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Abstract

More than a third of software developers’ working time is spent navigating and
comprehending source code. Despite improvements and innovations in modern
Integrated Development Environments (IDEs), the issue remains. Research has
shown successful navigation support through prominent call graph recommenda-
tions, however, these tools have not yet seen adoption in practice.

Recently, recommendation systems for software engineers (RSSEs) have shown
promising development and increasing recommendation accuracy. These systems
mine frequent patterns from developer interaction histories to uncover evolution-
ary couplings between code elements. These couplings can then be used to recom-
mend related code artifacts to other developers based on their current work context.
Despite the technological advancements in the field, these tools have also not been
implemented into IDEs.

We suspect that this could partly be due to the lack of Human-Computer Interac-
tion (HCI) research on the tools as many of them exist purely theoretically with-
out actual interface implementations. In this thesis, we propose a novel approach
that combines structural recommendations from the call graph with evolutionary
recommendations from interaction histories. The recommendations are integrated
into the VS Code IDE through an interactive tree-based view and a color highlight-
ing system. In a user study, we show that such a system can support developers
in navigating and comprehending unfamiliar source code. We also show that go-
ing beyond standard list-based recommendation outputs can significantly improve
developers’ mental models of code projects.
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Überblick

Softwareentwickler verbringen mehr als ein Drittel ihrer Arbeitszeit damit Source
Code zu navigieren und zu verstehen. Dieses Problem besteht fortwährend trotz
der Entwicklung und der vielen Innovationen in modernen IDEs. Forschung in
dem Feld hat gezeigt dass Entwickler durch prominent dargestellte Vorschläge aus
dem Call Graph in ihrer Navigation unterstützt werden können. Jedoch haben
diese Werkzeuge bisher keinen Einzug in die Praxis gehalten.

In den vergangenen Jahren haben recommendation systems for software engineers
(RSSEs) vielversprechende Fortschritte in Sachen Vorschlagsgenauigkeit gezeigt.
Diese Systeme extrahieren häufige Muster aus dem Navigationsverhalten von
Entwicklern um so evolutionäre Zusammenhänge zwischen Code Elementen zu
finden. Diese Zusammenhänge können genutzt werden um anderen Entwicklern
relevante Code Elemente basierend auf ihrem aktuellen Arbeitskontext vorzuschla-
gen. Trotz der technischen Fortschritte in dem Gebiet haben auch diese Tools bisher
keine Implementierung in modernen IDEs gesehen.

Wir vermuten dass dies durch den Mangel an Human-Computer Interaction (HCI)
Forschung bezüglich dieser Tools bedingt sein könnte. Insbesondere, da viele
dieser Tools rein algorithmisch existieren aber keine Interface Implementierung
haben. In dieser Arbeit stellen wir ein neuartiges Framework vor welches struk-
turelle Vorschläge aus dem Call Graph mit evolutionären Vorschlägen aus Inter-
aktionshistorien kombiniert. Diese Vorschläge werden in der Visual Studio Code
IDE durch interaktive Baumansichten und ein Farbmarkierungssystem integriert.
In einer Nutzerstudie zeigen wir dass ein solches System in der Tat Entwickler in
ihrer Navigation in unbekannten Codeumgebungen unterstützen kann. Desweit-
eren zeigen wir dass Visualierungskonzepte für Vorschläge, welche über einfache
Listenformate hinausgehen, deutliche Verbesserungen im Projektverständnis von
Entwicklern erzielen können.
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Conventions

Throughout this thesis we use the following conventions.

Text conventions

Definitions of technical terms or short excursus are set off
in colored boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

Definition:
Excursus

Source code and implementation symbols are written in
typewriter-style text.

RecommendationView

Named tools and concepts are written in italics.

get Recommendations

The whole thesis is written in American English.
When writing about unspecified, singular persons, female
pronouns are used.





1

Chapter 1

Introduction

“A central goal of software engineering is to
improve developers’ productivity and the quality of

their software. This requires an efficient and
effective way to explore code since most developers

will encounter code with which they are not
familiar. Understanding code in modern codebases
is challenging because of the size and complexity of

the codebase, and the use of indirection.”

—LaToza and Myers [2010]

1.1 Motivation

In today’s world, software is everywhere. This statement Software drives the
world. And we have
HCI research to
thank for its usability
and accessibility.

has been used and thrown around for several decades now.
But as time has gone by the phrase has gotten closer and
closer to actually being true. Software helps us drive our
cars, control the heating in our homes, and lets us continue
working in teams even during a pandemic. On top of that,
there is an entire digital world that we have constructed
in parallel to the physical world. Social networks connect
us to friends and peers around the globe and digital en-
tertainment has long overtaken theatres and record stores.
Speaking to someone on the other side of the earth, face to
face, in real-time, through a device that fits in our pockets
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has not been miraculous to us for many years now. A big
part of our modern lives is based on some kind of function-
ing software. Interacting with – and to some extent relying
on – software has become imperative in order to take an
active part in modern society. Hence, we have seen big im-
provements not only in the quality and limitations of the
software we use but also in the way we can interact with
it. Through research in human-computer interaction (HCI),
the usage of modern technologies has become intuitive for
large parts of the population and more inclusive for more
people to benefit from it.

However, we do not only interact with software as con-HCI also concerns
how developers
create software.

sumers. As developers, we also shape and create it. This
marks another important interface between humans and
computers: How programmers write source code and cre-
ate software. The research and development of support
tooling and development assistance have culminated in
today’s programming languages and integrated develop-
ment environments (IDEs) as quintessential tools for soft-
ware development.

Source Code Navigation

A central goal of software engineering still is the improve-A big part of
developer interaction

with code is
navigation.

ment of developer productivity and – closely related – the
quality of the software they produce (LaToza and Myers
[2010]). Both are highly dependent on two factors. First,
how efficiently developers can do the actual coding work,
and second, how efficiently they can explore and navi-
gate written code. The first factor is heavily supported
in today’s IDEs through assistance tools such as syntax
highlighting, modern debuggers, or code completion tools.
However, every bit of coding done by a programmer is usu-
ally preceded by a navigational act to the relevant point in
the program. Navigation and exploration of source code
are crucial to understanding the structure of a program, de-
pendencies within the code, and specific contexts in which
code fragments execute. The better code can be explored,
the better the developer’s mental model of the code be-
comes. A better mental model subsequently leads to more
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efficient code navigation. IDEs support code navigation Call graph tools can
help developers
navigate more
efficiently.

through the standard package explorer, search tools, and
more specialized tools such as the call hierarchy. Research
by Murphy et al. [2006] has shown that Java developers
in Eclipse do the most navigation using the explorer. For
code navigation with the explorer to be efficient however,
the developer needs to already have a good idea where
what she is looking for might be located. Advanced call
hierarchy tools (such as Stacksplorer by Karrer et al. [2011])
allow for code exploration beyond the developer’s mental
model along the call graph of a given context. These tools
have proven to reduce task completion times in software
development, by prominently displaying their information
within the IDE (Krämer et al. [2013]). Despite the avail-
ability of some assistance tools, their adoption into modern
IDEs has been lackluster and as a result code navigation
still takes up immense portions of developers’ time. Devel- As codebases get

bigger and bigger,
developers spend
most of their time
navigating and
comprehending
code.

opers spend 35% of their time navigating (Ko et al. [2006])
and in general 50% of their time foraging for information
related to code comprehension (Piorkowski et al. [2013]).
In economic terms, navigation or comprehension tasks like
maintenance and debugging account for up to 70% of total
expenses in software projects (Pressman [2005]). Compre-
hending the source code and maintaining mental models is
one of the biggest issues developers face today. And it is
especially challenging for inexperienced programmers or
developers that have joined new teams and are working on
unfamiliar code bases (LaToza et al. [2006]). A recently pub-
lished study1 conducted with over 500 developers from big
software development organizations has shown that code
bases have seen significant growth in volume over the past
decade. The study found that this has further increased the
challenges that new developers face and that code compre-
hension is now more difficult than ever, resulting in more
code breaks. It is becoming increasingly apparent that there
is a need for new and improved navigation tools to assist
developers – both experienced and new – in exploring code
and boosting code comprehension.

1https://info.sourcegraph.com/hubfs/CTA%20assets/sourcegraph-
big-code-survey-report.pdf (accessed on May 11th, 2023)

https://info.sourcegraph.com/hubfs/CTA%20assets/sourcegraph-big-code-survey-report.pdf (accessed on May 11th, 2023)
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Recommendation Systems for Software Engineering

An emerging field of research could help tackle these
emerging challenges. Recommendation Systems for Soft-
ware Engineering (RSSEs) are tools that aim to provide de-
velopers with valuable information based on their current
working context (Robillard et al. [2010]).

RECOMMENDATION SYSTEMS FOR SOFTWARE ENGI-
NEERING (RSSES):
RSSEs are tools that assist developers in their decision-
making. They provide developers with information that
is potentially interesting or related to what they are cur-
rently working on. In this thesis, we are particularly in-
terested in RSSEs that guide developers to related code
elements and assist them in their navigation.

Definition:
Recommendation

Systems for Software
Engineering

(RSSEs)

These systems are similar to those famously deployed in
search engines or e-commerce applications. Whereas these
famous relatives provide recommendations such as ”Cus-
tomers who bought this item also bought ...”, we are in-
terested in RSSEs that provide recommendations along the
lines of ”Developers who worked on this piece of code also
worked on these code pieces ...”. Or generally speaking,”Developers who

worked on this piece
of code also worked

on these code pieces
...”

RSSEs that output code fragments that might be points of
interest (POIs) for the developer. The recommendations
produced by these systems are typically ignorant of depen-
dencies of structural kind, like those that are displayed in
the call hierarchy. They produce recommendations based
on past developer interactions with the code. By detect-
ing frequent patterns in interaction histories or commit his-
tories, they find couplings between code fragments that
might not be visible in the call hierarchy. According to
a recent survey, this type of RSSE makes up the biggest
branch of recommendation systems for software engineer-
ing (Gašparič and Janes [2015]). These systems have been
researched and discussed as potential improvements for
code navigation, new developer assistance, and code com-
prehension. However, the RSSEs developed by the scien-
tific community are not yet deployed in practice and their
adoption in modern IDEs has been non-existent. Among
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other reasons Gašparič and Janes [2015] identify a lack of UI
integration, context-less recommendations, lackluster rec-
ommendation explanations, and reactive (as opposed to
proactive) systems as some of the most likely reasons why
we do not see RSSEs in real-world practice. These rea- There have been

promising technical
advancements but
no UI integration or
HCI research.

sons can be summed up as follows: There has been a lack
of HCI research and application of good HCI practices to
the developed solutions. While there have been lots of ad-
vancements in the field on the technical side, user-centered
research has been cut short.

In this section, we have seen two promising approaches Call graph tools and
RSSEs are both
promising
approaches to
support code
navigation and could
be combined.

that try to improve code navigation through tool assistance.
Both approaches – the call graph tools, and the RSSEs –
however, aim to provide the developer with wholly differ-
ent kinds of POIs. While call graph tools display strictly
hierarchical code dependencies, the RSSEs display relevant
code pieces whose relation is derived from past developer
interactions. These different POI sets are not always com-
pletely distinct but, as we will see later in this thesis, can be
far from identical. Choosing only one set of the two to base
navigation recommendations on seems insufficient.

1.2 Approach

In this thesis, we aim to tackle some of the challenges and We want to build an
RSSE framework
that combines
recommendations
from the call graph
with those from
interaction histories.

shortcomings that have been motivated in the previous sec-
tion. To do so, we developed a framework for a RSSE
within the popular IDE Visual Studio Code2 (VS Code) that
provides a rich extension API. The two major takeaways
from 1.1 “Motivation” that we built upon are:

1. Call hierarchy tools can significantly improve devel-
oper navigation if they promote the call graph infor-
mation prominently, and

2. The technical side of navigational RSSEs is promis-
ing but the lack of good UI practices and integration
could be what is missing for them to see practical use.

2https://code.visualstudio.com (accessed on May 11th, 2023)

https://code.visualstudio.com (accessed on May 11th, 2023)
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The resulting system merges information from the callIt should be proactive
and provide more

visual output than a
standard list.

graph with data-driven recommendations based on past
developer activity and displays it prominently in the IDE’s
interface. Following the suggestions from the literature, the
framework implements a richer integration of recommen-
dations into the IDE beyond that of standard list output.
The system acts proactively meaning that it does not rely on
the developer to prompt or query it for recommendations.
Rather, based on the current working context of the devel-
oper, suiting POI recommendations are automatically gen-
erated and displayed. Additionally, a color highlighting
system is implemented to provide reasoning behind why
certain artifacts are recommended.

1.3 Thesis Goals

By taking the successes of several previous research en-
deavors, merging them, and integrating them into a pop-
ular IDE by employing good UI design practices, we hope
to get a better understanding of what could be the missing
pieces to see the use of RSSEs for navigation in practice.
We also aim to show that a proactive recommendation sys-
tem for potential points of interest can aid developers in
navigating unfamiliar code bases. We define the following,
more specific goals for this thesis:

G0: Novel Recommendation Framework Conceptualize
and implement a novel framework combining struc-
tural and collaborative recommendation techniques.

G1: New Developer Assistance Improve navigation for
developers in big, unfamiliar software environments.
These scenarios have proven to be especially harsh
code navigation challenges and require addressing.

G2: Code Comprehension Support Improve code com-
prehension/mental models of developers through as-
sisted code exploration. Proactively recommending
potential related points of interest in the code should
help developers create a richer mental model of the
software project.
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G3: Towards RSSE Adoption Show that developers can
successfully use RSSEs and want to do so when they
are available and integrated well into the IDE.

G4: New Output Mode Show that Color Highlighting
for recommendation explanation and user guidance
could be a valuable aspect of RSSEs.

G5: Comparison Evaluate different interface aspects and
compare their impact on navigation efficiency.

A framework that combines the successful research on call
graph integration into the IDE’s UI with the promising
technical side of RSSE research could be a good step in the
direction of tackling modern code navigation challenges.
Especially in big code environments, and for new devel-
opers.

1.4 Structure

This thesis will be structured as follows. Chapter 2 will re-
view some of the literature that has preceded this work.
This will include both relevant technological foundations
as well as more HCI-focused research that has provided in-
sight into the areas of code navigation and RSSEs. Build-
ing upon these foundations we have developed a code edit
recommendation system for VS Code. In Chapter 3, we
present the conceptual approach to the system and explain
the design choices that led up to its implementation. Af-
terward, in Chapter 4, the actual implementation will be
presented on a more technical level. To evaluate how well
different parts of the system are able to aid developers in
navigating unfamiliar code we conducted a user study. The
setup and results of a user study are presented and dis-
cussed in Chapter 5. Finally, a summary of the thesis, as
well as an outlook on possible future work on the topic,
will be given in Chapter 6.





9

Chapter 2

Related work

In this chapter, we will introduce some of the related work
and literature that preceded this thesis. This will include re-
search on how developers use IDEs and the field of source
code navigation. Behavioral insights as well as tools that
leveraged these will be presented and discussed. Also, a
brief history of RSSEs will be given. Various technical ad-
vancements, different recommendation sourcing strategies,
and shortcomings will be discussed in detail.

2.1 IDE Usage and Source Code Naviga-
tion

Modern IDEs are powerful tools that assist software devel-
opers in most of their day-to-day work scenarios. With
tools like code completion, integrated version manage-
ment, refactoring, interactive debuggers, and many more
they now provide a wide range of assistance for develop-
ers. In the past decades, a multitude of studies has been
conducted observing how developers interact with IDEs,
what strategies and tools they deploy to solve their tasks,
and in general how programmers go about spending their
work days (Ko et al. [2006], LaToza and Myers [2010], La-
Toza et al. [2006], Amann et al. [2016], Minelli et al. [2015],
Murphy et al. [2006], Sharafi et al. [2022]).
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In a landmark study, Ko et al. [2006] investigated how de-Ko et al. found that
developers spend
35% of their time

navigating.

velopers collect and manage information in software main-
tenance tasks. Observing a group of developers working
on these maintenance tasks, they discovered that around
35% of the developers’ time was spent (often redundantly)
navigating between code fragments across the code base. A
number that sparked the initial interest in source code nav-
igation and invited suspicions that the way we as develop-
ers navigate our code projects in IDEs may be a bottleneck
to our efficiency.

A study on the work habits of developers by LaToza et al.Developers create
mental models of the

code they work on.
These are closely

linked to navigation.

[2006] discovered that the most prominent challenge of de-
velopers is comprehending source code. Code compre-
hension requires vast mental models that are maintained
and constructed with knowledge about a software project
such as code relationships, change impact chains and in-
formation about where in the project certain functionalities
are located. Maintaining a mental model is how develop-
ers understand their code and building it is done through
code exploration and navigation. The creation of a mental
model is labor- and time-consuming – especially the big-
ger a software project is – for both experienced and new
developers alike. New developers joining existing teams
however present an especially tough case as ”creating a
mental model from scratch requires a lot of energy for the
new team member and the team as a whole.” (LaToza et al.
[2006]).

The two concepts of code comprehension and code naviga-Code comprehension
and navigation are

dependent on each
other.

tion are closely linked. A good understanding of the inner
works of a project enables the developer to efficiently nav-
igate between code elements. Vice versa, having a good
sense of where things are located in a project and how to
traverse along their relationships is fundamental to under-
standing how the code functions.

In a subsequent study by LaToza and Myers [2010], the
authors investigate in more detail how exactly develop-
ers go about code comprehension. Based on findings that
understanding control flow is essential for program com-
prehension – and often the first step in creating a mental
model (Detienne [2001], Pennington [1987]) – LaToza and
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Myers observed how bugs are introduced into software,
asked developers what questions they often asked them-
selves about code, and looked at developers critical activi-
ties in the workflow. They found that all of the above is- Many developer

issues can be
formulated into
reachability
questions. How do
get I get from point A
to point B in the code
without necessarily
knowing what B is?

sues can be associated with reachability questions. A reach-
ability question is a search along possible paths through
a program, looking for certain statements or code blocks
that match some initial search criteria. In other words, they
concern how pieces of code in a project are related to each
other and how one can efficiently traverse from one to the
other in the IDE. The study found that most issues regard-
ing comprehension and navigation can be related to diffi-
culties in answering these reachability questions. The au-
thors suggest that effectively helping developers answer
these questions could prove to reduce the time spent on
code comprehension and navigation. Typically, reachabil-
ity questions are answered through code exploration and
standard IDE tools (like call hierarchy views) prove to not
be helpful enough to do so efficiently.

Instead of analyzing how developers interact with code in Lawrence et al. used
information foraging
to predict developer
navigations.

the IDE, Lawrance et al. [2007, 2008] applied insights from
information foraging theory (Pirolli and Card [1999]) to in-
vestigate how developers navigate code bases. Adapted
from information foraging in web navigation, each link to a
source code artifact has a scent that determines how likely
a developer in a certain debugging context is to navigate
across that link. The scent is determined by topological in-
formation as well as word-match likeness with words in
the bug report. The resulting model can be used to predict
where a developer will navigate in search of information
during a debugging task. Study results (Lawrance et al.
[2013]) were promising and matched results from predic-
tion models based on interaction data. However, this ap-
proach requires the existence of a bug report in order to
gain context on the task of the developer. Therefore this
approach would be less applicable in assisting new devel-
opers in their navigation. In another study, Piorkowski Piorkowski et al.

found that more than
half of developer
navigation actions
are disappointing.

et al. [2016] used information foraging theory to show that
over 50% of developers’ navigation actions are less produc-
tive than they predict prior to the action. The majority of
navigational choices are therefore disappointing and less
valuable than expected, solidifying the navigational issue
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of modern IDEs. The authors of the study survey exist-
ing development support tools and find that only a few
of them aim to increase the value of navigational choices.
As a result, they argue that future development assistance
tools should focus on providing navigational support that
actively increases the efficiency of source code navigation.

Singer et al. [2010] conducted a study on the daily activityThe most used
development tools

are package
explorers and search

tools.

data of developers. They analyzed the tools used by soft-
ware engineers and found that search tools were among
the most prominently used, confirming that efficient code
exploration is one of the main points of interest when try-
ing to improve developers’ efficiency. Similarly, Murphy
et al. [2006] investigated how developers use the Eclipse
IDE for Java and found that the two most frequently used
navigation views in Eclipse were the Package Explorer –
leading by a big margin – and the Search view. By using
sequential pattern mining on developer interaction data,
Damevski et al. [2017] came to similar results, that devel-
opers often use search tools for their navigational purposes
and in doing so visit up to 8 unrelated results before find-
ing the desired code fragment or abandoning the search.
More recently, Amann et al. [2016] conducted a study on
developers in the Visual Studio IDE to understand how
much time is spent using the different features and tools
of the IDE. The goal of the study was to gain insights into
how to support developers and what the next generation
of IDEs should look like. The authors found that 28.5% of
the developers’ time was spent on code editing and execu-
tion, closely followed by navigating documents and source
code, which took up 22.4% of the time spent. However,
they do not include the additional 37.6% time spent classi-
fied as short inactivity in the navigation data, even though
research by Minelli et al. [2015, 2014] suggests that this time
of inactivity is likely to be connected to source code com-
prehension. As we have seen above, source code compre-
hension and navigation are closely intertwined concepts.
Amann et al. found that often developers navigate with-
out the intention of editing code, further suggesting that
navigation and comprehension may be two concepts of de-
veloping work that can not be regarded as independent of
one another. Confirming the earlier work of Murphy and
Singer, they also found that the most frequently used nav-
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igational tools in the IDE were search tools such as tex-
tual and code search. These studies on the usage of IDE
tools and the gained insight that search tools are the most
frequently used among them suggest that the state of the
art of source code navigation in IDEs may be tailored to
use cases in which the developer already knows what she
is looking for. As text-based searches rely on contextual-
knowledge input by the developer they may be less useful
for new developers or developers working on unfamiliar
code. Amann et al. conclude that ”new concepts for code
understanding and exploration might be valuable for de-
velopers”.

