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Abstract

Motivated by the use of smart-gloves as a tool for the interaction and manipulation
of computerized environments. And by looking for methods and techniques to
facilitate the creation of these devices. We introduce the ”Smart-Glove Maker”,
an end-to-end system that allows people to make their own smart gloves through
non-technical steps.

As an initial phase of our research, we explored the current proposals for soft textile
sensors, the materials required and the techniques for their fabrication. Then, as a
starting point, we developed the first smart-glove prototypes incorporating textile
sensors into them. Typically, to build a smart-glove, many skills and many steps
are required. From designing the glove pattern, designing the connections, design-
ing the circuit, sewing and isolating the traces, building the glove, until finally,
programming the glove to be functional.

Our pipeline reduces the number of these steps into four: the design of the glove,
the automatic embroidering of the circuit, the construction of the glove, and its pro-
gramming. Based on a catalog, people select the button arrangement according to
their needs. Next, our system implements a routing algorithm for the automatic
creation of the glove patterns. These glove patterns describe the spacing and stitch
density between each trace of the circuit. Using computerized embroidery tech-
niques patterns are converted into embroidered circuits. Then, the system interface
instructs step by step through visual guides for the construction of the glove. Ulti-
mately, people can program the functionality of the gloves through gestures with-
out the need for additional programming. At the end of our pipeline, people have
a smart-glove for gesture detection. Our smart-glove design is made-to-measure,
lightweight, flexible and resistant.
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Chapter 1

Introduction

Gloves have been garments used since ancient times. The
use of these gloves addresses various purposes; from pro-
tecting the hands from the weather, hits or harmful sub-
stances, to fashion purposes. Nowadays, gloves can also
serve as tools. Our hands are perfect for solving many types
of tasks, and we instinctively use our hands to control and
interact with other everyday objects. Thanks to the advance
of wearable technology, it is possible to propose new inter-
actions based on smart-clothing.

As a topic of interest, in this thesis work, we focused on the
fabrication of smart-gloves. Smart gloves are garments that
include electronic components. These devices have the po- Dedicated

smart-gloves help us
solving everyday
tasks.

tential of enabling new channels for interacting with com-
puterized environments and objects, by extending our bio-
logical capabilities. For example, there are proposals to deal
with simple activities like answering or ending a phone call
by Huber et al. [2013]. Even more complex activities such
as the manipulation of drones through the movement of
the hand by Sandru et al. [2016], to enable communication
between disabled and non-disabled people by converting
gestures into text Gollner et al. [2012].

Currently, there are broad varieties of smart-gloves on the Current limitations for
creating
smart-gloves

market focused on solving various tasks. However, their
costs are not always accessible. There is also the possibil-
ity of fabricating them on your own. Huber et al. [2013]
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showed in their evaluation for their smart-glove proto-
types, that there is a keen interest in the users to enable
the possibility of creating customized smart-gloves, in such
a way, they are able to choose the position, shape, and aes-
thetics of the sensors. Thanks to the boom of personal fabri-
cation and the DIY community, it is possible to find online
guides, tutorials, and open source code to assemble your
own smart-gloves. Nonetheless, this alternative is not al-
ways as simple as we would like to.

 1. Glove Pattern Design

4. Sewing Sensors and 
Isolating  Wires

2. Connection Design

5. Glove Construction

BATTERY
POUCH

A5

A4

A3

A2

A1

A0

VGND

ARDUINO

3. Circuit Design

6. Glove Programming

Figure 1.1: Typical steps for fabricating a smart-glove

Creating a smart-gloves involves many steps, see figureFabricating a glove
involves several

steps that require
technical knowledge

and skills.

1.1: 1. design the glove pattern with the appropriate size
and proportions to the user’s hand, 2. design the connec-
tions for the sensors according to the glove pattern design,
3. design the electrical circuit, 4. sew the sensor connec-
tions and isolate them, 5. build the glove and place all the
pieces together, and finally, 6. Program the glove to sense
inputs. This process requires series of technical knowledge
and many skills. In addition, there is a large error margin if
users do not possess previous experience.

To solve these limitations and optimize the fabrication pro-Proposal of a
web-system for

helping the user to
design, build, and

program
embroidered
smart-gloves

cess, we present ”The Smart-Glove Maker”; an end-to-end
web system to design, build, and program smart-gloves.
Our system converts the smart-glove pattern into embroi-
dery patterns that can be executed by any embroidery ma-
chine. We propose a design of smart-glove for gesture de-
tection. Our goal is that users can fabricate their own smart-
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gloves, in the shortest possible time, with the least effort
and using accessible and low-cost materials and tools.

4. Glove Programming

2. Pattern Embroidering 1. Glove Pattern Design

3. Glove Construction

2

3

4

-+

5

6

7
8

9
10
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12

13 a0 a1
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a4
a5

1tx

0rx

2
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13 a0 a1
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a3

a4
a5

1tx

0rx

Figure 1.2: Steps in our pipeline for fabricating a smart-
glove

The interface of our system divides the task into four non-
technical skills, see figure 1.2:

Pattern design: Our UI allows users to arrange basic controls We development an
algorithm for the
auto-routing in
non-rectangular
areas.

such as touch buttons in the design of the smart glove. To
achieve this, we develop an algorithm for the auto-routing
in non-rectangular areas. To produce a design, users select
according to their preferences the set of buttons to include
in the pattern. Based on their selection, the connections be-
tween the buttons and the sensing hardware are automat-
ically calculated. Our algorithm generates the necessary
files to be processed later by embroidery machines.

Embroidery:Alternating between our system and the em- We use
computerized
embroidery as an
automatic fabrication
technique.

broidery machine, the users proceed to embroider the pat-
terns in an automated way. For the fabrication of the pat-
terns, we use computerized embroidery. First, the machine
stitches the connections with conductive thread, then per-
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forms the isolation of the underlying circuit by an embroi-
dery technique.

Glove construction: To facilitate users in this task, we de-As part of the UI, we
developed a visual

guide for building the
embroidery patterns.

veloped a visual guide as part of our UI. The guide ex-
plains step by step how to build the smart glove from the
already embroidered patterns, and also the materials and
tools needed.

Glove programming: Once the glove is completed, we pro-Our System allows
programming and

testing of the
smart-gloves.

vide source code for gesture detection. The provided code
can be extended or even more robust code can be loaded
depending on the needs of the user. To test the function-
ality of our smart-gloves, Our UI allows users to program
gestures for the manipulation of actions through the gloves
without the need for additional coding. We incorporate a
use case in our system. We propose the manipulation of a
music player interface. Users can map the gestures that the
glove must recognize— e.g., play/stop, backward through
a song and forward through a song. After that, users can
trigger the actions in the music player by performing the
corresponding gestures.

In summary, the contributions of this thesis are:

1. End-to-end web system to design, build and pro-
gram smart-gloves using computerized embroidery
as a technique for the automatic creation of wiring be-
tween the textile buttons and sensing hardware.

2. Auto-routing algorithm in non-rectangular areas for
creating embroidery patterns. It applies the necessary
constraints of smart-textiles and embroidery in gen-
eral for the generation of the embroidered circuits.

3. The glove programming by gestures to control ac-
tions without the need for extra coding.

The thesis is organized as follows:

• Chapter 2: In this chapter, we analyze previous works
of several researchers focused on the development of
smart-gloves and their fabrication techniques.
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• Chapter 3: We analyze a series of capacitive and re-
sistive textile sensors with greater potential to be in-
cluded in the design of the smart-gloves. In addition,
we describe our initial prototypes of smart-gloves
and their respective software to test their functional-
ity.

• Chapter 4: We present our auto-routing algorithm for
non-rectangular areas. We describe how to create the
input pattern image, the functioning of the algorithm
and its output files. Furthermore, we present a perfor-
mance evaluation of the algorithm and its limitations.

• Chapter 5: We introduce our ”The Smart-Glove
Maker” system. In this chapter, we describe in detail
the user interface and each step of our pipeline for the
fabrication of smart gloves.

• Chapter 6: We present the evaluation of our UI and
pipeline, along with the results and observations of
the study.

• Chapter 7: We conclude with the summary of the con-
tributions of this thesis and ideas about future work.
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Chapter 2

Related work

Over the last decades, the use of smart-gloves for manip-
ulating and interacting with objects and computerized en-
vironments has remained a topic of interest in the field of
HCI.

