
by
René Reiners

The Patch Panel GUI
A Graphical Development

Environment for Rapid
Prototyping Interfaces for

Ubicomp Environments

Diploma Thesis at the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Dr. Wolfgang Prinz

Registration date: Nov 04th, 2005
Submission date: May 29th, 2006

iii

I hereby declare that I have created the work at hand com-
pletely on my own and used no other sources or tools than
the ones listed. Citations were marked accordingly.

Hiermit versichere ich, die vorliegende Arbeit selbständig
verfaßt und keine anderen als die angegebenen Quellen
oder Hilfsmittel benutzt zu haben. Zitate wurden ord-
nungsgemäß gekennzeichnet.

Aachen, May 26, 2006

v

Contents

Abstract xix

Überblick xxi

Acknowledgements xxiii

Conventions xxv

1 Introduction 1

1.1 Prototyping in software and hardware 3

1.2 Merging both fields 4

1.3 Thesis structure 7

2 The iStuff project 11

2.1 Currently integrated components 12

2.2 iROS communication structure 14

2.2.1 Event Heap 16

2.2.2 Patch Panel 18

2.2.3 Configuring the Patch Panel so far . . 21

vi Contents

3 Related work 25

3.1 GUIs for physical prototyping 25

3.1.1 d.tools 25

3.1.2 Max/MSP / pd 28

3.1.3 ICon - Input Configurator 28

3.1.4 Adobe Flash 30

3.2 GUIs for end users 32

3.2.1 Jan Humble’s jigsaw puzzle 32

3.2.2 CAMP - magnetic poetry 34

3.2.3 iCAP 35

3.3 Other relevant GUI concepts 36

3.3.1 XML schema mapping visualization . 37

3.3.2 Photo Mesa - zoomable image browsing 38

3.3.3 Apple Quartz Composer 41

4 Collecting Concepts: Patch Panel GUI prototypes 45

4.1 Ideas and concepts 45

4.1.1 Preliminary design patterns 45

Composition 46

Easy retrieval of components 46

Drag&drop support 46

Avoidance of illegal connections . . . 47

Automatic type conversion 47

Contents vii

Consistent flow of information 48

Liveness of changes 48

Abstract representation of real world
entities 49

Provision of template values 49

Abstract testing 49

Highlighting current selections 50

Occlusion avoidance 50

Panning and zooming 50

Abstraction 51

4.1.2 Adding custom ideas 51

Overview window 51

List currently running proxies 52

Status of currently used entities 52

Iconic representations and custom
names 52

Generation of events and values . . . 52

Graphical visualization of values . . . 53

4.2 First prototypes 53

4.2.1 General Patch Panel GUI concept . . . 53

4.2.2 Interaction illustration 54

Toggle button example 55

Controlling a music player application 57

viii Contents

4.2.3 Prototype evaluation 60

5 Quartz Composer as the Patch Panel GUI 65

5.1 A closer look at Quartz Composer 65

5.1.1 Types of Quart Composer patches . . 66

5.1.2 Patch configuration 68

5.1.3 Grouping and abstraction 68

5.1.4 Finding and instantiation of patches . 70

5.1.5 Automatic type checking and conver-
sion . 71

5.1.6 An example 73

5.2 Functionality missing for the iStuff project . . 74

5.2.1 Integration of iStuff components into
the GUI 76

Support for additional off-the-shelf-
hardware 77

Evaluation support 77

Support for custom extensions 77

Event debugging support 77

GUI support for proxies 78

5.2.2 Final comparison 78

5.2.3 Benefits and disadvantages 79

6 Extending Quartz Composer as the Patch Panel
GUI 81

Contents ix

6.1 Integration of the Patch Panel into Quartz
Composer . 81

6.1.1 The iStuff Patch hierarchy 82

6.1.2 Managing connections 84

6.2 Integrated iStuff components 84

6.3 Support for the prototyping process 86

6.3.1 Filter (integrated) 87

6.3.2 Threshold (integrated) 87

6.3.3 Buffer (future work) 87

6.3.4 Plotter (future work) 87

6.3.5 Display (future work) 88

6.3.6 Help from built-in patches 88

6.4 Tools running besides the Patch Panel 89

6.4.1 Proxy Manager 90

6.4.2 Event Logger 92

6.4.3 Collaboration of the different appli-
cations 92

A multiscreen presentation con-
trolled by a mobile phone . . 94

6.5 Implemented examples 101

6.5.1 Typing on mobile phones 102

6.5.2 Tilt-to-scroll 103

6.5.3 Smart profile changer 103

6.6 Discussion . 107

x Contents

7 Evaluation 109

7.1 Preparations for the user evaluation 110

7.1.1 Test group 110

7.1.2 Setup 111

7.1.3 Design scenarios 111

Scenario 1: Controlling a multi-
screen presentation with a
mobile phone 113

Scenario 2: Implement a tilt-to-scroll
prototype 113

Scenario 3: New concepts for a music
player 113

Scenario 4: Motor control based on
sensor data 114

7.1.4 Performance 114

First run 114

Second run 115

Asking for feedback 116

7.2 Evaluation results 116

7.2.1 General results 117

7.2.2 Statistics 119

Statistical significance 120

Drawn results 120

7.2.3 Additional feedback 124

7.3 Summary of the results 125

Contents xi

8 Summary and future work 127

8.1 Summary and contributions 127

8.2 Future work 130

A Storyboards and paper prototypes for the Patch
Panel GUI 133

B Evaluation and scenario descriptions 137

C Post participation questionnaire 143

D Discussion of different implementations of a user
test scenario 147

Bibliography 149

Index 153

xiii

List of Figures

1.1 The DIA-cycle 2

1.2 Apple Interface Builder screenshot 4

2.1 Early iStuff components 13

2.2 iROS structure 15

2.3 iStuff event example 17

2.4 Event Heap schema 18

2.5 Proxy schema 19

2.6 The Patch Panel intermediary service 21

2.7 Patch Panel as a state machine 22

2.8 First Patch Panel GUI 24

3.1 d.tools screenshot 27

3.2 Max/MSP screenshot 29

3.3 ICon screenshot 31

3.4 ACCORD screenshot (jigsaw puzzle) 33

3.5 CAMP screenshot 36

xiv List of Figures

3.6 iCap screenshot 37

3.7 XML schema visualization 39

3.8 Photo Mesa screenshot 40

3.9 Quartz Composer - mouse example 42

3.10 Quartz Composer overview 44

4.1 Patch Panel GUI prototype 55

4.2 GUI scenario #1 - original storyboard 56

4.3 GUI scenario #1 58

4.4 GUI scenario #1 - final setup 59

4.5 Phidgets used in scenario #2 60

4.6 GUI scenario #2 61

4.7 GUI scenario #2 - final setup 62

5.1 QC types of patches 67

5.2 QC inspector views 69

5.3 QC hierarchy browser 70

5.4 Atomic vs. macro patches 71

5.5 QC search example 72

5.6 QC type conversion 73

5.7 QC limited connections 73

5.8 QC features example 75

6.1 iStuff patch class hierarchy 83

List of Figures xv

6.2 iStuff patch “Settings” pane 85

6.3 Proxy Manager screenshot 91

6.4 XML file structure for proxies 91

6.5 Event Logger screenshot 93

6.6 Event Logger inspector view 93

6.7 iStuff collaboration concept 94

6.8 Scenario: Presentations controlled by a mo-
bile phone . 96

6.9 Scenario: Proxy Manager configuration . . . 97

6.10 Scenario: Conditional patch configuration . . 99

6.11 Composition for a mobile phone controlling
multiple presentations 100

6.12 Composition for typing on a mobile phone . 102

6.13 Composition for the “tilt-to-scroll” scenario . 104

6.14 “Tilt-to-scroll” java script 105

6.15 Composition for the smart profile changer
scenario . 106

7.1 User test setup 112

7.2 User study change strategy 115

7.3 Box plot: Patch Panel GUI results 121

7.4 Box plot: Patch Panel script results 122

7.5 Box plot: PP GUI vs. PP Script - scenario
combination 123

xvi List of Figures

A.1 Storyboard for the Patch Panel GUI 134

A.2 Paper prototype for the Patch Panel GUI #1 . 135

A.3 Paper prototype for the Patch Panel GUI #2 . 136

B.1 Evaluation description page 1 138

B.2 Evaluation description page 2 139

B.3 Evaluation description page 3 140

B.4 Evaluation description page 4 141

C.1 User test questionnaire page 1 144

C.2 User test questionnaire page 2 145

D.1 Different solutions for a user test scenario . . 148

xvii

List of Tables

5.1 Desired features for the Patch Panel GUI
vs. features already implemented by Quartz
Composer . 76

5.2 Overview: Features available in Quartz
Composer, newly integrated ones during
this work and features scheduled for future
work . 79

7.1 User test scenario completion matrix. 116

7.2 Statistic results of the user tests. 119

xix

Abstract

Prototyping is an essential tool in the iterative design process following the DIA-
cycle (Design-Implement-Analyze). After each implementation an evaluation
should follow that suggests new improvements for the next version in the design
process. The more design iterations are undertaken during the development pro-
cess, the more the final release benefits from them.

Iterative design is only possible if prototypes can be developed easily, modified
or even discarded without causing to many costs in time and money. Not every
prototype will result in a final product but it assists in finding a solution that is well
designed and will therefore in the end be accepted by the target group. Without
prototyping, it may happen that a product is not suited to the requirements and
results in a total failure.

Although there exist many tools that allow rapid prototyping in hardware and soft-
ware fields, the support for prototyping in ubiquitous environments has room for im-
provement. In this kind of environment, several independent components commu-
nicate with each other and are controlled by central units. They are running in the
background and therefore not used actively. With that concept of the “disappearing
computer” first introduced by Weiser [1991] several problems occur ranging from
hardware design to a supporting communication infrastructure.

The iStuff project which is under continuous development at the Media Computing
Group, RWTH Aachen University Germany, addresses these problems and pro-
vides an infrastructure as well as a set of integrated components. Thus, the iStuff
project allows the prototyping of ubiquitous scenarios, devices and services.

xx Abstract

An intermediary service called the Patch Panel is used to specify the behavior of
the iStuff components. When this work was started, the problem at hand was
that user-friendly ways to configure different iStuff components and their behav-
ior were missing. The Patch Panel was configured via a scripting language that is
difficult to use for non-experts.

This thesis deals with the development of a graphical user interface for the Patch Panel
that should replace the scripting language on the long run. This makes an easier
use of the iStuff prototyping suite possible. Besides this key element of the work,
other applications supporting the prototyping process were (re)designed. They are
used in parallel to the Patch Panel and perform different necessary tasks. Among
them is a wrapper that supports the easy management and configuration of the
different iStuff components.

xxi

Überblick

Die Erstellung von Prototypen ist nach dem DIA-Zyklus (Design-Implement-
Analyze) ein notwendiges Hilfsmittel im iterativen Design-Prozeß. Jeder Im-
plementierung sollte eine Auswertung folgen, die neue Verbesserungen für die
nächste Version im Entwurfsprozeß aufdeckt. Je mehr Design-Iterationen während
der Entwicklung durchlaufen werden desto mehr profitiert das Endprodukt von
ihnen.

Iteratives Design ist jedoch nur möglich, wenn Prototypen einfach erstellt,
verändert oder gegebenenfalls wieder verworfen werden können, ohne hohe Ver-
luste an Geld und Zeit zu verursachen. Nicht jeder Prototyp wird in einem ferti-
gen Produkt enden, aber er kann dazu beitragen, eine gut entworfene Lösung zu
finden, die am Ende von der Zielgruppe akzeptiert wird. Ohne die Erstellung von
Protoypen kann es passieren, daß ein Produkt nicht den gestellten Anforderungen
entspricht und somit zu einem Fehlschlag wird.

Obwohl bereits viele Werkzeuge zum schnellen Erstellen von Prototypen im
Hardware- und Softwarebereich existieren, gibt es auf dem Gebiet der ubiquitären
Umgebungen noch Raum für Verbesserungen. In dieser Art Umgebungen kom-
munizieren verschiedene unabhängige Komponenten, welche von zentralen Ein-
heiten koordiniert und gesteuert werden. Sie arbeiten im Hintergrund und werden
somit nicht aktiv verwendet. Mit diesem Konzept des “verschwindenden Comput-
ers”, welches zuerst von Weiser [1991] vorgestellt wurde, entstehen neue Probleme,
angefangen vom Entwurf passender Hardware bis hin zu einer unterstützenden
Kommunikationsinfrastruktur.

Das iStuff-Projekt, welches sich unter fortlaufender Entwicklung am Lehrstuhl für
Informatik X (“Media Computing Group”) an der RWTH Aachen in Deutschland
befindet, nimmt sich diesem Problem an und stellt eine solche Infrastruktur sowie
eine Menge von integrierten Komponenten zur Verfügung. Somit erlaubt das
iStuff-Projekt die Erstellung von Prototypen für ubiquitäre Szenarien, Geräte und
Dienste.

xxii Überblick

Ein vermittelnder Dienst, genannt Patch Panel, wird verwendet, um das Verhalten
der verschiedenen iStuff-Komponenten zu beschreiben. Als die vorliegende Ar-
beit begonnen wurde, bestand das Problem darin, benutzerfreundliche Wege zu
finden, verschiedene iStuff Komponenten und deren Verhalten zu konfigurieren.
Das Patch Panel wurde bisher mit Hilfe einer für Nicht-Experten schwer zu hand-
habenden Skriptsprache programmiert.

Diese Diplomarbeit beschreibt die Entwicklung einer graphischen Benutzeroberfläche
für das Patch Panel, welche die Skriptsprache auf lange Sicht ersetzen soll. Damit
soll eine einfachere Verwendung der iStuff Entwicklungsumgebung ermöglicht
werden. Neben diesem Hauptelement der Arbeit wurden einige andere An-
wendungen entwickelt bzw. angepaßt, um den Prozeß der Erstellung von Pro-
totypen zu unterstützen. Sie werden parallel zum Patch Panel eingesetzt und
erfüllen unterschiedliche Aufgaben. Es handelt sich unter anderem um eine
Wrapper-Applikation, welche die einfache Verwaltung und Konfiguration der
iStuff-Komponenten unterstützt.

xxiii

Acknowledgements

From the beginning of this work and before, a lot of people supported me and
helped me to overcome the usual obstacles that occur during the study progress.
Some of them should be named here:

Many thanks go to my advisor, Rafael “Tico” Ballagas who always took time for
meetings, constructive criticism and suggestions for the ongoing work. The final
reviews were a very good support for me as well as the encouragement in times
when it seemed hard to me to find solutions.

Professor Dr. Jan Borchers who always tries to keep a familial and collegial touch
around the department. His support and feedback during the whole work made
me feel comfortable, too.

Christoph Wilhelm, the department’s technician, who was always there when my
computer and I were in trouble, respectively. With a lot of efforts and patience he
always found a solution to current problems.

Eric Lee, David Holman and Daniel Spelmezan always had an open ear for ques-
tions concerning programming issues. Not all questions are always answered by
Google and are seldom that well explained.

Eugen Yu, Faraz Ahmed Memon and Marius Wolf always provided good feedback
and helped me a lot with setting up test scenarios and performing the user evalua-
tion.

Not to forget Britta Grünberg who supported me with formal issues and hardware
orderings.

xxiv Acknowledgements

My best friend Sebastian Kayser gave very valuable hints and feedback – thank you
for reviewing my thesis.
Special thanks go to my girlfriend Beatrice Komischke who was always there for
me, especially when I needed emotional support. She had to endure a couple of
long and technical descriptions of my subject and always helped me to overcome
the one or other contemporary crisis. Her feedback concerning my work also was
a big assistance.

My parents, Renate and Heinz-Willy Reiners, who made it possible for me to study
the subject of my choice in Aachen and always supported me concerning my pri-
vate and educational life.
Without you, I would never have come that far.

Thank you!

xxv

Conventions

Throughout this thesis we use the following conventions:

Text conventions

Outlooks or remarks are set off in colored boxes.

OUTLOOK/REMARK:
Outlooks or remarks give additional information on a
certain topic or provide ideas that can be applied to the
described situation.

Definition:
Outlook/Remark

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in American English.

Links to project sites or homepages of mentioned product
and applications are shown in a footnote at the bottom of
the appropriate page.

1

Chapter 1

Introduction

“Proper design can make a difference in our
quality of life”

—Donald Norman in “The Design of Everyday
Things”

Prototyping is one of the most important and powerful The DIA-cycle design
strategy is the key to
successful
development

tools to get early insights and usability knowledge about
a new product. It becomes clear very soon what deficits the
product suffers from and what design decisions are well
suited. Iterative design following the DIA-cycle (Design-
Implement-Analyze) provides a very reliable basis for new
concepts and product ideas. Nielsen [1993] describes this
approach in more detail and states that if the iterative de-
velopment principle is followed, the design matures with
each iteration cycle.

Starting with concepts derived e.g. from brainstorming Concepts and
low-fidelity
prototypes

sessions and mind maps, storyboards or paper prototypes
augment and help to communicate the initial idea. After
the concepts are clarified, it should be possible to quickly
implement low-fidelity, functional prototypes. It is impor-
tant that after each iteration, the current version is evalu-
ated. The evaluation results help to improve the design
stepwise.

No matter what tools are used to create prototypes, the fi- Iterations benefits

2 1 Introduction

Figure 1.1: Following the DIA-Cycle in the development process ensures stepwise
refinement of the design and continuous evaluation. With each iteration, the pro-
totype becomes more elaborate and may even result in the final product.

nal result benefits from a lot of iterations where possible
weaknesses and conceptual errors have certainly been dis-
covered in early stages. So the probability of striking faults
in the final product is decreased a lot.

Developments that do not rely on prototyping and pre-Pre-evaluation is
important for
successful design

evaluation techniques are more endangered to result in
badly designed and therewith unusable products. For com-
panies and research groups this could result in a consid-
erable loss in time and money because the product would
not be demanded by customers and therefore had to be im-
proved and relaunched.

The redesign from the end point in a product’s develop-Worst case scenario

1.1 Prototyping in software and hardware 3

ment cycle is mostly no longer profitable. Not to forget the
damage left on the brand’s label. This is why developers
should argue for a design process following the DIA-cycle
principle instead of the waterfall model, for example. As
a worst case scenario, a originally innovative concept may
result in a complete failure because of the wrong develop-
ment strategy.

1.1 Prototyping in software and hardware

For standard software prototyping, there is a variety of Standard software
prototypingtools such as graphics software like Photo Shop1 , Adobe

Flash2 or presentation software (e.g. Microsoft Power-
Point3 or Apple Keynote4 , included in the iWork soft-
ware package). Other integrated development environ-
ments provide ways to rapidly construct a first version of
the application’s user interface. Apple Interface Builder5 ,
Borland JBuilder6 or Borland Delphi7 are famous repre-
sentatives of that class of development environments. With
the latter ones, reuse is also provided as the developer can
use the created interface and start implementing the under-
lying functionality.

Hardware prototyping manifests itself in shape studies Physical models
(e.g. aerodynamic issues in automotive or aircraft design),
or usability studies analyzing the comfort to use a cer-
tain device all day. An example is the development of the
Palm Handheld, where the development team around Jeff
Hawkins carried a piece of wood that corresponded to the
planned shape and weight of the future product (cf. Oben-
dorf [2005], Bergman and Haitani [2000] and Butter and
Pogue [2002]). From the evaluation of that early prototype
important information on physical limits of the planned de-
vice could be derived. Aesthetic issues can also be ana-
lyzed by asking potential customers. In later iterations of

1http://www.adobe.com/digitalimag/main.html
2http://www.macromedia.com/software/flash/flashpro/
3http://office.microsoft.com/en-us/FX010857971033.aspx
4http://www.apple.com/iwork/keynote/
5http://developer.apple.com/tools/interfacebuilder.html
6http://www.borland.com/us/products/jbuilder/index.html
7http://www.borland.com/us/products/delphi/index.html

http://www.adobe.com/digitalimag/main.html
http://www.macromedia.com/software/flash/flashpro/
http://www.macromedia.com/software/flash/flashpro/
http://office.microsoft.com/en-us/FX010857971033.aspx
http://office.microsoft.com/en-us/FX010857971033.aspx
http://www.apple.com/iwork/keynote/
http://developer.apple.com/tools/interfacebuilder.html
http://www.borland.com/us/products/jbuilder/index.html
http://www.borland.com/us/products/delphi/index.html

4 1 Introduction

Figure 1.2: Tools like Apple’s Interface Builder make it possible to quickly arrange
UI elements and gain a first impression of the result. The design can be reused as
the missing functionality can be added in later iterations.

the design, prototypes can also be used to directly test all
the named issues and to create usability studies.

Summarizing the above paragraphs one can say that pro-Rapid prototyping
totyping is extremely important for successful design. In
the “traditional” fields of hardware and software, proto-
typing more and more enters the designers’ minds. Rapid
prototyping allows even faster creation of concepts and it-
erations can be performed more easily; They should even
be less time consuming and cost intensive. Many iterations
follow each other and provide a very stable development
basis.

1.2 Merging both fields

For the software and hardware prototyping fields seen sep-HW / SW
Combination

1.2 Merging both fields 5

arately many proven methods exists. It becomes difficult
when both parties should be joined. New design ideas that
augment existing ones or introduce something completely
innovative lacks from the possibility to quickly combine the
ingredients. For standard software, horizontal prototypes
can be created with the help of UI tools as mentioned, com-
pletely new ideas can be visualized with different graphical
applications. Even a feel can be communicated by simulat-
ing the behavior of the software. In the hardware field it is
similar: Model-creation is widely known as a help for con-
ducting first analysis.

When the two fields are combined, however, the problem Problems with
different partsoccurs that multiple different hardware parts have to be in-

terpreted by a semantic unit that is provided by software.
After processing the input, the software must be able to
control the same or other hardware parts.

To motivate this situation with an example imagine the fol- A design scenario
lowing scenario:
Bob is part of a design group that explores novel mobile
phone interactions. One day, he is asked to augment a stan-
dard mobile phone to become situation aware. For this
purpose, he equips the device with small sensors that pro-
vide information of the environment around it and its state
(e.g. whether it is held, pocketed or lying somewhere). The
sensors are capable of detecting light, vibration, noise or
pressure whereas many other meaningful measurements
are imaginable.

In order to examine the impacts on the interaction with the Augmentation of
mobile phonesmobile phone, Bob runs into a number of problems; The

sensors could indeed be physically attached to the mobile
phone in a easy way but where should the received data be
processed? The sensors are delivered from different manu-
facturers and they all use different data formats. Even if he
finds a way to establish a communication among the dif-
ferent parts of the setup (e.g. by soldering the hardware
parts), the mobile phone had to be reprogrammed in order
to be able to manipulate its behavior.

Bob knows that these steps are manageable in order to cre- High costs
ate a rough looking prototype, but it would obviously be
very time-consuming. Besides that, the time consumption

6 1 Introduction

and costs for the reprogramming work would increase dra-
matically. He decides that this is far too complex and ex-
pensive for a design task that should elaborate the general
applicability of a concept. Even if it was accepted, software
changes would again consume a lot of time and money. For
Bob and his design crew, such an approach would com-
pletely contradict to the idea of rapid prototyping. Changes
and refinements cannot be performed in a productive way.

The above scenario applies to prototyping in the “classical”Ubiquitous
computing fields as well as to the area of ubiquitous computing. In this

research field initiated by Marc Weiser in his work “The
Computer of the 21st Century” (cf. Weiser [1991]) smart
devices equipped with sensors or capable of providing in-
formation should silently integrate into the environment.
The communication between different devices should ide-
ally take place in a wireless manner. The current situation
where a personal computer drags all the attention towards
itself should completely be inverted such that users are able
to concentrate on the tasks they wish to perform instead
of caring about the interaction. Computations can be per-
formed inside the smart devices themselves or performed
on machines inside the room. Connection and tasks man-
agement must not be the user’s concern.

