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Figure 1: Examples of the many textile icon pairings from our study. They include all icons evaluated: Circle, Triangle, Square,
Minus, Plus, Star,Moon, Phone, Heart, and Bell. Raindrop and Bookmark were only used in the familiarization phase of the
study. Each combination of the icon shapes was tested in our study. Icons were fabricated according to [31].

Abstract
Textile interfaces enable silent and discreet input on clothing, ac-
cessories, and smart home furniture. While researchers already
presented approaches to make them technologically feasible, it is
not fully clear how users experience textile interfaces and how
well users perform when vision-free usage is encouraged. Recently,
designs of single textile icons, i.e., symbols used as textile but-
tons or labels, were investigated. Practical user interfaces, however,
typically consist of entire groups of nearby icons. Their haptic dis-
tinguishability is key for seamless operation. Furthermore, it is
unclear whether icon recognition benefits or suffers when com-
paring neighboring icons is possible. We conducted a study where
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users blindly palpated icon pairs, tried to recognize the individual
shapes and rated how easy they were to tell apart. We present our
observations on haptic distinguishability, which, inter alia, show
that more haptic cues via neighboring icons do not impact shape
recognition.
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1 Introduction
Textile interfaces are well suited for controlling smart homes as they
can be embedded into many everyday objects in the home, such as
pillows, sofas, or table runners. They can provide versatile shortcuts,
e.g., for communication and media playback or control smart home
devices such as lights or curtains. In the home, they offer a silent, in-
place, and more discreet alternative to voice and traditional remote
controls. While there is a solid body of research on how to fabricate
such functional textile interfaces for input [1, 5, 25, 26, 28, 33] and
output [9, 22], empirical evidence to inform design guidelines for
such interfaces is sparse. Especially the haptics of textiles can be
used to enable the eyes-free use of the interface and should help
communicate what actions users can perform. This is essential to
make textile controls successful in real-world scenarios. Mlakar
and Haller [20] and Schäfer et al. [31] previously investigated such
design guidelines for the recognizability of textile icons—i.e., icons
and shapes known from classical GUIs but implemented on tex-
tile surfaces—since they provide quick-to-understand and space-
efficient signifiers for textile interfaces. While low recognition rates
were observed for flatly embroidered icons [20], satisfactory recog-
nition rates were found for icons standing out from the fabric [31].
Both discuss shape confusions, i.e., haptic shapes being recognized
as another symbol; however, targets in their studies were palpated
and recognized only individually, one at a time. This, however, is dif-
ferent from how users will come upon such elements in real-world
scenarios. There, multiple textile UI elements will be placed close
to each other, and it is unclear whether participants will encounter
synergies between neighboring icons. Furthermore, from studies
with isolated icons, it remains unclear whether the original icon and
a participant’s confused answer actually feel different—more pre-
cisely, whether designers could use those icons next to each other
without making people struggle to differentiate them. We expect
people to better understand the features of the element in focus due
to the comparison with the features of surrounding UI elements.
If this is the case, interface designers could use this knowledge
to arrange icons in their interfaces to support feature recognition
without substantially changing the individual icon design.

We conducted a user study in which participants recognized
textile icon pairs without looking and rated their haptic similarity
to understand what makes icons feel different and whether people
use information from one icon to understand another better. Overall,
we hypothesize the following:

(1) Simple geometric shapes such as Square, Circle, and Triangle
will overall perform better due to their simplicity.

(2) Users will better recognize icons in pairs since they will
compare shape features of both icons with each other.

(3) Recognition success of icons will vary depending on their
neighbors.

(4) If our icon pairs contain the same icons twice, users will
identify them faster.

(5) If icons look mostly the same and only differ in the presence
of a few additional features (Moon-Phone, Triangle-Heart),
those features will stand out, leading to good distinguisha-
bility and fast recognition times.

(6) If two icons differ in volume, this will help users understand
the icon sizes and improve recognition performance.

2 Related Work
Current research on textile interfaces spans a wide variety of topics,
from clothes [8, 25, 33] and car interiors [11] to surface gestures
[19], manufacturing and prototyping techniques [6, 12, 28], knitting
[18], weaving [29], stateful interfaces [21], and more. That research,
however, has primarily focused on new textile artifacts and their
technical underpinnings. Deriving design guidelines has received
little attention so far.

2.1 Haptic Shape Recognition
Physical shapes can use several haptic properties to distinguish
UI elements from one another. Such separating cues use different
intensities of salient features. Lederman and Jones [16] surveyed
tactile illusions, including categories that affect the perceived tex-
ture and size of shapes. For example, the Müller-Lyer haptic illusion,
due to which two lines are perceived as differing in length due
to their endpoints, also applies to touch. For 2D outlined shapes,
Larsson et al. [13] let people visually perceive 44 unknown closed
shapes and name what they considered the main part of each shape.
They found that, on a visual level, small inconsistencies in shapes,
such as irregular bumps, are often considered salient.