There are a considerable number of proposals and imple- So far there is much
research related to
smart-gloves but
none offers a
pipeline for
designing, building,
and programming of
smart-gloves.

mentations of smart-gloves to address various tasks. Cur-
rently, hand motion tracking and gesture recognition com-
prise some of the most established implementations. Based
on this form of interaction, authors like Gollner et al. [2012],
Huber et al. [2013], and Plant et al. [2016] explored the pos-
sibility of using smart-gloves based on textiles to solve real-
life tasks. However, until now there have been no propos-
als that allow automating the fabrication process of smart-
gloves. In such a way that users can easily design, build
and program functional smart-gloves according to their
needs, without neglecting the aesthetics and ergonomics of
these garments. Dipietro et al. [2008]

As an initial reference and to have a more straightforward
idea of the technical requirements, we analyzed previous
work related to materials, and construction techniques.
Steimle [2015] developed lightweight and flexible capaci-
tive sensors based on printed electronics. These kind of
sensors can be adapted to different types of surfaces. On
the other hand, Perner-Wilson and Buechley [2010]. devel-
oped a guide for creating sensing elements, circuits, and in-
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terfaces based on textiles.their contribution focuses on the
use of low-cost materials and conventional tools ease to ac-
cess. huda Hamdan et al. [2018] introduced an interactive
system for developing embroidered sensors. Their imple-
mentation stitches the underlying conductive thread that
is later it is insulated with computerized embroidery. For
our implementation, we use the same technique of stitch-
ing and embroidering.

we also analyzed previous work related to smart-glove that
incorporate conductive textiles in their designs:

Figure 2.1: Gollner et al. [2012], Mobile Lorm Glove: Left
side illustrates the distribution and positioning of the sen-
sors vibrating motors (M), Right side shows the input unit
on the palm of the glove.

Mobile Lorm Glove: Gollner et al. [2012] developed a
smart-glove that acts as an interpreter of the Lorm alpha-
bet. Lorm is based on tactile characters assigned to specific
area of the palm. The bearer of the glove must trace with
the finger the characters in the palm of the glove, the device
interprets the strokes and converts them into text. Com-
munication via Lorm Glove is bidirectional, the system can
also interpret text and convert it into Lorm entries. In this
way, communication barriers are overcome.

Mobile Lorm Glove contributes by proposing a glove
design with remote communication that incorporates a
broader number of sensors and reduces the hardware inter-
face. Technically speaking, the input unit on the palm of the
glove is equipped with a matrix of 35 textile pressure sen-
sors for the recognition of strokes. The electrodes are con-
structed with conductive fabric while conductive thread is
used for the connections to the control module. For the out-
put unit located at the back of the glove, the glove design
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incorporates a matrix of 32 shaftless coin vibrating motors,
which serve for automatic feedback.

Figure 2.2: Huber et al. [2013], The TeleGlove: Left side
shows the schematics and position of sensors. On the right
the final prototype of the TeleGlove

TeleGlove: Huber et al. [2013] suggest the use of smart-
gloves to complement the interaction with smart-phones or
similar systems on a vaster scale. They developed rapid
prototypes of smart-gloves that trigger common actions
such as answering a call, terminating the call and muting
the mobile. To execute these actions, it is enough to per-
form a predetermined gesture with the glove, in that case
by pressing the combination of two fingers in the glove. Re-
garding the technical aspects, the gloves communicate with
mobile devices through the ANT + protocol and incorpo-
rate textile handmade touch sensors. Their contribution fo-
cuses mainly on proposing the use of smart gloves in real
environments as a device for habitual use.

Smart E-Textile Gloves: Plant et al. [2016] developed a
smart-glove focused on patients that suffer from Parkin-
son’s disease. The objective of their research was to create a
smart-glove that could be used as a medical device. The the
device can collect relevant information that determine the
effectiveness of the medication in patients with this disease.
For the researchers, it was important to develop gloves that
were comfortable and aesthetic at the same time. Since the
smart glove was intended to be used as a medical device,
they wanted to avoid the use of standard electrical wiring
that could cause any kind of stress on the patient. There-
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Figure 2.3: Plant et al. [2016], Smart E-Textile Gloves: The
left side show the preliminary textile planning. The Right
side displays the final smart-glove prototype that includes
a flex Sensor, inertia measurement unit, BLE nano module
and 3V battery.

fore, the use of e-textiles was a good choice because they
found it to be discreet, flexible and easy to integrate with
sensing hardware.

In summary, The glove is equipped with flex sensors, one
on each finger. Thanks to the use of these sensors, they were
able to analyze the progress of the disease, by measuring
the joint of the hand. To make the connections between the
flex sensors and the micro-controller, they used conductive
thread and were insulated with cotton and neoprene. To
control the sensors, they used a BLE nano module in order
to be able to include wireless capabilities in the glove. (see
figure 2.3)
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Chapter 3

Prototyping and system
requirements

In this chapter, we explore textiles sensors based on both
resistive and resistive sensing including the materials and
fabrication techniques. In addition, we established the dis-
tribution of the sensors in the glove to maximized on-hand
inputs in the pattern design of our smart-gloves. Ulti-
mately, a series of smart-glove prototypes were made to es-
tablish in this way the requirements of our system.
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3.1 First prototype iteration

3.1.1 Soft sensor types

Layering

Non-Conductive Fabric

Conductive Fabric

Perforated Foam

Figure 3.1: Layering of a resistive touch button

Resistive Touch Button: It is primarily made up of two
layers of conductive fabric, which are separated by a layer
of perforated sponge to avoid direct contact. Finally, each
layer of conductive fabric is covered by non-conductive
fabric at its respective end in order to isolate the button.
By touching the sensor, the conductive elements come into
contact which generates the voltage output. The voltage
can be mapped to 1 when the button is pressed and 0 when
it is released.

Layering

Conductive Fabric

Non-Conductive Fabric

Conductive Thread

Figure 3.2: Structure of grid of capacitive touch buttons

Capacitive Touch Button: The structure of a capacitive but-
ton is even more basic. For its construction it is enough to
have a conductive fabric electrode that can be attached to
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the fabric by conductive thread. Even, using only conduc-
tive thread, the capacitance can be measured. Capacitive
button sensors measure the difference of the signal in func-
tion to the surface that is touched and the distance between
the electrode and the body. However, to do the sensing, it
needs additional software.-e.g, Arduino’s CapacitiveSensor
library. The applications of these buttons can be expanded
to create 2D trackpad and sliders. Figure 3.2 illustrates a
2x2 grid of capacitive buttons.

Layering

Piezoresistive Material

Conductive Fabric

Conductive Fabric

Figure 3.3: Layering of a resistive pressure sensor using
piezoresistive

Layering

Resistive Thread

Non-Conductive Fabric

Figure 3.4: Layering of a resistive pressure sensor using re-
sistive thread

Resistive Pressure Sensor: There a several techniques to
develop a resistive pressure sensor. One can be made
by layering piezoresistive material between two electrodes
made of conductive fabric. See figure 3.3. The piezoresis-
tive is a conductive material that is sensitive to pressure and
changes the electrical resistivity of the electrodes across dis-
tance or when stretched or compressed. With this type of
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structure, it is possible to measure the position and pres-
sure. Another alternative proposed by Parzer et al. [2018]
uses conductive thread as a base. Conductive thread are
added to the fabric in the form of a grid, see figure 3.4. In
such a way that when the intersections between the over-
lapped wires are pressed, the change in resistance can be
measured by applying voltage to one of the wires and mea-
suring the voltage drop across the other one.

Structure

0

Conductive Thread

Figure 3.5: Structure of a resistive bend sensor

Resistive Bend Sensor: Vogl et al. [2017] designed a
stretchable bend sensor that is constructed of a stretch fab-
ric strip. In the strip, a zig-zag stitching is embroidered
with conductive thread. This type of sensors are able to de-
tect simultaneous modalities such as bending and stretch-
ing. The sensing is based on the changes in the resistance
which is proportional to the length of the wire, and in-
versely proportional to the intersection of the area.

Structure

Non-Conductive
Fabric

Conductive Fabric

A

B

Figure 3.6: Structure of a capacitive bend sensor: A) Sensor
when compressed, B) Sensor not deformed
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Capacitive Bend Sensor: Keller et al. [2015] They invented
strain sensors that incorporate a resistive strain gauge em-
broidered on a cloth layer. At the moment of deformation
of this sensor, the electrical capacitance of the sensor is in-
versely proportional to the space at the distance between
the adjacent seams. Figure 3.6.A exemplifies the bend sen-
sor when it is compressed and 3.6.B shows its normal state.

3.1.2 Flex sensor

Flex Sensor: this sensor measures the amount of deflec-
tion. Because of its shape, this type of sensor can bend
and flex physically with motion devices and has been ex-
tensively used in other smart-gloves implementations. Roy
et al. [2015] and Plant et al. [2016] included flex sensor in
their glove prototype for gathering information on finger
position.

3.1.3 Sensor locations

Figure 3.7: Distribution of sensors: In our prototypes we
placed touch or pressure sensor in the green areas. In the
yellow areas, bend sensors.
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Oh and Findlater [2015] They investigated on-hand input
modalities for users with visual impairments. They sug-
gest a set of locations in the hand with potential to maxi-
mize on-hand inputs. They divided the hand according to
the landmarks between the phalanges, thumb, and palm of
the hand. Plant et al. [2016] used the back of the fingers to
incorporate flex sensors.

