
by
Malte Adrian Xiang Rui Meng

Stathunt –
Supporting Novice
Researchers Seek
Statistical
Procedures

Bachelor’s Thesis
submitted to the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Dr. Ulrik Schroeder

Registration date: 13.05.2020
Submission date: 12.06.2020

Zentrales Prüfungsamt/Central Examination Office

Eidesstattliche Versicherung
Statutory Declaration in Lieu of an Oath

___________________________ ___________________________

Name, Vorname/Last Name, First Name Matrikelnummer (freiwillige Angabe)
Matriculation No. (optional)

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/

Masterarbeit* mit dem Titel
I hereby declare in lieu of an oath that I have completed the present paper/Bachelor thesis/Master thesis* entitled

__

__

__

selbstständig und ohne unzulässige fremde Hilfe (insbes. akademisches Ghostwriting)

erbracht habe. Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel benutzt.

Für den Fall, dass die Arbeit zusätzlich auf einem Datenträger eingereicht wird, erkläre ich,

dass die schriftliche und die elektronische Form vollständig übereinstimmen. Die Arbeit hat in

gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.
independently and without illegitimate assistance from third parties (such as academic ghostwriters). I have used no other than

the specified sources and aids. In case that the thesis is additionally submitted in an electronic format, I declare that the written

and electronic versions are fully identical. The thesis has not been submitted to any examination body in this, or similar, form.

___________________________ ___________________________

Ort, Datum/City, Date Unterschrift/Signature

 *Nichtzutreffendes bitte streichen

*Please delete as appropriate

Belehrung:
Official Notification:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung

falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei

Jahren oder mit Geldstrafe bestraft.

Para. 156 StGB (German Criminal Code): False Statutory Declarations

Whoever before a public authority competent to administer statutory declarations falsely makes such a declaration or falsely

testifies while referring to such a declaration shall be liable to imprisonment not exceeding three years or a fine.
§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so

tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158

Abs. 2 und 3 gelten entsprechend.

Para. 161 StGB (German Criminal Code): False Statutory Declarations Due to Negligence

(1) If a person commits one of the offences listed in sections 154 through 156 negligently the penalty shall be imprisonment not
exceeding one year or a fine.
(2) The offender shall be exempt from liability if he or she corrects their false testimony in time. The provisions of section 158 (2)
and (3) shall apply accordingly.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:
I have read and understood the above official notification:

___________________________ ___________________________

Ort, Datum/City, Date Unterschrift/Signature

Malte Adrian Meng
Meng, Malte Adrian Xiang Rui

Malte Adrian Meng
354529

Malte Adrian Meng
StatHunt – Supporting Novice Researchers Seek Statistical Procedures�

Malte Adrian Meng
Aachen, 12.06.2020

Malte Adrian Meng
Aachen 12.06.2020

v

Contents

Abstract xi

Acknowledgements xiii

1 Introduction 1

1.1 Problem Statement 2

1.2 Our Solution 2

1.3 Overview . 3

2 Background and Related Work 5

2.1 Seeking Statistical Help 5

2.1.1 Behaviour of Data Practitioners 5

2.1.2 Q&A Websites 6

Missing Information 7

Badly Structured Information 7

Fabricated Information 7

2.2 Support Tools for Experiment Design 9

vi Contents

2.2.1 Touchstone 9

2.2.2 NexP 9

2.2.3 Touchstone2 10

2.3 Data Obfuscation 10

2.4 Chatbots . 11

2.5 Existing Support Solutions for Inferential
Statistics . 12

2.5.1 StatPlayground 12

2.5.2 Statsplorer 12

3 StatHunt 13

3.1 Specifications 13

3.1.1 Feature Recommendations 13

3.1.2 Limitations and Final Features 14

3.2 Interaction Design 15

3.2.1 Chatbot 15

3.2.2 Experiment Representation 15

3.3 Workflow . 17

3.3.1 Experiment Information 17

3.3.2 Dataset Upload and Obfuscation . . . 19

3.3.3 Information Sharing and Question
Posting 21

4 Implementation 23

Contents vii

4.1 Technologies 23

4.2 Architecture 24

4.2.1 Authentication and Session Manage-
ment 24

4.2.2 Data Passing 25

4.2.3 Storage Model 26

4.3 Experiment Design 27

4.3.1 Chatbot 27

Experiment Information 27

Dependent Variables 28

Independent Variables 31

4.3.2 Blockly 33

Block Creation 34

Workspace Integration 37

Storing Experiment Data 37

4.3.3 State Synchronisation 40

4.4 Dataset . 44

4.4.1 Datatable 45

4.4.2 Dataset Obfuscation 47

Value Obfuscation 47

Variable Obfuscation 49

5 Summary and Future Work 53

viii Contents

5.1 Summary and Contributions 53

5.2 Future Work 54

Bibliography 55

Index 59

ix

List of Figures

2.1 StackExchange missing information 7

2.2 StackExchange bad structure 8

2.3 StackExchange fabricated variables 8

2.4 StackExchange fabricated data 8

3.1 Experiment design workspace 16

3.2 Sample design brick 17

3.3 STN experiment design 18

3.4 Sample datatable 19

3.5 STN dataset 20

3.6 STN question posting 21

4.1 Botpress information nodes 28

4.2 Botpress dependent variable 29

4.3 Botpress independent variables 32

4.4 Blockly experiment design template 34

4.5 Blockly dependent variable template 35

x List of Figures

4.6 Blockly independent variable template 36

4.7 Botpress value obfuscation 48

4.8 Botpress variable obfuscation 49

xi

Abstract

This thesis outlines the creation of StatHunt, an interactive web-application aimed
to help researchers identify correct statistical procedures for their experiments. To
explain the design rationale behind StatHunt, the underlying problems it is try-
ing to solve are presented. For the design of StatHunt, State Transition Networks
are used to model conversation flow of a developed chatbot. The concrete imple-
mentation of this conversational flow in Botpress is then detailed. For experiment
visualisation the usage of Blocky is explained and implementation information is
provided. As a privacy mechanism for researchers to share their data, differential
privacy is introduced. Its use in obfuscating data in StatHunt is explained.

xiii

Acknowledgements

Firstly, I would like to thank Prof. Dr. Jan Borchers, my thesis supervisor, for his
time and effort.

I would also like to thank Prof. Dr. Ulrik Schroeder, for agreeing and taking the
time to become the second examiner.

I would also like to thank all of the members at the Media Computing Group for
being so welcoming and making my time spent at the Chair so wonderful.

Finally, I would especially like to thank Krishna Subramanian for his time and sup-
port. His well-placed insight and critical feedback have turned this thesis into the
most valuable experience of my studies.

Thank you!

Malte Meng

1

Chapter 1

Introduction

Inferential statistics is a branch of mathematics used to in- Statistics are widely
used in research to
validate experiment
results

fer information about a large population, through analysis
of a small sample. In many humanitarian sciences, methods
taken from inferential statistics are used to evaluate data
from experiments or studies. In HCI (Human Computer
Interaction), one of the most commonly used techniques is
NHST (Null Hypothesis Significance Testing). In Null Hy-
pothesis Significance Testing, the researcher selects and ap-
plies one of many possible tests to prove the validity of their
hypothesis. Some commonly used tests are ANOVA (Anal-
ysis of Variance), the t-test, Chi-square test and Fisher’s test.

Research on significance testing in HCI ranges from ques- Selecting the right
statistical test and
applying it correctly
is a difficult task

tioning the appropriateness of this approach (Kaptein
and Robertson [2012]), to recommending alternative meth-
ods (Dragicevic [2016]) and investigating problems experi-
enced researchers have when applying inferential statistics
(Cairns [2007]). The many problems that researchers have
when selecting and applying statistical tests to their experi-
ments show that both are inherently complex. The causes of
this, identified by Cairns [2007], are researchers not validat-
ing underlying data assumptions, and using inappropriate
tests. An additional factor Cairns [2007] identified was a
broad lack of statistical education.

2 1 Introduction

1.1 Problem Statement

For novice researchers lacking experience in both experi-One of the most
commonly used

support resources for
Statistics is Q&A

websites

ment design and statistics, finding the correct statistical test
and ensuring that required assumptions, like the data dis-
tribution, are met, can be daunting. Although many dif-
ferent resources exist to support the decision-making pro-
cess, there is no standard guideline for how one should
proceed. To investigate how researchers and data practi-
tioners approach their search for a statistical test, Hu [2019]
performed a group of interviews. One of the predomi-
nant discoveries was that the main resource each partici-
pant used was Q&A websites, with the most common ones
being StackOverflow1, CrossValidated2 and ResearchGate3.

To discover how effective this was, 76 questions on sta-Many researchers
don’t know what and

how to post a good
question

tistical tests were taken from CrossValidated by Hu [2019].
The analysis of these question uncovered that the follow-
ing core issues had a strong effect on the help researchers
received:

• Missing information

• Poorly structured information

• Fabricated information

• Unclear formulation

These issues led to respondents making multiple assump-
tions when providing help. Additionally, respondents
would ask for clarification, leading to lengthy back-and-
forth communication.

