
by
Timm Meiwes

Userfriendly
Wearable
Networking for
Interactive
Fashion

Bachelor’s Thesis
submitted to the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

 Thesis advisor:
 Prof. Dr. Jan Borchers

 Second examiner:
 Prof. Dr. Ulrik Schroeder

 Registration date: 18.01.2019
 Submission date: 18.05.2019

Eidesstattliche Versicherung

___________________________ ___________________________

Name, Vorname Matrikelnummer

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/
Masterarbeit* mit dem Titel

__

__

__

selbständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusätzlich auf
einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die elektronische
Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner
Prüfungsbehörde vorgelegen.

___________________________ ___________________________

Ort, Datum Unterschrift

 *Nichtzutreffendes bitte streichen

Belehrung:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung
falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei
Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige fals che Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so
tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158
Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:

___________________________ ___________________________

Ort, Datum Unterschrift

v

Contents

Abstract xiii

Überblick xv

Acknowledgements xvii

Conventions xix

1 Introduction 1

2 Related work 3

2.1 Commercially available systems 3

2.2 Academic systems 5

3 Own work 9

3.1 Requirements 9

3.1.1 I2C vs. Serial 10

3.2 Early Work . 11

3.3 Board . 12

vi Contents

3.3.1 Upgrade 13

3.3.2 Localisation 14

3.3.3 Hardware 16

3.3.4 Software 16

Mode Change 17

Communication 18

Localisation Routine 19

3.4 Chips . 19

3.4.1 Simple Chips 21

Button 21

LED . 22

Other 22

3.4.2 I2C Chips 23

Seven-Segment-Display 23

Gyroscope 24

Display 26

Individually addressable LEDs 27

3.4.3 Challenges 28

4 Evaluation 31

4.1 User-friendliness 31

4.2 Wearability . 33

Contents vii

4.3 Networking 34

5 Summary and future work 37

5.1 Summary and contributions 37

5.2 Future work 38

A Git 41

B Version History 43

Bibliography 47

Index 49

ix

List of Figures

2.1 Example of one TinkerBot product 3

2.2 A Qwiic component 4

2.3 The Tangible Video Editor system 5

2.4 An ActiveQube with labelled connectors . . 6

2.5 The FlowBlocks modules 6

2.6 The Flowboard in use 7

3.1 Attempt for one wire communication 11

3.2 Successful one wire communication 12

3.3 Evolution of the location test setup 15

3.4 Schematic of the finished board 15

3.5 The finished board PCB 17

3.6 Pinout for a chip without anything con-
nected to it . 20

3.7 Schematic of the button chip 22

3.8 Schematic of the LED chip 22

3.9 Schematic of the basic I2C chip 23

x List of Figures

3.10 Schematic of the seven-segment-display shield 24

3.11 The GY-521 breakout board 25

3.12 The Arduino Nano I2C chip 25

3.13 Schematic of the OLED Display adapter . . . 26

3.14 The individually addressable LED shield . . 27

3.15 Setup to test whether communication works 28

xi

List of Tables

3.1 List of all assigned IDs so far 20

3.2 Colours, the corresponding ID and mode . . 28

xiii

Abstract

This thesis introduces a system for a modular, user-friendly, wearable development
system. It uses a modified UART Serial communication protocol to facilitate the
communication between the system and a number of modules. These modules
follow a strict design code but allow for complex sensors and actuators. The system
is capable of localising connected modules, which allows it to react to changes on
the fly. It can be used for educational purposes by simulating a breadboard, where
the modules represent the components.
This thesis describes the changes that allow a UART communication between more
than two participants as well as the method of localising the individual modules. It
also defines the standards with several demonstrator modules, which all the other
must follow. This allows the creation of further modules in the future to create a
more complex toolkit.

xiv Abstract

xv

Überblick

Diese Arbeit stellt ein System für ein modulares, benutzerfreundliches, trag-
bares Entwicklungssystem vor. Es verwendet ein modifiziertes UART Serial
Kommunikationsprotokoll, um die Kommunikation zwischen dem System und
einer Reihe von Modulen zu ermöglichen. Diese Module folgen einem stren-
gen Designcode, ermöglich aber komplexe Sensoren und Aktoren. Das System
ist in der Lage, angeschlossene Module zu lokalisieren, so dass es jederzeit auf
Änderungen reagieren kann. Es kann für Bildungszwecke verwendet werden, in-
dem es ein Breadboard simuliert, wobei die Module verwendete Komponenten
repräsentieren.
Diese Arbeit beschreibt die Änderungen, die eine UART-Kommunikation zwischen
mehr als zwei Teilnehmern ermöglichen, sowie die Methode zur Lokalisierung der
einzelnen Module. Es definiert auch den Standard mit mehreren Demonstrator-
modulen, denen alle Module folgen müssen. Dies ermöglicht die Erstellung wei-
terer Module in der Zukunft, um ein komplexeres Toolkit zu erstellen.

xvii

Acknowledgements

I thank Prof. Dr. Jan Borchers and Prof. Dr. Ulrik Schroeder for being my auditors
as well as granting me access to the FabLab.