Based on the contribution of Oh and Findlater [2015] and
Plant et al. [2016], we included some of the proposed loca-
tions. Since our gloves use the thumb to activate the but-
tons, we chose the phalanges on the front of the hand and
the nails to place sensors. In the case of including bend
sensors, they would be incorporated over the joints of the
fingers. See figure 3.7.

3.1.4 Fabrication techniques

Fabrication
Tech-
nique

Machinery
Costs

Material
Costs

Process
Com-
plexity

Resis-
tance to
Wear

EmbroideryHigh Low High High
Sewing Low Low Low High
Weaving Low High High High
Non-
woven

Low Low Low Low

Knitting Low High High Low
Spinning Low Low Low Low

Table 3.1: Qualitative comparison of e-textiles fabrication
attributes - Table extracted from Gonçalves et al. [2018]

3.2 Implementation

The DIY community is predominantly use manual stitching
with conductive thread to create soft intelligent gloves. We
built the first prototypes completely from scratch; from the
design of the pattern to the assembly of the sensors. In this
way, we could detect which phases can be automated.
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Figure 3.8: Glove pattern used in our final prototype
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3.2.1 Hardware setup

Figure 3.9: Our first prototype includes pressure sensors
and a bend sensor
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Figure 3.10: Diagram of the first prototype
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In our initial prototype we used Arduino UNO as the
micro-controller board. The smart-glove has four pressure
sensors, one on each finger with the exception of the thumb.
In addition, we included a bend sensor on the index fin-
ger. For the connections between the sensors and the Ar-
duino, we sewed conductive thread from the fingertips to
the wrist, then we completed the connections with common
wiring to the Arduino. Figure 3.9 shows the final result
of our first prototype and figure 3.10 shows its circuit dia-
gram.

Figure 3.11: Smart-Glove prototype with a flex sensor

In the second prototype we integrated a flex sensor. In
the previous prototype, pressure sensors and tactile sensors
gave good results, and the performance was stable enough
when testing with our software. However, the bend sensors
did not work as expected. Although the output of these
sensors had a considerable range in analog value, the per-
formance was unstable and the output in many cases un-
predictable.
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Figure 3.12: Diagram of the second prototype

We opted to make a second prototype which include a flex
sensor. Our intention was to use all possible alternatives
to determine which type of bending sensor suits the best in
our design. In addition to this implementation, we replaced
the Arduino UNO for an Arduino LilyPad.

3.2.2 Software setup

Figure 3.13: Software application for testing the first smart-
glove prototype

To test the functionality of the first smart-glove with textile
Sensors (Figure 3.9), we develop a basic application using
Processing. Figure 3.13 shows two different screens of the
application. On the left side a pressure sensor is been tight-
ened. On the right side the bending sensor is triggered.
The bars on the left side of each screen map the voltage for
each sensing element. The red bars correspond to the pres-
sure sensors, while the yellow bar represents the bending
sensor. Each time a sensor is activated, its output value is
reflected by its corresponding bar. Where the greater the
voltage output, the larger the size of the bar.
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Figure 3.14: Music player that changes audio pitch based
on the smart-glove’s input

To test the performance of our second smart-glove proto-
type, we developed a basic music player with JavaScript.
The music player applies a low-pass filter to the audio. The
audio changes its frequency according to the analogous val-
ues thrown by the flex sensor. The output range remained
constant between ≈700 to ≈900 in analog value, hence its
performance was relatively stable.

3.3 Smart-glove maker requirements

After the first prototype iteration, we defined the following
requirements to be implemented in our system:

1. Portability: If we want to make smart-gloves to be
more portable. Then we have to follow the path
of textile sensors. Since hardware-based sensors are
heavier, more robust, and more intrusive in compar-
ison to textile sensors. In contrast, textile sensors are
light, discrete and can be customized in size, shape,
and color.

2. Compactness: Use LilyPad Arduino 328 instead of the
Arduino UNO. The Arduino lilyPad is a controller
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from the Arduino family. Its circular design is re-
duced to the maximum and is especially thought out
to be sewn in e-Textiles. Hence, circuit connections
can be consistently achieved with the exclusive use of
conductive thread. In addition, this board provides
12 digital pins and 6 analog pins which gives us a
considerable margin for the implementation of textile
sensors in the same smart-glove.

3. Design: Create an easy glove pattern to build with-
out compromising aesthetics and ergonomics. In ad-
dition, analyze what sizes of gloves and sensors are
adequate to ensure the responsiveness of our smart-
gloves.

4. Routing: Generate an algorithm capable of perform-
ing automatic routing of connections. Having in
mind the essential requirements and constrains for e-
textile- e.g, spacing between strokes, size and density
of stitches.

5. Automation: Use of computerized embroidery as dig-
ital fabrication tool.

6. Programming: Implement a UI that coherently unifies
all the steps that involve the fabrication process.
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Chapter 4

Routing algorithm for
non-rectangular areas

After the first prototypes of the smart-gloves we made, we
realized that designing and constructing the textile circuits
is one of the steps that consumes more time and effort. In
addition, it is one of the crucial steps we found in the fabri-
cation process. If mistakes are made in the design of the em-
broidered circuits and they are not detected in time, these
mistakes could be dragged to other steps of the process.
Therefore, this fact could compromise the progress made.

For the design of our pipeline, we wanted to incorporate
tools that would allow us to automate the process and re-
duces the probability of error. Eichinger et al. [2007] auto-
mated the creation of embroidered circuits using PCB de-
sign tools and custom software. Its contribution lies in the
conversion of the layout of a printed circuit board (PCB) to
an embroidery format for sewing machines. As part of their
work, they relied on Eagle, a tool for creating PCB designs.
Eagle provides a set of rules for manual and automatic cir-
cuit routing. These design rules were useful in determin-
ing the size, spacing, and density of the stitch. Following
the footsteps of Eichinger et al. [2007], we tried Eagle to
create circuits automatically (Figure 4.1). However, we no-
ticed some disadvantages:
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Figure 4.1: PCB layout designed with Eagle Software

Software limitations: Although Eagle offers auto-routing
mechanisms, these are limited to rectangular areas and in
standard versions, it restricts the dimensions of the PCB
to 100mm x 160mm. Doing the manual routing in non-
rectangular areas can consume too much time and effort.
Especially because tools provided by Eagle to sculpt the
layout of the board are not powerful enough as the tools
provided by design graphic software such as Illustrator or
Inkscape.
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User constraints: Using Eagle without previous experience
in PCB circuit design present a formidable challenge. To
create a PCB design, it is necessary to demonstrate con-
siderable expertise in electronics. Both to generate the
schematic design and the routing layout of the PCB.

Based on our observations and the failed attempts to eas-
ily generate the circuit of our smart-glove using Eagle, we
decided to develop our own algorithm. In this chapter, we
present our auto-routing algorithm for non-rectangular ar-
eas. The characterization of our algorithm is based on the
following:

1. Auto-routing of traces regardless of the shape and
size of the area.

2. Ease to define routing points, i.e., position between
textile buttons and micro-controller pins.

3. Guarantee of minimum spacing between traces, e.g.,
2mm apart from each other.

4. Generation of pattern files to be processed later by
computerized embroidery machines.

5. Reduction of human effort for designing embroidered
circuits.
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4.1 Algorithm definition

4.1.1 Definition of the input pattern and routing
points

Gaps

Routing Area

Figure 4.3: Input Pattern: The green area is where the auto-
routing takes place. The transparent areas are denominated
gaps and excluded when performing the auto-routing.

Input Pattern: the algorithm receives a pattern image in
SVG format as input. The input pattern is used to deter-
mine which areas are enabled for the auto-routing. Figure
4.3 illustrates the different areas of the input pattern. This
pattern may include one or more traced objects, regardless
of their shape, orientation or size. The design can be gen-
erated with the help of any graphic design tool. When de-
signing the input pattern, the following guidelines should
be taken into account:

Routing Area: The filling of the routing area can be any
solid color without any transparency.

Gaps: On the other hand, instead of filling, full
transparency should be applied.
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Pattern size: It is important that the image has the de-
sired real dimensions — i.e., escalate it to
life-size. In this way, the output files will
have the same size as the input pattern.
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Figure 4.4: Snippet: Definition of routing points

Routing points: For each set of coordinates expressed in
pixels between A and B, our algorithm finds the directest
trace possible if exists one. Where A represents the posi-
tion of the textile button defined by the absolute coordi-
nates with respect to the input pattern. B represents the
position of a pin of the micro-controller M, such that, B’s
coordinates are relative to the center of M. Lastly, the center
position of M is defined by the absolute coordinates with
respect to the input pattern. Figure 4.4 exemplifies the rout-
ing between points A and B according to the input pattern.