In an effort to visualize developer interactions in the IDE Minelli et al. confirm
that vast amounts of
development time
are spent on
comprehension and
call for better IDE
interfaces.

and gain insight into how developers use the UI and to
what extent the UI supports the developers in their work,
Minelli et al. [2014] developed a tool called DFlow that mon-
itors interactions of programmers in the IDE. In a later
study by Minelli et al. [2015], they abstracted the fine-
grained interaction data into higher-level activities: under-
standing, navigation, editing, UI interaction and time spent out-
side the IDE. They found that a total of 70% of developer
time could be attributed to program comprehension and ar-
gue that future IDEs should make an effort to tackle these
challenges. It should be noted here that the used notion of
understanding includes most idle times between actions and
navigation only included actual usages of the explorer and
search tools. The authors conclude that ”IDEs are far from
perfect when it comes to the way their user interfaces are
built”. And this is a call that can be found throughout the
literature on IDE usage. Looking at the discussed studies
and gained insights, the shortcomings of modern IDEs be-
come apparent. The closely tied concepts of source code
navigation and program comprehension still present a big
challenge for developers and define most of the faced is-
sues and time spent in a workday. The underlying issues
– although present for all kinds of developers – become all
the more important when we consider scenarios in which
developers are either new to the profession altogether or
simply new to the code they are working with.
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2.2 Supporting Developers in Navigation

In this section, we will take a closer look at some of the tools
that have been developed with the goal to tackle the chal-
lenges introduced in the previous section. These tools share
the common denominator of trying to support developers
in the way they comprehend code, find specific code frag-
ments, or simply explore code bases. In other words, they
provide novel ways of source code navigation.

In the following, we will divide the approaches into new
IDE paradigms, call-hierarchy-based tools, and various
other approaches.

2.2.1 New IDE Paradigms

Professional software engineers spend about a third ofSoftware engineers
spend a third of their

work time in IDEs.
The IDE paradigm

itself might be part of
the navigation and

comprehension
issues. These tools

try to shift away from
the standard window

and file-based IDE
paradigm.

their time working in IDEs (Sillitti et al. [2012]). It should
come as no surprise that this makes IDEs the most used ap-
plication group in a developer’s work life. Issues that de-
velopers commonly face – such as the comprehension and
navigation issues discussed in Section 2.1 – are therefore
likely to be issues in the way that modern IDEs are de-
signed. Standard IDEs are designed to be file-based and
follow a window/tab paradigm in which each file is con-
tained in one window and typically only one window at
a time is in an editable visual focus. Several research ap-
proaches have identified this standard way of designing
IDEs, in combination with the scattered nature of modern
code bases, as a culprit for the navigational issues develop-
ers face.

Roethlisberger et al. [2009] argue that the need for keepingWindow-based IDEs
lead to cluttered

workspaces. Autumn
Leaves calculates

the relevance of
open windows in the

IDE and closes
irrelevant ones.

track of many code artifacts across different files leads to a
window plague in IDEs. Developers often find themselves
misnavigating and faced with a large number of open tabs
and windows that lead to further confusion and negative
impact on navigation. As it is often unclear which win-
dows still bear reasonable importance and which ones can
be closed without causing any future inconvenience, devel-
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opers tend to leave open way more windows than neces-
sary. Röthlisberger et al. introduce Autumn Leaves, a tool
that assigns weights to open windows and automatically
adjusts those weights based on certain user interactions.
Weights of rarely visited windows decrease over time while
frequently used windows receive a higher weighted im-
portance. Based on the windows’ individual weights, they
may be greyed out if deemed less relevant, displayed more
prominently if they are more likely to be interacted with, or
closed altogether if they become very unlikely to be needed
in the near future. In an evaluation of the tool, the authors
found it to accurately find candidates for closing, however,
the automatic closing feature was not well received by de-
velopers.

Other approaches focus on redesigning the file-based Code Bubbles shifts
away from file-based
visualization. Code
fragments can be put
into bubbles and
grouped with related
bubbles.

paradigm of IDEs itself. Bragdon et al. [2010] present a
non-file based development environment called Code Bub-
bles. Instead of assigning each code file or document a
single editable window, Code Bubbles’ user interface con-
sists of many small editable fragments of code presented
in so-called bubbles. Fragments can be grouped together
into screen-sized views, giving developers the ability to si-
multaneously view and edit fragments strewn across many
classes and files. The concept achieved good usability re-
sults in a qualitative user study.

In a similar approach, DeLine and Rowan [2010] presented Code Canvas lets
developers arrange
all of a project’s code
on an infinitely
zoomable canvas.

Code Canvas, an IDE that replaces the box-partitioned inter-
face with an infinitely zoomable canvas. This canvas hosts
all editable documents grouped by structural concepts such
as classes and dependencies. Having all of a project’s code
in one space is supposed to leverage spatial memory to sup-
port navigation within the project. The authors argue that
eliminating hyperlink navigation from software develop-
ment yields a better understanding of where certain frag-
ments are located in the code.

Patchworks is an IDE that arranges code into a grid of Patchworks also
arranges code into
small boxes that are
arranged on a
horizontal grid.

patches that can scroll horizontally (Henley and Fleming
[2014], Henley et al. [2014]). Each of the patches is a small-
scale editor that holds a code fragment of different possible
levels of granularity such as a method or an entire class.



16 2 Related work

In contrast to Code Bubbles and Code Canvas, the Patchworks
interface still provides a view for the package explorer.
The explorer can be used to drag and drop fragments into
patches. The authors evaluated the IDE in a comparative
user study to Eclipse and Code Bubbles and found improve-
ments in terms of developer navigation over both alterna-
tives. In a later study on the Patchworks editor, Henley et al.
[2017] did not find any significant difference in success rate
or task completion time between a participant group solv-
ing tasks in a tabbed editor and a group using the Patch-
works editor. However, they observed that participants in
the Patchworks editor made significantly fewer clicks per
navigation and overall made fewer navigation mistakes.

The results of the presented research on novel IDEWhile these ideas did
not revolutionize IDE

design, they show
promising

improvements in
navigation through

access to interesting
code pieces.

paradigms and their user studies suggest several insights
that are interesting in regards to our own research endeav-
ours. For one, they show that the navigation issues devel-
opers face do not have to be just accepted as a byproduct of
human limitation and performance. The results promise
significant improvements through the means of efficient
support tooling and IDE design. And additionally, the re-
sults show that easy access to interesting code fragments,
without clogging up additional screen space, is a valuable
resource in supporting developers in their navigation.

2.2.2 Call-Hierarchy based Navigation Tools

A big area of research on developer navigation support isElements of the call
graph are important
for code navigation

and comprehension.

focused on leveraging call graph information to guide pro-
grammers along interesting relations in the code. The call
graph (sometimes control-flow) describes the hierarchy of
callers and callees of a callable code fragment (usually func-
tions and methods). Along the call graph of an element one
usually finds closely related code pieces and navigating it
has proven to be particularly important for code compre-
hension (LaToza and Myers [2010]).

Ko and Myers [2004] designed the Whyline, an interrogative
debugger. The Whyline allows developers to ask questions
about why something happened or did not happen in the
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textual or graphical output of a program. The questions The Whyline made
developers more
efficient in debugging
by using call graph
slices to explain
program outputs.

are asked by choosing certain code elements and proper-
ties. To answer the questions, the Whyline returns a slice
of the program containing relevant methods and variables
from the call graph that influenced the outcome in ques-
tion. A conducted user study deemed the tool useful for an-
swering Why questions about a program and showed that
it helped users complete debugging tasks faster and more
successfully. Later studies by Ko and Myers confirmed the
tool’s general usability as well as its potential use for real-
world debugging tasks in a comparative study to break-
point debuggers (Ko and Myers [2008, 2009]).

LaToza and Myers [2011] developed Reacher, a tool that
restricts user searches to results along the call graph of a
method. When evaluated in a user study, the authors found
that participants performed significantly better in answer-
ing code comprehension questions when using Reacher.

Stacksplorer by Karrer et al. [2011] is a plug-in for the Xcode Stacksplorer
prominently
recommends code
elements from the
call graph.

IDE that visualizes the direct call graph neighborhood of
code elements. It aims to improve code comprehension
and navigation, especially for unfamiliar code. For a focus
method, Stacksplorer visualizes the callers of the method in
a column to the left of the editor and the method’s callees in
a column to the right. The authors conducted user studies
and found that software maintenance tasks on unknown
code were performed much faster by participants using
Stacksplorer. Participants also showed a heightened aware-
ness of side effects of changes. Overall the prominent It helped developers

perform maintenance
tasks on unfamiliar
code faster and more
aware of side effects.

display of recommended code pieces based on structural
relationships showed great promise in terms of improving
developer navigation. The authors suggest that additional
relationships besides call hierarchy structures could further
improve the approach’s beneficial impact.

Blaze by Krämer et al. [2012] is another IDE extension that Blaze is another tool
recommending call
graph elements.

displays a path through the call graph for a method in fo-
cus. Similar to Stacksplorer, the call graph is visualized next
to the editor but contains graph elements from a larger
neighborhood. A study comparing the tool to Stacksplorer
and standard call hierarchy implementations in IDEs con-
firmed earlier studies and showed that participants using
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explicit call graph navigation tools such as Blaze and Stack-
splorer were able to solve software maintenance tasks much
faster than using standard tooling. In a later study, Krämer
et al. [2013] investigated what exactly made tools such as
Stacksplorer and Blaze successful in supporting code explo-
ration. The results of the study suggested that the promi-
nent display of navigation recommendations and structural
information lead to the success of the tools. In contrast, typ-
ical call graph implementations of IDEs tend to hide the in-
formation behind context menus and reactive tooling.

Smith et al. [2017] developed Flower in an attempt to bundle
control flow and data flow navigation in one tool without
taking up additional screen space. Flower functions as an
Eclipse plugin and highlights on-screen references to high-
lighted code elements and adds links to the top and bottom
of the editor that lead to off-screen references. No addi-
tional view in the IDE is needed to display the element’s
references. A user study gave mixed results as users strug-
gled to navigate along more complex call graphs.

Overall navigation support tools that recommend elementsProminent display of
recommendations is

important for
navigation support

tools.

from the call graph seem to be promising approaches. Sev-
eral studies confirmed improvements in code comprehen-
sion and navigation. The driving factor behind their suc-
cess appears to be the prominent display of recommenda-
tions (Krämer et al. [2013]).

2.2.3 Other Navigation Support Approaches

Apart from new IDE paradigms and navigation tools that
leverage structural-relationship, such as the call graph,
other approaches toward navigation support have ap-
peared over the years. This subsection will cover a few
stand-alone works with original approaches before intro-
ducing another big group of developer support tools: rec-
ommendation systems in software engineering (RSSEs).

Rothlisberger et al. [2009] developed HeatMaps, a tool that
gathers information from navigation, modification, and
deletion of source code in the IDE. The gathered data can
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Figure 2.1: The HeatMaps interface highlighting number of
versions of source artifacts, top left, and recently browsed
artifacts, bottom right (Source: Rothlisberger et al. [2009])

then be used to display heat maps that highlight certain
software artifacts according to various metric values (as
shown in Figure 2.1). The properties on which to base the HeatMaps uses color

highlights on certain
elements in the IDE
to guide the
developer’s attention.

heat maps can be configured by the developer to gain var-
ious different insights on interesting points in the project.
Examples by authors included frequently or recently vis-
ited artifacts, the number of versions of a fragment, or the
age of code pieces. Combinations of the metrics are possible
as well. The heat maps work by highlighting the artifacts
in colors that correspond to values on a scale. Even though
no user study was conducted, the concept of introducing
color highlights to visualize information on code artifacts
displayed in the IDE should be interesting to pursue. Espe-
cially given the success of syntax highlighting in IDEs.
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Another approach to code navigation is through social tag-
ging. TagSEA (Storey et al. [2006, 2007]) allows develop-
ers to append tags to waypoints in the code. In shared
repositories, these tags are available to all developers in a
team. These tags can then be navigated via keyword search.
The shared collaborative knowledge of a team’s annotation
helped developers traverse between related artifacts.

2.3 Recommendation Systems for Soft-
ware Engineering

Most of the efforts discussed so far have approached theDeveloper
interactions can be

data mined for rules
of frequent behaviors

and patterns.

navigation issue either by changing the way we interact
with code in the IDE or by providing new ways of travers-
ing structural relations between code elements in the IDE.
Another branch of navigation support tools aims to pro-
vide smart navigation assistance by recommending poten-
tial points of interest to the developer which were learned
from developer interaction behavior. Similar to how stud-
ies, such as Amann et al. [2016], Minelli et al. [2015, 2014],
Gu et al. [2014], Damevski et al. [2017], have tracked devel-
opers’ interaction data in order to analyze their behavior,
the same kind of data can be used to mine patterns about
developer activity in a code project. Histories of how pro-
grammers interact in the IDE give us detailed navigation
paths that we can data mine for rules and patterns. In-
teraction patterns allow us to make statements like ”De-
velopers who worked on this code fragment often also
changed...”. These navigational patterns can reveal cou-These rules can

reveal otherwise
hidden couplings

between code
elements.

plings and dependencies in the code that exceed but do not
exclude structural couplings such as those from the call hi-
erarchy. Common examples are semantically related code
elements that are frequently changed together but are lo-
cated in files written in different programming languages.
Program analysis or topological tools fail to identify such
relationships in code bases.
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We call these special dependencies between code elements
evolutionary couplings:

EVOLUTIONARY COUPLINGS:
Evolutionary couplings are dependencies between code
elements that are revealed by how a system evolves over
time. Two code elements may be coupled evolutionary if
they are frequently co-changed together or impacted by
similar changes.

Definition:
Evolutionary
Couplings

An excursus on research on evolutionary couplings and
how they can be mined from interaction histories can be
read in Appendix A.

In this section, we will take a closer look at systems that We will look at RSSE
approaches that use
evolutionary
couplings in the
literature.

recommend potential points of interest (POIs) to the devel-
oper. Most of those exploit evolutionary couplings to iden-
tify those POIs and use different techniques to mine those.
We will also discuss the lack of human-centered research
on these systems and suggest it as a possible reason why,
despite continuous technological advances, these systems
have not seen major adoptions in the landscape of modern
IDEs.

RSSEs are tools that support developers in seeking and We are mainly
interested in RSSEs
that recommend
potential POIs.

finding relevant information to their current task (Robil-
lard et al. [2010]). They support the developer by provid-
ing recommendations for certain actions or artifacts based
on a context in which the recommendations are to be con-
sidered. The context can be seen as one part of the input
data of RSSEs. The other part consists of the data that the
recommendation engine crawls to compute the actual rec-
ommendations for the given context. While they can cover
a wide range of applications such as finding reusable code,
executing useful commands, or even tasks outside the IDE,
we will focus on RSSEs that support developers inside the
IDE during the programming task. Specifically, RSSEs that
assist developers in navigating large code bases and rec-
ommending potentially interesting places in the code for
further inspection or changing. Robillard et al. [2010] de-
fine three basic functionalities an RSSE architecture must
implement:
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1. A data-collection mechanism to collect development-
process data and artifacts in a data model;There are three basic

functionalities of
RSSEs. 2. A recommendation engine to analyze the data model

and generate recommendations; and

3. A user interface to trigger the recommendation cycle
and present its results.

Robillard et al. also define three design dimensions of
RSSEs:

• The nature of the context: RSSEs either require ex-
plicit context provided by the user through an inter-
face or implicitly detect the current context for which
to recommend things. Of course, a hybrid of both
may be implemented.There are three

design dimensions of
RSSEs. • The recommendation engine: The additional data

based on which recommendations are computed may
originate from version histories, developer interac-
tion data, bug reports... Typically, to produce recom-
mendations from the data, a data mining algorithm
is deployed. Finally, most RSSEs rely on a ranking
mechanism to put mined recommendations into an
order of relevance.

• The output mode: The basic possible output modes
of RSSEs are push and pull modes. Pull modes
provide recommendations after explicit user queries,
while pull modes continuously provide recommen-
dations proactively. Pull modes often require an im-
plicit context.

Hipikat (Cubranic and Murphy [2003]) is an early RSSEHipikat
recommended a list

of related artifacts for
a current change

task.

that takes artifacts of a software repository including ver-
sions, source code, bugs, related communication, and doc-
umentation as data. The tool links these artifacts based on
keywords, meta information, and relationships. The ar-
tifacts are then translated into document vectors that al-
low for natural language querying by the user as context.
Upon a query, a set of candidate artifacts is returned and
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Figure 2.2: The Hipikat view in Eclipse, recommending dif-
ferent bug reports. (a) shows the current change task, (b)
shows the recommended list of related artifacts. (Source:
Cubranic et al. [2005])

formed into recommendations. A prototype tool imple-
mented Hipikat in Eclipse, providing a list-based view for
the recommendations (shown in Figure 2.2). The recom-
mendations are enriched with reasons for the recommen-
dation, such as text similarity or log occurrence, and can
be clicked to open them in an editor. In a first evaluation
study, it was found that in principle the recommendations
could help developers in getting started with tasks. The
effectiveness of the tool however was largely dependent
on the quality and number of recommendations. A large
number of recommendations was tough to filter for rele-
vant artifacts and confused users. A later study showed
that when using Hipikat, newcomers came closer to per-
forming like experienced team members on software tasks
(Cubranic et al. [2005]). Inspired by Hipikat, Malheiros et al.
[2012] later created a similar tool that improved on the used
textual similarity matching algorithm. The results were bet-
ter recommendations and better overall performance.

Zimmermann et al. [2004] proposed a method to mine ver-
sion histories and find associations between changed code
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Figure 2.3: The ROSE interface (Source: Zimmermann et al.
[2004])

elements. Their approach used association rules to sug-ROSE used
association rules

from change
histories to

recommend likely
due changes in a list.

gest and predict likely changes, and to detect evolutionary
couplings undetectable by program analysis. They devel-
oped a tool called ROSE that recommends possibly due-to-
change code pieces in a view in the IDE whenever a user
changes some code element. For file types that supported
a symbol outline (like C, C++, Java...) the tool worked on
a fine-granular level, while other file types only invoked
a file-level granularity of the miner. The recommendation
user interface is implemented as a list view in Eclipse and
is ranked by support and confidence measures of the asso-
ciation rules (see Figure 2.3). Besides navigation support,
the goal of ROSE was to prevent errors or bugs from be-
ing introduced into the code by forgetting to change rele-
vant fragments. To do so, ROSE implements a pre-commit
warning when confidently related changes to the commit
have not been made. The initial results showed promising
navigational precision results in a quantitative test study
using archived open-source repositories. ROSE correctly
predicted a third of later to-be-changed items, while fail-
ing to prevent most errors. However, no user study was
conducted on the tool and its IDE implementation.
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Ying et al. [2004] proposed a similar approach to Zimmer-
mann et al. that also used CVS data to recommend source
code that might be relevant to a code fragment. They used
frequent pattern mining and achieved similar quantitative
results to ROSE. However, they did not implement their
approach in an IDE nor conduct any user studies.

Robillard [2005] proposed a technique to automatically pro-
pose and rank program elements that are potentially inter-
esting to a developer to help better understand their cur-
rent context or task. Their approach used the topology of
structural dependency, including calls, called by, accesses,
and accessed by, but did not consider change history. The
tool proposed by Robillard was not proactive and required
developers to drag and drop or select the input.

DeLine et al. [2005b] proposed a method to track interac- TeamTracks
analyzes an entire
team’s navigation
interactions and
recommends items
based on view
frequencies.

tion history with code files and extract direct succession vis-
its between classes and methods in that file. The view in-
teractions are tracked for an entire team and evaluated as a
whole. They then recommended “frequently visited next”
elements in a list to users with frequency as the metric of
relevance. The aim was to leverage the experienced team
members’ navigation expertise to help new team mem-
bers in their tasks. The authors present TeamTracks (DeLine
et al. [2005a]), a tool recommending the most related items
based on tracked navigation data, using only view activi-
ties. The tool reorganizes the IDEs class view (see Figure
2.4 (A)) based on most frequently visited elements into a
view called Class View Favorites, shown in Figure 2.4 (B).
In addition, for the selected program element in the edi-
tor, the most frequently visited elements before or after vis-
iting it are displayed in a Related Items view (see Figure
2.4 (C)) The authors conducted a usability study for the
recommendation system yielding promising results and let
participants use the tool for programming tasks. The re- TeamTracks

significantly
improved users code
comprehension.

sults showed that the system worked especially well for
new developers, and overall improved test task completion
rates. However, the related items list was used far more fre-
quently than the rearranged class view which was unpopu-
lar by comparison. An important result was that the results
for code comprehension quizzes were significantly better
with the usage of TeamTracks in the tasks. Tests on the pos-
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Figure 2.4: The TeamTracks interface featuring a reorganized
Class View (B) and Related Items (C) (Source: DeLine et al.
[2005a])

itive effect of visual aids, such as different-sized icons for
reasoning, were not conclusive. Some participants of the
study remarked that they wished to have both the Team-
Tracks recommendations as well as recommendations from
the selected elements call graph available in the tools views.

Singer et al. [2005] proposed NavTracks, which is an RSSE
that keeps track of navigation histories and forms associa-
tions between related files. They argue that the hierarchical
means of navigation and organization in an IDE are not the
only meaningful relationship between files. Instead, sim-
ilar to LaToza et al. [2006], the authors hypothesize that
the paths developers take in a software project reveal their
mental model of the project. They suggest that the file re-NavTracks used

developer interaction
data to create links

between files based
on navigation

behavior from which
recommendations

are generated.

lationships uncovered by the navigation history should be
consistent with the developer’s mental model of the code.
At the time, the novelty of their approach, compared to
tools like ROSE, was that they did not use repository data
for co-occurrences of changes but active developer navi-
gation traces. In doing so, the authors hoped to gain a
more up-to-date view of code dependencies as well as more
navigation-directed developer support. NavTracks is imple-
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Figure 2.5: The NavTracks view (Source: Singer et al. [2005])

mented as an extension to Eclipse and meant to be com-
plementary to the Eclipse Package Explorer. It proactively
presents the top three related files to the developer’s cur-
rent context in a list view (seen in Figure 2.5). Similar to pre-
vious RSSE accuracy studies, the tool averaged around 35%
successful next navigation predictions in a user-less study.
The results of a usability study showed that it especially
helped newcomers to projects by reducing their search and
navigation times.