I also thank my supervisor Jan Thar to whom I could always talk when I ran into
problems.

Thank you!

xix

Conventions

Throughout this thesis we use the following conventions.

Text conventions

Definitions of technical terms or short excursus are set off
in coloured boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

Definition:
Excursus

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in Canadian English.

Download links are set off in coloured boxes.

File: myFilea

ahttp://hci.rwth-aachen.de/public/folder/file number.file

http://hci.rwth-aachen.de/public/folder/file_number.file

1

Chapter 1

Introduction

While there are many systems that have some kind of net-
working functions, non of them focusses on the networking
aspect. This paper introduces a system with the main goal
to be a light weight but efficient for networking a number
of microcontrollers. While focussing on networking the as-
pects of user-friendliness and wearability are considered as
well.

The system is divided into two parts. The board handles
the communication, which has two modi, in which incom-
ing data is handled, as well as the localisation of chips,
which are connected to the board. The board section de-
scribes the early ideas and why they were abandoned. It
explains the decision for the hardware used and the soft-
ware challenges that arose because of it.
The section on the chips discusses the standard chip, which
is adapted to form all designed chips so far. The section is
subdivided into two based on the complexity of the chips
introduced. It is concluded by explaining the process to
overcome the challenges that were encountered in the de-
sign of the chips.

To conclude the paper, the system is evaluated based on
how well it performs in regards to user-friendliness, wear-
ability and networking. It also includes thoughts on what
might be implemented in a future review.

3

Chapter 2

Related work

There are already a number of systems that are capable of
performing partly similar functions to the discussed sys-
tem. This section will introduce them in a very brief form.

2.1 Commercially available systems

The first system is called TinkerBot, it is produced by Kine-
matics. It is a system made up of a number of blocks, both
active and passive, that can be directly connected to one an-
other.

Figure 2.1: Example of one TinkerBot product

4 2 Related work

The square red-orange cube, in the upper middle of the fig-
ure, is called the Powerbrain. It is similar to the board, see
Section 3.3. It is responsible for controlling the individual
sensor and actuator blocks while at the same time it is pro-
viding power to the individual modules. The only informa-
tion about how the communication is handled is found on
their indiegogo page. It is said there, that the Powerbrain
uses a Serial UART bus-system for communication. Further
more, the Powerbrain is also capable to communicate with
mobile devices via Bluetooth.
There are only motion focused actuators such as a motor, a
tilting joint, one that is akin to a servo and a gripper. There
is a distance and a light sensor for input. The Powerbrain
also contains a three axis accelerometer and gyroscope.
The whole system runs on a built-in lithium polymer bat-
tery.

The second commercially available system is Qwiic by
SparkFun. It is less of a whole system but a connection and
communication scheme. There is no direct code or mas-
ter module readily available. It relies on the user to create
such a module but provides the user with an easily to use
set of components. All these components are based on the
same design code. They use I2C for communication and
have the same pinout on all boards. Using standardised
and polarised connectors the user does not need to worry
about connecting the modules in the correct way. It is pos-
sible to daisy chain modules because of the nature of I2C.
However, SparkFun does not provide a finished system in
a sense, that once the user has connected the modules the
system knows what to do. A positive aspect is that users
are not limited to SparkFun products. Anyone can create
modules that work in tandem with Qwiic modules because
the pinout, the connector used, and the operating voltage
of 3.3V is known.

Figure 2.2: A Qwiic component

2.2 Academic systems 5

2.2 Academic systems

The first academic system is the Tangible Video Editor. It
was designed by Zigelbaum et al. [2007] at MIT and Tufts
University.
It enables the user to create video clips by connecting dif-
ferent modules together. There is a play-controller which
is connected to the user’s computer, see Figure 2.3 lower
right. The user can connect individual clip-holders to it
which contain a video ID. Before the system is used, the
IDs are matched to video clips by the software. After the
first clip-holder is attached the user can connect further
clip-holders. There is a slot between two clip-holders, in
which the user can place one of three transition connec-
tors. These determine what kind of transition the software
uses. To transmit data the furthest clip-holder on the right
side sends its ID to the previous one via a frequency mod-
ulated audio signal encoding ASCII data. This clip-holder
appends the data stream by its own ID, the transition used
and sends it to its left neighbour. Once the data stream
reaches the play-controller it is sent to the PC where the
video is assembled according to the video IDs and transi-
tions.

Figure 2.3: The Tangible Video Editor system

The second system is the ActiveQube by Watanabe et al.
[2004] from the University of Osaka. It is designed to allow

6 2 Related work

the user to create virtual objects by connecting a number
of ActiveQubes to each other. The whole system is con-
nected to a PC via a base cube. By connecting or discon-
necting other cubes the user can create virtual objects in real
time. Each cube has its own ID as well as one ID per face to
allow identification of which faces are connected between
two cubes. The communication is done via a RS-485 port.