Haptic shape recognition is often investigated using raised-line
drawings [e.g., 3, 10, 15]. In Lebaz et al. [15]’s investigations, they
found 46% of participants successfully identified shapes like keys
and saws with an average response time of 86 s. This is in line
with the findings of Kalia and Sinha [10], who found the complexity
of a shape influences its recognition, as it creates more cognitive
load to memorize local details and combine them into a model
of the whole shape. Ng and Chan [23] investigated the ability of
people to discriminate between different haptic geometric shapes
with a height of 4 mm. They found simple shapes (e.g., circle and
square) and shapes that had a smaller number of edges to be per-
ceived significantly faster than complex shapes like a six-pointed
star. Plaisier et al. [27] found that for 3D shapes, the presence of
edges and vertices is an important salient shape feature. This makes
height also attractive for shape recognition on textile surfaces as it
creates these salient features for shapes relative to their surround-
ings. Using height as a key distinction was also investigated by Leo
et al. [17] with pin-array displays. In their study, sighted people
needed significantly longer than blind people to respond to a new
shape (47 vs. 17 seconds).

Mlakar and Haller [20] state that elements that differ in height,
shape, or texture will stand out compared to their surroundings
and other controls. They identified height as the easiest way to
create haptic contrast. Additionally, the authors suggest designing
shapes to be as simple as possible, which aligns with other previous
[4] and more recent [31] work. Using only an outline of a shape
without further haptic cues is not sufficient for reliable recognition
[20, 24, 31], especially if recognition has to happen quickly, as with
frequently used everyday interfaces.

2.2 Icons
Graphical icons should resemble real objects to become universal
and intuitive for their user group [2]. For textiles, Holleis et al. [8]
started investigating different types of symbols on an apron. They
investigated visible, ornamental, and nearly invisible buttons in a
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study in which participants controlled home cinema devices. Par-
ticipants liked the subtlety of invisible buttons and that they did
not need to be in a specific location near the target device to use it.
However, when using them blindly, participants considered them
barely usable. For pneumatic buttons, Harrison and Hudson [7]
found that flat buttons needed more visual attention than their
raised, recessed, and classic counterparts, thus making them harder
to use. Mlakar and Haller [20] support these findings with results
from a study in which they asked people to recognize four different
symbols stitched as outlines on a piece of fabric. Half of their 30
participants could recognize a star, and 11 understood a heart, while
the other shapes were barely recognized correctly. Their findings
suggest that only using a flat version of an outlined shape is insuffi-
cient for reliable recognition. Furthermore, they found that shapes
should be at least 13 mm in size and stand out 1.6 mm above the
surroundings. Schäfer et al. [31] built upon that work investigating
textile icons that consisted of laser-cut templates enclosed in fabric,
resulting in three different height profiles (flat, raised, and recessed).
They found that people were faster in recognizing shapes raised
above their surroundings, and their ratings showed a tendency for
filled shapes compared to outlined shapes.

3 Study
In our user study, we investigate the effects of neighboring textile
icons on recognition time and success. For this, we investigate ten
textile icons adopted from [31]. We replicated their raised icons
since they were already investigated individually, performed well,
and were subtle and simple, which are criteria drawn from [4, 8,
20]. We selected the shapes based on their performance and their
applicability in smart home interfaces: Minus, Plus, Star, and
Heart could be used, e.g., to control volume and favor media. The
other icons could be used in communication applications to call
someone (Phone), manage notifications (Bell), and set a do-not-
disturb mode (Moon). Circle, Triangle, and Square represent the
simplest and probably most easily recognized shapes. Raindrop
and Bookmark are also adopted from [31] but were only used by
participants to familiarize themselves with the study procedure. We
removed Lightning and Arrow due to their low recognition and to
keep the study duration reasonable for our participants. Figure 1
shows all shapes used. In practical user textile interfaces, those icons
could be combined in two ways: Icons could create semantic pairs
for controlling the state of a device. For example, Plus/Minus could
be used for changing values, or Triangle/Circle/Square could be used
for navigation like on Android phones. However, they also could be
used for device and application selection before manipulation takes
place. Then, rather unrelated icons like Phone and Bell could be
placed next to each other. Since good distinguishability is necessary
in any case, we decided not to constrain our icon combinations by
testing all possible combinations. This allows us to compare icons
with very different shape features as usually, semantic icon pairs
have a similar body style (e.g., both Plus and Minus consist of only
straight lines).

