both haptic (p < .001, d = 2.65) and auditory SSDs (p < .001, d = 2.67); there was 

no significant difference in performance between haptic and auditory SSDs.  

 

Table 3: Mean differences between devices for depth. 
 Mean Difference (Xi – Xj) (cm) 

 Vision Haptic Auditory 

Vision - 26.50** 5.92* 

Haptic 26.50** - 20.58** 

Auditory 5.92* 20.58** - 

Note: ** = p d .001; * = p d .05. Repeated values in grey. 
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For discriminating depth, users were significantly more accurate with visual SSDs 

than both haptic and auditory SSDs (p < .001, d = 2.44; and p = .01, d = 1.41 respectively). 

However, unlike the outcomes for the verticality tasks, in the depth condition, users were 

significantly more accurate with auditory SSDs than haptic SSDs (p = .001, d = 1.48). 

In order to compare whether discriminating verticality or depth differed in their 

difficulty, a series of Bonferroni-corrected paired sample t-tests were performed with each 

device. On average, with the visual SSD, subjects performed slightly better with vertical 

discrimination (M = 2.09, SE = 0.28) than depth discrimination (M = 2.34, SE = 0.26), this 

difference, of -0.25cm, was not significant, t(19) = -0.59, p = .561, d = 0.21. For the haptic 

SSD, subjects performed slightly worse with vertical discrimination (M = 44.42, SE = 6.69) 

than depth discrimination (M = 28.83, SE = 4.60), this difference, of 15.58cm, was not 

significant, t(19) = 1.76, p = .095, d = 0.61. For the auditory SSD, subjects discriminated 

verticality to an average of 30.08cm (SE = 4.22), with substantially superior depth 

discrimination abilities of 8.25cm (SE = 1.62), this difference of 21.83cm, was highly 

significant, t(19) = 5.94, p <.001, d = 1.53. Overall this indicates that discriminating 

verticality and depth was of a similar difficulty for visual and haptic approaches, but that 

depth was significantly easier to discriminate than verticality for auditory SSDs. 

For confidence ratings, vision had the highest mean across all ten trials for vertical 

perception (see figure 7, upper row), and had a total combined average of 7.34 r 1.67.  The 

mean scores for haptic and auditory were very similar at 4.32 r 0.63, and 4.26 r 0.58, 

respectively. Regarding depth perception (see figure 7, lower row), vision had a higher total 

mean score than both haptic and auditory, scoring at 7.24 r 2.01, compared to 5.59 r 0.56 

(haptic), and 5.44 r 0.97 (auditory). However, examination of figure 7 shows that visual, 

despite initially holding a high level of confidence rating on the first six trials, rapidly 
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declines to below haptic at trial number ten (4.00 r 2.32 verses 4.60 r 2.13) and only slightly 

holds above auditory (3.95 r 1.91). 

 
 
Figure 7: Mean confidence scores plotted against mean performance across all ten trials for vertical 
(top row) and depth (bottom row) perception for visual, haptic, and auditory SSDs respectively. 
Scores are given in blue, confidence in orange, error bars represent 95% confidence intervals. 

 

 

Discussion 

 The present research aimed to compare spatial perception by users when the same 

information (a 16 u 8 depth map) is perceived as either spatialized light, sound, or touch 

using sensory substitution. This approach allows a quantification of the level of information 

loss attributable to transforming between modalities in traditional SSD designs across two 

tasks (vertical and depth localisation) as well as their confidence in making these 

assessments. In the verticality condition, visual SSDs had a significantly higher accuracy than 

our auditory and haptic approaches, discriminating between visual angles of 1°, 14°, and 21° 

respectively. For depth perception, visual feedback was once again significantly more 

accurate than auditory and haptic feedback in our SSDs, however this time auditory feedback 
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significantly outperformed haptic feedback, with discrimination abilities at 2cm, 8cm, and 

29cm, for visual, auditory, and haptic SSDs respectively. Users had the highest levels of 

confidence using visual feedback; however, despite users being equally confident in using 

haptic and auditory SSDs, auditory specialisation appeared to yield higher accuracies relative 

to haptic approaches. 