Figure 2.4: An ActiveQube with labelled connectors

FlowBlocks is another system, designed by Zuckerman
[2007] from the MIT. Its aim is, to help children develop an
intuitive understanding of dynamic relationships. It is a set
of modules that try to visualise dynamic processes by using
a number of lights. Starting from an Inflow module other
modules can be connected via magnets. It is important to
include a Straight module as it contains the batteries that
power the whole system. Communication is done by a 16
bit serial connection which uses the magnets as connectors.

Figure 2.5: The FlowBlocks modules

2.2 Academic systems 7

Last but not least there is the Flowboard by Brocker et al.
[2019] from the i10 chair of the RWTH Aachen. It uses an
iPad as a main controller, on which the user can design
programs using Flow-Based Programming. The iPad in-
terfaces with an Arduino Uno which controls the hardware
input/output pins via Bluetooth. Any change in the flow
graph takes immediate effect. This is possible because of
the slightly altered Firmata protocol used. The pins of the
Arduino are connected to a custom switching PCB which
allows the iPad to connect them either to the input (to the
left of the iPad) or output (to the right) side of the board.

Figure 2.6: The Flowboard in use

9

Chapter 3

Own work

The goal of this thesis was to create a user-friendly wear-
able networking system. It consists of a main board, which
handles the networking and a number of chips which can
be placed at any connection point at any time. This section
explains the software requirements and the reasons why
a UART Serial communication was chosen. Afterwards it
introduces the board, explains why an Arduino MKR1000
was used as the main microcontroller and explains what is
needed for the communication. The section closes by dis-
cussing the chips designed so far and what challenges arose
in the design process.

3.1 Requirements

There were certain requirements for the system that had to
be met: First the system had to be able to communicate
with multiple chips. An appropriate communication pro-
tocol had to be chosen for that. A weak point in each wear-
able system are the connectors and connections, as they en-
dure the most stress, either from frequent connecting and
disconnecting, or from bending while wearing it. Because
of this the goal was to minimise the number of connections
needed. For that reason SPI was excluded from the begin-
ning. The two remaining protocols which are supported by

10 3 Own work

the AtTiny are I2C and Serial. The decision process is ex-From here on the
term Serial refers to

the UART Serial
communication

protocol

plained in the section below.

For the first mode the system does not need to know where
the chips are located, however, it is imperative for the sec-
ond mode. For that the system needs a way to find and
store the location of any connected chip.

The chip requirements were very simple. Aside from the
pinout described in Section 3.4 and the wish to use an At-
Tiny85 there were no other requirements.

3.1.1 I2C vs. Serial

I2C and Serial are both protocols that are usually directly
supported by the hardware of most microprocessors. This
and the fact, that they are fairly simple and only use two
pins, make them the best choices for infrequent and, com-
pared to SPI, slow data communication. This section will
explain the reasons why Serial was chosen instead of I2C.

The I2C communication protocol is a master/slave system.
It uses a two-wire-bus: the first wire carries a clock while
the second carries the data signals. It uses a 7 bit address
for each module, thus there are 127 different possible ad-
dresses. Each module is connected to the same bus.
The reasons why I2C is not a suitable candidate for the sys-
tem lies within the master/slave setup of the protocol. In
this configuration only the master is able to initiate the com-
munication. This disqualified I2C because the chips were
supposed to be able to start sending data as soon as they
get them. Another draw back of I2C is that each module,
that is connected to the bus, needs to have a unique ad-
dress. It should be possible to connect chips with the same
address to the board.

The Serial communication protocol also uses two wires, but
instead of using one wire for a clock signal Serial uses both
for data transmission. Each is carrying the communication
in one direction. Thus the sender of one module (called tx,
short for transmitter) is connected to the receiver (called rx)

3.2 Early Work 11

of the other and vice versa. In contrast to I2C both modules
can start to send data at any time. The data is buffered until
the receiver reads it. As Serial communication is only be-
tween two modules there is no need for an address.
That is a disadvantage of Serial compared to I2C. Serial
communication is only between exactly two participants.
In theory, it is possible to connect each tx pin to each rx pin
of all the other modules. In praxis, this would not scale to
more than a couple of modules.

Serial was chosen as the chips should be able to initialise
data transmission as well as the board. My task was to find
a way around the limitation.

3.2 Early Work

A first attempt was to use the Arduino SoftwareSerial li-
brary and simply combine both the sender and receiver
function at the same pin. This would, in theory, produce
a bus, like I2C uses, and cut down the numbers of pins
needed, which would in turn increase the number of usable
pins at the AtTiny.

