

by

Frederik Menke

Tracking

Manufacturing

Workflows in

Makerspace

Environments

Bachelor’s Thesis
submitted to the
Media Computing Group

Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:

Prof. Dr. Jan Borchers

Second examiner:
Prof. Dr. Ulrik Schroeder

Registration date: 12.11.2019

Submission date: 16.03.2020

Eidesstattliche Versicherung

___________________________ ___________________________

Name, Vorname Matrikelnummer

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/
Masterarbeit* mit dem Titel

__

__

__

selbständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusätzlich auf
einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die elektronische
Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner
Prüfungsbehörde vorgelegen.

___________________________ ___________________________

Ort, Datum Unterschrift

 *Nichtzutreffendes bitte streichen

Belehrung:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung
falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei
Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige fals che Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so
tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158
Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:

___________________________ ___________________________

Ort, Datum Unterschrift

v

Contents

Abstract xi

Überblick xiii

Acknowledgements xv

Conventions xvii

1 Introduction 1

1.1 Motivation . 1

1.2 Gathering Process Data 2

1.3 Prototype . 3

1.4 Overview . 5

2 Related work 7

2.1 Documentation 7

2.2 Simplifying Documentation 8

2.3 Generating Documentation 9

vi Contents

2.4 Tracking Power Tools 10

2.5 3D Motion Tracking 11

3 Prototype Hardware 15

3.1 Sensor Unit Hardware 16

3.2 Receiver Hardware 18

3.3 Custom Hardware Design 18

3.3.1 Drill Modification 19

3.3.2 Custom Printed Circuit Board 19

Mainboard Purpose 19

Mainboard Design and Manufacturing 19

3.3.3 Case and Mounting Harness 22

Case Design 22

Battery Plate Design 23

Harness Design 23

3.3.4 Assembling 25

4 Prototype Software 27

4.1 Sensor Unit Software 27

4.1.1 Current Sensor Library 28

4.1.2 I2C Abstraction Library 28

4.1.3 IMU Library 28

4.1.4 Control Flow 30

Contents vii

4.2 Receiver Software 32

4.2.1 TCP Receiver 32

4.2.2 Data Model 33

4.2.3 Debiasing 33

4.2.4 Plotting 33

4.3 Generating Animations 34

5 Theoretical Background 37

5.1 Debiasing . 37

5.1.1 Measuring Gyroscope Bias 37

5.1.2 Measuring Accelerometer Bias 38

5.2 Sensor Fusion 38

5.2.1 Calibrating Orientation 39

5.2.2 Interpolating from Data 40

Rotating 40

Accelerating 41

Translating 41

Corrections 41

5.3 Example Program Execution 42

6 Summary and Future Work 45

6.1 Summary . 45

6.2 Future work 46

viii Contents

A Example Program 49

Bibliography 53

Index 57

ix

List of Figures

1.1 Prototype . 4

3.1 Proprietary Modules 17

3.2 Custom PCB 20

3.3 Mainboard Schematic 21

3.4 Printed Parts 24

4.1 Initializing the IMU 29

4.2 Sensor Unit Data Flow 31

4.3 Live Plot . 34

4.4 Animation . 35

xi

Abstract

Makerspaces provide tools for creating physical artifacts. Makers and their com-
munity benefit from Documentation of such projects as it makes them reproducible,
but documenting is a time-consuming, difficult task and interrupts the makers
workflow. Therefore, documenting should be assisted, for example in the form
of automatic generation of documentation.

In this Bachelor’s thesis, a power dill was equipped with sensors to track its move-
ments during a maker project. The sensor data is evaluated live on a desktop ap-
plication and from the calculated 3D path of the drill, a 3D animation is generated
that can serve as documentation.

xii Abstract

xiii

Überblick

Makerspaces bieten Werkzeuge um physische Objekte zu erzeugen. Projekte
in Makerspaces werden besser reproduzierbar wenn sie Dokumentiert werden.
Allerdings ist dokumentieren als Tätigkeit zeitintensiv, schwierig und unterbricht
den Arbeitsprozess. Daher sollte dokumentieren unterstützt werden, beispiel-
sweise in Form von automatischer Generierung von Dokumentation.

In diese Bachelorarbeit wurde ein elektrischer Schraubendreher mit Sensoren aus-
gestattet um dessen Bewegungen aufzunehmen. Die Sensordaten werden unmit-
telbar von einer Desktopapplikation ausgewertet. Aus dem resultierenden 3D Pfad
des Schraubendrehers wird daraufhin eine 3D Animation generiert die zur Doku-
mentation dienen kann.

xv

Acknowledgements

I’d like to thank Marcel Lahaye for advice on scientific writing and help with nu-
merous questions. I also thank Sofie van Anrooij for proofreading and emotional
support.

Finally, I’d like to thank the numerous open source projects that made this thesis
possible though their work.
Thank you!

xvii

Conventions

Throughout this thesis we use the following conventions.

Text conventions

Definitions of technical terms or short excursus are set off
in coloured boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

Definition:
Excursus

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in Canadian English.

Download links are set off in coloured boxes.

File: myFilea

ahttp://hci.rwth-aachen.de/public/MenkeTracking/file number.file

http://hci.rwth-aachen.de/public/MenkeTracking/file_number.file

1

Chapter 1

Introduction

1.1 Motivation

Documenting projects in makerspaces is a difficult and
time-consuming task. At the same time, documentation is
highly beneficial for both the maker and her/his commu-
nity.
Makerspaces are open public workshops where people Documenting

makerspace projects
is beneficial for
Researchers and
Makers.

can semi-professionally craft artifacts. During a project,
a sequence of actions that involve tools and material are
taken. The type of Documentation this thesis focuses on
is a record of such an action sequence. For completion,
other types of documentation are covered in Section 2.1.
Documentation can serve multiple purposes. For example,
proper documentation of a project enables readers that can
have access to the proper tools and materials to copy the
design. This is especially true for FabLabs that are a brand
of makerspaces that share a recommended standardized
inventory of machines and tools[2002]. This means that
a project that has been created in a FabLab should be
reproducible in any other FabLab given proper documen-
tation. Other uses of documentation include educating
readers, giving inspiration for related projects, sharing the
makers experience with others, finding flaws in the process
that could be improved on and calculating the cost that
went into material, tools and workforce[2014][2015]. Also
documentation can be used as part of the makers portfolio

2 1 Introduction

[2015]. Additionally, Zimmerman et al. [2010] have shown
that missing documentation in a design project can limit
the value of a research contribution, because it makes
presented artifacts difficult to reproduce. This suggests
that the presence of documentation for projects is beneficial
for makers and researchers alike.

Writing by hand is a task that adds overhead to the mak-Creating
documentation

documentation is
time consuming and

difficult

ers project [2019]. In addition it requires many skills like
image manipulation, text formatting, etc. and tools like a
webserver to publish the documentation[2019].
Makers might have to document their process during its ex-
ecution to keep the documentation accurate and to record
the current state in the process (e.g. by taking pictures)
[2014]. In a survey by Tseng and Resnick [2014] partici-
pants stated that they tend to forget documenting certain
steps which leads them to having to recreate the state of
the project at that step in order to take a picture. When
makers have to document a process during its execution,
both task become more time consuming. Breaking out of
a process in order to create documentation and then going
back to making introduces switching costs for each context
switch. These costs come in the form of slower and more er-
ror prone performance of the subject for a period of time af-
ter switching between working and documenting a project
[2009][2001][2003].

To avoid a workflow where a maker has to constantlyDocumenting could
be automated switch between making and documenting, the capturing of

the process state may be automated. This way, data can be
gathered that would stop makers from having to log the
process themselves, and it even might be used for automat-
ically generating (or supporting generation of) documenta-
tion.

1.2 Gathering Process Data

This thesis provides an approach of collecting ”process
data“ of projects in a makerspace. The gathered data is then
supposed to aid authoring documentation for said process.

1.3 Prototype 3

PROCESS DATA:
Process Data is any data that contains information about
the physical execution of a workshop process.

Definition:
Process Data

Cooperative work that involves more than a single per-
son is neglected to keep the scope of the thesis manage-
able. Other than process data that can be measured phys-
ically, authoring of documentation also relies on reason-
ing behind manual actions during a process. Such rea-
soning can, for example, explain the function of a groove
that has been filed into a bottle. The process information
could potentially allow to locate and describe the groove,
but it might seem difficult to automatically deduct that the
groove marks the maximum fill level of the bottle with-
out reasoning from the maker. Since the presented ap-
proach aims to automate documentation, the focus in this
thesis lies on process-oriented documentation, that by de-
fault mainly consist of process data.
Creating artifacts in a makerspace requires the maker to
move tools and materials in relation to each other. If these
movements are tracked, the resulting process data can be
used to generate documentation.