For both vertical and depth perception tasks, the visual SSDs were significantly more 

accurate than SSDs utilising alternative sensory modalities (H1 was accepted). As predicted, 

our participant groups had superior spatial perception from using visual information. 

However, their degree of spatial acuity was more surprising, for objects at 1.2m, users could 

interpret visual information to within just a few centimetres (V-Vert = 2.09 r 1.24 cm; V-

Depth = 2.34 r 1.16 cm). Considering that all the devices work from identical 16 u 8 depth 

maps, the visual scores likely represent the best possible performance from this information, 

providing useful knowledge about the practical capacity of using ‘low’ spatial resolutions in 

SSDs, and create a benchmark to which users of audio and haptic SSDs could conceivably 

improve to with additional training and/or design changes.  

These ‘visual-into-visual’ SSDs may allow experimenters and designers to quickly 

assess the effectiveness of the information provided and establish the upper-bound of 

performance users can get from this information. This provides the advantage of eliminating 

the additional confounds that arise from converting between modalities (Cha et al., 1992), 

while also reducing the time required to train users on how to interpret auditory or tactile 

information in a visual manner, or reach ‘expertise’ (Ward & Meijer, 2010; Ortiz et al., 

2011). This considered, care must also be taken to represent the final desired output fairly in 

vision, for example, the vOICe SSD outputs information serially, column-by-column to the 

end user, and as such, any visual comparison should also output information in a similar 

manner such as through the use of column-like apertures (Morgan, Findlay, & Watt, 1982; 
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Day & Duffy, 1988; Mateef, Popov, & Hohnsbein, 1993; James, Huh, & Kim, 2010). These 

parallels also provide new opportunities for SSD design to learn from how this information 

can be more efficiently delivered and processed by the end user (Króliczak, Goodale, & 

Humphrey, 2003; Craddock, Martinovic, & Lawson, 2011). 

Comparing the difficulties of the vertical discrimination task and the depth 

discrimination task revealed that while for the visual and haptic SSDs these tasks did not 

significantly differ in their difficulty, for the auditory SSDs discriminating verticality was 

significantly more difficult than discriminating depth (H2 was partially-accepted). This is 

likely due to the differences in difficulty between discriminating two bursts of noise that 

varied in loudness (as required in the depth task) and discriminating between two bursts of 

noise that varied in spectral frequency content (as required in the verticality task). The lack of 

familiarity with vertical hearing, or the complexity in terms of discriminating between subtle 

changes in frequency are likely to underscore these differences. It could also be stated that 

the depth task also provided additional redundant information in terms of the total ‘area of 

stimulation’ and that it may be unclear whether subjects were utilising intensity or this. 

However, the discrimination thresholds reached by subjects in all SSDs surpassed the 

distance at which stimuli took up additional ‘pixels,’ making this cue unavailable. This could 

be further evaluated in the future through utilising stimuli of different physical sizes.  

These results provide an important baseline for SSDs, in assessing translation 

methods that piggyback off of veridical spatial perception for each sense. In turn, these 

baselines can inform future SSD design by comparing changes in design with changes in 

performance. To date, many different types of SSD have been reported in the scientific 

literature, utilising a huge variety of signal outputs (Wacker et al., 2016; Ertan et al., 1998; 

Rochlis, 1998; Jones et al., 2004; Spanlang et al., 2010; Ward & Meijer, 2010; Hamilton-

Fletcher & Ward, 2013; Hamilton-Fletcher, Obrist, et al., 2016; Jóhannesson et al., 2016). 
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Historically, these devices have been difficult to compare against each other, across different 

tasks, or against a reasonable benchmark, limiting our knowledge on effective approaches to 

turning vision into sound or touch. We propose that a comparison of the same information – 

either kept within the source modality (e.g. vision) or transferred to another (e.g. hearing, 

touch), allows the most accurate assessment of how well the translation to other modalities 

works within these devices.  