1.2 Our Solution

To ensure that respondents on Q&A websites can directlyA web-app is
introduced to aid

researchers in
posting questions

1https://stackoverflow.com
2https://stats.stackexchange.com
3https://www.researchgate.net

1.3 Overview 3

understand and support researchers seeking help, the in-
teractive web-application StatHunt is presented. Through
dialogue, a chatbot (conversational agent) guides novice re-
searchers through:

1. Providing their experiment design

2. Uploading their data

3. Formulating their question

As researchers provide their experiment design, StatHunt
generates an interactive visualisation of the experiment, in-
spired by Eiselmayer et al. [2019]’s Touchstone2 experiment
visualisation. This allows the user to make changes dynam-
ically. After uploading their data, StatHunt provides the
user with the opportunity to either obfuscate the values or
variables of their data. This provides them with the pri-
vacy they might want when sharing their information. At
the final step, the user is provided with a shareable URL
containing both the generated experiment design and data.
This URL can then be provided when asking for help on
Q&A platforms.

1.3 Overview

In the Background and Related Work section, the research This thesis will
explain StatHunt’s
design decisions and
provide
implementation
details

that led to the problem statement will be introduced. In
the StatHunt section, the exact specifications that were cre-
ated to address the problems will be outlined, in addition
to the interaction design and workflow. Following this, the
technical aspects of StatHunt’s final implementation will be
explained. This will include introducing the libraries used,
the software architecture, and the specific development de-
tails for the experiment design and dataset page. In the fi-
nal chapter of this thesis, the contributions of the work will
be summarised and recommendations will be made for fu-
ture work.

5

Chapter 2

Background and Related
Work

2.1 Seeking Statistical Help

2.1.1 Behaviour of Data Practitioners

To investigate the resource-seeking behaviour of data prac-
titioners for statistics, Hu [2019] interviewed 12 researchers.
In exploring procedure, problems, resources and attitudes
when it came to that behaviour, Hu [2019]’s interview find-
ings revealed three main themes:

1. Problems in method selection

2. Coping strategies

3. Resource utilisation

Due to different prerequisites required by validity tests, Data practitioners
apply commonly
used or known tests
when facing
problems finding the
right one

and the lack of a standard, data practitioners face difficul-
ties when trying to determine the correct method for their
data. To cope with this, participants of the study would ei-
ther default to a commonly used method in their field or
apply the test they were most comfortable with. In doing

6 2 Background and Related Work

so, the correctness of their chosen method was not guaran-
teed, potentially leading to issues with result validity.

When it came to resource utilisation, researchers used
books, looked at methods applied in relevant papers, asked
more experienced colleagues, or went on Q&A sites such as
StackExchange, Crossvalidated, and ResearchGate.

2.1.2 Q&A Websites

Upon discovering that Q&A sites are the only unani-Question analysis on
Q&A sites showed

problems
researchers have

when seeking help

mously used resource, Hu [2019] analysed 76 statistical
test-related questions from ResearchGate and CrossVali-
dated. The analysed questions were seeking either a recom-
mendation for the correct statistical procedure; validation
of a selected statistical procedure, or further information.

The information that researchers provided could be di-
vided into four sections:

• Hypothesis

• Analysis goal

• Experiment design

• Experiment dataset or data visualisation

By looking at comments, multiple problems were identified
with posted questions.

These problems could be broken down into the following
four categories:

1. Missing information

2. Poorly structured information

3. Fabricated information

4. Unclear formulation

2.1 Seeking Statistical Help 7

Missing Information

Out of the 76 questions, Hu [2019] discovered that 29 ques-
tions were missing at least one of four vital pieces of infor-
mation. This caused respondents to request the informa-
tion, or provide a solution based on assumptions they had
made. In Figure 2.1, BruceET had to ask about sample size
and dependent variables as the information was not pro-
vided.

Figure 2.1: Question responses to missing information

Badly Structured Information

In a further 13 questions, the information researchers pro-
vided was improperly structured. This again led to re-
spondents asking for further clarification. In Figure 2.2,
wootscootinboogie used a table to present their variable in-
formation, which led to a question asking for further clari-
fication from markovchain.

Fabricated Information

Unwilling to share their actual experiment information, re-
searchers also fabricated details of their experiment. This
included providing fake variable names, or fake variable
properties. In Figure 2.3, Damien can be seen doing this.
Despite having collected it, some researchers were also un-
willing to provide their data due to privacy issues. In Fig-
ure 2.4, user2079355 did this, creating a visualisation that
they claim resembles their actual dataset.

8 2 Background and Related Work

Figure 2.2: Question with badly structured information

Figure 2.3: Question with poor variables

Figure 2.4: Question with fabricated data

2.2 Support Tools for Experiment Design 9

2.2 Support Tools for Experiment Design

One of the most essential features in StatHunt is experiment Touchstone, NexP
and Touchstone2
provide examples of
experiment
representation

visualisation. The three main tools developed in HCI to ad-
dress this are Touchstone, NexP and Touchstone2. Despite
Touchstone2 being the main inspiration for StatHunt’s vi-
sualisation techniques, understanding both the work done
by MacKay et al. [2007] in Touchstone and Meng et al.
[2017] in NexP is important.

2.2.1 Touchstone

Studies have proven that even small features of experiment
design can impact the results of studies (Gray and Salzman
[1998]). Some work has been done on assisting researchers
in designing and formally structuring their experiment. In
order for HCI researchers to establish a solid foundation,
MacKay et al. [2007] introduced TouchStone, a set of tools
developed to enable researchers to compare alternative ex-
periment designs. Through a GUI (Graphical User Inter-
face), Touchstone allows users to specify their design in-
formation. A help window points to online resources that
provide the users with support, if required.

2.2.2 NexP

Despite the completeness of Touchstone, Meng et al. [2017]
later proposed and developed the alternative NexP. Meng
et al. [2017] designed NexP to help more inexperienced re-
searchers understand the process of experiment design. To
facilitate this, NexP, contrary to Touchstone, eases the user
into the experiment design process by asking them a series
of questions. In addition to using more informal language
when framing questions, examples are provided. These
give the user a point of reference when formulating their
hypothesis or choosing factors for their experiment. Over
the course of a user study, Meng et al. [2017] discovered
that novices considered this approach more intuitive and
easy-to-use when compared to Touchstone.

10 2 Background and Related Work

2.2.3 Touchstone2

Most recently in tools that aid experiment design devel-
opment, Eiselmayer et al. [2019] introduced Touchstone2.
Aimed at tackling what Baker and Penny [2016] identify
as a reproducibility crisis in science, Touchstone2 not only
allows users to create their own experiment design, but al-
lows them to share it in their interactive workspace. The de-
sign is different to that of NexP as Eiselmayer et al. [2019]
provide a reworked visual environment for manipulating
designs and their parameters. By representing experiments
as a collection of nested bricks containing important pa-
rameters, users create their experiments by dragging these
bricks onto a workspace where they snap together.

2.3 Data Obfuscation

To address privacy concerns that a user might have when itObfuscation is a
method used to
change data for

privacy protection
while preserving its
statistical value as

well as possible

comes to sharing experiment data, StatHunt provides users
with the option to obfuscate it. This consists of changing
the individual values of the data, while trying to minimise
the effect that the change has on different statistical param-
eters. A common method for changing data values is run-
ning every value through a function that applies a random
amount of noise.

To ensure that such a function provides the dataset with a
sufficient amount of privacy, we use the following defini-
tion provided by Dwork and Roth [2013]:

An algorithm A is ε-differentially private with ε ∈ R and
ε > 0, if for all datasets D1 and D2 differing on a single
element and all subsets S ⊆ Im(A)

Pr[A(D1)] ∈ S ≤ exp(ε)× Pr[A(D2) ∈ S]

Where Pr[x ∈ M] is the probability of x being in M and
exp(x) is ex.

Since the Laplace mechanism is an ε-differential private
mechanism, StatHunt uses it to obfuscate the experiment

2.4 Chatbots 11

data. The Laplace mechanism takes a dataset of numeri-
cal values and adds noise taken from a Laplace distribution
with a mean of 0.

2.4 Chatbots

Chatbots, also referred to as conversational agents, are soft- Chatbots provide
users with an
intuitive method of
providing information
or using services

ware agents that can communicate with users via written
text. A chatbot can act as an interface over which users can
perform tasks that would otherwise have to be done in a
graphical user interface. With a growing use of messaging
platforms such as WhatsApp, Telegram, WeChat and Slack,
the barrier to entry for users talking to a well-designed
chatbot is low. Due to the many development tools one can
use to create complex chatbots (Microsoft Bot Framework1,
IBM Watson2), the technical know-how required to make
them is low. In research, the trend towards using chat-
bots has not gone unnoticed, with Følstad and Brandtzaeg
[2017] predicting the implications the swing towards natu-
ral language interfaces can have for HCI. Since the majority
of usability research is currently being done on hardware
design or graphical user interfaces, Følstad and Brandtzaeg
[2017] even recommend a shift from design being seen as an
interpretative task to being seen as an exploratory one.

Multiple research papers have also introduced different
chatbots. To try to increase their efficiency, Ranoliya et al.
[2017] designed and implemented a chatbot to answer uni-
versity related questions. Introducing a new methodology
to create chatbots that can handle more complex tasks, Fast
et al. [2018] developed Iris, a chatbot aimed to help users
perform open-ended data science tasks.

1https://dev.botframework.com
2https://www.ibm.com/watson

12 2 Background and Related Work

2.5 Existing Support Solutions for Infer-
ential Statistics

2.5.1 StatPlayground

StatPlayground, as proposed by Subramanian and
Borchers [2017], is an interactive web-app aimed at help-
ing researchers improve their statistical know-how. In
StatPlayground, users are asked to select one of a few
pre-defined datasets. They can then control different pa-
rameters of the dataset through interactive visualisations
and observe the effects that these have on the statistics.
By changing the selected statistical test, users can deter-
mine what effects applying different tests can have on
the outcome of experiment data. Taking this exploratory
approach, StatPlayground can help novice researchers
better understand statistical procedures, data, and identify
relationships between statistical concepts. With increased
statistical literacy, researchers will be able to make more
informed decisions on which statistical test could be a right
fit for their experiment.

