
HeapVision:Debugging by Interactive
Heap Navigation

Jibin Ou

Master’s Thesis
March 2014

Supervisor:
Prof. Dr. Otmar Hilliges, Prof. Dr. Martin Vechev

Co-supervisor:
Prof. Dr. Jan Borchers

Abstract

With the proliferation of online source code repositories such as GitHub and BitBucket, pro-
grammers have instant access to countless code examples. With the availability of these re-
sources the focus in software development shifts away from writing code towards understand-
ing source code. Many common algorithms, that see a lot of reuse across different problem
domains, involve complex manipulations of data structures and hence the program’s heap (e.g.,
sorting algorithms). Understanding these manipulations and the effect onto the heap’s struc-
ture is a cognitively demanding and complex task. However, despite the importance of such
algorithms for many applications, there is little tool support build into current IDEs (Integrated
development environment) to help programmers in understanding and debugging such algo-
rithms and data structures. In particular, there currently does not exist any sophisticated tool to
visually explore the heap structure and to interactively experience the impact of the algorithms
instructions on the heap throughout the execution of the program.

In the course of this thesis we have developed a tool called HeapVision, which allows for in-
spection of and interaction with dynamic visual representations of the heap structure. The
interface allows programmers to more easily understand how a data structure and it’s content
are modified by a particular sequence of instructions. Furthermore, we have developed a novel
pen and touch based interface that allows developers to more directly interact with the running
process and to concentrate on the essence of the program. Pen and touch gestures can be used
to dynamically change the visual representation of the heap, allowing the user to concentrate on
important parts of the heap. We leverage formal program analysis tools in order to automatically
abstract away unimportant aspects of the heap, while keeping the parts of a data structure that
are being manipulated concrete. In other words we aim to capture the essence of an algorithm’s
manipulations so that the user may understand the underlying working principle. Our applica-
tion can improve the comprehension of algorithms, especially for algorithms that manipulate
data structures recursively – such as but not limited to reversing linked lists.

i

Finally, we have conducted a number of low-level system evaluations on the main components
of the developed application. Showing that our application allows debugging of different sized
data structures at interactive rates without slowing down the debug process itself. Moreover, we
have elicitated preliminary user feedback from actual software developers. While this feedback
is at this point only informal it suggests that the developed visual debugging tool can help
developers in understanding heap manipulating algorithms more easily.

The contribution of this thesis are:

• A novel combination of state-of-the program reasoning tools and an advanced human-
computer interface for the dynamic inspection of a running process.

• A formalized method to abstract away unimportant aspects of dynamic data structures,
based on shape analysis;

• A framework for the visualization of and interaction with such semi-abstract heaps, based
on pen and touch interaction.

ii

Acknowledgment

I would like to thank Prof. Dr. Otmar Hilliges and Prof. Dr. Martin Vechev for supervising
this project. In addition, I would like to also thank Chat Wacharamanotham and Prof. Dr. Jan
Borchers for the co-supervising. I thank you all to enable this valuable opportunity to combine
the knowledge of human computer interaction and program analysis. Although these 9 months
were really challenging, I did gained a lot of knowledge, which is useful in my future study and
career. Therefore, I will continue to pay effort on the research of end-user programming and try
to have a position in the research community.

I would also express my gratitude to my parents and my girlfriend. Without your support, I
could not easily handle the difficulties in my master study.

iii

iv

Contents

List of Figures vii

List of Tables ix

1. Introduction 1
1.1. Heap Manipulating Data Structures . 2
1.2. Our Approach . 2
1.3. Outline of Thesis . 5

2. State of the Art 7
2.1. Program Visualization for Education . 8
2.2. Program State and Heap Visualization . 9

2.2.1. Heap visualization . 10
2.3. Shape Analysis . 13
2.4. Pen and Touch Interaction . 17
2.5. Live Programming . 18

3. Enabling Deep Program Interaction 21
3.1. Visual Notation . 21
3.2. Visual Interaction . 23
3.3. Computing The Initial Abstract Heap . 28
3.4. Incremental Graph Drawing Algorithms . 29

4. Implementation 35
4.1. Architecture of Application . 35
4.2. User Interface Design . 36

v

Contents

4.3. Graph Drawing Framework . 37
4.3.1. Graph visualization . 38
4.3.2. Implementation of graph layout algorithm 41
4.3.3. Graph Interaction . 42

4.4. Custom Protocal for Communication . 44
4.5. Debug Plugin . 45

4.5.1. Java Debug Interface . 45
4.5.2. Heap traversal algorithm . 46

5. Evaluation 49
5.1. Experiment: Performance of basic algorithms 49

5.1.1. Test program and method . 50
5.1.2. Results and discussion . 50

5.2. User evaluation . 52
5.2.1. Overview of program comprehension evaluation 52
5.2.2. Initial questions . 53
5.2.3. Methodology . 54
5.2.4. Results . 54

5.3. Discussion . 55
5.4. Limitations . 56

6. Conclusion and Future Work 57
6.1. Future work . 58

A. Appendix 61
A.1. Definitions . 61
A.2. Figures . 62
A.3. Questionnaire . 63

Bibliography 71

vi

List of Figures

1.1. Concrete states of a linked list reversal program 3
1.2. Two abstracted states of the linked list reversal program 4
1.3. Two abstracted states in the middle of a linked list reversal program 4

2.1. Graphical model of stack and heap in Java . 10
2.2. Variables’ view in Eclipse IDE . 10
2.3. A double linked list in DDD Debugger . 11
2.4. Control flow graph of the creation program 16
2.5. Prototype of live programming by Victor . 19

3.1. An example of the abstraction and concretization 26

4.1. Architecture of HeapVision . 36
4.2. Interactions between different components . 36
4.3. User interface design of the frontend application 37
4.4. Software prototype using Prefuse framework 40
4.5. Comparison between original and current graph rendering layers 42
4.6. Class diagram of debug models in JDI . 46
4.7. Workflow of the backend when a breakpoint is hit 46

5.1. Execution time of heap traversal and graph data serialization\transmission . . . 51
5.2. Execution time of graph data deserialization and TVLA’s blur process in the

backend . 51
5.3. Summation of the execution time used for producing a visualization for the

linked list . 52
5.4. Results of qualitative questions in the online survey 55

vii

List of Figures

6.1. Current visualization of a double linked list 59
6.2. Ideal visualization and interaction of a double linked list 59

A.1. Sequence diagram of the whole HeapVision application 62

viii

List of Tables

2.1. Truth table in three-valued logic . 14
2.2. Example of predicates in TVLA . 15
2.3. Possible heap shapes of different states in the linked list creation program . . . 16

3.1. Visualizing elements in Java . 22
3.2. Visual notations in HeapVision . 22
3.3. List of gestures for graph visualization and manipulation 24
3.4. Shorthand notations of α and γ algorithms . 25
3.5. Abstraction and Concretization Maps for Nodes and Edges 26
3.6. Predicates used for abstracting a singly-linked list 28
3.7. Blur process for linked list abstraction . 29
3.8. Drawing graphs using the GraphViz layout engine 31
3.9. Objectives and constraints in GraphViz and DynaDAG 32

4.1. Comparison between existing graph drawing frameworks 39
4.2. Input and output of the incremental graph layout engine 41
4.3. Animations in HeapVision . 43
4.4. Elements in the custom protocol . 44
4.5. Messages of the custom protocol for communication between backend and fron-

tend . 45

5.1. Execution time of different components . 50

A.1. Formal definition of variables and values in Java 61
A.2. Formal definition of types in Java . 62

ix

List of Tables

x

1
Introduction

In the last few decades, programming has become ubiquitous, yet fundamentally, the way de-
velopers interact with programs has mostly remained the same. Indeed, the interface to build-
ing, understanding and debugging programs has undergone only small changes. That is, the
main physical devices and interfaces for programming and program understanding have re-
mained virtually identical to three decades ago, when the WIMP paradigm was used for de-
signing the graphical user interface. This lack of progress has negative effects: for instance,
these days, it is common for programmers to stitch code pieces from multiple sources such as
GitHub[Preston-Werner et al. 2008] or Stackoverflow [Atwood and Spolsky 2008] and then in-
teractively explore the resulting program using program debuggers to study whether it is doing
what the programmer expected. Without appropriate tools support for navigation and under-
standing, the programmer can easily make mistakes and waste valuable time.

At the same time, the fields of automated reasoning, program analysis and human-computer
interaction have undergone massive progress in the last few decades. For instance, program
analysis techniques can now be used to answer deep questions about the program behavior
while new interactive touch interfaces are ubiquitous in end user devices. A key question then
is:

How can we best combine and fuse advances in human-computer interaction and program
reasoning in order to build the next generation program debugging and program navigation
systems?

In this thesis, we focus on addressing this question. To make progress and to study the inher-
ent trade-offs, approaches and limitations, we concentrate on a particular application domain,
namely that of heap-manipulating data structures.

1

1. Introduction

1.1. Heap Manipulating Data Structures

The focus of this thesis is on a program navigation system targeting the domain of heap manip-
ulating data structures such as lists, trees, graphs and others. The reasons we focused on these
domain is:

• Importance: these are some of the most fundamental programs in computer science mean-
ing that they are widely used and invariably taught in undergraduate courses.

• Complexity: it is often not easy to build correct versions of these data structures as they
involve tricky manipulating, pointer chasing, complex intermediate invariants and other
issues.

• Visual form: these data structures and their invariants can often be described in visual
form, and in fact that is how they are often described in textbooks [Cormen et al. 2001],
making them an attractive case study for advanced user interfaces.

• Poor IDE support: existing IDEs and techniques provide poor support for navigating and
interacting with heap manipulating programs [Cornelissen et al. 2009].

Collectively, the above four factors dictate that any progress towards a program navigating sys-
tem that aids in natural interaction with heap manipulating data structures can lead to lasting
impact on programming and education. For instance, such a system could eventually be used to
aid in teaching undergraduate students[Lieberman and Fry 1995][Oechsle and Schmitt 2002],
as well as helping programmers understand foreign code and potentially improve overall soft-
ware quality.

1.2. Our Approach

Next, via a classic example, we illustrate the features of our interactive navigation system and
how it helps in debugging heap manipulating data structures. The aim of this example is to
information illustrate what our system can do. Technical details of how this is accomplished
are discussed in later chapters.

2

1.2. Our Approach

1 class ListNode{
2 ListNode next;
3 int value;
4 }
5

6 ListNode reverse(ListNode head, int n){
7 ListNode node = head, prev = null, next = null;
8 for(int i = 0; i < n; i++){
9 next = node.next;

10 node.next = prev;
11 prev = node;
12 node = next;
13 }
14 head.next = node;
15 return prev;
16 }

Listing 1.1: A Java program which reverses a linked list

An Example: Reverse of a Linked List Consider the example shown in Listing 1.1.
This program reverses a singly linked list and can have fairly complex invariants (it is used as
a poster problem for shape analysis [Sagiv et al. 2002]). The program takes the head reference
of a linked list and its length as input. Then it initializes prev as the head of the second linked
list. An head of the original linked list is moved to the head of the second linked list in the
loop. Finally, the head of the second list is returned. In the program, we define the entry of the
loop(between line 8 and line 9) as State 1(Figure 1.1(a)) and the end of the loop(between line
12 and line 13) as State 2(Figure 1.1(b)). The main difference between these two states is that
the red node is moved from one list to another list. Second, references prev, next and node
point to different nodes. Therefore, our visualization needs to capture these differences, while
abstraction away the parts which are the same. The resulting abstraction of State 1 and State
2 can be succinctly expressed as two abstracted shapes, shown in Figure 1.2.

(a) State 1 found at the loop entry.

(b) State 2 at the end of the loop.

Figure 1.1.: Concrete states of a linked list reversal program

3

1. Introduction

(a) State 1 represents the abstract shape at the loop
entry.

(b) State 2 represents the abstract shape at the end
of the loop.

Figure 1.2.: Two abstracted states of the linked list reversal program

(a) The abstract shape at the loop entry capturing
the concrete State 1.

(b) State 2 represents the abstracted status in the
end of the loop.

Figure 1.3.: Two abstracted states in the middle of a linked list reversal program

In the debugging process, inspection of the data structures allows programmers to find potential
problems. An inspection of the abstracted memories is basically materializing the concrete
nodes from the abstracted one. These process can be expressed in Figure 1.3. Two concrete
nodes are exposed from the abstracted node in the concretization process.

Benefits of Our Approach Our approach enjoys the following benefits:

• Visualization of data structure. With a graph visualization, the relation of data struc-
tures can be revealed. This helps developer understand their actual relations in the heap
memory. We formally define a concrete heap graph, which can be used to describe objects
and their references in the Java heap.

• Flexible abstraction and concretization. User can specify different rules for abstraction
and toggle different levels of abstraction to inspect the data structure. Current works
about data structure visualization do not consider abstracting the data structure or simply
perform the abstraction based on some fixed rules. We adopt the abstract interpretation
techniques of shape analysis, and allow user to specify abstraction predicates using first
order logic with transitive closure.

• Pen and touch interaction for graph manipulation. We take advantage of the fabulous
pen and touch interaction technique to convey navigation and interactions in graph visu-
alization. Existing graph visualization researches only focus on how to visualize the data,
rather than how to manipulate the data based on the current visualization. We modify a
current graph visualization framework to support graph manipulation as well as visual-

4

1.3. Outline of Thesis

ization.

• Low coupling architecture. The application is designed as a non-intrusive graphical
front-end of debugger. It acts as an auxiliary tool, which allows user to control the debug-
ger and read source code directly from the front-end.

1.3. Outline of Thesis

The following is the outline of this thesis.

• Chapter 2 will describe the current state of the art in program analysis, visualization and
interactive interfaces that are relevant to the problem of program navigation and debug-
ging.

• Chapter 3 describes the technical core of our approach. Basically abstraction, concretiza-
tion methods and predicates which can be used in the interactions will be described.
Meanwhile, it introduces different frameworks for building a modern debugger.

• Chapter 4 concerns with the issues of implementation. It shows how to combine many
existing tools and frameworks to deliver a user interface with better user experience.

• Chapter 5 demonstrate the setup and result of experiments. Two of the user experiments
are intended for evaluating the usability and efficiency of the whole system. One experi-
ment is for evaluating the performance of interactions.

• Chapter 6 concludes the project and summarizes shortly the most important points. Fu-
ture works will be proposed for further investigation.

5

1. Introduction

6

2
State of the Art

Great efforts have been put forth into making programmers’ work easier, and we will discuss
them in this chapter. In this chapter, we will discuss three research directions, which memory
visualization technique is used to solve problems in their domains. Meanwhile, we introduce
shape analysis and pen and touch interaction, which are the two important techniques in this
thesis. Finally, we mention a new programming paradigm, which inspires researchers.

1. Program Visualization for Education(section 2.1). we focus on the works which use
graphs to represent the behavior of a program. This technique has been used computer
science education(CSE) community to visualize data structure and algorithms for helping
students and novice programmers learn programming.

2. Program State and Heap Visualization(section 2.2). Program state visualization is ben-
eficial in the debugging and profiling process in software engineering. In debugging, IDEs
visually demonstrates program states and allow programmer to inspect them. In profil-
ing, the whole heap is usually visualized. Programmer can facilely find issues related to
memory consumption, like memory leak and aliasing.

3. Shape Analysis(section 2.3) is a static program analysis technique, which discovers and
verifies properties of programs which have dynamically allocated data structures.

4. Pen and Touch Interaction(section 2.4) combines advantages of two input methods and
provides intuitive interactions in different domains.

5. Live Programming(section 2.5) is a programming paradigm which merges programming
and debugging.

7

2. State of the Art

2.1. Program Visualization for Education

Program Visualization(PV) is a subset of Software Visualization, which uses graphical rep-
resentations of data structures and motion to illustrate the higher-level run-time behavior of
algorithms. It is broadly used for educational purpose. A few intuitive advantages of PV has
been given by Stasko [Stasko et al. 1993]. However, most of existing evaluations are based
on different systems, which leads to a variation in the evaluation results. Some works show a
pessimistic result. Stasko and his colleagues later proved that the animation only help student
understanding in a limited extent [Stasko et al. 1993]. According to Naps [Naps et al. 2002]’s
conclusion, the visualization may not be educationally beneficial in a user’s perspective, while
it creates overhead in the teacher’s side. On the other hand, there is optimistic results in re-
cent years. The prevalence of MOOC(Massive Open Online Cource) gives a good chance for
students to use PV to assist their study. Online Python Tutor [Guo 2013] has been tested by
hundreds of thousands of users and got a significant recognition.

To characterize different PV systems, many taxonomies [Sorva et al. 2013] [Myers 1990] have
been give. A most famous review in the recent years is given by Naps [Naps et al. 2002]. He
concluded that the success of a PV system is based on the engagement level of the participants.
An engagement taxonomy is given to characterize a PV system.

• No Viewing. There is no visualization.

• Viewing. The visualization is only looked at without any other form of engagement.

• Responding. The visualization is able to answer some of the questions in the current
context.

• Changing. Modification of visualization is allowed.

• Constructing. It refers whether a user is possible to construct an algorithm directly in the
visualization system.

• Presenting. Learners present visualization to others for feedback and discussion.