We fabricated our icon pairs following the process in [31]: We
laser-cut the shapes from medium-density fiberboard and glued
them onto fabric with the shape outlines already embroidered onto
it. Then, we placed another fabric on top and embroidered the

Figure 2: Dimensions of an exemplary icon pair. Each icon
filled a square of 18 mm×18 mm. The centers of the icons
were 40 mm apart. A finger palpates the icons for a size com-
parison.

outlines again with an offset of 1𝑚𝑚, which created clear edges.
We used straight stitches with thin yarn for all embroidery. We
chose furniture fabrics for both layers following [24, 31]: a 100%
polyester with a fine texture and a weight of 270 𝑔/𝑚2 that should
avoid friction burn. We used a Bernina 880 automated embroidery
machine. Each icon had a height of 1.6 mm above the base fabric.
Each shape’s longest dimension was 18 mm to make all icons a
similar size. Within each pair, icons were placed at a distance of
40 mm between their centers, creating a space of approximately
2 cm between the icons. We decided on this distance as it clearly
haptically suggests that those elements do not form one unit but
still feels close and quick to reach over. Figure 1 shows six icon
pairs containing all ten icons from our study and the two used
for familiarization. Figure 2 shows an examplary icon pair and its
dimensions.

3.1 Study Setup and Apparatus
Our study setup (Figure 3) consisted of a sight protection wall and
an interaction area. The interaction area was always placed to the
side of the hand the participants wanted to use for the recognition.
The participants sat on the other side of the sight protection and
reached over to the interaction area so they could not see the icons
by accident. The interaction area was covered with padding foam
with a button for time measurements embedded close to the sight
protection and some Velcro to attach the icon pairs. This button
was connected to an Arduino Uno, which sent all raw data to a
connected laptop via a serial connection. A camera recorded the
participants’ hands.

3.2 Study Procedure
In the beginning, we introduced each participant to the context of
textile icons and interfaces, i.e., their usage in smart homes. After
signing an informed consent form, they filled out a demographics
questionnaire. To familiarize the participants with the haptic feeling
of the icons and the study setup, they explored a sample icon pair
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Figure 3: Study setup. Participants were seated on the chair
to the left. They interacted with an icon pair, which was
attached to an area covered with padding foam. The large
visual barrier prevented participants from looking at the icon
pair. The experimenter was seated at the laptop and with an
icon collection behind the small visual barrier on the right.
To measure interaction times, participants pressed a large
3D-printed button (grey, near the large barrier) connected
via an Arduino to the laptop.

Figure 4: The 20 unused icons from the questionnaire that
was given to participants after the trial phase. Top, left to
right: Crown, Cloud, Leaf , Arrow, Fire, Bulb, Flower, Hexagon,
Tree, Lightning. Bottom, left to right: Fish, Cross, Speaker,
Asterisk, Clubs, House, Spades, Check, Diamond, Hourglass.

containing Raindrop and Bookmark. These shapes were not part of
the study.

For each trial, the experimenter placed an icon pair on the Velcro.
Participants pressed a button to start and finish the time measure-
ment for a trial. They were instructed to press the button to finish
a trial once they could name or at least describe both icon shapes
after palpating them. Then, they described both shapes to the ex-
perimenter as accurately as possible. Participants did not receive
any feedback on their recognition and were asked to only use their
preferred hand for such tasks to ensure consistent results. This
process was repeated for each of our 55 icon pairs with a planned
break after 28 trials. Unlike in [31], participants were unaware of
the possible shapes they would encounter during the study to en-
sure that our similarity measurements were purely based on haptic
similarities.

After all trials, participants received a shuffled list of 30 different
shapes consisting of shapes from the study and those pictured in
Figure 4. They marked all shapes they believed had been used dur-
ing the trials. Participants were not informed how many different
shapes occurred during the study to avoid them adding or exclud-
ing shapes based on this information. Afterward, they filled out a
questionnaire for all shapes they thought they had encountered.

3.3 Variables
We controlled the icon pairs that participants encountered dur-
ing the study. The participants palpated 55 icon pairs (all possible
icon combinations without mirrored pairs) in random order. We
measured the recognition time using the embedded button, their
reported icon recognitions, misidentifications with other shapes, and
participants’ reported icon distinguishability. At the end, we col-
lected questionnaire data. If a trial took over 60 seconds, we reported
this as time out and set their recognition time to 60 seconds.

3.4 Participants
Overall, 28 people participated in our study (M=26.5 years, SD=5.8
years. 13 self-reported as male, 12 as female, 2 as others, and 1
as n/a). 27 participants were right-handed, and 1 was left-handed.
20 participants were computer science students of different focuses.
Furthermore, 2 engineering, 1 biology, and 1 elementary school
education student participated. 1 person reported as housewife and
sewing apprentice, 2 as researchers (no specialization specified),
and one person did not provide this information. The participants
could provide their answers in their native language or English. All
participants volunteered without monetary compensation.

3.5 Results
Since we were interested in both the influence of individual icons
in one pair and the overall performance of icon pairs, we analyzed
task time and recognition rates for single icons and icon pairs. For
individual icons, we calculated the average recognition time of all
icon pairs that included the corresponding item. For simplicity, we
call this measurement icon time influence. For icon pair recognition
rates, we calculated the average recognition success of the icons
contained, with 1 for successful recognitions and 0 otherwise.

Since our measured recognition times were log-normally dis-
tributed, we analyzed the log-transformed data using repeated mea-
sures ANOVA and paired t-tests with a Holm correction as post-hoc
tests. All other measurements were analyzed using Friedman tests
and Wilcoxon signed-rank tests with Holm corrections for the
post-hoc analysis [14, 30].