2.5.2 Statsplorer

Statsplorer, introduced by Wacharamanotham et al. [2015],
is a tool developed to help novice researchers learn and ap-
ply statistical tests. After selecting a variable from experi-
ment data, Statsplorer selects an appropriate visualisation
and presents it to the user. Statsplorer then tests different
data assumptions and uses visualisations to help the user
select a statistical test and interpret the results of analysis.

13

Chapter 3

StatHunt

3.1 Specifications

3.1.1 Feature Recommendations

In the outlook of their work, Hu [2019] provide recom- Seven core features
were taken from Hu
[2019]’s system
recommendation and
used as a baseline
for StatHunt

mendations for an expansion of Q&A websites to tackle re-
searcher problems. This proposed system would determine
at which stage the researcher was and detail the informa-
tion they would need to provide. In designing Stathunt,
the decision was made to follow the recommendations in
the best possible way. In accordance with this, the follow-
ing seven core features were used as a baseline:

1. Tell the data scientist what experiment information
they need to provide

2. Structure the provided information in an easily un-
derstandable form

3. Prompt the user to provide data if possible

4. Provide charts for possible data visualisation

5. Fabricate a dataset and variables

6. Notify researchers when comments are made on their
question

14 3 StatHunt

7. Help formulate the researcher’s question and help
generate relevant question tags

3.1.2 Limitations and Final Features

The original intention was to develop an extension to cur-
rent, existing Q&A websites. However, this was not a pos-
sibility. The reason for this is that while one can program
user actions using the StackExchange API, developing an
integrated extension is not possible. As the next best al-
ternative, StatHunt was developed as a web-application,
implementing therelevant Q&A features using the Stack-
Exchange API.

After further investigation, the features to be included wereIn the design of
StatHunt, four core

features will be
included

altered. With Feature 4. being recommended to present the
user’s data in an effective way, posting the entire dataset
would be more valuable to respondents. By adding in data
obfuscation as a feature, users that would be unwilling to
share their own data due to privacy concerns could still do
so. As Feature 6. is already implemented in StackExchange,
it was removed. The revised features that StatHunt should
include were:

1. Getting the required experiment information from the
data scientist

2. Structuring the provided information in a easily un-
derstandable format

3. Obtaining the user’s dataset and allowing them to ob-
fuscate it

4. Helping to formulate the user’s question and gener-
ating relevant question tags

3.2 Interaction Design 15

3.2 Interaction Design

3.2.1 Chatbot

The main interaction technique implemented for use in StatHunt utilises a
chatbot to guide the
user and receive
their input

StatHunt was a chatbot. Using the chatbot made applying
a question-answer scheme, similar to what can be found in
NexP, straightforward. Additionally, instead of having ex-
amples under the questions in plain text, the chatbot can
provide help and examples when asked to do so. Inexperi-
enced users have the benefit of receiving support, whereas
experienced ones are not overloaded with redundant infor-
mation.

3.2.2 Experiment Representation

Taken from the analysis performed by Hu [2019], required
pieces of information StatHunt had to gather were:

• Hypothesis

• Goal of Analysis

• Independent Variables

• Dependent Variables

• Sample Size

• Procedure

• Within- / Between-group design

To represent this information in a structured matter, a sim- Interactive blocks
provide the user with
an alternative
method to provide
experiment
information

ilar approach to Touchstone2 is utilised. A structure of
nested bricks was created, containing labels indicating to
the user what information the brick required. The brick
workspace is split into two sections, as seen in Figure 3.1
The section annotated with a 1 is the toolbar, which features
template blocks. Researchers can drag the three blocks out
of the toolbar into section 2, the workspace, where they

16 3 StatHunt

Figure 3.1: Experiment design workspace and toolbar

can edit the individual values on the blocks and connect
them. With a. being the main design block, users can in-
put their experiment goal, hypothesis, procedure, design,
and sample size by selecting fields and editing them. Block
b. represents the independent variables and features an ed-
itable name, while providing the ability to snap multiple
red value blocks to the independent variable. Block c. is
used to represent the dependent variables and features an
editable name in addition to allowing the user to select the
scale of measurement (nominal, ordinal, interval, or ratio)
through a drop-down menu .

Snapping the yellow blocks into the gap of the main design
block allows the user to add as many independent variables
as required. Likewise, dependent variable blocks can be
snapped into the gap underneath the label Dependent Vari-
ables. An example of completed experiment representation
can be seen in Figure 3.2.

3.3 Workflow 17

Figure 3.2: Sample of a completed design brick

3.3 Workflow

3.3.1 Experiment Information

The first window that opens in StatHunt is the experiment On the experiment
design page, the
user provides their
experiment
information using the
chatbot or design
blocks

design. Here, the user is greeted by the chatbot and given
the option to either use the interactive visualisation to cre-
ate their experiment design, or provide the information via
the chatbot. After the user completes their experiment de-
sign, they can either tell the chatbot they are done, or click
on the dataset tab in the menu bar of the app, which brings
them to the next step.

The State Transition Network used to model dialogue for
the window can be seen in Figure 3.3. To make sure that
users do not have to go through unnecessary points of di-
alogue, they are provided with three separate options. The
user can choose between starting a linear walk-through,
providing a specific piece of information, or getting help.
After selecting the linear walk-through, the chatbot asks
the user to provide all pieces of experiment information se-

18 3 StatHunt

Figure 3.3: State Transition Network for experiment design

quentially. When typing in a specific piece of information,
the user is questioned about it. After providing the infor-
mation, the user is then brought back to the overview. If the
user wants to just seek help, they are brought to a list of the
different types of information they need to provide. When
selecting one of these pieces of information, the user is pro-
vided with an explanation and an example. After these are
given, the user is returned to the help list. If the user types
”back”, they are returned to the general overview.

The user is asked directly to provide all simple types of in-
formation. If they are unsure how to do so, they can type
”help” and are immediately given an explanation and ex-
ample. For the dependent and independent variables, the
dialogue is slightly more complex. As a single experiment
can have multiple independent variables, the user is first
asked to state the amount. For each variable, the user then
has to provide the name of the variable and how many lev-
els that variable has. For each level, the user then has to
provide the level name. Similar to the independent vari-
ables, one experiment can have multiple dependent vari-
ables. After asking the user to provide the amount of
dependent variables the experiment has, the user is then

3.3 Workflow 19

asked to provide the scale of measurement and any addi-
tional information they might deem relevant.

3.3.2 Dataset Upload and Obfuscation

After completing the initial steps, the user is brought to the Through a
table-view, users can
see and sort their
uploaded data

second pages, where they are prompted by the chatbot to
upload their experiment data as a CSV file. After uploading
the information, they can view and interact with their data
over a table view as seen in Figure 3.4. Through the chat-
bot, users are then given options to obfuscate the variables
and their values. Once the user is satisfied with the applied
obfuscation, they can move on to the next step through the
chatbot, or by pressing on the ’post question’ tab. The tool-

Figure 3.4: Table view of experiment data

bar at the top of the table provides the user with differ-
ent functionalities. The user can download a CSV version
of their edited dataset, remove certain columns from the

20 3 StatHunt

Figure 3.5: State Transition Network for dataset window

view, or filter based on column values. Using the search
feature, the user can find specific rows. If the user has cer-
tain parts of the dataset that they are unwilling to share
even when obfuscated, they can select them using check-
boxes and delete them. To obfuscate the dataset, the user
has to use the chatbot. As a model for the conversation
we use the State Transition Network in Figure 3.5. If theUsing the chatbot,

users can obfuscate
the data values or

variables

user has entered the window through the chatbot, they are
asked to upload their dataset. Once they have done so and
confirmed it, the user is brought to an overview with sev-
eral options. The user can then choose between obfuscat-
ing a column’s values, obfuscating the variable names of a
column, or moving on to the final question posting step of
StatHunt.

For value obfuscation, the user is asked to specify the col-
umn name of the variable they want to obfuscate. The data
in that column then goes through the obfuscation algorithm
and the table re-renders with the new values.

For variable obfuscation, the user is also asked to specify
the column they want to obfuscate. The chatbot then asks
the user what they want to rename the variable to. After

3.3 Workflow 21

Figure 3.6: State Transition Network for question posting window

asking the user what they want to replace, each of the value
names in the table then re-renders after StatHunt applies
those changes. Once the obfuscation is applied, the user
is returned to the overview. After applying obfuscation to
each relevant column, the user can then move on to the final
step.

3.3.3 Information Sharing and Question Posting

Once the user has completed all the changes they wanted to Once all information
is added, users can
get a URL to share it

make in their dataset, they are brought to the final window
of StatHunt. Here, the user can either get a URL to paste
into their question, or go through the question posting pro-
cess in StatHunt.

The model used for the conversation in this window can
be seen in Figure 3.6. Upon entry, the chatbot asks the
user whether they want to use StatHunt to post their ques-

22 3 StatHunt

tion on StackExchange, or just share their information. On
choosing the latter, StatHunt generates a URL over which
the obfuscated data and the visualised experiment design
are viewable. The user is then given both options again. If
the the former is chosen, the chatbot requests the user au-
thenticate via StackExchange.

Once authenticated, the chatbot requests the question title
and question format from the user. When the user types
“help”, the chatbot provides examples of properly format-
ted questions. In the final step, the chatbot asks the user to
provide tags for their question, while recommending ones
that are related to the experiment design. The question is
then posted to StackExchange and the user is brought back
to the overview.