Figure 4.5 provides an example to define the set of coordi-
nates of textile buttons according to our implementation of
the current system.
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let pointsSet =   {
  

sensors:{ 
1:{ startPoint: [265,550], endPin: "GND" },
2:{ startPoint: [286,101], endPin: "2" },
3:{ startPoint: [286,164], endPin: "3" },
4:{ startPoint: [286,226], endPin: "4" } 

},

controller:{ 
"GND": { endPoint:[10,-73] },
"VOL":   { endPoint:[-10,-73] },
"5":     { endPoint:[-35,-67] },
"6":     { endPoint:[-55,-55] },
"7":     { endPoint:[-61,-40] },
"8":     { endPoint:[-70,-21] },
"9":     { endPoint:[-73,0] },
"10":    { endPoint:[-70,20] },
"11":    { endPoint:[-61,40] },
"12":    { endPoint:[-55,55] },
"13":    { endPoint:[-35,67] },
"A0":    { endPoint:[-10,73] },
"A1":    { endPoint:[10,73] },
"A2":    { endPoint:[35,67] },
"A3":    { endPoint:[55,55] },
"A4":    { endPoint:[61,40] },
"A5":    { endPoint:[75,21] }

},

controllerCenterPoint: [182,700], 
controllerPixelSize: 142

}

//De�nition of Position of the Button Sensor

//De�nition of Pins’ position relative to the micro-controller

//De�nition of Position of the micro-controller 

Figure 4.5: Abstraction of routing points

4.1.2 Grid-graph

The grid-graph is defined by a two-dimensional array
G = (V,E) with size m× n.

Where m = (w/u) and n = (h/u), such that, u is the unit per
cell in pixels , w the length of the image in pixels and h the
height of the image in pixels.

The cells of the array represent the vertices of the graph,
which correspond to the points of a coordinate plane,
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where the x− coordinates begin in the range of 0, ...,n and
the y − coordinates begin in the range of 0, ...,m.

Each node is connected to its eight adjacent cells, such that
a Vmn node has the edges of

Emn = {(Vm, Vn+1), (Vm, Vn−1), (Vm+1, Vn),

(Vm−1, Vn), (Vm+1, Vn+1), (Vm+1, Vn−1),

(Vm−1, Vn−1), (Vm−1, Vn+1)}

The graph contains the necessary information to perform
the routing for each trace according to the specific restric-
tions of the input image. The nomenclature used to define
the states by node are the following:

“Empty”: Area available to calculate the trace.

“Obstacle”: Segment where there is currently a portion
of some previously calculated trace. This at-
tribute allows us to avoid overlapping be-
tween traces.

“Gap”: Area inaccessible for routing. This area is de-
fined by the transparent parts of the input
image.

“Start”: Starting point of the trace.

“End”: End point of the trace.

“Visited”: visited nodes.

At run time, the nodes of the graph are marked with either
”Empty” or ”Gap”. To determine weather, a node Vnm has
state of ”Empty” or ”Gap”. Our algorithm is restricted to
perform the auto-routing in non-rectangular areas, by ana-
lyzing the image pattern in the following way:

The image is divided into m× n subsections of size u. Each
subsection Snm is analyzed. If 80% of the pixels of Snm have
the alpha channel at 100% (transparent pixel) then their cor-
responding vertex Vnm is marked as ”gap”, otherwise it is
marked as ”Empty”.
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4.1.3 Auto-routing
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Figure 4.6: Comparison of outputs between Lee Algorithm
versus our implementation

Our algorithm is based on the principles of Lee’s maze-
routing algorithm Lee [1961]. Lee’s algorithm performs the
search for the shortest path between two nodes of the graph
using the ”Breadth-First Search” technique. This technique
consists in expanding all the neighbors from a root node. In
the following propagations, each of the neighbors explores
its respective adjacent nodes. And so on until the trace that
connects the two nodes is discovered or the graph has been
completely traversed.

Unlike the algorithm proposed by Lee, our implementa-
tion is able to find paths in eight directions ”South”, ”East”,
”North”, ”West”, ”Southeast”, ”Northeast”, ”Northwest”, and
”Southwest.” This feature allows us to calculate even di-
recter paths than those calculated by Lee.

In figure 4.6, we show the shortest path calculated by each
algorithm in a grid graph of 4x4. As we can see, the path
of figure 4.6.A is of length 5, while the path of figure 4.6.B
is of length 2. This represents a considerable shortening of
the path, consequently, a reduction in computational cost.

The Auto-routing step by step - Calculating the most di-
rect trace for each set of coordinates

Being A the root node and B the target node:

Step 1: We define a queue Q. This queue keeps track of the
nodes that are candidates for the following propagations.
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Step 2: Add root node A(n,m) to Q. Therefore, Q = [(n,m)]

Step 3: Iteratively extract the first element from Q until it is
empty or node B has been found.

Step 3.1: Start the propagation, that is, add the adjacent
neighbors with status ”Empty” as soon as they are discov-
ered at Q[0]

The order of exploration in our algorithm is predeter-
mined with the following sequence: ”South”, ”East”,
”North”, ”West”, ”Southeast”, ”Northeast”, ”Northwest”,
and ”Southwest.”

Step 3.2: If Q[0] = B then we have found the way, otherwise,
mark Q[0] as visited

4.1.4 Heuristic

Each time that a new trace T is calculated, the obstacles gen-
erated in T while propagating a point are released in the
grid-graph G. Then, the points of R and its adjacent cells
are marked as new obstacles in G. In this way the next trace
T’ is calculated with the appropriate restrictions and over-
lapping of traces is prevented.

The time and space complexity for this algorithm for an M
m× n N grid is O (MN). To reduce the execution time, we
propose the following heuristic (see figure 4.2).

Given a finite set A of n elements:

1. The shortest path is calculated for each trace in A.

2. If there are collisions between traces, subgroups of
overlapping traces are generated.

3. Then, the subgroups are randomly calculated. By do-
ing this the number of permutations reduces.
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For example, without heuristics, if there is only one so-
lution for the calculation of 15 traces, then in the worst-
case scenario it will be needed 15! = 3628800 combina-
tions. Now, by applying the heuristic, suppose that
we have 3 subgroups, each with 5 traces, then in the
worst-case scenario the number of combinations needed is
3! ∗ (5! + 5! + 5!) = 2160.

4.2 Evaluation

Figure 4.7: Input pattern used to evaluate our algorithm in
comparison with Lee’s algorithm

To evaluate the performance of our algorithm in relation
to Lee’s algorithm, we measured the execution time for the
auto-routing of traces. We started from 1 trace to the 17
possible traces that our glove design can incorporate. For
each measurement, 10 repetitions were executed. The se-
lection of sensors was random and incremental, that is, the
measurement started with one trace and adding randomly
a trace after each exercise.

The input pattern we used is the current design for the fab-
rication of our smart-gloves, see figure 4.7. Lastly, the grid
generated automatically by our algorithm based on the in-
put pattern has a size of 121x99.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Best Time 0.49 0.51 0.49 0.55 0.51 0.56 0.68 0.70 0.76 0.76 0.89 0.89 1.07 1.13 1.26 1.54 2.16

Worst Time 0.93 0.75 0.94 0.98 0.94 1.08 1.11 1.42 1.65 8.23 3.84 8.33 7.58 9.84 9.75 19.31 23.21

AVG Time 0.59 0.60 0.67 0.70 0.68 0.73 0.85 1.00 1.02 1.77 1.68 2.45 2.89 3.32 3.51 7.42 9.89
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Figure 4.8: Our auto-routing algorithm execution time in N
traces

In Figure 4.8, we show the best and the worst execution
time, along with its average time of our algorithm. As we
can see in the graph, time increases as the number of traces
increases. However, the average time remains reasonable.
This means that if one wants to generate the patterns of an
smart-glove with the 17 possible connections, it will require
an average of ≈ 10 seconds.

In figure 4.9 we can detect the similar behavior of the grow-
ing times as new traces are added. However, the execution
times are drastically triggered by the combination of 12 to
17 traces. It means that the average time to calculate a glove
pattern with the 17 traces would take ≈ 1.8 minutes. Ap-
proximately 11 times slower than our algorithm.

In Figure 4.10 we can observe the performance of both we
algorithms.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Best Time 0.44 0.51 0.48 0.44 0.45 0.46 0.46 0.59 0.58 0.63 0.63 0.71 0.92 1.81 2.25 3.97 20.31

Worst Time 0.94 0.96 0.97 0.96 1.14 1.54 1.14 2.28 1.32 4.58 6.92 17.96 7.34 87.78 166.36 146.29 309.26

AVG Time 0.57 0.63 0.62 0.61 0.65 0.76 0.71 0.97 0.82 1.45 2.56 3.18 2.90 26.38 32.88 87.76 110.59
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Figure 4.9: Lee’s algorithm execution time in N traces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Best Time 0.49 0.51 0.49 0.55 0.51 0.56 0.68 0.70 0.76 0.76 0.89 0.89 1.07 1.13 1.26 1.54 2.16

Worst Time 0.93 0.75 0.94 0.98 0.94 1.08 1.11 1.42 1.65 8.23 3.84 8.33 7.58 9.84 9.75 19.31 23.21
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Our Algorithm 0.59 0.60 0.67 0.70 0.68 0.73 0.85 1.00 1.02 1.77 1.68 2.45 2.89 3.32 3.51 7.42 9.89
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Figure 4.10: Average time comparison between both algo-
rithms.
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4.3 Limitations
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Figure 4.11: Interlock: Although there is a candidate trace
that connects each pair of points, due to the added obsta-
cles, only one path can be a resolved.