3.5.1 Recognition times. Figure 5 shows the average icon pair recog-
nition time. The ANOVA test revealed significant effects of icon
pairs on recognition time (𝐹 (54, 1458) = 3.441, p<0.001). All signif-
icant differences involve the three worst-performing icon pairs:
Bell-Bell, Star-Bell, and Plus-Bell. Those performed significantly
differently from most of the ten best icon pairs. In the appendix,
we included a clearer heatmap representation in Figure 10.

For icon time influence, the ANOVA test revealed significant ef-
fects (𝐹 (9, 243) = 12.16, p<0.001). The post-hoc test mainly revealed
that Square, Minus, and Moon led to a significant better icon time
influence than Heart, Plus, Phone, and Bell. All results are illustrated
in Figure 6 (right).

3.5.2 Icon recognition. Although participantswere informed about
our motivation for finding symbols for smart home controls, their
recognized symbols only occasionally matched this domain and,
thus, varied strongly per subject. Therefore, we decided to classify
the participants’ recognition as follows:
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Figure 5: Average recognition times for our 55 icon pairs. Horizontal bars denote significant differences where all icon pairs
connected with a tick are significantly different from the pair connected with a circle. Vertical bars are standard deviations.
Overall, our icons performed similarly. The few significant effects only occurred when Bell was involved.

• Recognition by name: A response that contains a correct
shape name but no other shape from our set. If participants
additionally named incorrect details (e.g., a Star as “star with
four spikes”), this was still accepted since the general shape
was still interpreted correctly.

• Recognition by description: A description of the shape that
describes all relevant features of the shape. This includes
shape names such as “banana” and descriptions like “curved
semi-circle” for Moon.

• Incorrect recognition: All shapes were counted as incorrect
that were named and described incorrectly or whose descrip-
tion was too ambiguous (e.g., “Pac-Man ghost” for Bell).

We accepted alternative correct shape names for some shapes if
the name’s shape is an unambiguous shape description or an ab-
breviation. Therefore, we accepted “full moon”, “oval”, “ellipse” for
Circle, “rectangle”, “stroke”, “ruler”, “line”, “bar”, “dash” or “stripe”
for Minus, “call button” for Phone, “cross” for Plus, “trapezoid” or
“rectangle” for Square, and “play symbol/button” or “triangular ar-
row” for Triangle. If “rectangle” was used for Minus, we ensured
that it was not used for Square. On two occasions, participants drew
the shapes correctly instead of naming them; we accepted this as
recognition by description.

The Friedman test revealed significant differences between icons
on both the average recognition by name (𝜒2(9)=148.46, p<0.001) and
incorrect recognition (𝜒2(9)=132.44, p<0.001). Figure 6 (left) shows
how frequently our participants recognized the individual items
and the significant differences for recognition by name and incorrect
recognition. It is noticeable that, again, mainly Bell, Phone, and
Plus were significantly harder to recognize than most of the other
shapes.

3.5.3 Icon pair recognition. For icon pair recognition, we found
significant effects between icon pairs (𝜒2(54)=736.78, p<0.001). How-
ever, except for two effects involving Phone-Phone, the significant
effects all involve icon pairs with a Bell shape, which also performed
worst overall. Figure 7 shows a heatmap of the total and individual
frequencies of recognition by name for each icon pair. Particularly
noteworthy is that the individual icon recognition count is approx-
imately the same regardless of the tested icon pair. In the appendix,
Figure 12 shows a detailed graph with all significant effects.

3.5.4 Shape misidentifications. To discuss misidentifications, we
considered all recognition responses that clearly showed an associ-
ation with existing shapes or objects. For this, we also considered
objects where small features were added or removed (e.g., “egg
with an edge at the bottom”) and excluded path descriptions for
this metric. We discarded shape transformations, like shearing or
curving, since we found people to use the named shape as path
description.

We found several shape misidentifications, the most common
of which are listed in Table 1. It includes every misidentification
that happened 11 times or more and, thus, must have been named
by more than one participant. Similarly, to [31], misidentifications
within our item set were directional: While Plus was confused
as Star 130 times, the opposite direction occurred only 4 times.
Similarly, Phonewas confused asMoon 25 times, while the confusion
in the opposite direction happened only once.

3.5.5 Icon distinguishability. We also found significant effects be-
tween icon pairs on icon distinguishability (𝜒2(54)=1010.9, p<0.001).
Figure 8 shows the average ratings and significant effects. As ex-
pected, most of the twin pairs performed significantly differently
from all other pairs. Moon-Phone and Plus-Star were the only non-
twin pairs that were involved in a similar amount of significant
effects. The only other significant differences between non-twin
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Figure 6: Icon-specific performance measurements: The left graph shows the relative frequency of how often a participant’s
response was classified as named correctly, described correctly, or incorrect. The right diagram shows the average recognition
time of icon pairs including the corresponding icon. Horizontal bars denote significant differences. Here, all icons connected
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pairs were between Star-Bell and Circle-Minus & Square-Moon, be-
tween Heart-Bell and Circle-Star & Square-Phone, and between
Circle-Heart and Circle-Star . Figure 11 in the appendix offers a
clearer but less informative heatmap representation of the data.