From his point of view, a successful system should guarantee the aspects above. To be spe-
cific, a good PV system should be highly interactive, flexible, and responsive regarding to the
context. We can use this taxonomy to judge the systems we mentioned in the beginning. In
Stasko’s experiment, he used Polka Animation System [Stasko and Kraemer 1993], which uses
predefined animations. Although the appearance can be changed to match a specific data struc-
ture, the whole animation can not be changed once it is built. On the contrary, the appearance
can not be changed in Online Python Tutor. Arrays and arbitrary objects will be presented in a
table. It merely visualizes the link between objects as well as their values. However, its usage
is not limited to showing values and states in a specific algorithm. It can be used when a user is
practicing his own algorithm.

Compared to our work, the target user is different in two aspects. First, the target of PV for
education is students and novice programmers. How to motivate and encourage them to learn is
one of the important considerations in the design process of application. The usage of HeapVi-
sion is not only for learning but also for debugging and understanding source code in software
development process. Second, specific and predefined visualizations are used in PV, for exam-

8

2.2. Program State and Heap Visualization

ple an array is displayed as a series of adjacent boxes and a linked list is boxes in a chain. These
visualizations are good for understanding some basic algorithms in a small data set. However,
when dealing with a large amount of data, the visualization will become complicated.

2.2. Program State and Heap Visualization

Stuggles with tracing and program state is one of the difficulties in program comprehension
[Sorva et al. 2013]. It directly influences the efficiency in debugging. Interactive debugging
is performed by intercepting a running program and inspecting the current running state. By
observing transitions between two states, user is able to compare two states and reason about
the cause of changes. A program state includes many dimensions. Here are the three common
views which are provided by a normal IDE.

• Variable view shows field variables of objects as well as local variables of a stack frame.

• Stack frame view visualizes the call hierarchies of threads. User can trace the execution
route of one thread through the call hierarchy of it.

• Thread view shows the running threads in the program. It is usually organized in the
same view with stack frames.

This thesis focuses on visualizing the data structures, which are commonly shown in the vari-
able view. Meanwhile, the implementation of our back-end is mainly based on Java language
and its runtime environment. We will talk about how memory is stored in the Java Virtual
Machine(JVM). First we will go through memory structures in JVM, Heap, Global and Stack.
Heap is used for storing all dynamic data structures, namely all structures created by operation
new. Global, which is also called PermGen(Permanent Generation), stores all objects associ-
ated with classes as well as interned strings. Stack is section of memory used to store temporary
information, which will be lost after a method returns. The relation between Heap and stack
can be illustrated in Figure 2.1.

Current IDEs, like Visual Studio, Eclipse and XCode, use tree view[Bogdan et al. 1999] as the
UI widget for displaying variables. We criticize tree view in three aspects. At first, although
tree view is an ideal widget to demonstrate hierarchical information, a tree view fails in reveal-
ing back pointers and reference cycles. Second, inspecting a complex and big data structure
consumes a lot of space, since to visualize a value which is "deep" in the tree view requires all
its ancestors to be open(Figure 2.2(a)). Third, as a consequence of the second disadvantage,
user need to explicitly toggle a lot of variables to visualize a value.

Eclipse partially solves the second and third problems by defining the logical structure of a
data structure. Logical structure acts as the structure of representation in the variable view.
For example, a linked list can be represent as an array, which is easier to navigate in the tree
view(Figure 2.2(b)). However, a programmer still needs to specify the structure manually. At
the same time, the original structure will be covered by the logical structure. To sum up, using
tree view to display variables has the following shortcomings: 1. visualization can not reveal
the heap structure concisely; 2. many redundant interactions are needed to inspect values.

9

2. State of the Art

Source code Stack and heap’s graphical model

...
int size = 10;
Node head = new Node();
Node node1 = new Node();
head.next = node1;
Node node2 = new Node();
node1.next = node2;
Node node3 = new Node();
node2.next = node3;
...

Figure 2.1.: Graphical model of stack and heap in Java. The stack frame stores the references of heap
memory as well as values of local primitive variables. Objects in the heap can be depicted
as vertices in a graph, while their references are edges. All valid heap objects are reachable
from the stack. Otherwise, the unreachable objects are called "garbage", which will be
collected and erased in the garbage collection process.

(a) To inspect a linked list, programmer needs to
manually toggle many variables in the tree view.

(b) With logical structure, a double linked
list can be visualized as an array. How-
ever, the shape information is lost.

Figure 2.2.: Variables’ view in Eclipse IDE

2.2.1. Heap visualization

To overcome the shortcomings in the existing IDEs, researchers have tried to use visualization
techniques to demonstrate data structures in debugging and profiling. We show a representative
in each domain. In debugging, researchers visualize the whole reachable parts of heap to allow
inspection. In profiling, a concise heap hierarchy is provided to expose the hidden information
in the memory.

10

2.2. Program State and Heap Visualization

Figure 2.3.: A double linked list in DDD Debugger

Concrete heap visualization

DDD(Data Display Debugger) [Zeller and Lütkehaus 1996] is a free graphical front-end for
UNIX debuggers, such as GDB and DBX. Besides common features like a combined view of
source code and breakpoints, it offers graphical data display, where data structure can be dis-
played as a graph or in a chart. Its user interface is based on WIMP paradigm. User can select
pointers in the code and visualize the target objects in the canvas. Instances of struct and class
are treated as basic units in the canvas. Complex data structures can be explored using mouse
click incrementally and interactively. Meanwhile, DDD will automatically layout all the on-
screen units. However, all the expansions of pointers require manual interactions. If you need
to navigate a very large linked list, it will lead to too many duplications of effort. In a con-
tinuous work of DDD, Zimmerman and Zeller [Zimmermann and Zeller 2002] present an idea
of memory graph. Unlike DDD, all visible units should be unveiled manually. Memory graph
displays the whole graph in one time, so that user can view the whole hierarchy immediately.
With its help, alias, back pointer and reachable objects can be easily found. By comparing two
graphs, user can directly perceive the changes between two states.

Heap visualization with abstraction

Compared to memory graph [Zimmermann and Zeller 2002], some recent projects go one step
further [Aftandilian et al. 2010, Marron et al. 2013]. They provide a visualization of a program
heap based on a heap dump. The difficulty in this visualization stands out in abstraction of the
heap. Memory graph provides a visualization of the concrete heap, but it becomes meaningless
when the number of concrete objects is huge. Since many objects are stored in an array or in a
recursive data structure. These objects are basically equivalent, so that they can be squeezed to

11

2. State of the Art

a highly abstracted level. HeapViz [Aftandilian et al. 2010] and HeapDbg [Marron et al. 2013]
use the same rules to abstract the heap dump. Before introducing the abstraction rules, concrete,
abstract heap and their relation should be defined.

Concrete heap A concrete heap is a labeled directed graph in tuples: (root, null,Ob,Pt ,Ty).
Heap objects(Ob) are defined as nodes in the graph, while Pointers(Pt) act as edges. Roots
stands for the objects which is pointed by a special root pointer in the heap. Since all edges in a
graph should have a head and a tail node and a label from the set Label Pt ⊆ Ob×Ob× Label,
null object is defined to leverage the null pointers. Since Java is strongly typed, every object
is associated to a type in the set Type. This map is defined as Ty : Ob −→ Type. A region
of memory C ⊆ Ob \ {null, root} is part of the concrete heap objects, except the root or null
nodes.

Concrete heap properties After the defition of the concrete heap, some properties are
introduced to describe a concrete heap. As is defined above, C is a region of memory in the
concrete heap.

• Type. The Type of C is the set of types of the objects in C : {Ty (o) |o ∈ C}.

• Cardinality. The amount of objects in C is |C |.

• Nullity. The object in the head node of an edge defines the nullity of a pointer.

• Injectivity The pointers labeled p from two different objects o1 and o2 to different objects
t1 and t2 are injective.

• Shape. Graph theoretic notations of trees, directed acyclic graphs(DAG) and general
graphs are used to describe the shape of C.

Abstract heap An abstract heap is defined as the following tuple:

(root, null,Ob#,Pt#,Ty#,Cd#, Ij#, Sh#)

The # attribute stands for the corresponding abstracted parameter in the abstracted heap. A ab-
stracted heap can be regarded as an abstraction of an concrete heap, if there exists an abstraction
function µ holds the following predicates:

• Embeded. Embed
(
µ,Ob,Pt ,Ob#,Pt#

)
⇔ µ (root) = root ∧ µ (null) = null ∧ ∀o1

l−→
o2 ∈ Pt .∃l .µ (o1)

l#−→ µ (o2) ∈ Pt# ∧ l ∈ γL
(
I#
)

• Typing. Typing
(
µ,Ob,Ty ,Ob#,Ty#

)
⇔ ∀o ∈ Ob.Ty (o) ∈ Ty# (µ (o))

• Counting. Counting
(
µ,Ob,Ob#,Cd#

)
⇔ ∀n ∈ Ob#.|µ−1 (n) |∈ Cd# (n)

• Injective. Injective
(
µ,Pt ,Pt#, Ij#

)
⇔ ∀ (n1, n2, l) ∈ Pt#.Ij# (n1, n2, l) ⇒ ∀p ∈

γL (l) .inj (µ−1 (n1) , µ
−1 (n2) , p)

• Shape. Shape
(
µ,Pt ,Pt#, Sh#

)
⇔ ∀ (n,L, tree) ∈ Sh#.tree (µ−1 (n) , γL (L))

12

2.3. Shape Analysis

In words, all concrete pointers should be embedded in their corresponding abstracted pointers.
The type of every node is included in the type set of its abstracted node. The amount of concrete
nodes which map to the same abstracted node is the cardinality of this abstracted node. Every
set of pointers which is injective in concrete heap graph is still injective in the abstract graph.
Finally, the Shape relation guarantees the concrete shape predicates.

Abstraction rules Based on the concrete and abstract heap graph relation, different rules
can be applied to achieve a abstract graph. Following rules shows a good example to abstract
concrete heaps which contain array and different recursive data structure. They are shared by
HeapViz and HeapDbg.

1. Same Recursive Data Structure Objects. recursive_data (o)⇔ ∃o1,∃p := (o1, o, l) , p ∈
Pt ∧Ty (o1) = Ty (o) In words, if two objects have a reference, and they share the same
type, they will be merged as one node;

2. Equivalent on Abstract Predecessors. equi_predecessor (o)⇔ If two objects which share
the same type and have the same set of predecessor objects, they will be as well merged
as one node.

Conclusion of heap visualization

Since no abstraction is offered in the DDD debugger, it merely acts as an small improvement
of the current variable view. Compared to HeapVision, it is the closest previous work. Our
work brings not only the graph-based visualization as well as memory abstraction and noval
user interactions. Formal definitions of concrete heap and abstract heap is given to enable
the future study in HeapDbg. However, it minimizes the levels of detail. A user can only
get a shallow understanding of a summarized node. Actually, compared to memory graph,
HeapViz and HeapDbg have different objectives. They act as a profiling tool to measure memory
consumption in sparse states. Apart from the abstraction of the whole heap structure, HeapViz
provides an interactive graph view based on the Prefuse[Heer et al. 2005] toolkit. HeapDdg is
built as a plugin for Visual Studio and the heap graph can be directly displayed in the IDE. To
sum up, two current works about abstracted heap visualization have a different purpose than
than HeapVision. Meanwhile, the abstraction technique will reduce detailed information which
is useful in debugging.

2.3. Shape Analysis

As shown above, Marron [Marron et al. 2013] gives simple abstraction rules to abstract the
memory. However, these abstraction rules are fixed. And the user is not possible to change
the visualization after the heap was abstracted, which makes the application not suitable for
debugging. We introduce shape analysis, which is a static program analysis framework for
programs which manipulate dynamic allocated memory. It is related to our project since it
provides a flexible way to abstract memory. Meanwhile, the formal definition of the abstraction
offers space for extensions in the future.

13

2. State of the Art

We will go through some background knowledge in the beginning. Static program analysis is
used for analysing computer program without running the program, which is performed by an
automatic tool on the source code. Programmer often uses static analysis to prove invariants
in the program, such as division by zero, accessing uninitialized variables, array out-of-bounds
errors and so on. Shape analysis is a static analysis technique based on abstract interpreta-
tion [Cousot and Cousot 1977], that finds and verifies the manipulation of dynamic allocated
memory in a program. It is one of the difficult problems in static analysis, due to two main
issues:

• Destructive updating through pointers. Aliasing relationships are pervasive.

• Dynamic storage allocation. Runtime data structures has no upper bound.

Sagiv has provided a solid theoretical background for parametric shape analysis[Sagiv et al. 2002].
Three-Valued Logic Analyzer(TVLA)[Lev-Ami and Sagiv 2000] is an implementation for the
parametric framework. It stands out among static analysis tools for its flexibility, so that it
can be regarded as the Yacc1 for shape analysis. The framework can be used in different
ways by filling different predicates, which determine the tracked properties. It can be used
to analyse memory errors, such as dereferencing NULL pointers, dereferencing dangling point-
ers and memory leaks. The main characteristic of TVLA is the use of kleene’s Three-Valued
Logic(TVL) [Kleene 1952]. Besides True = 1 and False = 0 values in Two-Valued Logic, there
is an Unknown = 1

2
value in TVL, which makes the truth table in TVL as below:

A ∧ B
A

1 1
2

0

B

1 1 1
2

0
1
2

1
2

1
2

0

0 0 0 0
(a) AND

A ∨ B
A

1 1
2

0

B

1 1 1 0
1
2

1 1
2

1
2

0 1 1
2

0
(b) OR

A ¬A

1 0

1
2

1
2

0 1
(c) NOT

Table 2.1.: Truth table for AND,OR,NOT logical operations in Three-valued logic

The import of Unknown is useful, because it can be used to represent the unbounded data struc-
tures which share the same properties. Since there is no bound on the size of runtime data
structures allocation, in traditional pointer analysis approach, it is not efficient to cover all pos-
sible states. With the help of TVL, memory states with the same properties can be abstracted
for further analysis. As mentioned above, predicates, more specifically unary predicates, are
used for shaping a state. First order logic with transitive closure(FO(TC)) is used for defining
a predicate. To verify a property, user need to explicitly describe it using FO(TC) and provide
it as well as a TVP file translation of the source code[Lev-Ami and Sagiv 2000]. TVLA will
automatically generate a report with graphical representations of memory.

1A program which generates parser for computer language in the Unix operating system

14

2.3. Shape Analysis

Example: creation of a linked list We take an example in Listing 2.1, which simply cre-
ate a single linked list. We apply a set of program independent predicates(Table 2.2) and verify
properties. The goal of the analysis is to verify that neither memory leak nor pointer alias exists
in the program. Each state of the execution process has been examined. And all possible shapes
can be inferred by the analyzer. Figure 2.4 and Table 2.4 show result of the analysis, that is, no
leaks or aliases is found in the program. The first step of a verification is the bluring process.

1 //list.h
2 typedef struct node{
3 struct node *n;
4 int data;
5 } *List;
6 //create.c
7 void create(List x, int size)
8 {
9 List f = NULL;

10 for (i=0; i<size; i++) {
11 f = malloc(sizeof(struct node)

);
12 f->n = NULL;
13 f->n = x;
14 x = f;
15 }
16 }
17

Listing 2.1: A program which create a linked list
based on an existing linked list

Predicate Meaning

f (v) Value is pointed by pointer f

x (v) Value is pointed by pointer x

n (v1, v2) There is a pointer with la-
bel n between value v1 and
v2

tn (v1, v2) v2 is reachable from v1 via
pointer with label n

rn,f (v) v is reachable from stack
pointer f via pointer with
label n

rn,x (v) v is reachable from stack
pointer x via pointer with
label n

Table 2.2.: Predicates for the verification of a
linked-list’s creation

All the concrete two-valued structures will be evaluated by the abstraction predicate set. The
boolean result of each predicate will be combined as a bit vector. The structures which have the
same result will be grouped together. During the execution of each concrete operational seman-
tics in the programming language, one of each abstraction predicate will be combined with a
corresponding predicate-update formula to transform the source structure to a target struction,
which is denoted as, c (v1, ..., vk) = τc,e (v1, ..., vk). Further more, to guarantee the precision,
focus, coerce operations as well as different instrumentation predicates are introduced. Here is
the result of verifying the created linked list is not shared by any other pointers, and there is
no memory leak during the execution. A control flow graph is shown to clarify different states.
Corresponding graphs are presented in the right for all possible states. It can be inferred from
L1 that x is equal to null when it is passed to the function. About the annotation in the graph,
an edge between two nodes represents a binary predicate, such as n (v1, v2). An edge without
source node indicates a unary predicate. A dash edge means the certain predicate is evaluated
to 1

2
, while a concrete edge means its value is 1. Finally, a circle elaborates a concrete store,

while a node with double circles means it is an abstracted node, which shows that there may be
an object in the actual case.

15

2. State of the Art

Figure 2.4.: Control flow graph of the
linked list creation pro-
gram. Each gray box rep-
resents a state of the pro-
gram. The edge between
two states means that a
transition exists between
these two states. Se-
quences of possible con-
secutive states form the
whole control flow of the
program.