Interlock: There are some cases where the algorithm suf-
fers from interlock even though there is a candidate path
for the trace. This happens when the calculation of a paths
blocks the access with obstacles. Figure 4.11 exemplifies a
case when interlock occurs.

Performance: In general, the computation cost of the algo-
rithm is very high. To improve the efficiency and the execu-
tion time there is the possibility of parallelizing the architec-
ture of our algorithm. Yen et al. [1993] proposes strategies
to parallelize Lee’s algorithm, therefore these techniques
could be adjusted and implemented in our algorithm.

Output: At the moment, our algorithm only generates glove
patterns in SVG format. To obtain the final pattern with the
format for embroidery machines, it is necessary to process
the files manually with the specific software of each em-
broidery machine.
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Chapter 5

Interface and pipeline

Figure 5.1: Home Section

In this chapter, we present our pipeline for the creation
of textile smart-gloves, the ”Smart-Glove Maker”. Our
pipeline enables users to design, embroider, build and pro-
gram their gloves. Our pipeline integrates intelligence for
the automatic design of smart-gloves patterns. We use com-
puterized embroidery-machines as a digital fabrication tool
along with low-cost materials and other accessible tools.
Our user interface helps users step by step during the entire
process, offering a visual guide to build the embroidered
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gloves patterns. In addition, our pipeline allows program-
ming the smart-gloves. By completing our pipeline users
will have a functional self-made smart-glove for gesture
recognition.

5.1 Designing the smart-glove

5.1.1 Choose buttons

Figure 5.2: Design Section: Choosing buttons from both
sides of the hand.

To design a smart-glove we use a catalog of possible ges-
tures that can be recognized. A gesture can be triggered by
touching in a burst of time a sequence of buttons. The fig-
ure 5.2 shows the mapping of the possible buttons that can
be incorporated in the pattern; a maximum of 12 buttons
on the palm of the hand and 4 at the back.

5.1.2 Show routings

Once the buttons are selected, the wiring diagram can be
generated. In the figure 5.3 a proposal of a viable conflict-
free wiring diagram of the auto-routing is shown. How-
ever, if there is more than one routing combination, it is
possible to recalculate the wiring routing by pressing the
button ”Recalculate Wiring.”
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Figure 5.3: Design section: Displaying the wiring diagram

5.1.3 Download files

The concluding sub-step for designing a glove is to down-
load the glove patterns, figure 5.4. It is pertinent to take
into account that we currently use a standard glove size.

Image 5.5 shows the set of needed files to generate the em-
broidery patterns.

• 1.A Glove - Conductive File.svg

• 1.B Glove - Insulation File.svg

• 2.A Thumb - Conductive File.svg

• 2.B Thumb - Insulation File.svg
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Figure 5.4: Design Section: Download smart-glove pat-
terns’ files

1.A 1.B

2.A 2.B

Figure 5.5: Embroidery Patterns Files: 1.A Glove - Conduc-
tive File, 1.B Glove - Insulation File, 2.A Thumb - Conduc-
tive File, 2.B Thumb - Insulation File.
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5.2 Embroidering the smart-glove

huda Hamdan et al. [2018] introduced an interactive sys-
tem for developing embroidered sensors. Their implemen-
tation stitches the underlying conductive thread that is later
it is insulated with computerized embroidery. For our im-
plementation, we use the same technique of stitching and
embroidering.

5.3 Preparing pattern files

Before proceeding to embroider the files, they must be
transformed into a format for the embroidery machine. In
our case, to embroider our smart-glove pattern, we used
the machine Bernina 880B along with its software Design-
erPlus v.8.

To get the files for the Bernina 880B with DesignerPlus, we
first digitize the file 1.A Glove - Conductive File followed by
the file 1.B Glove - Insulation File. In a similar way for the
thumb pattern but with file 2.A Thumb - Conductive File fol-
lowed by 2.B Thumb - Insulation File. See figure 5.5 to relate
the files.

The process to embroider the patterns is done in two parts.
The first one to embroider the glove pattern and the second
to embroider the pattern of the thumb and laterals. Each
pattern is embroidered by layers. For this reason, it is criti-
cal to respect the order of the files when converting them to
an embroidery-machine format.

After several implementations, we observed the following
parameters to fit better to our design.
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Function Wire Electrode Insulation
Color Red Yellow Green
Stitch Single Satin Satin
Yarn Type Conductive Conductive Regular
Width 1mm 2.5 - 3mm 2.5 - 3mm
Density 0.5mm 0.1mm 0.1mm

Table 5.1: Attributes and suggested measures for embroi-
dering the buttons

Wire -
Single Stich

Insulation -
Satin Stich

Electrode -
Satin Stich

Figure 5.6: Layering of an embroidery touch button

Figure 5.6 shows the structure of a textile touch button and
the type of stitch that should be used for each part of the
button.

5.4 Embroidering the patterns

The order of the colors and the type of thread must also be
respected when embroidering the patterns.

The order of colors and types of thread are the following:

1. Red with conductive thread

2. Yellow with conductive thread

3. Green with non-conductive thread

4. Black with non-conductive thread
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1
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Figure 5.7: Sequence to embroider the patterns: 1. Wires, 2.
Electrodes, 3. Insulation, 4. Outline

When the conductive traces (figure 5.7.1) and electrodes
(figure5.7.2) are done, carefully, without removing the pat-
tern from the hoop, prune the surplus stitches from both
sides of the hoop if it is needed. Then on top of conduc-
tive traces, start embroidering with non-conductive thread
the insulation traces (figure 5.7.3) followed by the embroi-
dery of the glove’s outline (figure 5.7.4). The same proce-
dure must be done for the thumb, with patterns 5.5.2.A and
5.5.2.B.

1 2

Figure 5.8: Embroidered smart-glove pattern: 1. Conduc-
tive layer, 2. Insulation layer

Figure 5.8 shows the layering of a smart-glove pattern.
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5.5 Building the smart-glove

Figure 5.9: Building the smart-glove: Visual guide

To facilitate users to build the smart-glove from the already
embroidered patterns, We provide in our user interface a
visual guide. Each step in the guide contains descriptive
images along with complementary instructions.

Below we describe step by step the instructions for building
the smart-glove. See figure images/interface/directions.

1. Applying Fusible interfacing. (Figure 5.10.1) It may happen
that in some occasions the isolation by the embroidery tech-
nique is not completely reliable. There are several reasons
why exposed conductive segments or conductive threads
may remain. One of the main reasons is due to the displace-
ment of the fabric with respect to the hoop. This is princi-
pally because of the abrupt jumps of the machine when em-
broidering, also because of the use of fabrics with very thin
and elastic fibers. Another common reasons are the density
of the stitch, the thickness of the thread, and the speed of
the stitching.

To reduce possible problems related to exposed circuit
traces, apply a layer of fusible interfacing. To do so:
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Figure 5.10: Visual guide - Instructions for making a smart-glove: 1. Apply fusible
interfacing, 2. Sew Laterals, 3. Fold glove pattern and sew, 4. Sew up the thumb, 5.
Attach thumb to the glove, 6. Flip the glove, 7. Place LilyPad, 8. Stitch Buttons to
pins, 9. Upload Arduino Code
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1. Place the pattern facing down on a flat surface.

2. Cut a piece of fusible interfacing that covers perfectly
the pattern and place the sticky side down.

3. On top of it place a towel or another heat resistant fab-
ric to avoid burning the interfacing. Iron at medium
temperature until the interfacing is completely ad-
hered. This process will take around 3 minutes.

4. Finally, cut the pattern leaving 2 millimeters outside
the edge.

2. Sew Laterals. (Figure 5.10.2) Laterals are marked by a
letter that represents their position:

Lateral A: Pinkie with ring finger

Lateral B: Ring with middle finger

Lateral C: Middle with index finger

If you are using a double sided color fabric, make sure that
the front color of the lateral faces the front side of the pat-
tern. In order to keep aesthetics, it is recommended to do
the stitching on the back side of the pattern.

3. Fold glove pattern and sew. (Figure 5.10.3) Once the lat-
erals are in place, fold the glove and start sewing it from
fingertips to the wrist.