1.3 Prototype

For this thesis, a cordless drill was equipped with inertial Process Data is
gathered by motion
tracking tools.

sensors to track its motion. In addition, an application was
created that can calculate the position and orientation of the
drill from the raw sensor data. A 3D animation can then be
generated from the collected process data. Attaching the
sensors to the users body directly (e.g. his/her hand), mul-
tiple tools could be tracked by using only a single set of
sensors. But if the sensors are attached to the tools/mate-
rial, the movement of the tools/material in relation could
be tracked even if the user is not holding any at that mo-
ment. This way the data can, for example, tell when a screw
clamp slips of the material and has to be reapplied. The ob-
ject that the user is holding can always be identified, since
it each tool and piece of equipment can provide its own
stream of data in a separate channel. When attached to

4 1 Introduction

Figure 1.1: A photo of the Prototype. The lid of the hard-
ware case was removed to show the wiring.

the user, the sensor could induce discomfort from wearing
them and overhead for putting them on. In contrast, sen-
sors can be integrated into tools making them completely
transparent to the user.
To keep the hardware of the prototype simple, the sensors
were only embedded into a single tool. The position of
the material can be fixed to a certain point and orientation
in relation to the starting point of the sensor. Thus, the
position of the material relative to the tool is still always
known. Since a cordless drill is a common tool, already in-
cludes a battery for powering the hardware and is usually
big enough for embedding a microcontroller and sensors
into it, it was chosen as an ideal candidate for tracking.

1.4 Overview 5

Therefore, a microcontroller and an IMU were embedded
into a cordless driver in the aim to track a workshop task.
The sensor data is sent via WLAN to a PC that calculates
the position and orientation of the drill for each sample of
the IMU output. A python script for the 3D creation suite
blender1 was created that uses the samples to generate an
animation of the process.

1.4 Overview

The thesis is split into three Chapters. In Chapter 3 the
hardware of the prototype will be presented and explained.
Chapter 4 covers the structure of the prototype software.
Finally, chapter 5 will explain how the sensor data are used
and will showcase an example program that shows the us-
age of presented libraries.

1www.blender.org

https://www.blender.org/

7

Chapter 2

Related work

2.1 Documentation

Documentation can take multiple forms. A few examples
are:

• Bill of Materials (BOMs) are just tables that list the
materials (and sometimes tools) that are needed to
fulfill a project. Each row usually lists kind, amount
and shape of the needed material.

• Manuals describe the features of a creation and how
to use it.

• Process-Oriented Documentation consists of a list
of consecutive actions that have been performed in
the makerspace during a project. This includes itera-
tions of modifying the design and decisions that were
later reverted and didn’t make it into the final artifact
[2015].

• Step-By-Step Tutorials are the subset of the contents
of story-like documentation that only contains the ac-
tions that directly lead to the creation of the artifact.
As such, they contain a list of tasks that have to be
fulfilled in order to create an artifact. They often con-
tain BOMs and provide thus just enough information
to recreate a project.

8 2 Related work

The creation of documentation can only be automated if theProcess-Oriented
documentation will
be targeted in this

thesis.

documentation mainly consists of process data. Documen-
tation types like manuals need reasoning by the author that
can explain the features of a creation. This makes man-
uals less suitable for automated documentation than e.g.
tutorials or process-oriented documentation. Tseng and
Resnick [2014] conducted a survey on users of Instructa-
bles1, which is an online platform for sharing documenta-
tion. In the survey, participants ranked their reasons for
looking at Instructables from most to least important. Be-
tween the choices “To get Ideas for a project”, “To learn a
particular technique” and “To look for projects I want to
recreate”, the latter one was the least favorite choice.
Tseng and Resnick [2014] therefore recommend to use
process-oriented documentation that not only states how to
create a specific artifact, but also shows what other things
were tried by the author and possibly what to avoid when
designing for such a product. A step-by-step tutorial for
a project is a subset of the actions that could be found
in process-oriented documentation. This means that an
author could always create a step-by-step tutorial of his
project from the process documentation. Similarly, BOMs
could be generated from process documentation as well,
since each action where the maker takes out new material
from storage could be tracked.
For the reasons above, the rest of this thesis will focus on
the generation of process-oriented documentation.

2.2 Simplifying Documentation

Milara et al. [2019] embraced “documenting-while-doing”Related work has
tried minimizing the
overhead of writing

documentation

by creating a mobile phone application and a correspond-
ing webapp. These aim at minimizing the overhead that
stems from having to use various software programs and
hardware to compile the documentation. Instead, the user
records the process through a single application during ex-
ecution. The collected pictures, notes and voice messages
are uploaded to a web server where they are compiled into
a webpage. The webapp allows the user to later access

1www.instructables.com

https://www.instructables.com/
https://www.instructables.com/

2.3 Generating Documentation 9

this page and modify it further. The technique that is pre-
sented in this thesis fits right into the approach by Milara
et al. [2019]. By recording the process data without inter-
rupting the process, additional overhead is removed from
creating documentation. Also Milara et al. [2019] designed
their system with process-oriented documentation in mind,
which can be further supported by the here presented pro-
totype, since it outputs a continuous data stream instead
of a series of photos. This way it is ensured that not only
the successful parts of the users process are documented.
Tseng and Resnick [2016] conducted multiple case studies
on their approach on supporting the creation of documen-
tation for young people. They designed a turntable with
an integrated camera that automatically creates spinning
animations of any project that was laid onto it. This way,
the users were able to document their progress on a project
by simply laying it on the turntable every now and then.
Learning from their case studies, Tseng and Resnick [2016]
proposed guidelines for supporting the creation of docu-
mentation. These include that such a device should min-
imize disruption of a task, and that it benefits from being
integrated into the workshop. Since the artifact that is pre-
sented in this thesis integrates into a power drill without
changing its shape significantly, both of these rules can be
fulfilled by it.

2.3 Generating Documentation

Automatic creation of step-by-step tutorials has already Techniques for
automatic generation
of tutorials have
been implemented
for image
manipulation tasks
on desktop PCs.

been implemented by Grabler et al. [2009] for image pro-
cessing software on desktop computers. They created a
system that records user input and screen contents during a
photo manipulation task. For each step in the users process,
screen captures are outfitted with labels, text descriptions
and annotations to highlight certain areas. In the end, these
pictures are assembled into a whole step-by-step tutorial.
Chi et al. [2012] took a similar approach, but mixed video
and image footage to show the effect of actions in the im-
age processing software. A major difference to the topic of
this thesis is the way the process is recorded. Grabler et al.
[2009] and Chi et al. [2012] modified the image processing

10 2 Related work

software to record any actions within the interface and also
recorded the screen. This way they were able to use the
input, that the user made during the task, directly for gen-
erating the tutorials from a sequence out of a fixed set of
possible actions in the software. For this thesis, a physi-
cal motion in 3D space will be tracked. Therefore neither
is the set of possible actions finite, nor is the process data
as accurate as when recording mouse and keyboard input.
Instead, in this thesis, a stream of continuous defective 6-
axis data will be measured. Additionally, all of the afore-
mentioned techniques aimed at creating tutorials instead of
process-oriented documentation. This means that a differ-
ent approach to the generation of documentation will have
to be designed.

2.4 Tracking Power Tools

There have been several approaches for detecting user
movements in a workshop setting. Ward et al. [2006] used
accelerometers and microphones to detect the current ac-
tivity of a user. In this approach the data was only inter-
preted by learning algorithms in order to classify data as a
corresponding activity. The way in which the activity was
performed, or what influence it had on the process was not
examined. Schoop et al. [2016] augmented power tools in
order to guide the user through woodworking tasks. They
mounted three distance sensors on a power drill to mea-
sure the distance and angle to the workpiece. Doing so, the
system could tell if the drill was held an angle or straight
onto a sheet of material. This thesis presents a technique for
gathering 3D data that would contain information about
angle towards the material. Antifakos et al. [2002] used
serveral different sensors to infer the current state in a fur-
niture assembly task. While these techniques were able to
detect tool usage, the researchers focused in guiding the
user through a workshop task, starting from already set-up
instructions. The technique presented in this thesis is not
limited to a single predefined process, but aims to detect
tool usage within arbitrary drilling tasks. It therefore could
potentially generate data for the techniques by Antifakos,
Schoop, Ward et al.