Figure 3.1: Attempt for one wire communication

This did not work. In theory, all that had to be done was
to change the pin from receiver to sender each time the
chip had to send data. In praxis, the write buffer needed

12 3 Own work

to be cleared before this could happen. There is a function,
called flush(), within the SoftwareSerial library. However,
this function only clears the input buffer. As SoftwareSerial
is not intended for duplex use, it does not need to be able
to clear the write buffer.
There exists a library called SoftwareSerialWithHalfDuplex
by the user nickstedman on GitHub. This library had im-
plemented all that was needed. It offered Serial communi-
cation with half duplex over one wire.
After a positive test with two Arduino Nanos communica-
tion over one wire was also successful with a combination
of four AtTiny and one Arduino Nano.

Figure 3.2: Successful one wire communication

Addresses similar to I2C were used to identify the micro-
processors. Each microcontroller got a character as an ad-
dress assigned. In front of each data byte the sender had to
place one byte containing the address character. Each other
microcontroller read the address byte as soon as it had ar-
rived, compared it to its own address and decided whether
the data, that it had read directly after the address, was in-
tended for it or not.

3.3 Board

The main microcontroller will be called the board from now
on. It handles all the communication by checking where in-
coming data is from and readdressing it to the correct chip,
according to the selected mode. Beside communication it is

3.3 Board 13

also responsible for localising chips, which are connected to
it, as well as handling the button, which changes the mode.

3.3.1 Upgrade

Before progressing any further from the state, described at
the end of the last section, and keeping the user-friendly
aspect in mind, the decision was made against using an Ar-
duino Nano as the main microcontroller. To allow for more
complex programs and the addition of further hardware,
which need more RAM space, the decision was made to
upgrade. Another deciding factor was, that while it is pos-
sible to have multiple SoftwareSerial ports in the system,
it is not possible to have them all listen at the same time.
So if in the future the need arises to have multiple buses, a
system that uses SoftwareSerial will not work.

The choice was made to use the Arduino MKR1000 (for bet-
ter readability called MKR). It has 32kb of RAM compared
to 2kb of the Nano and the possibility to configure multi-
ple hardware serial ports. It is, however, no longer an AVR
chip.
It was no longer possible to use the SoftwareSerialWith-
HalfDuplex library, on which the whole setup was relying,
because the MKR uses an ARM chip.

The first test was simply to connect the tx pin of the MKR
to all the rx pins of the Arduino Nanos and to connect all
the Nanos tx pins together to the rx pin of the MKR. As
the chips do not need to send data directly to each other,
they do not need connections between them. This was only
partly successful. The MKR was able to send data to all the
Nanos, but the other way round did not work.
This behaviour is caused by electric impedance. A sin-
gle Nano is not able to drive the communication line low
enough when there is more than one receiver. However,
this challenge can be overcome by using a simple diode (in
this case a 1N4148 signal diode), creating the impression for
an individual Nano, that there is no other communication
partner than the MKR.

14 3 Own work

3.3.2 Localisation

The initial idea was to localise chips, which are connected
to the board, by using a similar technique as used to drive
a LED dot matrix. The connections were organised in a
matrix form with rows and columns. By applying 5V and
ground accordingly, it is possible to select a specific location
in the matrix. If a chip is connected to this location, the chip
boots up and sends its address, from now on called ID. If
the MKR does not receive an ID after 50ms, it knows, that
there is no chip at this location and will check the next one.
After this localisation step there were challenges expected,
when all chips are supplied with power again. The chips
are not able to differentiate whether they are powered, be-
cause the board tries to localise them, or if they should re-
turn to normal operation. Thus all chips always send their
IDs when supplied with power. The intended solution was,
that the MKR ignores any data coming in for a short period
after switching on all chips.

However, this solution was never implemented. The
AtTinys were not able to successfully send their ID after
powering up.
At first the chips were directly powered by a pin of a Ar-
duino Nano. It was uncertain whether the power supplied
was powerful or stable enough. To stabilise it, a capacitor
was placed parallel to the chip. Another try was, to power
the chip via a MOSFET directly from the power supply.
Another possible cause for that behaviour might have been
that there were some terminal characters in the incoming
data. All available methods for sending data were tried, as
well as clearing the buffer after reading the first byte.

3.3 Board 15

Figure 3.3: Evolution of the location test setup

As the booting process does not allow for precisely timed
intervals and might cause power fluctuations this approach
was discarded.
As a new approach two wires were directly connected to
pins on the chip. If these wires are pulled low, the chip will
send its ID without the need to boot again.
To reduce the number of pins needed, a 4011 NAND IC
was included, which leaves two pins on the AtTiny free to
handle its tasks.

Figure 3.4: Schematic of the finished board

16 3 Own work

3.3.3 Hardware

Besides the above explained functions the board needs
some additional components. Because the MKR is a 3.3V
microcontroller and can not handle 5V, which the AtTinys
use, the communication between both controllers is not
possible without level shifting.

In addition to the level shifter (the red rectangular in Figure
3.4) there are five sockets on the board: four of these are
for connecting regular chips. Above these four there is an
extra socket. This one is special, as it is not connected to
any localisation line. Therefore, any chip connected with it
will not be found by the localisation routine of the MKR.
This socket is intended for a display chip, see Section 3.4.2.