All these gadget systems together built up an ubiquitous en-Ubiquitous
environments vironment. Weiser compares his idea to the ancient art of

writing. Nowadays we consume and provide information
by simply reading or writing it - we are making use of this
technique although we do not mandatorily need to know
how to produce ink or paper, for example. Other exam-
ples where techniques have become ubiquitous are radios
or motors and engines in a car. Radios are built in a lot of
environments and the usage of them is mostly unconscious
(at least the fact that we know what a radio is good for, not
necessarily the way how to use all the features it provides).
In a car, we are surrounded by a large amount of motors we
are not aware of while using them: In electrical windows,
air-conditioning, steering-assistance, etc.

This concept of working with technique without having toLiving in ubiquitous
environments know much about the details of the underlying structure

is the core idea of ubiquitous computing. “Working” also
means “using” or even “living“ in ubicomp environments.

1.3 Thesis structure 7

Enabling the developer to rapidly prototype interactions Only few ubicomp
applicationsin ubicomp environments and conventional design tasks is

mandatory for making use of the DIA-cycle design princi-
ple. Although the concept introduced by Marc Weiser is
already over 15 years old, only few examples of ubiquitous
computing applications have made it to market. One part
of the problem may be that in order to design a ubiquitous
computing application expertise in hardware, networking
and embedded systems programming is needed.

The goal of the iStuff project (cf. chapter 2) is to make pro- The iStuff project and
graphical supporttotyping ubiquitous computing applications accessible to

interaction designers and to help increase the pace of in-
novation in this kind of environments. The thesis at hand
supports this concept in presenting a new graphical sup-
port for the design process and a way that abstracts from
direct programming tasks.

1.3 Thesis structure

As three different but yet related prototyping areas are out- GUI support for
developerslined, the fundamental problem this work deals with is

pointed out: With an existing communication infrastruc-
ture as a foundation for the exploration of new design
spaces based upon work done by Card et al. [1990] and
Buxton [1983] , for example. An effective way to enable the
designer to quickly combine hardware as well as software
components and configure them without much program-
ming and constructing effort needs to be found. A graphi-
cal user interface that applies a data-flow metaphor seems
to point to the right direction. The usefulness and the users’
acceptance of a GUI designed for the prototyping tasks as
described is analyzed in this work. The infrastructure yet
to be explained can be used in the field of prototyping that
combines software and hardware aspects in the design pro-
cess as well as the ubiquitous computing research area.

Although many approaches are available for software or Prototyping support
for the iStuff projecttraditional hardware prototyping, tools supporting the pro-

totyping process as defined above are still under explo-
ration. Some approaches are oriented at the end user, others

8 1 Introduction

follow different ideas. The prototyping support presented
here concentrates on the iStuff project (cf. chapter 2) which
is under constant development at the Media Computing
Group at RWTH Aachen, Germany.

The following chapter describes the iStuff project in moreChapter 2: The iStuff
project in detail detail as it constitutes the foundation of the communica-

tion infrastructure which is based on a publish/subscribe
mechanism in a tuple space.

Chapter three discusses related work and points out whatChapter 3: Related
work features were well-suited or missing in existing approaches

when this work was started and thus justifies the develop-
ment of a custom tool.

In the fourth chapter custom design concepts are presentedChapter 4: GUI
prototyping as well as paper prototypes that show the evolution of the

initial idea of a prototyping GUI. A summary of new con-
cepts and those found during the survey is presented.

The next step follows in terms of a very close look atChapter 5: Apple
Quartz Composer as
a basis

Apples latest graphical development application, Quartz
Composer8 , that encourages to leave the path of com-
pletely developing a new graphical user interface and to
modify an existing and very useful technique. At the end of
this chapter, already implemented concepts and ideas that
had to be added are presented.

Chapter six describes the complete iStuff modification ofChapter 6: Quartz
Composer
modification

the Quartz Composer and its architecture. The possibili-
ties to further extend this modification is explained in de-
tail. Implemented examples found in literature and projects
performed by the Media Computing Group are presented
at the end of this chapter. The replication of existing imple-
mentations from the literature should underline the versa-
tility of the devised tool.

To evaluate the design of the prototyping application a userChapter 7:
Evaluation study was performed. Its results are presented in chapter

seven. A representative group of graduate students was in-
troduced to the iStuff project and asked to accomplish cer-
tain prototyping tasks. The study compares the new graph-

8http://www.developer.apple.com/quartzcomposer

http://www.developer.apple.com/quartzcomposer
http://www.developer.apple.com/quartzcomposer

1.3 Thesis structure 9

ical application with the existing scripting language. Fac-
tors like the tool’s acceptance and the interest in future ex-
tensions were also analyzed in terms of Likert-scales.

The final chapter summarizes the results of this work. An Chapter 8: Summary
and outlookoutlook and issues that are still open and interesting as-

pects of future work are given. The ongoing development
of the entire iStuff project can be tracked at the project’s
site9 .

9http://media.informatik.rwth-aachen.de/istuff/

http://media.informatik.rwth-aachen.de/istuff/
http://media.informatik.rwth-aachen.de/istuff/

11

Chapter 2

The iStuff project

The goal of the iStuff project (Ballagas et al. [2003]) is to sim- iROS basis
plify the exploration of alternative interaction techniques.
It includes a toolkit of physical devices and a flexible soft-
ware infrastructure based on the Interactive Room Oper-
ating System (iROS) (cf. Johanson et al. [2002]). The fo-
cus lies on the impacts of interaction changes rising from
leaving the conventional desktop metaphor and exploring
the field of interactive environments where all components
work together and should be reconfigurable at runtime (cf.
Borchers et al. [2002]). So input control can be shifted to
different or multiple output devices in realtime. The un-
derlying iROS platform provides mechanisms allowing the
connection of the devices and services in a local network
over that the complete communication among all included
devices takes place.

Part of this platform is the Event Heap (cf. Johanson and Fox Integration of mobile
devices[2002]) that establishes the communication between com-

ponents via the local network. Participating components
can connect to the Event Heap to post information in form
of events to it or register for certain events and react to them
as soon as they appear.

Since the information is posted by one communication Intermediation
member is not necessarily meaningful for others, an inter-
mediary service called the Patch Panel (cf. Ballagas [2004])
runs on top of the Event Heap. The Patch Panel adopts the

12 2 The iStuff project

information provided by different components and maps it
to the needs of other members of the network. That way,
mappings can be defined that enable different components
to provide and consume information.

A lot of iStuff components (cf. Ballagas et al. [2003]), en-Extension of iStuff
components able developers and researchers to rapidly integrate exist-

ing and newly developed devices into the project. As the
project is under continuous development, its scope was ex-
tended to be also applied to other fields than ubiquitous
computing. Prototyping for mobile phone interaction and
their augmentation (e.g. with new kinds of sensors), for
example, has been realized in the iStuff Mobile work, per-
formed by Memon [2006]. With the iStuff toolkit, rapid
hardware prototyping becomes possible because the infras-
tructure provides a level of indirection so that different
parts do not have to be directly connected or compatible.

In contrast to different work like the Speakeasy approachEvents have a
descriptive character developed by Newman et al. [2002] and also described in

Edwards et al. [2002], where a direct data-driven commu-
nication is established among different components, the
mechanism used in the iStuff project, has a descriptive char-
acter. There, the behavior of the components is described
and only atomic information between them, i.e. number,
string and boolean values, is exchanged. This way, the
Event Heap and the Patch Panel focus on control flow.

Technical aspects are implemented inside of proxies and areEasy recombination
encapsulated into an iStuff entity. The descriptive abstrac-
tion allows very easy recombination of components and re-
configuration of their behavior by changing the commands
sent to the devices’ proxies. Thus, new concepts of physical
user interfaces can be explored and innovative applications
derived.

2.1 Currently integrated components

The iStuff toolkit is constantly extended with differentOff-the-shelf
hardware kinds of hard- and software that serve as input and output

components, respectively. As each component seen sep-

2.1 Currently integrated components 13

arately only provides little functionality, the components
can be recombined among each other and help to augment
other devices currently not integrated into the toolkit in or-
der to explore new functionalities. Instead of exclusively
building custom hardware, standard off-the-shelf compo-
nents are augmented with technology that enables them to
connect to the local network.

A list of currently integrated devices reaches from self-built Variety of
componentscomponents like the iSlider, the iDog, iPens or iButtons to

off-the-shelf sensor kits that can be connected wirelessly,
via Bluetooth or USB, respectively, to a computer (Ballagas
et al. [2003]). They should provide a JAVA or C(+/++) - API
to facilitate the integration into the toolkit which is a mat-
ter of hours as the integration principle always is the same.
Figure 2.1 shows some of the first iStuff components.

Figure 2.1: Some of the first iStuff toolkit components that
can be connected wirelessly or via Bluetooth or USB.

At the moment, the following devices and kits are inte- List of currently
integrated
components

grated (Additional information about the functionality of
the components can be retrieved from the products’ home-
pages):

• “Traditional iStuff components”1 like iButtons, iSlid-
ers or the iDog

• Phidgets2

• Teleo3

1http://media.informatik.rwth-aachen.de/istuff/
2http://phidgets.com
3http://teleo.com

http://media.informatik.rwth-aachen.de/istuff/
http://phidgets.com
http://teleo.com

14 2 The iStuff project

• SmartIts4

• BlueSentry5

• Nokia Series 606 mobile phones as part of the iStuff
Mobile work (Ballagas et al. [2006b])

• Software controllers for Microsoft Powerpoint or
Keynote presentations

• Triggers for the execution of AppleScripts

• Integration of spoken commands using speech recog-
nition software

• several other helpful hard and software tools

The developers package is available for download on theDownload package
berlios developer site7 . Examples will be presented in the
further proceeding of this thesis, when several interaction
scenarios from literature are rebuilt in order to show the
potential of the iStuff in combination with the newly devel-
oped Patch Panel interface.

The following sections describe the underlying architectureAdditional
information the iStuff components make use of. More information as

well as tutorials can be found on the iStuff project home-
page.

2.2 iROS communication structure

Johanson et al. [2002] explore in their work “The Interac-The ancestor of the
iStuff project is the
iROS work at
Stanford University

tive Workspace Project” issues of human-computer interac-
tion. For their experiments they integrated several inter-
active devices into an interactive room like a large display
device that allowed pen interaction, three touch-sensitive

4http://smartits.com
5http://bluesentry.com
6http://www.nokia.com
7http://developer.berlios.de/projects/istuff

http://smartits.com
http://bluesentry.com
http://www.nokia.com
http://developer.berlios.de/projects/istuff

2.2 iROS communication structure 15

Figure 2.2: The different iROS components working together. Detailed information
can be found in Johanson et al. [2002].

white-board sized displays arranged in a row and a confer-
ence room table with a built in display. Additional equip-
ment of the room consisted of cameras, microphones, wire-
less LAN support and a variety of wireless buttons. With
that setup, several usage modalities like moving data, mov-
ing control or dynamic application coordination should be
explored in the interactive environment.

The underlying architecture that allowed the interopera- iROS architecture
tion of all components in the room was the Interactive Room
Operating System (iROS) that consists of three sub-systems:
The Data Heap, the iCrafter and the Event Heap. The Data
Heap and the iCrafter were built in order to realize the con-
cepts of moving data and control between different devices,
respectively. The functionality of these two components
can be studied in further details in the cited article. The
only component that necessarily had to be used by an iROS
component is the Event Heap because it is the underly-
ing communication infrastructure for applications, services
and devices within the interactive workspace. Figure 2.2
shows the principal organization of the iROS system.

16 2 The iStuff project

2.2.1 Event Heap

The Event Heap offers decoupling communicating devicesThe Event Heap as
an information
repository

and applications so far from each other, that a possible fail-
ure of one party does not affect others. Publish-subscribe-
semantics are used to achieve a cooperation in which the
different participants are not directly dependent on each
other. The Event Heap provides a central repository to
which all parties can connect, post and retrieve information
from. The data passed is encapsulated in a data structure
called event for the rest of this thesis.

An event consists of a collection of an arbitrary number ofEvents are
collections of
key-value pairs

key-value fields. Some fields like “Event Name”, “Time-
To-Live, “SenderID” or “Creation Time” are standard fields
included in every event. Application-specific fields can in-
dividually be added in order to provide special informa-
tion. They could be created based on number values read
by sensors or strings an application wants to send, for ex-
ample. Only atomic information based on double, string or
boolean values is exchanged via the Event Heap. A con-
ceptual illustration of an event generated by a key press is
shown in figure 2.3.

Events have a descriptive character to be interpreted by theFast communication
receiving application. This allows very fast communica-
tion and avoids network congestion as the data packages
remain small.

Filtering out events for specific listeners is possible by byPattern matching
comparing them to patterns specified by the receiver. Thus,
only events that can be processed by the receiver are read.
With that approach, every participant simply fires events to
the Event Heap and does not have to care whether they are
consumed or not. Listeners wait for the matching pattern
to appear on the Event Heap and read it.

Events that are not consumed disband after a specified timeTime to live
limit. A standard TCP/IP protocol and several APIs in-
cluding C++ and JAVA make it easy to implement clients
subscribing to the Event Heap, post and consume events as
illustrated in figure 2.4. More detailed information can be
found in work performed by Johanson and Fox [2002] or on

2.2 iROS communication structure 17

Figure 2.3: An excerpt of fields that are encapsulated inside
an event. Some are standard fields, others like “character”
contain individual data (an ASCII code in this case). The
number of fields is arbitrary.

the Stanford University website8 .

Applying the mechanism described, every arbitrary appli- Interaction between
arbitrary componentscation or device connectable to the network is enabled to in-

teract with any other party by using the Event Heap. That
way, communication is established although the different
participants were not designed to cooperate or communi-
cate with each other.

In case that a component is not capable of connecting to the Proxy strategy
local network, a proxy strategy is applied. A proxy runs on
a computer connected to the Event Heap and encapsulates
the data it receives from the device into an event. Received
events are interpreted to controls the attached device via
USB, Bluetooth or wirelessly. Figure 2.5 illustrates the rela-
tionships described.

8http://iwork.stanford.edu/docs/eheap/index.html

http://iwork.stanford.edu/docs/eheap/index.html

18 2 The iStuff project

Figure 2.4: An illustration of the Event Heap with different devices connected. Al-
though the components were not designed to interact with each other, this actually
becomes possible with the iROS infrastructure.

2.2.2 Patch Panel

After the communication structure is set, the problem ris-Different iStuff
components use
different events

ing now is that events of different types are posted to the
Event Heap that are not necessarily interpretable by other
proxies. Of course, senders could be hardcoded to post
certain events types that would be interpretable, but then
all benefits like the dynamic reconfiguration of the relation-

2.2 iROS communication structure 19

Figure 2.5: The control and connection management of devices like sensors is con-
trolled by a software proxy running on a computer. The device is connected to this
machine directly (via USB, Bluetooth, etc.) and so indirectly with the Event Heap.
The proxy is responsible for the event handling and the interpretation of received
events.

ship between different components and therewith the flex-
ibility of the approach would be lost. Each proxy had to be
reprogrammed before each run what would mean that the
reusability would not be give anymore.

The solution to the problem is the Patch Panel, an interme- The Patch Panel
intermediary service
maps events

diary service that runs on top of the Event Heap and that
can be configured at runtime in order to register for certain
events, consume them from the Event Heap and post new
events such that they correspond to the format the receivers
are expecting. The intermediation is reconfigurable at run-
time and allows the establishment of communication be-
tween applications that can not work with each other. The
flexibility of the structure is retained because mappings can
be changed at runtime or events can be multiplied in order
to be received by several (different) consumers. The values
transmitted inside events can be transformed mathemati-
cally, casted to other types or left out completely. This all

20 2 The iStuff project

can be specified with the Patch Panel.

The following example which is also shown in figure 2.6Interaction example
should clarify this method.

The iDog is a soft toy augmented with an accelerometerUsed components
that detects whether the toy is moved and a WiFi chip
that allows the connection to the local network. The chip’s
proxy is programmed to connect to the Event Heap and
post events of type “iDog” with a field “Force” that con-
tains the value of the sensor readings. Somewhere else in
the interactive room, standard speakers are connected to a
computer’s sound card. A software proxy running on this
machine subscribes to events of type “iSpeakers”.

Furthermore, the proxy expects a string field inside theMapping of two event
types event which specifies a path to a WAVE-file to be played

by the proxy. The task of the patch panel is now to register
for events of type “iDog”, read them from the Event Heap
and post a new event of type “iSpeakers” with a field con-
taining a predefined filename.

The iDog proxy simply fires its values to the Event HeapEstablishment of
communication and forgets about them. The iSpeakers wait for an ap-

propriate event on the Event Heap which is delivered by
the Patch Panel. So the communication between two com-
pletely different applications is established. In the de-
scribed scenario, the iDog “barks” through the speakers
standing in the room when it is lifted.

The Patch Panel not only provides 1:1, 1:n and m:1 map-Patch Panel
mappings pings. It is flexible enough to receive one event and notify

several other “observers” by posting new events with the
appropriate formats to the Event Heap. It could also reg-
ister for a number of events and map them to one single
event, suitable for only one application.

Another mighty mechanism supports the Patch Panel’sThe Patch Panel also
implements state
machines

flexibility: The capability of implementing state machines.
Consider a toggle button as an example; With an iButton
the lights in the room should be controlled. But as the but-
ton is stateless, the Patch Panel has to define states it is
currently in. The setup would be constructed as shown in
figure 2.7. Now, with each button event, the Patch Panel re-

2.2 iROS communication structure 21

Figure 2.6: The Patch Panel as an intermediary service maps events of different
types. Inside the Patch Panel, transformation and multiplication of events can also
take place.

configures itself and therewith implements a state machine.
At the first press it posts events to turn on the lights, then
it reconfigures itself to post events that contain the infor-
mation that the lights should turn off. The state machines
implemented can become arbitrarily complex.

2.2.3 Configuring the Patch Panel so far

The configuration of the Patch Panel at the time this thesis Scripting language
was started took place by using a scripting language. Map-

22 2 The iStuff project

Figure 2.7: The Patch Panel implements arbitrary complex state machines. Here
with every button event the state is switched and the corresponding light event is
sent in order to control the room lights.

pings and state transitions were implemented in files. The
listing below shows the implementation of the toggle but-
ton example described in the last section. Once an event to
turn on the room lights was sent, the state is changed such
that on the next button press, an event to turn off the lights
is sent.

The code for the described script reads as follows:Script code

s t a t e Off {
on Button (id=red) ; {

Lights (b r i g h t n e s s = 1 0) ;
P r o j e c t o r (powerOn=true) ;
goto On;

}
}

2.2 iROS communication structure 23

s t a t e On {
on Button (id=red) {
Lights (b r i g h t n e s s = 0) ;
P r o j e c t o r (powerOn= f a l s e) ;
goto Off ;
}

}

The scripting language was also extended to a very sophis- Programmatic
specificationsticated degree by Yu [2006] but it still forces the developer

to programmatically define mappings and transitions.

A quite basic version of a Patch Panel GUI was also imple- Former basic version
of a Patch Panel GUImented in JAVA (cf. Figure 2.8), but their capabilities were

very limited in terms of usability and reconfigurability.

The “beginners-mode” only allowed a very small number Different modes
of mappings to be defined, the “advanced-mode” basically
allowed a tree visualization of written script files. It is not
necessary to mention that this way of configuring the Patch
Panel, though open and flexible, is very time consuming
and not suited to rapid prototyping. Not only because of
the time but also because of lacking possibilities of quickly
changing mappings and behavior at runtime.

A look at that part of the iStuff project clearly states out Need of a new Patch
Panel
implementation

that for rapid prototyping, a new way of implementing the
Patch Panel had to be found. A graphical user interface
seemed to be the correct approach to integrate “liveness”
of the prototyping environment.

This is not given by the scripting language and the de- Liveness of changes
not supportedscribed version of the Patch Panel GUI; Changes in the

scripts need to be recompiled before taken into effect. It
is also difficult to modify parameters at runtime for testing
purposes. The basic GUI also did not allow this degree of
flexibility, neither in the “beginners-mode”, where only ba-
sic mappings could be defined, nor in the advanced mode
that only loads already compiled scripts.

The next chapter analyzes existing concepts and ap- The following chapter
compares related
work

proaches for supporting hardware prototyping with graph-
ical assistance. Their benefits and lacks are listed and com-

24 2 The iStuff project

Figure 2.8: Screenshot of the existing GUI at the time when this thesis was begun.

pared to the needs for a new Patch Panel GUI.

Key demands to that GUI are the currently missing “live-Needed features in
the new approach ness” of the prototyping environment such that mappings

can be specified and changed at runtime without having
to recompile settings. The mappings should be visualized
and abstract from the programming (scripting) approach.
Enough freedom should be given to extend the GUI to the
needs of the current design tasks and to incorporate new
ideas, concepts and devices.

25

Chapter 3

Related work

Different design concepts of user interfaces that support Survey in GUI
conceptsmodeling and the representation of relationships between

entities are analyzed. Another class of relevant graphi-
cal user interface concepts is also presented. Useful ap-
proaches that could be integrated into a graphical config-
uration support for the Patch Panel are summarized at the
end. Although there are tools that deal with configuration
issues in order to configure ubiquitous environments, none
of them completely suits the needs of a Patch Panel GUI.

3.1 GUIs for physical prototyping

There is a number of graphical user interfaces that support Drawbacks in
distributed
environments

the physical prototyping process, partially by using plug-
ins. In distributed environments, however, they suffer from
certain drawbacks. Good concept but also cons of the dif-
ferent approaches are pointed out.

3.1.1 d.tools

The tools prototyping environment presented by Hart- Micro controllers
mann et al. [2005b] focuses on product and interaction de-
signers who posses knowledge about fabrication, content

26 3 Related work

creation and interaction design but do not necessarily have
insight into engineering aspects of design like program-
ming micro-controllers, for example.

Confronted with a certain task that needs to combine sev-Programming via
state machines eral sensors and controllers, the developer can now connect

all the physical parts of her prototype to a controller board
to a computer where the behavior of the components is now
graphically defined with the help of the d.tools modeling
application (cf. Hartmann et al. [2005a]).

The application provides the developer with iconic repre-States and
transitions sentations of the physically connected parts. One repre-

sentation stands for one state the device is in. By drag-
ging connections between states and modules, a complete
state chart is graphically modeled. The actual configuration
of the physical devices via the controllerboard is then per-
formed with the backend of the d.tools program. The de-
veloper does not have to care about this. Figure 3.1.1 shows
an experimental setup for a media player prototype.

Another important issue of the d.tools design is the looseVirtual
representatives of
devices

coupling between the physical components and their vir-
tual counterparts, i.e. that also without a physical connec-
tion to the machine the d.tools software is running on, the
components and their behavior can be specified. The con-
figuration is applied as soon as they get connected. Also
several instances of one class of devices can be used. The
system provides mechanisms to distinguish between the
different components. The finished virtual prototype can
also be tested virtually, again also without a physical con-
nection.

This prototyping approach is very open to new designs, theNot extensible for
iStuff major disadvantage, however, is that variations or modi-

fications for the iStuff approach cannot be applied to the
framework. Another disadvantage concerning a possi-
ble integration of iStuff components is that the d.tools ap-
proach is based completely on specifying state machine be-
havior. iStuff can do more than state machines only.

Since many representations of physical devices are drawnDisadvantages of the
approach representing different states and they are connected via an

arbitrary number of lines standing for state transitions, the

3.1 GUIs for physical prototyping 27

Figure 3.1: In the d.tools environment, state machines are defined with the help of
graphical representations of real world devices. Connections represent state tran-
sitions triggered by one device.

general overview may suffer in large arrangements. The
physical representation may also inhibit design iterations
on the form factor because the component’s appearance is
fixed. It should be abstracted from the appearance and
maybe the functionalities split up and modularized. As a
last con, state explosion is to be mentioned. This may result
in a big problem for interaction designers working without
the help of developers.

The idea of prototyping and testing without physical con- Adaption of
representativesnections as well as the concept of representing functional-

ity of real world entities with virtual counterparts should
be adapted.