3.5.6 Questionnaire Results.

Mapping Icons to Visuals. After the recognition task, we gave our
participants a list of 30 different drawn symbols. From those, they
had to mark the ones they believed to have appeared during the

trials. Square, Triangle, Moon, and Minus were marked by all partic-
ipants. Those were followed by Heart & Circle (M=93%, SD= 26%),
Star (M=89%, SD=31%), Plus (M=82%, SD=39%), Phone (M=75%,
SD=44%), and Bell (M=50%, SD=51%). Regarding the symbols not in-
cluded in our icon set, 21% of our participantsmarked aCross (SD=42%),
18% a Flower (SD=39%), and 11% an Asterisk (SD=31%). Other sym-
bols were marked in 10% or less of all cases. Overall, 18 participants
provided markings, which included all icons from our icon set.
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Figure 8: Ratings for icon distinguishability on a 7-point Likert scale ranging from 1 (very hard to tell apart) to 7 (very easy to
tell apart). Vertical bars denote standard deviations. Horizontal bars denote significant differences, with all icon pairs connected
with a tick being significantly different to the pair connected with a circle. While “twin pairs” were expected to be hard to tell
apart, Moon-Phone and Plus-Star also received notably low distinguishability ratings.

Shape Misidentified as
Bell Ghost (83), Octopus (45), Circle with additional fea-

tures (13), Semicircle with additional features (13), Fire-
ball (11), Meteor (11), Upside-Down Tulip (11), Egg with
additional features (11), Popsicle (11)

Plus Star (130), Flower (13)
Phone C (28), Moon (25), Semicircle (13), C with additional fea-

tures (13), Sickle (12), Hook (11), Horseshoe (11), Nose
ring (11)

Heart V (22)
Moon C (15)

Table 1: The most common misidentifications and how often
they occurred, sorted in descending order of total misidenti-
fications. Highlighted shapes were also included in our data
set. Misidentifications that happened less than 11 times were
filtered out. Bell leads this list with a total of 267 misidentifi-
cations (including those not listed).

Questionnaire Ratings. Our participants answered icon-independent
and icon-specific questions if the icons were marked in the pre-
vious step, so their answers also belonged to the correct shape.
Except for the ease to recognize icons, Figure 9 shows the results
of those questions. To obtain a balanced and reliable test set, we

excluded ten participants who had not marked all icons of our icon
set on the questionnaire before from the significance analysis of
the icon-specific questions. The Friedman tests revealed significant
differences of the icons on ease to recognize icons (𝜒2(9)=60.018,
p<0.001) and confidence for correct icon recognition (𝜒2(9)=63.49,
p<0.001). The post-hoc tests showed only significant differences
between Bell and Triangle, Circle, Square & Minus for ease to rec-
ognize icons and Bell and Square & Minus for confidence for correct
icon recognition. Overall, our participants reported being confident
when recognizing and telling icons apart. Unfortunately, the data
shows no dominant exploration strategy for the task.

4 Discussion
Interestingly, our findings mostly contradict the hypotheses we
specified initially. While Plus, Phone, and Bell aggravated recogni-
tion and caused the most significant effects, the small number of
significant effects besides those icons demonstrate the complexity
of designing for haptic recognition. In the following, we describe
our observations for single icons as well as the effect of neighboring
icons.

4.1 Single Icons
Simple geometric shapes do not outperform semantic shapes. On

the one hand, the significant effects of Plus, Phone, and Bell on
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Figure 9: Average results of our icon-independent (left) and icon-dependent (right) questions on 7-point Likert scales. High
rankings show high agreement and vice versa. Error bars denote standard deviations. Horizontal bars on the right denote
significant differences, with all icons connected with a tick being significantly different from the icon connected with a circle.
Overall, our icons were perceived as being easy to tell apart and to recognize without many significant differences between the
icons.

recognition rates and icon time influence are in favor of Hypothesis 1.
On the other hand, we found similar recognition rates for the more
complex shapesMoon,Heart, and Star and our simple shapes Square,
Circle, Triangle, and Minus. Considering icon time influence, Circle
and Triangle do not show enough significant effects to allow a clear
separation between simple geometric shapes and semantic ones.
For recognition time and icon pair recognition, we also found no clear
trends. Thus, although Plus, Phone, and Bell clearly show worse
overall performance, our measurements for the remaining icons do
not consistently show that Hypothesis 1 is true.