There is also a tactile switch above the MKR. It is connected
to the MKR via an internal pullup resistor. By pressing this
button the communication mode is changed. For more in-
formation about these modi see the next section.

Last there is a JST for the power connection. A micro USBJST = Japanese
Solderless Terminal

(0.1in pitch)
port is the intended way to supply power, but if the user
wants to use a different power source, he simply needs to
connect it via this JST. The JST ensures, that it is not possible
to connect the power source the wrong way. The boards
operational voltage is 5V.

3.3.4 Software

In this section the software which is operating the board
will be discussed. There are three main components. The
first thing the software checks is, whether the mode change
button is pressed and acts accordingly. After that the soft-
ware handles any incoming data. The last part checks if
there is a change in the connected chips.
While booting, the board initialises the second hardware
Serial port and reserves memory for the location array,
which will contain the location of connected chips. It also
checks if there is a Serial connection to a PC. If there is none,
it tries to find a connection for five seconds.

3.3 Board 17

Figure 3.5: The finished board PCB

Mode Change

The first thing the MKR does is to check whether the mode
change button, which is connected to pin A1, was pressed.
In this case the board checks if a confidence level is reached:
that means the button is pressed for 50 successive loop it-
erations. If the button is released within the 50 cycles, the
MKR will not recognise a successful button press. This is
done to eliminate any bouncing.
Once the MKR recognises a successful button press, it
changes the mode variable. The mode variable is of the
type character. Up to now there are only two possible modi.
The character 0 represents the hard coded communication
system. The other possible mode is called pass-on and is
associated with the character 1.
After a successful mode change the MKR activates the lo-
cation subroutine.

18 3 Own work

Communication

After handling a possible button press the MKR checks
both Serial ports.

The native Serial port might be connected to a PC. If it is not
connected, there will never be any data and the MKR will
never enter this subroutine. If there is data, it will either be
the single character t, which will prompt the MKR to jump
into the localisation subroutine, or if it is not, the MKR will
try to read a second character and send this to the chip with
an address matching the first read byte.

After checking the native Serial port the MKR will check the
second one. This is the one connected to the sockets and the
chips. If there is data, the MKR expects two bytes. The first
byte contains the address of the chip, which has sent the
data, while the second byte is the data itself. If there is no
second data byte, the MKR will simply put in the character
x as data.
Having received data, the MKR checks the mode variable
to determine which communication mode to use.

The simpler mode is the hardcoded one. In this mode the
MKR sends the data, based on the senders ID, according to
a hardcoded lookup table to the receiver.

The pass-on mode is a little more complex. After receiv-
ing data, the MKR checks in the location array, whether the
position of the sender is known. If it is unknown, it will
jump into the localisation subroutine to find the position. If
it is still not able to find the position, it will discard the data
package.
If it finds the sender’s location, the board will look up the
ID of the chip at the next higher position. After that, it sim-
ply sends the data to that chip. If there is no chip in the next
position, it will discard the package as well.

3.4 Chips 19

Localisation Routine

The localisation subroutine will only be called every five
seconds if it is not called by one of the two others. It has
two parts. The first is responsible for finding the chips, the
second sends data to a display chip, see Section 3.4.2.

The positions are arranged in a matrix form. By using this
configuration the board is able to use only the number of
rows + columns pins, to check rows ∗ columns positions.

The first step is to pull the lines going to the corresponding
position high. Which in turn will pull the location line go-
ing from the 4011 NAND to the chip low. The board waits
for 50ms, before it checks, whether there is an ID message at
the second Serial port. If there is a message, the MKR will
store the ID in the locations array, otherwise it will place
the character x, to indicate that the position is empty. After-
wards it repeats this procedure for all possible locations.

After checking all locations the subroutine will try to send
the new locations array via the native Serial port to a con-
nected computer as well as to a display chip. The data for
the display chip is extended by the byte representing the
mode.

3.4 Chips

The different chips are introduced in this section. All chips
have the same pinout to connect to the board, therefore, the
user can connect each chip to each location.
The chip, the right side up, the pins on the top, starting
from the left pin: the first is the localisation pin, if that one is
pulled low, the chip sends its ID to the board. The next pin
is ground. After that there is an empty pin, which makes
the connector not symmetrical and prevents the user from
accidentally placing the chip in the wrong direction. The
next two pins are the communication pins. The last pin is
the voltage supply.

20 3 Own work

Figure 3.6: Pinout for a chip without anything connected to
it

Most chips use the AtTiny85 microcontroller. The pin con-
figuration described above leaves only three pins unused
on the AtTiny. One of these three is the reset pin, which is
only usable if the fuses are set by a high voltage program-
mer. This means that there are only two pins left for input
and output. Luckily most applications do not need more.