4. Sew up the thumb (Figure 5.10.4) As in the previous step,
fold the thumb pattern and stitch it up. Do not forget to put
the back side of the pattern on the outer side.

5. Attach thumb to the glove (Figure 5.10.5) Now it is time
to put all together. Match both ellipses and start sewing,
remember that the thumb must be pointing up.

6. Flip the glove. (Figure 5.10.6) At this step, the sewing of
the glove pattern is done, flip the glove so that the real face
is revealing.
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7. Place LiliPad. (Figure 5.10.7) It is important to identify
the correct position of the Arduino LilyPad. Sensors are
designed in a way that the Arduino LilyPad must be placed
with a rotation of 90 degree.

8. Stitch buttons to pins. (Figure 5.10.8) Thread a needle with
conductive yard and sew each sensor line to its nearest pin
on the Arduino LilyPad. Finally, stitch the line that leads
from voltage to the thumb.
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Figure 5.11: Circuit diagram with the connections between
buttons and micro-controller.
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Figure 5.12: Smart-Gloves: iteration refinement with em-
broidered touch buttons.

Figure 5.13: Final prototype iteration: We present a smart-
glove for gesture detection
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5.6 Programming and testing the smart-
glove

5.6.1 Uploading Code to the Smart-Glove

Figure 5.14: Downloading Arduino code for the smart-
glove.

In order to start using our smart-glove, it is necessary to
include code to detect the textile buttons’ inputs. In our
pipeline, we offer Arduino code ready to be loaded into
the micro-controller. Directly download the code, see fig-
ure 5.14, connect the glove to a serial port USB and use the
Arduino IDE to install the code to the glove.

At the moment we offer a straightforward solution for the
detection of buttons’ inputs. However, if necessary, users
can program more robust routines that suit their needs.

5.6.2 Connecting the smart-Glove to the serial port

To use the glove in our system, the smart-glove must be
connected to a serial port on the computer, then a panel
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Figure 5.15: Connecting the smart-glove to the serial port.

with the available devices is displayed. When selecting the
device, the glove will be automatically communicate with
our system.

5.6.3 Gesture-based smart-glove programming

To assess the performance of our smart gloves, we offer a
music player widget. The possible actions to manipulate
the player are:

• Play/Stop a song

• Go forward through a song

• Go backward through a song

In figure 5.16, users can record the gestures for each ac-
tion. The recording starts after clicking on the correspond-
ing button of each action and followed by performing the
desired gesture with the glove. After recording the action, a
series of number is displayed, these numbers represent the
sequence of the gesture.
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Figure 5.16: Smart-Glove programming using gestures

It is necessary to mention that for the moment the gestures
are map to the interface, and not to the micro-controller it-
self. Therefore, if it is desired to develop other interfaces, it
is the user’s task to program the code for the detection of
gestures. However, we offer this use case as an example of
glove programming using gestures.

5.6.4 Controlling a Music Player Interface

Once the gestures have been recorded, users can proceed to
control the music player widget (figure 5.17). Each time a
button is touched, in the view, a golden circle will highlight
the corresponding button sensor. By default, a test song
is loaded. The music player will react depending on the
gestures executed.
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Figure 5.17: Controlling a music player widget

5.7 Software implementation

5.7.1 Back-end

To achieve communication between our system and the
smart-glove, we developed a client-server architecture with
the library socket.io - npm v2.1.1. For sending data through
the serial port we use the library serialport -npm, v7.0.2.

5.7.2 Front-end

To develop the front-end, we use ReactJS as the main library
for the development of the UI. We use CSS3 for the aesthet-
ics of the user interface and to provide a responsive UI, we
use Bootstrap v4.0.

For animations, based on the ”3D hand” resource by Su-
perDasil under the 3.0 license. We make remixes of the 3D
model with the help of Blender. The rest of the illustrations
and images were made with Illustrator and Photoshop.
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Chapter 6

Evaluation

The aim of this study was to analyze the usability of our
pipeline and UI. In this sense, we wanted to verify that our
system can guide the user in the design, construction and
programming of a smart-glove with the least number of er-
rors.

6.1 Design

In this experiment, participants were asked to complete
our pipeline for fabricating a smart-glove by utilizing our
system. The experiment was considered successful if par-
ticipants managed to create a totally functional smart-
glove and were capable to cope all steps that involves the
pipeline.

For the evaluation of our pipeline, we have selected a com-
bination of methods to ensure broad coverage of the results
and a better identification of user interface problems. The
methods included a task-based usability implementing the
think-aloud method and proceeded with a series of ques-
tionnaires.
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Task-based usability: The task-based usability evaluation
consists of describing to the user the possible gestures that
the smart-glove should be able to recognize at the end of
our pipeline. The given gestures were selected in such a
way that the user had to cover every element and screen of
the system.

Video recording: The usability test was video recorded. The
video recordings supported us to perform a better analysis
of each participant throughout the pipeline by highlighting
problems we did not realize during the experiment. In ad-
dition, they were asked to employ the think-aloud method,
this method allowed us to obtain direct feedback on what
participants were thinking during the trial.

Questionnaires: This approach were used to deepen the
feedback of the user on each phase of the system. Two types
of questionnaires were designed: one to evaluate the user
interface and another to evaluate the functionality of the
system. The purpose of implementing question sheets is
to bid on qualitative measurements based on the usability
trials. We presented two separate questionnaires to make
the distinction of the participants’ answers. If the question-
naires were delivered as one, it would have been difficult
to detect whether the evaluation of a certain section high-
lights issues related to the interface or problems due to an
inappropriate functionality of the system.

1. Design questionnaire: focuses on evaluating the clarity
of the messages, alerts, sounds, animations and wid-
gets.

2. Functionality questionnaire: aims on the performance
of our pipeline. The questions asked in this ques-
tionnaire focus on detecting the degree of difficulty to
perform certain task in the system, such as: select or
modify the sensors in the design of the glove, down-
load the files to generate the embroidery, connect the
smart-glove and program its gestures, and so on.

In appendix B can be found the templates of the question-
naires that we used.
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The results of this experiment were used to identify compo-
nents or phases of our system that required redesign. The
current version of our system reflects the new interface de-
sign and adjustments to our pipeline.

6.2 Task and procedure

The task consisted to fabricate a fully functional smart-
glove utilizing our system. To achieve the task, the user
should successfully complete the following steps:

1. Design of the glove with the adequate configuration of buttons:

For the design of the glove, the user was shown three ges-
tures; two of these gestures involved the front of the palm
and the last gesture the back of the hand. To exemplify the
task in an explicit and straightforward way, the evaluator
made the gesticulations required with his own hand. Af-
ter the task was clear, the participant proceeded to do the
design of the glove.

2. Construction of the smart-glove from the embroidered patterns
of the glove:

For the construction of the glove, we use pre-embroidered
patterns. The task of creating the embroidered patterns is
a step that requires the use of embroidery machines. And
also, additional software for the conversion of the files into
a recognizable format for the embroidery machine. This
step is not part of our UI, therefore, it was omitted. The task
assigned to the participant, in this case, was to build the
glove from the already embroidered patterns. The partici-
pant was given a finished embroidered glove pattern with
the appropriate configuration of sensors.

For the glove construction, the user was provided with the
necessary tools and materials. The toolkit included:

• Fusible interfacing

• Iron

• Ironing towel

• Needle
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• Conductive thread

• Tread

• Scissors

• Arduino LilyPad

3. Programming and testing of the glove.

The participant was asked to program the glove based on
gestures of his choice to later test the functionality of the
glove when manipulating the music player interface.

6.3 Participants

Three participants were recruited, two women and one
man. The age range of the participants was between 27
and 30 years old. Only women had previous experience
in sewing.

6.4 Study setup

Figure 6.1: Study setup

During the experiment, all participants have performed the
same task. The evaluator did not previously instruct the
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participants in the use of the software but did clarify doubts
regarding the assigned task. Once the trail had started, the
evaluator could assist the participants only in the excep-
tional case that participants had doubts and were unable to
resolve it by themselves. Figure 1.1 shows the setup for the
study.

The time needed for completing this trail was around six
hours and the protocol followed for this exercise consisted
of the next three tasks:

1. Glove Pattern Design: This task was held in a private
room for the user’s comfort. In this place the partic-
ipant received the requirements for the design of the
glove. Doubts were clarified if existed, then the par-
ticipant proceeded to generate the design of the glove.
This task took approximately 5 minutes.

2. Glove Construction: A pre-embroidered glove pattern
was provided to the participant for the construction
of the glove. However, the user was taken to the Fa-
bLab to somehow involve him in the process of creat-
ing the embroidery pattern. Once in the FabLab the
evaluator explained briefly the following necessary
step to create a embroidered glove pattern:

(a) Preparation of files for the sewing machine.

(b) Installation of the fabric into the hoops.

(c) Use of the sewing machine.