28 3 Related work

3.1.2 Max/MSP / pd

A very influencing concept of constructing and visualizingData-flow metaphor
data flows is presented inside the application Max/MSP1

and the open source project pd2 , Max/MSP’s open source
counterpart.

Besides processing MIDI (Musical Instruments Digital In-Recombination in
realtime terface) data, additional packages like MSP also allow com-

bining graphical and musical projects. The main idea be-
hind the graphical user interface is that different nodes rep-
resent different atomic functionalities like input and signal
processing entities as well as components that are respon-
sible for aural or graphical output. Other toolkits such as
Phidgets and Teleo also provide extensions for Max / MSP.
Nodes can be linked by dragging lines from output to in-
put fields where automatic type checking prevents illegal
connections. For example, if there is a MIDI generator that
outputs MIDI values like note, duration and volume, these
numbers can only be linked to a number processing node.
A similar situation is shown in figure 3.2

After creating connections, the user can conceptually fol-Path concept and
realtime
changeability

low the “path” of an input signal running through the com-
position. Manipulation of the arrangement and the compo-
sition at runtime outline attractive concepts to be also ap-
plied for a rapid prototyping GUI.

However, this approach is only usable for local composi-No support for
ubicomp
environments

tions whereas the approach presented in this thesis deals
with a distributed system supporting ubiquitous environ-
ments.

3.1.3 ICon - Input Configurator

Dragicevic and Fekete [2004] tried to find effective alterna-Input adaptability
tives for input devices. With the help of the ICon (Input
Configurator) application, that addresses main input adapt-

1http://www.cycling74.com/products/maxmsp
2http://crca.ucsd.edu/ msp/software.html

http://www.cycling74.com/products/maxmsp
http://crca.ucsd.edu/~msp/software.html

3.1 GUIs for physical prototyping 29

Figure 3.2: A sample patch in Max/MSP. The signal flow is
top down, from left to right.

ability issues by making other applications fully input-
configurable.

In order to specify new input behaviors, components can ICon devices
be arranged on a workspace. In the scope of the ICon ap-
proach, they are called “devices”. ICon devices are abstract
representatives of real world or input or output devices.
Output can also be redirected to the system, e.g. in order
to control the mouse cursor.

The components are classified into three categories, de- Classification of the
componentspending on their purpose; some of them provide input data

gained from a mouse or other external input device. Com-
ponents that define internal transformations before the con-
nection to an output device are also available. Output de-
vices take parameters that they process and either redirect
to a real world device or to a system resource.

30 3 Related work

This approach also makes use of a data-flow metaphor suchData-flow metaphor
that data coming from input devices can be directed to out-
put devices and transformed on its way. Since each device
provides or consumes different parameters, the parameters
are separately available at input and output ports. Figure
3.3 shows an example of a data flow.

The whole concept strongly reminds of Apple’s QuartzInteresting concepts
for the Patch Panel
GUI

Composer application (cf. section 3.3.3) but addresses a
completely different application field. The concepts that
are valuable for the Patch Panel GUI are those of providing
possible data and parameters in forms of input and out-
put ports and abstract representation of existing entities.
The data-flow metaphor holds many benefits concerning
the understanding of a composition and the separation of
different functionalities provides a basis for reusing and re-
combining existing components.

Although this approach provides very usable GUI con-Missing liveness
cepts, it unfortunately lacks of liveness since the setup has
to be run in order to be applied. Quick changes in the setup
are only showing effects after a compilation phase in which
the new mappings are integrated. This lack of direct appli-
cation of changes may hinder the rapid prototyping process
and the motivation of small changes may suffer.

3.1.4 Adobe Flash

Although Adobe Flash3 was primary developed to createPrototyping with
Adobe Flash smaller animations and videos based on vector graphics, its

development has reached a degree that enables it to be used
a prototyping utility.

For software applications, Flash can be used to create flatPowerful scripting
language prototypes that react on inputs and perform predefined

actions. More sophisticated interactions can also be cre-
ated since the introduction of the scripting language Action
Script which is part of every distribution. Thus, a concep-
tual image of the future software application can be created.
For certain situations, it can even be appropriate to imple-

3http://www.adobe.com/de/products/flash/flashpro/

http://www.adobe.com/de/products/flash/flashpro/

3.1 GUIs for physical prototyping 31

Figure 3.3: A screenshot of a composition with the In-
put Configurator (ICon) taken from Dragicevic and Fekete
[2004]. Different devices are connected by taking values
made available on outputs and linking them to inputs of
other devices. In between, transformation can be specified
with the same principle.

ment the complete application with Flash.

More and more hardware toolkits like Phidgets, Teleo and Plugins from
hardware toolkitsthe Calder-toolkit (cf. Lee et al. [2004]) provide plugins for

Flash such that they can be used as input and output de-
vices controlling Flash programs or receiving input from
them.

Flash is well known in the design community and by being Same application for
different componentsextensible for new hard- and software components it is very

flexible in terms of designing applications. The user, how-
ever, always works with the same application concept and
does not have to learn another tool with each new toolkit.

This open approach should be incorporated to the Patch Open and extensible
approachPanel GUI such that easy extensibility is provided for any

kind of prototyping toolkit that is integrated into the iStuff
project.

Similar to the approaches presented in sections 3.1.1, 3.1.2 Missing liveness and
ubicomp supportand 3.1.3, this tool as well does not really support prototyp-

ing in ubiquitous environments. Like the ICon approach

32 3 Related work

new configurations can also not be applied at runtime but
have to be recompiled in order to take effect.

3.2 GUIs for end users

This class of GUIs makes much use of restrictions in orderMany restrictions
to guide users through their tasks. Of course, this concept
also reduces the degrees of freedom a lot. However, this
class needs to be paid attention to since the applications
presented implement good approaches of simplifying the
user interface and create levels of abstractions. Some con-
cepts may certainly be useful for the Patch Panel GUI.

3.2.1 Jan Humble’s jigsaw puzzle

Humble et al. [2003] present the development of aJigsaw puzzle
metaphor user-oriented framework named ACCORD (Administer-

ing Connected Co-Operative Residential Domains) that allows
easy reconfiguration of ubiquitous domestic environments.
Lightweight components help to integrate a large number
of devices that can be interconnected directly and are there-
fore configurable for different tasks. Examples were taken
from security scenarios, where e.g. a surveillance camera
takes pictures if a movement was detected and the recorded
picture is sent to the house owner’s mobile phone. Another
example included a household scenario in which certain
grocery items are ordered as the stock is depleted.

The system is developed for end-users and thus empha-Specification
behavior sizes ease of use. As a consequence, the reconfiguration of

integrated devices only allows a small degree of freedom.
Scenarios are arranged with the help of an editor in which
the connectable devices and services are presented as icons.

The key problem, namely that not all connections can-Combining puzzle
piexes not be meaningful, is solved by applying a jigsaw puzzle

metaphor; the iconic representations differ in their shape
and so it can be determined whether a component pro-
vides, transforms or consumes data.

3.2 GUIs for end users 33

For example, a motion sensor is naturally not able to pro- Shapes clarify
semanticscess any input and only provides sensor data. The other

way round, a device that provides a certain service like an
ordering service does not provide any output that could be
meaningfully connected to any other component. By using
different shapes, the functionality provided by a compo-
nent can easily be illustrated. Like pieces of a real jigsaw
puzzle, the icons either have a flat side on the left and a
nose on the right, vice versa or a whole on the left and a
nose on the right side. These shapes stand for data provid-
ing entities, consumers that handle incoming data or data
transformers, respectively.

Figure 3.4 shows the described basic shapes and an scenario Door bell scenario
where the door bell does not provide a whole for connect-
ing other pieces to it, but only a nose that indicates a hook
for connections with different components providing a fit-
ting left side. To that hook, a photo camera is connected as
an intermediary device that takes data and passes it to the
next chain member, a PDA that receives the camera data
and displays a photo of the visitor.

Figure 3.4: On the left: The different kinds of components
with their according shapes. On the right: The security de-
scribed scenario as the user sets it up in the editor.

With that mechanism, new scenarios can be created quickly Not applicable to
custom GUIand easily by combining pre-defined puzzle pieces. As user

studies prove (cf. Humble et al. [2004]), the design concept

34 3 Related work

is widely accepted and liked, the metaphor is useful. The
disadvantage of the jigsaw solution is its limitations for the
developer who needs higher degrees of freedom this sys-
tem does not provide as it is designed for the end-user who
should only apply pre-defined functionality. Real Prototyp-
ing work is not possible as internal design decisions cannot
be made.

Another problem rising from the simplicity of the conceptAmbiguity of
interpretations is, that only one interpretation of the meaning of “connect”

is allowed. This can be ambiguous sometimes as in the ex-
ample depicted in figure 3.4. This scenario could be inter-
preted in different ways. For example, one could think that
the doorbell activates a trigger that lets the photo camera
take a picture of a PDA instead of sending its data to it.
The applied metaphor is very user-friendly but ambiguities
should be eliminated in order to provide easy to interpret
compositions.

3.2.2 CAMP - magnetic poetry

With the CAMP (Capture and Access Magnetic Poetry) re-Magnetic poetry
metaphor search project, Truong et al. [2004] tried to build an end-

user application that allowed the easy configuration of
ubiquitous environments. A new way that enables the
users to achieve their design goals in terms of specifying
them instead of forcing them to think about detailed de-
vices configurations and combinations should be found.

The CAMP user interface was a step into that direction:Fixed vocabulary for
building blocks A fixed vocabulary presented as magnetic poetry build-

ing blocks is presented to the user from which she forms
sentences that describe the desired behavior of the system.
User only describe their aim and do not have to care about
the devices and connections involved. This is the task of the
underlying system. Because of the fixed vocabulary and a
quite tight design space, a first prototype could be realized.

With a GUI based on the INCA system (cf. Truong andGUI based on the
INCA system Abowd [2004]), users build their task definition out of pre-

sented building blocks just like with real magnetic poetry
pieces. The browsing of available blocks is supported by

3.2 GUIs for end users 35

categorization and color coding. The set sentence is then
interpreted by the system, redundancies and conflicts are
resolved based on certain assumptions. After the process-
ing the system generated sentence based on the building
blocks is presented to the user, then the devices needed for
the task and their configurations are setup automatically.
Figure 3.5 shows the user interface.

For the prototype presented in the UbiComp 2004 paper, Narrowed design
spacethe design space was narrowed to the field of video captur-

ing scenarios in order not to make the system not too com-
plex and retrieve first results from an easier to implement
prototype.

From the results of that work, modifications that include Alternatives for
presenting the
vocabulary

different metaphors to specify the design goals like comic
strips should be implemented in order to learn more about
the effects of different presentation methods of the working
vocabulary.

Interesting about this work concerning the planned GUI is Limitation to fixed
vocabularyto present a vocabulary to the user that is manageable in

terms of size. So, the learning curve can be kept lower be-
cause the user only has to work with a fixed set of function-
alities that can be recombined and even be abstracted.

Providing a set of atomic functionalities seems to be a very Set of atomic
funcitonalitiesuseful way to keep systems flexible and extensible. For the

goals of this thesis, the end-user friendliness is not well
suited because the iStuff project focuses on designers that
need to specify tasks and behavior of ubiquitous environ-
ments. A system that automatically configures all devices
involved would narrow down the design flexibility and
leave out the design task.

3.2.3 iCAP

The Interactive Context Aware Prototyper (iCAP) allows pro- No need for writing
codetotyping for context aware-applications Sohn and Dey

[2003] tailored to the end-user by avoiding the need of writ-
ing code. A ubiquitous application is specified by creat-
ing rules based on IF-THEN clauses, relationships-based

36 3 Related work

Figure 3.5: A quite simple GUI lets the user specify sentences from a fixed vocabu-
lary represented by little building blocks that can freely be combined Truong et al.
[2004].

actions and environment personalization. This rule-based
system allows a higher degree of flexibility but also intro-
duces more complexity. The whole prototyping process is
visualized and users choose from sets of predefined com-
ponents. This makes specification a lot easier. Figure 3.6
shows the iCAP interface.

Again, the idea of narrowing down the degrees of freedomVisual representation
of rules in terms of the choice of components is applied. The en-

richment of specifying rules appears as good help to pro-
totype more complex scenarios. Although it seems to be
more difficult to parse the scenario. From the iCAP work,
the concept of introducing rules and restricting the choice
to a fixed set of possibilities was found to be useful for the
custom work.

3.3 Other relevant GUI concepts

This section presents ideas and concepts from different re-Interesting GUI
designs search fields not directly connected to prototyping in ubi-

comp environments. Since they present improvements con-
cerning the presentation of information graphically, they
should also be examined in order to extract some general
GUI design concepts.

3.3 Other relevant GUI concepts 37

Figure 3.6: The iCap drag&drop user interface (cf. Sohn
and Dey [2003]). The lower part shows the rule editor.

3.3.1 XML schema mapping visualization

Robertson et al. [2005] analyze ways to improve the Visualization of XML
schema browsing
strategies

overview of XML schema mappings as, with increasing size
of XML schemas, the visualization of a mapping is often
hard or even impossible to parse for the reader. Figure 3.7
shows an example of the visualization of a large mapping.
In order to solve that problem, the authors implemented
new functionalities into an existing XML schema browser.

38 3 Related work

The selected element and its counterpart in the com-Highlighting and
automatic scrolling pared schema are highlighted and centered on the screen by

scrolling automatically to their position. Thus, selected ele-
ments are always found in the vertical middle of the screen
and can directly be spotted as they are marked.

Additionally, search hits in the whole schema are presentedTick marks and
coalescing trees as marks on the scrollbar at the window side. These tick

marks are color-coded in such a way that already selected
hits appear in a different color from those currently not se-
lected. Momentarily irrelevant information is hidden by
making use of coalescing trees and therefore becomes more
compressed.

Features like multiple selection as well as incremental searchSelecting and
searching support the schema browsing process.

Another very important issue concerning the arrangementBending links avoid
misinterpretations of nodes and links is the idea of bending links. With this

feature, visual ambiguities can be resolved as sometimes a
link lies behind another node that makes it impossible to
decide whether the link belongs to that node or if it is only
covered. Bending a link that is covered by a node presents
a reliable solution to determined how the connections is to
be interpreted.

This work presents a lot of visualization aids that were ac-Visualization aids
interesting for the
custom GUI

cepted by users (proven by user studies in the article cited).
Almost all of these approaches seem to be well suited for
the planned GUI, especially the idea of hiding momentar-
ily irrelevant information and bent links in order to avoid
occlusion.

3.3.2 Photo Mesa - zoomable image browsing

In their article “Does Zooming Improve Image Browsing”,Effective approach
Combs and Bederson [1999] describe an image browsing
system, in which a large collection of images is presented
in a thumbnail-like view.

Instead of selecting a thumbnail from a list, like in con-Panning and
zooming ventional image browsing applications, users can navigate

3.3 Other relevant GUI concepts 39

Figure 3.7: Upper part: A small XML schema mapping
where the old visualization technique is applied. Lower
Part: The same technique does not scale with large map-
pings.

through the available images by panning across and zoom-
ing into them. This approach utilizes the human capabil-
ity of spacial memory. That means that the user keeps the
orientation of the collection and knows roughly about the
position of the other images. She can rely on her spatial
memory to quickly retrieve images she has seen before in-

40 3 Related work

Figure 3.8: The UI of the Zoomable Image Browser Photo Mesa allows panning
and zooming into the thumbnails.

stead of searching through a list.

The task of browsing through an image list is also sup-Comparing by
zooming ported if the user roughly knows what she is looking

for. By presenting a collection of images in a zoomable
thumbnail-like view, different images can directly be com-
pared. If certain details of an image need to be displayed
in more detail, one can simply zoom into the view up to
certain degree without loosing eye contact to all of the
other images. Whereas traditional image browser only al-
low fixed degrees of enlargement (mostly thumbnail and
nearly fullscreen), the zoomable image browser allows any
enlargement in between.

User studies revealed that this concept is applicable forConcept scales up to
225 pictures up to 225 pictures. Figure 3.8 shows a screenshot of the

zoomable image browser application “Photo Mesa” that
is part of the research work. Further development of this
browsing method was encouraged by the experimental re-
sults.

3.3 Other relevant GUI concepts 41

The idea of zooming into relevant information seems to Zooming may
become relevant for
large compositions

be applicable for a Patch Panel GUI - at least less rele-
vant information should be hidden in different perspec-
tives. A rougher “zooming” like the one presented with
macro patches in the Apples Quartz Composer (see section
3.3.3) is similar to the presented approach although not as
smooth as real zooming. Such a way of supporting the
user who has to process the information presented, how-
ever, could be useful.

3.3.3 Apple Quartz Composer

The Apple Quartz Composer4 is part of the Developer Complete abstraction
from programmingTools since Mac OS X Tiger (10.4). This application is

intended to provide an easy way to create screen savers
or graphical animations that are controlled in realtime.
“Patches” are arranged and combined on a workbench.
They provide different functionalities and can therefore be
differentiated between generators, modifiers and outputs.

Generators provide values from system devices like mouse Different types of
functionalitiesor keyboard. MIDI values can also be caught from the

built-in ports as well as audio signals recorded by the sys-
tem’s sound device. That means generators provide values
that can be transformed by modifiers (through calculation,
type conversion, logical formulas, etc.). Therefore, genera-
tors usually only possess output ports, where values can be
taken from, whereas modifiers often have both: input and
output ports. Patches that provide the interface to other
system components like the graphics engine (which is the
intention of the program) only have input ports. Figure 3.10
shows the Quartz Composer editor and the viewer window
where graphical output is shown.

The values they receive are processed internally. One sim- Example with mouse
coordinatesple example is the connection of a generator that provides

mouse coordinates. These values are directly connected to
the x-position parameter of a patch that renders the applica-
tion’s logo into a viewer window. As the mouse is moved,
the image inside the drawing window also moves depend-

4http://www.developer.apple.com/quartzcomposer

http://www.developer.apple.com/quartzcomposer

42 3 Related work

Figure 3.9: One example of a small Quartz Composer Patch. Mouse and image data
are provided by the left two patches. The right “Billboard” - patch takes image and
mouse position data and passes them to the operating system’s graphics engine.
That way, the image is moved together with the mouse.

ing on the mouse movement and eventual calculations per-
formed in between. The “Billboard’ ’patch internally calls
methods from the operating system’s graphics engine (cf.
Figure 3.9).

Tutorials on Quartz Composer5 provide more detailed in-Key features
formation about the use of the application but the most in-
teresting key features should be pointed out here:

• Drag&drop: clicking on one output port and drag-Drawing connections
ging the mouse causes a connection to appear that can
be dropped onto another input parameter. Usually,
patches do not allow connections to themselves.

• Implicit type-checking: If the data types of a connectionType checking and
conversion fit, the connection line is drawn in yellow, if the data

type do not exactly match, but the connection can be
made (e.g. integer outputs are connected to boolean
inputs), the line is drawn in orange. This directly indi-
cates the type mismatch. If data type absolutely can-
not be combined with each other, e.g., strings are con-
nected to integer values, the connection stays white
and disappears as soon as the mouse button is re-
leased.

• Abstraction: A composition can be abstracted by mak-Macro patches

5http://developer.apple

http://www.developer.

3.3 Other relevant GUI concepts 43

ing a macro patch. The single patches and collec-
tions are collapsed into one patch that is displayed
from now on. A hierarchy browser helps to keep the
overview. This concepts allows to have compositions
inside compositions. Ports that are needed can be
published such that also a connection to the environ-
ment beyond the patch scope can be established.

• Incremental search: Browsing through patches is facil- Incremental browsing
itated by an incremental search engine where users
can enter parts of the patch’s name or description into
a search field. With continuous typing, the search re-
sults get narrowed.

Quartz Composer includes a lot of the features regarded as Many extracted
features are provideduseful in the overview of related work. After presenting

paper prototypes that were created in a first design itera-
tion for a Patch Panel GUI, the desired functionality for the
planned GUI and the features provided by Quartz Com-
poser are compared again. The results of that compari-
son are presented as a second result of a design iteration
in chapter 4.

44 3 Related work

Figure 3.10: The Quartz Composer workbench. On the left, a palette holding all
available patches is shown. The text field at the top of that list allows incremental
searching. Below the list a description of the patch is displayed. The upper part
in the middle of the screenshot shows the hierarchy browser which only shows the
root patch as no macro patches have been created yet. Below there is the work area
with a basic patch that creates a rotating string below the logo. This output can
be seen in the lower part of the screenshot in a floating window. On the right, the
Inspector window is placed.

45

Chapter 4

Collecting Concepts:
Patch Panel GUI
prototypes

In the preceding chapter, different GUI concepts support- Features and
storyboards for the
planned GUI

ing prototyping processes or dealing with visualization is-
sues, respectively, were discussed. This chapter summa-
rizes those ideas that seem to be useful for a graphical user
interface for the Patch Panel. Custom ideas are also inte-
grated into the summary. After presenting a collection of
concepts, a GUI prototype that resulted from the initial de-
sign phase is presented together with the results of its eval-
uation at the end of this chapter.

4.1 Ideas and concepts

This section discusses features found in related work as Feature from
literature and custom
ideas

well as custom ideas in more detail. The relation to a possi-
ble integration into a Patch Panel GUI is always drawn.

4.1.1 Preliminary design patterns

In form of a feature list, different ideas are described in Rough design
patterns

46 4 Collecting Concepts: Patch Panel GUI prototypes

more detail and compared with the planned Patch Panel
GUI. The feature list should be regarded as a rough collec-
tion of design patterns as they can be found for software
construction in Gamma et al. [1995] or for interaction and
website design (cf. Borchers [2001] and VanDuyne et al.
[2002]). At this stage the collection is kept as a list and
not structured to represent a complete pattern language but
proven concepts are collected and could be summarized for
future purposes concerning similar design tasks.

Composition

Users connect entities by dragging lines whereas each en-Reusable
components tity provides a special functionality. This encapsulation al-

lows an arbitrary number of recombinations in such a way
that new tasks can be solved by reusing components. For
the Patch Panel, entities of different iStuff components are
needed that wait for specific events from the Event Heap,
other entities that allow transformation of the information
received and yet another class of entities that post events to
the Event Heap. The software proxies connect to the Event
Heap and subscribe to certain event types or post events to
it.

Easy retrieval of components

The user should be supported when browsing throughFast search
the available components in form of a tree view or any
other kind of list that categorizes them. Expandable trees,
column browsers like in the Apple Finder or incremental
search as it is provided by Quartz Composer seem to ad-
dress this issue in a promising way.

Drag&drop support

A list of available entities is presented to the user in almostEntity arrangement
all GUIs. There are several ways the selection process is im-
plemented. Max/MSP allows the user to drag and drop a

4.1 Ideas and concepts 47

basic entity. Then, it is specified by typing its name. iCap
or Quartz Composer provide incremental search to narrow
down the search space. From the displayed list, objects
should be added to the composition by double-clicking or
dragging them into the workspace.

Avoidance of illegal connections

In the jigsaw puzzle approach, the group around Jan Hum- Connection checking
ble gave natural hints of the possible ways to connect dif-
ferent components. These hints came in the shape of noses
and holes like in real jigsaw puzzles. With the help of these
hints, users knew directly what pieces would fit together
and how they are to be arranged.

Applying the jigsaw metaphor, the task of connecting and Different restrictions
arranging becomes familar. Other GUIs of that kind like
Max/MSP or Quartz Composer make use of similar restric-
tions but it is not always clear at once, why a certain con-
nection is invalid. It is only shown that something is wrong.
Faulty connections are rejected by not being drawn. First a
manual check of the data types that should be connected re-
veals the reason for the rejection. For the Patch Panel GUI,
implicit type checking is necessary otherwise there was no
improvement compared to the type checking mechanism
integrated into the original Patch Panel scripting language.

Automatic type conversion

While connections are drawn, the types that the users Feedback on errors
wants to connect should directly be checked. Like men-
tioned above, some GUIs do not accept connections if they
are not valid in the sense of a type mismatch. An important
issue is to provide feedback for the user why a connection
could not be made.