Users may understand complex shapes if they can imagine the
application context more clearly. While we found that Bell, Plus, and
Phone were recognized significantly less often, other measurements
like their measured and rated distinguishability and participants’
confidence for correct icon recognition show that it created a unique
haptic sensation. Considering that Schäfer et al. [31] observed suc-
cess rates of at least 73% for those shapes when users know them,
and research for raised line drawings showed the importance of
being able to visualize palpated shapes [3, 32], we hypothesize that
such complex shapes will perform much better if users have a clear
meaning or action associated with the icons.

Although subtle features are generally noticeable, misidentifica-
tions happen due to blending features. Similarly to [31], we found
that confusions for Plus/Star and Phone/Moon solely occurred uni-
directionally. Especially misidentifications from Plus to Star oc-
curred noticeably often. Those confusions seem to occur since
smaller features, like closely located corners, haptically “merge”
into the overall shape. However, we could also observe that other
subtle features were recognized. For Bell, for example, responses

like “Fireball”, “Meteor”, or “Tulip” hint that our participants recog-
nized even the subtly curved corners of our design. Those results
match the results of [10] for raised line drawings, which stated
that recognizability correlates with how well the shape can tolerate
degradation in many cases.

The same icons could be used for different purposes. We found a
high number of misidentifications for shapes that were associated
with other objects. For Bell, this happened particularly often. We
believe that due to its more filigree corners, the outline is harder to
describe using simple paths or geometrical shapes, even visually,
which forced our participants to find more abstract descriptions like
“ghost”, “octopus”, and “fireball”. Such icons could offer an opportu-
nity to create haptic illusions and, therefore, be used manifoldly in
different contexts for different meanings. Considering the icon dis-
tinguishability ratings, which showed acceptable distinguishability
even for Bell, it could be used, for example, to announce emails or
to start a gaming setup without messing with the mental image of
the user, as long the user knows that the button is once located in
the communication and once in the entertainment control section
of the interface.

4.2 Icon Pairs
Significant time effects were present only when worst-case scenarios

came together. We only found significant recognition time effects
when Plus-Bell, Star-Bell, and Bell-Bell were involved. While our
icon influence results show a significant negative influence of Bell,
most Bell-pairs did not perform significantly differently from other
pairs. Furthermore, we assume that the recognition of Plus-Bell
and Star-Bell took significantly longer compared to, e.g., Phone-Bell
since they require participants to palpate the complete outline for
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confident recognitions. However, this aspect alone did not lead to
significant effects since already Plus-Star is not involved in sig-
nificant effects. Therefore, it seems that the combination of bad
recognizability of Bell and the necessity of palpating the whole
outline explain this bad performance.

Identifying the same icon twice is not faster than recognizing two
different ones. Our data contradicts Hypothesis 4 that states that
twin pairs will be recognized faster for both simple and complex
shapes because features would be re-recognized faster. Instead, such
twin pairs distribute all over the performance range. Even more,
while we expected the twin pair of an icon to be faster than pairs
with other icons, shapes like Bell-Bell, Star-Star , and Plus-Plus show
that icon equality does not improve recognition times.

Simple shape changes do not change how easy shapes are to tell
apart. We expected two icons of the same overall shape with few
simple changes to improve icon distinguishability and recognition
time as participants would quickly understand the rough shape
and the amount of differences is low (Hypothesis 5). Similar results
were found for visual shapes where small inconsistencies were con-
sidered salient [13]. However, in our haptic task, Triangle-Heart and
Moon-Phone received relatively low distinguishability scores from
which Moon-Phone was in many cases significantly different. Also,
regarding the recognition time, both did not perform significantly
differently from most other pairs and belonged to the rather long-
taking icon pairs. Therefore, from our collected data, Hypothesis 5
is incorrect.

Volume and extreme feature differences help but do not guarantee
distinguishability. Looking at the significant effects on the icon dis-
tinguishability rating beyond twin pairs,Moon-Phone, and Plus-Star ,
we observed possible patterns for what makes icons feel different:
Star-Bell vs. Circle-Minus or Square-Moon and Heart-Bell vs. Square-
Phone indicate that if one shape feels thinner than the other, they
would be easier to tell apart as suggested by Hypothesis 6. Heart-
Bell or Circle-Heart vs. Circle-Star indicate that if such volume dif-
ference is not present, extreme feature differences can help. Those
patterns align with our participants’ reports about features that
complicate icon distinguishability. They explicitly mentioned simi-
lar bodies and small feature differences 19 times, and similar volume
6 times. However, we cannot fully confirm those patterns, i.e. Hy-
pothesis 6, due to the small number of significant effects we found,
and since shapes like Star-Bell, Heart-Phone, or Plus-Bell performed
only acceptably. Interestingly, participants also mentioned that dif-
ferent feature numbers and locations helped them distinguish the
shapes. However, we would then have expected Triangle to be less
scattered throughout the icon distinguishability ratings as its feature
distribution and their number are clearly different compared with
most other shapes. In conclusion, we did not find clear patterns for
the distinguishability of icons; however, we observed that partici-
pants found our icon set mostly acceptable to distinguish, with 93%
of our icon pairs receiving ratings higher than 5 and 60% higher
than 6 of 7 points.