With a baseline comparison of ‘visual-into-visual’ SSDs in place, any changes in 

sensory substitution design that reduce any ‘modality gap’ between visual and audio/haptic 

approaches can be evaluated. Knowing the upper-limit of performance on an SSD can set 

expectations in how best to present this information to the user. This covers a huge range of 

design considerations, from utilising the substituting senses’ ability to discriminate and 

categorise information (e.g. utilising the principles of spatialized hearing - Blauert, 1997, or 

how ‘auditory objects’ are perceived from an audio stream - Bregman, 1994), a consideration 

of users’ differing abilities (e.g. early-blind have impaired vertical hearing localisation – 

Zwiers, Van Opstal, & Cruysberg, 2001; Lewald, 2002; but superior tactile acuity, 

discrimination of auditory pitch, loudness, and horizontal localisation cues - Goldreich & 

Kanics, 2003; Norman & Bartholomew, 2011; Wan et al., 2010; Röder et al., 1999; Fieger et 

al., 2006; Gougoux et al., 2004; Kolarik, Cirstea, & Pardhan, 2013), and when appropriate, 

taking advantage of the users’ multisensory processing biases (e.g. cross-modal 

correspondences - Hamilton-Fletcher, Wright, & Ward, 2016; Hamilton-Fletcher et al., 2017; 

2018; Deroy et al., 2016). Beyond this, many other factors remain to assess, such as: 

selecting task-appropriate information; appropriate spatial, temporal, and colour resolutions; 

avoiding sensory and attentional overloading; training and usability in daily life; and finally, 

changes in perception, externalisation, and qualia (Hamilton-Fletcher & Ward, 2013; Ward & 

Meijer, 2010; Kristjánsson et al., 2016; Ortiz et al., 2011; Bertram & Stafford, 2016; Brown, 
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Simpson, & Proulx, 2014; 2015; Brown & Proulx, 2016; Auvray, Hanneton, & O’Regan, 

2007; Hartcher-O’Brien & Auvray, 2014). 

When comparing between the substituted modalities (hearing, touch), there was 

partial support for H1 for the difference between haptic and auditory devices, specifically for 

the assessment of depth, with the Synaestheatre being significantly more accurate than the 

VibroVision vest (by 20.58 cm). This suggests that comparing two objects that differ in 

amplitude (and sometimes area of stimulation), is easier to discriminate using our auditory 

rather than our tactile output. While vertical localisation performance was superior for the 

Synaestheatre (14°) than the VibroVision (21°), this is not to a significant degree. In terms of 

vertical localisation within hearing, users are typically very limited (3.65° - Perrott & Saberi, 

1990; with movement increasing this resolution – Strybel, Manligas & Perrott, 1992). As 

such, there is room to improve spatial localisation in audio SSDs to reach this level, most 

likely through personalised rather than generic HRTFs (reaching 9.47° - Pec et al., 2008). 

There also exists the possibility of exaggerating natural elevation cues from the pinnae or 

spatial coordinates for peripheral stimuli, although, it is currently unclear if any perceptual or 

spatial exaggerations can be effectively utilised or integrated with veridical hearing. The most 

common alternative is the use of cross-modal correspondences, such as substituting height for 

pitch, which may create easier to discriminate signal changes for users (Striem-Amit et al., 

2012; Haigh et al., 2013), however this can have similar limitations (Brown et al., 2014; 

2015; Brown & Proulx, 2016), and while this also has the advantage of being intuitive for 

those with prior visual experience, it is potentially not intuitive for the congenitally blind 

(Eitan, Ornoy, & Granot, 2012; Deroy et al., 2016). In addition, the use of pitch for height 

limits the use of pitch for other qualitative content such as texture, colour, or shape 

(Hamilton-Fletcher et al., 2016; 2017; 2018). 



COMPARING SPATIAL SSDS 28 

 The tactile approach taken by the VibroVision resulted in errors in vertical 

localisation at 44.42cm (r 29.90), and depth localisation at 28.83cm (r 20.59) for objects at 

1.2m. Tactile approaches also showed the largest amount of variation in user abilities (see 

table 1). Some of this may be due to physical factors limiting skin resolution, such as 

variations in clothing insulation or body size influencing the location of the vibrotactile pads. 