The software on these chips is mostly the same. Each chip
has its own address which is stored in a variable of type
character called ID. The software contains up to three parts.
The first handles the localisation request, the second checks
the Serial port and the third is optional. If the chip has some
kind of input, like a button for example, the third part han-
dles that.
The localisation subroutine checks each cycle if the locali-
sation line is pulled low. In this case, the chip sends its ID.
Up to now there are chips with IDs in the range from zero
to four.
After sending the ID the chip goes to sleep for 100ms.

ID Chip
0 Either Display or LEDs
1 Gyroscope
2 Toggle or momentary switch
3 LED
4 Seven-segment-display

Table 3.1: List of all assigned IDs so far

The communication subroutine checks if there is new data.
If there is data, the chip reads the first byte containing the
address and immediately after that it tries to read the data
byte. If there is no data to be read, the data byte is set to the
character x. Afterwards the chip compares the just read ad-

3.4 Chips 21

dress with its own ID. If they match, it knows, that the data
was intended for itself and can act accordingly. Otherwise
it ignores the data byte.

As the third part is optional, it is individual to the specific
chip and will be discussed in the section corresponding to
the chip.

3.4.1 Simple Chips

Simple chips are chips, that do not rely on a communica-
tion protocol to get their data from their sensor or to get it
to the actuator. At the moment there are two chips of this
category.

Button

This chip has a button connected to pin 7 of the AtTiny, see
Figure 3.7.
The software of the AtTiny checks each cycle if the button is
pressed. The same method to debounce the button is used
as the one on the board previously.
When a button is successfully pressed, the chip sends its ID
followed by the information from the button press. There
are two different versions of this software. The first sends
the present state of the button: if the button is pressed,
the chip sends 255, and if the button is released, the chip
sends a 0. The second software variant implements a tog-
gle switch. The button press changes the state of a boolean
variable which is afterwards send to the board.
Incoming data is ignored in both versions of the software.

Possible other versions of this kind of chip include one with
two buttons or a potentiometer.

22 3 Own work

Figure 3.7: Schematic of the button chip

LED

This chip has a simple LED which is connected via a current
limiting resistor to pin 5.
When data arrives at the chip, it is read and used to set thePWM = Pulse Width

Modulated duty cycle for a PWM signal, which drives the LED.

Further possible versions include the addition of another
LED or the switch to an addressable LED like a WS2812b.

Figure 3.8: Schematic of the LED chip

Other

It is possible to design even more chip, that fall into this
category. For example one could use a potentiometer or a
thermistor as an input.
Other outputs might include a piezo buzzer or a small mo-
tor. With a dedicated driver it would even be possible to
drive a stepper motor.
As long as it is possible to connect any input or output de-
vice with only two pins to the AtTiny, it is possible to design
a chip.

3.4 Chips 23

3.4.2 I2C Chips

These chips are more advanced compared to those in the
last category. Nearly all of these chips use the same base
chip. It has two 4.7kΩ pullup resistors for I2C communi-
cation. Additionally to the resistors the chip has a socket
to connect to a shield, see Figure 3.9. A shield is a board,
that can be plugged into the socket on the chip. It commu-
nicates with the chip via I2C.
The specific pinout: the top pin is the serial data line, be-
low that lies the clock line. After that there is ground and
the last one is 5V.
To prevent inserting a shield the wrong way, the user only
has to keep in mind, that the shields are supposed to be
directly above the chip itself.

The software uses the TinyWireM library by Adafruit [c]
to enable the AtTiny to use the I2C interface as a master
device.

Figure 3.9: Schematic of the basic I2C chip

Seven-Segment-Display

This shield is an example, that even though there are only
two pins still available at the AtTiny it is possible to use
more. By using an MCP23017 IO expander IC it is possible
to drive two seven-segment-displays.
While powering up the MCP is set up by directly accessing
its registers. It is configured that all its 16 pins, divided into
two ports, are outputs.
When receiving data the AtTiny parses it. Afterwards the
byte, which is necessary to display the correct number cor-

24 3 Own work

responding to the data, is looked up. These bytes are then
sent to the corresponding registers of the MCP.

Figure 3.10: Schematic of the seven-segment-display shield

Gyroscope

A GY-521 breakout board is used for the gyroscope. It has
a MPU-6050 chip, which contains among other things a 3-
axis gyroscope, a 3-axis accelerometer and a digital motion
processor (DMP). The GY-521 can be plugged directly into
the chip as its pinout is the same as the one on the chip.

3.4 Chips 25

Figure 3.11: The GY-521 breakout board

After operating the gyroscope with an Arduino Nano suc-
cessfully, a transfer to the AtTiny was attempted. It did not
work, at least not while simultaneously accessing the At-
Tiny with a SoftwareSerial connection. The most plausible
explanation for this is, that both, the SoftwareSerial and the
TinyWire library, utilise timer1 of the AtTiny. Another pos-
sible explanation is that the DMP has not been set up cor-
rectly by the AtTiny. Determining, which is causing that be-
haviour, is beyond the scope of this thesis. Because of that,
only the gyroscope chip uses an Arduino Nano instead of
the AtTiny, which all the other chips use.