Quartz Composer makes use of a color coding; all connec- Color coding
tions are drawn while the user drags the mouse and holds
down the mouse button. If a connection could be estab-
lished, valid ones are directly marked as yellow and drawn

48 4 Collecting Concepts: Patch Panel GUI prototypes

as soon the mouse button is released. If there is a type
mismatch that can be resolved, the line is marked as or-
ange. An example for such a type mismatch is the connec-
tion from an integer output to a boolean input. Although
boolean inputs expects the values 0 or 1, integers that are
greater than 0 are interpreted as TRUE and 0 is interpreted
as FALSE.

This implicit conversion makes it easier for the user to con-Implicit conversion
nect even non-matching types without having to manu-
ally care about such simple and often occuring type con-
versions. Connections that cannot be converted remain as
white and disappear after the mouse button is released. An
example for this are inputs that expect integers. Connec-
tions coming from string outputs cannot be connected. The
opposite direction, however, is possible since integers can
be converted to strings.

Consistent flow of information

In Max/MSP, Quartz Composer and other GUIs, connec-Data-flow metaphor
tions can only be drawn into one direction. That means that
connections start at outputs from entities and end in inputs
of others. This consistent flow of information is very impor-
tant because the user is enabled to build up a mental model
of the composition’s functionality. With this metaphor, it is
easier to see what kinds of transformations are applied to
the data and to estimate the results.

Liveness of changes

For the Patch Panel GUI, there should be no need of “com-Changes at runtime
piling” the composition. Changes made should directly be
available at runtime such that the resulting effects can di-
rectly be perceived. This is a very important feature for
rapid experimentation and encourages more design itera-
tions and the exploration of the effects also caused by lit-
tle changes in the setup. iCap, d.tools, Max/MSP, pd and
Quartz Composer provide direct incorporation of changes

4.1 Ideas and concepts 49

in the setup. The original term “liveness” was created by
the Morphic toolkit described by Maloney and Smith [1995].

Abstract representation of real world entities

In the d.tools approach, entities that can be connected are Representatives
abstract representations of real world objects. With the help
of these abstractions, the user does not have to care about
internal functionality. The abstractions delivered are com-
plete packages that describe the functionality the objects of-
fer and the kind of data they can process. Even if the real
world counterparts are not available at composition time,
the abstractions can be used in the design process. In the
planned GUI virtual setups that do not require all compo-
nents connected to the system at runtime should be sup-
ported.

Provision of template values

There are situations where not all input ports need to be Specification of
templatesconnected to another entity but fixed values for these ports

are needed for the functionality of the entity. Max/MSP
and Quartz Composer provide that mechanism where in-
put ports that are not connected can be set manually. In
order to play a MIDI note, for example, other value besides
the note value are pan and duration. These could be set to
an invariant value in order to play all notes with an equal
duration and pan location. This concept could be applied to
the Patch Panel GUI in order to set specific event fields or to
compare incoming data with fixed thresholds, for example.

Abstract testing

In d.tools, it is possible to test the composition even if the Virtual testing
real objects that are represented are not connected or just
partially connected. A debugging mode makes it possi-
ble to follow the state transitions after a certain user input
graphically. With that concept, the prototype can also be

50 4 Collecting Concepts: Patch Panel GUI prototypes

tested virtually. This feature is a direct addition to the ab-
stract representation and should also be considered for the
project since it essentially supports the rapid prototyping
process.

Highlighting current selections

In the XML schema approach, currently selected connec-Marking connections
tions where graphically highlighted whereas connections
that were not belonging to the mapping were greyed out.
That makes it easy for the user to keep the overview if there
is a large number of connections and entities to parse. For
the Patch Panel, that would mean that connected entities
are highlighted whenever another component connected to
it is selected. As a possible result from that technique, the
overview might suffer since too many entities were high-
lighted. Maybe it would be better to highlight connections
only when users clicks on them. This had to be examined
in further evaluations.

Occlusion avoidance

In the same approach as in the last paragraph, occlusionlink bending
of connections made it impossible to distinguish whether
a connection belongs to the occluding entity or if it just
runs “behind” it. Link bending was the strategy applied to
that problem in the XML schema visualization approach. It
would be a useful feature for the planned GUI and other
ones, too, although it is not implemented in many tools.

Panning and zooming

The three-dimensional image browser “Photo Mesa”,3D-browsing
presented in section 3.3.2 provided panning and zoom-
ing. This approach could also be useful in order to gain
overview of the general concept of a composition. Details
are revealed by zooming into the composition and a spe-
cific component. It is to be found out at what composition

4.1 Ideas and concepts 51

size the feature really becomes useful.

Abstraction

Another concept that might fit well into the scope of the Hierarchical ordering
planned Patch Panel GUI is the possibility of hierarchi-
cally ordering clusters of components. Quartz Composer,
for example, allows this by giving the chance of packing
entities and their connections together in one large patch,
called a macro patch. If a connection to another hierarchy
level is needed, inputs and outputs can be published and
so be accessed from other levels of abstraction. A hierarchi-
cal browser allows drilling down into the patches from the
root pane. Macro patches themselves can also contain other
macro patches such that the abstraction is unlimited.

4.1.2 Adding custom ideas

Starting with a survey on existing GUI concepts, own ideas Integration of custom
conceptsalso raised while trying to apply interesting concepts to the

Patch Panel GUI. They shall be named as keywords in this
section. Most of the ideas are directly related to the iStuff
project such that they cannot be applied to GUI concepts in
general.

Overview window

A window that provides an overview of the complete setup Map of composition
can help navigating through large compositions. As soon
as the user hovers over the floating window the mouse cur-
sor turns into a hand symbol that allows - similar to the
Adobe Reader1 software to pan the actual view by click-
ing and dragging it. This concept is also often used in ge-
ographic applications and navigation services like Map242

.

1http://www.adobe.com/products/acrobat/readermain.html
2http://map24.com

http://www.adobe.com/products/acrobat/readermain.html
http://map24.com

52 4 Collecting Concepts: Patch Panel GUI prototypes

List currently running proxies

A window that holds information about currently runningStates of proxies
proxies and their Event Heap connection should be pro-
vided. Otherwise it might become hard for the user to fig-
ure out what components are active and ready to receive or
post events.

Status of currently used entities

It would also be helpful to know what iStuff abstractionsEntities in a
composition are currently being used and whether they are connected

to the Event Heap. Internal information like a component’s
ID should be accessible inside the status view. Also the
connection status should be cared about in terms of select-
ing from available Event Heaps and managing the compo-
nent’s connection. These settings should be applicable to
single or all entities.

Iconic representations and custom names

The used components of a setup should be representedRenaming and
provision of icons as icons, such that from within the whole composition is

easy to parse what kinds of components are used. There
should also be possibilities to rename entities and add ad-
ditional information to them. Buttons, for example, could
be named by their color and not their numerical order after
which they were added to the compositions. This feature
improves the readability of a composition since component
names would indicate their purpose by their name, similar
to well-named variables in programming languages.

Generation of events and values

In order to test configurations, the generation of specificEvent factory for
debugging events and values may become useful to see the data pro-

cessing inside a Patch Panel mapping. The iROS package

4.2 First prototypes 53

already provides such a mechanism as a command line util-
ity. Maybe a wrapper around that application or methods
to directly feed numeric, boolean or string values into com-
ponents arranged inside the Patch Panel GUI will support
testing compositions.

Graphical visualization of values

A graphical visualization in form of charts or a plotter Plotting values
could be helpful when tasks occur in which thresholds need
to be determined or the progress of input and output data,
respectively, has to be monitored. This may be the case
when sensor data is collected.

4.2 First prototypes

After a first DIA-iteration that collected existing prototyp- Patch Panel GUI
prototypeing concepts, a paper prototype was developed and evalu-

ated in a discussion with other application designers at the
department. The prototypes came in form of storyboards
that showed the interaction flow by means of specific sce-
narios motivated by earlier work performed by Ballagas
et al. [2003]. Some examples of the originally developed
storyboards that helped to create a conceptual picture of
the planned GUI and its functionality can be found in ap-
pendix A.

4.2.1 General Patch Panel GUI concept

The general layout of the paper prototype GUI is shown General layout
in figure 4.1. On the left, a tabbed pane lets the user choose
between iStuff hardware or services, respectively, or “medi-
ators”, that are responsible for type conversions and math-
ematical transformations.

The buttons below divide the iStuff components into de- Available
componentsvices that are available in the ubiquitous environment and

54 4 Collecting Concepts: Patch Panel GUI prototypes

machines that provide services to control applications run-
ning on them. These machines may also act as proxies for
lightweight components like sensors as discussed in chap-
ter 2.

Depending on the selected tab, a tree view is shown thatTree view
arranges devices and services according to their data flow
direction (input / output), name and class (iButtons, e.g.,
belong to the general class of buttons).

The top row is reserved for a smarticon bar where oftenSmarticon pane
used commands can directly be accessed via iconic repre-
sentations, the lower part of the application window is re-
served for messages that give hints on solutions of possible
conflicts, similar to the Eclipse IDE3 .

Most of the application window space is consumed by theWorkspace
workspace, where compositions are created and arranged.
On the right hand side, a collapsed floating window is
drawn that provides an overview of the whole patch. A
smaller rectangle reflects the current position on the com-
plete workbench.

4.2.2 Interaction illustration

To illustrate the interaction with this prototype version ofStoryboards
the Patch Panel GUI, two examples of iStuff scenarios are
presented and virtually implemented inside different sto-
ryboards. Only relevant steps are shown in order to pro-
vide a feel for the application behavior. Many more inter-
action concepts were worked out during the storyboard de-
velopment process that also referred to the feature list pre-
sented in this chapter but because the storyboards were not
developed further and implemented, only a small excerpt
is shown. Further examples in form of the original hand-
drawn storyboards can be found in appendix A. The rea-
sons for the abortion of the development process for a new
Patch Panel GUI is the Quartz Composer application that
not only looks quite similar to what was planned but also
provides most of the features desired (see chapter 5).

3http://eclipse.org

http://www.eclipse.org

4.2 First prototypes 55

Figure 4.1: The storyboards prototype for the Patch Panel GUI showing all the parts
described.

Toggle button example

An iStuff button is to be configured to act as a toggle button States for a standard
buttonthat controls the room lights. In the conventional script-

ing approach, the developer would have to manually im-
plement a state machine, that changes its state with every
button press that is sent (cf. scripting language example in
chapter 2.2.3). Depending on the state it can be determined
what kind of events have to be sent by the Patch Panel.

In this example, an iStuff button should turn on and off the Toggle button
exampleceiling lights. Figure 4.3 shows the storyboard that illus-

trates the undertaken steps to create that setup. The origi-
nal storyboard is shown in figure A.1 which has been recre-
ated for better readability. The final composition is depicted
in figure 4.4.

1. A red iButton and ceiling lights were selected from Selection of
componentsthe tree view on the left and placed onto the

56 4 Collecting Concepts: Patch Panel GUI prototypes

Figure 4.2: The original storyboard for the scenario described in section 4.2.2. For
better readability this storyboard has been recreated in figure 4.3.

workspace. The available outputs and inputs with
their corresponding values are illustrated as circles.
The iButton is capable of sending triggers, the lights
controller representative processes integers in the
range from 0 to 100. Each components provides col-
lapsed views that provide additional information or
let the user edit component-specific settings. A small
icon in the upper left corner provides quick informa-
tion about the kind of the component.

2. The user tries to connect the outlet of the iButton withType mismatch
the input port of the lights. Since the variable types to
not match, the faulty connection is indicated in red
color and a message is show in the log bar below.

3. The user’s next step is to select a mediator from an-Mediator
other tree view in the tabbed pane and drag and
drop it onto the erroneous connection. The Patch
Panel GUI generates a state machine with two differ-
ent states as shown in the next step.

4.2 First prototypes 57

4. A window with a simple state chart editor opens. The State chart editor
user specifies the initial state by dragging the arrow
labeled “Inital” to the desired one. As the inputs can
only be of type “Trigger” the state transitions do not
have to be labeled. At the upper part of the window
the incoming and outgoing connections are shown.

5. The whole view of the configuration is shown where Final setup
the state machine is build into the connection which
now appears as completely valid, indicated by the
green color (cf. figure 4.4).

Controlling a music player application

In this example, a new way to control music playback is to Music application
controlled by sensorsbe found. A software proxy that controls a music player

application is controlled with sensor data provided by a
Phidgets Interface Kit. This kind of sensor board provides
eight input ports that receive analog data provided by other
Phidget sensors like a touch, force or rotation sensor as
well as an analog slider. With this setup, only one software
proxy posting events of type “Interface Kit” is needed. Fig-
ure 4.5 shows the sensors that should be used. The story-
board showing the configuration process of this scenario
is depicted in figure 4.6, because of readability issues only
four output ports are drawn. The final set up of this sce-
nario can be seen in figure 4.7.

1. The first steps are the same as in the last example; Selection of entities
the needed components are selected from the ap-
propriate category shown in the tree view and ar-
ranged on the workspace. The music application
proxy accepts boolean values for simple commands
like “play/stop”, “pause”, “next track” and “previ-
ous track”. The values for the volume are given by
integer values ranging from 0 to 100. The mapping
problem that arises is that the sensor board posts inte-
ger values whereas the music application accepts in-
teger and boolean values.

2. A direct connection would result in a type mismatch Partially valid
connectionsexcept for the volume parameters.

58 4 Collecting Concepts: Patch Panel GUI prototypes

Fi
gu

re
4.

3:
Th

e
st

or
yb

oa
rd

fo
r

th
e

ex
am

pl
e

de
sc

ri
be

d
in

se
ct

io
n

4.
2.

2.

4.2 First prototypes 59

Figure 4.4: The final result for the example described in section 4.2.2.

3. To resolve the mismatch, conditionals are introduced Mediating
conditionalsthat accept integers and yield out booleans. For the

transformation of the integer values in order to match
the volume scale of the music application proxy, a
mathematical transformation is applied such that the
incoming values are normalized in the range between
0 and 100.

4. An arbitrary mathematically correct formula can be Mathematical
transformationsentered in the configuration field of the mediator. In

the case that it is collapsed, a double click onto the
component or a click on the cross unfolds the content.

5. There are no type mismatches left in the final compo- Final setup
sition. In order to adjust the thresholds that control
the sensor inputs, the conditionals can be altered at
runtime and the results can directly be seen.

This prototype can easily be extended at runtime by con- Extensible at runtime
necting different devices to the already connected ports or

60 4 Collecting Concepts: Patch Panel GUI prototypes

Figure 4.5: The set of Phidgets sensors that should be used for the scenario de-
scribed in section 4.2.2. The different sensors are connected to one of the inputs of
the Interface Kit sensor board. The sensor values lie between 0 and 999.

to the ones that are currently not connected. The rearrange-
ment takes place at runtime as well as changes made to the
threshold calculations.

4.2.3 Prototype evaluation

The storyboards were extended to larger scales but not allComparison to
Quartz Composer of them are part of this work since only a general feel for the

planned Patch Panel GUI should be provided. The decision
of extending the Quartz Composer should be justified since

4.2 First prototypes 61

Fi
gu

re
4.

6:
Th

e
st

or
yb

oa
rd

fo
r

ex
am

pl
e

de
sc

ri
be

d
in

se
ct

io
n

4.
2.

2.

62 4 Collecting Concepts: Patch Panel GUI prototypes

Figure 4.7: The final result for the example described in section 4.2.2.

that application incorporates many of the desired features
extracted from related work and derived from early proto-
typing.

Demonstrating the storyboards to different persons turnedEvaluation revealed
good concepts but
also some usability
problems

out that the general concept of dragging and dropping
components, connecting entities and configuring special
functionalities inside an entity was plausible. Problems
arose when devices and services had to be selected. Users
complained that the tabbed pane was too hard to use in or-
der to quickly find an iStuff component. Other questions
concerning the interaction principles came up, especially at
the point when state machines should be edited: Reviewers
were afraid that the overview might suffer. One problem
might be the issue of connecting single states to different
entities because they initiate another event to be sent.

After collecting first feedback and comparing the featureStriking similarity
list of existing GUIs as discussed in chapter 3 it was found
out that Quartz Composer provides a lot of the desired fea-
tures listed in section 4.1. A way to extend the set of pro-

4.2 First prototypes 63

vided functionalities inside Quartz Composer was found
by searching the web and experimenting with the knowl-
edge available about the Quartz Composer classes.

The UI concepts described in the paper prototypes overlap Quartz Composer
extensionto about 60 percent with the concepts provided by Quartz

Composer. Thus, the decision was made that the exten-
sion of the existing application would hold more benefits
for the iStuff project than a complete redesign of a graphi-
cal user interface for the Patch Panel. Instead of redesign-
ing (yet another) graphical user interface, the iStuff project
should be supported with a good GUI concept where the
iStuff components and prototyping utilities could directly
be integrated.

Another argument for using Quartz Composer is that it Growing popularity
gains more and more popularity in the design community.
Thus, by reusing a familiar framework the need to learn a
new tool is reduced.

Since Quartz Composer is originally designed to create in- Animations for
ubicomp scenariosteractive 3D animations it makes incorporating these ani-

mations into ubicomp interfaces trivial. Large public dis-
play scenarios as described in Ballagas et al. [2005] are one
example or such a scenario.

Therefore, the focus of this work changed towards extend- Focus on extending
Quartz Composering the Quartz Composer application and integrating a

subset of the iStuff components that proof the idea’s appli-
cability. The general extendiblility for future iStuff compo-
nents is pointed out in chapter 5

Prototyping support is also provided by new integrations Earlier exploration
than plannedas well as by ideas described for future work. With the

Patch Panel GUI as an extension of Quartz Composer, the
prototyping capabilities of the iStuff toolkit can be explored
much earlier than originally planned.

The disadvantage of that strategy is that with a Patch Panel Limitation to
Macintosh platformsfor Apple Macintosh systems, the platform independence

for the Patch Panel GUI is lost. However, because the de-
partment and most of its research work is based on Ap-
ple hardware, the decision was supported because the most
important aim is to explore the prototyping capabilities of

64 4 Collecting Concepts: Patch Panel GUI prototypes

the iStuff toolkit and not to provide a platform indepen-
dent prototyping suite. The iStuff project was created for
research issues and not for commercial interests where this
restriction would play a significant role.

The next chapter examines the Quartz Composer applica-Examination of
Quartz Composer tion and analyzes the integration possibilities of the new

Patch Panel GUI.

65

Chapter 5

Quartz Composer as the
Patch Panel GUI

This chapter takes a closer look at Quartz Composer as an Quartz Composer
featuresextensible candidate for the Patch Panel GUI. Therefore, its

capabilities and features are presented in detail. A table
comparing already existing and desired features summa-
rizes the presentation. It is shown that the most important
features are already covered by Quartz Composer and thus
the decision for extending this application as a Patch Panel
GUI can be justified. A collection of concepts that still have
to be integrated in the scope of a Quartz Composer exten-
sion is shown in the final section of this chapter.

5.1 A closer look at Quartz Composer

Quartz Composer possesses a variety of built-in compo- Atomic functionality
nents which are suited for supporting the user constructing
graphical applications like screen savers or real time anima-
tions, partially based on input data coming from different
sources. Because of this application field most of the com-
ponents that build the connection from the application to
the operating system are designed for making calls of Mac
OS X’s graphics engine Quartz. Each component regarded
on its own only provides atomic functionality like drawing
backgrounds or sprites on the screen. Other methods like

66 5 Quartz Composer as the Patch Panel GUI

receiving inputs from the keyboard, counting, evaluating
conditionals or performing mathematical transformations
are also available. Thus, the combination of many different
components makes the application extremely flexible and
powerful in terms of design freedom. A very similar con-
cept is applied to other application fields (cf. chapter 3) and
is especially one of the design keys of the iStuff toolkit.

Each Quartz Composer component, in the following re-Data-flow metaphor
ferred to as patch, provides, depending on its type (see be-
low), different input and output ports that represent its pa-
rameters. Input may be gained from system components
like mouse and keyboard or from transformations based on
time (like counting or interpolation). External sources like
image libraries, RSS feeds and image files are supported as
well. Since data is generally provided by outputs of dif-
ferent patches one could talk of a data-flow metaphor; data
comes in at one point and traverses the composition until it
is consumed by some patch that processes the data in order
to initiate a system (in the original intention graphical) rou-
tine. To keep up the data-flow metaphor and the natural
understanding of the application concept, output ports can
only be connected to input ports.

5.1.1 Types of Quart Composer patches

As already mentioned , there are three different types ofTypes of patches
(components) patches (cf. the Apple Quartz Composer Tutorial1) that

determine its behavior and when it is executed. Figure 5.1
shows examples for the different types of patches:

• Providers (blue label): This class of patches providesData sources
data retrieved from external sources such as mouse
or keyboard. They receive their data from external
sources and set their output ports accordingly.

• Processors (green label): These patches take data fromData manipulation
the input ports or from internally specified sources
(see the “Image Importer” patch) whenever one of
the inputs changes. Patches of this type process data

1http://developer.apple.com/

http://developer.apple.com/

5.1 A closer look at Quartz Composer 67

Figure 5.1: The different types of patches: The leftmost “Mouse” patch provides
data sent by the mouse attached to the system. The two middle patches are exam-
ples for processors, one of them having both, input and output ports, and below a
processor that only possess an output ports since it provides an image loaded from
the hard drive. The rightmost patch is a consumer that renders a gradient on the
screen. Its appearance depends on the input parameters.

at specified intervals or as soon as one of the input
values changes.

• Consumers (purple label): A consumer renders its in- Rendering to
destinationput to a destination. In the Quartz Composer context,

this means that routines inside the operating system’s
graphics engine are called such that something is ren-
dered to a screen, for example. This class also pro-
vides a boolean“Enabled” parameter that activates or
deactivates the execution of the patch. The number
in the upper right corner of a consumer patch deter-
mines the execution order of a patch. This order may
become important when different graphical compo-
nents have to be drawn after each other. An exam-
ple would be two patches from which one draws the
background and the other one renders an object on
the screen. In order to gain a correct result, it is impor-
tant that the background is drawn before the shape
in the foreground. The other way round, the back-
ground would cover the shape. The order of the con-
sumer patches’ execution can be modified manually.
Changes affect the general order meaning that the
other numbers are set according to the one changed.

68 5 Quartz Composer as the Patch Panel GUI

5.1.2 Patch configuration

As already described, input parameters are influenced byInput ports are set by
connected outputs
ports or manually

values coming from system sources or from input ports
to which another output port is connected. For system
sources, there is no way of directly changing values that
are sent to a patch. For input ports, however, that are not
connected, values can be set by the user by double clicking
the port and manually entering the desired value. As soon
as the manually set input port is connected, the fixed value
is replaced by the one provided by the connection.

Another way of changing inner settings of a patch is pro-Inspector window
vided by an inspector window that holds general information
about a patch like its name, description or an optional user
comment as well as specific information individual for each
patch. Figure 5.2 shows the three panes of the inspector
view of the “Math” patch. The “Information” and the “In-
put Parameters” panes are always shown although there
are patches that do not provide input ports. In this case, the
pane simply remains blank. For the shown patch, a formula
can be specified by selecting operations from combo boxes
and either setting values manually or taking them from in-
put ports. Mixing these options is possible, too. In figure
5.2, the patch’s first input port is connected to another out-
put port whereas the second input value is specified by the
user. This is the reason why the first line is grey indicating
that it is not accessible by the user. Other patches let the
user adjust the inputs by providing scroll wheels or check-
ing boxes if the input types are boolean.

The optional “Settings” pane provides little individual userThe “Settings” pane
is optional interfaces that let the user configure patch-specific options

or behavior. The patch shown in figure 5.2, for example, lets
the user set the desired amount of input ports dynamically.

5.1.3 Grouping and abstraction

Sets of patches can be grouped into a macro patch thatMacro patches
abstracts from the view onto several patches to one sin-
gle patch. Ports that have to be available outside the ab-

5.1 A closer look at Quartz Composer 69

Figure 5.2: The three different inspector views of a “Math” patch. The Information
pane shows general information about the patch, the second pane allows manip-
ulation of the input ports (whereas the first input is connected and therefore no
manipulation is allowed). The third panel lets the user adjust additional settings,
in this case the number of operands needed.