Afterwards the participant was taken back to the ini-
tial room. Here he/she received a toolkit for the con-
struction of the glove. This task took around 5 hours.

3. Glove Programming: Once the smart-glove was con-
structed, the participant proceeded to load the code in
the Arduino LilyPad followed by the glove program-
ming by gestures. To conclude this task, the partic-
ipant had to control with the glove the interface of
the music player that is built-in onto our UI. This step
took approximately half an hour.
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6.5 Results

The use of our system and the implementation of the
pipeline has generally provided positive results. All the
participants managed to complete the tasks and finish their
smart-glove at the end of the study.

The result of the analysis of the questionnaires indicatesparticipants in
general agreed that
the design of the UI

is clear and the
functionality of the

system is adequate

that the participants in general agreed that the design of
the UI is clear and the functionality of the system is ade-
quate. However, there were some setbacks related to the
construction of the glove, and some conflicts to understand
the visual guide.

The problems that arose during the construction of the
glove were mainly due to the lack of ability to sew. The
users indicated that this part was the most tired, but there
was a participant who mentioned that sewing the glove
was relaxing. The results of this study dictate a subsequent
redesign to correct possible problems of usability and im-
provement of the interface.

6.6 Discussion

The results of this study allowed us to detect the usabilityThe results of this
study allowed us to

detect and fix the
usability problems of

our system and
pipeline

errors of our system and pipeline. The problems related
to the UI were corrected. In general, some icons, images,
and animations were modified or replaced to make these
resources more significant. We also restructured the inter-
face in order to correct some navigation problems among
the views. In the same way, we unify all the components of
the interface to provide greater sense and coherence in the
flow of our system. After the analysis of the videos, and
the review of the questionnaires the following problems for
each task were highlighted:
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Glove Pattern Design

1. Selection of button sensors:

• Problem: Participants could easily intuit the concept of
selecting the button set, however, there were design
problems in the UI. Participants found the represen-
tation of the palm and the back of the hand slightly
ambiguous. In addition, they felt that the icons on the
buttons to switch between the front and back position
of the hand were meaningless.

• Solution: The illustrations to represent the hand were
replaced by a high detail 3D animation. In the current
design of the UI, the buttons to switch between the
sides of the hand were removed. Now to change the
sides, it is enough to make a swipe on the 3D hand.

2. Download of pattern files:

• Problem: Participants found that the hints offered
in this section were not clear enough to understand
what to do with the downloaded files.

• Solution: In this view, animations were added to de-
scribe how to use downloaded files depending on the
pattern (glove and thumb pattern). Also, the anima-
tions indicate the size of the hoop and the order in
which the files should be embroidered.

Glove Construction

1. Understanding the visual guide:

• Problem: Regarding the visual guide, some par-
ticipants commented that some illustrations lacked
meaning. As feedback, they suggested incorporating
more details in the illustrations. -e.g, point out where
the stitches should be made when placing the parts of
the glove together. As extra request, they suggested
improving the navigation between instructions.
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• Solution: In the current visual guide, the instructions
are presented with less text and the information is
more concise. We modified some of the illustrations
and added more signifiers to increase their meaning.
Finally, we restructured the way of visualizing each
step of the guide. In such a way that now it is pos-
sible to obtain clues about what the following steps
are.

2. Problems when sewing:

• Problem: Extensive problems were identified when
constructing the glove. Unfortunately, this step re-
quires great skill and effort. To complete the construc-
tion of the glove, it is needed an average of 4 hours.
The direct reason was due to the little practice or ex-
perience to sew. We observed that this problem, in
the less experienced users, led to insecurity and frus-
tration.

• Solution: To minimize the time of this step, we ex-
plored other techniques. Initially, we tried with sta-
ples. Although we managed to unite the parts of the
glove, the result was not aesthetic. Significant holes in
the glove were exposed, and the staples did not sup-
port the constant use of the glove. As a second alter-
native, we modified the current design of the patterns
so that it was possible to glue the parts of the glove
together. However, we discovered that by using glue
the process is even slower, even though we used spe-
cial instant adhesives for textiles. Furthermore, as the
glue dried, the glove became rigid and lost its mobil-
ity. For now, we can not clear up the problem and
still need to try other alternatives to facilitate the con-
struction of the smart-glove.
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Glove Programming

1. Recording the gestures

• Problem: Participants had difficulties in understand-
ing how to record gestures since the music player in-
terface was shown at the beginning and the button’s
icon to shift between the views of recording gestures
and the music player was not clear enough.

• Solution: To solve the issue, we restructured the way
to program and test the gloves. First, the interface to
record the gestures is presented, after recording, the
interface to manipulate the music player is shown.
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Chapter 7

Summary and future
work

7.1 Summary and contributions

This research work was inspired by the process that the
DIY community typically performs to make a smart-glove.
The fabrication of an smart-glove requires several steps and
many skills, from the design of the glove pattern, to the de-
sign of the connections, arrangement of the circuit, sewing
and insulating the wires, joining all the glove parts, and fi-
nally, programming the glove.

The objective of this work was to develop a unified inter- Our goal is to unify
the process for the
creation of smart
gloves.

face that will steer people through these steps. Using rout-
ing algorithms to reduce the time and margin of error in the
design of textile sensors and wiring. We employed comput-
erized embroidery in smart stitch patterns as an automatic
manufacturing tool.

Our work is primarily divided into 4 phases: the first one
focuses on the implementation of textile sensors and betas
prototypes of the smart-gloves. The second addresses the
development of the routing algorithm for the generation of
glove patterns. The third describes the unification of the
pipeline through a UI. Finally, the concluding phase focuses
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on the evaluation of our pipeline.

Prototypes

During this phase, we explored the current implementa-
tions of resistive and capacitive sensors based on e-textile.
These sensors included: touch sensors, pressure sensors,
and bending sensors. The reason was to find out their per-
formance, materials, and techniques for their construction.
Based on the implementation of these textile sensors, we
developed the first prototypes of intelligent gloves. At this
point the manufacturing process was manual. To test the
functionality of the gloves, we develop software to visu-
alize the force exerted on the pressure sensors. And soft-
ware to manipulate the pitch of the audio through flex sen-
sors. We also investigate the locations to optimize inputs
through the hand. In our design, based on the contribution
of Oh and Findlater [2015] we use the phalanges to place
sensors.

Routing algorithm

In this phase, we look for alternatives to automatically gen-We developed an
algorithm for the

auto-routing of traces
on non-rectangular

surfaces

erate the glove pattern design. Our alternative was to use
Eagle Software, but after several attempts, we discovered
several setbacks,- i.e., lack of tools to generate auto-routing
on non-rectangular surfaces. Faced with this situation, we
developed an algorithm capable of performing the auto-
routing of traces on non-rectangular surfaces. It is very easy
to restrict the areas where routing is possible through an
SVG format image as an input parameter. In addition, our
algorithm can be configured to determine the minimum
spacing between traces,- e.g, 2mm between strokes. The al-
gorithm produces glove patterns, which are easy to process
and convert to files recognizable by embroidery machines.
Using the embroidery technique as a digital tool we ensure
precision, consistency, and sturdiness of the stitches.

Pipeline and UI

At this point, we unified all the work done through a UI.We simplified the
fabrication process

into four
non-technical steps.

Our end-to-end pipeline reduces the number of steps in-
volved in the fabrication of the smart-gloves into 4 steps:
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the design of the glove, the automation of embroidery of
the circuit, the construction of the glove and its program-
ming based on gestures.

Design: The flow of the pipeline begins with the selection
of sensors from a catalog. Based on the selected sensors,
our system generates files that contain the traces that will
represent part of the embroidery circuit. At the moment
our system does not generate the files with a recognizable
format for sewing machines. However, with the use of ad-
ditional software specific to each embroidery machine, the
conversion of the files is relatively easy.

Embroidery of the pattern: Once having these files, and alter-
nating between our system and the embroidery machines.
By using the embroidery technique as an automated tool
we ensure precision, consistency, and sturdiness in the
stitches of the embroidered circuits.

Construction of the glove: To facilitate the user to build their
smart-glove from the already embroidered glove patterns
we included in our UI a visual guide. Our UI instructs peo-
ple in every step of the construction through illustrations,
animations, and text.

Glove programming based on gestures: Our system provides
a basic source code so that the smart-glove is able to rec-
ognize the inputs of the buttons. Our interface provides a
section where users can program the gloves by performing
gestures. Gestures are mapped into actions which can con-
trol the interface of a music player.

Evaluation

The evaluation of our pipeline and UI allowed us to detect
usability problems. The problems related to the UI were
corrected. In general, some icons, images, and animations
were modified or replaced to make these resources more
significant. We also restructured the interface in order to
correct some navigation problems among the views. How-
ever, extensive problems were identified when construct-
ing the glove. To complete the construction of the glove, it
is needed an average of 4 hours. The direct reason was due
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to the little practice or experience to sew.