Figure 3.12: The Arduino Nano I2C chip

The software fetches data from the MPU in each cycle. To
get the angle at which the chip is currently held, the soft-
ware applies a gyroscope scaler, which can be found in the

26 3 Own work

datasheet. Then it calculates the accelerometer angle, inte-
grates it to get the gyroscope angle and applies a filter to it.
The resulting angle is then sent about two times per second
to the board. To be exact, it is sent every 437 microseconds,
so repetition of collisions can be avoided.
It is a very simple implementation of an angle calculation.
The software does not compensate for anything like gyro-
drift or offset errors.

Display

This shield, as well as the next one, were intended to be
used in the extra socket to display which chips are currently
connected to the board. However, they work in any socket
and with minor alteration to the software can display other
information as well.

Similar to the gyroscope the hardware for the display shield
consists only of a single 0.96” OLED display. As the pinout
of this particular display is in the exact opposite order, an
adapter PCB was made to keep it consistent with the other
shields.

Figure 3.13: Schematic of the OLED Display adapter

The software uses the TinyWireM and the TinyOzOLED li-
brary from user SensorsIot on Github to drive the display.
As the display used has a different address than most of the
others the address had to be changed in the library.
After initialising the display the AtTiny shows the static in-
formation like the locations and texts. At the end of the lo-
cation subroutine the board sends the IDs of all chips found
and the information of which mode the board is currently

3.4 Chips 27

in to the display. These IDs are converted from characters
to integers and sent to the display together with the text
which mode is currently active.

Individually addressable LEDs

This shield is designed, like the one above, to display the
location of chips connected to the board.

It uses five WS2812b individually addressable LEDs. The
four at the top (see Figure 3.14) are for indicating which
chip is connected to which socket, the one below is to show
which mode the board is currently in. The hardware con-
sists of two electrolytic capacitors to reduce spikes in cur-
rent draw and one resistor to protect the first LED, accord-
ing to the best practice described on the Adafruit [b] web-
site. To address the LEDs the Neopixel library by Adafruit
[a] is used.

Figure 3.14: The individually addressable LED shield

Similar to the display above the incoming data is converted
to an integer, which is then used to get the colour code cor-
responding to the ID out of a predefined array. This colour
code is sent to the LED corresponding to the location.

28 3 Own work

Colour ID Mode
off 0
red 1 hard coded

green 2 pass-on
blue 3

yellow 4

Table 3.2: Colours, the corresponding ID and mode

3.4.3 Challenges

While writing the code for the I2C chips, there were some
major obstacles with the display as well as the individually
addressable LEDs.

Although the display does not require a very complex pro-
gram it did not work as expected.
While trying to display the IDs the first position always
showed a -72. An Arduino Nano was set up to listen to the
Serial communication with the chip, see Figure 3.15. How-
ever, that did not provide any useful information, as it only
confirmed that the chip received the right data.

Figure 3.15: Setup to test whether communication works

3.4 Chips 29

After programming the chip to send back all data before
displaying it, it became clear that the information received
by the chip was corrupted somewhere between the socket
on the board and the part of the software that displayed it.
By not connecting the chip in the extra socket but in one of
the four standard ones it was possible to check if the wiring
was correct. As the chip functioned flawlessly at this posi-
tion, it was clear that there was a wiring problem. The only
difference from the standard to the extra socket was that at
the extra socket the localisation line was not connected.
After connecting the localisation line of the extra socket to
5V the chip worked at that location as well.

Similar to the display above the individually address-
able LEDs did not initially work as intended. After re-
ceiving data the shield displayed the right colours at the
right places, but after less than one second the colours
changed. The colours which were then displayed were
colours not among the preconfigured ones. These wrong
colours stayed until the chip got the next message from the
board. After swapping the chips at the board the first dis-
played colours were also changed correctly. But again after
less than a second the colours changed to the previously
wrong ones. Altering the program the same way as the
software of the display shield the chip now sent the data,
which it tried to display on the LEDs, to the board.
It turned out that the chip received another data set after
the correct one. The monitoring of the data transmission
proved that there was only the correct data on the bus.
The solution was to check, before sending data to the LEDs,
whether the data is a known ID or not.

31

Chapter 4

Evaluation

The goal of this thesis was to create a user-friendly wear-
able networking system. This chapter is going to evalu-
ate which of these three aspects were sufficiently met and
which need to be improved.

4.1 User-friendliness

There are many aspects to consider whether a system is
user-friendly or not.

Does the system require any additional parts that are not
included?
The only thing, the user has to provide, is a power source.
He is free to choose what kind of power supply he wants
to use. He can use the provided micro USB port to power it
from any USB power supply, or he can disconnect this port
form the JST and connect any other power supply there, as
long as it is capable of providing a stable 5V.