23

Chapter 4

Implementation

4.1 Technologies

To develop the front-end of StatHunt, the Javascript frame- The three main
frameworks used to
build StatHunt were
React, FastAPI and
Botpress

work React1 was used. React applications are built using
multiple components, each in control of their own logic
and rendering. Due to this, projects developed with React
are inherently modular. Since StatHunt is open-source, this
modularity can aid future developers in their understand-
ing of the code.

For the back-end, FastAPI2, a high-performance Python
framework, was used. Developed as a micro-framework,
FastAPI is a library that is primarily used to build API’s.
As such, it does not include things like database integration
and other features that were not necessary for this project.
Additionally, since FastAPI has automatic documentation
generation, all written code will be properly documented.

As the core of user interaction was the chatbot, a frame-
work that was as high-performing and flexible as possible
was needed. Botpress3 is not only a framework that fits
these criteria, but also a complete development platform.
By running Botpress as a server, one has access to an admin-

1https://reactjs.org/
2https://fastapi.tiangolo.com/
3https://botpress.com/

24 4 Implementation

istration panel where one can create, test, and deploy chat-
bots. Through an interactive flow diagram, one can create
complex dialogue with conditional transitioning between
messages and the launching of Javascript code.

4.2 Architecture

StatHunt is split into three major components. The firstThe front-end of
StatHunt is a React
app, the back-and a
FastAPI server and

the chatbot is hosted
with Botpress

component is the React front-end, which renders the user
interface and handles user input. The second component
is the FastAPI back-end, which stores experiment informa-
tion and data in addition to providing a way for the front-
end and bot server to communicate. The third component
is the bot server. This handles all internal bot logic, man-
ages user chat sessions, and provides the front-end with a
loadable chat interface.

4.2.1 Authentication and Session Management

When a user opens StatHunt, the front-end tries to find aTo ensure that user
information is

correctly allocated,
StatHunt generates a
unique ID on the first

visit

user ID inside the browser’s local storage. If no such ID is
present (if a user is visiting the site for the first time), the
front-end sends a request to the back-end, requesting one.
The back-end then generates the user ID using Python’s
uuid library to ensure that the ID is unique and returns it.

After receiving the ID, the front-end stores it in the local
browser. Using the generated ID, the front-end initialises
the chatbot and connects it to the bot server. The bot server
then registers a new user session with the given ID. For
all successive requests applied to the back-end from either
the front-end or the bot server, the user ID is appended.
Through this, the server can clearly identify who is making
the request and handle it appropriately.

As long as the browser’s local storage remains uncleared,
the user’s current progress in StatHunt will automatically
be loaded on startup.

4.2 Architecture 25

4.2.2 Data Passing

As the user is conversing with the chatbot, the information Internal
communication is
handled using HTTP
requests, with the
user ID serving as an
identifier

provided has to be visible in the front-end. Due to the way
Botpress handles chatbot integration into websites, there is
no direct way to send information to the front-end. Ad-
ditionally, as the bot server is hosted and the front-end is
rendered on the user’s computer, a shared storage does not
exist. Since the front-end and bot server have both been ini-
tialised with their user ID, however, the implemented back-
end can act as common storage.

When the user makes changes in the front-end, these
changes are taken, serialised into JSON, and then sent to
the back-end. The data is sent as a HTTP request using the
browser’s built-in fetch function. An example of this can be
seen in the following code snippet:

1 fetch(’http://x.x.x.x:8000/post_design/’ +
2 localStorage.uid,
3 {
4 method: ’POST’,
5 headers: { ’Content-Type’: ’application/json’ },
6 body: JSON.stringify(data)
7 })

When information needs to be passed from the bot server
to the back-end, the data is serialised to JSON and then sent
to the back-end. The request is not done through fetch, but
instead with the Javascript library axios4. An example of
this can be seen below:

1 axios.post(’http://x.x.x.x:8000/dataset/rcolumn/’ +
2 event.target,
3 {
4 ’column’: temp.column_name,
5 ’ncolumn’: temp.ncolumn
6 ’values’: temp.ncolumn_data
7 })

Once the bot server makes changes to the data, the front-
end can retrieve it in a similar fashion. A HTTP request is
made to the back-end requesting the specific information:

1 fetch("http://localhost:8000/exp_design/" +

4https://github.com/axios/

26 4 Implementation

2 localStorage.uid)
3 .then((response) => {
4 return response.json()
5 })
6 .then((response) => {
7 this.data = response
8 this.syncWorkspace()
9 });

4.2.3 Storage Model

The user’s experiment information and dataset are storedThe user’s
information is stored
as a dictionary in the

back-end

in a dictionary on the back-end server. After user ID gen-
eration, the back-end uses the user ID as a key to its entry
in the dictionary. User data is split into two separate parts.
Once the user requests an ID, the first part, the experiment
information, is initialised as an object:

1 user_id = str(uuid.uuid1())
2 data[user_id] = {}
3 update[user_id] = True
4 data[user_id][’design’] = {
5 ’hypothesis’: "",
6 ’goal_of_analysis’: "",
7 ’procedure’: "",
8 ’sample_size’: "",
9 ’exp_design’: "",

10 ’iv’: [],
11 ’dv’: [],
12 }

Once a file is uploaded by the user, the back-end stores it
using the user ID. Using pandas5, a python library for data
science, the CSV file is parsed into a dataframe and stored:

1 async def create_upload_file(user_id: str,
2 file: UploadFile = File(...)):
3 data[user_id][’dataset’] = file.file
4 data[user_id][’dataframe’] = pd.read_csv(

file.file)

5https://pandas.pydata.org

4.3 Experiment Design 27

4.3 Experiment Design

The implementation of experiment design is split into two
parts. The first is the implementation of the chatbot and
its dialogue. The second is the implementation of the
Blockly workspace. To ensure that the information being
displayed in the front-end consistently reflects the changes
being made in both the chatbot and interactive workspace,
a synchronisation mechanism was also implemented.

4.3.1 Chatbot

In Botpress’ content management system, the flow creator The chatbot dialogue
was developed using
Botpress’ content
management system

was used to implement the planned dialogue. A dialogue
flow consists of multiple state nodes that are linked to each
other. As a user converses with the chatbot, the dialogue
flow moves from one state to another, ensuring that a single
state is always active.

Each state features an On Enter, On Receive, and Transition
property. State actions can consist of content that the chat-
bot sends to the user via chat-interface or the execution of
Javascript code. When a state is reached in the dialogue,
all actions that are saved inside the On Enter property are
called. Likewise, when user input is received, all actions
saved in the On Receive property are called. After the ac-
tions in On Receive are called, the Transition property de-
cides which the next state will be. The dialogue flow then
activates the next state.

Experiment Information

For all basic pieces of experiment information the user pro- When the user
provides
non-variable
information, they are
immediately sent to
the back-end

vides to the chatbot, the implementation is similar. When
the states are activated, the message included in the On Re-
ceive property is the question posed to the user. For the
experiment design, the message that the bot sends is of the
dropdown type, which sends a message and provides the
user with a list of options in the chat interface. In the case of

28 4 Implementation

the hypothesis, analysis goal, sample size, and procedure,
the On Receive property sends text.

Once the user types in their information, the chatbot calls
the saveVar function depicted below:

1 const saveVar = async (type, value) => {
2 if (user.design == undefined){
3 user.design = {};
4 user.design["iv"] = [];
5 user.design["dv"] = [];
6 }
7 user.design[type] = value;
8

9 axios.post(’http://x.x.x.x:8000/exp_design/’, {
10 user_id: event.target,
11 variable: type,
12 value: value
13 })
14 }

saveVar first updates the user’s design within the chat-
bot’s local storage, then sends the information to the back-
end. The back-end then updates the data saved under the
user ID with the new information.

The disconnected state nodes for the hypothesis and exper-
iment design can be seen in Figure 4.1.

Figure 4.1: Hypothesis and experiment design nodes in
Botpress

Dependent Variables

For the dependent variables, the implementation is slightlyThe dialogue for
supplying dependent
variable information
is repeated until all

variables are
provided

4.3 Experiment Design 29

more complex. This is due to a single experiment hav-
ing multiple variables, each of which contain a scale of
measurement property and possible additional informa-
tion. The chatbot asks the user for the amount, then loops
over the conversation required to acquire all relevant bits of
information. The connected state nodes for this can be seen
below in Figure 4.2.

Figure 4.2: Dependent variable flow in Botpress

The first state node for the dependent variables asks the
user to provide the amount of dependent variables. Af-
ter receiving the amount, the On Receive property saves
the this information in temporary storage and sets a
curr_variable counter to 1.

In the variable name state, the user receives a message ask-
ing them to provide the name of the current independent
variable (taken from the curr_variable counter). Upon
receiving the name, the following setVarName function is
called:

1 const saveVar = async (value) => {
2 if (user.design == undefined){
3 user.design = {};

30 4 Implementation

4 user.design["iv"] = [];
5 user.design["dv"] = [];
6 }
7 while(user.design["dv"].length < temp.variables)

{
8 user.design["dv"].push({});
9 }

10

11 user.design["dv"]
12 [temp.curr_variable-1]
13 ["name"] = value;
14 console.log(user.design)
15 }

The function first checks if the user has already providedUsing internal
variables the bot

server counts the
amount of iterations

the user has gone
through

information on their experiment design. If not, it initiates
it with empty values. Additionally, the curr_variable
counter is incremented. It then makes sure that the ar-
ray storing the dependent variable objects has the proper
length. Finally, it assigns the name of the variable to the
current independent variable object.