Kersten and Murphy [2005] developed Mylar, which is a
tool that monitors programmer activity and calculates a De-
gree of Interest (DOI) based on selections, edits, and visits
to program elements. Mylar uses colored shading to en- Mylar /Mylyn uses

color highlights on a
gradient to highlight
the current degree of
interest for elements
in the IDE.

code DOI levels and filters the class outline view and pack-
age explorer to show only elements of interest, hiding the
rest. The remaining elements, deemed relevant enough to
the current tasks are highlighted in color, based on their
DOI, as shown in Figure 2.6. Mylar relies on the IDEs struc-
ture views to display interesting elements but does not in-
clude any markers of relationships between elements. In
other words, no reasoning for an element’s DOI is given.
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The approach is task-based, highlighting elements relevant
to the current task of the programmer, and requires task
switching between tasks. A first evaluation showed that
Mylar reduced the amount of navigation and especially
misnavigation by developers during their tasks. However,
no evaluation of the effects of the color highlighting itself
was done. In a following paper by Kersten and Murphy
[2006], a more advanced version of Mylar was tested, which
provided professional programmers with DOI highlights in
relation to the task context. Their user study suggested that
providing developers with DOI highlights boosted their
productivity.

The Mylar tool later become known as the Mylyn1 task man-
agement plugin for Eclipse that can be used to track issues
or bugs. It still provides the DOI highlights of the task-
focused interfaces and implements Mylars original interac-
tion tracker in Eclipse. It has been used in combination with
Bugzilla2 on a multitude of large open-source projects. As
a result, it has accumulated a large collection of bug-report-
related interaction data of those projects. Those interaction
traces have since been used in a lot of the following works
for tool validation.

Parnin and Gorg [2006] proposed building usage con-Parnin and Gorg
used working

contexts to try and
help developers

return to tasks after
interruptions.

texts during program comprehension by saving working
contexts, including open windows and last executed com-
mands, when programmers interrupt a task due to distrac-
tions or priority shifts. The context is then used as poten-
tial points of interest when a developer comes back to the
task. Recommendations based on the context, using associ-
ation rules, are also made and aim to reduce the amount of
time developers spend recovering their last used work con-
text. In a comparison of predictive models, they found re-Recency and

frequency of visits
were found to be

valuable for
navigation

predictions.

cency of visits, and frequency of visits to artifacts to be the
most valuable metrics to base predictions on. Motivated
by this comparison of models, Piorkowski et al. [2011] fur-
ther investigated the accuracy of certain prediction mod-
els for predicting programmer navigation. They too found
that recency of navigation yields accurate navigation mod-
els, however only for click-based navigation – and on par

1https://www.eclipse.org/mylyn/ (accessed on May 11th, 2023)
2https://www.bugzilla.org (accessed on May 11th, 2023)

https://www.eclipse.org/mylyn/ (accessed on May 11th, 2023)
https://www.bugzilla.org (accessed on May 11th, 2023)
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and repeatedly inspect search results looking for those relevant to 
the task.  The programmer must commit the context of the task to 
memory. The burden of filtering the views based on the task 
context is placed on the programmer instead of the tool. 

To address these problems we built the Mylar Eclipse plugin, 
which automatically encodes the context of the programmer’s task 
in a DOI model and exposes it in IDE views (Figure 2).  The 
default highlighting scheme visible uses colored shading to 
indicate the programmer’s relative interest in the element. A 
darker shade indicates a higher DOI. Since Eclipse already uses 
highlighting to indicate the currently selected element, Mylar uses 
bold font to indicate the currently selected element.  Figure 2 
shows how the Mylar views present program elements related to 
the task context. Section 3.2 describes the views in detail.  

1. Mylar Package Explorer: interest-based filtering is 
enabled, so only the files and libraries relevant to the 
task are visible. The number of filtered elements is 
indicated on the parent label. The auto expand and filter 
mode reduces the need to manually expand and scroll 
the tree by actively maintaining the visibility of high-
interest elements, which helps bring the hierarchical 
relationships into view.  Note that a vertical scrollbar 

can appear in the Mylar views, but is less common when 
interest-based filtering is enabled. A highlight-only 
mode can be toggled, in which no elements are filtered 
and items of interest stand out through highlighting. 

2. Mylar Problems List: problems of interest are 
highlighted to stand out from the large number of items 
typically populating this view. This view is populated 
identically to the JDT/AJDT problems list, but 
corresponding program elements are additionally 
displayed and used to highlight the DOI of the problem. 

3. Mylar Outline: interest-based filtering is turned on to 
show only the members related to the task.. The Mylar 
editor has an option to actively fold and unfold elements 
according to interest—reflecting the filtering state of the 
Mylar Outline. If advice links are present in the Mylar 
Outline view (as in Figure 1, #5) they appear similar to 
the links visible in the Active Pointcut Navigator. 

4. Active Pointcut Navigator: this view is actively updated 
to show how high-interest elements fit into the 
crosscutting structure of the system (Section 5.3.2). 

Figure 2: Mylar views (figure numbers correspond to list items above) 

Figure 2.6: The Mylar views in the Eclipse IDE (Source: Ker-
sten and Murphy [2005])

with code topology methods. For navigation within views,
they found within-file distance of methods to be the most
accurate metric for building navigational predictions. In-
terestingly, the study found Bug Report Similarity, even
though commonly used in RSSEs up to that point in time, to
perform significantly worse than Recency, Within-File Dis-
tance, topology, and mixtures of those.

At this point in the history of RSSE research, we see a Few modern RSSE
approaches have
seen actual
implementation or
interface research.

decline in the actual implementation of tools and human-
centered evaluation of approaches. Instead, the focus shifts
towards more technical research and advances in recom-
mendation engines, context data, and input data.

So far, most of the approaches we have discussed collected Only recently have
recommendation
engines started
considering edit
interactions.

data either from version histories or purely navigational in-
teraction (or view-based) data of developers. The devel-
oper though, interacts more richly with the IDE than just
through visits to certain files or code elements. The most
basic interaction with source code is the edit. Edit inter-
actions with artifacts provide another valuable information
source that can be used to mine regularities from developer
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activity. Just as edits found in commits of version histories
can be used to uncover evolutionary couplings, so can ed-
its found in interaction data. Given that interaction data
provides a vastly larger amount of recorded activities than
version histories, fully leveraging the developer’s interac-
tion history seems promising to improve navigation sup-
port. Whereas the tools discussed so far often featured vi-
sual implementations but low recommendation accuracy,
the newer approaches in the following reach much higher
accuracy but fail to account for the usability measures of
these systems.

It should be noted that most of the following works usedInterlude: Mylyn
interaction data Mylyn interaction data to evaluate their approaches. There

exists research that suggests that Mylyn traces contain sig-
nificant amounts of false edit events. As a result, the follow-
ing accuracy measures could be lower than they should be
as improvements are to be expected when evaluating with
clean data. A more detailed interlude can be found in Ap-
pendix B.

Kobayashi et al. [2012] track read and write accesses to code
artifacts on file and method level. Using the interaction
data they create change sequences that are translated into
a directed change guide graph.

NavClus was developed by Lee and Kang [2013] to improveNavClus tracks
interaction histories

and forms implicit
task contexts. These

contexts are later
used to recommend

POIs.

the accuracy the state-of-the-art navigation recommenda-
tion systems that mine programmers interaction histories.
The tool segments interaction histories into sequences that
are likely to be related to a task the programmer pursued.
Program elements that are interacted with within one se-
quence are likely to be related to each other. The obtained
sequences are then clustered by similarity to form task-
related contexts. These contexts can later be recovered to
predict interesting points in the code based on task simi-
larity. An important advance over earlier task-related rec-
ommenders is that a task is implicitly defined by the fea-
tures modified by the developer. No explicit task descrip-
tion or bug report is required. The tool was compared to
TeamTracks (DeLine et al. [2005a,b]) in a study that evalu-
ated both tools on archived bug reports and debug inter-
action data. The study showed that NavClus was able to
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Fig. 1. User interface of NavClus ( Lee et al., 2013 ). 
3. Features of the graphical code recommender 

The graphical code recommender is a recommendation system 
that mines developer navigation history and recommends source 
locations for further navigation. According to the classification of 
recommendation systems in ( Robillard et al., 2010 ), it could be 
classified as a recommendation system that obtains implicit in- 
put, mines interaction histories, recommends items without ranks, 
and automatically generates recommendations in real time. To ful- 
fill the use scenarios 4 detailed in Section 2 , the system presents 
source locations (i.e. classes, methods, and fields) that developers 
have navigated to, as well as recommending source locations to 
further navigate to based on developers’ past navigation history. 
Lee et al. (2013) proposed and developed the first graphical code 
recommender and named it NavClus . Fig. 1 presents the user inter- 
face of NavClus. 

The interface can be separated from the Eclipse IDE. This sep- 
aration can assist developers who use multiple monitors, allowing 
them to refer to diagrams on the side monitor while performing 
coding tasks on the main monitor. Within this interface, NavClus 5 
has three distinctive features. 
3.1. Interactive display 

As a developer navigates classes, methods, and fields in the 
code base, the classes, methods, and fields already navigated ap- 
pear incrementally in the class diagram. This feature supports the 
scenario in Section 2.1 (Assisting short-term memory) and enables 
developers to feel that they are drawing classes, methods, and 
fields by simply clicking on them. In addition, a developer can 
manually rearrange the class diagram using the mouse, or let Nav- 
Clus automatically update the layout for readability. 
3.2. Recommendation display 

Based on developers’ navigation activities, recommendations for 
additional classes, methods, and fields to explore are presented in 
the class diagram. This feature supports the scenario in Section 2.2 
(Assisting long-term memory). Prior to recommendations, interac- 
tion traces should be collected. When developers visit and edit the 

4 In our diary study, we do not limit developers’ use of the graphical code recom- 
mender to these scenarios, but allow them to explore other use scenarios in their 
daily work. 

5 The tool can be found at https://marketplace.eclipse.org/content/navmine . 

classes, methods, and fields, their actions are recorded as interac- 
tion traces. 
3.3. Jumping to source locations 

A developer can visit the source locations previously visited or 
recommended by double clicking on the methods in the class di- 
agram. Based on user comments, Cox et al. (2005) addressed this 
as one of the requirements for diagramming tools; our study will 
show that developers’ favor this feature. 
4. Study plan 

In order to understand the situations in which developers use 
a graphical code recommender and what diagrammatic informa- 
tion they expect to obtain, we conduct a diary study ( Czerwinski 
et al., 2004; Iida et al., 2012; Terry, 1988 ), and analyze the study 
data using grounded theory ( Strauss and Corbin, 1998 ). The com- 
bination of the exploratory characteristics of the diary study and 
the grounded theory enables the identification of situations for us- 
ing a diagramming tool and the information required, all based on 
developers’ experiences. 

Section 4 is organized as follows. Section 4.1 presents the re- 
search questions. Section 4.2 describes the participants in the 
study. Section 4.3 describes the methodology and procedure of the 
diary study and the qualitative analysis. 
4.1. Research questions 

This study aims to identify the situations in which developers 
use diagramming tools and to investigate the diagrammatic infor- 
mation that developers expect to see in these situations. The fol- 
lowing three research questions are asked: 
RQ1. In what situations do software developers use diagrams or 

diagramming tools? 
RQ2. Do software developers find that a graphical code recom- 

mender can assist their comprehension of code? 
RQ3. In what situations do software developers expect to use di- 

agramming tools, and what suggestions do they make for 
each situation? 

4.2. Participants 
We recruited eleven participants for the diary study. To 

this end, we asked lab members to introduce their friends or 

Figure 2.7: The NavClus tool and its UML navigation view
(Source: Lee et al. [2013])

produce higher recommendation accuracy than TeamTracks.
While the precision only increased from 49% to 52%, the
average F-measure value for TeamTracks recommendations
was 0.073 while NavClus achieved a value of 0.144. Further-
more, NavClus yielded a much higher edit-hit ratio, mean-
ing that its recommendations included significantly higher
percentages of later edited program elements. A graph- The NavClus

recommendations
were visualized in a
UML diagram.

ical tool for NavClus was developed that outputs the rec-
ommended program elements in a UML class diagram (see
Figure 2.7). The class diagram draws all previously nav-
igated to program elements as well as recommendations,
that can then be inspected. Later, a user study was con-
ducted by Lee and Kang [2016] that aimed more towards
identifying use cases of diagramming tools in software de-
velopment rather than the efficiency or usability of the rec-
ommendation tool itself.

To answer the question whether view histories or edit his- MI considers both
edit and view
interactions in the
recommendation
engine.

tories are better for mining code recommendations, Lee
et al. [2015] developed MI. MI works similar to ROSE, but
instead of only utilizing edit histories (from commits) like
ROSE, MI is able to consider both the view- and the edit his-
tories of developers. The authors hypothesize that a com-
bined context of both interaction types is the key to improv-
ing the recommendation accuracy of RSSEs. MI mines as-
sociation rules from the contexts that are then later used
to form the recommendations. To gain detailed insight
into how impactful the different interaction events are on
the recommendation accuracy, Lee et al. implement differ-
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ent versions of MI. The versions differ in how strict they
are in the matching of current contexts to the mined rules
and in when they produce recommendations. In a quan-
titative evaluation, similar to the one performed by Zim-
mermann et al. [2004] on ROSE, they used the MI versions
on archived open source repositories. Specifically, MI was
trained and evaluated on Mylyn data. The results showedMI showed

significant
recommendation

accuracy
improvements over

state-of-the-art
approaches.

that combining view and edit interactions yields consis-
tently higher recommendation accuracy on file-level than
only considering edit or view activities. MI recommends
files to edit with a 63% accuracy, a significant improvement
over ROSE with only 35%. The authors argue that breaking
the 50% precision barrier is a reason to assume that RSSE
tools may start to become viable for real-world use. The
tool has not been implemented in an IDE nor has it been
evaluated in a user study.

To further improve the accuracy of association rule based
RSSEs, Rolfsnes et al. [2016] aggregate association rules into
hyper rules. Hyper rules use evidence of multiple avail-
able rules to find better-suited recommendation candidates.
Later evaluations by Rolfsnes et al. [2018] of aggregated
association rules for artifact recommendation suggest that
they can indeed provide recommendations with higher pre-
cision and increase the viability of existing RSSE techniques
for real-world use cases.

Damevski et al. [2018] used the concept of topic models
from natural language processing to model developer in-
teraction data. Inspired by topic models’ ability to abstract
low-level data to higher-level concepts, the authors aimed
to predict future IDE command usages relevant to the cur-
rent task. While command recommendation is fundamen-
tally different from POI recommendation, the work showed
that NLP techniques could successfully be used to model
the current context of developers based on their interaction
data. An evaluation showed that the modeled contexts pro-
vided high-accuracy recommendations for the next set of
interactions performed by developers.

Most recently, Lee et al. [2021] proposed a code edit rec-
ommendation method using a recurrent neural network
(CERNN). Similarly to Damevski et al. [2018], the approach
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takes a step away from association rule mining and towards
the modern techniques of machine learning. CERNN aims CERNN trains an

RNN with vectorized
interaction data to
predict developer
navigation.

to improve on the authors’ previous tool, MI (Lee et al.
[2015]), by transforming the context into vector embed-
dings and using those as input for an RNN. The network
is trained on interaction data by using a sliding window
approach, with a set of past interactions as training input
and the next developer interaction as a desired output label.
The tool was evaluated in the same manner as MI was, on
Mylyn data. The comparative study showed that CERNN
was not able to produce higher recommendation accuracy
than MI, a result the authors attributed to the large amount
of recommendations produced by CERNN. When analyz-
ing a version of CERNN that stopped producing recom-
mendations in the simulation if the first recommendation
was false, the model performed slightly better (increase in
f-measure of 5%) than MI. It is debatable, however, how
valid of an evaluation this represents since it rules out the
fact that the model generates lots of bad recommendations.
In real-world applications, it is not possible to tell whether
a first recommendation was bad and therefore it could be
argued that the CERNN model provides no real improve-
ment for actual implementations over MI. Additionally, Though the accuracy

of CERNN is
promising, the
training times of the
network make it less
viable in practice.

given the high execution times of RNNs, they are less appli-
cable to real-time online learning applications than associ-
ation rules. For one evaluated open source project, CERNN
took over 45 days to build the model. Obviously, this rules
out any real-time learning and improvement of the model.
Especially, since the authors found the model to perform
worse when performing training incrementally.

Despite the significant improvements in the technical ap-
proaches in terms of recommendation accuracy, none of the
more recent tools have seen actual implementations in IDEs
or user studies on their effectiveness or usability. We will
take a look at the implications in the next section.

2.4 Summary and Takeaways

Studies on developer behavior and how software engineers
use IDEs have shown that navigation and program compre-
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hension make up the two most time-consuming tasks in the
day-to-day work of developers (Ko et al. [2006]). Naviga-
tion and comprehension are not distinct from one another.

Research shows that the two are closely linked and im-Code navigation and
comprehension are
closely intertwined

concepts and
represent two of the

biggest issues
developers face.

proving one can significantly impact the other (LaToza et al.
[2006], LaToza and Myers [2010]). A good understanding
of the inner workings of a project enables the developer
to efficiently navigate between code elements. Vice versa
having a good sense of where things are in a project and
how to traverse along their relationships is fundamental to
understanding how the code functions. Given that the two
biggest bottlenecks of developer activity appear to be of the
same nature, it is not far-fetched to assume that they can be
tackled with a single solution.

The standard work environment for developers is the IDE.There have been
promising

approaches to
support developer

navigation, however,
they have not seen

adoption in IDEs.

The modern IDE provides lots of developing support but
still results in the identified navigation and comprehension
issues. Tools that aim to assist developers in code naviga-
tion and comprehension, therefore try to change the file-
based IDE paradigm altogether or enhance the IDEs inter-
face. Among the most successful navigation support tools
are those that leverage the structural information among
code elements found in the call hierarchy. Tools like Stack-
splorer (Karrer et al. [2011]) and Blaze (Krämer et al. [2012])
have shown to significantly improve developer efficiency
by prominently displaying available call graph information
based on the current context. Research also found promot-
ing call hierarchy information to improve code comprehen-
sion (LaToza and Myers [2011]). A study on call hierar-
chy visualization tools suggests that the prominent display
of navigation recommendations and structural information
is what enables the approaches to improve developer effi-
ciency (Krämer et al. [2013]). However, modern IDEs do
not integrate these insights into their standard interfaces.
Instead most call hierarchy visualization tools have to ex-
plicitly be triggered without proactive context-based usage
options.

Another promising, but fundamentally different, approach
we have discussed is that of navigational RSSEs. These sys-
tems utilize version histories or developer interaction data
to mine regular patterns and turn these into recommenda-
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tions based on the current context. Data-driven approaches
can reveal what is called evolutionary couplings in code that
are hidden from program analysis. While early works on RSSEs have seen

significant
improvements on the
technical side but
little to no
implementation,
adoption, and HCI
research.

the topic still struggled to generate accurate recommenda-
tions, they developed actual implementations of their tools
in IDEs. Early user studies showed promising usability
results and benefits, especially for newcomers to software
projects (DeLine et al. [2005a], Cubranic et al. [2005]). More
recent approaches by Lee et al. [2015, 2021], Damevski et al.
[2018] have seen significant improvements in the recom-
mendation accuracy, but have not provided actual imple-
mentations of the proposed tools for IDEs. As a result, us-
ing RSSEs for navigation support has reached a technical
level of viability but close to no human-centered research
has been conducted. The higher theoretical recommenda-
tion accuracy is one part, but research still remains to be
done on how and if these techniques can be implemented
into tools that efficiently support developers in their code
navigation and comprehension.

In the next chapter, we will outline a conceptual approach
to an IDE extension that is based on the insights from our
literature review and will help us answer some of the re-
maining open design questions of navigational RSSEs.
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Chapter 3

Concept and Design
Choices

This chapter will present the conceptual approach of our Based on the
insights from the
previous chapters we
conceptualize a
recommendation
framework.

developed extension as well as the choices that were made
in the design process. In order to meet the goals defined
in Section 1.3 a closer look at the key takeaways from the
motivation Section 1.1 and the previous work presented
in the previous Chapter 2 was required. We identified a
promising approach to tackle the arising code navigation
challenges, namely recommendation systems for software
engineering. The technical advancements in the field have
made these tools viable but a lack of user-centered inte-
gration into developers’ work environments may have pre-
vented them from seeing practical use so far. Research on
call-graph navigation tools however has shown what can
make code navigation tools efficient: prominent and proac-
tive display of the information.

Our approach, therefore, focuses on providing a frame-
work for state-of-the-art recommendation engines to be ef-
ficiently integrated into modern IDEs.

Research has seen surveys on the collection and process- There are no clear
guidelines on the
interface design of
RSSEs.

ing of interaction data in RSSEs (Maalej et al. [2014]), sur-
veys on context extraction in RSSEs (Maki et al. [2015]),
and even some summarizing overview of recommendation
output and presentation possibilities (Proksch et al. [2015],
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Gašparič and Janes [2015]). However, no clear guidelines
have been formulated on the interface and presentation de-
sign questions of RSSEs. As Proksch et al. [2015] summa-
rize, key design questions for the output of RSSEs are the
mode of interaction (proactive, reactive), style of presenta-
tion, reason for recommendation, content of recommenda-
tion, and finally the integration of the system into a given
toolset such as the IDE.

In line with Robillard et al. [2010], our design process canWe try to answer
these three main

questions.
be divided into three major questions that needed to be ad-
dressed before any actual implementation could take place.

1. What to recommend?

2. Where to display the recommendations?

3. How to present the recommendations?

The following sections will discuss these questions in detail
and make points for the individual design choices that were
made in the process.

3.1 What to Recommend to the Devel-
oper?

In an in-depth survey on RSSEs by Gašparič and JanesWe want to
recommend

interesting source
code elements and

files (artifacts).