70 5 Quartz Composer as the Patch Panel GUI

Figure 5.3: The Hierarchy browser helps the user navigate through the hierarchy
created by macro patches.

straction can be published and renamed in order to clarify
their meanings. This encapsulation is repeatable such that
macro patches themselves can again contain other macro
patches. The evolving hierarchy is visualized with the hier-
archy browser shown in figure 5.3. With its help, users can
navigate through the different abstraction layers similar to
Apple Finder’s column view.

Macro patches can be distinguished from standard (atomic)Distinction
patches by their shape; the first have rounded corners
whereas the latter appear as rectangular shapes. A dou-
ble click on a macro patch or making use of the hierar-
chy browser to navigating through the abstraction levels re-
veals the inner structure of a macro patch abstraction. Fig-
ure 5.4 illustrates the summarization of different patches
into one macro patch where two input ports and one output
port are published from the inside in order to be available
for the rest of the composition. Macro patches appear ac-
cording to their inner patches that means if only processor
patches are grouped together, the abstraction also appears
in the same color which is green in this case. Otherwise,
if different types of patches are intermingled, the following
hierarchy is applied: Processors� Providers�Consumers
whereas “�” means that the right part of the relation deter-
mines the macro patch’s appearance.

5.1.4 Finding and instantiation of patches

To select a patch, an incremental search lets the user type inIncremental search
a part of the patch’s name or description and select from a
pre-filtered list of results corresponding to the search key-
words. The results can be ordered by their name or cate-
gory in an ascending or descending way.

5.1 A closer look at Quartz Composer 71

Figure 5.4: An atomic “Math” patch is shown on the left.
On the right, a macro patch consisting of different patches
from which three ports were published such that they are
available at the current abstraction level.

Dragging the name of the patch into the composition area Patches instantiation
lets the user directly specify the location where the new in-
stance is created. A double-click creates the new instance
in the center of the composition area. The keywords for the
search can be part of a patch’s name, its category or of its
description which is displayed below the search window.
Figure 5.5 shows the search results for patches that have to
do with displaying issues.

5.1.5 Automatic type checking and conversion

Whenever ports are connected, Quartz Composer automat- Type checking
ically checks the connection’s direction and the parameter
types the user tries to connect. As already mentioned, con-
nections can only be drawn from output to input ports, the
opposite direction is not possible. The application even just
ignores the user’s mouse gestures.

When port types are to be connected that match, Quartz Different connection
colorsComposer indicates this by drawing the connection in yel-

low color. If the types do not match at all, for example,
when boolean values should be connected with a patch that
only accepts images, the connection is drawn as a white line
and disappears as soon as the mouse button is released.
Whenever a valid connection is found during the connec-
tion process, this is indicated by a yellow or orange line.
The latter indicates that data types that were connected are
not the same but a conversion can be applied.

For example, a user might want to connect an output port Connection example

72 5 Quartz Composer as the Patch Panel GUI

Figure 5.5: The incremental search starts as soon as char-
acters are entered in the search field. The patches’ names,
categories and descriptions are searched.

of type integer to an input port that accepts boolean values.
The connection is drawn in orange color and interpreted
in a meaningful way by the application, namely that any
value greater than zero corresponds to TRUE, and FALSE
otherwise (cf. figure 5.6). The same works with integers
connected to strings, for example.

5.1 A closer look at Quartz Composer 73

Figure 5.6: Integer values coming from the “Math” patch
should be processed by the “Boolean Logic” patch that ac-
cepts boolean values. Instead of rejected the connection,
incoming types are interpreted as TRUE if they are greater
than 0.

Red lines indicate that a connection can be used but the val- Non-reliable
conversionues passed cannot be interpreted in a correct way and no

type conversion is applicable. This is the case when struc-
tures get connected to strings. The only information avail-
able to a string port is that the input is of type “QCStruc-
ture” which interpreted as a string. Figure 5.7 shows an
example of this special connection situation.

Figure 5.7: When structures get connected to string inputs,
the only information available for the input is the string
“QCStructure”.

5.1.6 An example

After the different Quartz Composer parts are described in QC functionality
illustrationmore detail, an example shown in figure 5.8a should illus-

trate the features described so far.

The mouse attached to the computer shall provide the data Visualization of
mouse coordinatesneeded for the composition. In order to show the values

yielded out by the “Mouse” patch, a blue gradient back-
ground is drawn by selecting the “Gradient” patch and
specifying the color values with the inspector. Onto the
background, two sprites are to be drawn, one displaying

74 5 Quartz Composer as the Patch Panel GUI

the string “Mouse X” and the other one showing the values
coming from the X-output port of the “Mouse” patch.

Since sprites only accept inputs of type “Image”, an in-Implicit
transformation termediary patch “Image With String” has to be intro-

duced. This patch takes the number values coming from
the “Mouse” patch output, automatically transforms them
into a string value whereas the resolved type mismatch is
visualized by an orange instead of a yellow connection, and
sets the incoming string as an image at the output port.

The positions of the two sprites can be set directly by ma-First abstraction
nipulating the corresponding input ports. Since the patches
responsible for drawing the label are not important to be
shown, they are summarized in a macro patch named
“Mouse X” (cf. figure 5.8b).

In order to show different levels of abstraction, the twoSecond abstraction
patches providing the visual feedback of the mouse coor-
dinates were once more encapsulated into a macro patch
called “Background” (cf. figure 5.8c). The input port “X
Position” of the “Sprite” patch inside the macro patch was
published such that it is still accessible from the root. The
graphical output stays the same with all three abstractions
and is shown in figure 5.8d.

5.2 Functionality missing for the iStuff
project

After the detailed description of the functionality providedDesired features vs.
already provided
ones

by the Quartz Composer application, table 5.1 should sum-
marize the features already provided by Quartz Composer
compared to the desired feature list in chapter 4.

Since about 60 percent of the feature list are covered solelyQuartz Composer
provides a very
useful basis for the
Patch Panel GUI

by Quartz Composer, the iStuff project group decided to
augment the existing application instead of redesigning a
very similar graphical user interface. The information to
extend Quartz Composer was retrieved from custom dis-
coveries as well as from searching the web. Among others

5.2 Functionality missing for the iStuff project 75

Fi
gu

re
5.

8:
T

he
ex

am
pl

e
de

sc
ri

be
d

in
se

ct
io

n
5.

1.
6.

T
he

gr
ap

hi
ca

lo
ut

pu
t

st
ay

s
th

e
sa

m
e

th
ro

ug
ho

ut
al

lt
hr

ee
ab

st
ra

ct
io

ns
(a

-c
)a

nd
ca

n
be

se
en

in
d.

76 5 Quartz Composer as the Patch Panel GUI

Desired feature Available in QC On feature list
Composition Yes -

Easy retrieval of components Yes -
Drag&drop support Yes -

Avoidance of illegal connections Yes -
Automatic type conversion Yes -

Consistent flow of information Yes -
Instant application of changes Yes -

Abstract representation of entities Yes -
Provision of template values Yes -

Abstract testing Partially Partially
Highlighting of current selections - Yes

Occlusion avoidance - Yes
Panning and zooming Panning Zooming

Abstraction Yes -
Overview window - Yes

List of currently running proxies - Yes
Iconic representations - Yes

Generation of events/values - Yes
Graphical visualization of values - Yes

Table 5.1: Desired features for the Patch Panel GUI vs. features already imple-
mented by Quartz Composer

a web log called Clockskew2 provides useful information
on how to start with a custom plugin (although not all in-
formation is correct).

The next step in the GUI development was to outline fea-Functionality to be
added for the iStuff
project

tures and functionalities that had to be added for the Patch
Panel GUI. In the following, they are described whereas
some of them were realized as independent applications to
be launched in parallel to Quartz Composer.

5.2.1 Integration of iStuff components into the GUI

A subset of the existing iStuff toolkit components shouldSubset of iStuff
components be added in order to support the rapid prototyping pro-

cess and to serve as a proof of concept. The subset should
include sensor kits (e.g. Phidgets, SmartIts), software prox-

2http://www.clockskew.com/blog/?p=15

http://www.clockskew.com/blog/?p=15

5.2 Functionality missing for the iStuff project 77

ies (e.g. presentation software and sound card controllers)
as well as parts from the iStuff mobile toolkit (cf.Memon
[2006]).

Support for additional off-the-shelf-hardware

Available hardware like sensors, motors, buttons, speakers Extensible software
frameworkor remote controls for which the iStuff proxy strategy can

be applied (cf. chapter 2) should be easy to integrate into
the Patch Panel GUI as it is intended by the original iStuff
proxy concept. For this purpose, an object-oriented soft-
ware framework has to be created such that a lot of devel-
opment is saved and thus new components can quickly be
integrated into the framework.

Evaluation support

Visualization aids like a plotter or windows displaying sev- Data visualization
eral different information provided by output ports should
help the developer to see the progress of values passed into
or coming out from certain patches.

Support for custom extensions

Additional patches, like the “Filter” patch mentioned in the Integration of
non-iStuff patcheslast item, that do not correspond to an iStuff component

but which facilitate the prototyping work should be pro-
vided. The software framework should be designed to be
open to future work such that new patches can quickly be
integrated.

Event debugging support

The events posted to the Event Heap including their fields Event logging
should be accessible to the developer. Since this applica-
tion already exists in form of the Event Logger as part of the

78 5 Quartz Composer as the Patch Panel GUI

iROS distribution, it was decided to leave it as an exter-
nal application because it provides a good mechanism that
can also be used in contexts where the Patch Panel GUI is
not needed. An integration would create unnecessary over-
head and wouldn’t hold additional benefits for the whole
iStuff project.

GUI support for proxies

The different proxies for the iStuff components were orig-Quickly setting up
proxies inally started via the command line. An external GUI

should be developed that wraps around the command line
and allows the developer to quickly set up a proxy and
launch it from that GUI. This kind of application does not
fit into the Patch Panel scope but is needed for the rapid
prototyping process. Therefore it is part of this work but
left outside the Patch Panel GUI.

5.2.2 Final comparison

After comparing existing features in Quartz ComposerPlanned extension of
Quartz Composer against the desired feature list for the Patch Panel GUI (cf.

section 5.2) and planning what features are to be added in
the scope of this work, table 5.2 summarizes what features
are already available, planned to be integrated and which
ones are scheduled for future work.

Some of the originally desired concepts like the overviewPostponed features
window, connection bending, labeling or iconifying, auto-
scrolling or zooming were left out at this point because
there is no documented API for the Quartz Composer ed-
itor at the moment. Integration of these functionalities
would require a more detailed insight into the existing
framework than available at the moment. Because of the
missing Apple support, this work has to be postponed until
more information about the Quartz Composer framework
is available. The features left out can be classified as “addi-
tional” features that support the interaction with the Patch
Panel but that are not absolutely necessary for the proof of

5.2 Functionality missing for the iStuff project 79

Desired feature Available in QC To be added Postponed
Composition Yes - -

Easy retrieval of components Yes - -
Drag&drop support Yes - -

Avoidance of illegal connections Yes - -
Automatic type conversion Yes - -

Consistent flow of information Yes - -
Instant application of changes Yes - -

Abstract representation of entities Yes - -
Provision of template values Yes - -

Abstract testing Partially Partially Partially
Highlighting of current selections - - Yes

Occlusion avoidance - Yes -
Panning and zooming Panning - Zooming

Abstraction Yes - -
Overview window - - Yes

List of currently running proxies - Yes -
Iconic representations - - Yes

Generation of events/values - Yes -
Graphical visualization of values - Partially Partially

New features described in this chapter
Integration of iStuff components No Yes -

Support for additional HW No Yes -
Evaluation support Partially Partially Partially

Support for extensions No Yes -
Event debugging support No Yes -
GUI support for proxies No Yes -

Table 5.2: Overview: Features available in Quartz Composer, newly integrated
ones during this work and features scheduled for future work

concept this work follows. Even if only a subset could be
integrated in the future, the Patch Panel GUI in the version
presented here already suits most of the needs of the iStuff
project

5.2.3 Benefits and disadvantages

Although this leaves out some of the initially intended con- Future realization
cepts, the iStuff project group assumes that with later ver-
sions of Mac OS X, maybe even already with version 10.5,

80 5 Quartz Composer as the Patch Panel GUI

developer support will increase.

On the one hand, the decision for the Quartz Composer as aLoss of platform
independence vs.
advance in research

basis for the Patch Panel GUI has the disadvantage of loos-
ing the platform independence most of the iStuff compo-
nents had since they were written in JAVA. On the other
hand, extending Quartz Composer as the Patch Panel GUI
means a large step forward for the iStuff project that can be
taken earlier than planned. This is a very important benefit
for the undertaken research work performed at the depart-
ment.

Another argument is that the rest of the existing platformRest of
independence is kept independence is kept. Only the Patch Panel application

has to be run on an Apple Macintosh system. However,
this does not break the communication model of the Event
Heap structure because the iStuff core functionalities like
the proxies setup or the event logging are separately avail-
able.

81

Chapter 6

Extending Quartz
Composer as the Patch
Panel GUI

The development platform for the Patch Panel GUI is set Patch Panel GUI
extensionand the features that are to be integrated are clarified as

well. This chapter describes how these features were incor-
porated into Quartz Composer. Additional Quartz Com-
poser patches as well as external applications that support
the prototyping process are presented afterwards. At the
end of this chapter, implemented examples are shown in
order to illustrate the cooperation of all the utilities devel-
oped in the scope of this work.

6.1 Integration of the Patch Panel into
Quartz Composer

Ways to write custom plugins for Quartz Composer were Integration of custom
patchesfound by analyzing the Quartz Composer program struc-

ture and searching the web. One very interesting entry is
to be found in the Clockskew weblog1 where a good, al-
though not completely correct guidance is given. Figure 6.1

1http://www.clockskew.com/blog/?p=15

http://www.clockskew.com/blog/?p=15

82 6 Extending Quartz Composer as the Patch Panel GUI

shows a conceptual class hierarchy of a Quartz Composer
patch (QCPatch).

6.1.1 The iStuff Patch hierarchy

So starting with the discovered information, subclassesSubclasses
were created from the QCPatch class in order to implement
custom patches. Since one demanded feature is the easy
extensibility of iStuff components and the patch library, re-
spectively, an object oriented framework was created that
allows subclassing from different specializations of the QC-
Patch class, according to the current needs.

Thus, in order to create a custom patch with new function-New custom patch
ality, an iStuffCustomPatch can be subclassed. If a patch is
needed that registers for special events on the Event Heap
or post events onto it, the iStuffProviderPatch and iStuffCon-
sumerPatch class should be subclassed, respectively. User
interfaces in form of NIB files 2 for the “Settings” pane
shown in the inspector window of a Quartz Composer
patch are also already implemented but can be modified if
needed. The files implementing the user interface are sub-
classes of the QCInspector class (cf. figure 6.1).

Each iStuff patch class already provides methods for theConnection
management Event Heap connection management. The execute method

is called with every execution cycle as well as initialization
methods that are run whenever an instance of a patch is cre-
ated in a composition. Methods that are needed for the
Patch Panel functionality can be added for each custom ex-
tension.

For each iStuff component, a connection to an Event HeapDecoupled threads
(specified in the “Settings” pane) is established. Every
iStuff provider patch decouples an own thread that waits for
events of the appropriate type to appear on the Event Heap.
The thread is started as soon as a connection has been es-

2NIB files are responsible for the appearance of the user interface of
an application. Apple’s Interface Builder (cf. section 1.1) is an easy-to-
use and very powerful tool to rapidly create a graphical user interface
and its underlying functionality. The model of the user interface is im-
plemented in accompanying Objective-C files.

6.1 Integration of the Patch Panel into Quartz Composer 83

Figure 6.1: The basic patch class hierarchy. From a QCPatch class, custom patches
can be derived. Its ancestors are iStuffPatch classes that already provide mechanism
to connect to an Event Heap. They can be specialized to iStuffProviderPatches to
register for events and iStuffConsumerPatches to post events on the Event Heap,
respectively.

tablished. iStuff consumer patches do not launch separate
threads but only post events of the specified type to the
Event Heap depending on their implementation.

The complete source code of the whole framework and the Source code online
implemented extensions are available for download at the
berlios iStuff project site3 . A detailed guide on how to write

3http://developer.berlios.de/projects/istuff/

http://developer.berlios.de/projects/istuff/

84 6 Extending Quartz Composer as the Patch Panel GUI

custom patches goes beyond the scope of this work will be
retrievable on the iStuff project site4 in future.

6.1.2 Managing connections

By default, each iStuff patch connects to the Event HeapAutomatic
connection running on the local machine. Alternatively it takes the

Event Heap the preceding patch connected. In case that a
composition was saved and gets loaded, each patch tries to
establish a connection to the Event Heap they were connect
to at the time the saving took place.

From the “Settings” pane inside the inspector window, theCustom “Settings”
pane connection management details can be seen and modified

(cf. figure 6.2). Here, the discovered Event Heaps are dis-
played and custom ones can be specified in case they were
not correctly discovered. It is also possible to determine
whether connection changes should only be valid for the
current patch or they should be applied to all patches in
the composition.

Additionally, in order to be able to distinguish between dif-Event ID
ferent components of the same kind (e.g. two Phidget In-
terface Kits), an event ID can be specified. With each event
a field with a value for the ID is sent besides others spec-
ified. iStuff provider patches can be configured either to
register for any event of the corresponding kind or to regis-
ter for events of the defined kind that additionally contain a
specific event ID. iStuff consumer patches always provide
such an ID and it depends on the proxies registered for an
event type whether they check for it. The event ID is deter-
mined by the name of the iStuff patch.

6.2 Integrated iStuff components

In the following, a list is presented that shows which iStuffComponents
developed during
thesis

components have been integrated during this work. Since

4http://media.informatik.rwth-aachen.de/istuff/

http://media.informatik.rwth-aachen.de/istuff/

6.2 Integrated iStuff components 85

Figure 6.2: The “Setting” pane for iStuff patches reveals
information about discovered Event Heaps and lets the
user specify the event ID id desired (iStuff ProviderPatches
only). In an extended view, the Event Heap connection set-
tings can be changed and custom Event Heap names can
also be entered for the case that the discovery was incom-
plete. The section at the bottom provides the choice of
changing the connection settings for every patch or the cur-
rent patch only.

86 6 Extending Quartz Composer as the Patch Panel GUI

a framework was developed (cf. section 6.1), the integra-
tion of new components is no longer very time consuming.
iStuff components made available as a proof of concept for
the Patch Panel GUI so far include:

• Phidgets Interface Kit (and thus all sensor con-
nectable to it)

• Phidgets Accelerometer

• Phidgets RFID Tag Reader

• Phidgets Servo Motor Control (up to four servos)

• SmartIts sensor boards

• Mobile Phone Key Listener

• Mobile Phone Controller

• Presentation Controller

• Apple Powerbook Tilt Sensor 5

• Keyboard Listener

• Listeners for the Sweep technique 6

• Teleo Toolkit Input

• Teleo Toolkit Output

6.3 Support for the prototyping process

Besides the patches for the iStuff components, a number ofOther extensions
additional patches were developed (or at least planned as
extensions) in order to take over tasks always repeating like
smoothening values or influencing the rate at which events
are sent or processed. These patches are described below in
more detail.

5Inside Apple Powerbooks of the latest generation, a tilt sensor im-
mediately parks the hard drive when the laptop is rapidly moved or
dropped. The sensor values can be read out by software.

6Ballagas et al. [2005] developed a techniques that allows the detec-
tion of two-dimensional movement of a mobile phone by processing the
image data from the camera of the mobile phone. This approach was
primarily used for large public screen interactions.

6.3 Support for the prototyping process 87

6.3.1 Filter (integrated)

The “Filter” patch provides inputs for numeric values and Smoothening
lets the user specify when a new input should be processed.
For this purpose the user specifies at a second input or via
the “Settings” panel the absolute difference the new and
the old values must differ from each other. Is the absolute
difference greater than the value specified, the new value
is sent to the output port, otherwise the old output value
remains. The filter patch is very useful for devices that
send many events per time interval and whose values do
not differ very much or if small changes are not relevant
for the developer. An example for such an iStuff device is
the Phidgets Accelerometer that sends events at an almost
constant rate even if it is not moved.

6.3.2 Threshold (integrated)

This “Threshold” patch provides a boolean output which Exact value
comparisonbecomes TRUE if the input is below, equal or above a cer-

tain value. Although the “Conditional” patch already pro-
vides a very similar functionality, the values entered in the
“Settings” panel of the Threshold Patch are not rounded.
The “Conditional” patch does that when the values are not
entered by double-clicking the input ports.

6.3.3 Buffer (future work)

The “Buffer” patch can also be used for examination pur- Collect and lists input
dataposes. Strings or numeric values passed to it are buffered

are shown in a console-like window. For each input, a sep-
arate window can be instantiated.

6.3.4 Plotter (future work)

The “Plotter” patch visually supports the developer in fol- Visualization of data
progressionlowing the development of values output by other patches.

88 6 Extending Quartz Composer as the Patch Panel GUI

Outputs from other patches can be passed into the corre-
sponding input and are displayed in a separate window
for each input type if desired. As there can be any arbitrary
number of patches in Quartz Composer, developers could
also connect any number of plotters to any patch. The in-
puts are drawn as a graph over time in an OpenGL context.
A screenshot of the results can be taken for future purpose
or the plotted values can be saved to a file.

6.3.5 Display (future work)

A separate window controlled by a “Display” patch isPermanent port
value visualization shown. The patch provides a number of inputs that are dy-

namically changeable at runtime. To that patch, booleans,
strings and integers can be passed and their current values
are displayed in labeled fields. The concept is similar to
the template composition Quartz Composer offers when a
new project is started. There, only one input is displayed
for demonstration purposes. Since sometimes only current
values of certain outputs are relevant, the “Display” patch
would be an alternative to the plotter.

6.3.6 Help from built-in patches

By enabling hidden patches in the Quartz Composer withHidden patches
the help of another plugin from the Clockskew website7 ,
a number of patches can also be used for supporting the
developer. Although those patches were not intended to be
accessed by default, they also present a good addition to
the built-in and custom patches.

The “Signal” patch, for example, provides a way to sendTriggers and rates
a trigger at a certain time interval (similar to the “bang”
in Max/MSP). The “SignalAndHold” patch keeps a certain
value until it receives a TRUE trigger. This can also be used
for patches that only send a value once and that would be
lost otherwise.

Another patch that should be mentioned here is the onePowerful patch:
“Java Script” 7http://www.clockskew.com/blog/?p=14

http://www.clockskew.com/blog/?p=14

6.4 Tools running besides the Patch Panel 89

with the most flexibility: The “JavaScript” patch. How-
ever, one should take care about not specifying too much
functionality with it because the modular concept of the
Quartz Composer can easily broken this way. With that
patch, missing functionality can be implemented very of-
ten.

But sometimes there are also other ways to achieve the Design alternatives
same functionality without writing a JavaScript by com-
bining other patches. The capability of renaming patches
should also be used very often in order to directly clarify
the intention of a patch inside a composition. So, for exam-
ple, a “Conditional” patch that checks if a value is greater
zero could be named “postitive number?”. With that tex-
tual assistance, the developer or others working with the
patch would get a better insight into the (maybe foreign)
patch. It is a bit like commenting source code. Additional
information can also be provided in the comment field be-
low the “Title” field in the Inspector window.

Other patches that are not explicitly mentioned in this sec- More patches
tion should individually be explored and the adequacy for
a composition has to be judged in the situation at hand.

6.4 Tools running besides the Patch Panel

In parallel to the Patch Panel application, a number of other Additional tools
programs is running. They provide support for rapid pro-
totyping as well, starting from the different proxies running
for each iStuff device and ending with the Event Logger ap-
plication that supports the developer in allowing to exam-
ine the events posted onto the Event Heap.