The next active state is scale of measurement. Here,
On Enter sends the user a message asking for the data
type, while providing the different possibilities in the
form of a dropdown menu. Upon receipt, the function
setScaleMeasurement is called:

1 const setScaleOfMeasurement = async (value) => {
2 user.design["dv"]
3 [temp.curr_variable-2]
4 ["scale_of_measurement"] = value;
5 }

Due to the incrementation of the curr_variable, it’s
value is decreased by two, in order to access the right ob-
ject.

The final state add info asks the user for any addi-
tional information they want to provide. After receiv-
ing an answer, the On Receive property calls the function
setAdditionalInfo, which saves the information. Once
this is done postVariable is called:

1 const postVariable = async () => {
2 axios.post(’http://localhost:8000/exp_design/dv’

, {
3 user_id: event.target,

4.3 Experiment Design 31

4 name: user.design[’dv’]
5 [temp.curr_variable-2]
6 [’name’],
7 measurement: user.design[’dv’]
8 [temp.curr_variable-2]
9 [’scale_of_measurement’],

10 add_info: user.design[’dv’]
11 [temp.curr_variable-2]
12 [’additional_info’]
13 })
14 }

The function takes the current dependent variable and
sends it to the back-end. In the Transition property,
the curr_variable counter is compared with the total
amount of variables. If all the variables have been added,
the dependent variable loop is left. If all variables have not
been added, the variable_name state is reactivated and
the user can provide information for further variables.

Independent Variables

Since an experiment can have multiple independent vari- For the independent
variables, the bot
server needs to
additionally loop over
the levels

ables, and each has multiple different levels, the dialogue
needs to loop over both. The state nodes and transitions for
the implementation can be seen in Figure 4.3.

The first activated state independent variables asks and ob-
tains the amount of factors that the user’s experiment con-
tains. It then saves that amount in the temporary storage
and initialises the counter curr_fact as 1.

The next state factor name asks the user for the name of the
current factor. Once received, On Receive calls the function
setVarName:

1 const setVarName = async (value) => {
2 if (user.design == undefined){
3 user.design = {};
4 user.design["iv"] = [];
5 user.design["dv"] = [];
6 }
7 while(user.design["iv"].length < temp.factors){
8 user.design["iv"].push({});
9 }

32 4 Implementation

Figure 4.3: Independent variable flow in Botpress

10 user.design["iv"][temp.curr_fact-1]["name"] =
value;

11 }

This variation of setVarName is identical to the one intro-
duced in the previous section. Instead of expanding the
storage to fit the amount of dependent variables, and sav-
ing the variable name to the current dependent variable,
it does so for the independent variables. Additionally, On
Receive increments the curr_fact counter.

Levels, the following state, asks the user to provide the
number of levels the current factor has. Once provided,
On Receive stores the value in addition to setting a further
counter called curr_level to 1.

In the level_name state, the user is then asked what
the name of the current level is. On Receive first incre-
ments the curr_level counter, then calls the following
setLevelName function:

1 const setLevelName = async (value) => {
2 if(temp.curr_level == 2){
3 user.design["iv"][temp.curr_fact-2]["levels"

] = []
4 }
5 user.design["iv"][temp.curr_fact-2]["levels"].

4.3 Experiment Design 33

push(value);
6 console.log(user.design);
7 }

If this is the first level that is being provided for the variable
(if curr_level is 2), the function then initialises the array.
Following this, it adds the provided level name to the levels
array for the variable.

If there are still additional levels that have not
been provided, the Transition property activates the
dummy transition state, which then reactivates the
level name state. Otherwise, the completion check state
is activated. On Enter then directly calls the following
postVariable function:

1 const postVariable = async () => {
2 axios.post(’http://x.x.x.x:8000/exp_design/iv’,

{
3 user_id: event.target,
4 name: user.design[’iv’]
5 [temp.curr_fact-2]
6 [’name’],
7 levels: user.design[’iv’]
8 [temp.curr_fact-2]
9 [’levels’],

10 })
11 }

This sends the current independent variable name and lev-
els to the back-end for storage. If all independent variables
have been sent, the independent variable flow is exited.
Otherwise, the factor name state is activated for the user
to add their next independent variable.

4.3.2 Blockly

To implement the visual representation Google’s Blockly li-
brary was used. Originally developed for the creation of
visual programming languages, it has been used to create
custom blocks, render the interactive experiment design in-
terface, and create a toolbar.

34 4 Implementation

Block Creation

To create each of the four custom blocks, Blockly’s de-Using Blockly’s
developer tools, the

different blocks used
in StatHunt were

created

veloper tools were used. These tools allow the creation
of blocks by drag and dropping different types. After
creation, custom-made blocks were exported as Javascript
code to use in the front-end.

The custom blocks created using the developer tools can be
seen in the following figures. Figure 4.4 is the brick created
to generate the experiment design block seen in Figure 3.1.
The labels in the design brick were created by connecting

Figure 4.4: Blockly part of experiment design generator
brick

the turquoise text bricks to the blue dummy input bricks.
For text input like the hypothesis, procedure, and goal of
analysis, the turquoise text input bricks were connected to
the dummy input. Since the experiment design is restricted
to one of three options, a dropdown brick outlining the dif-
ferent possibilities was also connected. For the sample size
(labeled participants), a numeric input brick which only
accepted natural numbers was implemented. To create a
place for the independent variable and dependent variable
blocks to snap to, the statement input brick was snapped
to the dummy input. To ensure that the experiment blocks
were not stack- or connectable, the connection option was

4.3 Experiment Design 35

set to no connections.

In Figures 4.6 and 4.5, the bricks used to generate the inde-
pendent and dependent variable blocks are featured. Since
a single experiment can have multiple dependent and in-
dependent variables, top and bottom connections were en-
abled. For the dependent variable block, a text input

Figure 4.5: Blockly dependent variable generator brick

brick was used to handle the name. A dropdown brick
was used for the scale of measurement. Since the informa-
tion needed for the independent variables consists of mul-
tiple levels, each with their own values, the statement input
brick was used. This allows multiple level bricks to be at-
tached. The name field for the independent variable block
is added through a text input brick, as is the additional in-
formation field.

To implement the generated blocks into the front-end, the The JavaScript
generated by the
Blockly developer
tools were pasted
into the front-end

developer tools were used to generate Javascript code. The

36 4 Implementation

Figure 4.6: Blockly independent variable generator bricks

code was then added into the React app and saved to the
blockly library’s Blocks object, making it accessible through
the front-end. An example of how adding the independent
variable works can be seen below:

1 Blockly.Blocks[’independent_variable’] = {
2 init: function () {
3 this.appendDummyInput("name")
4 .appendField(
5 new Blockly.FieldTextInput("IV name"

),
6 "NAME");
7 this.appendStatementInput("variables")
8 .setCheck(null);
9 this.appendDummyInput("add_info")

10 .appendField("Additional info.")
11 .appendField(
12 new Blockly.FieldTextInput("..."),
13 "INFO");
14 this.setPreviousStatement(true, null);
15 this.setNextStatement(true, null);
16 this.setColour(60);
17 this.setTooltip("");
18 this.setHelpUrl("");

4.3 Experiment Design 37

19 }
20 };

Workspace Integration

To integrate the Blockly workspace (featuring the toolbar A pre-made Blockly
component for React
was used for
integration into the
front-end

and custom blocks) the sample BlocklyComponent, created
by the developers of Blockly, was used. By passing the com-
ponent, one can control how it is initialized, and whether it
is scrollable or read only. The code used to render it was:

1 <BlocklyComponent ref="blocklyComponent" readOnly={
false} move={{

2 scrollbars: true,
3 drag: true,
4 wheel: true
5 }} initialXml={‘‘}>
6 <Block type="experiment_design" />
7 <Block type="independent_variable" />
8 <Block type="variable" />
9 <Block type="dependent_variable" />

10 </BlocklyComponent>

To include the custom Blocks in the toolbar, they were
added as child components to the imported Blockly-
Component. By passing it the reference prop of Blockly-
Component, it can be accessed throughout the rest of the
component. Using this stored reference, it is possible to
read what blocks are currently in the workspace, in addi-
tion to editing and even deleting them.

Storing Experiment Data

Through the reference object BlocklyComponent, the
workspace and all of the blocks contained in it are acces-
sible. Using this, it is possible to go through the workspace,
locate the relevant blocks, and parse their information into
a proper format. With this formatting, the information can
be sent to the back-end where it is loaded into the shared
storage.

The function sendDesignData in the React component Experiment
information is parsed
from the Blockly
workspace and sent
to the back-end

38 4 Implementation

that renders the Blockly workspace is the main handler for
this. The first part of the function’s code can be seen below:

1 var block = this.refs.blocklyComponent
2 .primaryWorkspace.getTopBlocks()[0]
3

4 if (block === undefined) {
5 this.syncWorkspace()
6 block = this.refs.blocklyComponent
7 .primaryWorkspace.getTopBlocks()[0]
8 }
9

10 var data = {}
11

12 data[’hypothesis’] = block.getInput(’hypothesis’)
13 .fieldRow[1].getValue()
14 data[’goal_of_analysis’] = block.getInput(’goal’)
15 .fieldRow[1].getValue()
16 data[’procedure’] = block.getInput(’procedure’)
17 .fieldRow[1].getValue()
18 data[’sample_size’] = block.getInput(’dss’)
19 .fieldRow[3].getValue()
20 data[’exp_design’] = block.getInput(’dss’)
21 .fieldRow[1].getValue()

Using the blocklyComponent reference, the function re-
trieves the experiment design block from the workspace. If
the block has not been initialised yet, syncWorkspace is
called. This initialises the workspace from the back-end.
The data object, which is used to store all the experiment
information, is then initialised. All information, excluding
the variables, is then added to the object in a similar fash-
ion. The relevant input object is retrieved through the tags
defined in the bricks seen in Figure 4.4. After this, the value
is retrieved from the specific field and saved.