[2015], the authors scan existing literature and classify the
proposed RSSE tools into categories based on what they
recommend to the developer. The different outputs range
from links to helpful web resources over useful APIs to bug
reports and many more. By far the most popular type of
recommendation however is software artifacts: source code
elements and files. Given that we aim to build an extension
that aids developers in their code navigation and compre-
hension, it is clear that our desired type of output for rec-
ommendations should be references to other points in the
code the user can navigate to: code artifacts.
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To aid developers in their navigation through code We want
recommendations to
be generated
proactively. This
means an implicit
context should be
formed.

projects, we want to provide them with dynamic, proactive
recommendations of potential points of interest (POIs). In
order for any kind of recommendations to be dynamic and
proactive they need to be situation- or context-dependent
(implicit). An e-commerce shop could always recommend
its top-selling items to all customers but that would be far
from a dynamic recommendation system. A RSSE that al-
ways recommends the most frequently visited or edited
sections of a project might be helpful for new developers to
identify just those sections, but would hardly be of any nav-
igational help in specific maintenance or debugging tasks.
Instead, POIs should be recommended to the developer
based on her current work context, as we have seen in most
of the related approaches in Section 2.3. A context typi-
cally describes the task a developer is currently working on
and can be described by the set of artifacts she has recently
worked on. Based on these, potentially interesting points
in the code are other code artifacts. Code artifacts can Recommendations

should, if possible,
refer to code
elements on the
method level.

be described on different levels of granularity. The highest
level being a file or document itself. Most file types rele-
vant to programming and developer work however expose
a certain hierarchy and outline of contained blocks or sym-
bols. In typical code file formats such as scripts and doc-
uments, we can identify classes, interfaces, methods, func-
tions, variables, and many more. These, as a context, form
the most common input type of RSSEs, especially for those
assisting in navigation (Gašparič and Janes [2015]).

In our scenario, contexts are responsible for two impor- The framework does
not specify a specific
recommendation
engine. Rather, it
should be compatible
with any
recommendation
engine that runs with
interaction data as
input.

tant fundamental aspects of RSSEs. First, they are the input
data that trigger recommendations. And second, contexts
are tracked and logged to form the interaction history of
developers. These interaction histories can then be mined
using different techniques for regularities in developer ac-
tivity within the code. As we are primarily interested in a
conceptual framework to be used with – theoretically – any
navigational recommendation engine that outputs related
code artifacts, we do not decide on any particular mining
technique, as that should be irrelevant to the framework.
What we are most interested in is the output of recommen-
dation engines. The output we are dealing with is mostly
evolutionary couplings that resulted from matching the ob-
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Figure 3.1: The basic cycle of an RSSE recommending software artifacts based on
the developer’s current context. The current context of the developer is detected in
the IDE, packaged, and sent to the server (recommendation engine) that matches
the context against mined rules and past observations. The resulting set of poten-
tially interesting artifacts is returned to the developer.

served user context against a set of observed interaction be-
haviors from the past. The output of those engines is code
artifacts of file-level or symbol-level granularity.

In order for the system to benefit newcomers to exist-As newcomer
developers are at the

center of our thesis
goals, collaborative
insights from whole

teams should be
used.

ing development teams, developers working on unfamil-
iar open source code, and new developers altogether, it
should leverage the insights gained from multiple people
interacting with a project and distribute the gained insights
to everyone who works on it. Inspired by TeamTracks (De-
Line et al. [2005a]), this can be achieved by tracking de-
veloper interactions locally and aggregating the interaction
data on a collaborative server or repository. For open-The framework

should allow for
organization-wide
collaborative use.

source projects, logged interaction histories could be com-
mitted along with the source code changes to the project
repository. In closed-source operations, like company in-
tern projects or client-based work, the benefits of such a
system could still be used by managing the repository’s pri-
vacy settings, or by deploying an organization-wide server
that centrally logs all development activity in real-time and
also hosts the data miner that utilizes the logged informa-
tion. The same server could then serve recommendations
for a given context as input.
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To achieve the collaborative goals, our framework should
feature an activity tracker that works on a fine-grained
method-level. To support different confidentiality restric-
tions of collaboration and data storage, the framework
should allow for modular integration of a server architec-
ture that interaction data can be pushed to and recommen-
dations can be requested from. A conceptual architecture
diagram of the system can be seen in Figure 3.2.

3.1.1 Merging Evolutionary and Structural Recom-
mendations

The approach so far takes a developer’s current context We want to merge
recommendations
from the call graph
with evolutionary
coupling
recommendations.

to recommend related code pieces that were learned from
other people working on the same project. In other words,
it leverages evolutionary couplings to recommend code ele-
ments that have frequently been changed or visited in sim-
ilar contexts in the past. These discovered dependencies
may sometimes include structurally related elements, how-
ever, their main goal is to uncover the very opposite: de-
pendencies that are not visible in the topological structure
of code and therefore not detectable by program analysis
tools. Navigational and exploratory support should not
only include points in the code that are often changed to-
gether but also other structurally or semantically related ar-
tifacts. Especially for efficient code comprehension, it is im-
portant to gain a good overview of control-flow, data-flow
and generally the complete neighborhood of related code
elements. In the study on TeamTracks conducted by De-
Line et al. [2005a], some participants of the study remarked
that they wished to have both the TeamTracks recommen-
dations as well as recommendations from the selected ele-
ments call graph in the recommendation view.

To support developers in their code navigation we want to Studies on RSSEs
and call graph tools
have independently
shown that including
other types of
couplings could be
valuable.

provide them the most complete set of POIs. This should
include a merged set of structural information and evo-
lutionary/collaborative recommendations. Studies on call
graph navigation tools such as Stacksplorer (Karrer et al.
[2011]) and Blaze (Krämer et al. [2012]) have already proven
to improve developer efficiency in maintenance tasks and
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Figure 3.2: The conceptual architecture of the recommendation framework. The
extension logs a team’s interaction histories that are stored and mined on a server.
The extension contributes a recommendation view to the IDE that is fed with data
from the Recommendation Aggregator. The aggregator fetches, merges, and ranks
recommendations from both the call graph and the data miner on the server.

to reduce the navigation overhead involved in code com-
prehension. Karrer et al. [2011] also suggest that visualiz-
ing and recommending relationships besides call hierarchy
structures could further improve the approaches’ beneficial
impact. We hypothesize that the merging of structural and
evolutionary recommendations could lead to a more com-
plete picture of a context’s related elements. In order to
maximize developer support for code exploration and nav-
igation we want to implement such a combined approach
into our framework (see Figure 3.2).

To utilize both evolutionary and structural couplings for
our recommendations we define the granularity of our evo-
lutionary recommendations and the interaction logger to
also be on method-level rather than file-level. By having
both types of recommendations at a symbol-level in the
code, we can later merge and rank them together in our
recommendation interface. We will discuss this later in Sec-
tion 3.3
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In conclusion, we plan on providing both structural recom-
mendations from the call hierarchy as well as evolutionary
couplings from a recommendation engine in the same inter-
face. As both approaches have shown promising results in
supporting developer navigation, we aim to increase both
approaches’ applicability by merging them.

3.2 Where? A Home for the Recommenda-
tions

This second conceptual question might seem like an obvi- The framework
should be integrated
into an IDE.

ous one. However, it entails more than one realizes at first.
Developers spend approximately one third of their time
working in Integrated Development Environments (IDEs),
making it their most used application in a workday (Sillitti
et al. [2012]). A study1 from 2019 found out that – unsur-
prisingly – only 3% of developers do not use any form of
IDE at all. As we can see, the general target environment to
display recommendations to developers in is undoubtedly
the IDE.

Among the multitude of available IDEs, Visual Studio We decided on VS
Code as the second
biggest IDE and on
account of its
extension API.

Code (VS Code) stands out as the fastest-growing and sec-
ond most popular one 2. VS Code is a code editor that
is especially popular for usage with interpreted languages
such as JavaScript, TypeScript, Python, and many more.
Through the use of extensions, VS Code can be customized
both in its looks and functionalities. Extensions for most
languages and runtimes can be found in its big extension
marketplace. For plugin developers, VS Code provides an
extension API for the development of custom extensions.

The VS Code API allows us to do three important things. It
allows us to track the developer’s activity in the IDE, con-
tribute new views to the IDE’s GUI, and modify the dec-
oration of file-related information in existing UI elements
such as the explorer or the tab view. Based on the popular-

1https://www.jetbrains.com/lp/devecosystem-2019/ (accessed on
May 12th, 2023

2https://pypl.github.io/IDE.html

https://www.jetbrains.com/lp/devecosystem-2019/ (accessed on May 12th, 2023
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Figure 3.3: The Visual Studio Code User Interface. 1: Primary Sidebar / File Ex-
plorer; 2: Active Editor; 3: Panel / Terminal; 4: Secondary Sidebar / Minimap; 5:
Tab Bar

ity and extensibility of the IDE, we decided on VS Code as
a suitable host environment for our framework tool.

The more pressing question however is where to display
the recommendations within the IDE. In terms of the gen-
eral UI layout, most of the popular IDEs do not differ too
far from one another.

Figure 3.3 shows the general layout of VS Codes user inter-VS Code provides 3
general containers

for custom views to
be added to.

face. Marked by numbers and colors are the more promi-
nent subparts or views of the UI. 1 marks the Primary Side-
bar, the active View Container, and its child views. Avail-
able View Containers can be activated using the respective
Icons in the Activity Bar to the left of the marked Container.
View Containers are parent views in which views can be
rendered. The active View Container in the figure is the
File Explorer. The visible child views are the explorer it-
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self and four more collapsed views: Open Editors, Outline,
Timeline, and NPM Scripts.

2 marks the active editor, while 5 marks the open editors
in the tab bar. As you can see, files that have any form of
decoration – filename text color and badges: FileDecorations
– display these decorations both in the file explorer 1, in
their respective tab in the tab bar 5, and generally every-
place throughout the UI where the file is referenced includ-
ing custom views.

3 shows the panel, typically hosting the terminal, debug-
ging console, and other command-line-related tools.

Lastly, 4 marks the file minimap and – if extended – the
area of the secondary sidebar. The secondary sidebar can be
extended to host more rendered views in a similar fashion
to the primary sidebar 1.

1,3,4 are the locations in which custom views, contributed
by extensions, can be rendered. A view can be used to dis-
play list-based data ranging from flat lists to deep, struc-
tured trees. Additionally, a view can provide view-actions
in the form of buttons to trigger commands (see Figure 3.4).

Custom views contributed by extensions can be initially Views can display
welcome information,
tree-structured data,
and fully customized
web content.

placed in any of those locations. Views are not however
fixed to their initial placement and can be dragged and
dropped across the UI to any of the valid view containers
1,3,4. There are three different types of content that can be
displayed in a view. 1) A Welcome View that hosts informa-
tion before or after data has been displayed in the view. As
the name suggests Welcome Views are useful to present ini-
tial messages such as first steps or links to helpful resources
after an extension has started up. 2) Tree Views as the stan-
dard way to display data in VS Code views. Their func-
tionality ranges from shallow simple lists to deep trees and
can be used to present hierarchical information like con-
tainment relationships among the displayed data. 3) Web
Views that can be fully customized using HTML. These
should only be used when the Tree View functionality is
too limited to accommodate for the desired functionality.
Typically this includes advanced web interactions, forms,
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Figure 3.4: The Open Editors View in the VS Code interface.
The view is rendered in the Primary Sidebar below the File
Explorer. It can be collapsed and offers view-actions at the
top.

authorization protocols, and other functionality that relies
on more than just the display of text-based data.

As our approach for the extension does not feature exten-Tree views are ideal
for displaying

recommendations
both on file and

method level.

sive user input – as that would defeat the goal of proactive-
ness – or the presentation of hyper-complex or image-based
data the usage of Tree Views will suffice. As discussed in
the last section, the type of content we will be recommend-
ing to the user is code artifacts within the project. The Tree
View will allow us to display file-level recommended items
at the top of the tree with the specific recommended code
blocks within that file displayed as children of that tree
node. Additionally, a welcome view can be used to display
initial information, useful links to documentation, and set-
ting landings after the extension has started up. Welcome
views are replaced with the actual tree view contributed by
extensions as soon as the tree view has content ready for
rendering.

Our tool should be customizable at least in terms of server
usage as well as tracking behavior. Visual Studio Code
has an extensive settings environment to which extension-
specific configurations can be added. This will allow us not
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only to offer project-based settings but also to design the
system in the modular fashion discussed in Section 3.1.

By contributing a new view to the existing VS Code File Our framework
should enhance, not
replace the file
explorer.

Explorer UI instead of contributing a whole new View Con-
tainer, we plan on enhancing the explorer instead of re-
placing it. This will be consistent with the design principle
set by Proksch et al. [2015], that new RSSE tools should be
seamlessly integrated into the existing work environments
of the developer. The recommendation view will be the
only additional screen space taken up by the extension.

3.3 How? Presenting Recommendations

So far our concept has covered what type of content our
framework should recommend to the developer (code arti-
facts from collaborative recommendations merged with call
graph neighbors) and where it should be situated (within
the VS Code IDE as an extension providing a new Tree
View). In this section, we will cover the design questions
of how exactly the recommendations should be presented
to the developer and when.

3.3.1 Design Choice: Proactive

Robillard et al. [2010] and Proksch et al. [2015] agree that Recommendations
should be generated
proactively with
minimal user input.

a major design dimension of RSSEs is whether the output
mode is proactive or reactive. An RSSE is reactive if it
requires user input to generate a set of recommendations.
This may include formulating queries or making a certain
call to trigger the recommendation engine. A proactive
RSSE serves recommendations automatically based on the
implicit current context. The developer is not required any
further action of his own. Hybrid implementations are also
possible, where recommendations are made proactively for
the current context but can be reactively generated for other
contexts. Gašparič and Janes [2015] found the large major-
ity of developed RSSEs to be reactive. They suggest that
the reason might be the ease of implementation of reactive
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systems and the reduced danger of the recommendations
appearing as spam.

However, both literature surveys (Robillard et al. [2010],Proactive systems
have support from

the literature.
Gašparič and Janes [2015]) call for more proactive systems
and suspect more value and usability behind that design
choice. We are inspired by the successes of call graph nav-
igation support tools like Stacksplorer and Blaze, both of
which proactively visualized the recommended informa-
tion to the developer. As a study by Krämer et al. [2013]
showed, the prominent display of the information was in-
deed what made the tools more successful in comparison to
similar tools that acted reactively or hid their functionality
behind calls and menus.

We as well suspect proactiveness to be a key design choice
in an effective navigation support system. Especially for
scenarios in which newcomers to a software system want
to use the system for first steps and tasks. A prerequisite
for choosing our system to be proactive is that its integra-
tion into the IDE has to be seamless and subtle so as to not
appear distracting or overwhelming. As the planned view
of the extension utilizes the familiar API of the IDE with-
out providing new Web Views or external interfaces, the
integration into the IDE should prove to satisfy those con-
ditions. Additionally, the APIs Tree View is used to dis-
play textual data which is minimally obstructive when in-
tegrated into existing Container Views.

For our approach, being proactive means that the inter-
face always automatically displays recommendations for
the developer’s current context, unprompted.

3.3.2 Design Choice: Tree View

Simple List-based outputs are by far the most com-Going beyond flat
lists as the output

mode is important to
us.

mon form of representation in RSSEs (Gašparič and Janes
[2015]). However, given the lack of HCI research around
the output of RSSEs and the simplistic interface implemen-
tations of existing tools (compare Figures 2.2, 2.3, 2.4, 2.5)
the state-of-the-art is not necessarily the way to go forward.
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Recommendations

SourceFile A

Method Dummy()

Method test()

SourceFile B

Figure 3.5: A conceptual illustration of how a tree view can
be used to aggregate recommended code artifacts by docu-
ments.

Instead, it might be part of the reason why navigational
support tools have not seen the adaption into modern IDE
interfaces that their capabilities would suggest. Gašparič
and Janes [2015] suggest that more effort in research on
other forms of representation could be beneficial.

Instead of compiling all generated recommendations in a Tree Views enable
the aggregation of
multiple method-level
recommendations
from different
sources in the same
file.

flat list, we plan on utilizing the capabilities of VS Codes
Tree Views. The hierarchical nature of Tree Views allows us
to aggregate recommendations of different kinds by source
document (see Figure 3.5). The top level of the tree will
be documents in the project that contain any recommenda-
tions while the nodes children represent the specific code
blocks that are being recommended. Clicking on any of Clicking

recommended
elements should take
the user to them.

the tree elements opens up the recommended code block
(or file if no tree node children exist) in the editor of the
IDE in a new tab. This preserves the currently active editor
in a tab to be navigated back to. Elements in the tree view
can be collapsed for a better overview of the displayed con-
tents.
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Reasoning

Another factor that Gasparic et al. hypothesize to be a rea-RSSE
implementations lack

reasoning behind
their output.

son why RSSEs are not implemented in common environ-
ments is their lack of reasoning. Most systems output ar-
tifacts in flat lists and expect the developer to either know
or figure out why these artifacts are recommended or use-
ful to their task. Providing reasoning for recommendations
means giving explanations of some sort why a certain ar-
tifact is being recommended to the user. Especially in our
case, as our system uses two different types of sources for
recommendations it is important two clearly explain where
a recommendation came from.

We want to tackle both issues 1) the uninspiring output of
flat lists and 2) the lack of reasoning, with the same set of
novel visual aids in the IDE interface.

3.3.3 Design Choice: Color Highlights

As we have discussed earlier in this chapter, a goal ofWe want to use color
highlights for

reasoning and as an
additional form of

output visualization.

the framework should be to extend the IDEs package ex-
plorer and general user interface. In our literature re-
view, we have seen the interrelation of code comprehen-
sion and navigation. Developers struggle with both since
often code bases grow up to many thousand files and mil-
lions of lines of code. Having a good mental model of a
project also means knowing how to effectively navigate to
desired code fragments. That also means knowing where
to find them in the project folder/file structure. Especially
for well-modularized and well-kept code repositories, the
overall folder structure will represent a semantic model of
the project. Code in files within close proximity can be ex-
pected to be somehow related. If related code is strewn
across the project, in different directories or parts of the
repository, evolutionary couplings as well as structural de-
pendencies can help form the associations that are not vis-
ible in the project structure. However, simply providing
hyperlinks in the form of artifact recommendations in the
list does not give developers a good idea of where that link
takes them and where the related code is actually located.
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Figure 3.6: A very early mockup of the color highlight idea from our conceptual
phase. It shows the idea to highlight recommended artifacts with colors in all places
of the IDEs interface where the file descriptor is rendered. In the mockup, the file
descriptors with blue backgrounds are highlighted for recommendation.

To reduce this portal-like feeling of just having recommen-
dations as hyperlinks, we want to enhance the package ex-
plorer and general user interface of the IDE with visual aids
to indicate locations of related code elements.

Inspired by tools like Mylar and HeatMaps we plan on im- Color highlights mark
recommended
elements wherever
they occur in the IDE
interface.

plementing visual cues through color highlighting of inter-
face elements. We plan on giving color highlights to all cur-
rently recommended artifacts in the project (see Figure 3.6).
As the file descriptors for artifacts appear in multiple lo-
cations in the IDEs UI (package explorer, our recommen-
dation view, search results, open tabs...) a recommended
artifact could be highlighted with color where ever its file
descriptor is being displayed.

Color Highlights throughout the IDE UI should provide
additional accessibility to recommendations and guide at-
tention to recommend artifacts and their whereabouts. A
recommended file could be visible and opened from our
recommendation view or the package explorer or in some
other view like the search results. Seeing highlighted ele-
ments in the package explorer could give users a feel for
where in the project related code is located and how differ-
ent parts of the project are connected. As shown in Figure
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3.6 we can provide reasoning for the different kinds of rec-
ommendations by utilizing different color highlights based
on whether a recommendation came from a mined evolu-
tionary coupling or from the call graph analysis. This could
provide an initial short learning curve but would afterward
be an intuitive and quick source of reasoning for recom-
mendations.

3.3.4 Design Choice: File Decorations

In addition to the Color Highlights, we want to provideFile decorations can
be used as additional
reasoning measures.

more reasoning through other means than just color. Color
Highlights could prove to be inaccessible for visually im-
paired people or be perceived as distracting or obstructive
by some. In those cases, they should be optional or cus-
tomizable and not be the sole source for their transmitted
reasoning.

Therefore, other decorative elements could be added to the
recommended artifacts file descriptors. These include file
decorations like icons to be displayed next to the filename,
badges, and descriptive tooltips explaining where a recom-
mendation was sourced. Different icons and badges could
signify that recommendations came from the evolutionary
coupling miner or from the call graph. Tooltips can be used
for purely textual reasoning.

3.3.5 Design Choice: Aggregation & Ranking

Building a framework to host recommendations from twoThe merged
recommendations

will be grouped and
ranked under their

parent files.

different sources poses another challenge in their presenta-
tion: Do we keep the differently sourced recommendations
apart from each other or merge them into one display? Uti-
lizing the concept of a Tree View we decided on aggregat-
ing recommendations of multiple sources found in one file
into a single tree node in the recommendation view. We
made the decision based on two reasons. 1) It reduces the
amount of screen space allocated by the extension. Sepa-
rating the two sources would mean that a single file that
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contains both types of recommendations would have to be
recommended twice in the view. 2) Aggregation also pro-
vides a visual summary of the degree of interest that a rec-
ommended artifact holds. An aggregated list of contained
related code elements shows the developer how many re-
lated fragments can be found in the file which should often
be proportional to how interesting the file itself is in the
current context.

The high-level nodes, representing files, also need to be
ranked to order them based on relevance. In our conceptual
approach, all recommendations on the method-level will
be assigned weights. Evolutionary couplings will receive
a higher weight (wevolve = 2) than structural ones from the
call hierarchy (wcall = 1). A recommended file’s weight will
be calculated based on all the recommended code blocks
that it contains.

weightF =
∑

c∈F weightc

The highest level of items in the displayed Tree in the rec-
ommendation view will then be ordered based on descend-
ing values of weight.
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Chapter 4

Implementation

In this chapter, we will outline the implementation of our
conceptual approach for a user-friendly, collaborative RSSE
framework presented in Chapter 3. The implementation
is based on a client-server infrastructure with the option
of running completely client-side at the cost of collabora-
tive features. In the following sections, we first present the
architecture of the system in Section 4.1 before going into
more detail on the implementation of the client-side exten-
sion in Section 4.2. Finally, we will discuss the implemen-
tation of the collaborative recommendation server in Sec-
tion 4.3.