2.5 3D Motion Tracking 11

2.5 3D Motion Tracking

To find out how process information could be gathered, one 3D position and
orientation of tools
will be tracked as
main process data
for generating
documentation.

first has to restrict the information to the significant bits.
In the abstract, process-oriented documentation describes
how a human moved material and tools in relation to each
other in order to produce or modify an artifact. The move-
ments can be grouped within the timeline into sections that
make up a single task within the process. Therefore, the 3D
movements of tools and material have to be tracked, and
this data has to be dissected at reasonable points in time. As
seen in a technical report by Campbell et al. [2015], 3D data
can be used to recognize activities. Using such an approach,
the detection of a step could be by looking for pauses and
changes in activities. Campbells approach is limited by the
raw nature of the used sensor that could only gather infor-
mation on acceleration of the users hand. If 3D movement
data of a specific tool was gathered, the recognition of activ-
ities could possibly be more accurate, since the type of tool
and its movement relative to other tools would be known
at all time.

Welch and Foxlin [2002] list common methods to perform 3D-tracking is
possible through a
variety of techniques.

3D motion tracking.

• Mechanical sensing can be used by attaching a limb-
like contraption to the tracked object. The contrap-
tion is fixated at a well known position in space and
thus the position of the object can be calculated by
measuring the angles at the joints of the limb (This is
usually done by incorporating sensors into the joints).
While this technique can provide highly precise posi-
tional data, using such mechanical sensing has a vari-
ety of drawbacks that make it not suitable for our pur-
pose. The limbs length restricts the positional range
of the assembly, making it impossible to track the tool
further than a few meters. Additionally, the assem-
bly may block the view on the tool, and when track-
ing multiple tools at the same time, the limbs might
physically interfere with each other, thus restricting
the users mobility.

12 2 Related work

• Acoustic sensing that uses microphones to detect the
distance to a signal doesn’t restrict the user in move-
ment or sight, but (depending on configuration) lacks
either precision or temporal resolution if used in an
indoor environment.

• Optical sensing uses light sensors to detect the dis-
tance to a light source, or cameras to locate objects
or patterns within an image. These techniques can
provide precise data with a high rate. To calculate
the position of an object, the light sensors always re-
quire at least one light source or pattern as reference
point that has to be placed in the scene. Furthermore,
the sensor has to be in constant direct line of sight for
measurement. In a similar fashion as for the mechan-
ical sensing, this would restrict the users movement
when holding the tool to avoid blocking the view of
the sensor to a reference point.

• For this thesis, inertial and magnetic sensing was cho-Inertial and magnetic
sensing via

accelerometer,
gyroscope and

magnetometer was
chosen as the

3D-tracking method.

sen. An inertial measurement unit (IMU) is a com-
bination of a 3-axis gyroscope that measures angular
velocity and a 3-axis accelerometer that measures ac-
celeration. A magnetometer is a 3-axis sensor that
provides the direction and strength of a local mag-
netic field. These sensors can provide 3D vectors in
often high temporal resolution. By integrating the
output of the gyroscope once and the accelerometer
twice, orientation and position (relative to a starting
point) can be calculated. In combination with the
magnetometer data, the global orientation can be de-
termined from earths gravity and magnetic field.
IMUs are available in IC-Packages with footprints of
less than 5 mm2 which allows for embedding them
into small objects. Inertial sensing requires a single
external reference for giving a starting point in global
space and the sensor becomes independent from it af-
terwards. This means that IMUs can be integrated
into many tools without obstructing the user and
without the need for a reference point in constant line-
of-sight.
Still, for 3D-tracking, IMUs suffer from drift that in-
troduces error into the calculated position and orien-
tation data. Since the accelerometer output has to be

2.5 3D Motion Tracking 13

integrated twice, the positional error will be at least
proportional to the cubed sensor error. The resulting
limitations will be discussed later on.

15

Chapter 3

Prototype Hardware

This chapter will cover the hardware that comprises the
prototype. It will explain why certain components were
chosen and how the custom hardware was designed and
manufactured. The cad files of the custom hardware can be
found at

File: cad.zipa

ahttp://hci.rwth-aachen.de/public/MenkeTracking/cad.zip

In the abstract, the protoype is composed of a sensor unit The prototypes
hardware is
discussed in this
chapter.

and a receiver. The sensor unit is attached to the cordless
drill via a plastic harness (see Figure 1.1). It collects data
from the onboard accelerometer, gyroscope, magnetometer
and current sensor and serves it via a TCP server and its
WLAN interface. The receiver runs as a python application
on a desktop computer. It connects as a client to the TCP
server on the sensor unit, receives the sensor data and pro-
cesses it.

http://hci.rwth-aachen.de/public/MenkeTracking/cad.zip

16 3 Prototype Hardware

3.1 Sensor Unit Hardware

The electronics of the Sensor Unit consist of 4 main compo-The sensor unit
hardware is

comprised of
modules on a

mainboard.

nents:

• An ESP-WROOM32 Development Board (ESP32 DE-
VKITV1) for polling sensors and wifi communication.

• A “GY-87“ inertial measurement unit (IMU) module
containing a gyroscope, an accelerometer and a mag-
netometer.

• A current sensor module based on the ACS712.

• A custom mainboard that connects and powers the
other components.

To keep reproducibility simple, the components come in
breakout boards that can be connected through standard
2.54 mm pin headers. This way the components can be
connected with bread-/perfboards and wire for easy
prototyping.
The custom mainboard was also kept simple, as it is
single sided and uses three types of standard, low-cost,
through-hole components. Since single-sided boards with
only through-hole components can be easily manufac-
tured using perfboards, even a makerspace that lacks the
equipment for etching or milling printed circuit boards can
recreate the prototype.

This thesis is directed towards makers. Therefore, oneAn ESP32
microcontroller was

chosen for IOT
capabilities.

could suggest that an Arduino microcontroller should have
been used, since they are well established in the maker
community. Nonetheless, the ESP32 microcontroller has
been chosen in favor of an Arduino, because of multiple
reasons: first of all, the platform is performant for a micro-
controller, running at a clock speed of up to 240Mhz (almost
three times the speed of an Arduino Due) in a dual-core
setup with an internal SRAM of 520kB (5.5 times the size of
an Arduino Due). Secondly, the ESP32 comes mounted on a
way smaller development board than any of the more per-
formant Arduinos, having a footprint of only 28x52mm in

3.1 Sensor Unit Hardware 17

Figure 3.1: The modules that plug onto the mainboard. Vis-
ible are the ESP32 microcontroller (top), the current sensor
(bottom left) and the GY-87 inertial measurement sensor
(bottom right).

comparison to the 100x50mm of an Arduino Due. In addi-
tion, the ESP32 development board provides hardware pe-
ripherals as an ”Inter-Integrated Circuit“-bus (I2C), analog-
digital converters (ADCs), and WLAN out of the box. This
allows the ESP32 to CPU-efficiently communicate with the
sensors and the receiver.

The inertial measurement unit comes with two integrated The GY-87 was
chosen as Inertial
Measurement Unit.

circuits: An MPU-6050 6-axis sensor that consists of a gy-
roscope and an accelerometer, and a ”HMC5883L“ 3-axis
digital compass. The ICs are connected to each other via an
I2C bus that allows the MPU-6050 to serve as an I2C mas-
ter over the HMC5883L and automatically read out its data.
Thus, when configured correctly, the 6-axis sensor can col-
lect the gyroscope, accelerometer and compass data within
its internal buffer, saving CPU-time on the ESP32. The data

18 3 Prototype Hardware

can then be burst-read via another I2C bus that connects to
the ESP32 and the 6-axis sensor.

The current sensor unit measures the current flow via
two screw clamps that can be connected between a power
source and a power sink. In this particular setup, the sen-
sor is connected to one of the cables coming from the power
drill motor. It outputs the current readings via an analogue
signal on one of its pins. The signals voltage is proportional
to the current that is flowing through the screw clamps.

3.2 Receiver Hardware

The receiver application runs on any unixoid system withA PC runs the
receiver application

as a python program.
a python3 interpreter and a network interface card. If a
screen is connected to the system, the sensor movements
can be displayed on it. The software is completely written
in python and thus portable to other operating systems like
Microsoft Windows with minor modifications. For the pur-
pose of testing the application and debugging, a 2018, low-
end lenovo laptop was used. This means that the receiver
application can run even on affordable hardware. As the
application (being written in python) is confined to a sin-
gle process, it could be run on a multi-core system several
times in parallel to track multiple tools at the same time.