To parse the dependent variable sendDesignData runs
the following code:

1 var dv = []
2 var conn = block.getInput(’dependentVariables’).

connection
3 var name
4 while (conn.targetBlock() != null) {
5 name = conn.targetBlock().getInput(’name’)
6 .fieldRow[0].getValue()
7 var measurement = conn.targetBlock().getInput(’

scale_of_measurement’)
8 .fieldRow[1].getValue()
9 dv.push({ ’name’: name, ’measurement’:

4.3 Experiment Design 39

measurement })
10 conn = conn.targetBlock().nextConnection
11 }
12 data[’dv’] = dv

Since the dependent variables are individual blocks that To access the
dependent and
independent
variables, the Blockly
connection object is
used

snap onto the experiment design block, their values can not
be directly retrieved. After initialising the array dv, the con-
nection for the dependent variable blocks is saved as conn.
From the dependent variable block (that is snapped onto
the connection stored in conn), the variable name and scale
of measurement are retrieved and added to the dv array.
The variable conn is then updated to the next connection.
Once there are no more blocks connected to conn, the dv
array is saved to the data object.

For independent variables the following code is run:

1 var iv = []
2 conn = block.getInput(’independentVariables’).

connection
3 while (conn.targetBlock() != null) {
4 name = conn.targetBlock().getInput(’name’).

fieldRow[0].getValue()
5 var levels = []
6 var vconn = conn.targetBlock().getInput(’

variables’).connection
7 while (vconn.targetBlock() != null) {
8 levels.push(vconn.targetBlock().getInput(’

name’)
9 .fieldRow[0].getValue())

10 vconn = vconn.targetBlock().nextConnection
11 }
12 iv.push({ ’name’: name, ’levels’: levels })
13 conn = conn.targetBlock().nextConnection
14 }
15 data[’iv’] = iv

Similarly to the dependent variable parsing, the connection
for the independent variable blocks is saved as conn. The
variable name is retrieved from the target block of the con-
nection conn and an array, levels, is initialised. The con-
nection for the value blocks is then initialised as vconn.
Information from the value block connected to vconn is
then added to the levels array, after which vconn is up-
dated to the next value connection. Once there are no more
values, the variable name and levels array are appended to

40 4 Implementation

the iv array. Finally, conn is updated to the next indepen-
dent variable connection.

After all the independent variables have been added to the
iv array and it has been saved into data, the final piece of
code is run:

1 this.data = data
2 fetch(’http://localhost:8000/post_design/’ +

localStorage.uid, {
3 method: ’POST’,
4 headers: { ’Content-Type’: ’application/json’ },
5 body: JSON.stringify(data)
6 })

The data object is saved into the component storage before
being sent to the back-end, where it is then finally saved
into the shared storage.

4.3.3 State Synchronisation

Since the back-end is used as the shared storage for a user’s
experiment data, the front-end also needs to be able to
retrieve the information and render it. In this way, any
changes the chatbot makes to the stored experiment in-
formation can be loaded into the workspace. Due to the
user being able to edit the design in the Blockly workspace,
StatHunt needs to decide between reading and writing the
data.

On startup, the component that renders the workspace runs
the following code:

1 fetch("http://x.x.x.x:8000/exp_design/" +
localStorage.uid)

2 .then((response) => {
3 return response.json()
4 })
5 .then((response) => {
6 this.data = response
7 this.syncWorkspace()
8 });
9

10 window.myInterval = setInterval(() => {
11 this.updateData()
12 }, 500)

4.3 Experiment Design 41

Using fetch, the experiment design data is taken from the In regular intervals
the front-end checks
if the bot server has
made changes to the
shared storage

back-end and saved into the component storage’s data ob-
ject. Then the experiment blocks in the workspace are ini-
tialised using the data with the syncWorkspace function.
Finally, a scheduler is set that calls the updateData func-
tion every half-second.

When called, updateData handles the update of either the
storage in the back-end or the rendering of blocks in the
workspace to reflect that storage. It runs the following code
to handle this:

1 fetch("http://x.x.x.x:8000/update/"
2 + localStorage.uid)
3 .then((response) => {
4 return response.json()
5 })
6 .then((response) => {
7 if (response) {
8 fetch("http://localhost:8000/exp_design/"
9 + localStorage.uid)

10 .then((response) => {
11 return response.json()
12 })
13 .then((response) => {
14 this.data = response
15 this.syncWorkspace()
16 });
17 }else{
18 this.sendDesignData()
19 }
20 })

First, the fetch request is sent to the back-end asking
whether or not the bot server has recently made a change.
If this is not the case, sendDesignData is called to save
the current state of the workspace in the back-end.

If the user has recently provided information through the The syncWorkspace
function retrieves
information from the
back-end and
renders it into the
Blockly workspace

chatbot, the data from storage is taken and rendered onto
the workspace. This is done in the syncWorkspace func-
tion, which runs the following code:

1 if (this.refs.blocklyComponent.primaryWorkspace.
getTopBlocks().length === 0) {

2 var initXml = ‘<xml><block type="
experiment_design"></

3 block></xml>‘
4 Blockly.Xml.domToWorkspace(Blockly.Xml

42 4 Implementation

5 .textToDom(initXml),
6 Blockly.getMainWorkspace());
7 }

To begin, syncWorkspace checks whether the workspace
is empty. If this is the case, XML is used to define an ex-
periment design block. The design block is then used to
initialise the workspace using the domToWorkspace func-
tion provided by Blockly.

1 var block = this.refs.blocklyComponent.
primaryWorkspace

2 .getTopBlocks()[0]
3

4 var goal = block.getInput(’goal’)
5 goal.fieldRow[1].setValue(this.data[’

goal_of_analysis’])
6

7 var hypothesis = block.getInput(’hypothesis’)
8 hypothesis.fieldRow[1].setValue(this.data[’

hypothesis’])
9

10 var procedure = block.getInput(’procedure’)
11 procedure.fieldRow[1].setValue(this.data[’procedure’

])
12

13 var design = block.getInput(’dss’)
14 design.fieldRow[1].setValue(this.data[’exp_design’])
15 design.fieldRow[3].setValue(this.data[’sample_size’

])

After fetching and saving the main experiment design
block, all experiment information is written into it in a
fashion similar to its retrieval in the sendDesignData
function. Instead of getValue, the function setValue is
called and the data is taken from the component’s data ob-
ject.

For the dependent variables, the creation and appending of
objects was handled using Blockly’s connection objects.

1 while (block.getInput(’dependentVariables’).
connection.targetBlock() != null) {

2 block.getInput(’dependentVariables’).connection.
targetBlock().dispose(true)

3 }
4 for (var i = 0; i < this.data[’dv’].length; i++) {
5 var dvblock = this.refs.blocklyComponent
6 .primaryWorkspace.newBlock(’dependent_variable’)
7 dvblock.initSvg()

4.3 Experiment Design 43

8 dvblock.render()
9 dvblock.getInput(’name’).fieldRow[0]

10 .setValue(this.data[’dv’][i][’name’])
11 dvblock.getInput(’scale_of_measurement’)
12 .fieldRow[1].setValue(this.data[’dv’][i][’

measurement’])
13

14 block.getInput(’dependentVariables’).connection.
connect(dvblock.previousConnection)

15 }

The code first loops through all dependent variable blocks
and removes them from the workspace. Then, for each of
the dependent variables sitting in the data object, a new
dependent variable is initialized and saved as dvblock. To
ensure it renders in the workspace, the SVG representation
of the block is initialised, after which the render function is
called. Using the information stored in the data object, the
variable name and scale of measurement are set. Finally,
the block is attached to the main experiment design block.

To render the independent variables, syncWorkspace
runs the following code:

1 while (block.getInput(’independentVariables’)
2 .connection.targetBlock() != null) {
3 block.getInput(’independentVariables’)
4 .connection.targetBlock().dispose(true)
5 }

To first clear out the current independent variables, the
function loops through the independent variable connec-
tion of the experiment design block and removes them.

1 for (i = 0; i < this.data[’iv’].length; i++) {
2 var ivblock = this.refs.blocklyComponent
3 .primaryWorkspace.newBlock(’independent_variable

’)
4 ivblock.initSvg()
5 ivblock.render()
6 ivblock.getInput(’name’).fieldRow[0]
7 .setValue(this.data[’iv’][i][’name’])
8

9 var ivconnection = ivblock.getInput(’variables’)
10 .connection
11 for (var j = 0;
12 j < this.data[’iv’][i][’levels’].length;
13 j++) {
14 var valblock = this.refs.blocklyComponent

44 4 Implementation

15 .primaryWorkspace.newBlock(’variable’)
16 valblock.initSvg()
17 valblock.render()
18 valblock.getInput(’name’).fieldRow[0]
19 .setValue(this.data[’iv’][i][’levels’][j])
20

21 ivconnection.connect(
22 valblock.previousConnection)
23 }
24

25 block.getInput(’independentVariables’)
26 .connection.connect(ivblock.previousConnection)
27 }
28 }

After this, a new independent variable block is initialised
and saved as ivblock. Similar to the dependent vari-
able block, the SVG is initialised and the render function is
called. Then the independent variable name is taken from
the data object and set.