4.1 System Architecture

The recommendation system implements multiple compo- We implement the
recommendation
system in a
client-server
infrastructure. The
client-side is the VS
Code extension.

nents in a client-server infrastructure, illustrated in Figure
4.1. The client-side is implemented as a Visual Studio Code
extension using the VS Code Extension API1. It is written
in TypeScript2 and features several different components.
These components serve different purposes during the con-
text formation and recommendation presentation phases.
The extension handles all data collection and visual out-

1https://code.visualstudio.com/api (accessed on May 11th, 2023)
2https://www.typescriptlang.org (accessed on May 11th, 2023)

https://code.visualstudio.com/api (accessed on May 11th, 2023)
https://www.typescriptlang.org (accessed on May 11th, 2023)
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Figure 4.1: The architecture of the recommendation system. The blue parts repre-
sent components that were developed during and for the thesis. The yellow part
indicates the recommendation miner, a module that can be swapped for various
different techniques (out of the scope of the thesis). The grey parts describe exist-
ing components that are integrated into the system.
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put of the system. A connector enables the extension to
communicate with a server hosting collaborative interac-
tion logs and data mining functionalities.

The server is implemented as an Express.js3 server expos- The server-side of
the system acts as a
REST interface
handling
recommendations
and developer
interactions.

ing a REST API. The server-side components fulfill data
storage and querying tasks as well as the data-driven min-
ing functionalities of the system. Incoming communica-
tion from clients via the REST interface is filtered and the
queries are directed to the appropriate backend component,
based on the type of request. For data storage, a Redis4 data
store is used with stream data. Queries concerning recom-
mendations are sent to the recommendation mining mod-
ule. The module can be implemented through various tech-
niques and can be swapped based on usage requirements.

4.2 Client Side: Visual Studio Code Exten-
sion

The client-side application is written as a VS Code exten-
sion in TypeScript. The VS Code Extension API lets us con-
tribute new views to the IDEs interface, as well as com-
mands that the developer can use inside the IDE. Most
importantly, our extension contributes a new view called
RecommendationView (placed by default in the explorer
container) to display the generated recommendations. As
illustrated in Figure 4.1, the extension features various com-
ponents that handle the conceptual requirements formu-
lated in Chapter 3.

4.2.1 Tracking Developer Interaction

In order to track the developer’s interaction within the IDE, The extension tracks
developer
interactions using the
ActivityLogger.

we implemented a tracker called ActivityLogger. An activ-
ity is of the kind:

3https://expressjs.com (accessed on May 11th, 2023)
4https://redis.io (accessed on May 11th, 2023)

https://expressjs.com (accessed on May 11th, 2023)
https://redis.io (accessed on May 11th, 2023)
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Kind Timestamp Path Symbol User

Where Kind is the activity type and either ”VIEW” orVIEW activities are
logged when the

active editor is
changed.

”EDIT”, Timestamp is a timestamp in the format returned
by JavaScripts Date.now(), Path represents the project-
intern relative path to the opened document, Symbol rep-
resents the name of a specific symbol within the documents
outline, and User is a string identifier for people working
on a project. The ActivityLogger component registers sev-
eral event listeners for activities in the IDE. View activities
are caught using the onDidChangeActiveTextEditor
listener. The event is fired whenever a document is brought
into the focus of the active editor. If the caught event
references a different editor from the last viewed editor –
and the path of the document shown in the editor is being
tracked – then the following activity is logged:

Kind VIEW
Timestamp 1673973400867
Path /path/to/document
Symbol
User lmueller

Table 4.1: A VIEW Activity in the Interaction Tracker.

When changes are made to a text document in the IDE, theEDIT activities are
logged when

changes are made to
a document.

onDidChangeTextDocument event is fired. The Activity-
Logger catches the event and performs a number of checks
on the registered edit event. First, a check is performed if
the edited file is not ignored and is within the scope of the
project workspace. Then, if the document has a symbol out-
line, the lines affected by the change are matched against
the document’s symbol outline. Up until a depth of 2 (e.g.
methods and variables of containers such as classes), the
symbol that has been affected by the change is computed.
If the changed document has no symbol outline, only the
document path is recorded. The ActivityLogger may log
an activity of the form:

The ActivityLogger will always log interaction activity toInteractions can be
stored locally and on
a configured server.

a local interaction log, stored as a CSV file in the project
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Kind EDIT
Timestamp 1673973502753
Path /path/to/document
Symbol ClassSymbol{methodSymbol
User lmueller

Table 4.2: An EDIT Activity in the Interaction Tracker.

workspace. If a collaborative server is configured and the
extension settings are set to publish local interaction activ-
ity, the activities are also sent to the ServerConnector. The
current context (a set (n,m) window containing the n-last
viewed and m-last edited artifacts) is always exposed to the
other components of the extension.

4.2.2 RecommendationProvider

The RecommendationProvider component handles the The Recommenda-
tionProvider fetches,
groups, and ranks
recommendations.

fetching, aggregation, ranking, and presentation of recom-
mendations. It implements the TreeDataProvider inter-
face from the VS Code Extension API. The interface acts as
a data provider for a Tree View and implements function-
alities such as fetching and refreshing content to render. In
our case, the Tree View is the RecommendationView con-
tributed by the extension.

As soon as the developer interacts with the IDE, the Rec- Recommendations
are generated
automatically and
formatted for the
RecommendationView.

ommendationProvider gets the current context from the
ActivityLogger. The context is then used to asynchronously
query the collaborative server for recommendations, as
well as fetching the immediate neighborhood of the call
graph for the last edited elements. Both returned sets of
artifacts are merged into one list, by aggregating the results
by the files that they reside in. The result is a list containing
FileRecommendations, each of which contains a list of
child CodeBlockRecommendations. The merged list is
formatted so that the VS Code Tree View recognizes it and
is ranked by the weighting process defined in Section 3.3.
An example can is shown in Figure 4.2.
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Figure 4.2: The RecommendationView with three rec-
ommended files, containing multiple recommended code
blocks.

A context indicator in the form of the last edited code
block is also displayed in the RecommendationView. As
shown in Figure 4.2, the RecommendationView features
view actions for manual refreshing, collapsing all ren-
dered FileRecommendations, and a shortcut to open the
extension-specific settings. Clicking any of the rendered
recommendations opens the target code block or file in a
new tab as the active editor. The color highlights and addi-
tional decorations of the elements are implemented in the
DecorationProvider. If no changes have yet been made in
the session, or after start-up, a welcome view is rendered in
the view.

4.2.3 DecorationProvider

The DecorationProvider component implements theFile decorations are
added by the

DecorationProvider
and based on the
recommendation

source.

FileDecorationProvider interface and is responsible
for providing File Decorations to the project’s file descrip-
tors, based on their current state in the recommendation
system. In the VS Code API, a File Decoration describes
metadata that is rendered with a file in the UI. File Deco-
rations consist of a badge, a color, and a tooltip (see Fig-
ure 4.2). Whenever the state of the context changes, the
RecommendationProvider fetches and aggregates the new
recommendations. Then, the DecorationProvider is noti-



4.2 Client Side: Visual Studio Code Extension 61

fied of the changes and passed a list of URIs pointing to all
files in the workspace that contain currently recommended
code blocks. The DecorationProvider resets all File Deco-
rations and updates them based on the passed list of URIs.

If a file only contains structural recommendations from The
DecorationProvider
also handles the
color highlights.

the call graph, it is assigned a badge ”H” (for hierarchi-
cal), the color yellow, and the tooltip ”Contains References”.
These FileRecommendations as well as all structural
CodeBlockRecommendations are displayed with a call
graph icon. As soon as a file contains at least one recom-
mendation from the miner module, it is assigned the badge
”C” (for collaborative), the color blue, and the tooltip ”Of-
ten Changed Together”. These FileRecommendations
as well as all evolutionary CodeBlockRecommendations
are displayed with a telescope icon next to them.

The File Decorations are not only visible in the
RecommendationView (as shown in Figure 4.2), but
also in all other elements of the UI where file descriptors
are rendered. Figure 4.3 shows how recommendations can
be visible in the File Explorer, Search Results, and Tab Bar.

Through the use of Color Highlights, recommendations are Color highlights
propagate through
folders in the file
explorer.

made visible in the project structure of the File Explorer. We
suspect this to increase code comprehension significantly.
When a folder in the explorer contains recommendations, it
is also highlighted with color, propagating through parent
directories up to the highest level of the explorer. The color
highlights can then be followed even through a series of
collapsed directories to the recommended files.

Caching Content: Views in the VS Code UI can be col-
lapsed to hide their contents or be removed from the ren-
dered interface elements altogether. In those cases, the Rec-
ommendationProvider utilizes a caching system that min-
imizes calls to the server. Hidden view states are cached
for later usage. The extension however allows for the
RecommendationView to be hidden but for the Color
Highlights and other decorations to remain active and visi-
ble. In that case, the call for recommendations is still made
but not applied to the hidden view.
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Figure 4.3: The VS Code interface with visible RecommendationView, color high-
lights in the file explorer, and highlighted open tabs.

4.2.4 Configuration and Context Menu

The VS Code Extension API allows extension developersUsers can configure
the extension with a

collection of settings.
to contribute configuration keys of their extension to be ex-
posed in the VS Code Settings environment. At this point
in development, users can configure the behavior of the ex-
tension by setting an output path for the ActivityLogger,
a list of paths to be ignored by the ActivityLogger, the ad-
dress of a collaborative server to be connected to the Server-
Connector, a toggle to switch on/off the collaborative fea-
tures, a toggle to switch on/off Color Highlights, and a
personal identifier. In the future, additional configurations
like custom colors for the highlights and custom icons for
the RecommendationView could be added. However, to
gain valid insights into the system’s usability and efficiency,
such configurations have not been implemented yet.
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Figure 4.4: The context menu item Get Recommendations can
be used to generate recommendations for a symbol at the
cursor. Using it does not require the symbol to be part of
the current context or to be edited.

To allow the user to not only utilize proactive recom- A context menu
command, get
Recommendations,
is implemented that
allows users to query
for recommendations
outside their current
context.

mendations for the implicit context but also be able to re-
quest recommendations for other contexts, the extension
contributes a menu item to the context menu in the editor
(shown in Figure 4.4). Get Recommendations enables users
to generate recommendations for the symbol at the cursor
position in the editor. Activating the command is similar
to performing a change to the symbol, by taking the sym-
bol as the developer’s current context. However, no change
to the code block is required to receive recommended arti-
facts. The command is added in the navigational section
of the editor context menu, below navigational commands
like Go to Definition, Go to Declaration, Go to Type Definition,
Go to References.

4.2.5 ServerConnector

The ServerConnector is the component of the extension The Server
Connector handles
client-server
communication on
the client-side.

that handles communication with the recommendation
server. It acts as an interface between the client-side ex-
tension and the server-side API. Other components can use
its methods to request and receive information from the
server’s REST API. The ActivityLogger uses the ServerCon-
nector to publish interaction data. The Recommendation-
Provider utilizes the component to query for context-based
recommendations.
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4.3 Server-Side

As illustrated in Figure 4.1, the server-side consists of threeThe server
architecture handles

collaborative
interaction histories

and recommendation
generation.

main components. 1) A REST API implemented as an Ex-
press.js server; 2) A Redis Data Set; and 3) A Recommenda-
tion Mining module.

The implementation of the recommendation mining mod-
The recommendation

mining module can
be implemented as

any recommendation
engine that takes

interaction data as
input.

ule is out of the scope of this thesis and will not be cov-
ered in much detail in this section. The module is designed
to be easily changed to whatever recommendation mining
technique is the desired requirement. For most state-of-the-
art techniques like MI, the module will be a Python server
exposing an API for communication and hosting a script
implementing the miner. However, any mining algorithm
that outputs sets of recommended software artifacts mined
from interaction logs can be used in the module slot.

The server is designed to be instantiated once per organi-One server instance
can manage

arbitrarily many
projects.

zation that manages one or more software projects. An or-
ganization could be a company, a university chair, an open-
source work group, or any other collection of individual
developers working on shared repositories. One server can
host interaction logs for arbitrarily many projects and man-
age input by arbitrarily many contributors.

4.3.1 Routing Client Requests

The interface component of the server-side handlesA HTTP GET to the
server root will return

a list of all tracked
projects.

all incoming requests from the client-side extension
and routes them to the appropriate backend compo-
nent. The REST API of the Express.js server takes HTTP
GET requests for both interaction logs and recommenda-
tions. The interface exposes all projects for which the
server manages interaction histories at the root domain
http://{server-url}/. Issuing an HTTP GET request
at the root will return a list of all keys for which the server
stores an interaction log. A key usually represents a project
ID and can be used to request the interaction history of the
project with that ID.
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For each managed project, the server exposes Each project has a
unique ID that also
acts as its URI.

http://{server-url}/pid, where pid is the
project ID. A GET request to that address returns
the project’s complete interaction log. Requesting to
http://{server-url}/pid?length returns the num-
ber of log entries in that project’s interaction log. By
sending an HTTP GET request with the parameter range:
http://{server-url}/pid?range=X/Y, where X,Y
are timestamps and X ≤ Y one can request all log entries
made between the time points X and Y in the interaction
log.

The client can send HTTP POST requests to a project’s end- Appends to a
projects interaction
log are done via
HTTP POST

requests.

point, with an interaction activity as payload, to append
that activity to a project’s log. On success, a 200 status code
is returned. HTTP PUT requests can be used to put empty
logs or to import existing logs from other servers.

Definitive documentation for requests made to the inter-
face for querying recommendations is still under develop-
ment. As the recommendation miner is supposed to be an
exchangeable module, the required format of requests still
depends on the implementation. In the future, however,
the API should expose standardized endpoints with well-
defined request requirements for recommendation query-
ing. An endpoint like http://{server-url}/pid/rec
could be defined for recommendation queries.

4.3.2 Storing Interaction Data

The system implements a Redis Data Set for efficient stor- Interaction Logs are
stored as Redis
Streams.

age of interaction logs. Redis is an open-source, in-memory
data store well suited for fast data access and stream-type
data. For each new project to be tracked, a new Redis
Stream5 is added to the data store at the key correspond-
ing to the projects ID. A Redis Stream is an append-only
log that assigns unique identifiers to each entry. Each Redis
Stream entry corresponds to a single developer interaction
and has the interactions timestamp as its identifier.

5https://redis.io/docs/data-types/streams/ (accessed on May 11th,
2023)

https://redis.io/docs/data-types/streams/ (accessed on May 11th, 2023)
https://redis.io/docs/data-types/streams/ (accessed on May 11th, 2023)
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Chapter 5

Evaluation

In this chapter, we evaluate the results of this thesis both A study was
conducted to
investigate whether
the framework can
support developers
in their navigation
and comprehension
of unfamiliar code.

quantitatively and qualitatively. To do so, we conducted
a user study on the implementation presented in the last
chapter. The focus of the study was on if and how the imple-
mented recommendation framework could help develop-
ers in navigating unfamiliar code projects. Section 5.1 will
discuss the overall design of the conducted study as well
as the goals we set out to meet. In Section 5.2 we will take
a look at our participant group and the procedure of the
study. Finally, we will present and discuss both the quanti-
tative and qualitative results in Section 5.3 and Section 5.4

5.1 Study Design and Goals

One of our main research questions is whether our pro-
posed framework providing merged recommendations is
able to improve code navigation and comprehension for
newcomers to existing, large software projects. To accu- A large open source

project was chosen
to simulate
programming tasks
on.

rately simulate the conditions that developers face when
joining a new team we needed a target software project that
the participants are not familiar with. We decided on the
large open-source development project Unknown Horizons1.

1https://github.com/unknown-horizons/unknown-horizons (ac-
cessed on May 11th, 2023)

https://github.com/unknown-horizons/unknown-horizons (accessed on May 11th, 2023)
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Unknown Horizons is a 2D real-time strategy game written
in Python, in which the player builds a city on an island
and manages different economical aspects of the result-
ing settlements. We decided on the project as it is written
in a popular programming language and it is sufficiently
large (132706 lines across 773 files). Additionally, the target
project must not require much prerequisite domain knowl-
edge so as not to skew the equality between participants.
A game typically requires little to no domain knowledge
to grasp its concepts and the little required background
knowledge could be provided with a short video trailer and
description of the game.

To evaluate the usability and effectiveness of the sys-Participants should
complete

maintenance and
debugging tasks that
focus on navigation.

tems support we wanted to simulate software development
tasks on the target project. The participants should perform
software maintenance and debugging tasks that require
them to navigate between various points in the code. In or-
der to gain more insight into the participants’ thought pro-
cesses and decisions, we decided on performing the study
as a think-aloud study (Jääskeläinen [2010]). A think-aloud
study encourages participants to vocalize their thoughts
during their performance and at critical points in the study
run.

There exist no maintenance, debugging, or interactionEvolutionary
couplings for the

open-source project
were constructed

realistically.

histories for development work on the Unknown Horizons
open-source project. Hence, we constructed evolutionary
couplings between semantically related parts of the code.
Since our research focus is on how we can integrate RSSEs
into the developer workflow and IDE interface, it is suffi-
cient to simulate scenarios with realistic recommendations.
The evolutionary couplings we constructed result in the
same kind of recommendations produced by state-of-the-
art RSSE engines such as MI. The constructed evolution-
ary couplings are fed into the framework (as detailed in
Chapter 4) as if they came from the recommendation miner
module on the server-side. This way we can simulate the
framework in a scenario in which meaningful recommen-
dations from evolutionary couplings are merged with the
structural recommendations from the call graph. The re-
sulting system is a realistic simulation of a well-calibrated
recommendation system that we can evaluate from a user-
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centered view rather than from a technological standpoint.
In the future, tracking a real development team’s work on a
code project and mining evolutionary couplings from their
interaction data could be material for another study that
tests the applicability of the framework not for newcomers
but for experienced developers of a project.

Another important research question of this thesis is how We compare four
different conditions.
Ground Truth and
three versions of the
framework.

well certain UI elements of the framework support the de-
velopers in their navigation and code comprehension. To
get a better understanding of how valuable certain parts
of our implementation are, we plan on evaluating different
versions of the extension in a comparative study. We will
treat four different conditions, each of which features a dif-
ferent recommendation display method:

C1: Ground Truth Basic Visual Studio Code

C2: Recommendation List Visual Studio Code with the
RecommendationView available. No Color High-
lights or other decorations are enabled.

C3: Color Highlights Visual Studio Code with Color
Highlights and other reasoning decorations (badges,
tooltips). The RecommendationView is disabled.

C4: Full Framework Visual Studio Code with the full ex-
tension activated.

The IDE interface in the four conditions can be seen in Fig-
ure 5.1. Each subfigure shows the IDE in one of the condi-
tions within the same context. Conditions Recommendation
List and Color Highlights were designed based on the most
promising findings discussed in Chapter 2.

To accurately represent performance and qualitative feed- The conditions are
randomized over four
tasks.

back across the four conditions – and to mitigate learning
effects – we need to design four different task scenarios that
the conditions can be randomized over. Each of the tasks
should be approximately of the same difficulty and feature
equally many subtasks. The subtasks should be evenly Each task has three

subtasks of different
types.

distributed over several optimal solution types (meaning
the optimal way to solve that task). Since we are merging
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(a) C1: Ground Truth (b) C2: Recommendation List

(c) C3: Color Highlights (d) C4: Full Framework

Figure 5.1: All Four Conditions in the Same Context.
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structural and evolutionary recommendations, we decided
on designing three subtasks per task scenario. There are
three types of subtasks:

• None - Subtask: A navigational task where the opti-
mal solution path follows neither structural nor evo-
lutionary links through the code

• Structural - Subtask: A navigational task where the
optimal solution path features structural links

• Evolutionary - Subtask: A navigational task where the
optimal solution path features evolutionary links

The order of the subtask types in the four task scenar- The tasks focus on
navigational aspects.ios should alternate. Overall, the tasks should not require

much programming knowledge. Since we are only inter-
ested in the navigational aspects of the tasks, a low pro-
gramming knowledge threshold ensures less skewed data
caused by the different expertise levels of the participants.

As defined in 1.3 “Thesis Goals”, we aim to show that the We evaluate our
thesis goals with
various measures.

framework is indeed able to support newcomer develop-
ers in their navigation (G1) as well as their code compre-
hension (G2). We will measure task success rates and task
completion times for all conditions to evaluate whether we
met G1. To check if we achieved G2, we will ask the par-
ticipants code comprehension questions after each task sce-
nario and compare the quality of answers across the condi-
tions. For evaluation of the framework’s adoption potential
(G3), we will record all navigation tool usages of partici-
pants and how successful these were used. Additionally,
Likert Scale questions on confidence and support satisfac-
tion will be answered by participants after every single sub-
task. Observations on the perceived confidence and satis-
faction with the navigation support will offer insights both
into the performance aspects defined in G1, G2, as well as
into the adoption potential of the framework (G3), and the
color highlights (G4). The gathered results will allow us to
compare the different conditions in terms of usability and
efficiency (G5).
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5.2 User Study

We conduct a user study with the aim of evaluating theA pretest resulted in
minor changes. extension against the goals defined in the previous sec-

tion. The study started with a pretest phase during which
two participants completed test runs of the study. The
pretest resulted in minor changes to the survey’s word-
ing and clearer formulations of the comprehension ques-
tions. A video trailer of the open-source project was added
to the scenario introduction because one pretest participant
voiced confusion about the topic of the open-source project
during the tasks. Also, a short tutorial for the navigation
functions of the IDE and the ones of the extension was
added before the actual study to guarantee an even knowl-
edge of both. Participants that took part in the pretest did
not participate in the actual study.

5.2.1 Participants

For the study, we recruited 20 participants (1 non-binary,20 people, mostly
from a CS

background
participated.

5 female, 14 male), 19 of which had a background in com-
puter science. P2 came from a UX design background. The
participants were aged between 22 and 51 years old (mean
= 26.9, median = 25, stdev = 6.1), the second oldest par-
ticipant was 31 (see Figure 5.2). 19 of the participants had
experience coding in IDEs that ranged from 1 to 16 years
(see Figure 5.3). Out of the 20 participants, 15 had worked
with Visual Studio Code before. The group consisted of 4
research assistants (in computer science), 12 students (11
of which studied degrees of CS), 1 CS teacher, and 3 pro-
fessional software engineers. Other demographic measure-
ments on the participant group concerned their experience
in various aspects of software development, visualized in
Figure 5.4. All of the participants signed an informed con-
sent form prior to the study that can be found at Appendix
C.1.