Jóhannesson et al. (2017) examined the vibrotactile spatial acuity of the back, providing 

important implications for vibrotactile SSDs. They note that as the distance between tactor 

motors is reduced, while total information increases, user accuracy decreases. Furthermore, 

they found that tactors mounted to sponge with a 3 cm distance (centre to centre) were 

significantly more accurate than tactors mounted to fabric (as with the VibroVision) at 4 cm 

distance (centre to centre). They suggest that this is due to the sponge aiding in reducing the 

amount of vibration distribution from the tactors, allowing a more localised sense of 

vibration. Van Erp (2005) attached tactor motors directly to the skin, not practical for 

widespread use, but in the case of a single individual using this technology, direct skin-tactor 

contact provided improved accuracy.  

Within the present study, subjects were able to conduct a limited range of movement 

with the sensor, and previous studies have shown that this form of self-initiated motion can 

also improve users’ spatial abilities, for example, when viewing an object, manipulating the 

position of the sensor will produce predictable movement of the object’s tactile 

representation on the body, allowing users to both find the threshold at which an object’s 

signal moves to a new tactor, as well as easily predict which tactor is most likely to become 

active based on this movement. This predictability in signal change reduces the ambiguity of 

which tactors are active, effectively increasing the users’ functional resolution (Van Erp, 

2005). In discriminating multiple tactors, the role of training is particularly important, with 

even short training sessions improving spatial discrimination by 36% and intensity 
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discrimination by 44% (Stronks et al., 2017). These considerations could help narrow the gap 

between the VibroVision and alternative modalities while keeping the advantages inherent to 

the tactile channel, such as no auditory inference and using areas of the skin not essential for 

daily life. 

Outside of SSD research, previous attempts to compare the processing of similar 

spatial information through vision or touch (via the fingertips) have reduced the visual 

resolution of the stimuli in order to simulate equivalent receptor densities between modalities. 

When this kind of equivalent information is presented via image blurring, comparable 

performance has been found for letter and Braille stimuli presented as blurred images or 

raised patterns (Loomis, 1981; 1982), however further differences have emerged for how the 

modalities process dot and joined-Braille stimuli, with touch better at separating out line 

distractors and vision better at separating out dot distractors (Loomis, 1993). When 

equivalence is reached through miniaturizing the visual image, functional equivalence was 

reached for images sized at 0.037° visual angle and 5 mm for passive tactile stimulation (4 

mm for active exploration), which corresponds to similar multiples of receptor spacing - 

whether SA for touch, or cones for vision (Phillips, Johnson & Browne, 1983). Cho et al 

(2015) compared spatial patterns on larger stimuli that spanned either ~100 SA1 afferents (1 

cm2) through tactile stimulation or ~100 retinal cones (0.083° visual angle) via visual 

stimulation and found superior performance for visual presentations. This suggests that visual 

performance increases more than tactile when increasing numbers of afferents are involved. 

Relevant to the present SSD research, while subjects can discriminate vibrational stimuli at 

closer distances than the inter-tactor spacings used by the VibroVision vest, this refers to 

minimum thresholds for discrimination, not perfect performance (Jóhannesson et al., 2017), 

which means that the ability to resolve points of stimulation for the haptic SSD is likely 

inferior than for visual SSDs.   
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 We observed an interesting disparity between participant confidence and abilities. 

Predictably, confidence was highest with vision, until the task became vastly more difficult in 

the last few trials, here participants reduced in confidence, but not ability. For haptic and 

auditory SSDs, confidence was similar throughout the trials, despite differences in ability. 

For depth, the auditory Synaestheatre was significantly more accurate than the VibroVision 

vest (by 20.58 cm), and although statistically non-significant, again auditory perception was 

more accurate than haptic for discriminating verticality (by 14.33 cm). This discrepancy may 

occur from users overestimating their tactile localisation/intensity discrimination abilities, or 

tactile sensations may be perceived as more intuitive for users to interpret from. It is unclear 

to what extent this lowering of confidence from visual SSDs to auditory or haptic versions is 

due to the increased difficulty with discriminating the outputted signal, or unfamiliarity with 

utilising auditory/haptic information in this way. One way to disentangle these competing 

explanations is by introducing signals that are easier to discriminate (e.g. verticality 

represented by pitch-changes, or tactile-codes), to see if these can reach parity with visual 