Since the different values are connected to the indepen-
dent variable block, the relevant connection is saved as
ivconnection. For each related level found in the data
object, the level block is rendered, its name set, and con-
nected to the independent variable block.

Finally, the independent variable block is connected to the
experiment design block, or the previously added indepen-
dent variable.

4.4 Dataset

The implementation of dataset obfuscation is inherently
simpler than that of the experiment design. The table is ren-
dered in the front-end, offering functions like filtering, sort-
ing, and searching through the data. Meanwhile, the ma-
nipulation of the dataset through obfuscation occurs com-
pletely in the back-end. To upload the user dataset, theAfter data is

uploaded to the
front-end, it is sent to

the back-end

DataWindow component in the front-end renders a file up-
load button. Once a file is selected by the user that is differ-
ent to the one currently uploaded, the input field calls the
components fileUpload function:

4.4 Dataset 45

1 fileUpload() {
2 var data = new FormData()
3 data.append("file", document.getElementById(’

file-upload’).files[0])
4 fetch(’http://x.x.x.x:8000/uploadfile/’ +

localStorage.uid, {
5 method: ’POST’,
6 body: data,
7 })
8 .then(response => response.json())
9 .then(success => {

10 console.log("File Succesfully Uploaded")
11 })
12 .catch(error => console.log(error)
13);
14 }

fileUpload takes the file that is currently being saved in
the file-upload input and appends it to a FormData object.
This is then sent to the back-end using fetch. It is logged
upon successful completion.

4.4.1 Datatable

To implement the datatable shown in Figure 3.4, the Re- The data saved in the
back-end is retrieved
and rendered in the
front-end using
mui-datatables

act library, mui-datatables6 was used. After loading the
dataset from the back-end, the information is rendered in
the table view. With the regular reloading of the data, it is
ensured that any changes made to it through the chatbot
are reflected.

When the component that renders the datatable is about to
be loaded, the following componentWillMount function
is called:

1 componentWillMount() {
2 if(localStorage.dataset === null ||
3 localStorage.dataset === undefined){
4 localStorage.dataset = ’{}’
5 }
6 this.updateDataset();
7 window.datasetInterval = setInterval(() => {
8 this.updateDataset()
9 }, 1000)

10 }

6https://github.com/gregnb/mui-datatables

46 4 Implementation

If the user has not loaded the data before, the browser’s
local storage will be empty. To ensure that the empty datat-
able is still rendered instead of displaying an error, is is ini-
tialized as an empty object. A timer is then set to schedule
repeated calls of the updateDataset function. This uses
the following piece of code to retrieve and save the dataset
into the browser’s local storage:

1 fetch("http://x.x.x.x:8000/dataset/"
2 + localStorage.uid)
3 .then((response) => {
4 return response.json();
5 })
6 .then((response) => {
7 if (localStorage.dataset !== response
8 && response !== ’’) {
9 localStorage.dataset = (response);

10 }
11 })

To retrieve the data from the back-end, the fetch function
is used. After obtaining a response, the data is parsed in
JSON form and save it to the browser’s local storage.

Since mui-datatables requires the column names and rows
to be provided in the form of a string array and a two-
dimensional array, the data needs to be re-formatted. In
the render function of the component, the following code is
used:

1 var dataset = Object.entries(
2 JSON.parse(localStorage.dataset))
3 var rows = []
4 var columns = []
5

6 if(dataset.length !== 0){
7 for (var i = 0; i < Object.entries(
8 dataset[0][1]).length; i++) {
9 var row = []

10 for (var x in dataset) {
11 row.push(dataset[x][1][i.toString()])
12 }
13 rows.push(row)
14 }
15 for (var y in (dataset)) {
16 columns.push(
17 dataset[y][0]
18)
19 }
20 }

4.4 Dataset 47

Using Object.entries, the dataset object is serialised
and turned into an array containing key value entries in
the form of an array. To save the columns, all key entries
are appended into dataset to the columns array. Each in-
dividual row is passed through. A value entry is taken for
each column and appended into the rows array.

When rendering the datatable, these two are passed as
props into the mui-datables component.

1 <MUIDataTable
2 title={"Experiment Data"}
3 data={rows}
4 columns={columns}
5 />

4.4.2 Dataset Obfuscation

To obfuscate, the user has two separate options: obfuscat-
ing the variable names, or obfuscating the values. After
the user decides which of the two they want to perform,
they enter their information into the chatbot. The bot server
then sends this information to the back-end, where the data
is obfuscated. When the table on the page retrieves the
dataset, the newly obfuscated data is loaded and rendered.

Similarly to the experiment design, the conversation han-
dling uses Botpress’ content management system.

Value Obfuscation

For value obfuscation, dialogue implementation was sim-
ple. The state node used to handle this can be seen in Figure
4.7. When the user enters the state, the On Enter parame-
ter sends the user a question asking for the column they
want to obfuscate. After providing it, On Recieve calls the
following val_obfuscation function:

1 const val_obfuscation = async (column) => {
2 axios.post(’http://x.x.x.x:8000/dataset/

obfuscate/’

48 4 Implementation

Figure 4.7: Botpress value obfuscation node

3 + event.target, null, {
4 params: {
5 ’column’: column
6 }
7 }).then(function (response) {
8 console.log(response);
9 })

10 .catch(function (error) {
11 console.log(error.response.data);
12 });
13 }

Using the response the user has set as the value column,
the column name is passed on to the back-end. Following
this, On Receive sends the user a confirmation. Then the
previous state is reactivated.

When the back-end receives the request and column name
from the bot server the following function is called:

1 async def obf_data(user_id: str, column: str):
2 df = data[user_id][’dataframe’]
3 if(column not in df.columns):
4 return ’Not a valid column’
5 laplace = Laplace()
6 laplace.set_epsilon(1)
7 if df[column].dtype == ’int64’:
8 laplace.set_sensitivity(df[column].mean()

*0.1)
9 df[column] = df[column].apply(laplace.

randomise).round(0).astype(int)
10 elif df[column].dtype == ’float64’:

4.4 Dataset 49

11 laplace.set_sensitivity(df[column].mean()

*0.1)
12 df[column] = df[column].apply(laplace.

randomise)
13 return ’Column has been obfuscated’

From diffprivlib7, a library for differential privacy created To obfuscate a
column’s values, the
back-end applies
laplace noise using
the diffprivlib library

by IBM, the laplace object is imported and then initialised.
Preferences for the generated noise are applied to the ob-
ject by calling the set_epsilon and set_sensitivity
methods. Using the pandas apply object, the additive
laplace noise is applied to each value in the column. If the
column values are whole numbers, the newly obfuscated
values are rounded and the type is enforced onto the edited
column.

Variable Obfuscation

Dialogue implementation for variable obfuscation is To obfuscate the
variables, the
dialogue loops
through each
variable that needs
to be replaced

slightly more complicated than for value obfuscation, as the
user needs to provide replacements for the variable name
and each associated value.

The flow created for variable obfuscation in Botpress can
be seen below in Figure 4.8. In the first activated state

Figure 4.8: Botpress variable obfuscation blocks

name_obf, the user is asked for the variable name. After
receiving it, the On Receive property calls the saveColumn
function which runs the code shown below:

7https://github.com/IBM/differential-privacy-library

50 4 Implementation

1 axios.get(’http://x.x.x.x:8000/dataset/column/’ +
event.target, {

2 params: {
3 ’column’: column
4 }
5 })
6 .then(function (response) {
7 temp.column_data = (response.data.values);
8 })
9 .catch(function (error) {

10 console.log(error);
11 })
12 temp.column_name = column
13 temp.ncolumn_data = []
14 temp.renaming = true
15 console.log(temp)

The function first requests the column values, which are re-
turned by the back-end as an array. This value is then saved
to the bot server’s temporary storage. Furthermore, the col-
umn name is saved, and a new array to store replacement
variable names is initialised. The temporary variable re-
naming is set to true, which later allows the determination
of when the user has completed the renaming process.

After this, the name replacement state is activated, ask-
ing the user what they want to replace the variable name
with. The function renameVal then calls the following
code (with title being set as ’true’ and the replacement
name):

1 change_title = title === ’true’
2 if(change_title){
3 temp.ncolumn = new_name
4 }else {
5 temp.ncolumn_data.push(new_name)
6 }
7 if(temp.column_data.length === 0){
8 temp.renaming = false
9 return

10 }
11 temp.curr_val = temp.column_data[0]
12 temp.column_data = temp.column_data.slice(1)

Because of the value of title, the replacement name is saved
as ncolumn. The value that needs to be replaced next is
saved into temporary storage as curr_val and is removed
from the column_data array.

4.4 Dataset 51

After this, the state value replacement is called, which asks
the user what they want to replace the current variable
value with. Once received, the function rename is called
again, this time with title being set as ’false’. Due to
this, the function appends the replacement value to the
ncolumn_data array. If all values have been taken out
of column_data, there are no more column variables to
replace and renaming is set to false.