State Structure 1 Structure 2 Structure 3

L1 Structure with empty universe(Empty)

L2 Empty

L3 Empty

L4

L5

L6

Exit Empty

Table 2.3.: The input structure(variable x) of the analy-
sis is NULL. TVLA statically analyses each
state and shows possible heap shapes, which
are shown in each row. Heap shapes which
are in the same row means they share the same
structure. Images are generated by TVLA and
GraphViz[Ellson et al. 2004]. TVLA analyses
the source code and provides graphical reports
in dot format. GraphViz parses the file into im-
ages.16

2.4. Pen and Touch Interaction

Although the use case of TVLA is different different from our project, it is enlightening in
two aspects: 1. Use of TVL in static analysis; 2. Predicates in FO(TC) to represent program
properties. The differences between static anlysis and debugging lie on:

• Representation. Strictly speaking, it is a diagram instead of a graph that is used to
represent a state in TVLA. A graph is G : 〈V × E〉 with E : 〈V, V 〉, while in the diagram
of TVLA, an edge without a source node denotes a unary predicate and an edge with both
source and target implies a binary predicate. As arity of an predicate increases, different
visual constructs should be introduced. From a user’s perspective, the more complex a
graph is, the less intuitive it is going to be. The representation of graph can not be directly
borrowed from TVLA.

• Predicate. Abstraction predicates A − abstract are first used in the blurring process.
Since predicates are used to examine the properties of the heap, a node is defined by a
unique bitvector. If there are n types of structures and m predicates, they have a relation
of log2m 6 n. However, if m ∈ [log2m,n), modifying one predicate in the predicate set
may change the evaluated result of the certain predicate, which leads to a global change.
If n predicates can identify n nodes, it is actually using a single predicate to tag one kind
of structure. A − abstract will expand according to the size of concrete nodes, which
leads to the lost of efficiency.

2.4. Pen and Touch Interaction

Pen and touch interaction technique has been widely studied in the recent years. Hinckley
[Hinckley et al. 2010] has concluded various benefits of this bimanual interaction technique.
The main advantage is that it offers flexibility and accuracy for interaction simultaneously.
Secondly, highly intuitive interactions can be designed using a combination of operations, which
are based on pen and touch interaction. Pen and touch interaction has been applied in different
domains.

• Drawing. Both Hinckley[Hinckley et al. 2010] and Brandl[Brandl et al. 2008] have de-
veloped prototypes of drawing application. Pen can provide fine-grained interaction,
while touch can provide natural and flexible interaction. Meanwhile, user needs to switch
different tools and models frequently in a drawing process.

• Editing. Sketching is one of the aspects which differs pen from other single-point input
devices. Hinckley [Hinckley et al. 2012] has taken advantages of this property to facilitate
annotation and notes collection during the on-screen reading process.

• Gaming. Researchers has applied the interaction on a real-time strategy(RTS) game.
Player can perform accurate and responsive interactions on a touch screen with pen, which
acts as a good replacement of mouse in RTS game.

• Data Exploration. Walny [Walny et al. 2012] has conducted user studies to explore ap-
plying pen and touch interaction for information visualization on an interactive white-
board. They categorized different usages of the interaction techniques in data exploration
tasks, and provided good suggestions for designing pen and touch enabled information

17

2. State of the Art

visualization interfaces.

Researchers in infoVis community has considered applying this technique in graph visualiza-
tion [North et al. 2009a]. However, they considered that pen-based interface is close to mouse-
based interface, which has been widely studied. Meanwhile, what pen-based interface offers
was no more than lasso selection and marking-menu-based command activation. No more de-
tailed investigation has been tried. In this thesis, we think that pen and touch interaction is
useful in graph visualization and manipulation, due to the following to aspects.

Success of touch input At first, touchable interface has become a crucial input device in
the post-WIMP era[Shneiderman 1993]. A lot of sucessful applications [Dietz and Leigh 2001]
[Han 2005] have been developed based on the touchable interface, which, however, has not
been widely supported in IDEs. Traditionally, IDE is regareded as a tool for source code edit-
ing [Murphy et al. 2006]. Code editing is a form of text editing process, in which mouse and
keyboard are the dominating and most efficient input devices [CARD et al. 1978] [Forlines et al. 2007].
However, as we mentioned in Chapter 1, the work of code editing will be reduced with the help
of open-sourced source code repositories. Programmers do not need to write codes themselves.
Instead, they can clue and test codes to construct a program. It leads to the fact that touch in-
put might be more beneficial in the future. Especially in the user interface of HeapVision, the
visualization is for visualizing a graph structure. Touch interaction is proved to be useful in the
work of North’s[North et al. 2009a].

Need for input accuracy Our application can be based on two sizes of input devices,
touchable monitor and tablet computer. The input area of both of devices is smaller than the
sizes of the Microsoft Surface, which is used in the experiment of Walny’s[Walny et al. 2012].
The accuracy of operations varies in different sizes of display [Brewster 2002]. The bara hand
gestures may not perform as well as in a smaller-sized display. The pen input can highly enhance
the pointing input accuracy. Second, the pen is also used for text input in the original design.
However, due to the time constraint, we could not integrate this part in the thesis. Finally, the
combination of pen and touch commands can yield new intuitive commands, which can be used
for building up the vocabulary of heap exploration.

To sum up, Pen and touch inputs have different interaction properties. Combining both inputs
yields new interaction techniques which can be applied in different domains and use cases. The
potential of pen and touch interaction in graph visualization and manipulation is still waiting to
be explored.

2.5. Live Programming

Live programming aims to provide an instant feedback during code editing, which increases
the programmer’s awareness and understanding of the code behavior. It is a way of mixing
programming and debugging experience. In terms of technical aspect and implementation,
it is highly depending on the programming language and their environment. The world has
seen many live programming tools, which deal with declarative progamming lauganges. Any

18

2.5. Live Programming

HTML file editor which can render the page while you are editting it is a sound example.
DataPlay [Abouzied et al. 2012] is an example for querying a database using SQL in a live way.
However, live programming using Imparative language remains a research problem. In this
section, programming refers to writing software programs using an imparative language.

Liveness in programming was first explored by a few visual languages, such as VIVA[Tanimoto 1990],
Form/3[Burnett et al. 1998] and a more productive framework Morphic[Maloney and Smith 1995].
They go beyond the normal feedbacks provided by IDEs, such as code completion, type check-
ing and syntax highlight. They address the feedback of different program behaviors. Victor’s
demo about live programming in 2012 [Victor 2012] has inspired a few researchers in a user-
oriented perspective. In his demo, he addresses three aspects which can influence the future of
programming.

• Direct data visualization and manipulation. His live programming editor can execute
drawing code lively during the editing.

• Cause and effect relationship visualization. Programmer can refer to the line of code
which leads to the visual effect.

• Visible flow. A time-travel functionality allows to retrieve previous states and visualize
the change history between them.

In , Victor shows a visualization which allows a programmer to play back the execution trace. In
the right panel, the points in vertical direction can be regarded as a control flow, while the points
in horizontal direction can be regarded as anchor points to show program states in different
iterations.

Figure 2.5.: Prototype of live programming by Victor, which shows traces of drawing lines

McDirmid [McDirmid 2013] provides an implementation called TaiChi based on Victor’s ex-
ploration. TaiChi He focuses on three features, probing, Tracing and Time-travelling. Probing
offers a live programming by debugging experience, which allows user to execute methods
directly in the editing mode. By merging the boundary between implementation and testing,
programmers eliminate potential problems before it is carried to the next procedure. Tracing
helps to build a gloabal awareness of the execution history by abstracting current and previ-
ous results into a print-like trace statements. Probing can be regarded as a inspection opera-
tion, while tracing corresponds to logging. Combining both of them, an interactive debugging
experience can be achieved directly in code editting. Finally, the design of Time-traveling
shows a how live programming can embed with visualizable traces. However, since trace

19

2. State of the Art

recording and code modification are happening synchronously. Whether a change in the past
should influence the current traces is an open question. Many existing live programming proto-
types [Sorensen and Gardner 2010][McDirmid 2007] choose to ensure the consistency of code
execution, which should also be reflecting in the traces. Further elaboration about code-trace
relation is given by TouchDevelop[Burckhardt et al. 2013]. Traces is defined by program con-
figurations and its source code, while source code is subject to its modifications. Besides, traces
compression and abstraction deserve to be mentioned and further considered. For example, a
one minute physics simulation includes thousands of frames.

To sum up this section, although computing performance of computer is keep increasing in re-
cent decades, user experience for programming remains in a stage when the Smalltalk-era IDEs
is still pervasive. An evolution in programming environments has not been triggered for a long
time. Victor has given suggestions in a user-oriented perspective. However, transfering these
ideas to productive tools still requires a lot of work. TaiChi is one of the prototypes which re-
flects Victor’s ideas. Compare live programming with interactive debugging, live programming
intends to inject features, which are only available in debugging, like inspection of values and
execution traces visualization, into code editing process. It is a nice concept, but still requires
an evolution in the supporting programming language and development environment. Interac-
tive debugging brings liveness into debugging process, by visualizing data structures and their
changes in the execution process. It is a more realistic than live programming, since it can
directly take advantage of the existing facilities for debugging.

20

3
Enabling Deep Program Interaction

In this chapter, we describe the core technical aspects that make our system possible. First, we
define the appearance details of the heap and the informal meaning of the elements. Second,
we provide a list of interactions that we support. Third, we provide a formal definition of the
interactions. Finally, we cover some graph layout algorithms and present our incremental layout
algorithm.

3.1. Visual Notation

Before defining the visual notations, we need to specify what is being visualized. Our system
can visualize objects and their relations in the heap. The first step to connect an object in the
heap to a node in the graph (that is visualized) is to ensure that we have some way to identify
objects. In our system, we will focus on the Java programming language. Although Java is an
object-oriented language, not all types inherit the java.lang.Object type. Such types are called
primitives, while the remaining types are referred to as a reference type. A value, whose type is
a reference type, is formally called object. A definition of a type, variable and its value is shown
Table A.2 and A.1. An object can be created, modified and assigned by the program, while it
can be freed only by the garbage collectors. In addition, an object is associated with an ID,
which is unique in the program life cycle. To visualize all program behaviors, the nodes in the
graph represent heap objects. In addition, we define elements in the Java language as follows:

21

3. Enabling Deep Program Interaction

Item Tuple Meaning

local variable (target, name, type) a tuple of associated value, vari-
able name and variable type

field variable (source, target, name, type)
a tuple of owner’s value, asso-
ciated value, variable name and
variable type

object (type, value, ID) object type, object value and its
assigned ID

Table 3.1.: Visualizing elements in Java

To visualize the abstract heap, we adopt the visual notation used in TVLA [Sagiv et al. 2002]
and extend it.

Name Symbol Meaning Example Details

concrete
node

solid circle object
Text in the middle of node
represents the value or the ID
of an object.

summary
node

double circle
summary of ob-
jects

Text in the node represents
the amount of abstracted ob-
jects.

concrete
edge

solid edge field variable
Text represents the name of
field variable.

abstract
edge

dash edge
summary of field
variables

Text represents the name of
field variables, if all ab-
stracted variables share the
same name.

arrow
solid edge
without source

local variable
Text represents the name of
the local variable.

Table 3.2.: Visual notations in HeapVision

22

3.2. Visual Interaction

3.2. Visual Interaction

We now define a series of interactions on a heap graph. These interactions are used for both
graph visualization and manipulation. The difference between visualization and manipulation
is that, in visualization, the graph remains isomorphic in all states, while with manipulation,
the user changes the graph by inserting and deleting vertices and edges. Previous works focus
on visualization of data [Heer et al. 2005] and interactions [Vlaming et al. 2010] to facilitate
visualization. Direct manipulations on the graph have been seldom explored. The closest work
is from North [North et al. 2009b] where the work ran user studies and tested different gestures
on a two-handed, multi-touch surface. However, their test was based on Microsoft Surface (now
named Microsoft PixelSense1) which is much larger than our input devices.

The gestures supported by our system are shown in Table 3.3. Interactions are grouped into four
different kinds:

• View. Either size, position of the whole graph or position of an individual node is changed.

• Selection. Objects are selected for the next operation.

• Abstraction. A set of nodes are merged to one summary node.

• Concretization. A summary node is separated into two or more nodes.

The pinch and double tap gestures are realized via two graph manipulation algorithms, which
manipulates a mapping of concrete nodes and edges. Abstraction reduces the number of nodes
by merging nodes into a summary node. Concretization adds more detailed information to the
graph by inserting more nodes. Abstraction and concretization correspond to two graph opera-
tions in graph theory, vertex contraction and vertex cleaving. Vertex contraction may occur on
any subset of vertices. If this subset of vertices is a clique, the operation is called edge con-
traction. Existing edges between contracting vertices are removed. Edges between contracting
vertices and non-contracting vertices are remained. Vertex cleaving, or vertex splitting is the
reverse operation of vertex contraction, which means one vertex is being split into two, where
these two new vertices are adjacent to the vertices that the original vertex was adjacent to. A
series of iterative vertex cleaving operations means one vertex is being split into two or more
vertices. The algorithms for these two operations are shown in Algorithm 3.1 and Algorithm
3.3.

1Microsoft PixelSense, http://www.microsoft.com/en-us/pixelsense/default.aspx

23

3. Enabling Deep Program Interaction

Name Description Function Preview

Group
Draw the boundary of a
group of nodes to select
them

group(Vselect)

Abstract
Collapse a set of nodes
into a summary node

abstractGraph(Vs, G, αN , αE) :
(G

′
, α

′
N , α

′
E)

Concretization

Double tap on a
summary node to ma-
terialize nodes which
are pointed by adjacent
nodes

concretizeGraph(va, G, αN , αE) :
(G

′
, α

′
N , α

′
E)

Zoom in

Perform stretch gesture
on an empty space to
enlarge the size of the
whole graph

Zoom out

Perform pinch gesture
on an empty space to
reduce the size of the
whole graph

Drag
Drag a node to an
empty space with one
finger

Reposition
Pan on an empty space
with one finger to move
the whole graph

Table 3.3.: List of gestures for graph visualization and manipulation

24

3.2. Visual Interaction

Functions Gesture Meaning Algorithm

group(Vselect) pen draw select a set of nodes

s(e) get the source node of edge e

t(e) get the target node of edge e

reMapVertex(vo, va, αN) : α
′
N

map concrete node vo to ab-
stract node va

reMapEdge(eo, ea, αE) : α
′
E

map concrete edge eo to ab-
stract edge ea

newAEdge(vs, vt, E, αE) :
(e, E

′
, α

′
E)

create a new edge with source
vs, target vt

concretizeNodes(Vs, G, αN , αE) :
(G

′
, α

′
N , α

′
E)

make a set of nodes concrete
Vs

Alg. 3.2

concretizeGraph(va, G, αN , αE) :
(G

′
, α

′
N , α

′
E)

double tap

concretize a set of nodes
which are pointed by in-edges
of a summary node va, and re-
turn the new node and edge
mappings

Alg. 3.3

alphaGraph(Vs, G, αN , αE) :
(G

′
, α

′
N , α

′
E)

pinch

map the selected nodes to
a node va, map the related
edges to new edges and return
the new node and edge map-
pings

Alg. 3.1

Table 3.4.: Shorthand notations of algorithms

The Definition of Abstraction and Concretization

To capture abstraction, we maintain four mappings, defined in Table 3.5. Here, the set CN
denotes the set of concrete nodes and AN denotes the set of abstract nodes. Then, αV is a
mapping between a concrete node in CN and an abstract node in AN , while αE is a mapping
between a concrete edge in CE and an abstract edge in AE.

25

3. Enabling Deep Program Interaction

Definition Meaning

αV (v) : CN −→ AN a surjective function which maps a concrete
node to an abstract node

αE(e) : CE −→ AE a surjective function which maps a concrete
edge to an abstract edge

γV (v) : AN −→ CN a surjective function which maps an abstract
node to a set of concrete nodes

γE(e) : AE −→ CE a surjective function which maps an abstract
edge to a set of concrete edges

Table 3.5.: Abstraction and Concretization Maps for Nodes and Edges

Based on the abstraction and concretization maps, we can define the corresponding algorithms
for pinch and double tap gestures in Alg. 3.1 and Alg. 3.3. For an example of the two operations,
consider Figure 3.1. Here, two nodes u1, u2 are selected in the grey area. Edges b and f share
the same source node. They are merged into one edge b′ while edges a, d, e, g are merged to
one self edge b′ .