The different kinds of prototyping activities did not nec- Prototyping activities
essarily fit into the scope of the Patch Panel GUI. A cross
platform solution for all the proxies is needed since some
of them only run on specific operating systems like Linux
or Windows due to their vendor support.

As the presented Quartz Composer extension is not plat- Proxy management
& event debuggingform independent, features like proxy management and

90 6 Extending Quartz Composer as the Patch Panel GUI

event debugging were externalized to other applications.
that are described in the following.

6.4.1 Proxy Manager

As mentioned above, the Proxy Manager application al-Command line
wrapper lows to quickly connect iStuff components to an Event

Heap in range. Figure 6.3 shows an application screenshot.

The Proxy Manager automatically scans for Event HeapsScanning and
connectiong available at runtime and displays them on the left side of

the application window. Mechanisms to change the Event
Heap connections of all displayed proxies are also pro-
vided.

The available proxies are displayed in a tree view and areTree view
sorted by their purpose. For example, Phidgets are dis-
played in a tab especially reserved for Phidgets. This classi-
fication is specified by XML descriptions provided together
with each proxy in its directory. The proxies description
files are structured as depicted in figure 6.4.

Thus, they are categorized as software or hardware prox-Proxy categorization
ies. Then it is distinguished by their class (e.g. controllers,
Phidgets, etc.). The last distinction is made by their proper
names. New categories can also be added at any place in
the XML hierarchy. This is suggested by the three-dotted
labels in the hierarchy tree in the figure referred to. Addi-
tional information like the command line launch command
are also provided by the XML description file.

Selected proxies are added to the middle pane and can beProxy configuration
configured to send a certain event ID with each event or, in
case that they register for certain events, to check received
events for a specific ID, similar to provider patches inside
the Patch Panel GUI. The event ID is specified in the text
field of each proxy representation.

When the application starts, it automatically executes aAutomatic search for
proxies depth search starting from a specified folder in the configu-

ration file for the application. This search is useful because
newly added proxies to a sub-directory are automatically

6.4 Tools running besides the Patch Panel 91

Figure 6.3: A screenshot of the ProxyManager application. Proxies can be arranged
on different tabs (middle). On the left the discovered Event Heaps are displayed
as well as buttons for launching a local Event Heap and the Event Logger , respec-
tively. On the right side, the currently running proxies are shown. In the displayed
situation, a “TextEventGenerator” proxy is running, indicated by the green icon.

Figure 6.4: A visualization of the XML structure for proxy description files. In the
example some proxies were already inserted into the XML tree which is arbitrarily
extensible in width.

92 6 Extending Quartz Composer as the Patch Panel GUI

integrated.

The description of the application should emphasize theEasy
(re)configuration of
proxies

gain of flexibility and ease of use during the prototyping
process since the proxies can directly be launched without
the need of navigating through the file system hierarchy via
the command line.

A saving mechanism for setups is also provided such thatLoading and saving
they can be reconstructed for future usage of the same or
similar scenarios. The Event Logger application can also
be started directly from this application because in many
cases, the Proxy Manager needs to be started before the
Event Logger.

6.4.2 Event Logger

The Event Logger is another Java application that can beInformation on
posted events run besides the Patch Panel GUI that helps to examine the

events that are posted to the Event Heap. Certain events
can be filtered out and their fields are shown in detail cf.
figure 6.5; all fields inside an event are available inside a
detail inspector view(cf. figure 6.6).

With the help of the detailed information, locating errorsLocating errors
that are the result of wrongly formatted events is made eas-
ier. It can also be checked whether values are really posted
as intended or a proxy is working correctly.

6.4.3 Collaboration of the different applications

As a subset of the iStuff components is integrated, a com-Interaction example
mand line wrapper in form of the Proxy Manger is pro-
vided and the Event Logger as an analysis tool is presented,
a detailed example in form of a narrative scenario should be
given to show how the different components can be used in
a prototyping context. Figure 6.7 summarizes the described
parts once more.

6.4 Tools running besides the Patch Panel 93

Figure 6.5: The Event Logger application connects to the desired machine an Event
Heap is running on and shows either all or selected events that are posted.

Figure 6.6: The detailed view of an event shows all con-
tained fields.

94 6 Extending Quartz Composer as the Patch Panel GUI

Figure 6.7: On each machine inside the network that should serve as a proxy, the
ProxyManager application is run. The Patch Panel is realized by the Quartz Com-
poser iStuff extension.

A multiscreen presentation controlled by a mobile phone

Tom, a 25-year old computer-science student is asked toExample scenario
setup a multi-screen presentation and make use of a new
input device from the iStuff toolkit to control the slide tran-
sitions.

6.4 Tools running besides the Patch Panel 95

Since Tom is familiar with the iStuff toolkit and its infras- The same
presentation running
on two machines

tructure, he decides to run the same presentation on two
different machines and to connect his mobile phone via
Bluetooth to a third machine. The mobile phone support is
the latest integration of the iStuff toolkit, coming from the
iStuff Mobile project (cf. Memon [2006]). Concerning the
presentations, one screen should always show the previous
slide of his talk, the other one the current slide he is talking
about. The Event Heap necessary as the underlying com-
munication structure is running on another machine inside
the room. The new iStuff prototyping suite including the
latest version of the Patch Panel GUI is installed as well.

Before he starts, Tom sketches the scenario with a software Scenario sketch
application (since he wants to reuse it for personal purpose
later). His setup is shown in figure 6.8.

In order to be able to remotely control the presentations, Presentation
controlling proxiesTom starts up the Proxy Manager on each of the presen-

tation machines and selects the “Presentation Controllers”
from the “Software Proxies” tab. The proxies are imple-
mented to listen to events of type “SlideController” but the
additional field for the event ID is also required because the
proxies should only react on special events of that type.

For that purpose, Tom sets the ID field in the configura- Proxy launch
tion window is to “PrevSlide” and “CurrentSlide” respec-
tively. Before starting the two proxies, Tom checks whether
the correct Event Heap is selected from the list of discov-
ered Event Heaps. Now the proxies that control the pre-
sentations are configured and running. Figure 6.9 shows
an excerpt of one Proxy Manager application.

As the next step, Tom connects his mobile phone via Blue- Mobile phone
connection via
bluetooth

tooth to his own laptop that is connected to the local net-
work8. With the Proxy Manager application he down-
loaded together with the iStuff package, Tom selects the
proxy that posts events from the mobile phone to the Event
Heap. The event ID is automatically provided by the appli-
cation. This time, Tom sees no need to change it.

Now that all needed components are connected to the Mappings

8Details can be found in Memon [2006]

96 6 Extending Quartz Composer as the Patch Panel GUI

Figure 6.8: A mobile phone is connected via Bluetooth to
machine #1 which posts events to the Event Heap Server.
The other two machines run the same presentation con-
trolled by the corresponding proxy.

Event Heap and are ready to post and receive events it
is time to specify mappings since at the moment, posted
events are not meaningful to any component.

On the machine that runs the Event Heap, Tom opens the“Mobile Phone” patch
Quartz Composer extension of the Patch Panel GUI. From
the list showing the available patches, he selects the “Mo-

6.4 Tools running besides the Patch Panel 97

Figure 6.9: A part of the Proxy Manager application for set-
ting up one proxy for controlling the presentation on the
local machine.

bilePhone” patch in the “iStuff” category.

By default, each iStuff patch tries to connect to the Event Event ID is ignored
by defaultHeap of the local machine and then to the first one discov-

ered in case there is no local Event Heap is running. An-
other default is that provider patches ignore the Event ID
until this feature is activated in the “Settings” pane. Tom
checks whether the patch connected to the correct Event
Heap by using the “Settings” pane of the inspector win-
dow.

Next, Tom places two “Presentation Controller” patches on “PresentationController”
patchesthe workspace. From the purple label and the quality that

they only provide inputs that these patches are consumers.
That means that they always post their name as the event
ID.

In order to keep the overview, Tom renames them via the Patch renaming
inspector to “CurrentSlide” and “PrevSlide”, now events
with these ID fields are posted to the event Heap. As the
proxies on the machines controlling the presentations were
configured to listen to events with a specific event ID, they
now only react to events posted by their Patch Panel coun-
terpart.

After this setup, Tom needs to figure out what ASCII codes Examine events
are sent by the mobile phone when he presses the keys he

98 6 Extending Quartz Composer as the Patch Panel GUI

wants to use for the presentation. Therefore, he launches
the Event Logger application on his laptop and connects to
the Event Heap. Whenever he presses a key on the phone,
events occur on the Event Heap that contain, among other
fields, the ASCII code of that key. They are posted by the
proxy he setup some steps ago. Tom decides for the number
keys ’1’ and ’3’.

DIRECTLY READING OUTPUTS IN QUARTZ COMPOSER:
Another way of accessing the code is to make sure that
the “Mobile Phone” patch receives the correct events.
When hovering the mouse over the appropriate output
port, the received value from the key press is shown.

Finally, everything is set up and running. Events are postedSpecification of a
Patch Panel from the mobile phone to the Event Heap. What is left to

be done for Tom is to find a valid transformation from the
“MobilePhoneKeyListener” patch to the “PresentationCon-
troller” patches such that they post events for the listening
proxies.

He decides to make use of “Conditional” patches thatCheck ASCII codes
compare values. In this case, the incoming ASCII val-
ues are compared to the values Tom discovered with the
Event Logger. The comparison is specified with the “Input
Paramters” view of the inspector as shown in figure 6.10.
He can manually set the ports for the second operand via
the same window or by double clicking the second input
port since it is not connected.

Figure 6.11 shows his final solution. As Tom decided toFinal solution
directly provide a slide number instead of only triggering
commands, he also introduced a counting patch that in-
creases or decreases its current value depending on the trig-
ger.

Since both presentation controllers must be triggered, twoConnecting the
presentation
controllers

connections are drawn from the output of the “Counter”
patch. The “Math” patch connected between the “Counter”
and the “PresentationController” patch for the previous
slide is responsible for decreasing the currently counted
value by one for the previous slide.

6.4 Tools running besides the Patch Panel 99

Figure 6.10: The first input of the conditional patch de-
pends on the data coming from the connection and is com-
pared to number 49 with corresponds to the ASCII code for
the ’1’ key.

Of course, Tom might have implemented this example in an Different solutions
easier way by directly connecting the outputs from the con-
ditionals to the appropriate inputs of the slide controllers,
namely “Current Slide” and “Prev. Slide”. But then, he
wouldn’t have been able to directly address the slide num-
bers what could be interesting for future extensions of the
composition.

Tom tries out his composition by pressing the defined keys Testing with events
and sees that with each key press, two events (one for each
controller) are posted to the Event Heap and that the field
for the slide numbers are set correctly. Now he launches the

100 6 Extending Quartz Composer as the Patch Panel GUI

Figure 6.11: One possible solution for the scenario described in section 6.4.3.

presentations on both machines and practices his talk.

This example already illustrates that the already built-inBuilt-in patches
patches provided by Quartz Composer can also be used for
the Patch Panel. Different solutions are always possible to
a design problem. With the Patch Panel GUI, they can now
quickly be implemented.

The described alternative could directly be implemented byQuickly
implementation of
alternatives

simply reconnecting the different patches. The controlling
keys could also have been changed by changing the condi-
tional.

Once the proxies are configured and running no compi-Reconfiguration at
runtime lation of the composition or restart of any application is

needed. All functionality that is to be tested is specified
via the Patch Panel. The only exception raises when prox-
ies should change the event ID they listen to; in that case
they have to be restarted which should not be a big issue
since the Proxy Manager supports this quick alternation.

6.5 Implemented examples 101

EXCHANGING CONTROLLING COMPONENTS:
In the latest generation of Apple Powerbooks a sudden
motion sensor (SMS) is integrated. Basically, this sensor
is an accelerometer that provides three values for possi-
ble accelerations in each direction. A proxy was written
that is capable of reading out the detected values. With
conditional patches, bounds for the values correspond-
ing to the degree of tilting in y-direction can be specified
that also act as triggers. The exchange of the input de-
vice simply consists in selecting the “PowerbookTiltSen-
sor” patch and attaching its output ports to the existing
or new conditionals.
A Phidgets Interface Kit or RFID tag reader could also
be taken as input devices; Different kinds of sensors are
then attached to the Interface Kit and the mappings are
adjusted at runtime. The same principle applies to the
tag reader.

6.5 Implemented examples

In this section, some implemented examples are presented Only descriptions of
mappingsto provide a feel for the use of the Patch Panel GUI. Since

the collaboration of the Proxy Manager, the Event Logger
and the Patch Panel GUI were described in the preceding
example the following descriptions only refer to the map-
pings specified inside the Patch Panel GUI. The configu-
ration principle of the proxies posting or registering for
events is always the same throughout all the examples.

The scenarios were partially developed for conference sub- Rebuilding scenarios
from literauremissions (cf. Ballagas et al. [2006a] and Ballagas et al.

[2006b] and refer to prototyping scenarios for mobile phone
interactions described by Harrison et al. [1998] and Schmidt
et al. [1999].

Since there was a lot of cooperation with Memon [2006], ex- Mobile phone
scenariosamples from this field were often taken. Other prototyping

scenarios were used in the user study presented in chapter
7 where they are described in detail.

102 6 Extending Quartz Composer as the Patch Panel GUI

6.5.1 Typing on mobile phones

In the scope of the iStuffMobile project (cf. Memon [2006])Proxies for mobile
phones a software proxy was created that listens for key presses

inside a text window. As soon as character sequences are
entered, an event containing the code for each character is
sent to the Event Heap. On the Patch Panel side, a “Char-
acterGenerator” patch listens for events of that type. With
the help of the “MobilePhoneController” patch, events that
can be interpreted by a software proxy also created with
the istuffMobile project are posted to the Event Heap. The
software proxy sends - based on the event received - ap-
propriate commands to the mobile phone via a bluetooth
connection. So, for example, a type-to-write scenario can
be realized when the phone runs a text or short message
service application. Figure 6.12 shows the according Patch
Panel mapping.

Figure 6.12: A patch that receives events sent from a proxy
that receives ASCII codes from the connected keyboard is
linked to a consumer patch that sends events to control a
mobile phone.

6.5 Implemented examples 103

OUTLOOK – SPEECH RECOGNITION ON THE MOBILE

PHONE:
This scenario can be augmented with the iSpeech applica-
tion. This dictation software can be trained and ran in the
background in such a way that recognized words are di-
rectly typed into the textfield. The rest of the composition
stays the same. This example also shows how different
scenarios can easily implemented by partial changes.

A SmartIts sensor board was attached to a mobile phone. Attached SmarIts
The sensor data is sent to Event Heap via a proxy and pro-
cessed with a corresponding patch inside the Patch Panel.
With the help of Java scripts and conditionals it is possible
to implement the tilt-to-scroll and the smart profile changer
scenario described by Harrison et al. [1998] and Schmidt
et al. [1999].

6.5.2 Tilt-to-scroll

Based on accelerometer data received from a SmartIts Sen- Menu scrolling
sor and a touch sensor attached to a mobile phone, menu
scrolling should be activated whenever the phone is tilted
to a certain degree and squeezed (the touch sensor is
pressed). The degree of tilting determines the scrolling
speed. The working mapping as well as the accompanying
Java script are depicted in figure 6.13. The “Multiplexer”
patch holds the ASCII codes corresponding to the scrolling
keys of the mobile phone. The appropriate ASCII code is
selected depending on the output of the java script. The
“Rate” patch controls the sending of a key code to the mo-
bile phone. That way, the scrolling speed can be influenced.
The code for the java script is shown in figure 6.14

6.5.3 Smart profile changer

SmartIts sensor boards are also capable of detecting the de- Situation-aware
profile changinggree of ambient light. With certain thresholds it can be de-

termined whether the phone is inside a suitcase (dark en-
vironment) or in a room. If the data from the touch sensor

104 6 Extending Quartz Composer as the Patch Panel GUI

Figure 6.13: The tilt-to-scroll realization with the Patch Panel GUI.

is also taken into account, a change-profile-scenario can be
implemented. The assumptions are that in a dark environ-
ment the phone should turn off (e.g. at night) and when
enough ambient light is detected, it is checked whether the
phone is held in hand or untouched (e.g. lying on the ta-
ble). This test is performed with the help of the touch sen-
sor. When the phone is held, it should only vibrate whereas
it should ring when it is not touched.

The results of the checks are passed to the consumer patch.Numbered profiles
Numbers determine what command is sent to the Event
Heap and what profile is to be activated in the mobile
phone. The different profiles are setup on the mobile phone
beforehand.

This scenario could also have been realized with aAlternative: Java
script “JavaScript” patch that yields out a certain number for the

“Profile #”input of the “MobilePhoneController” patch but
for this example, an alternative is discussed that replaces
the JavaScript with several numerical and boolean condi-
tionals.

Figure 6.15 shows the complete composition that takes lightAlternative
composition and force values from a SmartIts sensor board. Inside a

macro patch whose detailed structure is shown in the lower
part of the same figure, it is determined which one of the
four possibilities (dark and touched / dark and not touched
/ light and touched / light and not touched) is true depend-
ing on the sensor input.

“Math” patches for each boolean check inside the macroCalculation of profile
number patch calculates the number of the condition (1-4) that is

6.5 Implemented examples 105

Figure 6.14: The Java script to check the degree of tilting
and the values sent out by the force sensor on the SmartIts
sensor board.

106 6 Extending Quartz Composer as the Patch Panel GUI

Figure 6.15: Light and force values are read from the SmartIts sensor board. Inside
the“JavaScript” patch the thresholds are specified and a profile number is set a t
the output. The patch that controls a mobile phone sends and event containing the
command for changing to the specified profile.

true. The “Math” patch at the top level of the composition
takes the four possible outputs and bundles them to one
that is passed to a “Multiplexer” patch. They now have the
function of the selector for the preset inputs of the multi-
plexer. Each set input corresponds to a profile number on
the mobile phone. Therefore, the connection to the corre-
sponding input of the “MobilePhoneController” patch can
be drawn.

6.6 Discussion 107

PORTING TO OTHER PLATFORMS:
It is important to see that this scenario can be imple-
mented on any phone for which a proxy can be written.
The Event Heap structure and the Patch Panel do not care
about hardware specifications, they only pass informa-
tion, not data. With that concept already stated in the in-
troductory chapters, the iStuff framework and especially
the Patch Panel stay device independent.

6.6 Discussion

The initial idea to provide a graphical user interface for the Extension of initial
goalsPatch Panel was extended during the development of this

thesis. When it was found out that Quartz Composer could
arbitrarily be extended in form of custom patches, this new
direction was followed. Some examples of prototyping sce-
narios were shown at the end of this chapter. Making use of
the hierarchy mechanism that is provided by macro patches
larger scenarios like interactive room scenarios as they are
described e.g. by Ballagas et al. [2004] and Humble et al.
[2004] are also imaginable.

By grouping a certain setup in a macro patch representing Interactive room
scenariosone specific room scenario, several scenarios in one large

composition could be defined. The enabling ports of a
macro patch (that has to include a consumer patch) would
be published such that the single scenarios could be acti-
vated or deactivated at runtime.

During the development phase it also became clear that Separate
applicationssome features like managing different proxies or the ex-

amination of events posted to the Event Heap had to re-
main external tools. That makes it easier to launch and
configure proxies running on different machines. Event
checking and debugging can also be performed on differ-
ent machines and even be distributed to different persons
that only examine certain types of events. The division into
different applications mirrors the modular concept of the
whole iStuff project and leaves open spaces for separate im-
provements in each field.

108 6 Extending Quartz Composer as the Patch Panel GUI

The development in the scope of this thesis has ended soTo follow: A user
study far and the results have to be evaluated. For this purpose,

the following chapter presents a user study in which the
participants were given different design tasks. The results
should justify the design decision taken during this work.

109

Chapter 7

Evaluation

The development of an extensible graphical user interface Thesis goals were
achievedfor the Patch Panel in the scope of this work has been fin-

ished. Additional tools like the Proxy Manger and a couple
of custom patches have been added to the whole prototyp-
ing suite in order to facilitate the setup and configuration of
the iStuff components. The already existing Event Logger
has been emphasized as another important prototyping as-
sistance. It was stated that the collaboration of all the pre-
sented tools makes the iStuff toolkit powerful in terms of
rapid prototyping. The extensibility of each tool as well as
the components of the toolkit was shown.

Following the DIA-cycle introduced in chapter 1, the cur- Application of the
DIA-cyclerently presented tools have been developed.

Several design iterations were undergone, starting with a Design iteration
collection of concepts and ideas, going over several iter-
ations and evaluations of paper prototypes together with
storyboards. After the concepts and design strategy were
cleared, first programming efforts were made.

Now it is time again to make a step towards the analysis User study
part of the DIA-cycle in form of a user study. The user test
setup and the execution of the tests are described in detail
in the first sections as well as the design tasks the groups
were confronted with in order to test the prototyping tools.
At the end of this chapter the results of the evaluation are

110 7 Evaluation

discussed and a conclusion is drawn.

7.1 Preparations for the user evaluation

The initial aim of this work has been reached: A graphicalHypotheses for the
evaluation user interface for the Patch Panel was created that is arbi-

trarily extensible. The hypotheses made for the user study
were derived from comparing the Patch Panel GUI versus
the scripting language used before this work started:

1. The Patch Panel GUI allows faster derivation of prototyp-
ing results than the scripting approach

2. The Patch Panel GUI encourages more design iterations
and refinement of setups during the prototyping process
than the scripting approach

3. The Patch Panel GUI assists the prototyping process by
providing prebuilt atomic functionalities in form of already
built-in patches whereas the scripting language does not
provide a library of different components with different
functionalities.

7.1.1 Test group

The initial question: “Who are the users?” was always an-Conceptual
understanding of the
technique

swered throughout this thesis: Designers who are familiar
with the handling of software and have a conceptual under-
standing of prototyping in ubiquitous environments. They
do not necessarily need insight into the hardware details of
each part because the iStuff toolkit abstracts from that issue.
General logical and numerical concepts, however, should
be known such that the transformations between the map-
pings of events can successfully be specified.

To suit this user group it was decided to ask 16 graduateComputer-science
students computer-science students to take part in the user study.

On average, the students were in the eighth semester and

7.1 Preparations for the user evaluation 111

most of them attended lectures about the design of interac-
tive systems offered by the department and so were famil-
iar with the concepts of prototyping and iterative design.
Since covered partially by the lectures, they were already
introduced to the Event Heap communication mechanism.
Most of the participants had some basic knowledge about
the Quartz Composer application but only two of them
judged themselves to be familiar with it.

7.1.2 Setup

The study was performed in two parts with eight partic- Two test runs with
eight persons eachipants in each one. Teams consisting of two persons were

built. Each team was asked to prototype four design scenar-
ios, each employing different kinds of iStuff components.
The general test setup is visualized in figure 7.1 from which
it can be seen that each team worked on a single Apple
Macintosh G5 workstation.

Communication between the different teams was not per- No communication
between teamsmitted in order to avoid learning effects. At the other end

of the room, two more G5 workstations were running that
were capable of showing two identical Powerpoint presen-
tations, needed for scenario 1 (cf. section 7.1.3). All ma-
chines were interconnected via ethernet, which also meant
that the testers needed to pay attention to connect only to
their local Event Heap.

7.1.3 Design scenarios

Four design problems each making use of different iStuff Design challenge
scenariocomponents were motivated by a scenario description; the

participants should imagine that they were working for a
company designing hardware and software applications
that process input from devices like sensors or mobile
phones and perform certain operations depending on the
input.

One day, their advisor enters their office and confronts Exploration of new
conceptthem with different design problems to which they should

112 7 Evaluation

Figure 7.1: The setup for the usertest: Four G5 workstations where one scenario
can be prototyped. The participants (yellow circles) are split up into two of two.
The same presentation run on the two machines that are separated.

find a solution. It was also to be found out whether the
concepts would contain benefits or if they are not realiz-
able. This exploration should be performed with the iStuff
prototyping suite available at the company. Appendix B
provides the complete scenario descriptions as they were
presented to the participants. In the following, the scenar-
ios are shortly described.