People do not benefit from feature properties of neighbored icons.
One primary purpose of this study was to identify whether peo-
ple use information from a neighbored icon to recognize features
better and improve icon recognition. Overall, we gathered high

ratings for icon distinguishability, indicating that individual icon
recognition has a more dominant influence on the usability of tex-
tile user interfaces. From Figure 7, we clearly see that within icon
pairs, recognition of individual icons does not vary considerably;
for example, Moon was recognized similarly well independent of
whether it was placed next to a Square or Star . In contradiction to
Hypothesis 3, this shows that our participants gained no benefit
from the feature differences between the icons. This surprised us
as we informally observed many participants—especially in the
beginning—switching back and forth between the icons or even
palpating them in parallel using multiple fingers. Therefore, we
expected participants to better recognize features such as angled
edges, slight curvatures, or merging corners. Also, when comparing
ours and results from [31], we see no benefits from recognizing
multiple icons together. Our average recognition times of 4.85 to
28.83 seconds (M=20.98𝑠 , SD=3.35𝑠) match their results of (M=7.84𝑠 ,
SD=1.68𝑠) considering that two icons were palpated, that were more
distant from the homing position, and that were unknown to the
user. Thus, we found that next to Hypothesis 3, Hypothesis 2 does
also not hold.

5 Limitations and Future Work
For our user study, we did not familiarize participants with the
icons to avoid confounding the ratings for icon distinguishability
and to limit biases from a participant’s mental image of a shape.
This, however, led to a challenging analysis: Since we did not share
an icon vocabulary with the participants, their responses do not
map directly to terms such as “correct”, “satisfying”, or “incorrect”.
Therefore, we followed the procedure described in Section 3.5.2.
However, having results that align with previous research makes
us confident that our results are valid. To make our classification
as transparent as possible, we provide our classification data, in-
cluding machine-translated responses from our participants, in the
supplementary material of this paper.

Since our participants did not know the icons, we cannot ensure
whether they always answered the questionnaire for the correct
icon—although we did not observe any problems in this regard.

Our study observed the potential of complex shapes to create
haptic illusions depending on the context. We could validate this in
future experiments by testing icon recognition performance when
creating icon associations before the icons are palpated. From this,
we expect to be able to create more abstract shapes that can be
used manifoldly in many contexts and offer good recognizability—
although visual recognition may suffer.

We only tested ten different icons in combination. We decided
on our icon set since the icons fit the smart home context and were
already investigated in a single-icon user study. The smart home
context offered a variety of control elements with different shape
characterizations to compare. Although we had to limit our icon set
to keep the study in a reasonable time, we assume that our results
are not limited to our set or even the smart home domain since our
findings are based on the general shape features and independent
of the domain knowledge. Nonetheless, the number of samples per
interesting pair categories (i.e., for example, thin vs. thick icons
or pairs with only a few feature differences) was small. While our
icon set already provided first insights, repeating our experiment
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with more icons for such pair categories—especially to further in-
vestigate Hypothesis 6—would lead to further insights on haptic
recognition and distinguishability and hopefully strengthen our
findings and clarify when icon pairs contradicted them. Further-
more, since we could not verify Hypothesis 1, testing other complex
shapes is even more promising and could lead to further insights
into the recognition and distinguishability patterns we discussed.
Such shapes could be similar to those described in Figure 4, compo-
sitions of shapes like a sun/brightness shape, or open shapes like
emojis or swirls. For studies investigating such icons, we, however,
assume that with the number of icon features, icon size also needs
to increase to avoid feature blending. Alternatively, as creating
salient features was one of the major issues we encountered for our
18 mm large icons—and led to the invalidation of Hypothesis 5—,
future research could also consider emphasizing small features, for
example, by changing the texture of the features only. We expect
this to make icons more understandable without the necessity of
increasing the size.

To keep the study duration acceptable, we kept factors like size,
orientation, texture, height of our icons, and curvature of the base
surface constant. However, we envision that users will typically use
those icons on different everyday objects. Therefore, the form factor
of the object on which the icons are placed requires those factors to
change We expect that especially the orientation and the curvature
of the baseline to make recognition difficult as users will be unsure
about the icon’s ground side and as curvature can deform the icons.
Furthermore, we kept the distance between the icons constant in
our user study. While this could be done to investigate further
Hypothesis 2 and 3, we do not expect that reducing distance would
improve recognition as we would argue that the perceived distance
of the icons is already small and participants already palpated the
icons simultaneously without noticeable problems.

Young computer science students mainly participated in our user
study. Since haptic capabilities can change due to factors like user
age, larger-scale user studies should follow our work to investigate
the impact of these factors. Also, using the non-dominant hand
could reduce the recognition capabilities of the users. As we assume
non-dominant hand usage will occur in real-world applications,
future user studies should also include handedness as a factor.