3.3 Custom Hardware Design

For the creation of the prototype, two custom pieces ofCustom parts were
created. hardware were manufactured within a Makerspace using

a mid-level 3D printer and a CNC PCB milling machine.
The following subsections document the design and man-
ufacturing process of the custom PCB and the harness that
fixes the sensor unit on the cordless drill.

3.3 Custom Hardware Design 19

3.3.1 Drill Modification

To measure the motor current via the current sensor, the The drill motor cables
were exposed.motor cables have to lead through the screw clamps of the

sensor. Therefore the drill was opened by unscrewing the
screws in its casing. Then the motor cable was cut in half
and extended by soldering an additional length of cable to
each end. To lead these cables out of the case, a hole was
created on the end of the motor housing by filing out a
notch on each half of the casing. The casing was then re-
assembled while taking care that the cable extensions were
left hanging out of the back of the motor housing.

3.3.2 Custom Printed Circuit Board

Mainboard Purpose

The mainboard serves three purposes: First of all, it holds
the hardware modules in place with female headers and
can be bolted onto the drill harness with screws (see sec-
tion 3.3.3). This makes sure that the sensor unit follows the
movements of the drill.
Secondly, the sensors and the microcontroller are powered
by the mainboard. It contains a voltage regulator that
takes a 9 Volt input and outputs 5 Volt to the components.
The regulator itself can be powered through a set of screw
clamps. To dissipate excess heat from the voltage regulator,
its heatsink is soldered onto a copper plane on the main-
board.
Finally, the mainboard interconnects the components. The
I2C bus of the ESP32 and the IMU are connected through
traces. Additionally, two resistors serve as voltage divider
to map the maximum 3.3 Volt output from the current sen-
sor to the ESP32s 1 Volt analogue reference.

Mainboard Design and Manufacturing

The mainboard was designed using the KiCAD1 electronic The mainboard PCB
was designed in
KiCAD.

https://www.kicad-PCB.org/

20 3 Prototype Hardware

Figure 3.2: The figure shows rendered pictures of the custom PCB that was de-
signed to hold the sensor modules and the microcontroller. The screw clamp and
one of the female headers have been removed to show the pads and silkscreen be-
low. Visible are the pads for the screw clamp (1), female headers (2), two resistors
as voltage dividers (3) and the voltage regulator (4).

design automation suite. This software was chosen as it is
well supported by the PCB mill that was made accessible to
me by the FabLab Aachen. Also, KiCAD is free and open
source, making it available to the maker community.

First, using the Eeschema editor in KiCAD, a schematic was
created (see Figure 3.3). This included creating symbols for

1www.kicad-PCB.org

3.3 Custom Hardware Design 21

1
2

3

1
2

3

A B C

A B C
D

at
e:

 2
02

0-
02

-2
8

K
iC

ad
 E

.D
.A

.
ki

ca
d

5.
1.

5-
52

54
9c

58
4u

bu
nt

u1
8.

04
.1

R
ev

:
0

S
iz

e:
 U

se
r

Id
: 1

/1

T
it

le
:

S
en

so
r

U
n

it
 M

ai
n

b
o

ar
d

F
ile

: m
ai

nb
oa

rd
.s

ch
S

he
et

: /
F

re
d

er
ik

 M
en

ke

G
N

D

V
C

C
_I

N
1

3.
3V

2
G

N
D

3
S

C
L

4
S

D
A

5
F

S
Y

N
C

6
IN

T
A

7
D

R
D

Y
8

U
3

G
Y

-8
7_

10
D

O
F

+
5V

G
N

D

E
N

1

D
27

10

D
14

11

D
12

12

D
13

13

G
N

D
14

V
IN

15

D
23

16

D
22

17

T
X

0
18

R
X

0
19

V
P

2

D
21

20

D
19

21

D
18

22

D
5

23

T
X

2
24

R
X

2
25

D
4

26

D
2

27

D
15

28

G
N

D
29

V
N

3

3.
3V

30

D
34

4

D
35

5

D
32

6

D
33

7

D
25

8

D
26

9

U
2

E
S

P
32

_D
E

V
K

IT
V

1

P
W

R
_F

LA
G

P
W

R
_F

LA
G

G
N

D

+
10

V
12

J1
P

O
W

E
R

_S
U

P
P

LY

G
N

D

G
N

D

+
3.

3V

R
2

78
2

R
1

37
1.

6

+
5V

+
3.

3V

G
N

D

IN
1

GND2

O
U

T
3

U
1

L7
80

5

123

J3
C

ur
re

nt
_S

en
so

r

+
10

V

G
N

D

+
5V

C
_S

E
N

S
O

R
_1

V

C_SENSOR_1V
Fi

gu
re

3.
3:

Th
e

sc
he

m
at

ic
of

th
e

m
ai

nb
oa

rd

22 3 Prototype Hardware

the GY-87 and the ESP32, since those are not included in
KiCAD.
From this schematic, a PCB layout was designed. To dis-
turb the user as little as possible when handling the drill,
focus was layed on minimizing the size of the PCB. For that
reason, the resistors and the voltage regulator were placed
between the headers of the ESP32 (see Figure 3.2). This way,
these components sit in the gap below the ESP32. The re-
sulting PCB has an area of 28.21cm2 while the footprints
of the used components total at 24.88cm2. To keep the de-
sign single sided, a bridge connects two pads that would
otherwise require a second layer for routing. The gap can
be connected with a 0 Ω resistor or a wire. For the voltage
divider, 2.2 kΩ and 1 kΩ resistors were chosen.

The mainboard was milled from a single sided copper cladThe mainboard was
milled from FR4. (FR-4) on an LPKF Protomat S104 circuit board plotter. Af-

ter milling, the components were soldered onto the PCB.
The sensors and the ESP32 were then inserted into the fe-
male headers.

3.3.3 Case and Mounting Harness

The sensor unit hardware is encased by a plastic box that3D prints encase and
attach the

mainboard.
protects the electronics from shorting out and from me-
chanical strain. With a plastic harness that fits tightly
around the power drill, the hardware and the case are fixed
to the drill.
All of the 3D models were designed in OpenSCAD2. Open-
SCAD is an open source, scripted, computer aided design
language. The designs were then 3D-printed in PLA on an
Ultimaker 3 extended, which is a mid-level fused filament
modeling (FFM) 3D-printer.

Case Design

To design the hardware case, the bounding box of the har-The 3D model of the
case was created. ware assembly was measured. From that, a cuboid was

2www.openscad.org

https://www.openscad.org

3.3 Custom Hardware Design 23

created with a hollow interior that fits the bounding box.
At the bottom of the cuboid, 4 cylindrical pedestrals were
added at the position of each screw hole on the mainboard.
In the center of those pedestrals, 3 mm through holes were
created to fit M3 screws. At one side, an additional hole
serves as outlet for the current sensor and battery cables.
To make handling of the case more comfortable, all exterior
edges of the cuboid were champfered. Then, the top sur-
face of the cuboid was removed, making the bottom part of
the case complete (see Figure 3.4 (a)).
The lid of the case is created from a plate that has pins
added to each corner, to align the lid with the case and keep
it there by friction (see Figure 3.4 (c)).

Battery Plate Design

A rectangular plate was created as base of the battery plate A plate to hold the
battery was
designed.

(see Figure 3.4 (b)). On top of that plate, a box with an
opening on one side hosts the battery. The box is slightly
undersized, thus holding the battery in place by friction.
Similar to the hardware case, the battery plate has holes for
M3 screws in each corner.

Harness Design

The harness sits around the motor housing of the cordless A harness to attach
the case to the drill
was designed.

drill. Rings around both ends of the housing clamp down
on it. They are held together by the hardware case on one
side and the battery case on the other side of the drill (see
Figure 3.4 (d) and (e)). The rings were designed by taking
two measurements on each side of the motor housing and
then creating a short tube that has a slight slope towards
the center of the drill. The rings also have additional fea-
tures that accommodate for notches in the motor housing.
Since the exact parameters were difficult to measure, the
harness parts were printed multiple times and the ac-
cording variables of the OpenSCAD script were tweaked
each time until a proper fit was achieved. Then, cuboid
pedestrals with slots for square nuts were added to the
rings, so that the case and the battery plate can be mounted.

24 3 Prototype Hardware

Figure 3.4: Renderings of the 3D models for the case (a),
battery plate (b), lid with the case (c) and harness (d) of the
prototype. At the bottom, the parts are seen arranged as
they would be on the drill (e).