7.1 Preparations for the user evaluation 113

Scenario 1: Controlling a multi-screen presentation with
a mobile phone

Like in section 6.4.3, a mobile phone should be used in or- A mobile phone
controls two
presentations

der to control two presentations running on different ma-
chines in the environment. One presentation is showing the
current slide whereas the other one displays the preceding
one.

This scenario should emphasize the aspect of prototyping Prototyping in a
ubicomp
environment

in ubiquitous environments in which the components are
connected via the network and - in case of the mobile phone
- Bluetooth. That means that the interaction takes place in
a distributed manner.

Scenario 2: Implement a tilt-to-scroll prototype

According to the example presented in section 6.5.2, a mo- Tilt-to-scroll
bile phone is equipped with a SmartIts sensor board. A new
scrolling mechanism is to be prototyped that activates the
scrolling on the mobile phone’s menus when a force sen-
sor is pressed and the device is tilted upwards and down-
wards, respectively. The degree of tilting determines the
scrolling speed.

Scenario 3: New concepts for a music player

A new music player device should be prototyped that intro- Prototyping a new
music playerduces new kinds of sensors like touch, rotation, light and

force sensors. A software proxy that controls the iTunes
application on the local machine was provided in order to
mimic the hardware music player. The participants could
choose among several Phidgets sensors that were either
connected directly via USB or indirectly via the Phidgets
Interface Kit.

114 7 Evaluation

Scenario 4: Motor control based on sensor data

This scenario was motivated by a situation in sailingAutomatic balance
sports where an autonomous motors with a counter weight
should keep the boat in balance as soon as the boat tilted
above a certain threshold. The motor was simulated by a
Phidgets Servo Motor whose controller was directly con-
nected to the local machine via USB. Phidgets sensors as
well as a SmartIts sensor board provided the data. The
participants should decide what kinds of sensors were best
suited to simulate the boat tilting.

7.1.4 Performance

This section describes the performance of the user test inPerformance in two
runs details. As already mentioned, the 16 participants were

split up to groups of eight that performed the tests sepa-
rately.

First run

The first group invited attended a 30 minutes introduction30 minutes
introduction on the iStuff project together with the basic functionality

of the Proxy Manger application, the Event Logger and
the Patch Panel GUI including the original functionality of
Quartz Composer.

After the introduction, each team was given a different sce-30 minutes time slots
nario it should try to implement as far as possible in a 30
minutes time slot. After that time the results were saved at
the current states and the groups changed the workstations
with their neighbors sitting behind them. Figure 7.2 shows
the changing strategy for the complete test scenario.

During another 30 minute time window, the participantsIntroduction of
second approach were given a short break after which the scripting language

for the Patch Panel was introduced and two examples were
completed under admission in order to clarify the usage.

7.1 Preparations for the user evaluation 115

Figure 7.2: After the first 30 minutes, the workstations of the teams sitting back
to back were changed. Then, after the introduction of the alternative concept, the
workstations not yet used were taken. The last change was performed after the
third 30 minutes time slot.

The participants were given a second introduction after Two scripting
language scenarioswhich they were asked to change to one scenario they

haven’t worked on so far. Again, after 30 minutes the teams
should try to complete the fourth scenario they had not
touched so far with the same amount of time.

Second run

The second run of the user test introduced the eight new Cancel out learning
effectsparticipants to the iStuff project but presented the Patch

Panel implementations in reversed order such that evalu-
ation results are independent from the order the different
approaches were presented. This change in ordering was
especially designed to cancel out learning effects.

Thus, first the scripting language was presented, two sce- Scripting language
firstnarios should be prototyped and afterwards the Patch

116 7 Evaluation

Panel GUI was explained. The remaining two scenarios
were then prototyped with the latter. Table 7.1 shows the
setup in form of a matrix.

Test Run #1
Group A B C D

Patch Panel GUI Scenario 1 Scenario 3 Scenario 2 Scenario 4
Patch Panel GUI Scenario 2 Scenario 4 Scenario 1 Scenario 3

Scripting Language Scenario 3 Scenario 1 Scenario 4 Scenario 2
Scriptiing Language Scenario 4 Scenario 2 Scenario 3 Scenario 1

Test Run # 2
Group E F G H

Scripting Language Scenario 1 Scenario 3 Scenario 2 Scenario 4
Scripting Language Scenario 2 Scenario 4 Scenario 1 Scenario 3

Patch Panel GUI Scenario 3 Scenario 1 Scenario 4 Scenario 2
Patch Panel GUI Scenario 4 Scenario 2 Scenario 3 Scenario 1

Table 7.1: User test scenario completion matrix.

Asking for feedback

During the whole evaluation it was made clear that it wasDemand for criticism
not the users who were tested but the software they were
working with. With these statements, an agreeable test en-
vironment should be created and criticism on the software
should be encouraged in order to get a lot of feedback also
from comments.

After each test run, the participants filled out a question-Post-evaluation
questionnaire naire that asked about general impressions and the pref-

erences for one of the Patch Panel versions. Their efforts
were rewarded with packets consisting of giveaways like
pens and t-shirts.

7.2 Evaluation results

During the evaluation, the time until the subjects had aTime to complete
first version basic (but maybe still faulty) prototype was taken as well

7.2 Evaluation results 117

as the number of iterations they performed in order to
improve the scenario. An iteration was defined as every
change of the prototype from the first basic one. After the
test scenarios, the participants filled out a questionnaire
which can be found in appendix C that mostly presented
Likert-scales about what approach the subjects felt more
comfortable with and which one seemed more promising
for the future. The questionnaire evaluation should only
give suggestions and expose tendencies.

The Patch Panel GUI allows a certain degree of freedom Freedom in design
in terms of building a working solution. As appendix D
discusses in more detail, compositions may vary in their
structure i.e. users can derive different solutions by choos-
ing different patches to complete their tasks. This freedom
in design also shows that the Patch Panel GUI represents
a flexible tool to support rapid prototyping where different
solutions can be built and evaluated.

7.2.1 General results

To present the general result first: More than 90% of the Patch Panel GUI
preferenceparticipants preferred the graphical approach but also pro-

vided some critical thoughts that are presented in section
7.2.3. They were given ten questions that should be judged
by discretely scaled answers that were scored with five as
the best rating and one for the worst one. The remaining
questions should encourage feedback to different aspects
of the Patch Panel GUI.

The questions asking for the development capabilities with Potential in the Patch
Panel GUI conceptthe Patch Panel GUI compared to the scripting approach

and whether the users were able to imagine more scenarios
where ubiquitous devices could be configured like in the
presented way were answered with an average score of 4.5
and 4.2 out of 5, respectively. This suggests the continua-
tion of the Patch Panel GUI development in future.

The data flow metaphor usefulness was scored with an av- Understandable
metaphorerage of 3.9 out of 5 which justifies the applicability of this

metaphor for the event passing concept of the iStuff toolkit
although the concepts should be explained in a longer ses-

118 7 Evaluation

sion than done for the user study.

An average score of 3.2 out of 5 for the question if theBuilt-in QC patches
were used already built-in Quartz Composer patches were used a

lot supports the decision to extend Quartz Composer and
therefore benefit from already included functionality.

Four points for the question whether the concepts of theUnderstandable
introduction iStuff project were understandable shows that the proven

concept of the iStuff project was well explained in the scope
of the user test and the participants did not struggle with
the overall understanding.

The graphical approach in form of the Patch Panel GUI wasFuture extensibility
felt as being extensible in the future which is proven by
a score of 4.4. This result encourages the extension of the
iStuff prototyping suite and strengthens the decision that
was made to develop a software framework that makes the
integration of new components very easy (cf. section 6.1).

With a score of 4.6, the graphical approach was preferredNeed for graphical
support over the scripting language that achieved an average score

of 1.6. These results definitely show the need for graphical
support for the Patch Panel and moreover that the current
implementation can successfully be applied.

The scripting approach was felt as being more powerfulPowerful FSM
support with an average score of 3.1. This justifies the need for

state machine support in future versions of the Patch Panel
GUI as well as several other custom patches that support
the prototyping process. The inner structure of the passed
events should also be conveyed in a better way. In follow-
ing iterations of the Patch Panel GUI existing features will
be improved and new ones added.

More than 90% expressed to be more encouraged to un-More design
iterations dergo more iterations with their design using the graphical

approach. It seems from this result that the general willing-
ness to refine designs is shown.

7.2 Evaluation results 119

7.2.2 Statistics

In this section, the statistic results of the user test should Measurements
be presented. In table 7.2 the completion times for a first
prototype and the number of iterations counting since this
version are summarized. Almost every group managed to
get to a first prototype with the Patch Panel GUI whereas
the scripting approach often was too hard for them, prob-
ably because the participants were confronted with it for
the very first time. Unfortunately, in the tilt-to-scroll sce-
nario only one group managed to implement a first proto-
type with the GUI but others were on the right track, too.

Run #1 Scenario 1 Scenario 2 Scenario 3 Scenario 4
PP GUI

First iteration 15 min. 13 min. 15 min. 30 min.
Number of iterations 5 4 3 1

change of workstations
First iteration 20 min. - 12 min. 19 min.

Number of iterations 5 - 3 1
PP Script

First iteration - - 22 min. -
Number of iterations - - 2 -

change of workstations
First iteration - 20 min. - -

Number of iterations 2 - - -
Run #2 Scenario 1 Scenario 2 Scenario 3 Scenario 4

PP Script
First iteration - - 25 min. -

Number of iterations - - 2 -

change of workstations
First iteration 15 min. - - 20 min.

Number of iterations 5 - - 4
PP GUI

First iteration 19 min. - 13 min. 11 min.
Number of iterations 4 - 2 2

change of workstations
First iteration 10 min. - 30 min. 14 min.

Number of iterations 5 - 2 3

Table 7.2: Statistic results of the user tests.

120 7 Evaluation

Statistical significance

The measured results were checked for statistical signifi-T-test
cance with a t-test for unpaired groups. Since there were
concrete measurements for time and number of iterations
as well as two conditions, namely the Patch Panel GUI ver-
sus the Patch Panel scripting language, the test method is
appropriate. Whenever no solution for a scenario could be
found, a value of 31 minutes was chosen as indicator that
the time was exceeded. Figures 7.3 and 7.4, respectively,
show box plots of the collected results.

The box plots show that times needed for the completion ofBox plots
a first prototype were always shorter when using the Patch
Panel GUI. Also, the number of design iterations lay above
the results of the Patch Panel scripting language.

To show the statistical significance of the results, all sce-Combining scenarios
narios were combined and the overall prototyping times as
well as the total numbers of iterations for each approach
(Patch Panel GUI vs. Patch Panel Script) were compared. A
box plot of the comparison is shown in figure 7.5.

Since the results are similar to a gaussian distribution, a t-P-thresholds
test for unpaired groups was applied. The p-threshold to
indicate the statistical significance was set to (p < 0.01).
The t-test yielded p-thresholds of 0.1% for the time mea-
surement and 0.7% for the number of iterations which
proves the statistical significance of the evaluation results
and justifies the drawn conclusions.

Drawn results

It can be seen from the results is that for users who areUseful GUI support
confronted with the iStuff toolkit for the very first time,
the general concept was understandable. The prototyp-
ing process, however, could only really be supported with
the graphical user interface. The learning rate with the
Quartz Composer modification was much higher whereas
the scripting language requires a long introductory phase.
Thus, in terms of enabling developers to quickly set up a

7.2 Evaluation results 121

Figure 7.3: Box plots showing the results for the Patch
Panel GUI.

122 7 Evaluation

Figure 7.4: Box plots showing the results for the Patch
Panel scripting language.

7.2 Evaluation results 123

Figure 7.5: The results of the four scenarios were combined
and the results plotted for each approach.

124 7 Evaluation

scenario, the Patch Panel GUI is the tool of choice.

Concerning the number of iterations, it can be seen that inBetter refinements
with GUI all cases the number of iterations is higher with the Patch

Panel GUI which is a benefit for the design; with each itera-
tion, improvements are incorporated. One might also argue
that this number would have increased if the time window
had been larger. In some situations the participants stated
that they did not want to refine their designs any further.

7.2.3 Additional feedback

The participants were also given a chance to freely expressAdditional comments
their criticism of the system, tell what features or patches
were missing or what should be changed in future version.

It came out, that the scripting approach was judged as im-Scripting approach
was felt as being
immature

mature although it has been used for a long time inside the
iStuff project. This point was stated because the users had
to apply a lot of workarounds to achieve a working solu-
tion. The results demonstrates the difficulty in creating a
custom scripting language. Although it was refined and
tested for over two years, the testers were still able to find
new bugs.

Another desired feature was that the different applicationsDemand for more
incorporation should be presented in a more condensed or grouped way.

The problem with this is that not everything should be inte-
grated into one large application (cf. section 4 for a detailed
explanation) because the problem addressing the configu-
ration of proxies should be part of a separate application
like the Proxy Manager. The Patch Panel is not part of that.
Maybe the Event Logger application could be melted with
the Proxy Manager such that events sent by the configured
proxies could directly be analyzed.

A new patch like a “Toggle Switch” was demanded thatIdeas for new
patches alternatively puts out a value depending on the input and

alternates between them with each trigger. This demand
demonstrates a need for state machine support, too.

Another desired patch should send out a string wheneverStrings on trigger

7.3 Summary of the results 125

a certain integer or boolean input was received.

Although this can be created with the help of different Recreation within
Quartz Composerpatches in Quartz Composer maybe a patch that directly

implements that issue would increase the productivity. It is
to be analyzed how often such a design situation will occur
in the future.

It was also asked for the integration of more sensor types. More sensors
That should not be a problem for future versions as pointed
out in section 6.1 where the extensible framework is dis-
cussed.

7.3 Summary of the results

The user evaluation justified the introduction of a graphical Successful Patch
Panel GUI integrationuser interface for the Patch Panel as it encourages designers

to try out several design strategies and refine them in more
design iterations. From the statistical results presented in
section 7.2.2 it can be derived that the second hypothesis
(cf. section 7.1) is proven. The iStuff concept is much easier
to apply with the graphical assistance given by the Patch
Panel GUI data-flow metaphor.

For the users, a composition was easy to create and under- Quick results
stand. After a much shorter orientation time, first results
with the GUI were gained. It can be argued that with more
design time, the participants would have been able to cre-
ate more precise and elaborated designs than they already
had. However, the concept of the graphical approach was
widely accepted by over 90% of the participants and pre-
ferred over the original scripting approach. With this result,
the first hypothesis (cf. section 7.1) is proven, too.

Looking at the evaluation of the user feedback, it can be Reusable
componentsseen that the participants also used built-in patches that

were already provided by the original Quartz Composer
application in order to derive solutions. The built-in func-
tionalities offered assistance to the design tasks in contrast
to the scripting language that does not offer reusable com-
ponents. These results justify the third hypothesis (cf. sec-

126 7 Evaluation

tion 7.1).

When the capabilities of the scripting language comparedIntegration of FSM
support to those of the Patch Panel GUI were discussed the desire

for state machine support for the GUI became aloud. As
already outlined during this work, state machine support
is definitely scheduled for future work. The user feedback
strengthens this decision.

The Patch Panel GUI was realized together with other pro-Feedback collected
for future work totyping assistances and widely accepted by users. The

feedback has to be incorporated into ideas for future work.
Some of them are described in more detail in the next chap-
ter.

127

Chapter 8

Summary and future
work

“It [The Patch Panel GUI] seems to be a very
promising approach. Keep it up!”

—Comment from one of the user test
questionnaires.

The last chapter of this work summarizes the goals of the Achieved goals and
scheduled projectsthesis and presents the derived solutions. The last section

describes concepts and ideas that could not be realized in
the available time. Therefore an outlook and suggestions
for future work and extensions of the iStuff project, es-
pecially the graphical support for rapid prototyping, are
given.

8.1 Summary and contributions

The aim of this work was to augment the existing iStuff Provision of
graphical support for
the Patch Panel

prototyping suite with a graphical user interface that sup-
ported the specification of event mappings inside the Patch
Panel intermediary service. Before this work was started,
these specifications could only be configured with a hard
to learn use scripting language. A basic GUI allowed the

128 8 Summary and future work

formulation of very simple, predefined mappings and the
import of working scripts. This concept did not suit well
into the iStuff concept as the iStuff project wants to support
the rapid prototyping process in ubiquitous environments.
Concerning the distributed software architecture as well as
the way hardware components are integrated into the iStuff
framework, this goal has been accomplished. However, a
way to easily configure the components and quickly change
the interaction between the components was still missing.

With the Patch Panel GUI, the Proxy Manager applicationStable foundation for
future extensions and the Event Logger, capabilities for enabling rapid proto-

typing of new compositions and interaction techniques are
provided. The prototyping suite developed in this thesis
represents a stable foundation for future extensions.

The Patch Panel GUI, implemented as an extension of theLive modification of
the setup Apple Quartz Composer application, allows the specifi-

cation and modification of new and existing mappings at
runtime without the need of recompiling or restarting the
setup. Even the connection management can be altered
without requiring any application to be restarted. The
choice of Quartz Composer was made on the one hand be-
cause it already provided much of the desired functionality
for the Patch Panel GUI in terms of graphical representa-
tion issues. On the other hand it gains more and more pop-
ularity inside the design community and other groups also
started to develop their own extensions - although those are
centered around different topics. But this trend indicates
that the Quartz Composer application will remain under
constant development and improvement. This can only be
beneficial for future versions of the Patch Panel GUI.

The iStuff developed prototyping suit is flexible enoughMimic existing
scenarios not only to easily integrate new hardware parts but also

to recreate scenarios provided by other research groups.
Although completely different hardware and design con-
cepts were used, similar components of the iStuff toolkit
can be combined in such a way other implementations can
be mimicked without having to know details about the
original hard- and software components. The tilt-to-scroll-
scenario as well as the profile-change-scenario developed
for mobile phone applications are two examples for this (cf.
sections 6.5.2 and 6.5.3).

8.1 Summary and contributions 129

In order to derive the solution presented a survey on re- A survey on related
work was performedlated work was performed in order to gather useful con-

cepts of graphical representations of mappings and inter-
action techniques implemented in other applications.

From that survey, rough design patterns could be extracted Rough design
patterns were
extracted

and incorporated into a feature list from which early pa-
per prototypes were developed and evaluated. Chosen sto-
ryboards showing possible paths of interaction were pre-
sented in this work. From the whole set of paper proto-
types, a virtual image of the application that was to be
developed could be created. After several evaluations of
the paper prototypes the resulting conceptual user interface
strongly reminded of the Quartz Composer application.

As a consequence, Quartz Composer was examined in de- Detailed examination
of Quartz Composertail and ways to write custom extensions for the applica-

tion were found. After much work that tried to find correct
ways of integrating new components (since Quartz Com-
poser is completely undocumented), a subset of iStuff com-
ponents could be integrated in order to show that Quartz
Composer is well suited as a graphical user interface for
the Patch Panel.

After first successes, a todo-list was created that summa- Creation of a feature
listrized the features that still had to be integrated. The result

consisted of the Quartz Composer extension as the Patch
Panel GUI together with custom patches that help in the
prototyping process. The Proxy Manager application al-
lows fast configuration of different proxies. The use of the
Event Logger provided by the iROS package give users a
chance to examine the events posted to the Event Heap.

The work was evaluated by a user test session in which Evaluation with user
testsseveral design tasks had to be accomplished. The evalu-

ation setup allowed a comparison of the original scripting
language and the newly created graphical support for the
Patch Panel. Its results were justified with a t-test that en-
sured the statistical significance of the results. The strong
preferences lay at the Patch Panel GUI and more tasks
could be accomplished with it. The graphical approach also
encouraged more design iterations.

Feedback from the user tests was collected with question- User feedback for
future work

130 8 Summary and future work

naires where one part of the questions should be answered
on a Likert-scale and the other part gave the opportunity of
expressing custom ideas and criticism. They are presented
in this work as well as the statistical results. The comments
and ideas were also incorporated into future work addi-
tionally to the ideas that came up during the development
process of this work.

8.2 Future work

Some tasks that would also have fit into the scope of thisTime restriction
thesis had to be left out because the development time
was consumed and therefore some parts could not be com-
pleted. Thus, instead of hacking together a lot of new fea-
tures that might work, it was decided to leave them open
for future work and to implement current features in a sta-
ble and reliable way. Since a flexible software framework
is provided by this work, additional ideas should be imple-
mentable in a fast way.

Features that are thought of at the moment are ways to in-Planned FSM
support tegrate state machine development in form of new patches

into Quartz Composer. They play an important role in the
scripting approach to configure the Patch Panel (cf. Bal-
lagas et al. [2004]). There are applications where state ma-
chines become a very useful tool to specify certain function-
alities that require state transitions. This question should be
explored in more detail in the future.

Another idea is to automatically process scripts written inAutomatic script
import the scripting language for the Patch Panel (cf. Yu [2006]). It

does not seem realistic to expect the built of a completely
functional Quartz Composer composition but maybe parts
of the scripts could be processed in such a way that state
machine patches are configured by them.

The plotter patch as well as other visualization assistanceVisualization aids
have been scheduled. While this work is reviewed, these
patches are already under development but unfortunately
could not be completed until the due date of the thesis.

8.2 Future work 131

Mechanism that integrate the Event Logger into the Proxy Event Logger
integrationManager or also into the Patch Panel GUI are considered at

the moment. The standalone version, however, should also
be kept for independent and distributed event debugging.

The evaluation turned out some new ideas for patches that Composite patches
could on the one hand be rebuilt with original Quartz Com-
poser components but, on the other hand, might be a valu-
able help for the prototyping process by summarizing often
used functionalities in one module.

The software framework provided with this thesis facili- Easy integration of
new componentstates the future integration of existing and upcoming iStuff

components. Like the proxy strategy applied for the Event
Heap connection management, the framework supports
the easy incorporation of new components. As an example,
new sensor devices or software proxies could be named.

Additional features like those described in chapters 4 and 5 Scheduled features
are encouraged to be implemented in the future. Hopefully,
Apple will give developers more insight into the Quartz
Composer framework such that custom extension become
more powerful in the future.

Finally, it is to be stated that the iStuff project seems to be on Foundation for future
developmentthe right track for supporting the rapid prototyping process

in ubiquitous environments. The underlying architecture,
the integration concept for new components and the newly
added graphical support should provide a good founda-
tion for the future development.

133

Appendix A

Storyboards and paper
prototypes for the Patch
Panel GUI

134 A Storyboards and paper prototypes for the Patch Panel GUI

Fi
gu

re
A

.1
:T

he
or

ig
in

al
st

or
yb

oa
rd

cr
ea

te
d

fo
r

th
e

sc
en

ar
io

de
sc

ri
be

d
in

se
ct

io
n

4.
2.

2
in

a
la

rg
er

vi
ew

.I
nt

er
ac

ti
on

st
ep

s
w

er
e

m
an

ua
lly

w
ri

tt
en

in
to

th
e

st
or

yb
oa

rd
.

135

Figure A.2: This figure show two final result of two prototyping scenarios realized
as a paper prototype for the Patch Panel GUI.

136 A Storyboards and paper prototypes for the Patch Panel GUI

Figure A.3: Two more scenario drawings showing a working scenario created with
the paper prototype version of the Patch Panel GUI.

137

Appendix B

Evaluation and scenario
descriptions

138 B Evaluation and scenario descriptions

User tests for the Patch Panel GUI and the Patch Panel Script
language

Welcome to the user study of the iStuff project at the Media Computing Group and
thank you for your participation. We are happy to give you an introduction into our
latest development in the field of supporting the rapid prototyping process for
ubiquitous environments: A new graphical interface for the Patch Panel and a
command line wrapper responsible to facilitate the management of iStuff proxies, the
Proxy Manager.

0. Important note
Important note on the test in that you take part for us: It is not you to be judged or
evaluated; it is our design of the software we hand to you! So do not be afraid to
criticize the development environment.
This lesson should include the benefit for you that you become familiar with the
development suite and for us that we can justify a user evaluation and incorporate
today’s results of a user evaluation into our work.