Figure 3.1.: An example of the abstraction and concretization processes

1 abstractGraph(Vs, G, αN , αE) : (G,α
′
N , α

′
E)

2 inEdges← {(vs, vt)|vs /∈ Vs ∧ vt ∈ Vs}
3 outEdges← {(vs, vt)|vt /∈ Vs ∧ vs ∈ Vs}
4 insideEdges← {(vs, vt)|vt ∈ Vs ∧ vs ∈ Vs}
5

6 va ← ∃v ∈ Vs
7 foreach v ∈ Vs\va
8 αN ← reMapVertex(v, va, αN)
9 if selfEdges 6= ∅

10 (selfEdge,E, αE)←newAEdge(va, va, E, αE)
11 foreach e ∈ insideEdges
12 αE ← reMapEdge(e, selfEdge, αE)
13 foreach e ∈ inEdges

26

3.2. Visual Interaction

14 if ∃(vs, vt) ∈ E :source(e) = vs∧target(e) = va
15 edge← ∃(vs, vt) ∈ E

′
:source(e) = vs∧target(e) = va

16 else
17 (edge,E, αE)← newAEdge(source(e), va, E, αE)
18 αE ← reMapEdge(e, edge, αE)
19 foreach e ∈ outEdges
20 if ∃(vs, vt) ∈ E :target(e) = vt∧source(e) = va
21 edge← ∃(vs, vt) ∈ E

′
:source(e) = vs∧target(e) = va

22 else
23 (edge,E, αE)←newAEdge(va,target(va), E, αE)
24 αE ← reMapEdge(e, edge, αE)
25 return← (G,αN , αE)

Listing 3.1: Collapse a set of nodes to one node

1 concretizeNodes(Vs, G, αN , αE) : (G
′
, α

′
N , α

′
E)

2 foreach v ∈ Vs
3 if αV (v) = v
4 oV ← γV (v)
5 if count(oV) = 1
6 return← (G,αN , αE)
7 αV ← reMapVertex(v, v, αV)
8 inEdges← {(vs, vt)|vt = v}
9 vnew ← ∃v ∈ oV \ {v}

10 foreach e ∈ inEdges
11 αE ← reMapEdge(e, (source(e), vnew, αE)
12

13 outEdges← {(vs, vt)|vs = v}
14 foreach e ∈ outEdges
15 αE ← reMapEdge(e, (vnew, target(e)), αE)
16

17 if αV (vc) = vc
18 return← (G,αN , αE)
19 αN ← reMapVertex(vc,vc,αN)
20 relatedEdges← {(vs, vt)|∀(vs, vt) ∈ E, vs = vc ∨ vt = vc}
21 foreach e ∈ relatedEdges
22 if source(e)=vc
23 newSource = vc
24 newTarget = αV (target(edge))
25 else
26 newSource = αV (source(edge))
27 newTarget = vc
28 if ∃(vs, vt) ∈ E

′
: vs = newSource ∧ vt = newTarget

29 edge← ∃(vs, vt) ∈ E : vs = newSource ∧ vt = newTarget
30 else
31 (edge,E, αE)← newAEdge(newSource,newTarget,E,αN)
32 αE ← reMapEdge(e,edge,αE)
33 return← (G,αN , αE)

Listing 3.2: Concretize a set of vertices in the graph

27

3. Enabling Deep Program Interaction

1 concretizeGraph(va, G, αN , αE) : (G
′
, α

′
N , α

′
E)

2 cInEdges← {(vs, vt)|∀(vs, vt) ∈ E,αV (vt) = va ∧ αV (vs) 6= va}
3 (G,αN , αE)←concretizeNodes ({target(e)|∀e ∈ cInEdges}, G, αN , αE)

Listing 3.3: Concretize the vertices which are pointed by in edges

3.3. Computing The Initial Abstract Heap

A key question that we need to address is how to compute the initial abstract shape. A natural
answer can be found in the way TVLA computes abstractions. Informally, it keeps as concrete
all nodes directly pointed to by local variables while all other nodes are abstracted. More
formally, given a set of predicatesΩ which represent the local pointer variables, we compute the
abstract shape based on these predicates. To see how this process works, we give an example.
Consider the predicates in Table 3.6 used in the case of a singly linked list and the example in
Table 3.7 which shows how the concrete (Java) heap is abstracted into an abstract shape using
the particular predicates. Indeed, this is the process we used in order to obtain the α and γ
maps we defined earlier and which are the core of our system. It is important to note that after
the initial abstraction we no longer need to deal with predicates, but the TVLA style initial
abstraction does provide an intuitive and natural starting point for exploration.

Predicate Meaning Formula

{x (v) : x ∈ LV ar} local variable x points to value v

{n (v1, v2) : n ∈ FV ar} all fields pointer with label n
is between value v1 and v2

{rn,x (v) : x ∈ LV ar} v is reachable from stack pointer
f via pointer with label n

∃vx.x (vx) ∧ n∗ (vx, v)

cn (v) value v is in a cycle n+(v, v)

Table 3.6.: Predicates used for abstracting a singly-linked list

28

3.4. Incremental Graph Drawing Algorithms

Concrete Abstract

Structure

Array

u1 u2 u3 u4 u5 u6

x(u) 1 0 0 0 0 0

y(u) 0 0 0 1 0 0

rn,x (u) 1 1 1 1 1 1

rn,y (u) 0 0 0 1 1 1

cn (v) 0 0 0 0 0 0
(a) Unary predicates and their results

u1 u2 u3 u4 u5 u6

u1 0 1 0 0 0 0

u2 0 0 1 0 0 0

u3 0 0 0 1 0 0

u4 0 0 0 0 1 0

u5 0 0 0 0 0 1

u6 0 0 0 0 0 0
(b) Binary predicates and their results

u1 ua u4 ub

x(u) 1 0 0 0

y(u) 0 0 1 0

rn,x (u) 1 1 1 1

rn,y (u) 0 0 1 1

cn (v) 0 0 0 0
(c) Unary predicates and their results

u1 ua u4 ub

u1 0
1

2
0 0

ua 0
1

2

1

2
0

u4 0 0 0
1

2

ub 0 0 0
1

2
(d) Binary predicates and their

results

Table 3.7.: process of linked list abstraction, the predicate set P from Table 3.6

3.4. Incremental Graph Drawing Algorithms

After the problem of interactions with the graph, the next step is how the position of the graph
nodes should be specified. Arranging positions of vertices and paths of edges is a basic prob-
lem in graph layout. We compared a force-directed layout algorithm with a hierarchical layout
algorithm and concluded that hierarchical layout is the most suitable style for our project. Fur-
ther more, to build up the “mental map” and minimize the cognitive distance between graphs,
the algorithm should change the graph incrementally and gradually. For our experiments, we
selected an existing dynamic hierarchical layout algorithm called DynaDAG. In the future, we
will study more refined algorithms.

The work of Dwyer et al. [Dwyer et al. 2009] has performed a comparison between user-
generated and automatic graph layouts using multi-touch interaction on a tabletop display. In
their experiment, users were asked to optimize the layout for aesthetics and analytical tasks of

29

3. Enabling Deep Program Interaction

a social network. Their results showed that users always tend to minimize the distance between
vertices which share similar properties and reduce crossings of edges to make relations more
straightforward.

From their results, we derive two criteria for static graph drawing: 1. few edge crossings; 2. Eu-
clidean distance between two vertices should be minimized. Two kinds of graph layout algo-
rithms are trying to optimize the graph following these criteria, discussed next.

Force-directed layout algorithm Force-directed layout algorithm (FD algorithm) is an
algorithm which physically simulates the distance between vertices by assigning forces among
the edges and vertices. The algorithm simply iterates until it finds the lowest energy. Typically,
an edge is treated as a spring, which maintains a certain distance between the source and target
vertices. It is widely used in infoVis for the following reason. At first, it can provide good
quality result, which guarantees uniform edge length and uniform vertex spread. Second, the
drawing process can be dynamic. Third, the algorithm can be highly parameterized through
modifying the force of individual edge and vertex.

However, in software visualization, FD algorithms are rarely used. Its advantages are based
on its high computational complexity. Generally, a typical FD algorithm has a running time
equivalent of O(n3). If a domain-specific constraint is already embedded in the graph, the
programmer also needs to encode this constraint in the parameter which causes an overhead in
implementation.

Hierarchical layout algorithm Hierarchical layout algorithm or layered graph drawing
algorithm is a type of graph drawing algorithm which draws vertices in horizontal layers with
the edges downwards. It was originally used for drawing DAGs (directed acyclic graphs). By
applying circle removal as a pre-processing stage, directed cyclic graph can be transferred to a
DAG. It was first developed by Sugiyama in the 1980s and became famous and broadly used
when GraphViz was developed[Ellson et al. 2004]. The heuristics of the hierarchical layout
algorithm are: 1. exposing layered structure; 2. preventing edge crossings and sharp bends;
3. shortening edges; 4. maintaining symmetry and balance.

A typical hierarchical layout algorithm has the following steps:

• Preprocessing. Cyclic graph will be transferred to acyclic graph. The backward edges
will be inverted.

• Ranking. Vertices are grouped into layers. Intuitively, a topological sorting can be ap-
plied. In GraphViz, it is treated as a linear programming problem. All connected vertices
should be vertically close. A Network Simplex Algorithm (NSA) is used to solve this
optimization problem.

• Cross minimization. Sorting is performed to reduce the crossing of edges between two
adjacent layers.

• Positioning. This can again be treated as a linear programming problem. All connected
vertices should be close horizontally.

• Edge drawing. Edges can be either drawn as straight lines or curves. In GraphViz, edges

30

3.4. Incremental Graph Drawing Algorithms

are drawn as splines to avoid overlapping.

The whole drawing process can be regarded as a global optimization algorithm. Every iso-
morphic graph corresponds to a unique drawing result. So it might be possible that a change
in a graph varies the drawing result a lot. For example, assigning a next pointer to null is a
common pointer manipulation. This operation can be described as cutting an edge in a graph.
Table 3.8 shows the difference between visualizing a graph using a static algorithm(GraphViz)
and a dynamic algorithm(DynaDAG). In Figure 3.8(a), five nodes are linked. The edge between
node4 and node5 is cut. Then the result is treated as an individual graph and repositioned by
GraphViz(Figure 3.8(b)). On the other hand, only an edge removal operation is processed in the
incremental algorithm, so the shape of the original graph remains(Figure 3.8(c)).

Before
After

GraphViz
incremental
algorithm

(a)

(b)

(c)

Table 3.8.: Drawing graphs using the GraphViz layout engine. Two graphs on the right side are derived
from the graph on the left side by deleting an edge between node4 and node5.

A sudden change in the graph will be visually displeasing to a programmer. Moreover, minimiz-
ing the change between two adjacent states can help building the user’s “mental map”. Previous
works [Misue et al. 1995] [Diehl and Görg 2002] showed that by forming a good mental map,
the user can comprehend the change between different states better. GraphViz and other static
hierarchical layout algorithms are not built for incremental graph drawing.

DynaDAG: Incremental hierarchical layout algorithm

In incremental or dynamic graph drawing problems, changes in the graph and its drawing of the
graph are possible by inserting, deleting, or modifying vertices and/or edges. FD algorithms
natively support dynamic graph drawing, since they involve an iterative updates in the drawing
process. For static hierarchical layout algorithms, an intuitive way to transfer a static algorithm
to a dynamic one is to apply constraints, which keep the unrelated parts of the graph steady and
only change the sibling vertices. Branke[Branke 2001] suggests two constraints:

31

3. Enabling Deep Program Interaction

• Ranking. The set of vertices belonging to the same layer should remain in the same layer.

• Ordering. Vertices in the same layer should remain in the same order.

However, if there is a limitation in drawing space, these constraints cannot be applied. Ver-
tices in the same layer cannot be distributed to the other layer, if the current layer is full. The
constraint should be designed as a compensation parameter in the optimization process. The
DynaDAG algorithm is the algorithm which uses this approach. It adds incremental drawing
features which accept operations:

{insert, delete,modify} × {vertex, edge}

Generally, DynaDAG uses a similar pipeline as GraphViz, which is1. preprocessing; 2. ranking;
3. ordering; 4. positioning; 5. edge drawing. It reuses the network simplex solver, which is used
for ranking and ordering in GraphViz. In addition, it adds constraints, which balances the
satiability and aesthetic criterion. The stability is archived through modifying two optimization
problems in the pipeline. Table 3.9 shows a comparison between these two problems, GraphViz
uses a global optimization, while DynaDAG optimizes, but also adds a penalty, which is derived
from the original graph.

GraphViz DynaDAG

min
∑

(u,v)∈E
ωgr(u, v)(ρ(u)− ρ(v)) min

(∑
(u,v)∈E

ωgr(u, v)(ρ(u)− ρ(v)) +
∑
u∈V

θ(u) · c(u)

)
with∀(u, v) ∈ E , ρ(u)− ρ(v) > δ(u, v) with ∀(u, v) ∈ E ,ρ(u)− ρ(v) > δ(u, v)

min
∑

(u,v)∈E
ωgp(u, v)|x(u)− x(v)| min

(∑
(u,v)∈E

, ωgp(u, v)|x(u)− x(v)|+
∑
u∈V

χ(u) · c(u)

)
with ∀(u, v) ∈ E, x(u)− x(v) > ρ(u, v) with∀(u, v) ∈ E , ρ(u)− ρ(v) > δ(u, v)

Table 3.9.: Objectives and constraints in GraphViz and DynaDAG; the linear programming problems
for the Ranking process are in the second row; the linear programming problems for the
Ordering process are in the third row.

DynaDAG maintains an auxiliary graph CG whose nodes act as variables and edges act as
constraints. The downward edges are denoted as strong edges, while unconstrained edges are
weak edges. Strong edges and weak edges which point downwards share a normal weight
function ωgr(e). When a weak edge is pointing upward or parallel to the layer, the weight
function is ω′

gr(e), which contains a high penalty. Like GraphViz, DynaDAG uses a network
simplex solver to solve the integer programming problem. The solver could not support stability
intrinsically. To compensate, additional variables and constraints are added. This is the key trick
which helps to reduce the gap between two states.

According to the optimization problems(Table 3.9), the balance between stability and optimiza-
tion can be tuned by adjusting θ and χ. Apart from the ability to maintain stability, the user
can easily adjust the size of objects in the graph as well as the vertical and horizontal separation

32

3.4. Incremental Graph Drawing Algorithms

between nodes. In the performance perspective, the complexity of a network simplex process is
O(IV E). Although I is not polynomial, it is close to linear in practise. Cross minimization has
complexity of O(I

′
V E), where I is a small predefined constant. In the edge drawing process,

complexity is up to O(V 3), but it is close to O(V 2) in practice. However, in the implementation
process, we did not use the edge routing from DynaDAG, as instead we draw lines directly
between adjacent nodes.

33

3. Enabling Deep Program Interaction

34

4
Implementation

In this chapter, we are going to describe the implementation process and the design of basic
components. We first give a global view of the application’s client-server architectures. And
then, we mentioned the design of user interface of the frontend application. Next, we are going
to describe the system from top to down. In the frontend layer, we show the graph draw-
ing framework, in which we deliver graph visualization, layout and manipulation components.
Meanwhile, we briefly mentioned two software prototypes based on different graph visualiza-
tion frameworks. Close behind is the communication protocol, which provides a low coupling
relation with the backend. Last but not least, the debug plug-in in Eclipse acts as the backend,
which captures heap information when a breakpoint is hit and send incremental updates of the
concrete heap to clients.

4.1. Architecture of Application

Based on the design requirements, we address three important aspects in the implementation:
Pen and touch interaction, High coherent components and Reusable components. In the
first stage, we considered to build an Eclipse plug-in application, which includes all compo-
nents. The advantage is that communication between graphical frontend and backend can be
easily leveraged by intra-process communication in Java. However, since Java SWT uses native
UI elements, it may not support every behavior on all systems. The pen and touch support for
Windows is not sufficient for building the frontend. It requires a lot effort before getting a fluid
pen and touch interaction. A separation of frontend and backend is the best solution in this sce-
nario. Then, the component for inter-process communication is an indispensable layer between
frontend and backend. The hierarchy is defined in Figure 4.1. The relation between different
components are illustrated as the sequence diagram in Figure 4.2.

35

4. Implementation

Figure 4.1.: Architecture of HeapVision

Figure 4.2.: Interactions between different components. Figure A.1 shows a detailed sequence diagram.

From right to left in the sequence diagram, Eclipse acts as a portal towards the virtual machine.
User can either perform debug operations, such as step over,step in and continue, through the
frontend or directly through the control panel of Eclipse. The Eclipse plugin acts as a backend
and uses JDI(Java Debug Interface) to communicate with the virtual machine. When a break-
point is hit, the backend traverses the heap from local variables in the top stack frame. During
the traversal, information is collected to build a concrete heap graph. If a client exists, the
backend will broadcast this information. Finally, the frontend parses the graph information and
render it on screen. Then, the user can interact with the graph.

4.2. User Interface Design

Besides the current graph viewer, a code viewer, a historical graphs’ viewer and a previous
graph viewer are built to assist the debugging experience.

• Historical graphs viewer is a collection of all the previous states of graph.(Part a in Fig.
4.3) Graphs which are captured in the same line of code are stored in the same horizontal
ListView. Listviews are organized sequentially in a vertical ListView. User can retrieve

36

4.3. Graph Drawing Framework

Figure 4.3.: User interface design of the frontend application

information in two dimensions. In horizontal direction, user can see how data is changed
in the same position of the program. In vertical direction, user can see how data is changed
in the control flow.

• Code viewer is the viewer for the debugging file.(Part b in Fig. 4.3) AvalonEdit1 is used
as the text viewer component. It offers all necessary features for building a code editor,
including syntax highlighting, auto completion and grammer checking.

• Previous graph viewer is the view for a previous state of graph.(Part c in Fig. 4.3) It
offers a detail view for a previous graph snapshot. User can drag a thumbnail from the
historical graphs viewer and drop it on the viewer. Then, the graph data structure will be
used for re-rendering.

• Current graph viewer is the view for visualization and manipulation of the current
state.(Part d in Fig. 4.3)It will be further described in Section 4.3.

• Control panel is for calling basic debug operations.(Part e in Fig. 4.3)They are going to
be mentioned in Section 4.4.

• Mapping view offers a visual indication for the ralated graphs and lines of source code.(Part
f in Fig. 4.3) We insert one panel prior to the view of line numbers in AvalonEdit. It sim-
ply draws strings between the lines of code which graph snapshot(s) is available and their
corresponding graphs. These strings will be redrawn whenever the viewport is changed
in either the code viewer or the historical graphs viewer.