3.3 Custom Hardware Design 25

3.3.4 Assembling

To assemble the prototype, first the mainboard has to be The mainboard, case
and harness were
fixed on the dill.

equipped with the hardware modules. Then, it can be in-
serted into the case and 4 M3 screws can be pushed through
the mounting holes in the mainboard and case. Then the
rings of the harness are pushed onto the motor housing
of the drill and M3 square nuts are inserted into the slots.
Next, the screws in the case are screwed into the nuts in
the harness. Similarly, the battery plate is mounted on the
opposite side. Then, a 9 Volt battery with a battery clip
is inserted into the battery plate and the cables of the bat-
tery and the motor are screwed into their according screw
clamps on the mainboard. Finally, the lid can be pushed
onto the case, completing the assembly.

27

Chapter 4

Prototype Software

This chapter will present the structure of the software for The chapter presents
the software for the
receiver and the
sensor unit.

the sensor unit and the receiver. Afterwards, details about
their interaction will be explained within Chapter 5.

The software of the prototype is split into a C program that
runs on the ESP32 and coordinates sensor and WLAN com-
munication, and a python3 library that receives and inter-
prets the sensor data. The interface between these compo-
nents is realized through a TCP connection over WLAN.
The source code of the software can be found at

File: software.zipa

ahttp://hci.rwth-aachen.de/public/MenkeTracking/software.zip

4.1 Sensor Unit Software

The sensor unit software consists of a C program with two Custom C libraries
and a main program
were written.

processes that call three custom libraries. While one process
constantly polls the sensors for new data, the other controls
the TCP interface. The libraries build upon the Espressif
IoT Development Framework (ESP-IDF). This section first
describes the functionality of the libraries and then their
use within the main program.

http://hci.rwth-aachen.de/public/MenkeTracking/software.zip

28 4 Prototype Software

4.1.1 Current Sensor Library

This library provides a function to initialize the analog dig-A library to interface
the current sensor

was created.
ital converter (ADC) of the ESP32 and a second function
that reads a single sample from the ADC and thus from
the current sensor. In addition, it has a private variable
that can be set to the current value of the ADC by calling
current sensor update(). The content of this variable
is returned by the current sensor getSample() func-
tion.

4.1.2 I2C Abstraction Library

This Library provides abstraction functionality for registerI2C register
manipulation was

abstracted by a
library.

access on the IMU. It provides a i2c abs init() func-
tion that initializes and configures the ESP-IDF I2C inter-
face. The sensor-ICs of the IMU are accessible through
I2C register reads and writes. This requires to first send
a register address to the ICs and then access it through
a successive read or write. These accesses have been
abstracted by the functions i2c abs read byte() and
i2c abs write byte(). During the initialisation of the
IMU, often single bits have to be set. Since only whole bytes
can be written, this requires to read the register content be-
fore writing so no other bits are modified. This read/write
process is abstracted through the i2c abs write bit()
function. The MPU-6050 has an internal buffer that needs
to be burst-read when operating with high sample rates.
Therefore an i2c abs read() function was implemented
that reads a specified amount of bytes.

4.1.3 IMU Library

The force sensor library contains functions to initializeThe IMU is
accessible through a

library.
and access the MPU-6050 gyroscope/accelerometer and the
HMC5883L digital compass. The sensors are configured by
writing to their configuration registers via I2C .
The initialisation of the IMU has to be done in three
stages: First, the MPU-6050 has to be configured to ”I2C

4.1 Sensor Unit Software 29

Auxiliary I2C

M
a

in
 I

2 C

ESP32

MPU-6050
HMC5883L

1

MPU-6050

Auxiliary I2C

M
ai

n
 I

2 C

ESP32

HMC5883L

2

MPU-6050

Auxiliary I2C

M
a

in
 I

2 C

ESP32

HMC5883L

3

Auxiliary I2C

M
ai

n
 I

2 C

ESP32

MPU-6050
HMC5883L

4

Figure 4.1: The figure shows the stages of configuring the IMU: First, the MPU-
6050 has to be configured to go into ”I2C Passthrough Mode“ (1). In this mode, the
Auxiliary I2C is connected with the main I2C and the HMC5883L can be configured
(2). Then, the MPU-6050 is configured and the ”I2C Passthrough Mode“ is disabled
(3). Afterwards, the IMU is ready to start sampling (4).

Passthrough Mode“. This mode exposes the auxiliary
I2C interface of the MPU-6050 to its main interface. The
HMC5883L that is connected to the auxiliary I2C , can now
be configured to run in continuous measurement mode
at the maximum sample-rate (see figure 4.1 (2)). Finally,
the MPU-6050 is configured, turning the ”I2C Passthrough
Mode“ off, configuring the sample rate and full scale range,
configuring the master mode over the HMC5883L and set-
ting up the FIFO buffer where samples are gathered for
burst read. After the configuration, the IMU waits in sleep

30 4 Prototype Software

mode. While each stage has been implemented in a sep-
arate function, the whole initialisation process can be per-
formed by calling force sensor init().

After initialisation, library functions can be called to inter-
act with the IMU:

• force sensor set sleep() starts or stops sam-
pling of the IMU.

• force sensor ready samples num() polls and
returns the number of samples in the FIFO

• force sensor read samples() reads samples
from the FIFO into a given buffer.

4.1.4 Control Flow

Receiving sensor data from the IMU and sending it to theThe main program
has to use both CPU

cores.
receiver via TCP has to be done in separate processes, as the
TCP driver of the ESP32 uses the slow-start algorithm for
congestion control. This algorithm causes the TCP connec-
tion to be slow at first, speeding up exponentially. There-
fore, if the sensor unit was to send small packages in a high
frequency, the throughput would be lower than the output
of the IMU. On the other hand, if a single process was to
burst write a large buffer of samples to the TCP connection,
the IMUs internal FIFO would overflow before the needed
TCP speed was reached. To keep up with the incoming
data, both CPU cores of the ESP32 are used as follows.

On start up of the ESP32, the main task initializes theOne CPU core reads
from the sensor while

the other one sends
data to the receiver.

aforementioned libraries and ESP32 core libraries that are
needed for TCP functionality. The task finishes by start-
ing the tcp server task on CPU core 0. This task
sets up a TCP server and waits for a client to connect.
When a connection is established, the i2c gather task
is started on core 0 and wakes up the IMU. It proceeds to
poll the IMU for samples and save the gathered data into
one of two send buffers. As soon as the buffer is filled,
i2c gather task sets a flag and the tcp server task

4.1 Sensor Unit Software 31

Figure 4.2: The figure shows the data flow within the sen-
sor unit. Originating at the sensors, the measurements are
read by the processes on the ESP32 and then sent to the re-
ceiver via WLAN.

starts writing the data to its TCP client. While send-
ing, the i2c gather task continues collecting data into
the second send buffer to avoid an overflow within the
IMUs internal FIFO. When that buffer is full, another flag
is set, the tcp server task writes it to its client and
the cycle continues. The current sensor samples are mea-
sured by the tcp server task while it waits for the
i2c gather task to fill a buffer. The i2c gather task
then saves the current sensor samples to the send buffers
when writing the IMU data. A visualisation of how data
flows within the sensor unit can be seen at figure 4.2.

32 4 Prototype Software

The TCP capabilities of the ESP32 allow for a throughputThe TCP connection
has sufficient

throughput.
of multiple Mbit/s if sending large chunks of data, while
the sensor has an output of only 144 kbit/s. Therefore, the
tcp server task will send a complete buffer before the
i2c gather task starts filling that buffer again. Should
the IMU FIFO still overflow due to e.g. poor WLAN con-
ditions, the buffer size can be increased to further improve
TCP performance.

4.2 Receiver Software

The data from the sensor unit is read and evaluated byA desktop application
receives and

interprets the sensor
data.

python code on a unix system as described in section 3.2.
Therefor, the receiver acts as a TCP-client of the sensor.
A model describing the sensor position and orientation is
created from the thus retrieved data. From this model, a
live plot and a rendered animation can be created. Other
than the sensor unit that is run by a fixed firmware, the re-
ceiver software is given in the form of libraries that can be
plugged together in order to create an application that gen-
erates documentation.
This subsection will describe each part of the receiver soft-
ware. The code is organized within two python modules:
backend and generating documentation. Aside of
the python core libraries, the NumPy1 and the SciPy2 pack-
ages and their dependencies must be installed on the sys-
tem in order to use these libraries.