7.2 Future work

There are still interesting aspects that could be improved as
future work.

Currently, our algorithm generates glove patterns using the
Arduino Lilypad as the base microprocessor and in a way,
each of the sensors is statically linked to a specific pin. Our
algorithm could be extended to detect other types of mi-
croprocessors with a bigger or smaller number of pins. It
could also include features in the interface to determine ei-
ther automatically or manually which pin corresponds to
each sensor.

Another aspect to take into account is the sizes of the
gloves, for now, we only offer one size for the gloves. It
would be convenient to look for alternatives to measure
the exact size of the hand and based on this generate the
dimensions of the patterns.

In our smart-glove design, we only implemented touch
sensors. It would still be necessary to incorporate some
other types of sensors.-e.g., pressure sensors, bending sen-
sors, and sensors for detecting the position of the fingers
and hand. The objective of this improvement would be to
enrich the interaction of the gloves and perform more ex-
pressive gestures.

Finally, but not least. It is relevant to explore another type
of materials and fabrics that adapt better to the shape of the
hand. This will be important to evaluate if these materials
improve the portability and use of the smart-gloves.
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Appendix A

APPENDIX FOR THE
ROUTING
ALGORITHM

A.0.1 Auto-routing example
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Figure A.1: Auto-routing example
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Step 1: define the queue

Q = []

Step 2: Add node A into Q

Q = [(1, 1)]

Step 3: Extract the first element of Q

Q0 = (1, 1),

Q = []

Step 4: propagate in the eight directions and add nodes to
Q if they have an ”Empty” state: (figure A.1.1)

”South” : Q = [(2, 1)]

”East” : Q = [(2, 1), (1, 2)]

”North” : Q = [(2, 1), (1, 2), (0, 1)]

”West” : Q = [(2, 1), (1, 2), (0, 1), (1, 0)]

”Southeast” : Q = [(2, 1), (1, 2), (0, 1), (1, 0), (2, 2)]

”Northeast” : Q = [(2, 1), (1, 2), (0, 1), (1, 0), (2, 2), (0, 2)]

”Northwest” : Q = [(2, 1), (1, 2), (0, 1), (1, 0), (2, 2), (0, 2), (0, 0)]

”Southwest” : Q = [(2, 1), (1, 2), (0, 1), (1, 0), (2, 2), (0, 2), (0, 0), (2.0)]

Repeat until node B is found or the graph is traversed

(figure A.1.2)
Extract the next node:

Q0 = (2, 1),

Q = [(1, 2), (0, 1), (1, 0), (2, 2), (0, 2), (0, 0), (2.0)]

Propagate node Q0:

Q = [(1, 2), (0, 1), (1, 0), (2, 2), (0, 2), (0, 0), (2, 0), (3.0)]

(figure A.1.3)
Extract the next node:

Q0 = (1, 2),

Q = [(0, 1), (1, 0), (2, 2), (0, 2), (0, 0), (2, 0), (3.0)]
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Propagate node Q0:

Q = [(0, 1), (1, 0), (2, 2), (0, 2), (0, 0), (2, 0), (3, 0), (1, 3), (2, 3), (0, 3)]

Extract the next node Q0 = (0,1) ”no propagated”
Extract the next node Q0 = (1.0) ”no propagated”
Extract the next node Q0 = (2,2) ”no propagated”
Extract the next node Q0 = (0.2) ”no propagated”
Extract the next node Q0 = (0,0) ”no propagated”
Extract the next node Q0 = (2.0) ”no propagated”
Extract the next node Q0 = (3.0) ”no propagated”

(figure A.1.4)
Extract the next node:

Q0 = (3, 0),

Q = Q = [(1, 3), (2, 3), (0, 3)]

Propagate node Q0:

Q = [(1, 3), (2, 3), (0, 3), (4, 0), (4, 1)]

(figure A.1.5)
Extract the next node:

Q0 = (1, 3),

Q = Q = [(2, 3), (0, 3), (4, 0), (4, 1)]

Propagate node Q0:

Q = [(2, 3), (0, 3), (4, 0), (4, 1), (1, 4), (2, 4), (0, 4)]

(figure A.1.6)
Extract the next node:

Q0 = (2, 3),

Q = Q = [(0, 3), (4, 0), (4, 1), (1, 4), (2, 4), (0, 4, 4))]

Propagate node Q0:

Q = [(0.3), (4.0), (4.1), (1.4), (2.4), (0.4), (3.4)]
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Extract the next node Q0 = (0.3) ”no propagated”
Extract the next node Q0 = (4.0) ”no propagated”

(figure A.1.7)
Extract the next node:

Q0 = (4, 1),

Q = Q = [(1, 4), (2, 4), (0, 4), (3, 4)]

Propagate node Q0:

Q = [(1, 4), (2, 4), (0, 4), (3, 4), (4, 2)]

Extract the next node Q0 = (1,4) ”no propagated”
Extract the next node Q0 = (2,4) ”no propagated”
Extract the next node Q0 = (0.4) ”no propagated”

(figure A.1.8)
Extract the next node:

Q0 = (3, 4),

Q = Q = [(4, 2)]

Propagate node Q0:

Q = [(4, 2), (4, 4)]

(figure A.1.9)

Route = [(1, 1), (1, 2), (2, 3), (3, 4), (4, 4)]
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Appendix B

APPENDIX FOR THE
EVALUATION

Appendix B contains the Questionnaires used after the Elic-
itation Study
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Functionality Questionnaire 

 

Rate your agreement with the following statements 
by checking the corresponding column 

Stro
n

gly D
isagree 

D
isagree 

N
eu

tral 

A
gree 

Stro
n

gly A
gree 

Was the initial task given by the Moderator clear?      

Was it clear to follow the pipeline in general?      

Was it easy to navigate along the pipeline?      

HOME SECTION 

Was it clear HOME section?      

SENSORS SECTION 

Was it clear SENSORS section in general?      

Was it clear how to set and unset sensor?      

Was it easy to change between palm and back hand mode?       

Was it easy to generate/trace the glove pattern?      

Was it easy to modify the pattern?      

DOWNLOAD SECTION 

Was it clear DOWNLOAD sections?      

BUILD GLOVE 

Was it clear BUILD GLOVE section?      

Did the information provided in this section was enough to build successfully your glove?       

 
 
 
 
 
 
 
 
      

Figure B.1: Interface Questionnaire - page 1
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Rate your agreement with the following statements 
by checking the corresponding column 

Stro
n

gly D
isagree 

D
isagree 

N
eu

tral 

A
gree 

Stro
n

gly A
gree 

TEST GLOVE SECTION 

Was it clear what to do in TEST GLOVE section?      

Was it clear how to connect and select your device?      

Was it clear how to test the glove? (how to perform the gestures)      

Was it clear the interaction between the glove and the music player?      

Was it clear how to record the gestures?      

Was it clear how to overwrite gestures?      

Was it clear how to display recorded gestures?       

Was it clear to identify when a sensor was touched?      

Was it clear how to perform gestures in general?      

 

Do you have any further comments regarding the functionality of our software? 

 

  

Figure B.2: Interface Questionnaire - page 2
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Interface Questionnaire 

 

Rate your agreement with the following statements 
by checking the corresponding column 

Stro
n

gly D
isagree 

D
isagree 

N
eu

tral 

A
gree 

Stro
n

gly A
gree 

Did the system respond always consistently to user actions?       

Were messages, alerts and sounds informative and accurate?      

Was it clear what different parts of the system do?      

Was the navigation bar useful to point out the progress made in the pipeline?       

Did the system protect against errors in user actions?      

Does the whole system design is homogeneous?  
(Components, widgets, buttons, images, etc.) 

     

Overall, the interface was pleasing and easy to use      

HOME SECTION 

Where animations clear and reflect the intended action between designing a glove and testing out a 
glove?   

     

SENSORS SECTION 

Were buttons for changing hand side intuitive?       

Was it clear how to change between selecting sensors and modify sensors       

DOWNLOAD SECTION 

Was it clear how to download the generated pattern?      

Was it easy to navigate along the directions?  

     

Figure B.3: Functionality Questionnaire - page 1
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Rate your agreement with the following statements 
by checking the corresponding column 

Stro
n

gly D
isagree 

D
isagree 

N
eu

tral 

A
gree 

Stro
n

gly A
gree 

BUILD GLOVE 

Was it easy to follow instructions one by one?        

Did images match the intention of the instruction?      

Were images helpful to build your glove?      

Was it clear how to upload code into your lilypad?      

TEST GLOVE SECTION 

Were the music player components intuitive?       

Was it clear how to load a song?      

Was it clear the functionality of the “eye icon”?      

Was it easy to interpret the sequence of number that described the recorded gesture?       

Was the sound useful to let you know you trigger and action into the music player?       

 

Do you have any further comments regarding the design of our software? 

 

 

Figure B.4: Functionality Questionnaire - page 2
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