4.3. Graph Drawing Framework

As mentioned above, providing a fluid pen and touch interaction upon the graph visualization
is one of the important aspects of implementation. To achieve this goal, we seperate the imple-

1AvalonEdit,https://github.com/icsharpcode/SharpDevelop/wiki/AvalonEdit

37

4. Implementation

mentation into a few tasks:

• Graph visualization. Find an existing graph drawing framework, which can provide ba-
sic interactions, like resizing and repositioning, as well as customizable graph rendering.

• Graph layout algorithm. Find an existing hierarchical graph layout algorithm, which
can draw graph incrementally and ideally maintain the previous manual changes in dif-
ferent levels.

• Graph interaction. Extend the graph drawing framework and support the provided in-
teractions.

4.3.1. Graph visualization

A comparison between different graph drawing frameworks based on different GUI frameworks
is given in the first place.

Name Language GUI framework Purpose

Prefuse
[Heer et al. 2005]

Java Swing/AWT a stand-alone dynamic visualiza-
tion framework

JUNG1 Java Swing/AWT2
an universal framework for mod-
eling, analysis, and visualization
graph data

Zest3 Java SWT4 a graph drawing framework for
Eclipse plug-in

Graph#5 C# WPF6, WinForm7 a simple graph layout framework
in WPF

GraphX8 C# WPF, WinForm An extended version of Graph#

GLEE(MSAGL)9 C# WPF, WinForm .NET tool for graph layout and
viewing

Flare10 ActionScript Flash an ActionScript libary for web-
based visualizations in Flash

1Java Universal Network/Graph [O′Madadhain et al. 2005]
2Abstract Window Toolkit
3Eclipse Zest, http://www.eclipse.org/gef/zest/
4Standard Widget Toolkit, http://www.eclipse.org/swt/
5GraphSharp, http://graphsharp.codeplex.com/
6Windows Presentation Foundation, http://msdn.microsoft.com/en-us/library/ms754130(v=vs.110).aspx
7Windows Form, http://msdn.microsoft.com/en-us/library/dd30h2yb(v=vs.110).aspx
8GraphX, https://graphx.codeplex.com/
9GLEE(MSAGL), http://research.microsoft.com/en-us/projects/msagl/default.aspx

10Flare, http://flare.prefuse.org/

38

4.3. Graph Drawing Framework

D3
[Bostock et al. 2011]

JavaScript HTML
a novel representation-
transparent approach to vi-
sualization for the web

Table 4.1.: Comparison between existing graph drawing frameworks

Software prototypes

To compare different frameworks in a practical level, we have implemented three software
prototypes. In the beginning, in order to simplify the communication between frontend and
backend, two Eclipse plugins were developed. However, the support for pen and touch input in
Java is not sufficient. Then we splitted the application into three components and implemented
the frontend based on WPF.

Prefuse based prototype At first, we have tried to use Prefuse to build a graph visualiza-
tion plugin in Eclipse. Prefuse [Heer et al. 2005] is one of the most famous and successful in-
formation visualization frameworks in both infovis and HCI community. Many domain-specific
visualization tasks can be solved within one stand-alone solution. We have tried to migrate this
Swing/AWT based framework to Eclipse, which is a complete SWT based environment. To
offer an aesthetic appearance of the graph, we have built a wrapper of GraphViz. However, al-
though it does work with the help of the SWT/AWT Bridge, it keeps redrawing the whole graph
whenever resizing or repositioning happens, which introduce a flickering effect on the graph.
Meanwhile, without a native support for pen and touch events, both the event handling pipeline
and UI elements must be varied.

Zest based prototype We built a second prototype based on Eclipse Zest. Zest is a com-
ponent of the Graphical Editing Framework(GEF)1, which is a set of visualization components
built for Eclipse. Its library is based on SWT, so it avoids the compatibility problem between
AWT and SWT. Moreover, SWT offers more support for touch interface. However, the touch
events and pen events are still mixed in SWT, since all events are retrieved from the operating
system. In Windows, touch and pen events are grounded as a same type in the event loop. It
is possible to separate them only using individual touch and pen events handlers. It is again
introducing an overhead in implementation. So, a GUI framework which offers a out-of-box
pen and touch support and flexible user interface configuration is considered at the first place in
the actual implementation.

GraphX based prototype Finally, we have abandoned to build an Eclipse plug-in, which
is written in Java. A separate frontend application is built for graph visualization and manipu-
lation. In Windows, WPF is a unparallel framework for building rich client-side application. It
has established a good support for pen and touch interactions. Besides multiple input devices’

1http://www.eclipse.org/gef/

39

4. Implementation

(a) Software prototype of an Eclipse plug-in for data
structure visualization

(b) A LinkedList with ten entries

Figure 4.4.: Software prototype using Prefuse framework

event handling, internal gesture and stroke recognizers will save efforts in the future develop-
ment. GraphX and Graph# are two candidates based on WPF. They share a lot of common
features, including customizable UI elements, extensible graph layout algorithms, zoom, drag
and pan interactions. One advantage makes GraphX prior to Graph# is that it is a recent over-
ride based on Graph#. The project is being maintaining. So GraphX becomes the final choice
for the graph visualization framework.

GraphX takes advantage of two existing building blocks, which are QuickGraph and Graph#.
QuickGraph[Halleux 2012] provides generic directed and undirected graph data strucutures and
graph algorithms for .NET framework. Its graph data structure is used in both GraphX and
Graph#. Graph# provides various implementations of graph layout algorithms, including
force-directed layout algorithms, hierarchical layout algorithms. In addition, overlapping re-
moval algorithms[Dwyer et al. 2006] and edge routing algorithms[Lozano-Pérez and Wesley 1979]
are provided to ease the graph visualization. GraphX is responsible for rendering and handling
control events. Since WPF is used as the UI stack, a flexible support for interface design is out
of the box.

40

4.3. Graph Drawing Framework

4.3.2. Implementation of graph layout algorithm

In the previous section, we have briefly compared different layout algorithms, and concluded
that hierarchical graph is the most suitable graph drawing style for visualizing the heap graph.
In this section, the implementation process for migrating an existing incremental graph layout
engine DynaGraph [Ellson et al. 2004] will be described. A graph layout engine is a program
which takes a graph G = 〈V × E〉 or changes of a graph ∆G as input, and returns the coordi-
nates of nodes and paths of edges. The difference between DynaGraph and GraphViz is that Dy-
naGraph tries to balance the optimality of the layout and the stability of an incremental update
subject its last state. DynaGraph is written C\C++ and offers three interfaces, a command-line
interface which receives specific graph drawing commands, a COM component which enables
language-independent communication and a set of C\C++ API. Since the command-line inter-
face can be directly access via the executable of DynaGraph, it has been tried at first. However,
the commands only accept operations {insert, delete,modify} × {node, edge}, which means
that every insertion, deletion and modification of an node and edge requires a recalculation.
Meanwhile, generating and parsing the commands take time in the process. The inefficiency of
this approach makes this approach abandoned in our scenario. Finally, we make use of Dyna-
Graph via a C++\CLI wrapper, which facilitates the communication between C\C++ and .Net
environment.

The input and output interfaces can be defined. The layout engine receives graph update infor-
mation ∆G = 〈V+, V−, E+, E−〉 and returns current coordinates of all nodes P . Besides the
incremental update, DynaGraph is able to receive a complete graph and return an optimal hier-
archical layout. Actually, it can handle different shapes and sizes of nodes as well as provide
spline curves for edges . We fix the visual settings to avoid an overhead in implementation.

Value Explanation

G = 〈V × E〉 current graph

G
′
=
〈
V

′ × E ′〉 last graph

V+ = V \
(
V ∩ V ′) inserted nodes

V− = V
′ \
(
V ∩ V ′) deleted nodes

E+ = E \
(
E ∩ E ′) inserted edges

E− = E
′ \
(
E ∩ E ′) deleted edges

(a) Input of the incremental graph layout engine

Value Explanation

u, v, w, ... ∈ V node

e, f, ... ∈ E edge

X (v),Y (v) position of node
center

{(X (v) , Y (v)) |∀v ∈ V } Coordinates of all
nodes

(b) Output of the incremental graph layout engine

Table 4.2.: Input and output of the incremental graph layout engine

41

4. Implementation

4.3.3. Graph Interaction

As mentioned in Section 3.2, four types of graph interactions are supported. For view related
interactions, resizing and repositioning of graph are supported only through mouse input. Sup-
porting gestures is not a big change in the architecture. However, to support the pen-based
interactions, we need to modify the framework. Meanwhile, we built animations to narrow the
gap between the changes. Therefore, three main tasks will be addressed here.

• InkPresenter insertion. An InkPresenter should be added on top of the graph drawing
layer to receive and render pen strokes.

• Abstraction and concretization. We implement vertex contraction(Alg. 3.1) and vertex
cleaving(Alg. 3.2) algorithms to achieve the abstraction and concretization operations.

• Inter-frame animation. Animations are built to avoid sudden changes between states.

InkPresenter insertion

Pen support can be achieved either directly from the input device or from supporting UI frame-
work. Because of the good support for pen and touch interaction, we directly fetch the pen
events from WPF. Two widgets support visualizing and collecting digital ink. InkPresenter
is the widget which can be covered on an instance of Panel class. The modification of the
application structure is shown in Figure 4.5.

(a) Original hierarchy of UI elements in
GraphX. ZoomBox is on the top. It is
responsible for scaling and translating the
GraphArea.

(b) Current hierarchy of UI elements in HeapVision. An InkP-
resenter is added on top of the GraphArea. It renders all
digital inks. The selected area is shown on an AdonerLayer
of ZoomBox.

Figure 4.5.: Comparison between original and current graph rendering layers. Fig. a is the original layer,
while Fig. b is the current one.

InkPresenter keeps all strokes in a stroke collection. Every stroke is made up of a continuous
series of StylusPoint. Programmer can customize the drawing attributes of the InkPresenter
to change the strokes’ appearance. On the other hand, a separate thread for stroke rendering
is created to guarantee a quick response. All inks in a live stroke will be rendered first by this
thread. Once the stroke is finished, it can be collected for a further purpose, such as stroke
recognition and text recognition. In our scenario, the stroke will be used to form a selection
boundary. Then a hit-test will be performed on every node in the view to judge whether it is
being selected. Since different coordinate systems in digital ink layer and graph drawing layer,
a coordinate translation is necessary.

42

4.3. Graph Drawing Framework

Inter-frame animations

As mentioned in the previous section, animation plays an important role in bridging two states.
Especially when the shapes of two states look like the same, an animation will help a lot to build
mental maps of information [Bederson and Boltman 1999]. An animation can be formally de-
fine as a tuple of original and target position animation =

〈
X
(
v

′)
, Y
(
v

′)
, X (v,) , Y (v,)

〉
.

We list five situations in which animation will happen. WPF provides a good support for ani-
mation of heterogeneous properties, including color as well as affine transformations. We use
DoubleAnimation to leverage color, opacity and position. Currently, the node moves from
source to target in a line. Other nodes are possible to be occluded by the moving node. To ease
this shortcoming, the node should follow a curved path to avoid overlapping.

Value Explanation Animation

〈0, 0, X (v) , Y (v)〉 creation of node

〈
X
(
v

′)
, Y
(
v

′)
, 0, 0

〉
deletion of node

〈
X
(
v

′)
, Y
(
v

′)
, X
(
v

′)
, Y
(
v

′)〉 Concrete node’s
movement

〈
X
(
v

′)
, Y
(
v

′)
, X
(
αN

(
v

′))
, Y
(
αN

(
v

′))〉 Concrete to ab-
stract movement

〈
X
(
αN

(
v

′))
, Y
(
αN

(
v

′))
, X
(
v

′)
, Y
(
v

′)〉 Abstract to con-
crete movement

Table 4.3.: Five types of node animations in HeapVision

43

4. Implementation

4.4. Custom Protocal for Communication

All basic information we need for visualization will be wrapped using XML format. A socket-
based component will be used for this bi-directional communication. Since this application
is mainly used locally, we do not consider the potential delay as well as the possibility of
lost package. Compared to JDWP(Java Debug Wire Protocol)1, our protocol offers much less
information and features. However, using JDWP is not feasible in this case. JDWP is the
protocol used for communication between a debugger and the JVM. JDI offers higher-level APIs
on top of the JDWP, which makes JDI a more appropriate and usable interface for debugging
tools. A more detailed introduction about the JDI and JDWP will be presented in section . If we
are going to use JDWP between frontend and JVM, a C# based parser is necessary for parsing
the complex messages. It again leads to an overhead in implementation.

Three different types of messages are used during the communication. Their usages and ele-
ments are as below. In words, Graph message is sent from backend to frontend when the first
breakpoint is hit or when a client is connected to a server while there is a running debugging
process. It carries a concrete heap graph. Update message is as well from backend side and
delivers the incremental update information of the graph. Control message will be either sent
from backend or frontend. The message from frontend is to control debugging process. On the
contrary, it carries breakpoint information and running status from backend.

Notation Explanation

LV ar, LV ar
′ current local variables and local

variables at previous breakpoint

LV ar+ = LV ar \
(
LV ar ∩ LV ar′

)
new local variables

LV ar− = LV ar
′ \
(
LV ar ∩ LV ars′

)
invalid local variables

β,BP the current breakpoint, breakpoints
in the document

start, stop debugging start and stop events

step_in, stop_over step into the statement, step over a
statement

continue continue execution until the next
breakpoint is hit

Table 4.4.: Elements in the custom protocol

1Java Debug Wire Protocol, http://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdwp-spec.html

44

4.5. Debug Plugin

Type Explanation Elements Direction

Graph the initial heap graph 〈V × E〉 ∪ LV ar back to front

Update heap graph update {V+, V−} ∪ {E+, E−} ∪ {LV ar+, LV ar−} back to front

Control debug events
BP ∪ {β} ∪ {start, stop} back to front

{step_over, step_into, continue} front to back

Table 4.5.: Messages of the custom protocol for communication between backend and frontend

4.5. Debug Plugin

In this section, the implementation of debug plugin will be described. At first, JDI(Java Debug
Interface) will be described. It models the Java debugging environment and provide a set of
elaborated APIs to build a debugger. Second, the algorithm for querying the heap from stack
pointers will be illustrated. By starting, we have a brief walkthrough of the control-flow in
handling the event when a breakpoint is hit(Figure 4.7). In words, the top stack frame is given
as input when a breakpoint is hit. Every local variable is an entry of a traversal. After combining
the traversal results, the concrete heap graph is constructed. If it is the first graph, it will be sent
directly to all clients. Otherwise, the update of graph and local variables is sent.

4.5.1. Java Debug Interface

At first, we are going to describe JPDA(Java Platform Debugger Architecture), since JDI is
one of its interfaces. JPDA is a multi-layered debugging architecture which enables building
Java debuggers which run across platforms, virtual machine implementation and JDK versions.
Besides JDI, the other two interfaces are JVM TI(Java Virtual Machine Tools Interface) and
JDWP(Java Debug Wire Protocol). JVM TI defines the services as virtual machine must pro-
vide for debugging. It is usually used for building an agent, which collects information directly
in virtual machine at run-time for the purpose of profiling. JDWP defines the format information
between the virtual machine and debugger, which is language independent. JDI defines infor-
mation and communications at a user code level. Through implementing the JDI, a common
java debugger frontend can be built.

Important data types in JDI are:

• IStackFrame refers to the stack frame in a current running thread, get stack pointers,
locate code position in source file and source file’s location.

• IVariable refers to any variable in the source code, such as a stack pointer, a field variable
and an entry of an array.

• IValue refers to any value, such as primitives as well as objects.

• IBreakpoint refers to any breakpoint in the project, such as line breakpoint, method

45

4. Implementation

breakpoint and parameter watchpoint.

• ObjectReferece acts as a mirror of an actual object in the program.

Debugger is able to manipulate values and call methods during during debugging. It enables
the possibility for user to change values directly in the graphical frontend. However, every
invocation leads to an update of the stack frame, which makes it impossible to invoke methods
during the traversal.

Figure 4.6.: Class diagram of debug models in JDI
Figure 4.7.: Workflow of the backend when a break-

point is hit

4.5.2. Heap traversal algorithm

Based on the user-level APIs provided by JDI, a graph traversal algorithm applies to achieve
the heap graph. We basically use a depth-first-search algorithm to traverse the heap from each
local variable. During the traversal, we explicitly filter out static field variables, since they are
shared by all instances and usually will not be modified in its lifetime. We maintain a hash set
to store the visited objects. The entry is the object ID, which is explicitly assigned by the JVM
TI agent. It will not change in its life cycle.

46

4.5. Debug Plugin

1 Set oldLVar
2 Graph oldGraph
3 Set currentLVar
4 Graph currentGraph
5

6 void onBreakpointHit(StackFrame frame)
7 {
8 oldGraph = currentGraph.clone()
9 currentGraph.clear()

10 oldLVar←− currentLVar
11 stackPointers←− frame.vars
12 for sPointers in frame.vars
13 visit(NULL, sPointers)
14

15 4G←− compareGraph(oldGraph, currentGraph)
16 4LV ar ←− compareStackPointer(oldLVar, currentLVar)
17 onChange(4G,4LV ar)
18 }
19

20 void visit(IVar pVar, IVar cVar)
21 {
22 IVal cVal←− cVar.value
23 if shouldFilter(cVal) ∧ isVisited(cVal) then
24 Node node←− createNode(cVar)
25 graph.addNode(node)
26 setVisit(cVal)
27 foreach childVar in cVal.vars
28 visit(cVar, childVar)
29

30 if parent 6= NULL
31 Edge edge←− createEdge(parent, child)
32 graph.addEdge(edge)
33 }

Listing 4.1: Depth-first-search heap traversal algorithm

47

4. Implementation

48

5
Evaluation

Evaluation of the application will be separated into two parts. At first, we will test the backend
and see how is the performance when it is dealing different sizes of heaps. Second, we need to
perform user study to verify that HeapVision helps user understanding program behavior and
also find potential bugs in the program.