The tasks you perform are recorded in terms of a screen capture and audio recording.
Please do not feel offended by these techniques and just try to ignore them. We will
not attempt to identify or judge your behavior with these recordings. They only
represent a post-evaluation aid for us to see how you have derived a certain solution.
You are not filmed explicitly. The iSight vision is turned off!

Figure B.1: Page 1 of description of the evaluation handed out to the participants -
Introduction

139

1. Motivation
In order to give a motivation for the following scenarios we would like you to recreate
certain design tasks. Please let your fantasy go a little beyond what you directly see
and the context in which you perform your tasks.

Ithat you are part of a design team in a company that wants to produce a new type of
mobile phones. The new design should include different sensors and explore new
ways of interaction with the phone. Another research field lies in security systems as
well as in controlling robotic assistance systems.

One week, your advisor enters your office and presents you different scenarios and
asks you to evaluate them. The scenarios are presented in written form as you can see
below. You take the papers he gives you and start thinking about different
configurations and what types of input and output devices you will need.
With the help of the iStuff prototyping suite you want to build a first hardware
prototype that can be shown to different test users. The results of these user studies
should justify your current design or help to discover weaknesses or strengths that
influence future designs. You know that your prototypes will look a little awkward
but it is clear to you and also to your test users that the functionality matters, not the
look of the device. If the interaction is well designed, a later product that integrates all
the tested capabilities can be derived from that early design.

So, just go ahead and explore the possibilities of the Patch Panel and create whatever
you think to be meaningful. And please remember: At that stage there is not right or
wrong design, it has to be found out later. You just want to build something robustly
working.

Figure B.2: Page 2 of description of the evaluation handed out to the participants -
Motivation

140 B Evaluation and scenario descriptions

Scenario 1: Control a multi screen presentation controlled via a mobile phone
and Phidgets.

A presentation software running on two different machines should show the same set
of slides. The screen of the left machine should display the last slide and the one on
the right should show the current slide that is talked about. In order to control the slide
transitions, the use of mouse and keyboard should be avoided. Instead, the
presentations should be controlled via the presenter’s mobile phone keys. An
alternative to this design is the installation of pressure and touch sensors on the floor,
the speaker has to step onto. A light sensor would also be possible.

Discover the event types of the other events through the Event Logger.
And also discover the mobile phone key values by examining the appropriate events
on the Event Logger.

Scenario 2: Tilt to scroll (SmartIts sensor board)

Augment a mobile phone in the following way:
A SmartIts sensor boards is attached to the mobile phone.
When the phone is tilted upwards or downwards and a pressure threshold is crossed,
the menu display should start scrolling in upward direction and downwards,
respectively. Depending on the degree of tilting, the scrolling speed changes. In a first
prototype, it should be differentiated between at least two scrolling speeds.

Figure B.3: Page 3 of description of the evaluation handed out to the participants -
Scenarios 1 and 2

141

Scenario 3: Prototype a new iPod Shuffle using iTunes and Phidgets.

You are asked to build a new iPod Shuffle interface with a new generation of sensors.
You decide to use Phidgets sensors to control the new version of the iPod Shuffle.
As a representation of the music player device, you use the iTunes application coming
with your Mac OS distribution. An iStuff proxy that controls the application is
available. Basic interaction such as Play/Pause, Next/Previous Track and the increase
and decrease of volume are to be implemented in the scope of this scenario.

Scenario 4: Control motor with SmartIts and Phidgets).

An automatic balance control system for boats should be developed. Whenever the
boat is tilting too much to the side, the motor should move a counter weight attached
to it in order to balance it again.

Make use of the SmartIts Accelerometers and the Phidgets Servo Motor Controller for
this scenario. As an extension, you could also make use of other extensions with
Phidgets.

Figure B.4: Page 4 of description of the evaluation handed out to the participants -
Scenarios 3 and 4

143

Appendix C

Post participation
questionnaire

144 C Post participation questionnaire

Post participation questionnaire

1. Would you say that the development capabilities with the Quartz Composer
approach are better than with the script?

I strongly agree I agree Don’t know I disagree I strongly disagree

 () () () () ()

2. Could you imagine more scenarios where ubiquitous devices are connected

and configured in the presented way?
I strongly agree I agree Don’t know I disagree I strongly disagree

 () () () () ()

3. How do you like the data flow metaphor of the Quartz Composer?

It was a strong help It was useful Don’t know It was no help It absolutely made no sense to me
 () () () () ()

4. Would you say that you used lots of the Quartz Composer original patches?
I used them a lot I used them equal to the new one seldom not at all

 () () () () ()

5. The general concept of the iStuff project (Event Heap infrastructure,
distributed exchange of information with events, etc.) was understandable.

I strongly agree I agree Don’t know I disagree I strongly disagree
 () () () () ()

6. How would you judge the future extensibility of the graphical approach?
Very extensible extensible don’t know hardly extensible none at all

 () () () () ()

7. I would prefer the graphical approach over the scripting approach

I strongly agree I agree Don’t know I disagree I strongly disagree
 () () () () ()

8. I would prefer the scripting approach over the graphical approach
I strongly agree I agree Don’t know I disagree I strongly disagree

 () () () () ()

9. Would you say the script approach is more flexible or powerful?
I strongly agree I agree Don’t know I disagree I strongly disagree

 () () () () ()

Figure C.1: Page 1 of the questionnaire handed out to the participants after the user
test

145

10. What approach encourages you to go through many iterations?

Graphical Appraoch (Quartz Composer) Scripting Approach
 () ()

11. What would you like to be changed in future version?

12. What features would you add?

13. What patches were you missing during the prototyping process?

14. Additional comments: (Write whatever you think!)

15. How would you judge your former experience with Quartz Composer

(1 = No at all, 5 = Quartz Composer expert)?

Figure C.2: Page 2 of the questionnaire handed out to the participants after the user
test

147

Appendix D

Discussion of different
implementations of a
user test scenario

Figure D.1 shows four slightly different solutions for the Solutions for
scenario 7.1.3music player scenario described in section 7.1.3.

Solution a makes uses “JavaScript” patches only (cf. fig- Different solutions
ure D.1a) whereas the group that created the second solu-
tion preferred conditionals to specify thresholds for trigger
(cf. figure D.1b). The third solution even went further than
the scenario description (cf. figure D.1c); The sensor inputs
were also used for controlling graphical animations. In the
last solution, the user group wanted to build in a “Math”
patch, too but the time for them ran out in order to extend
their solution.

From that example it can be seen that the groups tried out Exploration and
usage of existing
patches

different ways to complete their tasks. It was also tried to
explore the available patches inside the Patch Panel GUI in
order to augment the solution.
One might argue that with more time for the setup, the im-
plementation probably would have been refined.

148 D Discussion of different implementations of a user test scenario

Figure D.1: The prototyping scenario for a new music player device was imple-
mented in different ways

149

Bibliography

Rafael Ballagas. Patch panel: Distributed i/o management
for ubicomp. UBICOMP Doctoral Colloquium, September
2004.

Rafael Ballagas, Meredith Ringel, Maureen Stone, and Jan
Borchers. istuff: A physical user interface toolkit for
ubiquitous computing environments. In CHI 2003. ACM,
2003.

Rafael Ballagas, Andy Szybalski, and Armando Fox. Patch
panel: Enabling control-flow interoperability in ubicomp
environments. In PerCom 2004 Second IEEE International
Conference on Pervasive Computing and Communications,
Orlando, Florida, USA, March 2004.

Rafael Ballagas, Michael Rohs, Jennifer Sheridan, and Jan-
Borchers. Sweep and point & shoot: Phonecam-based
interactions for large public displays. In CHI ’05: CHI ’05
extended abstracts on Human factors in computing systems,
pages 1200–1203, New York, April 2005. ACM Press.

Rafael Ballagas, Faraz Ahmed Memon, René Reiners, and
Jan Borchers. Rapidly prototyping mobile interaction in
ubiquitous computing environments phone interactions
in ubiquitous computing environments. In Submitted to
Ubicomp 2006, Orange Country, California, USA, April
2006a. Submitted to UBICOMP 2006.

Rafael Ballagas, Faraz Ahmed Memon, René Reiners, and
Jan Borchers. istuff mobile: Prototyping interactions for
mobile phones in interactive spaces. In Proceedings of
PERMID ’06, 2006b. URL http://www.medien.ifi.
lmu.de/permid2006/.

http://www.medien.ifi.lmu.de/permid2006/
http://www.medien.ifi.lmu.de/permid2006/

150 Bibliography

Eric Bergman and Rob Haitani. Designing the palmpilot: A
conversation with rob haitani. In Eric Bergman, editor,
Information Applicances and Beyond. Morgan Kaufmann,
2000.

Jan Borchers. A Pattern Approach to Interaction Design. John
Wiley & Sons, 2001.

Jan Borchers, Rafael Ballagas, and Maureen Stone. istuff:
Searching for the great unified input theory. Ubicomp
2002 Workshop, 2002.

A. Butter and D. Pogue. Piloting Palm: The Inside Story of
Palm, Handspring, and the Birth of the Billion-Dollar Hand-
held Industry. Wiley & Sons, 2002.

W. Buxton. Lexical and pragmatic considerations of input
structures. Computer Graphics, 17(1):31–37, 1983.

S. Card, J. Mackinlay, and G. Robertson. The design space
of input devices. In CHI 1990, pages 117–124, 1990.

Tammara T. A. Combs and Benjamin B. Bederson. Does
zooming improve image browsing? In Proceedings of
the fourth ACM conference on Digital Libraries. ACM Press,
January 1999.

Pierre Dragicevic and Jean-Daniel Fekete. Support for input
adaptability in the icon toolkit. In ICMI’04, State College,
Pennsylvania, USA, October 2004. ACM.

W. Keith Edwards et al. Using speakeasy for ad hoc peer-to-
peer collaboration. In Proceedings of CSCW ’02, November
2002.

Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns. Elements of Reusable Object-
Oriented Software. Addison Wesley, 1995.

Beverly L. Harrison, Kenneth P. Fishkin, Anuj Gujar, Carlos
Mochon, and Roy Want. Squeeze me, hold me, tilt me!
an exploration of manipulative user interfaces. In CHI
”98: Proceedings of the SIGCHI conference on Human factors
in computing systems, pages 17–24, New York, NY, USA,
1998. ACM PRess / Addison-Wesely Publishing Co.

Björn Hartmann, Scott R. Klemmer, Michael Bernstein, and
Nirav Mehta. d.tools: Visually prototyping uis through
statecharts. In UIST ’05, 2005a.

Bibliography 151

Björn Hartmann, Scott R. Klemmer, Michael Bernstein, and
N. Metha. d.tools: Visually prototyping uis through stat-
echarts. In Extended Abstracts of UIST 2005, pages 23–26,
Seattle, WA, October 2005b.

Jan Humble, Andy Crabtree, Terry Hemmings, and
Karl-Petter Åkesson. ”playing with the bits” user-
configuration of ubiquitous domestic environments. In
Proceeding of the 5th International Conference on Ubiquitous
Computing. Springer Verlag, 2003.

Jan Humble et al. Configuring the ubiquitous home. In
Proceedings of the 6th International Conference on the Design
of Cooperative Systems. IO Press, May 2004.

Brad Johanson and Armando Fox. The event heap: A co-
ordination infrastructure for interactive workspaces. In
Proceedings of the 4th IEEE Workshop on Mobile Computer
Systems and Applications (WMCSA-2002), New York, June
2002. Callicoon.

Brad Johanson, Armando Fox, and Terry Winograd. The
interactive workspaces project: Experiences with ubiq-
uitous computing rooms [version no2, 4/11/02]. IEEE
Pervasicce Computing Magazine, 1(3), April-June 2002.

Johnny Lee, Daniel Avrahami, Scott Hudson, Jodi Forl-
izzi, Paul Dietz, and Darren Leigh. The calder toolkit:
Wired and wireless components for rapidly prototyping
interactive devices. In Proceedings of the ACM Symposium
on Designing Interactive Systems (DIS’04), pages 141–146.
ACM, August 2004.

John H. Maloney and Randall B. Smith. Directness and
liveness in the morphic user interface construction envi-
ronment. In UIST 95, pages 14–17, Pittsburgh PA, USA,
November 1995. ACM.

Faraz Ahmed Memon. iStuff Mobile: Rapidly prototyp-
ing novel interaction for mobile phones. Department
of Media Informatics RWTH Aachen, Aachen, Ger-
many, 2006. URL http://www-i10.informatik.
rwth-aachen.de/faraz.html.

Mark W. Newman et al. User interfaces when and where
they are needed: An infrastructure for recombinant cm-
puting. In Proceedings of UIST ’02, October 2002.

http://www-i10.informatik.rwth-aachen.de/faraz.html
http://www-i10.informatik.rwth-aachen.de/faraz.html

152 Bibliography

Jakob Nielsen. Iterative user-interface design. Computer, 26
(11):32–41, 1993.

Harmut Obendorf. The making of the palm pilot -
refelections on a minimal information applicance.
URL asi-www.informatik.uni-hamburg.de/
personen/obendorf/download/2005/pa chi05.
pdf. Submitted to CHI 2005, 2005.

George G. Robertson, Mary P. Czerwinski, and John E.
Churchill. Visualization of mapping between schemas.
In CHI 2005. ACM, 2005.

Albrecht Schmidt, Kofi Asante, Antii Takaluoma, Urpo
Tuomela, Kristof Van Laerhoven, and Walter Van
de Velde. Advanced interaction in context. In HUC ”99:
Proceedings of the 1st international symposium on Handheld
and Ubiquitous Computing, pages 89–101, London, UK,
1999. Springer Verlag.

Timothy Sohn and Anind Dey. icap: Rapid prototyping
of context-aware applications. In CHI 2004 ACM Confer-
ence on Human Factors in Computing Systems. ACM, ACM
Press, October 2003.

K. N. Truong and G.D. Abowd. Inca: A software infrastruc-
ture to facilitate the construction and evolution of ubiqui-
tous capture & access applications. In Proceedings of Sec-
ond International Conference on Pervasive Computing (Per-
vasive 2004), pages 140–157. Springer Verlag, 2004.

K.N. Truong, E.M. Huang, and G.D. Abowd. Camp: A
magnetic poetry interface for end-user programming of
capture applications for the home. In Proceedings of the
6th International Conference on Ubiquitous Computing (Ubi-
comp 2004), Nottingham, UK, 2004.

Douglas K. VanDuyne, James A. Landay, and Jason I. Hong.
The Design of Sites. Addison-Wesley, 2002.

Mark Weiser. The computer for the 21st century. Scientific
American, 265(3):94–104, 1991.

Eugen Hon Wai Yu. Evaluation of Focus Methods in a Ubiqui-
tous Computing Environment. Department of Media Infor-
matics RWTH Aachen, Aachen, Germany, 2006.

asi-www.informatik.uni-hamburg.de/personen/obendorf/download/2005/pa_chi05.pdf
asi-www.informatik.uni-hamburg.de/personen/obendorf/download/2005/pa_chi05.pdf
asi-www.informatik.uni-hamburg.de/personen/obendorf/download/2005/pa_chi05.pdf

153

Index

3D browsing . 50

abstract representatives . 49
Abstraction . 42
ACCORD . 32
Action Script . 31
additional patches . 86

- “Filter” . 87
- “Plotter” . 87
- “Threshold”. .87

Adobe Flash . 3, 31
Adobe Photo Shop . 3
Adobe Reader . 51
analysis . 109
animations . 63
Apple Interface Builder . 3
Apple Keynote . 3
Apple Macintosh. .63
Apple Powerbook . 101
Apple Quartz Composer . 41
Apple’s Interface Builder . 82
architecture . 14
atomic functionalities . 28
atomic information . 12, 16
augmentation . 12

behavior . 12
bending links . 38
Bluetooth . 13, 95
Borland Delphi .3
Borland JBuilder . 3
built-in components . 65

CAMP . 34
clients . 17
color coding . 47
communication . 11
communication infrastructure . 15
composition . 46

154 Index

concepts . 45
connection management . 82, 84
control flow . 12
custom concepts . 51
custom extension . 129
custom hardware . 13
custom names . 52
custom plugins . 81

d.tools . 25
Data Heap . 15
data-driven communication . 12
data-flow metaphor . 7, 29, 48, 66
descriptive abstraction . 12
descriptive character . 16
design community . 63
design iterations . 125
design patterns . 46, 129
design strategies . 125
developers . 12
DIA-cycle . 1, 109
DIA-iteration . 53
drag&drop . 42, 46
dynamic reconfiguration . 17

easy retrieval . 46
Eclipse . 54
evaluation . 129
event . 11, 16

- fields. .16
“Creation Time”. .16
“Event Name” . 16
“Sender ID” . 16
“Time-To-Live” . 16

event debugging . 90
event factory . 52
Event Heap . 11, 12, 15, 84
event ID . 84
Event Logger . 92, 128

feature . 65
field . 84
foundation. .128
framework . 82, 83
future work . 130

graphical support . 7
graphical user interface . 8, 25
graphics engine . 65
GUI prototype . 45

Index 155

hardware prototyping . 3
hierarchical browser . 51
hierarchical ordering . 50
highlighting . 50
horizontal prototype . 5
hypotheses . 110

iButton . 20
iButtons . 13
iCAP . 35
ICon . 28
iconic representation . 52
iCrafter . 15
ID . 52
iDog. .13, 19
illegal connection . 47
implemented examples . 101
implicit conversion. .48
Implicit type-checking . 42
INCA . 34
Incremental search . 43
infrastructure . 12
Input Configurator . 28
inspector view . 68

- “Information” pane . 68
- “Input Parameters” pane . 68
- “Settings” pane . 68

integration principle . 13
interaction flow . 53
interactive devices . 14
interactive environments . 11
interactive room . 14
Interactive Room Operating System . 11
intermediary service . 11
intermediation . 19
iPens . 13
iROS . 11, 14, 52
iSlider . 13
iSpeakers . 20
iStuff components . 12
iStuff modification . 8
iStuff patch . 84
iStuff project . 7, 8, 11, 12
iStuff scenarios . 54
iStuff toolkit . 12
iStuffMobile project . 102
iterative design . 1

jigsaw puzzle metaphor . 32

156 Index

Link bending . 50
liveness . 24, 30, 48

macro patch . 51, 68
magnetic poetry . 34
Map24 . 51
mappings . 11, 20
Max/MSP . 28
Media Computing Group . 8
Microsoft PowerPoint . 3
mobile phone . 95
mobile phone interaction . 5, 12
multiscreen presentation . 94

NIB files . 82

occlusion avoidance .50
overview window . 51

p-threshold . 120
Palm Handheld . 3
paper prototype . 8, 53, 129
patch . 66
Patch Panel . 11, 12, 45
Patch Panel GUI. .46, 54, 63, 81, 128
Patches

- “Display . 88
patches . 41

- “Conditional” . 89
- “Filter” . 77
- “JavaScript” .89
- “Signal”. .88
- “SignalAndHold” . 88

pattern language . 46
patterns . 17
performance . 114
Phidgets . 113

- Interface Kit . 57, 101
- Phidgets Accelerometer . 87
- Phidgets Servo Motor . 114
- RFID tag reader . 101

Photo Mesa . 38, 50
physical prototyping . 25
physical user interfaces . 12
plotter . 53, 130
prototyping . 1
prototyping activities . 89
prototyping GUI . 8
proxies . 12, 17
proxy management . 89

Index 157

Proxy Manager . 90, 128
proxy strategy . 17

QCInspector . 82
QCPatch . 82

- iStuffConsumerPatch . 82
- iStuffCustomPatch . 82
- iStuffProviderPatch . 82

Quartz . 65
Quartz Composer . 47, 51, 60, 63, 81, 128
Quartz Composer extension . 63
Quartz Composer tutorial . 66
questionnaire . 116

rapid hardware prototyping. .12
rapid prototyping . 4
recombination . 12
reconfiguration . 12
relationships . 25
researchers . 12
restrictions . 47
reusability . 18
running proxies . 51

scenario . 5, 107, 128
scripting language. .9, 21, 24
sensor kits . 13
sensors . 5
smart devices . 6
SmartIts . 113, 114
software framework . 131
software infrastructure . 11
software prototyping . 3
Speakeasy . 12
state machine. .20, 130
state machine support . 124
statistic results . 118
statistical significance . 119
storyboard . 55, 129
storyboards. .53, 55

t-test . 119
templates . 49
thread . 82
toolkit . 11
type checking . 28
type conversion . 47

ubicomp environment . 6
ubiquitous computing. .6

158 Index

ubiquitous computing application . 7
ubiquitous domestic environments . 32
ubiquitous environment . 6
USB. .13
used entities . 52
user study . 8, 109

virtual testing . 49

waterfall model . 3
workspace . 54

XML hierarchy . 90
XML schema browsing . 36

zoomable image browsing . 38

Typeset May 26, 2006

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Prototyping in software and hardware
	Merging both fields
	Thesis structure

	The iStuff project
	Currently integrated components
	iROS communication structure
	Event Heap
	Patch Panel
	Configuring the Patch Panel so far

	Related work
	GUIs for physical prototyping
	d.tools
	Max/MSP / pd
	ICon - Input Configurator
	Adobe Flash

	GUIs for end users
	Jan Humble's jigsaw puzzle
	CAMP - magnetic poetry
	iCAP

	Other relevant GUI concepts
	XML schema mapping visualization
	Photo Mesa - zoomable image browsing
	Apple Quartz Composer

	Collecting Concepts: Patch Panel GUI prototypes
	Ideas and concepts
	Preliminary design patterns
	Composition
	Easy retrieval of components
	Drag&drop support
	Avoidance of illegal connections
	Automatic type conversion
	Consistent flow of information
	Liveness of changes
	Abstract representation of real world entities
	Provision of template values
	Abstract testing
	Highlighting current selections
	Occlusion avoidance
	Panning and zooming
	Abstraction

	Adding custom ideas
	Overview window
	List currently running proxies
	Status of currently used entities
	Iconic representations and custom names
	Generation of events and values
	Graphical visualization of values

	First prototypes
	General Patch Panel GUI concept
	Interaction illustration
	Toggle button example
	Controlling a music player application

	Prototype evaluation

	Quartz Composer as the Patch Panel GUI
	A closer look at Quartz Composer
	Types of Quart Composer patches
	Patch configuration
	Grouping and abstraction
	Finding and instantiation of patches
	Automatic type checking and conversion
	An example

	Functionality missing for the iStuff project
	Integration of iStuff components into the GUI
	Support for additional off-the-shelf-hardware
	Evaluation support
	Support for custom extensions
	Event debugging support
	GUI support for proxies

	Final comparison
	Benefits and disadvantages

	Extending Quartz Composer as the Patch Panel GUI
	Integration of the Patch Panel into Quartz Composer
	The iStuff Patch hierarchy
	Managing connections

	Integrated iStuff components
	Support for the prototyping process
	Filter (integrated)
	Threshold (integrated)
	Buffer (future work)
	Plotter (future work)
	Display (future work)
	Help from built-in patches

	Tools running besides the Patch Panel
	Proxy Manager
	Event Logger
	Collaboration of the different applications
	A multiscreen presentation controlled by a mobile phone

	Implemented examples
	Typing on mobile phones
	Tilt-to-scroll
	Smart profile changer

	Discussion

	Evaluation
	Preparations for the user evaluation
	Test group
	Setup
	Design scenarios
	Scenario 1: Controlling a multi-screen presentation with a mobile phone
	Scenario 2: Implement a tilt-to-scroll prototype
	Scenario 3: New concepts for a music player
	Scenario 4: Motor control based on sensor data

	Performance
	First run
	Second run
	Asking for feedback

	Evaluation results
	General results
	Statistics
	Statistical significance
	Drawn results

	Additional feedback

	Summary of the results

	Summary and future work
	Summary and contributions
	Future work

	Storyboards and paper prototypes for the Patch Panel GUI
	Evaluation and scenario descriptions
	Post participation questionnaire
	Discussion of different implementations of a user test scenario
	Bibliography
	Index