4.2.1 TCP Receiver

The module backend.io.tcp receive exports theThe TCP connection
is handled by a

Receiver object.
Receiver-object. This object provides functions to con-
nect to the sensor unit and receive data from it. The read-
method returns a list of DataPoints as exported from
backend.model.data.

1numpy.org
2www.scipy.org

https://numpy.org/
https://www.scipy.org/

4.2 Receiver Software 33

4.2.2 Data Model

Three classes that are exported by the files in The received data is
organized and
evaluated.

backend.model handle the data model:

• DataPoint-objects contain a single sample with val-
ues in SI-units and a timestamp. The conversion from
the raw sensor values is done in the constructor.

• Model-objects contain a state of the sensor unit in-
cluding 3D position, an orientation matrix, velocity
and motor current. They also provide a method to
interpolate from the current state towards a given
DataPoint.

• A DataSet-object contains a set of DataPoints and
Models and has methods to calibrate the orientation
from samples that were measured in a stationary po-
sition, to generate an initial model. It also removes
sensor biases if it is configured that way and proper
measurements are available (see section 4.2.3).

Section 5.2 explains how these classes interact to model the
movements of the sensor unit.

4.2.3 Debiasing

Biases are constant errors within the sensor data. To mea- Sensor bias is
measured and
removed.

sure such biases, the backend.model.bias module pro-
vides applications with graphical user interfaces. These
guide the user through taking measurements and save the
measured biases to a json file.

4.2.4 Plotting

For debugging and showcase, the python script plot.py Live plotting of
sensor data was
implemented.

shows a plot of live sensor data via the SciPy library.
The application reads json-encoded Model samples from a
named pipe. It then plots the orientation of the model as 3

34 4 Prototype Software

Figure 4.3: The figure shows a live plot of the sensor model.
The 3 axes of the gyroscope can be seen as colored arrows
in red, orange and green. The current position of the model
relative to the origin is indicated by the blue arrow.

vectors within a 3-dimensional cartesian coordinate system
(see figure 4.3). An additional vector displays the position
of the model. This way the rotation and movement of the
real drill can be directly compared to the movement of the
vectors in the graph.

4.3 Generating Animations

As an example of generating process documentation, a3D animations are
created from tracking

data.
video animation can be created from Models. This is done
by utilizing the scripting capabilities of the open source 3D
creation suite blender3. The provided .blend file includes
a scene with a 3D-model of a drill. The script creates a
keyframe for the model drill from each given Model. These

3www.blender.org

https://www.blender.org

4.3 Generating Animations 35

Figure 4.4: This figure shows a frame of the animation gen-
erated from dummy sensor data.

keyframes serve as reference for animating the movement
of the drill. The animation can then be rendered and saved
as a video file (see figure 4.4). To show how the script
works, another python library was created that can gener-
ate dummy sensor data to test it.

37

Chapter 5

Theoretical Background

This chapter explains the calculations that the software per-
forms during operation. Additionally, an example program
for the receiver is presented.

5.1 Debiasing

5.1.1 Measuring Gyroscope Bias

A gyroscope measures the angular velocity around its axes. Gyroscope bias is
measured.If we ignore sensor errors other than bias, the output p(t) at

the time t of a biased gyroscope is therefore given by

p(t) = φ(t) + bφ (5.1)

Where φ(t) is the non-biased angular velocity and bφ is the
gyroscope bias. The gyroscope bias is determined by rest-
ing the sensor unit at a stationary position while taking
measurements. When the gyroscope is not in movement,
it holds that

φ(t) = 0 =⇒ p(t) = bφ (5.2)

To reduce sensor noise, the bias is calculated as the aver-
age of the measured angular velocity. The graphical user
interface consists of a progress bar that shows the amount
of samples left to measure.

38 5 Theoretical Background

5.1.2 Measuring Accelerometer Bias

An accelerometer measures the acceleration that the sensorAccelerometer bias
is measured. experiences along its axes. If we ignore sensor errors other

than bias, the output a(t) at the time t of a biased gyroscope
is therefore given by

a(t) = α(t) + bα (5.3)

Where α(t) is the non biased acceleration and bα is the ac-
celerometer bias. Due to earths gravity that inflicts a force
g(t) on the sensor at some angle, in a resting position the
accelerometer still measures a force aresting(t) as follows

aresting(t) = g(t) + bα (5.4)

To get the bias from this, for each axis k ∈ {x, y, z} the ap-
plication asks the user to hold the sensor unit stationary
at two orientations o1 and o2 at times t1 and t2. Between
t1 and t2 the sensor unit is rotated by 180◦ around an axis
other than k. It then holds that

g(t1) = −g(t2) (5.5)

=⇒ aresting(t1) + aresting(t2) = 2bα (5.6)

The bias can then be calculated as

bα =
aresting(t1) + aresting(t2)

2
(5.7)

To reduce sensor noise, the bias is again calculated from an
average of multiple samples.

5.2 Sensor Fusion

To make sense of gyroscope, accelerometer and magne-The 3 sensor types
are combined for 3D

tracking.
tometer data, two algorithms were implemented. One cal-
culates the initial orientation and another one updates the
orientation and position from new sensor data.

5.2 Sensor Fusion 39

5.2.1 Calibrating Orientation

The DataSet.create acceleration axes()-method The drill model is
calibrated at startup.calculates how the coordinate system of the IMU is oriented

in respect to the global coordinate system of the workshop.
This information can then be used to map the sensor data to
the global coordinate system. The orientation is kept in the
form of a rotation matrix M = (x, y, z) ∈ R3×3 where x, y, z
are the global coordinate axes within the IMU coordinate
system.

DataSet.create acceleration axes() takes a
DataPoint-object during the measurement of which the
drill was held in a fixed position. The magnetometer value
points towards north and since the drill wasn’t moved,
the accelerometer value points in the opposite direction of
gravity. The orientation is then derrived from the averaged
accelerometer and magnetometer readings α, ω as follows:

[1]Input: accelerometer value: α,
magnetometer value: ω

[2]Output: axes matrix: M
[3]Z = ω ; // use -gravity as Z
[4]X = α × ω ; // use east as X
[5]Y = X × Z ; // use north as Y

[6]return [X|X| ,
Y
|Y | ,

Z
|Z|] ; // normalize vectors

In line 3, the Z-axis is initialized to the accelerometer value.
This will later help to remove gravity from the accelerom-
eter readings, since the direction of the gravity will always
be −Z as long as M is rotated in unison with the sensor
unit. X is set to the cross product of Z and ω in line 4. Thus
it is orthogonal to the Z-axis and points east. Since X and
Z are already established, we can calculate Y from their
cross product. Finally, the axes are normalized to make the
resulting matrix orthogonal, which is a requirement for ro-
tation matrices.

40 5 Theoretical Background

5.2.2 Interpolating from Data

After initializing the first model, the incomingThe sensor model is
updated with each

incoming data point.
DataPoints are used to continuously alter the model,
keeping it as accurate as possible to the real sensor move-
ments. The Model.interpolate towards()-method
of a model M takes a DataPoint D and calculates an
updated Model M ′ in four consecutive steps:

• Rotating the IMU coordinate system within the
global coordinate system.

• Accelerating the model by the value given by the ac-
celerometer.

• Translating the model by the velocity that has been
acquired through acceleration over time.

• Corrections to reduce drift from the real world.

In the following paragraphs, these will be discussed in
more detail. Let therefore

• t∆ be the time difference between the last update of
M and the timestamp of D

• AM̃ ∈ R3×3 be the orientation Matrix of a Model M̃

• VM̃ ∈ R3 be the velocity of a Model M̃

• PM̃ ∈ R3 be the position of a Model M̃

Rotating

The gyroscope data is used to rotate the models orienta-The rotation of the
model is updated. tion. The gyroscope measures the angular velocity around

the axes of the IMU in ◦/s. It outputs a rotation vector
ω = (x, y, z)T ∈ R3 where |ω| is the angle of rotation that the
accelerometer turns around the axis 1

|ω|ω per second[2018].
During the rotation step, the orientation matrix AM ′ of M ′

5.2 Sensor Fusion 41

is obtained by rotating the columns ofAM by−t∆ω. The ro-
tation is negated, since the orientation matrix contains the
position of the global coordinate axes. These rotate in the
opposite direction that the IMU rotates within them.