SSDs in confidence as well as ability. Future studies may also wish to examine the difference 

in ability and confidence of blind end users in using SSDs to solve spatial tasks, especially 

since blind individuals are likely to focus more extensively on hearing and touch to perform 

spatial discrimination tasks in daily life. In terms of SSD training, users may feel more 

inclined to continue to learn and practice with SSDs they are confident using; nevertheless, if 

a user’s confidence and actual abilities are mismatched this could have negative 

consequences. Understanding how users evaluate their abilities (metacognition) will be 

essential to furthering training regimes and improving user abilities and safety. 

 Sensory substitution devices that provide a sense of spatial perception have the 

capacity to alter both the perceptions and representations of space in users with visual 

impairments or blindness. As previously noted, individuals with no visual experience tend to 
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have more separated spatial reference frames, prefer egocentric co-ordinates for representing 

space, have impaired spatial memory/recognition, less flexibility in navigation, distorted 

representations of space, impaired vertical hearing, and find it harder to replicate spatial 

relationships relative to those with prior visual experience such as the sighted, or late-blind 

(Pasqualotto & Proulx, 2012; Iachini et al., 2014; Corazzini et al., 2010; Ruggiero et al., 

2018; Vercillo et al., 2018; Hötting & Röder, 2004; Hötting et al., 2004; Lewald, 2002; 

Pasqualotto et al., 2013; Kolarik et al., 2017; Gori et al., 2017). Despite any differences, 

functional equivalence is also frequently observed on a variety of spatial tasks irrespective of 

the participant’s experience of sight or their given information source, whether from vision, 

hearing, touch, or language (for a review see Giudice, 2018). Any differences in how various 

sightedness groups tend to discriminate, represent, and utilise the available information need 

not be inevitable or immutable, rather, that additional training and information can change all 

of these factors. Their use of sensory substitution devices can reveal what specific spatial 

information is key to integrating, calibrating, and utilising more effective representations of 

external space. This has begun to be explored through both fostering specific audio-motor 

contingencies (Cappagli, Finocchietti, et al., 2017), however, only a few alterations to spatial 

perception have been explored with the more ‘visual-like’ SSDs, such as the use of 

ego/allocentric representations (Pasqualotto, & Esenkaya, 2016). By contrast, having prior 

visual experience can also carry over vision-specific distortions such as the Ponzo illusion or 

vertical-horizontal illusion to stimuli sonified by auditory SSDs that that the congenitally 

blind do not experience, allowing a more accurate reconstruction (Renier et al., 2005; Renier, 

Bruyer & De Volder, 2006). Overall, the reported range of effects to spatial perception found 

in congenital blindness remains an open area for further exploration for SSDs as an 

intervention going forward. 
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 While this study examined SSDs that convert visuospatial information into spatialized 

light, sound, or touch in isolation, more open questions remain as to the ability of users to 

integrate this spatial information across modalities (i.e. visuospatial into both audio and 

tactile stimulations). It is currently unclear whether these hybrid SSDs confer any advantages 

in performance or whether this information can be effectively integrated. An additional 

question relates to whether distinct information presented to each sense (e.g. visuospatial into 

touch but colour information into sound) can also be effectively integrated into a unified 

coherent representation of external space. Part of the promise of hybrid SSDs is the potential 

to expand past the processing limitations inherent to individual modalities, however this 

remains to be realised. 

Overall, the present study provides evidence of the functional spatial resolutions 

possible for participants using visual, auditory, or haptic SSDs when the visuospatial 

information provided remains constant. Our methodology showcases how the ‘upper-limit’ of 

performance for SSDs can be quickly established and isolated from any reductions in the 

functional spatial resolution attributable to converting spatial signals into other modalities 

using conventional SSD designs. Furthermore, we identify multiple ways in which any 

reductions in spatial resolution attributable to this transformation can be reduced for a wide 

range of users. This information can help identify optimal ways of providing visuospatial 

information to the visually-impaired to further enhance their representation of external space. 
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