Out of the 20 conducted runs, 5 were done remotely via
Zoom. The other 15 were done in person. The location of
the in-person runs had no impact on the study and could



5.2 User Study 73

25 30 35 40 45 50
Age

0

1

2

3

4

5

6

7

8

C
ou

nt

Figure 5.2: Histogram of the demographic measurement
Age. n = 26.9, σ = 6.1
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Figure 5.3: Distribution of the development experience in
IDEs in years. n = 7.85, σ = 4.5
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Developing in IDEs
95%

Developing in Teams
80%

Developing Big Code 
Bases (> 50 files)

55%

Maintaining Code
75%

Debugging Code
95%

Frontend Development
90%

Backend Development
70%

Web Development
90%

Python
90%

I have experience with ...

Figure 5.4: Software development experience measures of the study participants.
Most had experience with development in IDEs, Python, and code debugging.
Fewer were experienced with working on large code projects.
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vary between participants. During all conducted study
runs, the participants’ screen and microphone audio were
recorded using OBS for later analysis purposes. All record-
ings and collected data were stored anonymously and used
only for analysis purposes.

5.2.2 Procedure

The study used a version of our extension adapted for the
study. It ran on Visual Studio Code version 1.76, with
the Pylance2 extension for VS Code installed and enabled.
The physical target system that participants performed the
study on had no influence on the study or its results. In-
person participants were offered the usage of a 2020 M1
MacBook Pro with either TouchPad or Mouse controls.

After signing the informed consent form, each participant Participants were
handed consent
forms and surveys
containing the tasks
and questions.

was given a short tutorial on how to interact with the VS
Code IDE and its navigational tools such as Go to Definition
or Go to References. In the same manner, a short introduc-
tion to the features provided by our extension was given.
On a second screen, the participants viewed a survey (listed
in Appendix C) that contained an introduction to the over-
all simulation setting and the open-source project at hand.
The survey contained all four tasks and the respective sub-
tasks, as well as all questionnaire items such as the Likert
Scale questions and code comprehension questions. At the
end of the four tasks, participants were asked to rank the
encountered conditions by the amount of navigation sup-
port they gave them. Overall we performed 240 task trials:
4 Conditions × 3 Subtasks × 20 Participants. Finally, par-
ticipants could give feedback in the form of appreciation,
criticism, and suggestions on our framework.

2https://marketplace.visualstudio.com/items?itemName=ms-
python.vscode-pylance (accessed on May 11th, 2023)

https://marketplace.visualstudio.com/items?itemName=ms-python.vscode-pylance (accessed on May 11th, 2023)
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5.2.3 Minimizing Order Effects

In order to reduce the effect that the order of encountered
conditions has on the participants’ task performance, we
randomized the order of conditions over the four tasks.
The randomization was done based on the balanced Latin
squares shown in Table 5.1. Each of the 20 participants en-
countered a unique order of conditions over the tasks. In
ensuring so, we hope to minimize the order effect on task
performances and the study results.

Task 1 Task 2 Task 3 Task 4
C1 C2 C4 C3
C2 C3 C1 C4
C3 C4 C2 C1
C4 C1 C3 C2
C4 C2 C3 C1
C2 C1 C4 C3
C1 C3 C2 C4
C3 C4 C1 C2
C3 C2 C4 C1
C2 C1 C3 C4
C1 C4 C2 C3
C4 C3 C1 C2
C1 C2 C3 C4
C2 C4 C1 C3
C4 C3 C2 C1
C3 C1 C4 C2
C1 C3 C4 C2
C3 C2 C1 C4
C2 C4 C3 C1
C4 C1 C2 C3

Table 5.1: The five balanced Latin squares used to random-
ize the four conditions over the four tasks.

5.2.4 Data Processing

We collected data through the means of video and audio
recordings, as well as a survey, as described before. Task
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time data and tool usage data were extracted manually
from the recordings and transferred into tabular form. Re- The study data was

processed using
CSV files and
Jupyter Notebooks.

sults from the various survey items were exported into ta-
bles as well. The data collected during the user study was
processed in a semi-automated manner. First, we created
standardized tables for all observations and measurements
that were made. The tables, stored in CSV files, were im-
ported into Jupyter Notebooks and analyzed using a mix-
ture of Python libraries such as Pandas, Scipy, and Seaborn.

5.3 Quantitative Results

In this section, we will present and discuss the quantitative
results from our conducted user study. We will analyze the
collected data to find significant relationships and impacts
of the different conditions on various performative aspects
of the study. The results will give us indications if and to
what extent we have met our research goals, and lead us
into a general discussion of the findings.

5.3.1 Analyzing Success Ratios

A good indication of how much navigation support partic- The percentage of
completed tasks
gives us an idea of
how supportive a
condition was.

ipants received from each of the conditions is the percent-
age of successfully completed subtasks. Highly supportive
tool sets should enable more participants to correctly com-
plete debugging/maintenance tasks in an unfamiliar envi-
ronment. During the study, a cut-off time was implemented
after which a subtask was stopped and filed as unsuccess-
ful. The cut-off time was 10 minutes. A subtask is con-
sidered unsuccessful if it was done wrong, was given up
by the participant, or took longer than the specified cut-off
time.

We analyzed the percentages of successfully completed We analyzed
success ratios both
per task and per
condition.

subtasks both per task and per used condition. As for most
of our measurements, comparing them based on used con-
ditions is the most useful to answer our research questions.
However, looking at the data grouped by the tasks that
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Figure 5.5: Ratios of unsuccessful subtasks per task. The
X-Axis shows the four task scenarios and the Y-Axis shows
the ratio of unsuccessful subtasks within the tasks (Did Not
Finish).

were performed gives us an idea of the tasks’ perceived
difficulty and the learning effects of participants during the
study.

Figure 5.5 shows the ratio of unsuccessful subtasks forThere appears to be
a slight learning
effect during the

process of the study.

each of the four task scenarios. The data suggests a slight
learning effect during the process of the study. This was to
be expected since participants naturally became more ac-
quainted with the code project and the nature of the tasks.
While it is possible that Tasks 2 and 4 were slightly easier
than Tasks 1 and 3, the order of the difference would not be
too great. All tasks saw percentages of unsuccessful tasks
between 6.7% and 16.7%.

With respect to our research goals, we inspected the com-The used condition
had significant
effects on the
success ratio.

pletion percentages grouped by used condition. The data
for task completion was not normally distributed, which
we confirmed with Shapiro-Wilk tests. Since it was not nor-
mally distributed, we chose non-parametric tests to check
for significance in the effect of the condition on task com-
pletions. A Friedman test did indeed reveal significant ef-
fects of the condition on the likelihood that a task was com-



5.3 Quantitative Results 79

Ground Truth

Recommendation List

Color H
ighlights

Full F
ramework

Condition

0.00

0.05

0.10

0.15

0.20

D
N

F

Figure 5.6: Ratios of unsuccessful subtasks per condition.
The X-Axis shows the four conditions and the Y-Axis shows
the ratio of unsuccessful subtasks (Did Not Finish).

pleted (χ2 = 11.32, p = 0.01). We performed post hoc pair-
wise comparisons to identify significantly different pairs of
conditions using Wilcoxon Signed-Rank tests. The results
can be seen in Table 5.2.

Condition Significance Mean
C1: Ground Truth A 0.217
C2: Recommendation List B 0.067
C3: Color Highlights A B 0.117
C4: Full Framework B 0.085

Table 5.2: Pairwise significance and mean DNF ratios for
all conditions. Rows represent conditions. Two rows that
are not connected by the same significance letter are signif-
icantly different (p <= 0.05).

As seen in Figure 5.6, the data paints a clear picture of Conditions
implementing our
framework had the
highest success
rates.

which conditions helped participants to complete more
subtasks successfully. Condition Ground Truth shows a
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Figure 5.7: Ratios of unsuccessful subtasks per subtask type
and condition. The X-Axis shows the three subtask types
and the Y-Axis shows the ratio of unsuccessful subtasks
(Did Not Finish). The hue of the bars represents the con-
ditions.

DNF ratio of 21.7%, almost twice as high as all other
three conditions that used different versions of our frame-
work. Even though the Ground Truth is not statistically sig-
nificantly different from Condition Color Highlights (p =
0.123), the DNF percentage is notably higher. The percent-
age of failed tasks with Color Highlights (11.7%) is slightly
higher than those of conditions Recommendation List and
Full Framework (6.7% and 8.5%). This suggests that Color
Highlights might be less supportive for newcomers to un-
familiar projects. It conveys less information than Rec-
ommendation List and Full Framework which both use the
RecommendationView tree. This may be better compen-
sated by developers that are already experienced with a
project.

One threat to the validity of these results is that conditionsFramework
conditions did

outperform Ground
Truth in all subtask

types.

2,3,4 only outperform Ground Truth in the subtask type Evo-
lutionary. To eliminate this threat, we analyzed the percent-
ages of DNFs grouped by subtask type and condition (see
Figure 5.7). As to be expected, conditions 2,3,4 performed
significantly better on evolutionary subtasks. Ground Truth
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had no tools to support navigation between these code cou-
plings. However, conditions 2,3,4 also show much stronger
support for structural subtasks, suggesting that the promi-
nent display of call graph information provided much more
efficient navigation support than the state-of-the-art imple-
mentation in VS Code. This is in line with the findings of
Krämer et al. [2013].

Figure 5.7 also shows that Color Highlights has the worst
results for None-type subtasks. As explained above, None-
type subtasks feature navigation and debugging tasks be-
tween code elements that have neither evolutionary nor
structural couplings between them. They represent tasks Participants

displayed proficiency
in using the get
Recommendations
command for
exploration.

that require active code exploration. Color Highlights may
offer the least support for newcomers in these tasks due
to its minimalist visualization of information and recom-
mendations. In subtask 1.1, a none-type, 60% of partici-
pants using Ground Truth failed to complete the task, while
only 20% of participants using conditions 2,3 or 4 failed to
complete it. Several participants displayed promising ex-
ploration strategies that deployed a mixture of the file ex-
plorer and our get Recommendations context menu function.
During exploration of the code base they actively used the
get Recommendations tool to request related points to certain
code elements that they suspected could be relevant to the
task. On several occasions, this led to useful recommenda-
tions (especially in the form of the RecommendationView
in conditions Recommendation List and Full Framework) that
allowed them to complete the subtask.

In general, we can see that the conditions Recommenda- Color Highlights
might be better
suited for developers
in familiar
environments.

tion List, Color Highlights and Full Framework enabled par-
ticipants to complete more tasks successfully than Ground
Truth (as shown in Figure 5.6 and Figure 5.7. This sug-
gests that the framework gave participants improved navi-
gation support over the basic VS Code functionalities. With
the exception of Color Highlights on None-type subtasks,
our framework conditions performed better on all types
of subtasks. We hypothesize that Color Highlights might be
more useful to developers that are already familiar with the
project they are working on. Since we only simulated new-
comers in unfamiliar environments, however, this hypoth-
esis remains to be investigated.
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How confident were you while solving the task?

Not at all confident (1) Slightly confident (2) Completely confident (5)Fairly confident (4)Somewhat confident (3)

How satisfied were you with the navigation support during the task?

Not at all satisfied (1) Slightly satisfied (2) Completely satisfied (5)Fairly satisfied (4)Somewhat satisfied (3)

Figure 5.8: The two types of Likert questions posed to participants after each sub-
task. The corresponding numeric value to each answer is given in brackets.

The analysis of task completion percentages has shownParticipants were
able to solve up to

15% more tasks with
the framework

conditions.

that our framework does indeed support newcomers in
their navigation of unfamiliar code environments. All con-
ditions that used different versions of our framework per-
formed better than the basic IDE condition Ground Truth.
When using versions of our framework participants were
able to complete 10-15% more tasks. We see this as an indi-
cation of having met our goal G1.

5.3.2 Confidence and Satisfaction

Overall, we collected 24 five-point Likert measures fromLikert questions on
confidence and

support satisfaction
were asked after

each subtask.

each participant resulting in a total of 480 measurements.
The Likert questions asked participants after each subtask
how confident they felt during the task and how satisfied
they were with the support provided by the currently used
condition. The exact questions can be seen in Figure 5.8.

Although Likert data can be treated either as ordinal or in-The conditions had
significant effects on
support satisfaction

but not on
confidence.

terval data, we decided to treat it as interval data in this
thesis. Our data was not normally distributed, so we chose
non-parametric tests. Friedman tests showed that the con-
dition had very significant effects on the participants’ sat-
isfaction with the navigation support (χ2 = 22.32, p =
0.00005), however no real significant effect on the partici-
pants’ confidence (χ2 = 4.42, p = 0.22). The significance
levels as well as mean and median confidence and satisfac-
tion per condition are displayed in Table 5.3.
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Satisfaction
Condition Significance Mean Std Dev Median
C1: Ground Truth 3.02 1.28 3
C2: Recommendation List A 4.25 1.08 5
C3: Color Highlights 3.77 1.21 4
C4: Full Framework A 4.24 1.13 5

Confidence
Condition Significance Mean Std Dev Median
C1: Ground Truth 3.15 1.41 4
C2: Recommendation List None 3.87 1.16 4
C3: Color Highlights 3.65 1.27 4
C4: Full Framework 3.73 1.32 4

Table 5.3: Pairwise significance, as well as mean and median confidence and satis-
faction values for all conditions. Rows represent conditions. Two rows that are not
connected by the same significance letter are significantly different (p <= 0.05).

The median values for confidence give us a good idea of
why there are no significant effects of the conditions on
the participants’ confidence. The median confidence value
does not change between the conditions. Figure 5.9 shows
the mean confidence per condition. Only slight differences
are noticeable between the conditions Recommendation List,
Color Highlights, and Full Framework implementing versions
of our framework. The highest value nonetheless, was
achieved by Recommendation List, surprisingly. Though,
given that the differences are only very slight they may be
neglectable. Ground Truth resulted in the lowest confidence
values overall.

Conditions had a very significant impact on the partic- Recommendation
List, Color Highlights
and Full Framework
have higher
satisfaction values
than Ground Truth

ipants’ satisfaction with the navigation support they re-
ceived. There are significant differences between all con-
ditions except between conditions Recommendation List and
Full Framework. Again, similar to the confidence val-
ues, Recommendation List and Full Framework show almost
equally high satisfaction values with Recommendation List
having a very slight edge. Ground Truth shows the lowest
mean satisfaction value. Recommendation List, Color High-
lights and Full Framework have higher median satisfaction
values than Ground Truth. Mean satisfaction values are vi-
sualized in Figure 5.10.
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Figure 5.9: Mean confidence values per condition. X-Axis
shows the conditions. Y-Axis shows the mean confidence
value.

Figure 5.11 shows the effects of the condition on the dis-
tributions of confidence and satisfaction values in a his-
togram. While values for Ground Truth are barely clustered
and are spread out widely, the values for conditions 2,3,
and 4 show much higher concentrations and clusters in the
higher ranges. Ground Truth shows a cluster around the
(1,1) region, whereas the other conditions do not.

We also analyzed the impact that the individual tasks hadThe tasks did not
significantly impact

the tool support
satisfaction of

participants.

on confidence and satisfaction. Ideally, the tasks would
have no significant impact on the perceived support sat-
isfaction, as that would be a threat to the validity of our
study. The data was not normally distributed, so again
we opted for non-parametric tests. Friedman tests showed
that there we no significant impacts of the tasks on sat-
isfaction (χ2 = 1.41, p = 0.7). The tasks did however
have significant effects on the confidence of participants
(χ2 = 12.03, p = 0.007). Figure 5.12 shows the mean confi-
dence values for each task.
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Figure 5.10: Mean support satisfaction values per condi-
tion. X-Axis shows the conditions. Y-Axis shows the mean
satisfaction value.
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Figure 5.11: Distribution of confidence and satisfaction values per condition.

The significant effects of the task on participants’ confi- Confidence values
show a learning
effect during the
study.

dence can be interpreted as learning effects during the pro-
cedure of the study. Another Friedman test showed that the
type of subtask (Evolutionary, Structural, None) had a slight
effect on satisfaction (χ2 = 5.86, p = 0.053). This was to be
expected since None-type tasks required the most active ex-
ploration and received the lowest mean satisfaction value
(s = 3.45). Evolutionary and Structural subtasks were close
in mean satisfaction values and not significantly different
from each other (s = 4.09 and s = 3.87).
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Figure 5.12: Mean confidence values per task. X-Axis
shows the tasks. Y-Axis shows the mean confidence value.

Overall participants gave much higher satisfaction feed-
back for Recommendation List, Color Highlights and Full
Framework than for Ground Truth. This confirms the frame-
work’s navigation support (G1) and promises a good adop-
tion potential (G3).

5.3.3 Support Ranking

After having encountered all four conditions and worked
through the tasks, participants were asked to rank the con-
ditions based on how much support they felt they had re-
ceived from the conditions. The average rank results – 4
being most supportive and 1 being least supportive – are
shown in Figure 5.13.

While the ranking results are clear for conditions Ground
Truth and Full Framework, conditions Recommendation List
and Color Highlights were perceived as very similar in terms
of the amount of support they gave to participants. Overall
the ranking resulted in:
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Figure 5.13: Average rankings in terms of perceived sup-
port. C1: r = 1.15, C2: r = 2.6, C3: r = 2.3, C4: r = 3.95.

1. Full Framework

2. Recommendation List

3. Color Highlights

4. Ground Truth

The first and last places in the ranking came as no surprise Participants ranked
the Full Framework
to be the most
supportive in terms
of navigation.

to us. The most fully featured version of the framework
will be perceived as most supportive by most people. It is
interesting to note though, that the ranking does not cor-
relate with the perceived support satisfaction values dis-
cussed earlier. The mean satisfaction value for Recommen-
dation List was slightly higher than that of Full Framework.
In the ranking, Full Framework beats Recommendation List by
a significant margin. The resulting order between Recom- Recommendation

List and Color
Highlights are on
close second and
third position.

mendation List and Color Highlights, even though very close,
supports our hypothesis that richer visual information is
useful for newcomers. However, the fact that the entire list-
based paradigm of recommendation system outputs can be
replaced by a minimal color highlighting approach and still
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come close in perceived support, shows just how promising
the approach really is. Again, we hypothesize that the ben-
efits of the color highlights, as implemented in conditions
Color Highlights and Full Framework, should become even
more apparent in expert usage.

5.3.4 Completion Times

As explained before, participants were timed during theirWe recorded
participants’ task

completion times.
task performances. Measurements were made for each sub-
task. Time measurements started with the participant’s first
interaction with the IDE and ended in either successful task
completion, task failure, task cancellation by the partici-
pant, or time cut-off (10 minutes). On successful task com-
pletion, the measured time was recorded. In all other cases
a DNF (Did Not Finish) was recorded. In the following
analysis of completion times, DNFs are treated as if hitting
the cut-off time of 10 minutes.

We did not expect the task completion times to bear much
significant insight into the navigation support given by the
specific conditions. Since participants ranged widely in ex-
perience and expertise, we suspected the completion times
to vary vastly and therefore be hard to compare meaning-
fully. Measurements like the discussed success ratio and
confidence/satisfaction lend themselves much better for
comparison across a diverse group of participants.

Due to a typo in the task description of task 4.3 that in-
fluenced Participant 5 in his performance, the time data
from Participant 5 was excluded from the following anal-
ysis. The typo did not affect any participants before Par-
ticipant 5 and later participants were informed of the typo
beforehand.

The completion time data was not normally distributed, soThe conditions had
significant effects on
the task completion

times.

we chose non-parametric tests again. The Friedman test re-
vealed that the used condition had significant effects on the
completion time (χ2 = 8.39, p = 0.038). For post hoc pair-
wise testing, we performed Wilcoxon Signed-Rank tests.
The results are displayed in Table 5.4.



5.3 Quantitative Results 89

Completion Time
Significance Mean Std Dev Median

C1: Ground Truth A 236.7 220.5 124
C2 Recommendation List B 130.1 146.0 85
C3 Color Highlights A C 180.6 180.3 115
C4 Full Framework B C 142.0 160.2 78

Table 5.4: Pairwise significance, as well as mean and median completion times for
all conditions. Rows represent conditions. Two rows that are not connected by the
same significance letter are significantly different (p <= 0.05).

Ground Truth is significantly different to conditions Recom-
mendation List and Full Framework. Recommendation List is
significantly different to Color Highlights, which marks a
difference to the significance groups formed by the effect
on DNF ratios.

Figure 5.14 visualizes the task completion times per con- Ground Truth
resulted in the
longest task
completion times.
Conditions with
RecommendationView

lead to the fastest
times.

dition. Ground Truth resulted in significantly higher task
completion times. Conditions 2,3,4 that implemented ver-
sions of our framework all managed to significantly reduce
the task completion times. In line with our previous anal-
ysis of DNF ratios and confidence and satisfaction, Color
Highlights fares somewhat worse than conditions 2 and 4.

We also analyzed if the tasks had an impact on task com- Tasks had no
significant impact on
completion times.

pletion times. The results are the same as those of our anal-
ysis on task effect on DNF ratios (see Figure 5.5). Figure
5.15 shows the completion times grouped by task. Like in
the earlier section on success percentages, the lower com-
pletion times as the study progressed can be attributed to
the participants increasing familiarity with the software en-
vironment and the nature of the tasks.

Another interesting aspect of completion times is the ef- Framework
conditions made
participants more
efficient in all subtask
types.

fect that the different conditions had on completion times in
the three subtask types. As shown in Figure 5.16, the con-
ditions implementing our framework helped participants
perform more efficiently in all three subtask types. One ex-
ception is marked by the efficiency of Color Highlights on
None-type subtasks. We hypothesize that Color Highlights –
due to having less visual information available – is harder
to use for newcomers for code exploration in unfamiliar
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Figure 5.14: Task completion times per condition.
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Figure 5.15: Task completion times per task.

projects. Expert users could potentially be able to explore
code more efficiently using Color Highlights.

In conclusion, we found that the different conditions, con-
trary to our initial assumptions, significantly affected the
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Figure 5.16: Task completion times per subtask type and per condition. Conditions
2,3,4 generally outperform Condition 1 by a big margin.

task completion times of the participants. Using the Ground
Truth, participants took the longest to complete the tasks.
All of the conditions implementing various versions of
our navigation support framework enabled participants to
complete tasks significantly quicker. The most efficient con-
ditions were the tree view conditions Recommendation List
and Full Framework. Color Highlights trailed slightly behind,
which we hypothesize has to do with newcomers relying
on aggregated visual information as provided by Recom-
mendation List and Full Framework. Scanning the explorer
for highlighted recommendations is a demanding task for
newcomers. Given these results, in addition to the earlier
discussion of success rates, we believe to have met our goal
G1. The framework – in both fully featured and partly
featured forms – is able to help newcomers solve software
maintenance and debugging tasks much more efficiently.