5.1. Experiment: Performance of basic algorithms

Due to the complex structure in the debugger hierarchy, it is hard to measure the computation
complexity preemptively. We evaluate the performance by slicing the application into backend
and frontend. The purpose for this evaluation is to see the capacity of algorithms in heap data
retrieval, graph data processing and abstraction. We do not evaluate the algorithms based on
any specific test programs. Instead, we see how they perform on specific data structures, which
are a single linked list and double linked list with different lengths.

Back-end At first, we use a depth-first-search(DFS) algorithm to traverse the heap from stack
pointers. The computation complexity for a typical DFS algorithm is O(|E|). However, in JDI,
the memory information is retrieved on-demand. And the query process includes three main
steps: 1. JDI method invoking to JDWP message translation; 2. JDWP message to native JVMTI
functions translation; 3. virtual machine level operation. It is clear that heap traversal using
JDI should consume more time than a normal graph traversal. Second, in the communication
component, we transform graph data structures to XML format, and send the serialized XML
data using socket. We evaluate the performance of this communication architecture.

49

5. Evaluation

Front-end At first, we examine the capacity for parsing XML files in C#. Second, we
evaluate the abstraction algorithm using the predefined abstraction predicates in Table 3.6.

5.1.1. Test program and method

We adopt two basic data structures, which are a single linked list, which has a primitive integer
as value, and a double linked list, which is provided in the java.util package. It is easy to
calculate the amount of vertices and edges. Meanwhile, the length of a list is the maximum
depth of the spanning tree. We need to find the maximum depth which will not cause a stack
overflow error.

To avoid interference, we need to make sure the top stack frame empty except the test data.
We can simply use a method as stated in 5.1. A breakpoint is put in line 3, which allows the
backend to visit from the head of the linked list. Meanwhile, we set timestamps in the source
code and collect durations of execution.

1 void foo(List list){
2 System.out.println();
3 }

Listing 5.1: Example of the test program

5.1.2. Results and discussion

backend frontend

length traversal XML XML Abstraction

SLL DLL SLL DLL SLL DLL SLL DLL

10 22.1 79.4 1.8 3 5.3 4 62.5 62.25

20 44.4 151.1 1.9 5.4 5 7.75 47 62.5

50 84.6 279 2.6 9.5 15.7 12 57.7 67.3

100 160.6 540.1 7 14.9 10.7 16 52.3 84.6

200 293.6 1013.2 11.43 31.4 15.7 23.75 73 172

500 704.6 2500.7 23.33 94.8 26.3 78 156.3 661.3

1000 1378 5063.6 61.42 179.6 93.7 285 495 2414

Table 5.1.: Execution time in millisecond of basic algorithms. SLL stands for single linked list. DLL
stands for double linked list.

50

5.1. Experiment: Performance of basic algorithms

We have used different lengths of single and double linked list for the evaluation. A summary
in Table 5.1 shows the execution time of different components. The heap traversal component
takes the longest time in the backend side, while the abstraction component consumes the most
in the front end side. Basically, we have three foundings in the experiment. At first, a stack
overflow error triggers when the list is bigger than 1300. To overcome this problem, we need to
modify the recursive DFS algorithm to an iterative one. Second, the time scales exactly along
with the amount of edges in the backend. The complexity of blur process in TVLA is based
on the predicate set. Currently, the best case is O(n), with the situation only a local variable is
pointing to the linked list. The worse case is O(n2), with the situation that every node in the
linked list is pointed by a local variable. The complexity of examining a rn,x (v) predicate is
O(n).

(a) Execution time of heap traversal (b) Execution time of graph data serializa-
tion\transmission

Figure 5.1.: Execution time of heap traversal and graph data serialization\transmission in the backend

(a) Execution time of graph data deserialization (b) Execution time of graph abtraction using TVLA’s
blur process

Figure 5.2.: Execution time of graph data deserialization and TVLA’s blur process in the front end

Finally, we produce a summation of the time spent on the visualization and compare these re-
sults to three response time limits[Miller 1968], which are widely used in usability engineering.
Three response time limits are used for the comparison, 1. 0.1 second limit for having user’s
feeling of latency; 2. 1 second limit for making user’s flow of thought to stay uninterrupted;3. 10
seconds limit for keeping user’s patience . When the size of nodes in the linked list is less than

51

5. Evaluation

100, computations consume less than 1 second, which cost a sensible delay, but will not influ-
ence the user’s flow of thought. For algorithm problems, the size of test data is not necessary
to be large. So, we concluded that the processing time of the intermediate graph data does not
cause a overhead. It is feasible to bridge the backend and frontend using the custom protocol.

Figure 5.3.: Summation of the execution time used for producing a visualization for the linked list

5.2. User evaluation

Evaluating a tool for program comprehension and debugging is known as a systematic prob-
lem. At first, the efficiency in debugging is based on a user’s understanding of the current pro-
gram behavior. Skilled and novice programmers have various efficiency in debugging, which
is caused by the difference in comprehension level of the program[Gugerty and Olson 1986].
That is to say, we need to first prove our tool facilitates program comprehension. In the second
step, we can verify our hypothesis that user would be able to detect and correct logical bugs
more accurately and efficiently.

5.2.1. Overview of program comprehension evaluation

Understanding how users comprehend a program helps us to build a evaluation for program
comprehension. A mental model of programmers can abstract the program comprehension pro-
cess in a high level. This research dates back 1970s, when Shneiderman mentioned that the syn-
tax and semantic of a program can be separated in a program comprehension task. The syntax is
programming language dependent, while the semantic is independent. We assume that the user
have already had a good command of the syntax of the certain language, and what they learn
from an algorithm is the semantic. Later, researchers have come up with more detailed models.
They agree that comprehension happens either top-down, bottom-up, or using a combination of
both. The top-down model from Soloway and Ehrlich[Soloway and Ehrlich 1984] typically ap-
plies when the code base is large. Programmers decompose the code into fragment of a similar
type. Then programmers establish relations between the new code and the familiar code. The

52

5.2. User evaluation

bottom-up model from Pennington[Pennington 1987] describe how a user comprehends a pro-
gram when he has no former experience of it. The User often subconsciously uses three program
abstractions to represent programs and to assist program comprehension[Pennington 1987].
They are data flow abstraction,control flow abstractions and function abstractions. We con-
cludes these three aspects as the answers three important questions during debugging process.

• What Users need to be aware of the current content or input in the program. These con-
tents are data structures, which represent information of these contents in a different do-
main.

• How How questions are about the control-flow of a program. It reflects the execution
sequence and allows a user to perceive how the program changes its content.

• Why Goal of a program or goals of subroutines should be clarified.

Referring to the engagement level by Naps[Naps et al. 2002], the ability of answering user’s
questions in the current context is one of the judge criterion of a good program visualiza-
tion system. Our hypothesis is that our application can show data structures(what) and the
changes(how) better than the traditional interface in IDE. To verify the former one, we examine
two assumptions: 1. the graphical syntax is expressive; 2. the navigation is efficient. For the
latter one, our assumption is that users can understand the pointer manipulation process from
the graphical symbols and the animated transitions.

Our application is designed for heap-manipulation-programs, which mainly deals with linked-
list and tree data structures. Since the prototype is not good enough to perform a test based
on user’s daily task, we need to choose specific programs fragments as debugees to perform
the debugging evaluation. However, in a debugging process, programmer and debugee are two
independent variables. To compare the efficiency when different debugging tools are used, we
need to make sure the participants are fairly in a same level and the debugees are in a same
level of difficulty. For the former part, it is not difficult to find novice users which are in a same
knowledge level, while it is more difficult to find programmers who share a similar level. For
the second part, it is hard to measure the comprehension difficulty or even code quality of a
program. Since readability, efficiency as well the goals of different program fragments can not
be the same, it is impossible to come up with programs with same difficulty. It is also agreed
by Shneiderman in his evaluation about program quality and comprehension—"Measuring pro-
gram complexity or quality is a difficult task for which there are no widely accepted techniques.
Similarly, the measurement of a subject’s comprehension of a given program is equally fraught
with difficulties."[Shneiderman 1977]

To offer a test set which share similar properties, we choose three algorithms which are based
on basic single-linked list manipulation techniques. They are a linked list traversal algorithm, a
linked list reversal algorithm and a cycle-detection algorithm.

5.2.2. Initial questions

As we have mentioned in the previous two sections, the questions we want to verify can be
summarized as below:

53

5. Evaluation

• Are the graphical symbols and animations easy to understand?

• Is the symbols and animations reflecting the execution process of the algorithm?

• Does the execution process show the trace of potential bugs?

5.2.3. Methodology

To verify the first question, we conducted a qualitative evaluation using an online survey. For
the first question, we first showed a guide of the symbols and asked the participants whether the
symbols were conventional and intuitive. For the second question, we demonstrated the visu-
alization of a linked list reversal algorithm and asked the user what specific program behavior
they could find from the execution process. For the last question, we showed the source code
of a cycle detection algorithm and a key state of the running process. The test algorithm can
verify a linked list has cycle, while it triggers a runtime exception when the linked list has no
cycle. Since we need to eliminate the influence which was caused by the name of variables and
method signature, we have renamed the variables, so that the participants could not easily find
the bug by guessing. Finally, participants can express their attitudes towards our application
and leave comments.

5.2.4. Results

We spreaded our online survey via Facebook in the group of students from master program of
media informatics in RWTH Aachen University. The survey was open for 72 hours. We have
received 16 replies. More than half of the participants have more than 2 years’ experience of
programming. And all of them are proficient in at least one object-oriented language. In the
two methods about the strategy to comprehend a program, participants all agreed that it is easier
to comprehend a program by running and debugging it(37.5% agree, 62.5 % strongly agree).
However, currently they still comprehend a program by reading the source code and UML
diagrams(25% neutral, 37.5% agree, 18.75% strongly agree). After we showed an introduction
about the graphical symbols, half the participants agree that our representation is intuitive. It
goes the same in the next two questions. More than half of participants think the animation
can demonstrate the update of a pointer. Q.8 is based on a linked list reversal algorithm. We
showed the animation instead of the source code and asked the participants to infer the intent
of algorithm. In the animation, participants were supposed to see that the nodes in a chain
were being moved to another chain. In the end, the head of the new list was returned. Only
four of the participants have noticed that the last node was returned. And none of them found
that the whole list has been reversed. Q.9 is based on a classic linked list’s cycle detection
algorithm [Floyd 1967]. The question is for testing whether the interface can help participant
infer the bug by just reading the source code and see a snapshot of the program state(Fig.??). We
renamed the method and variables and showed a snapshot of a running state of the algorithm
as well as the source code. However, half of the participants chose I didn’t understand the
question or the graph, so I didn’t solve it. Only two of them found bug of the program. These
two participants said that they answer the question by combining the source code and the graph
in the follow-up question.

54

5.3. Discussion

Index Question

Q.3
I understand the source code by read-
ing the source code, UML diagrams stati-
cally.

Q.4 By running and debugging a program, I
can comprehend the source code better.

Q.5 The graphical symbols are easy to under-
stand.

Q.6 The animation above can represent the
program state intuitively.

Q.7 The animation above can represent the
program state intuitively.

Q.12 I find the animation is helpful.

Q.13 I find the application easy to understand.

Q.14 I think that I would like to use this appli-
cation when debugging a linked list.

Figure 5.4.: Results of qualitative questions in the online survey

Participants have shown conservative feedback in Q.12 to Q.14. Less than half of them agree
that the animation is helpful(Q.12) and the application is intuitive(Q.13). Eventually, they gave
good feedback in Q.14. More than half of them will use this tool in the future. In the comment
section, one participant expressed that the animation could not meaningfully convey the runtime
status and the intent of a program. It could only act as an auxiliary view in a debugging process.
One participant criticized the font size. It was too small, while the node size was comparatively
big.

5.3. Discussion

In the user evaluation, participants generally liked the concept and consider the visualization
and animation intuitive. However, the result shows that a user could not get the intent of the
program by just watching its animation. It verifies the theory of Naps[Naps et al. 2002], that a
good program visualization system should be highly interactive. In the survey, we found that
participants were able to get the status of the program, but they would easily misinterpret the
intent, which should be inferred from a series of status. We assume that it does not make sense
to play the complete process of an algorithm. Instead, if a user can understand a few important

55

5. Evaluation

graphical frames, he is already getting meaningful information from the visualization.

In the user evaluation part, we did not manage to test the actual performance of the interface.
We just managed to evaluate that our visualization is meaningful and intuitive, but we could not
widely test the application. Since program comprehension involves complex cognitive process,
it is imprecise to just the effectiveness by just using a few controlled experiments. It is nec-
essary to conduct a qualitative evaluation based on a complete implementation. For example,
the evaluation of Debugger Canvas[DeLine et al. 2012] has proved its utility as a debugger’s
frontend.

Further evaluations should focus on the following aspects:

• Efficiency of graph interactions. We assume that our tool is efficient in visualizing recur-
sive data structures. A controlled experiment can be conducted to compare the perfor-
mance of value inspection using HeapVision and traditional IDE’s variable view.

• Layout algorithms. In hierarchical graph layout algorithm, the heuristics for optimization
is based on the fact that hierarchical information is embedded in the graph. When recur-
sive data structures are pervasive in a heap graph, it is not appropriate to use this type of
algorithm. Therefore, conducting qualitative user evaluation to compare different layout
algorithms is a efficient way to access user’s preference.

• Usability of program traces. Visualizing the trace of a running algorithm to improve pro-
gram comprehension has been explored by Stasko and Kehoe[Stasko and Kraemer 1993]
[KEHOE et al. 2001]. Trace visualization is built in HeapVision as well, we did not eval-
uate the usability of the trace view. This evaluation remains as a future study.

5.4. Limitations

Two aspects of limitations were found in the evaluation and in the design process of the evalu-
ation. At first, in the visualization aspect, we could only effectively visualize limited amount of
data structures, due to the stack overflow issue in the backend. Our experiments only focused
on two types of data structures. In fact, they are just the tip of an iceberg. Many actual algo-
rithms and data structures have not been tested. We have tried to visualize the in-order traversal
algorithm in a tree. Nodes were rapidly concretized and abstracted, which confused the user.
For the first problem, it is possible to leverage by modifying the heap traversal algorithm. For
the second problem, we need to improve the abstraction technique and layout algorithm, which
are the fundamental problems in the whole thesis.

56

6
Conclusion and Future Work

In this thesis, we have provided a solution for interactive debugging by combining pen and
touch interaction in human computer interaction and shape analysis technique in program anal-
ysis. We delivered a tool, which can visualize the heap memory at runtime. In addition, by
adopting the abstraction technique from TVLA[Sagiv et al. 2002] [Lev-Ami and Sagiv 2000],
data structures can be abstracted as summaries. An user is able to interact with the visualization
by inspecting values and objects’ relations. To enable the interactions for graph visualization
and manipulation, at first, we have designed a set of gestures which are used for changing the
abstraction level as well as changing the view of the graph visualization. Moreover, we extend
an existing graph visualization framework to perform interactions and transformations. In ad-
dition, we modified and applied an existing graph layout algorithm to give the heap graph an
incremental layout. Finally, we have conducted evaluations and proved that, 1. the algorithms
are feasible; 2. the abstraction for data structure is conventional; 3. our tool is good at assisting
a programming to understand heap manipulation algorithms. We have contributions in three
aspects:

• introduced static program analysis technique to help debugging;

• explored pen and touch interactions for graph visualization and manipulation;

• used heap graph to increase the awareness of heap manipulation algorithm.

However, many aspects can be improved. At first, in the backend, the heap traversal algo-
rithm could only query a limited amount of recursive data structure, because of the recursive
DFS algorithm. Secondly, user can only perform a fixed amount of gestures. Ideally, through
combining different gestures, user can intuitively create new tools for graph visualization and
manipulation. Finally, in the evaluation, we have only proved that the visualization and manip-
ulation are suitable for the algorithm which manipulates linked list. Actually, the visualization
performs not as expected in the tree data structure. Then it is needless to mention that we need

57

6. Conclusion and Future Work

to support graph, trie and red-black tree.

6.1. Future work

Program analysis technique helps abstracting the program status in a flexible manner. Cur-
rently, only visualizing the heap status using program analysis technique has been explored.
We didn’t manage to implement some features which allow programmer to change program
status directly from the graph. Meanwhile, although we are already using a flexible layout en-
gine to organize the data structure. The layout is still based on some fixed context-independent
heuristics. The algorithm can not alter the layout based on meta information of the graph(label,
type, etc). Furthermore, the way it maintains stability is by adding a compensation in the linear
programming problem, which means that the original positions could still be modified. Fi-
nally, a new approach to evaluate the effect of debugger should be provided. A lot of previous
works[Shneiderman 1993][Pennington 1987] have mentioned the difficulty of defining the con-
ceptual model of program comprehension as well as measuring the comprehension of program.
Without a meaningful model, a debugging system could be evaluated only by users’ feedback
and controlled experiments.