Accelerating

The accelerometer data is used to change the models ve- The velocity of the
model is updated.locity. The accelerometer measures the positional accelera-

tion within the IMU coordinate system and outputs a vector
α = (x, y, z) ∈ R3 in m/s2. The acceleration v in the global
coodinate system is calculated as

v = Sol(AM ′ |α− g ∗ (AM ′) ,3) (5.8)

Where g ≈ 9.81 m/s2 is the magnitude of earths gravity.
As the Z axis in AM ′ is the direction of the gravity-induced
force it used to substract gravity from the acceleration in
5.8. Then the velocity of M ′ can be calculated as

VM ′ = VM + t∆ ∗ v (5.9)

Translating

The Position of M’ is then obtained as The position of the
model is updated.

PM ′ = PM + t∆ ∗ VM ′ (5.10)

Corrections

Sensor error can introduce drift into the IMU model[2005]. Sensor error is
reduced.To reduce the drift, the interpolation is modified as follows.

If AM ′ is not true to the orientation of the sensor unit, the
gravity correction during the “Accelerating” step will in-
troduce significant error into the velocity. Assuming that
earths gravity is a major factor on the accelerometer read-
ings, the orientation matrixAM ′ is therefore slightly rotated

42 5 Theoretical Background

in a way that the angle between the Z-axis and α decreases.
The angle φ between the Z-axis and α is

φ = arcos

(
α ∗ (AM ′) ,3
|α| ∗ |(AM ′) ,3|

)
(5.11)

The rotation axis is the cross product of α and the Z-axis.
The columns of AM ′ is rotated around this axis by an angle
of up to φ but at maximum by a predefined constant φmax.
This constant can be chosen in a way that the Z-axis slowly
converges towards gravity during operation.

If VM ′ starts drifting into some direction due to accelerome-
ter error, PM ′ experiences the same error squared. There-
fore, in addition to the orientation correction, VM ′ is re-
duced by a predefined constant during each interpolation.

5.3 Example Program Execution

The python code in Appendix A comprises an example re-An example program
shows how to use

the libraries.
ceiver program that reads from the sensor unit, performs
sensor fusion and pipes the result into a unix FIFO. This
section explains the application in detail to show how the
libraries can be used together. The program assumes that
the debiasing applications have been executed beforehand
and that the sensor unit is running and connected to the
same network as the receiver system.

The lines 13 and 14 initialize a DataPoint- and aAt the beginning,
sensor unit is

connected and
calibrated.

Receiver-object. These objects will handle most of the in-
teraction with the presented libraries. The Receiver is ini-
tialized with the load gyro bias and load accl bias
flags to tell the constructor to load the sensor biases from
disk and remove them from future DataPoints when they
are appended to it.
The function receive routine() on lines 17-79 is the
main method that will be executed when calling this script
directly.
First, on line 19 it opens the unix FIFO that will receive
the output of this program. Then it calls the .connect
method of the Receiver on the next line. This method

5.3 Example Program Execution 43

sets up a TCP socket and connects it to the TCP server on
the sensor unit. On the lines 30-34, the .read()-method
of the Receiver is called periodically for a total of 5 sec-
onds. This method reads samples from the TCP connec-
tion and returns a list of DataPoints that are then ap-
pended to the DataSet. Within these 5 seconds, the real
drill has to be held in a stationary position. By calling the
.calibrate()-method of the DataSet, the DataPoints
that were received so far, are used to generate a Model of
the sensor unit. Since the drill wasn’t moved and the re-
sulting Model is supposed to be used as initial model, posi-
tional velocity and position can be set to 0. The orientation
is calculated as stated in section 5.2.1.

After these initialization steps, the rest of the code runs After initialisation, the
sensor data is
received and written
to a unix FIFO.

in an infinite loop at the lines 47-77. In each iter-
ation, first Receiver.read() is called and its result
is again appended to the DataSet, but this time the
congest flag ist set. This makes the DataSet apply
the Model.interpolate towards() method for each
received DataPoint to update its current Model. The
previous Models are automatically saved to a list by the
DataSet. On the lines 53-70, a second list is created that
is a sublist of the first one, such that it contains just enough
samples to have a sample rate as defined by the variable
PLOT RATE. This list is then serialized by mapping the
Model.to json serializable() method over it and
then using the json core library to dump the resulting dic-
tionaries as a json-str. The iteration ends by writing the
string to the FIFO on lines 74-76.

45

Chapter 6

Summary and Future
Work

In this Chapter, the contributions of the thesis are summa-
rized, and possible improvements on the approach are dis-
cussed.

6.1 Summary

In this thesis, a system for tracking movements of a power
tool was created. The presented system is capable of mea-
suring movement of a sensor unit that is mounted on a
cordless drill, sending the resulting data to a computer,
evaluating it and creating a 3D animation from that.

The sensor unit is firmly attached to the cordless drill and
doesn’t move in relation to the drill when applying man-
ual force. This makes sure that the sensor data reflects the
movements of the drill. The sensor unit uses the full 1 kHz
data rate of the IMU sensors and its TCP connection allows
to send the whole data stream to the receiver. This means
that rapidly changing movement can be tracked.

The receiver can perform sensor fusion to combine the three
kinds of IMU data and obtain a model of the drill move-

46 6 Summary and Future Work

ment. The live plot shows that the orientation of the model
closely follows the orientation of the real drill. Also, the po-
sitional movements of the model correlate with the move-
ments of the drill, but after moving the drill for the first
time since the model initialisation, the model position drifts
away from the real world due to sensor error.

The provided script for generating 3D animations works as
intended when using dummy data. This can be seen in the
following video that was rendered from the dummy data.

File: dummy data.avia

ahttp://hci.rwth-aachen.de/public/MenkeTracking/dummy data.avi

6.2 Future work

Future work should focus on improving the systems accu-
racy. Currently, the sensor error renders the positional data
that the system provides useless after a short time. Ap-
proaches as in Batista et al. [2010] that aim to filter non-
constant sensor error, greatly improve sensor accuracy and
could improve stability of positional data. The IMU could
also be combined with other sensors such as cameras[2010]
to reduce the positional drift.
The sensor unit is currently fixed to the side of the drill,
potentially obstructing the user. In the future, it could be
integrated seamlessly into the tools. This could be done by
using smaller components on a single PCB that hosts both
sensors and the microcontroller. The drill battery could
then be used for powering the sensor unit, making it even
smaller without the need for an additional battery.

When the system delivers reliable tracking data, research
should use it to automatically generate documentation. The
presented technique of creating 3D animations could be ex-
tended by extracting high level information as e.g. distinc-
tion of steps within a workflow. This information could
then be used to cut out less interesting parts of the pro-
cess, or to move camera angles depending on the task per-
formed.

http://hci.rwth-aachen.de/public/MenkeTracking/dummy_data.avi

6.2 Future work 47

Also, multiple tools in a single workshop could be
equipped with sensors to extend the set of actions that can
be tracked.

49

Appendix A

Example Program

1 import time
2 from backend . model . data import DataPoint , Model
3 from backend . model . d a t a s e t import DataSet
4 from backend . io . t c p r e c e i v e import Receiver , SAMPLE RATE
5 import os
6 import j son
7 import numpy as np
8
9 # t h e amount o f s a m p l e s t o w r i t e t o t h e FIFO p e r s e c o n d

10 PLOT RATE = 8
11 FIFO PATH = ”/tmp/bachelor prototype ”
12
13 d a t a s e t = DataSet (l o a d g y r o b i a s=True , l o a d a c c l b i a s =True)
14 rec = Receiver ()
15
16
17 def r e c e i v e r o u t i n e () :
18
19 f i f o = os . open (FIFO PATH , os .O RDWR)
20
21 rec . connect ()
22
23 c a l i b r a t i o n d u r a t i o n = 5 # s e c o n d s
24 s t a r t t i m e = time . time ()
25 l a s t t i m e = 0
26
27 f i f o = os . open (FIFO PATH , os .O RDWR)