5.3.5 Code Comprehension Questions

At the end of each of the four task scenarios, the partici- Participants were
asked code
comprehension
questions after using
each condition.

pants were asked two comprehension questions. In total,
we asked and recorded 160 questions and answers. All
questions can be seen in Appendix C.2. The questions
aimed to reveal whether participants had improved their
mental map of the software project and their understand-
ing of relationships and structures in the code. We mapped
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Figure 5.17: Distributions of Correct, Okay, and Wrong answers to the code compre-
hension questions per condition. Color Highlights is the only one with more than
50% correct answers.

all answers to three classes of answer quality: Correct (1),
Okay (0.5), and Wrong (0). Figure 5.17 shows the distribu-
tion of answer qualities for each condition. The percentages
of correctly answered comprehension questions are shown
in Table 5.5.

Condition % of Correct Answers
C1: Ground Truth 37 %

C2: Recommendation List 45 %
C3: Color Highlights 56 %
C4: Full Framework 46 %

Table 5.5: Percentages of correctly answered code compre-
hension questions for each condition.

We did not expect to find significant improvements dur-Color Highlights was
the only condition to

achieve more than
50% correct

answers.

ing the developers’ first few interactions with an unfamiliar
code base. An indeed, Friedman tests did not reveal signif-
icant effects of the conditions on the code comprehension
answer quality. However, we can see that Color Highlights
did show strong improvements over Ground Truth. Partici-
pants answered 19% more of the questions correctly. Over-
all, given that the participants had never interacted with
the code base before and only interacted with it for a short
period of up to an hour, these results are very promising.
Even within just the first four development tasks, partici-
pants were able to answer up to 19% more code compre-
hension questions using conditions that implemented ver-
sions of our framework. We expect these improvements to
become all the more apparent once users spend more time
working on a project with the framework.
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The success of the color highlights can be attributed to the Color Highlights
seems to improve
developers’ mental
model of the project
the most.

fact that they make developers more aware of the structure
of the project. Since the recommendations are highlighted
mainly in the file explorer, relationships between code el-
ements in different parts of the project become visualized.
This seems to have boosted the mental map of participants
significantly. After using Color Highlights they showed a
higher awareness of what certain parts of the project’s func-
tions were.

We see this as at least a partial fulfillment of our goal G2
and definitive proof of color highlight value (G4). The
framework did indeed improve participants’ code compre-
hension through all conditions that it was implemented in.
Our novel approach of using color highlights as the recom-
mendation output mode showed the most promise. This
good be a valuable insight for the further development and
adoption of RSSEs and meets our goal G3.

5.3.6 Navigation Tool Usage

In order to get a better understanding of what tools partici- We recorded what
tools were used and
how often they were
used successfully.

pants liked to use and how successful they were with them
we recorded their tool usage during the study. Not only
can the participants’ tools of choice tell us more about what
tools are useful in their navigation tasks but also which
tools they gravitate to when they are available to them. This
is important for answering questions related to the adop-
tion of RSSEs G3 and the quantitative usability of tools G5.

First, we analyzed which tools in the IDE (and our frame-
work conditions) were used by participants, how often, and
on average how successful. We marked a tool in a subtask
as successfully used if it was used in a purposeful way. That
means if it directly or indirectly led to the successful com-
pletion of the subtask or contributed meaningfully to the
participant’s solution. A used tool was marked unsuccess-
ful if it led participants to dead ends, led them astray, was
disregarded after usage, or was used and the task was not
completed successfully. It should be noted that participants
were never encouraged to use any specific tooling in any of
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the conditions. They were allowed to use all the available
functionalities of the IDE and the currently active condi-
tions at all times.

The collected data is visualized in Figure 5.18. The raw data
can be seen in Table 5.6 From the data, it is obvious that the
explorer is by far the most used navigation tool by new-
comers in unfamiliar environments. This is in line withThe file explorer and

global search were
the most used VS

Code navigation
tools.

the research by Murphy et al. [2006]. The average success
rate over all conditions however is only about 55%. The
most popular group of tools are the search tools. The In-
file text search was excluded from our analysis since it is
not a true navigation tool for project-wide navigation. We
still did record its usage and it was the most used tool with
273 uses. The most used search tool relevant to our analysis
was the Global Search. It proved to be a go-to navigation
tool for many participants – especially in condition Ground
Truth – and had a success rate of 70%. One takeaway is that
participants rarely ever used call graph-related navigation
tools. goToReferences, goToDeclaration, and goToTypedef are
all on the bottom end of recorded usages with lackluster
success rates. Only goToDefinition was used moderately fre-
quently with a 69% success rate.

The tools exclusive to our frameworks conditions wereAll tools of our
framework were used

often and with very
high success rates.

getRecommendations (the context menu request), ColorHigh-
light (the color highlighted recommendations in conditions
3 and 4), RecList (the colorless RecommendationView
in condition 2), and ColorRecList (the color highlighted
RecommendationView in condition 4). All of our tool ver-
sions were used very frequently and successfully, as can be
nicely seen in the cluster they form in Figure 5.18. This
shows a promising willful and successful adoption of the
framework’s elements into the participants’ workflow (G3).

While tools like ColorHighlight, RecList, and ColorRecList areWe inspected
whether the

framework tools had
positive or negative

impacts on the usage
of the standard

navigation tools.

exclusive to certain conditions, most of the other used nav-
igation tools were available to participants at all times. We
analyzed the effect that the conditions had on the (success-
ful) use of those tools. This is interesting, especially for con-
dition Color Highlights that aimed to extend the IDEs exist-
ing navigation tools instead of implementing new views.
Tools on which the effects of conditions were analyzed
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Figure 5.18: All tools that were used by participants during the study tasks. The
X-Axis shows the total count of usages. The Y-Axis shows the rate of successful
usage. Shape and color represent the various tools.

included Explorer, GlobalSearch, getRecs, FileSearch, Explor-
erSearch, and goToDef. getReferences was excluded due to
the fact that participants only used it in Ground Truth. In all
other conditions, participants resorted to the framework’s
call graph visualizations and did so far more frequently
and successfully (G1). getRecommendations was included
because it was available in conditions Recommendation List,
Color Highlights, and Full Framework, and frequently used.

Friedman tests showed that the used condition had signif- Conditions had
significant effects on
the usage of some
basic IDE tools.

icant effects on the successful usage of the Explorer (χ2 =
35.6, p = 8.9e−8), the getRecommendations command (χ2 =
20.12, p = 0.0001), and the FileSearch (χ2 = 1.34, p = 0.009).
No significant effects were found on GlobalSearch, goToDef-
inition, or ExplorerSearch (the last one being due to its 0%
success rate).
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Tool Total Count Success Rate
Explorer 126 0.556
GlobalSearch 61 0.705
ColorHighlight 52 0.846
getRecommendations 44 0.659
RecList 42 0.857
ColorRecList 39 0.897
goToDefinition 36 0.694
FileSearch 18 0.667
ExplorerSearch 11 0.0
goToReferences 10 0.5
goToDeclaration 6 0.167
goToTypedef 2 0.0
Chrome 1 1.0

Table 5.6: All used navigation tools and their respective us-
age counts and success rates. Ordered descending by total
usage counts.

We performed pairwise post hoc Wilcoxon Signed-Rank
tests to identify the different condition groups. The results,
as well as all usage counts and success rates per condition,
can be seen in Table 5.7.

For a better understanding of how the conditions impacted
the tools usage count and success rate, we visualized the
data in Figure 5.19. We can see that Color Highlights didColor Highlights

significantly
improved

participants use of
the file explorer.

indeed enhance and extend the explorer and its usability.
Using Color Highlights participants used the explorer far
more often and more successfully. Recommendation List and
Full Framework reduced the explorer usage through the im-
plementation of the RecommendationView. The getRec-
ommendations command was also most successfully used
by participants using Color Highlights. Because of how the
color highlights boosted code exploration and comprehen-
sion, we assume that this has to do with the participants
utilizing getRecommendations to request recommendations
outside their current work context. goToDefinition was also
most efficient when used in Color Highlights. This may be
due to the lack of the extra RecommendationView and
participants exploring this particular structural informa-
tion in the way they are used to. The GlobalSearch proved
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Explorer
Condition Significance Total Count Success Rate
C1: Ground Truth A 33 0.455
C2: Recommendation List A B 20 0.55
C3: Color Highlights 53 0.717
C4: Full Framework B 20 0.3

GlobalSearch
Condition Significance Total Count Success Rate
C1: Ground Truth 22 0.727
C2: Recommendation List None 12 0.583
C3: Color Highlights 13 0.769
C4: Full Framework 14 0.714

getRecommendations
Condition Significance Total Count Success Rate
C1: Ground Truth – – – – –
C2: Recommendation List A 11 0.636
C3: Color Highlights 20 0.8
C4: Full Framework A 12 0.5

goToDefinition
Condition Significance Total Count Success Rate
C1: Ground Truth 12 0.5
C2: Recommendation List None 7 0.714
C3: Color Highlights 7 1.0
C4: Full Framework 10 0.7

FileSearch
Condition Significance Total Count Success Rate
C1: Ground Truth 8 0.875
C2: Recommendation List A 3 1.0
C3: Color Highlights A 6 0.167
C4: Full Framework A 1 1.0

Table 5.7: Pairwise significance of conditions on successful tool usage. Also, the
total usage count and success rates per tool for each condition are shown.
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Figure 5.19: Relationship of total usage count and success rate per condition for
each of the non-condition-specific navigation tools.
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to be a useful tool regardless of condition. Both its usage
count and success ratio barely changed between conditions.

Overall, the analysis of used navigation tools in the study
has shown that our framework (when available) has seen
a very promising adoption by the users. In conditions
Recommendation List, Color Highlights, and Full Framework
the framework’s tools were by far the most popular and
most successfully used navigation tools. The condi- The framework

showed great
adoption by the
participants. Color
Highlights proved to
be a valuable
addition for code
exploration.

tions also had significant effects on the other navigation
tools, commonly found in IDEs. Color Highlights enabled
users to utilize the standard file explorer far more effi-
ciently through the use of color highlighted recommen-
dations (G4). The great adoption of the recommendation
tools (both the RecommendationView and color high-
lights) shows the potential of well-integrated RSSE func-
tionalities into modern IDE interfaces. We see this as clear
proof of having met our adoption goal G3.

5.4 Qualitative Results and Feedback Dis-
cussion

In the following, we will discuss some of the qualitative
results of the study. These include insights from the screen
and audio recordings that are not represented in the survey
data. Additionally, we asked participants for feedback on
the framework. We aggregated common feedback points
and observations, and discuss them in this section.

5.4.1 Active Code Exploration

One point of concern that we had prior to the study was Participants actively
explored the code
base with the get
Recommendations
command.

that participants might rely too heavily on the proactive
nature of the recommendation system. Proactive recom-
mendation generation takes away the need for an explicit
user input but may give the impression that there is noth-
ing besides the recommended content that could be of in-
terest. Especially for the None-type subtasks, we thought
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that participants might get frustrated or give up when the
initial proactively generated recommendations do not take
them to the areas required in their tasks. However, par-
ticipants showed great proficiency in using the get Recom-
mendations context menu function to request recommenda-
tions for certain code elements. This allowed them to ex-
plore the codebase efficiently using the recommendations.
A common observation was that participants scanned the
code base (through the GlobalSearch or Explorer for exam-
ple) for clues and code elements that could be related to
their current task. Without having to edit anything in order
to change their current work context, they began explor-
ing recommendations of those elements with the get Recom-
mendations function. This enabled them to solve None-type
subtasks much more efficiently than in Ground Truth and
showed very promising results in terms of improved code
navigation and exploration.

Feedback

While the get Recommendations context menu commandSome wished for
keyboard shortcuts

and peek
functionality.

was very well received by all participants we obtained two
points of feedback suggestions. P1 wished for a keyboard
shortcut for the get Recommendations command. Similar to
how in VS Code go To Definition can be executed by holding
CMD and clicking a target symbol in the editor. P10 sug-
gested the get Recommendations command to have a peek
functionality similar to the native VS Code navigation tool
peek Call Hierarchy. Both feedback points may be valuable
in order to further integrate the framework seamlessly into
the VS Code UI.

5.4.2 Undo Functionality

During the study, several participants voiced confu-Some participants
expected a way to

retrieve previous
recommendations.

sion or slight frustration over the fact that there was
no way to go back to previous recommendations in the
RecommendationView. As soon as their work context
had changed through edits the RecommendationView
might contain different recommendations than before.
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Some felt that they could be missing valuable information
by not being able to go back and view the old recommen-
dations again.

Feedback

The most common suggestion for this issue was the im-
plementation of an undo or back button. P12 even ex-
pected the standard CMD+Z shortcut to also apply to the
RecommendationView. A functionality to purely review
old recommendations could be a useful addition to the
framework. Having it bound to the undo functionality of
the whole IDE, however, could prove to introduce compli-
cations with the recommendation engine’s context window
in actual use outside our simulated study. P1 and P6 both
suggested a back button to browse through previous recom-
mendation sets.

5.4.3 Jump to POI

Many participants remarked that they liked the Color Highlights was
missing one
important
functionality: jumping
to and marking the
recommended code
blocks.

RecommendationViews functionality of clicking a
recommendation and jumping to the recommended code
block in a new tab. As much this feature was appreciated
in Recommendation List and Full Framework, it was missed
by most participants in condition Color Highlights. When
participants found useful recommendations through
the color highlights in the explorer, they followed the
highlights to the recommended document but could not
see what was recommended within that file or where to
look for it. They asked for a jump-to-POI functionality
similar to when clicking on a recommended code block
in the RecommendationView. This showed a significant
shortcoming of our implementation in Color Highlights.
Not only did Color Highlights show significantly less
printed information on the screen but it also conveyed less
information overall. Since no indication of what within a
file is currently recommended was encoded in the color
highlights, an entire dimension of the recommendation
system was unavailable to participants.
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This may be a possible explanation for why Color HighlightsImplementing line
markers and jumps
in Color Highlights

could prove to make
the condition more

supportive.

performed slightly worse than Recommendation List in many
of the qualitative discussions we held earlier in this chap-
ter. By finding a solution for how to visualize the missing
dimension of method-level granularity through color high-
lights, the approach might produce even more promising
navigation support results in future studies.

Feedback

Several participants had suggestions on how to improveThe VS Code
mini-map could be

used to mark
recommended code

blocks.

the implementation of Color Highlights regarding the lack
of method-level recommendations. P10 suggested that
double-clicking highlighted files in the explorer could be
used to jump to the recommended code block within that
file in the editor. P3 and P5 remarked that the VS Code file
mini-map could be used to highlight recommended code
blocks in the files. We believe that this could be a very valu-
able solution to the issue. Additionally, it could prove to be
viable for implementation since the same functionality is
used in VS Code to highlight search results, warnings, and
errors in the mini-map of documents.

5.4.4 (Colored) RecommendationView

The recommendation view proved to be very intuitive forThe
RecommendationView

was very successful
and liked by
participants.

most participants. Participants were able to use it very ef-
ficiently very quickly for their exploration of related code
elements. Our data discussed in Section 5.3 backs this
up with the great results of conditions Recommendation List
and Full Framework in almost all performed measures. The
RecommendationView was used both often and success-
fully (compare Table 5.6) in the form of the standard Re-
cList as well as the enhanced ColorRecList. Both versions
had success rates of > 85%. Participants remarked that
having the prominent display of call graph data within the
RecommendationViewwas much better than hiding it be-
hind context menu commands.
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Several participants said that they liked how the
RecommendationView enhances and extends the file
explorer rather than replacing it. Accordingly, most Most participants

liked that the view
extended the
explorer container.

participants liked how it sat in the file explorer view
container. P1 said that having it in the file explorer
view container made it very easy for him to use the
RecommendationView since he was already used to
looking to that container for navigation purposes. P7, P10,
P13, and P20 wanted to move the RecommendationView
out of the file explorer view container. They moved it to
the secondary sidebar on the right. Their motivation was
that these participants were frequently using the Global
Search functionality which is hosted in a different view
container than the explorer and when activated replaces
it. Hence, while using the Global Search they were not
able to see the RecommendationView without moving
it into the secondary sidebar. Being a VS Code extension
contributing a view, our framework could accommodate
for these different preferences in view placement.

A very common feedback point of participants was that Merged and
aggregated
recommendation
display received
great feedback.

they liked the compiled version of recommended items in
the RecommendationView. They appreciated the fact that
there was one single view to merge structural and evolu-
tionary recommendations. Having a central point for re-
lated elements was perceived as way more useful than hav-
ing it strewn across different interface elements in the IDE.
P4 particularly said that having several related items to his
current context allowed him to explore the code base even
beyond his current task and get a good understanding of
the project’s structure. A general observation was that par-
ticipants were able to browse through recommended ele-
ments without losing track of their current context. The
RecommendationView enhanced their code exploration
without distracting or confusing them with too much in-
formation. Only one participant, P7, said that having a
new view in the IDE took considerable getting used to and
therefore preferred condition 3 with color highlights only.
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5.4.5 Color Highlights

Color highlights were available in Color Highlights and FullColor highlights
received mixed

feedback in terms of
attention-grabbing.

Framework. While Full Framework featured them in addi-
tion to a colored RecommendationView, Color Highlights
implemented only the color highlights to visualize recom-
mendations in the IDE’s existing views. Feedback on the
color highlights differed based on the participants. Four
participants (P1, P4, P9, P19) said that the color highlights
did not immediately grab their attention to new recommen-
dations. However, six participants (P2, P3, P5, P6, P13,
P14) specifically remarked that the colors did grab their
attention – more so than just having the contexts of the
RecommendationView change. Many of the partici-The colors made the

explorer more usable
and conveyed a
better feeling of

related file groups in
the project.

pants that felt that the color highlights were very helpful
to them were participants that had a strong focus on nav-
igating through the file explorer. Even though the high-
lights can also be seen if they are included in Global Search
results, the highlights did not have a strong impact on par-
ticipants using the search functions (as can be seen in Figure
5.19). The fact that the search results did include highlights
however was positively received by participants. P3 found
the color highlights to be less cognitively demanding than
the RecommendationView since less information filtering
was required. Another thing that was well received by
many participants was how the highlights conveyed where
clusters of related elements are located in the project by
just looking at the explorer. The color highlight propaga-
tion through parent and child directories really helped give
users a better idea of where certain code elements are lo-
cated and of the general project structure. P7, a very expe-
rienced developer, was surprised by how helpful he found
the color highlights in the explorer. His navigation strategy
focused on explorer use anyway and he found the high-
lights to make his usual habits even more effective.

Feedback

One issue that some participants identified was that theColor highlights
could be out-of-view

in the explorer.
color-highlighted recommendations can be out-of-view in
the file explorer. Especially in big projects, users might have
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to scroll up or down to see highlighted files. Compared
to the aggregated RecommendationView display, the in-
formation visualized solely through color highlights can be
distributed over a larger area in the UI. This may lead to
users potentially missing valuable recommended informa-
tion. P3 suggested markers that show up at the top or bot-
tom of the explorer to indicate that there are further rec-
ommendations in that scroll direction of the explorer. This
however may prove to be impossible to implement in the
current state of the VS Code extension API. For the future of
the approach (and other minimally intrusive list-less RSSE
approaches) however, it could be a valuable insight. P2
wished for the colors of the file decoration icons to match
the color highlights of that file. That feature has since been
implemented after the study finished.
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Chapter 6

Conclusion

6.1 Summary, Discussion, Contributions

In this thesis, we have investigated if, how, and to what
extent RSSEs can improve navigation and code compre-
hension for developers in unfamiliar code environments.
We started by discussing the issue of source code navi-
gation and presenting promising navigation support ap-
proaches. Based on our findings, we conceptualized and
implemented a framework that integrates RSSE functional-
ity into the VS Code IDE. The framework combines struc-
tural recommendations from the call graph with evolu-
tionary recommendations from other developers’ interac-
tion histories with the code. Proactive recommendations of
other potentially relevant code pieces in the project are gen-
erated for the developer, based on their current work con-
text. We have hypothesized that two of the main reasons
why RSSEs – despite their continuous improvement in rec-
ommendation accuracy – have not seen adoption into mod-
ern IDEs are 1) lack of HCI / UI-integration research and 2)
insufficient flat-list output modes. Therefore, in addition to
a tree-view recommendation output, we enriched the IDEs
UI with color highlights to mark currently recommended
documents. In order to evaluate whether our approach can
improve code navigation and comprehension for newcom-
ers to projects, we conducted a user study. The user study
simulated participants’ first software maintenance and de-
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bugging tasks on a previously unknown code base. To get a
better idea of what exactly helps them with navigation and
comprehension we tested three different implementations
of the framework as well as basic VS Code.

6.1.1 Discussion

As we have presented in Chapter 5, our measures of Suc-
cess Rates, Completion Times, Support Satisfaction, and Code
Comprehension have shown promising results for our rec-
ommendation framework. All three conditions that im-
plemented parts of the framework showed clear improve-
ments over the basic IDE in all conducted measures.

On average, participants completed 10% more tasks suc-The framework
enabled users to

complete more tasks
and do so more

efficiently.

cessfully with condition Color Highlights, 15% with con-
dition Recommendation List, and 13% with Full Framework
(see Table 5.2) as compared to Ground Truth. Similar im-
provements can be seen in task completion times (com-
pare Table 5.4). The average task completion times with
Ground Truth were significantly slower than those for the
other three conditions. Both measures of Success Rates and
Completion Times have shown that the framework does in-
deed support newcomers to unfamiliar code projects in
their navigation. Using the framework conditions the par-
ticipants of our study were able to solve software mainte-
nance and debugging tasks much more efficiently and suc-
cessfully than using the standard VS Code IDE.