Based on the findings in this thesis, following directions are the future works.

Run-time program manipulation Edit-compile-test cycle is usually repeated a number
of times in a software development process. To accelerate the process, a good approach is
to merge these three steps, which either allows programmer to keep track of the current pro-
gram status in edit mode, or allows programmer change the program in debug mode. The
first approach is regarded as Live Programming(Section 2.5), which requires various changes
in programming language and programming environment. The second approach is regarded as
aspect-oriented programming(AOP)[Kiczales et al. 1997], which is initially designed for updat-
ing modules in a web server without pausing its execution. It allows modifications of applica-
tion components without affecting the execution of it. Eclipse supports a similar feature called
Hot code replace(HCR)[Jones and Thomas 2012], while it is called Edit and Continue in Visual
Studio[Microsoft 2014]. So, it is technically possible to reduce the gap between edit and debug
by allowing programming to directly change the program in runtime.

Based on the existing runtime code manipulation feature, we can extend the current system to
allow changing the source code as well as alternating values at runtime.

Value modification.If a value has a primitive data type1, it can be modified directly in variable
view. The modification is simultaneously synchronized in the program. When the type is a ref-
erence type, programmer needs to either explicitly construct a new instance based the intrinsic
constructors of the object, or assign an existing instance of an suitable type. To perform these
two modifications in our system, user can change the value of a primitive data type by writing
a new value on top of the old value, or assign a new reference by connecting two nodes to-
gether. The difficulty lies in how to change values and assign relations based on the constraints

1We define primitive data type as the primitive data type in Java, namely int, double, float, byte, boolean, char,
long.

58

6.1. Future work

in the program. For example, in a linked list(Figure 1.1), the next variable is only for connect-
ing a node to the current list node. Alvarado’s work[Alvarado and Davis 2004] has shown how
domain-specific knowledge could be used for specifying constraints in sketching.

Code modification.The process can be regarded as a procedure of program synthesis, in which
the source code is synthesized from the pen and touch interaction. For example, in a linked
list, connecting node u1 to node u2 can be translated to source code u1.next = u2, while cutting
the edge between u1 and u2 can be regared as u1.next = null. Furthermore, it would be more
useful to combine different interactions for constructing a new algorithm, like if a user reverse
a concrete linked list by hand, a linked list reversal algorithm should be therefore synthesized.

Visualization and interaction by example Although the abstraction can be customized
through changing the predicate set, the operations regarding to the gestures could not be cus-
tomized. It would be more useful that the operations can be parameterized. Moreover, by
analysing user’s behaviors, the pattern of interaction can be derived. These patterns can be used
to associate a user’s gesture to operations of heap navigation. On the other hand, the visualiza-
tion is related to data structures and algorithms as well. It would be beneficial that the system
can custom the visualization for different data structures and algorithms.

Figure 6.1.: Current visualization of
a double linked list

Figure 6.2.: Ideal visualization and interaction of
a double linked list

Metadata-driven dynamic hierarchical layout algorithm Visualization by example re-
solves the question of what to visualize, while the layout of graph resolves the question of how
to visualize. For example, all nodes in a double linked list should be aligned vertically or hori-
zontally, since there should not be a hierarchy between nodes which are of the same type, in a
double linked list. In Figure 6.2, we show the ideal visualization, while Figure 6.1 represents

59

6. Conclusion and Future Work

the current layout calculated by DynaDAG. The heuristics of the algorithm could not effectively
capture the shape of a double linked list, so that the visualization becomes confusing. A simple
method to solve this problem is to add a predicate(isDLL(v)) to evaluate whether a node is in
a double linked list. When it evaluates to true, the certain node should be assigned to a same
level as the other nodes. With the use of predicates, metadata of a heap graph(type, label) can
be used to determine the layout.

60

A
Appendix

A.1. Definitions

PrimV al ::= boolVal|longVal|intVal|shortVal|byteVal|charVal|floatVal|doubleVal

ArrayV al ::= (V arType (×V arType)∗)

RefV al ::= null|ObjectV al|ArrayV al

V al ::= PrimV al|RefV al|this|super

LocalV ar ::= Name

FieldV ar ::= V al.VarName

ArrayEntry ::= AryV al. [intV al]

V ar ::= LocalV ar|FieldV ar|ArrayEntry

Table A.1.: Formal definition of variables and values in Java

61

A. Appendix

RefType ::= ClassName|InterfaceName|NullType

PrimType ::= boolean|long|int|short|byte|char|float|double

ArrayType ::= (V arType (×V arType)∗)

Type ::= (RefType|PrimType|ArrayType)

Table A.2.: Formal definition of types in Java

A.2. Figures

Figure A.1.: Sequence diagram of the whole HeapVision application, including the backend and fron-
tend

62

A.3. Questionnaire

A.3. Questionnaire

Survey of graph symbols and animations in HeapVision HeapVision is an interac-
tive debugger for recursive data structures like linked list and tree. It can display structures
in a graph and build the pointer manipulations in the program as animations. It is good for
programmers, especially novice programmers to understand basic pointer-manipulation code.

Question 1 How many years of programming experience do you have?

� less than 6 months

� 6 months to 2 years

� 2 years to 4 years

� more than 4 years

� none

Question 2 I am proficient in the following programming languages.

� C\C++

� Java

� PHP

� JavaScript

� C#

� Objective-C

� Ruby

� Matlab

� Other : ______

Question 3 I understand the source code by reading the source code, UML diagrams stati-
cally.

Strongly
disagree

Strongly
agree

1 2 3 4 5

� � � � �

63

A. Appendix

Question 4 By running and debugging a program, I can comprehend the source code better.

Strongly
disagree

Strongly
agree

1 2 3 4 5

� � � � �

Introduction of graph symbols and transformation We are going to introduce different sym-
bols, which we use in the visualization. The list node is defined in the following code in Java
programming language.

1 class ListNode{
2 public ListNode next;
3 public int value;
4 }

Example A singly-linked list can be represented as either a concrete linked list or an abstract
linked list.

Concrete linked list Abstract linked list

Concrete node A concrete node is an object in Java. Empty(null) is also an object, whose
is null. The number in the center of the node indicates its value. In this data structure, the type
of value is an integer primitive.

64

A.3. Questionnaire

concrete
object

null object

Field variable An edge between two nodes means a field named "next" of object o1 points

to object o2.

Local variable An edge without a source node means a variable in the source code(local
variable) is pointing to that object.

Summary node A double circle node indicates it is a summary node, which contains more
than one objects. A summary node with a self edge indicates that two or more concrete nodes
inside this summary node is connected by this edge. The number in the top right corner indicates
how many concrete objects are summarized in the node.

Question 5 The graphical symbols are easy to understand.

65

A. Appendix

Strongly
disagree

Strongly
agree

1 2 3 4 5

� � � � �

Question 6 Given a method

1 ListNode foo(ListNode head)
2 {
3 Node p = head;
4 p = p.next;
5 p = p.next;
6 return p;
7 }

We show the running of the program using our interactive debugger. The running process is
shown in the video below.

(Video of Question 61)

The animation above can represent the program state intuitively.

Strongly
disagree

Strongly
agree

1 2 3 4 5

� � � � �

Question 7 Given a method

1 public ListNode search(int value, ListNode head){
2 ListNode p = head;
3 while(p.next!= null && p.value!= value)
4 p = p.next;
5 return p;
6 }

head is the head of a linked list. value is equal to 6. The running process is shown in the video.

(Video of Question 72)

The animation above can represent the program state intuitively.
1Video of Question 6: https://www.youtube.com/watch?v=LcTAfXhloCc
2Video of Question 7: https://www.youtube.com/watch?v=NwE0fCUQISo

66

A.3. Questionnaire

Strongly
disagree

Strongly
agree

1 2 3 4 5

� � � � �

Question 8 Given an anonymous program, and with method signature is ListNode foo(ListNode
head) and return value is local variable prev.

(Video of Question 81)

Could you describe or name the algorithm by watch it’s running process above? ______________

Question 9 Given a code fragment, and a state of the program.

1 public boolean foo(ListNode node) {
2 ListNode head = node;
3 ListNode node2 = node;
4 while (node2.next != null) {
5 node2 = node2.next.next;
6 node = node.next;
7

8 if (node == node2)
9 return true;

10 }
11 return false;
12 }

Is the program correct? If it is not correct, could you find a possible error? (We assume the
minimum length of the linked list is 2.)

� Correct

� Incorrect

� I don’t know

1Video of Question 8: https://www.youtube.com/watch?v=PkNSWx5SDiw

67

A. Appendix

Question 9.1 If you have found a bug in the program, please describe it below.

Question 9.2 How did you solve the previous problem?

� By experience, I know the algorithm in advanced.

� By reading the source code

� By the graph

� By combining the source code and the graph

� I didn’t understand the question or the graph, so I did not solve it.

� Other : _______

Question 10 I find the animated transitions helpful.

Strongly
disagree

Strongly
agree

1 2 3 4 5

� � � � �

Question 11 I find the application easy to understand.

Strongly
disagree

Strongly
agree

1 2 3 4 5

� � � � �

Question 12 I think that I would like to use this application when debugging a linked list.

Strongly
disagree

Strongly
agree

1 2 3 4 5

� � � � �

68

A.3. Questionnaire

Question 13 Do you have any comments?

69

A. Appendix

70

BIBLIOGRAPHY

Bibliography

ABOUZIED, A., HELLERSTEIN, J., AND SILBERSCHATZ, A. 2012. Dataplay: Interactive
tweaking and example-driven correction of graphical database queries. In Proceedings of the
25th Annual ACM Symposium on User Interface Software and Technology, ACM, New York,
NY, USA, UIST ’12, 207–218.

AFTANDILIAN, E. E., KELLEY, S., GRAMAZIO, C., RICCI, N., SU, S. L., AND GUYER,
S. Z. 2010. Heapviz: interactive heap visualization for program understanding and debug-
ging. In Proc.SOFTVIS ’10, p.53–62.

ALVARADO, C., AND DAVIS, R. 2004. Sketchread: a multi-domain sketch recognition en-
gine. In Proceedings of the 17th annual ACM symposium on User interface software and
technology, ACM, 23–32.

ATWOOD, J., AND SPOLSKY, J., 2008. Stackoverflow, Aug.

BEDERSON, B. B., AND BOLTMAN, A. 1999. Does animation help users build mental maps
of spatial information? In Information Visualization, 1999.(Info Vis’ 99) Proceedings. 1999
IEEE Symposium on, IEEE, 28–35.

BOGDAN, J. L., CHEW, C. H., GUZAK, C. J., AND PITT III, G. H., 1999. Tree view control,
Nov. 2. US Patent 5,977,971.

BOSTOCK, M., OGIEVETSKY, V., AND HEER, J. 2011. D3 data-driven documents. Visualiza-
tion and Computer Graphics, IEEE Transactions on 17, 12, 2301–2309.

BRANDL, P., FORLINES, C., WIGDOR, D., HALLER, M., AND SHEN, C. 2008. Combin-
ing and measuring the benefits of bimanual pen and direct-touch interaction on horizontal
interfaces. In AVI’08: Proceedings of the working conference on Advanced Visual Interfaces,
ACM, New York, NY, USA, 154–161.

BRANKE, J. 2001. Dynamic graph drawing, vol. 2025. Springer.

BREWSTER, S. 2002. Overcoming the lack of screen space on mobile computers. Personal
and Ubiquitous Computing 6, 3, 188–205.

BURCKHARDT, S., FAHNDRICH, M., DE HALLEUX, P., MCDIRMID, S., MOSKAL, M.,
TILLMANN, N., AND KATO, J. 2013. It’s alive! continuous feedback in ui programming. In
Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and
Implementation, ACM, New York, NY, USA, PLDI ’13, 95–104.

BURNETT, M., ATWOOD, J.W., J., AND WELCH, Z. 1998. Implementing level 4 liveness in
declarative visual programming languages. In Visual Languages, 1998. Proceedings. 1998
IEEE Symposium on, 126–133.

CARD, S. K., ENGLISH, W. K., AND BURR, B. J. 1978. Evaluation of mouse, rate-
controlled isometric joystick, step keys, and text keys for text selection on a crt. Ergonomics
21, 8, 601–613.

CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., STEIN, C., ET AL. 2001. Introduction
to algorithms, vol. 2. MIT press Cambridge.

71

http://www.google.com/search?q=Dataplay:+Interactive+tweaking+and+example-driven+correction+of+graphical+database+queries
http://www.google.com/search?q=Dataplay:+Interactive+tweaking+and+example-driven+correction+of+graphical+database+queries
http://www.google.com/search?q=Heapviz:+interactive+heap+visualization+for+program+understanding+and+debugging
http://www.google.com/search?q=Heapviz:+interactive+heap+visualization+for+program+understanding+and+debugging
http://www.google.com/search?q=Sketchread:+a+multi-domain+sketch+recognition+engine
http://www.google.com/search?q=Sketchread:+a+multi-domain+sketch+recognition+engine
http://www.google.com/search?q=Stackoverflow
http://www.google.com/search?q=Does+animation+help+users+build+mental+maps+of+spatial+information?
http://www.google.com/search?q=Does+animation+help+users+build+mental+maps+of+spatial+information?
http://www.google.com/search?q=Tree+view+control
http://www.google.com/search?q=D3+data-driven+documents
http://www.google.com/search?q=Combining+and+measuring+the+benefits+of+bimanual+pen+and+direct-touch+interaction+on+horizontal+interfaces
http://www.google.com/search?q=Combining+and+measuring+the+benefits+of+bimanual+pen+and+direct-touch+interaction+on+horizontal+interfaces
http://www.google.com/search?q=Combining+and+measuring+the+benefits+of+bimanual+pen+and+direct-touch+interaction+on+horizontal+interfaces
http://www.google.com/search?q=Overcoming+the+lack+of+screen+space+on+mobile+computers
http://www.google.com/search?q=It's+alive!+continuous+feedback+in+ui+programming
http://www.google.com/search?q=Implementing+level+4+liveness+in+declarative+visual+programming+languages
http://www.google.com/search?q=Implementing+level+4+liveness+in+declarative+visual+programming+languages
http://www.google.com/search?q=Evaluation+of+mouse,+rate-controlled+isometric+joystick,+step+keys,+and+text+keys+for+text+selection+on+a+crt
http://www.google.com/search?q=Evaluation+of+mouse,+rate-controlled+isometric+joystick,+step+keys,+and+text+keys+for+text+selection+on+a+crt

BIBLIOGRAPHY

CORNELISSEN, B., ZAIDMAN, A., VAN DEURSEN, A., MOONEN, L., AND KOSCHKE, R.
2009. A systematic survey of program comprehension through dynamic analysis. Software
Engineering, IEEE Transactions on 35, 5, 684–702.

COUSOT, P., AND COUSOT, R. 1977. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings of the
4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, ACM,
New York, NY, USA, POPL ’77, 238–252.

DELINE, R., BRAGDON, A., ROWAN, K., JACOBSEN, J., AND REISS, S. P. 2012. Debugger
canvas: industrial experience with the code bubbles paradigm. In Proc.ICSE 2012, p.1064–
1073.

DIEHL, S., AND GÖRG, C. 2002. Graphs, they are changing. In Graph drawing, Springer,
23–31.

DIETZ, P., AND LEIGH, D. 2001. Diamondtouch: a multi-user touch technology. In Proceed-
ings of the 14th annual ACM symposium on User interface software and technology, ACM,
219–226.

DWYER, T., MARRIOTT, K., AND STUCKEY, P. J. 2006. Fast node overlap removal. In Graph
Drawing, Springer, 153–164.

DWYER, T., LEE, B., FISHER, D., QUINN, K. I., ISENBERG, P., ROBERTSON, G., AND

NORTH, C. 2009. A comparison of user-generated and automatic graph layouts. Visualiza-
tion and Computer Graphics, IEEE Transactions on 15, 6, 961–968.

ELLSON, J., GANSNER, E. R., KOUTSOFIOS, E., NORTH, S. C., AND WOODHULL, G. 2004.
Graphviz and dynagraphâĂŤstatic and dynamic graph drawing tools. In Graph drawing
software. Springer, 127–148.

FLOYD, R. W. 1967. Nondeterministic algorithms. J. ACM 14, 4 (Oct.), 636–644.

FORLINES, C., WIGDOR, D., SHEN, C., AND BALAKRISHNAN, R. 2007. Direct-touch vs.
mouse input for tabletop displays. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM, New York, NY, USA, CHI ’07, 647–656.

GUGERTY, L., AND OLSON, G. 1986. Debugging by skilled and novice programmers. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM,
New York, NY, USA, CHI ’86, 171–174.

GUO, P. J. 2013. Online python tutor: Embeddable web-based program visualization for
cs education. In Proceeding of the 44th ACM technical symposium on Computer science
education, ACM, 579–584.

HALLEUX, J. 2012. Quickgraph, graph data structures and algorithms for. net. Last access:
Mar.

HAN, J. Y. 2005. Low-cost multi-touch sensing through frustrated total internal reflection. In
Proceedings of the 18th annual ACM symposium on User interface software and technology,
ACM, 115–118.