In the presented user study, we combined our icons without
restrictions to get as many feature combinations as possible. Al-
though we expect very different icons to be placed next to each
other, for example, in an application selection area on a user inter-
face, we did not provide clues like this to our participants. Thus, the
combinations felt somewhat arbitrary in our study. In upcoming
experiments, we also want to investigate how recognition changes
when participants know that neighboring icons semantically be-
long together, e.g., with combinations like Plus/Minus or volume
up/down symbols, but also by contextualizing icons using the in-
terface purpose, i.e., that the icons are used for application selec-
tion. If recognition improves in such situations—which is what
we assume—investigating how recognition times evolve with the
number of icons will be interesting to estimate exploration times
in textile interfaces.

Overall, we gathered first insights into human capabilities of hap-
tically exploring our icons in our study. However, from a practicabil-
ity perspective, other factors like icon familiarity and information

about their position will significantly improve recognition in most
real-world scenarios. We assume that knowing the position and
meaning of interface elements at home will improve recognition
time, success, and distinguishability as already a subset of shape
features will be sufficient to discriminate the palpated icon from
the existing possibilities. Even in situations where the interface is
unknown, for example, for a guest in a hotel, the user’s intention
to control an object will lead to assumptions about what the icon
should look like and thus improve identification. In the future, we
plan to test scenarios like this and observe how people palpate
complete interfaces.

6 Conclusion
We investigated the eyes-free distinguishability of textile icons and
how recognition changes when other icons are nearby. For this, our
participants palpated pairs of icons without knowing their shapes,
guessed the icons, and rated how easy they were to tell apart. We
tested six hypotheses about icon recognition and how recognition
changes if users explore two icons together. Surprisingly, we found
that, in general, those did not hold for our set of textile icons. For
recognition time and success, except for the worst-performers Bell,
Phone, and Plus, we found that most of our investigated icons per-
formed similarly. Our icons were easy to tell apart, although the
differentiation patterns, like different shape volumes, did not impact
our ratings as much as expected. Together with our finding that
neighboring icons do not help users when recognizing icons, our
results indicate that interface designers can combine such icons
freely as long as the icons themselves provide acceptable recogni-
tion rates.
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Figure 10: Heatmap showing the average recognition time per icon pair. Cells are tinted according to their recognition time
from yellow (fast) to blue (slow). Especially icon pairs including Bell and Phone needed a long recognition time, with Bell-Bell,
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received high scores, except forMoon-Phone and Plus-Star, which, on average, received noticeably lower scores.



Investigating Eyes-Free Recognition and Distinguishability of Textile Icons in Pairs TEI ’25, March 04–07, 2025, Bordeaux / Talence, France

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

Cir
cle
-Sq
ua
re

Tr
ian
gle
-T
ria
ng
le

Cir
cle
-M
inu
s

Cir
cle
-T
ria
ng
le

Sq
ua
re-
Mi
nu
s

Sq
ua
re-
Sq
ua
re

Sq
ua
re-
Sta
r

Cir
cle
-St
ar

Tr
ian
gle
-M
inu
s

Tr
ian
gle
-Sq
ua
re

Tr
ian
gle
-St
ar

Cir
cle
-M
oo
n

Mi
nu
s-M

inu
s

Sq
ua
re-
He
art

Sta
r-M

oo
n

Sta
r-S
tar

Cir
cle
-C
irc
le

Mi
nu
s-H

ear
t

Mi
nu
s-M

oo
n

Tr
ian
gle
-M
oo
n

Sq
ua
re-
Mo
on

Tr
ian
gle
-H
ear
t

Cir
cle
-H
ear
t

He
art
-M
oo
n

Mi
nu
s-S
tar

Sq
ua
re-
Plu
s

Tr
ian
gle
-Pl
us

Plu
s-M

inu
s

Sta
r-H

ear
t

Cir
cle
-Ph

on
e

Cir
cle
-Pl
us

Mi
nu
s-P
ho
ne

Mo
on
-M
oo
n

Plu
s-H

ear
t

Plu
s-S
tar

Tr
ian
gle
-Ph

on
e

He
art
-H
ear
t

Sq
ua
re-
Ph
on
e

Sta
r-P
ho
ne

Plu
s-M

oo
n

Cir
cle
-B
ell

He
art
-Ph

on
e

Sq
ua
re-
Be
ll

Tr
ian
gle
-B
ell

Mi
nu
s-B
ell

Sta
r-B
ell

Mo
on
-Ph

on
e

Mo
on
-B
ell

He
art
-B
ell

Plu
s-P
ho
ne

Plu
s-P
lus

Plu
s-B
ell

Ph
on
e-P
ho
ne

Ph
on
e-B
ell

Be
ll-B

ell

Pa
rt
ic
ip
an
ts

None One Both

Figure 12: The number of icon pairs that were named correctly by our participants. We differentiate between icon pairs where
both (yellow), only one (teal), or no (violet) icon was recognized. Horizontal bars denote significant differences where all
icon pairs connected with a tick are significantly different to the pair connected with a circle. All icon pairs containing Bell
performed significantly worse compared to our best performers, which mostly included simple geometrical shapes.
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