Regarding the Code Comprehension questions we asked, theColor Highlights
showed great

improvments in code
comprehension.

participants were able to answer 37% of the answers after
using Ground Truth, 45% of the answers after using con-
dition Recommendation List, 46% of the answers using Full
Framework, and 56% of the answers after using Color High-
lights (compare Table 5.5). These improvements are very
promising given that participants had only worked on the
code project for the first time and for a very short amount of
time. Overall, our framework has proven to improve par-
ticipants’ code comprehension and their mental map of the
code project. Especially Color Highlights seemed to boost
the users’ awareness of the project structures by a lot.
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We have seen improvements in Support Satisfaction when Users were much
more satisfied with
the navigation
support they
received from the
framework.

participants used our framework compared to when they
used basic VS Code (compare Table 5.3). This further sug-
gests the framework’s ability to support newcomers in their
navigation and attests to the approach’s usability. It also
shows that there are improvements to be made in the way
IDEs handle support navigation and RSSEs can be part of
those improvements. Task Confidence values however did
not significantly improve based on what condition partici-
pants were using.

Our analysis of Tool Usage showed that participants were Our tools saw great
adoption by the
users.

happy to adopt our new tools and did so very efficiently
(compare Table 5.6). The frameworks tools were used often
and with high success rates. The color highlights also en-
hanced the way participants used the explorer. With color
highlights enabled they were able to navigate successfully
using the explorer much more often.

6.1.2 Contributions

Overall, we make the following contributions with this the-
sis:

• We have proposed of a novel approach of merging
structural recommendations from the call graph with
evolutionary recommendations from collaborative in-
teraction histories (G0).

• We have shown that by integrating such recommen-
dations into the IDE we can support developers in
their code navigation in unfamiliar environments
(G1).

• Color highlights marking recommended files in the
IDE enabled users to gain better understanding and
mental maps of a new code base (G2, G4).

• Developers are willing to adopt RSSEs into their
workflow if they are integrated well into the IDEs UI.
Users are more satisfied with the received navigation
support when RSSE elements are present in the IDE
(G3).
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6.2 Limitations

There are a few limitations to our study that might affect
the general applicability of its results to real-world scenar-
ios. The first one could be argued to not be much of a limi-
tation but rather a direct implication of our research goals.

Naturally, the findings of this first study are limited toThe study was
limited to developers

in unfamiliar code
environments.

developers working on unfamiliar code bases. This was
clearly formulated in the thesis goals and the study was
designed and conducted accordingly. Issues in code navi-
gation and comprehension are typical for but not exclusive
to newcomers to projects. Still, it is important to note that
the promising results of this study can not be applied to
expert developers working in familiar environments. Fur-
ther research and studies need to be conducted in order to
investigate merged structural and evolutionary recommen-
dations, as well as the Color Highlights RSSE approach in
expert contexts.

Secondly, our study was a lab simulation and thereforeA lab study does not
substitute a future

field study with
real-world data.

bares some differences to real-world scenarios. Although
participants were never asked to use any navigation tooling
specifically, the study setting may have increased their will-
ingness to adopt the framework’s navigation tools. Also,
the data used to generate the evolutionary recommenda-
tions was not real-world data. Even though it was con-
structed in a realistic fashion, inspired by actual state-of-
the-art recommendation miners, it presupposed a rich in-
teraction history and good recommendation results. Con-
cerning our research goals, however, this should have no
effect on our findings. We set out to investigate if a well-
working RSSE engine combined with structural recommen-
dations and a user-friendly interface can support devel-
opers in navigating and understanding unfamiliar code
projects. Collecting actual interaction data and mining rule-
based recommendations was out-of-scope for this thesis.
Advancements on the technical side of RSSE research in
recent years motivated our research and suggest that the
missing HCI components could be one of the reasons we
have not seen RSSE adoption in IDEs.
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Lastly, the developed framework and our evaluation do No other IDE
paradigms were
considered in the
study.

not consider other possible IDE paradigms like those pre-
sented in Section 2.2.1. We have only investigated the effect
of well-integrated RSSE functionalities, the merging of dif-
ferent recommendation sources, and color highlights in a
standard, window, and file-based IDE.

6.3 Future work

To conclude this thesis we will present some interesting fu-
ture work that could follow this thesis and remains to be
done. We think that the field of recommendation systems
in software engineering has been neglected, especially from
an HCI perspective, and offers exciting research opportu-
nities. Especially with the recent developments in data-
driven technologies – also for developer assistance – it is to
be expected that the technical side and recommendation ac-
curacy of navigation support systems will further improve.
These advances call for more human-centered research on
how these technologies can be made accessible and useful.

For the developed framework several things remain to be The user feedback
should be
incorporated into the
framework.

explored:

• As often suggested by study participants, color high-
lights should also mark the recommended code
blocks within the files and allow users to directly
jump to them.

• Color Highlights could be extended to encode further
information such as the relevance of recommended
artifacts.

• Recommendations in the RecommendationView
could be enriched with code summaries.

Finally, and most importantly, a field study should be con- A field study in a real
work environment
should be conducted.

ducted that deploys the framework in a real-world soft-
ware development environment. By tracking the interac-
tion histories of a development team and using a state-of-



112 6 Conclusion

the-art recommendation engine the framework can be eval-
uated for developers working on familiar code bases. Code
navigation issues may often concern newcomers to projects
but do not at all exclude experts. It would be interesting
to see how experts perceive the navigation support of the
framework compared to their regular work environment.
We hypothesize that well-integrated RSSE interfaces could
help reduce navigation times and errors in development.
Additionally, we suspect that listless interface solutions (as
condition Color Highlights in our study) could be even more
beneficial for expert usage than for newcomers.

We are excited to see what future research on developer
support through recommendation systems will bring and
hope to see further research on how to efficiently integrate
these systems into the developer’s work environment.
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Appendix A

Excursus: Evolutionary
Couplings and
Association Rule Mining

Logical or evolutionary couplings are dependencies be-
tween code elements that are revealed by how a system
evolves over time Hassan and Holt [2004], Canfora and
Cerulo [2005], Gall et al. [1998, 2003]. Insight into a system’s
evolution can be gained through the commit histories of a
repository or through the developers’ programming inter-
action with the system. Two code elements may be coupled
evolutionary if they are frequently co-changed together or
impacted by similar changes. These couplings differ from
standard structural couplings that can be discovered using
program analysis as they are not based on how system com-
ponents are interconnected. As these couplings can escape
structural program analysis such as call hierarchy tools,
they can provide valuable information on code dependen-
cies in software projects. Understanding and analyzing
evolutionary couplings can help improve a project’s main-
tainability by shifting focus to code fragments that are more
reliant or more influential on other areas of code. Identi-
fying a close evolutionary coupling between two elements
means that changing one will likely affect the other one’s
behavior as well. Gaining insight into those often hidden
dependencies can reduce the likeliness of bugs being intro-
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duced into the code. As a result, evolutionary couplings
have played a large role in software change impact analy-
sis and tools that aim to support developers in estimating
these impacts (Briand et al. [1999], Hassan and Holt [2004],
Canfora and Cerulo [2005], Canfora et al. [2010], Rolfsnes
et al. [2016]).

Association Rule Mining

The most common way of mining evolutionary couplings is
through the technique of association rule mining Agrawal
et al. [1993]. Association rules are strong regularity links
in a transaction data set based on observations of that data
set. Mining association rules typically involves the count-
ing and analysis of co-occurrences and the deduction of
rules from co-occurrences of items in transactions. The or-
der of items in the transactions is irrelevant, which marks
the most important distinction to sequence mining. The
most famous example is that of a supermarket tracking all
purchases of customers. Each purchase can be considered a
transaction containing all items purchased in that purchase.
By analyzing the transactions we can determine regularities
in the shopping behavior of customers and formulate rules
such as ”A transaction containing both beer and peanuts is
likely to also contain chips.”. This would translate to the
association rule Beer, Peanuts => Chips. To make state-
ments about association rules we can use the concepts of
support and confidence. Consider we have two itemsets in
X = Beer, Peanuts, Y = Chips in our database Support
indicates how frequently an itemset is observed in the data
set.

support(X) = P (Beer ∩ Peanuts)

=
number of transactions containing both Beer and Peanuts

number of all transactions

The confidence of our rule X => Y is the percentage of
transactions that satisfy X that also satisfy Y .

confidence(X => Y ) = P (Y |X) = support(X,Y )
support(X)
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In summary, association rules can tell us about regularities
in our data and how relevant and frequent they are. As-
sociation rule miners deploy algorithms to efficiently iden-
tify those association rules in a data set that satisfy given
thresholds of minimum support and confidence. Applied
to interaction data or version histories of software projects,
association rules can reveal files or finer code elements that
have frequently been changed together.

Approaches in mining evolutionary couplings can gener-
ally be divided into two groups. Ones that mine couplings
from commits (version control systems) and the ones that
mine couplings from developer interaction data Bantelay
et al. [2013].

Besides change impact analysis, a popular application for
evolutionary couplings are Recommendation Systems in
Software Engineering (RSSEs). Given that evolutionary
couplings can be mined from developer interactions in the
IDE, it is not far-fetched to assume that they can in turn
also guide developers in their interactions. New develop-
ers can benefit by navigating along evolutionary couplings
in the code that were learned from experienced developers’
interactions with it. And software tasks such as debugging
and maintenance could be improved and less error-prone
with tools that recommend code elements that are tightly
coupled.
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Appendix B

Interlude: Mylyn
Interaction Data

Mylyn (Kersten and Murphy [2005]) interaction traces con-
tain interaction events of different kinds: selection, edit, prop-
agation, command, . . . . A selection event is triggered upon
file opening and tab switching. An edit event is triggered
when either a textual or graphical edit has occurred (Ker-
sten and Murphy [2006]).

Yamamori et al. [2017] argue that in actual fact, edit events
are recorded in Mylyn whenever the cursor position is in
the editor. Even when no actual change has happened, an
edit event is logged in the interaction trace. In a study on
noise in interaction traces, Soh et al. [2015] found that My-
lyn traces miss an average of 6% of time spent on tasks and
contain on average about 28% of false edit events. A later
study by the same authors (Soh et al. [2018]) revised the
percentage of false edit events in Mylyn traces to a stagger-
ing 75% to 85%. The authors discuss the effects on previous
studies on developer behavior and the performance stud-
ies of RSSEs such as MI. To quantify these effects they pro-
pose a technique to correct Mylyn trace and clean out the
false edit events. They reconducted the study performed on
MI by Lee et al. [2015] both for noisy Mylyn traces and for
corrected traces without the false edit events. The results
showed that using the corrected data, MI’s recommenda-
tion precision, recall, and f-measure improved significantly
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with the cleaned traces (Precision increased by up to 56%
for one particular project). The average precision increased
to about 89%. This further supports the technical viability
of navigational RSSEs. Future interaction loggers however
need to address the noise issues identified in these studies.
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Appendix C

User Study Documents

During the user study discussed in chapter 5, the partici-
pants were handed various documents. C.1 contains the in-
formed consent form all participants read and signed prior
to the study. The introduction to the study setting, as well
as all task descriptions and survey elements filled out by
the participants, is shown from C.2 to C.18.
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Informed Consent Form
User-Centered Edit Recommendations

Purpose: The goal of this study is to evaluate different implementations of a Visual Studio Code 
Extension that provides developers with proactive edit recommendations. 

Procedure: Participants receive 4 task scenarios revolving around code maintenance / debugging. 
They will solve these tasks using the different provided tools and answer questions regarding the 
tasks in a survey form. 

Questions asked and information received will be logged. The participants screen and voice will be 
recorded. All recordings will be stored anonymously. All information will be confidential. (See 
‘Confidentiality/Recordings’ below for details.)

Risks/Discomfort: The study is expected to last no longer than 90 minutes. There  are  no  risks  
associated  with  participation  in  the  study. In case of any discomfort, you can terminate the 
participation at any point. 

Confidentiality/Recordings: All information collected during the study will be kept strictly 
confidential. You will be identified only through identification numbers and background information 
you provide in the survey forms. All recordings will be stored without personal information attached 
to them. lf you agree to join this study, please sign your name below.

Addendums: Participation in this study is voluntary. You are free to withdraw or discontinue the 
participation. Participation in this study will involve no cost to you.

☐ I have read and understood the information on this form.
☐ I have had the information on this form explained to me.
☐ I grant usage rights for recordings made of my screen and voice to the principal investigator.

Participant’s Name Participant’s Signature Date

Principal Investigator Date

Principal investigator: Leon Müller
Email: leon@gansen-mueller.de

Figure C.1: The informed consent form received by all participants.
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12.04.23, 10:07Galley-proof study (muellerMA) 12.04.2023, 10:06

Page 1 of 18https://www.soscisurvey.de/muellerMA/?s2preview=4g1q34aY9iJcEzxK5YK3sAlBWZtWR0sQ&questionnaire=study&notes=off&csfr

12.04.2023, 10:06muellerMA → study

Page 01
PI

Participant Info
1. What is your gender?

female

male

2. How old are you?

I am  years old

3. What is your profession?

 I am still in school or
training

4. If you are still in school/training:

What is your course of study?

5. Approximately, for how long have you been using IDEs?

 Years

Figure C.2: The survey handed to and filled out by all participants.
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Page 2 of 18https://www.soscisurvey.de/muellerMA/?s2preview=4g1q34aY9iJcEzxK5YK3sAlBWZtWR0sQ&questionnaire=study&notes=off&csfr

6. Please specify some aspects of your experience developing software.

I have some experience with ... Yes No

Developing in IDEs

Developing in Teams (>2 people)

Developing big code bases (>~50 files)

Maintaining code

Debugging code

Front-end development

Back-end development

Webdesign / Web development

7. Do you have any experience coding with Python?

Yes

No

8. Name some of the IDEs you have experience with.

Figure C.3
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Page 3 of 18https://www.soscisurvey.de/muellerMA/?s2preview=4g1q34aY9iJcEzxK5YK3sAlBWZtWR0sQ&questionnaire=study&notes=off&csfr

Page 02
INTRO

Introduction

You are starting your new Job as a Software Engineer working on the game “Unknown
Horizons”. It is a 2D realtime strategy simulation game. You start as a small settlement and try
to develop into a flourishing city! Along the way you have to make economic choices, extend
your city and increase your power. Let's watch a quick video of the game so you can get an idea
of what it looks like!

Joining an existing development team with a big codebase is a challenging task. Starting out,
you may have no idea what a specific piece of code does or where you would even find it. It
takes time and experience to build a good mental map of a codebase. But until then, navigating
the code, finding the correct place to make changes, identifying file/folder structures is difficult.

In this study you will get 4 tasks for your ‘first day’ as a developer on the game. The IDE you are
going to use is VSCode. In each task you will have different additional navigation tools available
to you in the IDE to help you navigate the code.

Remember that we are not testing you or your ability to code! If you are unsure how to solve a
task, it is more than enough to just identify the relevant place in the code. After all, we’re only
interested in the navigation! If you feel overwhelmed by the unfamiliar code project, dont stress,
that's the point.

Let’s begin!

Figure C.4
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Page 03
T1

Task 1: Hunting
Welcome to the team! Here is your first task. In the game, animals roam the island that
can be hunted by the settlers for resources. We want to make some changes to the
hunting system.

The walking range of wild animals should be increased to 10.

9. How confident were you while solving the task?

Not at all
confident

Slightly confident Somewhat
confident

Fairly confident Completely
confident

10. How satisfied were you with the navigation support during the task?

Not at all satisfied Slightly satisfied Somewhat
satisfied

Fairly satisfied Completely
satisfied

Figure C.5
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Page 04

For the building indexer of the island however, we want to use the WildAnimal
walking_range increased by 2 (walking_range+2).

11. How confident were you while solving the task?

Not at all
confident

Slightly confident Somewhat
confident

Fairly confident Completely
confident

12. How satisfied were you with the navigation support during the task?

Not at all satisfied Slightly satisfied Somewhat
satisfied

Fairly satisfied Completely
satisfied

Figure C.6
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Page 05

Go back to the Wild Animal class. In its initialization, the variable
self._required_resource_id should be RES.WILDANIMALFOOD and not RES.FOOD.

Now that the correct resource is consumed again, adjust how much WILDANIMALFOOD
the deers in the game consume from -1 to -2.

13. How confident were you while solving the task?

Not at all
confident

Slightly confident Somewhat
confident

Fairly confident Completely
confident

14. How satisfied were you with the navigation support during the task?

Not at all satisfied Slightly satisfied Somewhat
satisfied

Fairly satisfied Completely
satisfied

Page 06
T1Q

Some Questions

1. Are the component information of classes (such as deer) defined in the same directories
as the classes themselves?

2. Do you have any idea of what the folder "content/" contains?

Figure C.7
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Page 07

Task 1 done!
Please wait shortly while we set up for the next task.

Page 08
T2

Task 2: Settlers
The settlers on the island pay taxes that the player can then use to build more buildings.
This however has an impact on the settlers happiness. Right now, settlers are taxed very
heavily and therefore become very unhappy.

You are in the settler.py file. The class has a pay_tax method. In there change:
happiness_decrease from -= 6 to -=4.

Adjust the default tax settings for settlements accordingly. The new standard value for tax
settings should be 0.9 and not 1.0.

15. How confident were you while solving the task?

Not at all
confident

Slightly confident Somewhat
confident

Fairly confident Completely
confident

16. How satisfied were you with the navigation support during the task?

Not at all satisfied Slightly satisfied Somewhat
satisfied

Fairly satisfied Completely
satisfied

Figure C.8
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Page 09

The TIER.CURRENT_MAX value you see in the function is part of the TIER class. Go the the
TIER class and decrease the settlers tax tier to 1.

17. How confident were you while solving the task?

Not at all
confident

Slightly confident Somewhat
confident

Fairly confident Completely
confident

18. How satisfied were you with the navigation support during the task?

Not at all satisfied Slightly satisfied Somewhat
satisfied

Fairly satisfied Completely
satisfied

Figure C.9
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Page 10

Also, the Event “Black Death” should no longer happen in settlements with 5 inhabitants. A
minimum of 7 should be required. This had too big of an impact on settlers.

19. How confident were you while solving the task?

Not at all
confident

Slightly confident Somewhat
confident

Fairly confident Completely
confident

20. How satisfied were you with the navigation support during the task?

Not at all satisfied Slightly satisfied Somewhat
satisfied

Fairly satisfied Completely
satisfied

Page 11
T2Q

Some Questions

1. Where in the project are fixed values for game elements typically stored?

2. Do you have an idea of what the folder "/horizon/world" contains?

Figure C.10
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Page 12

Task 2 done!
Please wait shortly while we set up for the next task.

Page 13
T3

Task 3: Pastryshop
Several issues have been reported with the games pastryshop. The pastryshop makes
candles and sugar out of honeycombs. Sugar is later used to produce sweets.

The first issue was reported in the test program of pastryshop production. The
coordinates of the test pastryshop are way too far from the other test buildings. They
should be (30,26) not (300,26).

21. How confident were you while solving the task?

Not at all
confident

Slightly confident Somewhat
confident

Fairly confident Completely
confident

22. How satisfied were you with the navigation support during the task?

Not at all satisfied Slightly satisfied Somewhat
satisfied

Fairly satisfied Completely
satisfied

Figure C.11
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Page 14

Also, adjust the reach of PastryShops to be increased by +2, so they have more available
resources.

The PastryShops resources should also include inactive production lines.

23. How confident were you while solving the task?

Not at all
confident

Slightly confident Somewhat
confident

Fairly confident Completely
confident

24. How satisfied were you with the navigation support during the task?

Not at all satisfied Slightly satisfied Somewhat
satisfied

Fairly satisfied Completely
satisfied

Figure C.12
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Page 15

There should be a file that holds lots of information and variables on PastryShops. Find that
and in it, change the building cost of pastry shops to 450 gold.

25. How confident were you while solving the task?

Not at all
confident

Slightly confident Somewhat
confident

Fairly confident Completely
confident

26. How satisfied were you with the navigation support during the task?

Not at all satisfied Slightly satisfied Somewhat
satisfied

Fairly satisfied Completely
satisfied

Page 16
T3Q

Some Questions

1. Are buildable objects considered Units in the project?

2. Where would you add the class for our newest building type, the butchery?

Figure C.13
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Page 17

Task 3 done!
Please wait shortly while we set up for the next task.

Page 18
T4

Task 4: Ships
We have noticed some issues with the ships in our game. Let's do something about it!

You are in the ship.py file. Adjust the health_bar_y variable to be -200.

The same should be done for fighting ships.

27. How confident were you while solving the task?

Not at all
confident

Slightly confident Somewhat
confident

Fairly confident Completely
confident

28. How satisfied were you with the navigation support during the task?

Not at all satisfied Slightly satisfied Somewhat
satisfied

Fairly satisfied Completely
satisfied

Figure C.14
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Page 19

On the topic of fighting ships. A typo has been reported in the act_attack functions "x2"
variable. It should obviously be x2 = dest.x.

A similar typo has happened in another act_attack function. Fix that one as well please.

29. How confident were you while solving the task?

Not at all
confident

Slightly confident Somewhat
confident

Fairly confident Completely
confident

30. How satisfied were you with the navigation support during the task?

Not at all satisfied Slightly satisfied Somewhat
satisfied

Fairly satisfied Completely
satisfied

Figure C.15
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Page 20

Oh and while you’re at it: The PlayerShips widget should read “No weapons equipped”
instead of “None” when a ship has no equipped weapons.

31. How confident were you while solving the task?

Not at all
confident

Slightly confident Somewhat
confident

Fairly confident Completely
confident

32. How satisfied were you with the navigation support during the task?

Not at all satisfied Slightly satisfied Somewhat
satisfied

Fairly satisfied Completely
satisfied

Page 21
T4Q

Some Questions

1. Where are user interface related files stored?

2. Which directory contains files related to game objects that are involved in fighting?

Figure C.16
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Page 22
TOOL

33. Please rank the following situations as you have encountered them during this
study by how much navigational support they gave you.

34. Please provide some thoughts behind your choice. Why did you rank the tools as
you did? What made some tools more or less useful than others?

1 – most supportive; 4 – least supportive

1

2

3

4

Standard VS Code + Recommendation
List available

+ Color Highlights + Recommendation
List with Color

Highlights available

Figure C.17
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Page 23
FEED

Feedback

Please - if you have some - provide some feedback on the tooling you have seen and
used.

35. Which features did you like? Why?

36. Which features did you dislike? Why?

Last Page

Thank you so much for participating!

Figure C.18
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