HEER, J., CARD, S. K., AND LANDAY, J. A. 2005. prefuse: a toolkit for interactive in-

72

http://www.google.com/search?q=A+systematic+survey+of+program+comprehension+through+dynamic+analysis
http://www.google.com/search?q=Abstract+interpretation:+A+unified+lattice+model+for+static+analysis+of+programs+by+construction+or+approximation+of+fixpoints
http://www.google.com/search?q=Abstract+interpretation:+A+unified+lattice+model+for+static+analysis+of+programs+by+construction+or+approximation+of+fixpoints
http://www.google.com/search?q=Debugger+canvas:+industrial+experience+with+the+code+bubbles+paradigm
http://www.google.com/search?q=Debugger+canvas:+industrial+experience+with+the+code+bubbles+paradigm
http://www.google.com/search?q=Graphs,+they+are+changing
http://www.google.com/search?q=Diamondtouch:+a+multi-user+touch+technology
http://www.google.com/search?q=Fast+node+overlap+removal
http://www.google.com/search?q=A+comparison+of+user-generated+and+automatic+graph+layouts
http://www.google.com/search?q=Graphviz+and+dynagraph—static+and+dynamic+graph+drawing+tools
http://www.google.com/search?q=Nondeterministic+algorithms
http://www.google.com/search?q=Direct-touch+vs.+mouse+input+for+tabletop+displays
http://www.google.com/search?q=Direct-touch+vs.+mouse+input+for+tabletop+displays
http://www.google.com/search?q=Debugging+by+skilled+and+novice+programmers
http://www.google.com/search?q=Online+python+tutor:+Embeddable+web-based+program+visualization+for+cs+education
http://www.google.com/search?q=Online+python+tutor:+Embeddable+web-based+program+visualization+for+cs+education
http://www.google.com/search?q=Quickgraph,+graph+data+structures+and+algorithms+for.+net
http://www.google.com/search?q=Low-cost+multi-touch+sensing+through+frustrated+total+internal+reflection
http://www.google.com/search?q=prefuse:+a+toolkit+for+interactive+information+visualization
http://www.google.com/search?q=prefuse:+a+toolkit+for+interactive+information+visualization
http://www.google.com/search?q=prefuse:+a+toolkit+for+interactive+information+visualization

BIBLIOGRAPHY

formation visualization. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, p.421–430.

HINCKLEY, K., YATANI, K., PAHUD, M., CODDINGTON, N., RODENHOUSE, J., WILSON,
A., BENKO, H., AND BUXTON, B. 2010. Pen + touch = new tools. In Proc. UIST ’10,
p.27–36.

HINCKLEY, K., BI, X., PAHUD, M., AND BUXTON, B. 2012. Informal information gathering
techniques for active reading. In Proceedings of the 2012 ACM annual conference on Human
Factors in Computing Systems, ACM, 1893–1896.

JONES, G., AND THOMAS, J., 2012. Runtime code replacement, Aug. US Patent App.
13/357,301.

KEHOE, C., STASKO, J., AND TAYLOR, A. 2001. Rethinking the evaluation of algo-
rithm animations as learning aids: an observational study. International Journal of Human-
Computer Studies 54, 2, 265 – 284.

KICZALES, G., LAMPING, J., MENDHEKAR, A., MAEDA, C., LOPES, C., LOINGTIER, J.-
M., AND IRWIN, J. 1997. Aspect-oriented programming. Springer.

KLEENE, S. C. 1952. Introduction to Metamathematics. North Holland.

LEV-AMI, T., AND SAGIV, M. 2000. Tvla: A system for implementing static analyses. In
Static Analysis. Springer, 280–301.

LIEBERMAN, H., AND FRY, C. 1995. Bridging the gulf between code and behavior in program-
ming. In Proceedings of the SIGCHI conference on Human factors in computing systems,
ACM Press/Addison-Wesley Publishing Co., 480–486.

LOZANO-PÉREZ, T., AND WESLEY, M. A. 1979. An algorithm for planning collision-free
paths among polyhedral obstacles. Commun. ACM 22, 10 (Oct.), 560–570.

MALONEY, J. H., AND SMITH, R. B. 1995. Directness and liveness in the morphic user
interface construction environment. In Proceedings of the 8th Annual ACM Symposium on
User Interface and Software Technology, ACM, New York, NY, USA, UIST ’95, 21–28.

MARRON, M., SANCHEZ, C., SU, Z., AND FAHNDRICH, M. 2013. Abstracting runtime heaps
for program understanding. Software Engineering, IEEE Transactions on 39, 6, p.774–786.

MCDIRMID, S. 2007. Living it up with a live programming language. In Proceedings of
the 22Nd Annual ACM SIGPLAN Conference on Object-oriented Programming Systems and
Applications, ACM, New York, NY, USA, OOPSLA ’07, 623–638.

MCDIRMID, S. 2013. Usable live programming. In Proceedings of the 2013 ACM Interna-
tional Symposium on New Ideas, New Paradigms, and Reflections on Programming &
Software, ACM, New York, NY, USA, Onward! ’13, 53–62.

MICROSOFT, 2014.

MILLER, R. B. 1968. Response time in man-computer conversational transactions. In Pro-
ceedings of the December 9-11, 1968, Fall Joint Computer Conference, Part I, ACM, New
York, NY, USA, AFIPS ’68 (Fall, part I), 267–277.

73

http://www.google.com/search?q=prefuse:+a+toolkit+for+interactive+information+visualization
http://www.google.com/search?q=prefuse:+a+toolkit+for+interactive+information+visualization
http://www.google.com/search?q=prefuse:+a+toolkit+for+interactive+information+visualization
http://www.google.com/search?q=Pen+++touch+=+new+tools
http://www.google.com/search?q=Informal+information+gathering+techniques+for+active+reading
http://www.google.com/search?q=Informal+information+gathering+techniques+for+active+reading
http://www.google.com/search?q=Runtime+code+replacement
http://www.google.com/search?q=Rethinking+the+evaluation+of+algorithm+animations+as+learning+aids:+an+observational+study
http://www.google.com/search?q=Rethinking+the+evaluation+of+algorithm+animations+as+learning+aids:+an+observational+study
http://www.google.com/search?q=Tvla:+A+system+for+implementing+static+analyses
http://www.google.com/search?q=Bridging+the+gulf+between+code+and+behavior+in+programming
http://www.google.com/search?q=Bridging+the+gulf+between+code+and+behavior+in+programming
http://www.google.com/search?q=An+algorithm+for+planning+collision-free+paths+among+polyhedral+obstacles
http://www.google.com/search?q=An+algorithm+for+planning+collision-free+paths+among+polyhedral+obstacles
http://www.google.com/search?q=Directness+and+liveness+in+the+morphic+user+interface+construction+environment
http://www.google.com/search?q=Directness+and+liveness+in+the+morphic+user+interface+construction+environment
http://www.google.com/search?q=Abstracting+runtime+heaps+for+program+understanding
http://www.google.com/search?q=Abstracting+runtime+heaps+for+program+understanding
http://www.google.com/search?q=Living+it+up+with+a+live+programming+language
http://www.google.com/search?q=Usable+live+programming
http://www.google.com/search?q=Response+time+in+man-computer+conversational+transactions

BIBLIOGRAPHY

MISUE, K., EADES, P., LAI, W., AND SUGIYAMA, K. 1995. Layout adjustment and the
mental map. Journal of visual languages and computing 6, 2, 183–210.

MURPHY, G. C., KERSTEN, M., AND FINDLATER, L. 2006. How are java software developers
using the elipse ide? Software, IEEE 23, 4, 76–83.

MYERS, B. A. 1990. Taxonomies of visual programming and program visualization. Journal
of Visual Languages & Computing 1, 1, 97–123.

NAPS, T. L., RÖSSLING, G., ALMSTRUM, V., DANN, W., FLEISCHER, R., HUNDHAUSEN,
C., KORHONEN, A., MALMI, L., MCNALLY, M., RODGER, S., ET AL. 2002. Exploring
the role of visualization and engagement in computer science education. In ACM SIGCSE
Bulletin, vol. 35, ACM, 131–152.

NORTH, C., DWYER, T., LEE, B., FISHER, D., ISENBERG, P., ROBERTSON, G., AND

INKPEN, K. 2009. Understanding multi-touch manipulation for surface computing. In
Human-Computer Interaction âĂŞ INTERACT 2009, T. Gross, J. Gulliksen, P. KotzÃl’,
L. Oestreicher, P. Palanque, R. Prates, and M. Winckler, Eds., vol. 5727 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 236–249.

NORTH, C., DWYER, T., LEE, B., FISHER, D., ISENBERG, P., ROBERTSON, G., AND

INKPEN, K. 2009. Understanding multi-touch manipulation for surface computing. In
Human-Computer Interaction âĂŞ INTERACT 2009, T. Gross, J. Gulliksen, P. KotzÃl’,
L. Oestreicher, P. Palanque, R. Prates, and M. Winckler, Eds., vol. 5727 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 236–249.

OECHSLE, R., AND SCHMITT, T. 2002. Javavis: Automatic program visualization with ob-
ject and sequence diagrams using the java debug interface (jdi). In Software Visualization,
S. Diehl, Ed., vol. 2269 of Lecture Notes in Computer Science. Springer Berlin Heidelberg,
176–190.

O′MADADHAIN, J., FISHER, D., SMYTH, P., WHITE, S., AND BOEY, Y.-B. 2005. Analysis
and visualization of network data using jung. Journal of Statistical Software 10, 2, 1–35.

PENNINGTON, N. 1987. Stimulus structures and mental representations in expert comprehen-
sion of computer programs. Cognitive Psychology 19, 3, 295 – 341.

PRESTON-WERNER, T., WANSTRATH, C., AND HYETT, P., 2008. Github.

SAGIV, M., REPS, T., AND WILHELM, R. 2002. Parametric shape analysis via 3-valued logic.
ACM Trans. Program. Lang. Syst. 24, 3 (May), p.217–298.

SHNEIDERMAN, B. 1977. Measuring computer program quality and comprehension. Interna-
tional Journal of Man-Machine Studies 9, 4, 465 – 478.

SHNEIDERMAN, B. 1993. 4, 3 touchscreens now offer compelling uses. Sparks of innovation
in human-computer interaction, 187.

SOLOWAY, E., AND EHRLICH, K. 1984. Empirical studies of programming knowledge. Soft-
ware Engineering, IEEE Transactions on, 5, 595–609.

SORENSEN, A., AND GARDNER, H. 2010. Programming with time: Cyber-physical pro-
gramming with impromptu. In Proceedings of the ACM International Conference on Object

74

http://www.google.com/search?q=Layout+adjustment+and+the+mental+map
http://www.google.com/search?q=Layout+adjustment+and+the+mental+map
http://www.google.com/search?q=How+are+java+software+developers+using+the+elipse+ide?
http://www.google.com/search?q=How+are+java+software+developers+using+the+elipse+ide?
http://www.google.com/search?q=Taxonomies+of+visual+programming+and+program+visualization
http://www.google.com/search?q=Exploring+the+role+of+visualization+and+engagement+in+computer+science+education
http://www.google.com/search?q=Exploring+the+role+of+visualization+and+engagement+in+computer+science+education
http://www.google.com/search?q=Understanding+multi-touch+manipulation+for+surface+computing
http://www.google.com/search?q=Understanding+multi-touch+manipulation+for+surface+computing
http://www.google.com/search?q=Javavis:+Automatic+program+visualization+with+object+and+sequence+diagrams+using+the+java+debug+interface+(jdi)
http://www.google.com/search?q=Javavis:+Automatic+program+visualization+with+object+and+sequence+diagrams+using+the+java+debug+interface+(jdi)
http://www.google.com/search?q=Analysis+and+visualization+of+network+data+using+jung
http://www.google.com/search?q=Analysis+and+visualization+of+network+data+using+jung
http://www.google.com/search?q=Stimulus+structures+and+mental+representations+in+expert+comprehension+of+computer+programs
http://www.google.com/search?q=Stimulus+structures+and+mental+representations+in+expert+comprehension+of+computer+programs
http://www.google.com/search?q=Github
http://www.google.com/search?q=Parametric+shape+analysis+via+3-valued+logic
http://www.google.com/search?q=Measuring+computer+program+quality+and+comprehension
http://www.google.com/search?q=4,+3+touchscreens+now+offer+compelling+uses
http://www.google.com/search?q=Empirical+studies+of+programming+knowledge
http://www.google.com/search?q=Programming+with+time:+Cyber-physical+programming+with+impromptu
http://www.google.com/search?q=Programming+with+time:+Cyber-physical+programming+with+impromptu

BIBLIOGRAPHY

Oriented Programming Systems Languages and Applications, ACM, New York, NY, USA,
OOPSLA ’10, 822–834.

SORVA, J., KARAVIRTA, V., AND MALMI, L. 2013. A review of generic program visual-
ization systems for introductory programming education. ACM Transactions on Computing
Education (TOCE) 13, 4, 15.

STASKO, J. T., AND KRAEMER, E. 1993. A methodology for building application-specific
visualizations of parallel programs. Journal of parallel and distributed computing 18, 2,
258–264.

STASKO, J., BADRE, A., AND LEWIS, C. 1993. Do algorithm animations assist learning?: An
empirical study and analysis. In Proceedings of the INTERACT ’93 and CHI ’93 Conference
on Human Factors in Computing Systems, ACM, New York, NY, USA, CHI ’93, 61–66.

TANIMOTO, S. L. 1990. Viva: A visual language for image processing. J. Vis. Lang. Comput.
1, 2 (June), 127–139.

VICTOR, B. 2012. Inventing on principle. In Invited Talk at Canadian University Software
Engineering Conference (CUSEC).

VLAMING, L., COLLINS, C., HANCOCK, M., NACENTA, M., ISENBERG, T., AND CARPEN-
DALE, S. 2010. Integrating 2d mouse emulation with 3d manipulation for visualizations on
a multi-touch table. In ACM International Conference on Interactive Tabletops and Surfaces,
ACM, 221–230.

WALNY, J., LEE, B., JOHNS, P., RICHE, N. H., AND CARPENDALE, S. 2012. Understanding
pen and touch interaction for data exploration on interactive whiteboards. Visualization and
Computer Graphics, IEEE Transactions on 18, 12, 2779–2788.

ZELLER, A., AND LÜTKEHAUS, D. 1996. Ddd—a free graphical front-end for unix
debuggers. SIGPLAN Not. 31, 1 (Jan.), 22–27.

ZIMMERMANN, T., AND ZELLER, A. 2002. Visualizing memory graphs. In Revised Lectures
on Software Visualization, International Seminar, Springer-Verlag, London, UK, UK, p.191–
204.

75

http://www.google.com/search?q=A+review+of+generic+program+visualization+systems+for+introductory+programming+education
http://www.google.com/search?q=A+review+of+generic+program+visualization+systems+for+introductory+programming+education
http://www.google.com/search?q=A+methodology+for+building+application-specific+visualizations+of+parallel+programs
http://www.google.com/search?q=A+methodology+for+building+application-specific+visualizations+of+parallel+programs
http://www.google.com/search?q=Do+algorithm+animations+assist+learning?:+An+empirical+study+and+analysis
http://www.google.com/search?q=Do+algorithm+animations+assist+learning?:+An+empirical+study+and+analysis
http://www.google.com/search?q=Viva:+A+visual+language+for+image+processing
http://www.google.com/search?q=Inventing+on+principle
http://www.google.com/search?q=Integrating+2d+mouse+emulation+with+3d+manipulation+for+visualizations+on+a+multi-touch+table
http://www.google.com/search?q=Integrating+2d+mouse+emulation+with+3d+manipulation+for+visualizations+on+a+multi-touch+table
http://www.google.com/search?q=Understanding+pen+and+touch+interaction+for+data+exploration+on+interactive+whiteboards
http://www.google.com/search?q=Understanding+pen+and+touch+interaction+for+data+exploration+on+interactive+whiteboards
http://www.google.com/search?q=Ddd—a+free+graphical+front-end+for+unix+debuggers
http://www.google.com/search?q=Ddd—a+free+graphical+front-end+for+unix+debuggers
http://www.google.com/search?q=Visualizing+memory+graphs

	List of Figures
	List of Tables
	1 Introduction
	1.1 Heap Manipulating Data Structures
	1.2 Our Approach
	1.3 Outline of Thesis

	2 State of the Art
	2.1 Program Visualization for Education
	2.2 Program State and Heap Visualization
	2.2.1 Heap visualization

	2.3 Shape Analysis
	2.4 Pen and Touch Interaction
	2.5 Live Programming

	3 Enabling Deep Program Interaction
	3.1 Visual Notation
	3.2 Visual Interaction
	3.3 Computing The Initial Abstract Heap
	3.4 Incremental Graph Drawing Algorithms

	4 Implementation
	4.1 Architecture of Application
	4.2 User Interface Design
	4.3 Graph Drawing Framework
	4.3.1 Graph visualization
	4.3.2 Implementation of graph layout algorithm
	4.3.3 Graph Interaction

	4.4 Custom Protocal for Communication
	4.5 Debug Plugin
	4.5.1 Java Debug Interface
	4.5.2 Heap traversal algorithm

	5 Evaluation
	5.1 Experiment: Performance of basic algorithms
	5.1.1 Test program and method
	5.1.2 Results and discussion

	5.2 User evaluation
	5.2.1 Overview of program comprehension evaluation
	5.2.2 Initial questions
	5.2.3 Methodology
	5.2.4 Results

	5.3 Discussion
	5.4 Limitations

	6 Conclusion and Future Work
	6.1 Future work

	A Appendix
	A.1 Definitions
	A.2 Figures
	A.3 Questionnaire

	Bibliography