50 A Example Program

28
29 # c a l i b r a t e o r i e n t a t i o n
30 while time . time () − s t a r t t i m e < c a l i b r a t i o n d u r a t i o n :
31 r ec e i ve d d at a = rec . read ()
32 d a t a s e t . append (r e c e i v ed d at a)
33 l a s t t i m e = re c e iv e d d at a [−1] . time
34 d a t a s e t . c a l i b r a t e ((0 , l a s t t i m e))
35
36 # g e n e r a t o r t h a t s e l e c t s a s u b s e t o f t h e r e c e i v e d s a m p l e s t o p i p e t o FIFO
37 def s e l e c t i o n i n d i c e s g e n e r a t o r () :
38 re s = 0
39 while True :
40 y i e l d i n t (re s)
41 re s += SAMPLE RATE / PLOT RATE
42
43 s e l e c t i o n i n d i c e s = s e l e c t i o n i n d i c e s g e n e r a t o r ()
44 s e l e c t i o n i n d e x = next (s e l e c t i o n i n d i c e s)
45 num samples received = 0
46
47 while True :
48 r ec e i ve d d at a = rec . read ()
49 num samples received += len (r e ce i v ed d at a)
50 d a t a s e t . append (rece ived data , congest=True)
51
52 # r e t u r n s a l i s t o f s a m p l e s w i t h i n t h e l a s t r e a d from t h e s e n s o r t h a t s h o u l d be p i p e d t o FIFO
53 def s e l e c t a l l s a m p l e s () :
54 nonlocal s e l e c t i o n i n d e x
55
56 r e s u l t = []
57 while s e l e c t i o n i n d e x < num samples received :
58 r e s u l t . append ((d a t a s e t . s to ry [s e l e c t i o n i n d e x] , d a t a s e t . congested data [s e l e c t i o n i n d e x]))
59 s e l e c t i o n i n d e x = next (s e l e c t i o n i n d i c e s)
60
61 return r e s u l t
62
63 def s e r i a l i z e s a m p l e (data) :
64 model , da ta point = data
65 print (da ta point . c u r r e n t v a l u e)
66 return j son . dumps({
67 ”model” : model . t o j s o n e n c o d a b l e () ,
68 ” data point ” : da ta point . t o j s o n e n c o d a b l e ()
69 }) + ”\n”
70

51

71 se lec ted samples = s e l e c t a l l s a m p l e s ()
72 to p ipe = l i s t (map(s e r i a l i z e s a m p l e , se lec ted samples))
73 to p ipe = ”” . j o i n (to p ipe)
74
75 num written = 0
76 while num written < len (to p ipe) :
77 num written += os . wri te (f i f o , bytes (to pipe , encoding=”UTF8”))
78
79 # w i l l n e v e r be c a l l e d but s h o u l d be done in an a c t u a l a p p l i c a t i o n
80 os . c l o s e (f i f o)
81
82
83 i f name == ” main ” :
84 i f not os . path . e x i s t s (FIFO PATH) :
85 os . mkfifo (FIFO PATH)
86 r e c e i v e r o u t i n e ()

53

Bibliography

Stavros Antifakos, Florian Michahelles, and Bernt Schiele.
Proactive instructions for furniture assembly. In Interna-
tional Conference on Ubiquitous Computing, pages 351–360.
Springer, 2002.

Pedro Batista, Carlos Silvestre, Paulo Oliveira, and Bruno
Cardeira. Accelerometer calibration and dynamic bias
and gravity estimation: Analysis, design, and experi-
mental evaluation. IEEE transactions on control systems
technology, 19(5):1128–1137, 2010.

Timothy Campbell, Jonathan Harper, Björn Hartmann, and
Eric Paulos. Towards digital apprenticeship: Wearable
activity recognition in the workshop setting. Technical
report, Tech. Rep. UCB/EECS-2015-172, EECS Depart-
ment, University of California, Berkeley, 2015.

Pei-Yu Chi, Sally Ahn, Amanda Ren, Mira Dontcheva,
Wilmot Li, and Björn Hartmann. Mixt: automatic gen-
eration of step-by-step mixed media tutorials. In Proceed-
ings of the 25th annual ACM symposium on User interface
software and technology, pages 93–102, 2012.

W Flenniken, J Wall, and D Bevly. Characterization of var-
ious imu error sources and the effect on navigation per-
formance. In Ion Gnss, pages 967–978, 2005.

Floraine Grabler, Maneesh Agrawala, Wilmot Li, Mira
Dontcheva, and Takeo Igarashi. Generating photo ma-
nipulation tutorials by demonstration. In ACM SIG-
GRAPH 2009 papers, pages 1–9. 2009.

Chris Hide, Tom Botterill, and Marcus Andreotti. Low cost
vision-aided imu for pedestrian navigation. In 2010 Ubiq-

54 Bibliography

uitous Positioning Indoor Navigation and Location Based Ser-
vice, pages 1–7. IEEE, 2010.

Sophie Leroy. Why is it so hard to do my work? the chal-
lenge of attention residue when switching between work
tasks. Organizational Behavior and Human Decision Pro-
cesses, 109(2):168–181, 2009.

Bakhtiar Mikhak, Christopher Lyon, Tim Gorton, Neil Ger-
shenfeld, Caroline McEnnis, and Jason Taylor. Fab lab:
an alternate model of ict for development. In 2nd interna-
tional conference on open collaborative design for sustainable
innovation, volume 17, 2002.

Iván Sánchez Milara, Georgi V Georgiev, Jani Ylioja, Onnur
Özüduru, and Jukka Riekki. ” document-while-doing”: a
documentation tool for fab lab environments. The Design
Journal, 22(sup1):2019–2030, 2019.

Stephen Monsell. Task switching. Trends in cognitive sci-
ences, 7(3):134–140, 2003.

Kylie Peppler, Adam Maltese, Anna Keune, Stephanie
Chang, Lisa Regalla, and Maker Education Initiative.
Survey of makerspaces, part ii. Open Portfolios Maker Ed-
ucation Initiative, pages 1–6, 2015.

Joshua S Rubinstein, David E Meyer, and Jeffrey E Evans.
Executive control of cognitive processes in task switch-
ing. Journal of experimental psychology: human perception
and performance, 27(4):763, 2001.

Eldon Schoop, Michelle Nguyen, Daniel Lim, Valkyrie Sav-
age, Sean Follmer, and Björn Hartmann. Drill sergeant:
Supporting physical construction projects through an
ecosystem of augmented tools. In Proceedings of the 2016
CHI Conference Extended Abstracts on Human Factors in
Computing Systems, pages 1607–1614. ACM, 2016.

Sara Stančin and Sašo Tomažič. On the interpretation of 3d
gyroscope measurements. Journal of Sensors, 2018, 2018.

Tiffany Tseng. Making make-throughs: Supporting young
makers sharing design process. Proceedings of Fablearn,
2015.

Bibliography 55

Tiffany Tseng and Mitchel Resnick. Product versus process:
representing and appropriating diy projects online. In
Proceedings of the 2014 conference on Designing interactive
systems, pages 425–428, 2014.

Tiffany Tseng and Mitchel Resnick. Spin: Examining the
role of engagement, integration, and modularity in sup-
porting youth creating documentation. In Proceedings of
the 2016 ACM Conference on Designing Interactive Systems,
pages 996–1007, 2016.

Jamie A Ward, Paul Lukowicz, Gerhard Troster, and Thad E
Starner. Activity recognition of assembly tasks using
body-worn microphones and accelerometers. IEEE trans-
actions on pattern analysis and machine intelligence, 28(10):
1553–1567, 2006.

Greg Welch and Eric Foxlin. Motion tracking: No silver
bullet, but a respectable arsenal. IEEE Computer graphics
and Applications, 22(6):24–38, 2002.

John Zimmerman, Erik Stolterman, and Jodi Forlizzi. An
analysis and critique of research through design: to-
wards a formalization of a research approach. In proceed-
ings of the 8th ACM conference on designing interactive sys-
tems, pages 310–319, 2010.

Typeset March 15, 2020

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Motivation
	Gathering Process Data
	Prototype
	Overview

	Related work
	Documentation
	Simplifying Documentation
	Generating Documentation
	Tracking Power Tools
	3D Motion Tracking

	Prototype Hardware
	Sensor Unit Hardware
	Receiver Hardware
	Custom Hardware Design
	Drill Modification
	Custom Printed Circuit Board
	Mainboard Purpose
	Mainboard Design and Manufacturing

	Case and Mounting Harness
	Case Design
	Battery Plate Design
	Harness Design

	Assembling

	Prototype Software
	Sensor Unit Software
	Current Sensor Library
	I2C Abstraction Library
	IMU Library
	Control Flow

	Receiver Software
	TCP Receiver
	Data Model
	Debiasing
	Plotting

	Generating Animations

	Theoretical Background
	Debiasing
	Measuring Gyroscope Bias
	Measuring Accelerometer Bias

	Sensor Fusion
	Calibrating Orientation
	Interpolating from Data
	Rotating
	Accelerating
	Translating
	Corrections

	Example Program Execution

	Summary and Future Work
	Summary
	Future work

	Example Program
	Bibliography
	Index