In transition handler, the temporary variable renaming is
checked. If the value is set to true, there are still more vari-
ables to replace and value replacement is reactivated. Oth-
erwise, the user has provided their replacement for each of
the variables and send obf is activated.

send obf sends the user a confirmation that obfuscation is
complete and calls obfValues which runs the following
code:

1 axios.post(’http://x.x.x.x:8000/dataset/rcolumn/’
2 + event.target,
3 {’column’: temp.column_name,
4 ’ncolumn’: temp.ncolumn,
5 ’values’: temp.ncolumn_data})
6 .catch(function (error) {
7 console.log(error);
8 })

The new column name and new column data are sent to
the back-end. The back-end then uses the following code
to replace the relevant values:

1 old_values = data[user_id][’dataframe’][info.column
].unique()

2 mapping = {}
3 for i in range(len(info.values)):
4 mapping[old_values[i]] = info.values[i]
5 data[user_id][’dataframe’][info.column] = data[

user_id][’dataframe’][info.column].map(mapping)
6 data[user_id][’dataframe’] = data[user_id][’

dataframe’].rename(columns={info.column: info.
ncolumn})

7 print(data[user_id][’dataframe’][info.ncolumn])

With info being the object passed from the bot server
to the back-end, the relevant column’s unique values are
saved. Then, the dictionary mapping is created, which

52 4 Implementation

uses the old values as keys and the new ones as entries.
Column values are re-written through the mapping using
the dataframe’s rename method. Finally, the column title is
changed to the new one.

53

Chapter 5

Summary and Future
Work

5.1 Summary and Contributions

To help inexperienced researchers receive support in statis-
tical test selection, StatHunt, an interactive web-application
was designed and implemented. In order to ensure that
StatHunt tackles the problems help-seeking researchers
face on Q&A websites, the recommendations provided by
Hu [2019] were used as a baseline.

In the section Background and Related Work, the problems
researchers have when posting to Q&A questions were out-
lined. After this, tools for representing experiment design
were introduced, some background information on chat-
bots was provided, and a definition and approach to data
obfuscation was explained. Finally, we briefly discussed
two pre-existing tools that were built to support users with
inferential statistics.

In the section StatHunt, the features of a system to aid re-
searchers in posting questions were defined. The conver-
sational design of a chatbot that can guide users through
providing their experiment information, obfuscating their
data, and posting a question, was introduced. Addition-

54 5 Summary and Future Work

ally, the use of bricks to create a structural representation of
experiment data was presented.

In the Implementation section of this work, the develop-
ment of StatHunt was detailed. The use of Botpress to
model the conversation of the previously introduced State
Transition Networks was outlined. The implementation of
the Blockly workspace and creation of custom bricks is also
explained. Additionally, the approach taken to obfuscate
the data with IBM’s diffprivlib was applied.

5.2 Future Work

Since StatHunt was built with expandability in mind, there
are a few recommendations that can be made considering
future development.

As one of the first recommendations made by Hu [2019],
the ability to fabricate a dataset would be a valuable ad-
dition. Doing so would allow researchers that have not yet
collected their experiment data, but may already have some
assumptions, outline their information in a clearly struc-
tured way.

Additionally, though outlined and designed, the support
for question formulation and tag generation has not been
implemented yet and would also prove useful. By aid-
ing the user in the formulation of their questions, respon-
dents could better provide help. Through the generation
and addition of relevant tags, respondents would have an
easier time finding questions, while researchers with sim-
ilar problems could easily find the answered question for
reference.

55

Bibliography

Monya Baker and Dan Penny. Is there a reproducibility cri-
sis?, may 2016. ISSN 14764687.

Paul Cairns. HCI... Not As It Should Be: Inferential Statis-
tics in HCI Research. Technical report, 2007.

Pierre Dragicevic. Fair Statistical Communication in HCI.
In Modern Statistical Methods for HCI, pages 291–330.
Springer, Cham, 2016. doi: 10.1007/978-3-319-26633-6
13.

Cynthia Dwork and Aaron Roth. The algorithmic foun-
dations of differential privacy. Foundations and Trends in
Theoretical Computer Science, 9(3-4):211–487, 2013. ISSN
15513068. doi: 10.1561/0400000042.

Alexander Eiselmayer, Chat Wacharamanotham, Michel
Beaudouin-Lafon, and Wendy E. Mackay. Touchstone2:
An Interactive Environment for Exploring Trade-offs
in HCI Experiment Design. In Conference on Hu-
man Factors in Computing Systems - Proceedings, pages
1–11, New York, New York, USA, may 2019. ACM
Press. ISBN 9781450359702. doi: 10.1145/3290605.
3300447. URL http://dl.acm.org/citation.cfm?
doid=3290605.3300447.

Ethan Fast, Binbin Chen, Julia Mendelsohn, Jonathan
Bassen, and Michael S. Bernstein. Iris: A conversational
agent for complex tasks. In Conference on Human Factors
in Computing Systems - Proceedings, volume 2018-April,
pages 1–12, New York, New York, USA, apr 2018. Asso-
ciation for Computing Machinery. ISBN 9781450356206.
doi: 10.1145/3173574.3174047. URL http://dl.acm.
org/citation.cfm?doid=3173574.3174047.

http://dl.acm.org/citation.cfm?doid=3290605.3300447
http://dl.acm.org/citation.cfm?doid=3290605.3300447
http://dl.acm.org/citation.cfm?doid=3173574.3174047
http://dl.acm.org/citation.cfm?doid=3173574.3174047

56 Bibliography

Asbjørn Følstad and Petter Bae Brandtzaeg. Chatbots and
the New World of HCI. Interactions, 24(4):38–42, jul 2017.
ISSN 15583449. doi: 10.1145/3085558.

Wayne D. Gray and Marilyn C. Salzman. Damaged Mer-
chandise? A Review of Experiments That Compare Us-
ability Evaluation Methods, 1998. ISSN 07370024.

Yue Hu. Statistics in the Wild: How Practitioners Choose Sta-
tistical Procedures. PhD thesis, 2019.

Maurits Kaptein and Judy Robertson. Rethinking statisti-
cal analysis methods for CHI. In Conference on Human
Factors in Computing Systems - Proceedings, pages 1105–
1113, 2012. ISBN 9781450310154. doi: 10.1145/2207676.
2208557.

Wendy E. MacKay, Caroline Appert, Michel Beaudouin-
Lafon, Olivier Chapuis, Yangzhou Du, Jean Daniel
Fekete, and Yves Guiard. Touchstone: Exploratory de-
sign of experiments. In Conference on Human Factors in
Computing Systems - Proceedings, pages 1425–1434, 2007.
ISBN 1595935932. doi: 10.1145/1240624.1240840. URL
http://psychwextor.unizh.ch/wextor/.

Xiaojun Meng, Pin Sym Foong, Simon Perrault, and Sheng-
dong Zhao. NexP: A beginner friendly toolkit for de-
signing and conducting controlled experiments. In Lec-
ture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics), volume 10515 LNCS, pages 132–141. Springer
Verlag, 2017. ISBN 9783319676869. doi: 10.1007/
978-3-319-67687-6 10.

Bhavika R Ranoliya, Nidhi Raghuwanshi, and Sanjay
Singh. Chatbot for university related FAQs. In 2017
International Conference on Advances in Computing, Com-
munications and Informatics, ICACCI 2017, volume 2017-
Janua, pages 1525–1530, 2017. ISBN 9781509063673. doi:
10.1109/ICACCI.2017.8126057.

Krishna Subramanian and Jan Borchers. Statplayground:
Exploring statistics through visualizations. In Conference
on Human Factors in Computing Systems - Proceedings, vol-
ume Part F1276, pages 401–404. Association for Comput-

http://psychwextor.unizh.ch/wextor/

Bibliography 57

ing Machinery, may 2017. ISBN 9781450346566. doi:
10.1145/3027063.3052970.

Chat Wacharamanotham, Krishna Subramanian,
Sarah Theres Völkel, and Jan Borchers. Statsplorer:
Guiding novices in statistical analysis. In Conference
on Human Factors in Computing Systems - Proceedings,
volume 2015-April, pages 2693–2702, 2015. ISBN
9781450331456. doi: 10.1145/2702123.2702347. URL
http://dx.doi.org/10.1145/2702123.2702347.

http://dx.doi.org/10.1145/2702123.2702347

59

Index

Blockly, 33
Blockly workspace, 15–16, 37
Botpress, 23–24

chatbot implementation, 27
chatbots, 11

data table, 19–20, 45–47
dependent variable block, 35

experiment design block, 16, 34
experiment information, 15, 27–33

FastAPI, 23
file upload, 26, 44–45

independent variable block, 35
information storage, 26

obfuscation, 10–11, 47

problem statement, 6–7

React, 23

State Transition Network, 17, 20–21
Stathunt core features, 14

value obfuscation, 20, 47–49
variable obfuscation, 20–21, 49–52

Typeset June 12, 2020

	Abstract
	Acknowledgements
	Introduction
	Problem Statement
	Our Solution
	Overview

	Background and Related Work
	Seeking Statistical Help
	Behaviour of Data Practitioners
	Q&A Websites
	Missing Information
	Badly Structured Information
	Fabricated Information

	Support Tools for Experiment Design
	Touchstone
	NexP
	Touchstone2

	Data Obfuscation
	Chatbots
	Existing Support Solutions for Inferential Statistics
	StatPlayground
	Statsplorer

	StatHunt
	Specifications
	Feature Recommendations
	Limitations and Final Features

	Interaction Design
	Chatbot
	Experiment Representation

	Workflow
	Experiment Information
	Dataset Upload and Obfuscation
	Information Sharing and Question Posting

	Implementation
	Technologies
	Architecture
	Authentication and Session Management
	Data Passing
	Storage Model

	Experiment Design
	Chatbot
	Experiment Information
	Dependent Variables
	Independent Variables

	Blockly
	Block Creation
	Workspace Integration
	Storing Experiment Data

	State Synchronisation

	Dataset
	Datatable
	Dataset Obfuscation
	Value Obfuscation
	Variable Obfuscation

	Summary and Future Work
	Summary and Contributions
	Future Work

	Bibliography
	Index