If there are connectors, is it possible to connect them the
wrong way and destroy any electrical components?
Most connectors in the system are designed in a way that
it is physically impossible to connect them the wrong way.
The connectors between board and chips are asymmetrical,

32 4 Evaluation

so there is no way to force them into the socket the wrong
way. For the power connector the board uses a JST with
registration teeth which prohibit wrong insertion.
The only parts that can be connected in a way not intended
are the shields for the I2C chips. However, they are de-
signed in a way, that the user only has to remember, that
the shield has to be directly above the chip. If he forgets
this, the power pins are located in such a way that it is still
impossible to connect ground to 5V and vice versa.

Does it matter which chip is connected to which location?
And can the location be changed at any moment?
This depends on the mode the user chooses. After the
board has powered up it is in the hardcoded mode. In this
mode it does not matter where a chip is connected and the
system checks, only based on the senders ID, to which chip
the message is supposed to go. That means, that it is pos-
sible to connect and disconnect any chip at any given time,
because even if the addressed chip is not there, the message
is sent anyway.
In the second mode the user has to keep in mind that the
chips, which he wants to communicate, have to be directly
next to one another. Although this is more complex it of-
fers more options. New setups can be created without the
need to change the software. In this mode chips can also be
connected and disconnected at any given moment. Before
sending the data the system always checks the sender’s lo-
cation and if there is a chip in the next position to which the
data will be addressed.
Although the above introduced system works there are
some aspects to be improved, see Section 5.2 for ideas.

Does the system provide information about which chip is
connected to which location?
The board has an extra socket to connect a display chip.
Up to now there are two kinds of displays: a 0.96” OLED
display which can show the positions, the connected chips
and which mode the board is in. The other option is the
WS2812b individually addressable LED shield. It displays,
which chip is connected to which position by assigning
each ID its own colour and by displaying that colour at the
LED corresponding to its location. The mode is displayed
in the same way.

4.2 Wearability 33

If the user wants, he can create other methods for display-
ing the information.

Is it possible to create new chips?
The user can create as many chips as he needs. He has to
use the same pinout as described in the chip section. He
has to keep the communication format, first sending the
chips ID followed by a data byte. The chip has to be able
to handle the information sent by the board, this includes
the capability to handle the longer data stream containing
the location information for the displays. But otherwise the
user can create any chip he wants or needs. He is not even
restricted to the use of the AtTiny85.

4.2 Wearability

The system needs to be small enough to be comfortable
to wear, it needs to be self contained and to have its own
power source. All these aspects are met successfully, how-
ever, there is still room for improvements, see Section 5.2.
At the moment the board has a maximum length of 9.5cm
at a width of 6.5cm, which makes it smaller than most mod-
ern smart-phones. Even if it is in a case, the user is able to
carry it comfortably attached to a belt or in a pocket. The
chips use the AtTiny85 to keep them as small as possible.

The system does not require any external hardware to oper-
ate except for the power supply. While booting, the board
checks whether there is a Serial connection to a computer,
however, that is only to provide the user with additional
information: such as which chip sent what kind of data. If
there is no connection, the system will still operate perfectly
without one.

The system uses a micro USB socket as a power connector
to provide it with power. Using a powerbank is the sim-
plest way. These are available in many different sizes and
shapes, so the user can choose the one that he prefers.

34 4 Evaluation

4.3 Networking

The most interesting part of this work was the networking.
As described in Section 3.2 the initial idea was to combine
both communication lines into a single one. This is possi-
ble as long as the system uses an AVR chip. By utilising the
SoftwareSerialWithHalfDuplex library it is feasible to have
multiple chips capable of communicating with one another
over the same wire. The highest tested number of success-
fully communicating microcontrollers was five. This is suf-
ficient to create the desired networking.

A change was made to an ARM based processor because of
the reasons described in Section 3.3.1. As there is no equiva-
lent library for this processor architecture the whole system
needed to be reworked. By using signal diodes it is possi-
ble to create virtual communication channels which enable
one chip to talk to the board without noticing that there are
multiple other chips connected. After adjusting the address
the board simply broadcasts all messages it received to all
connected chips. Thus it appears to the chips that they com-
municate with each other, although they do not know for
which chip their message is or where that chip is located.

If the redirecting is hardcoded, the board will not have to
do much. The board simply checks the senders ID and
looks up the correct receiver before broadcasting the data.
Only the right receiver gets the data as all chips discard
messages that do not contain their ID. The board does this
regardless whether or not the correct chip is connected.

The more interesting part is redirecting based on the loca-
tion of the sender. For this the board needs to know where a
sender is located. The board checks whether the location of
the sender is known. If it is not, the board tries to find that
chip. After successfully locating the chip the board checks
whether there is a chip at the next position. If there is one,
the data is sent to it. Otherwise the data is discarded.

Both modi implement valid networking strategies. The last
task is to determine if there are not too many collisions for
the system to operate effectively. As collisions can only

4.3 Networking 35

happen if two chips try to send data at the same time, it
is necessary to look at the rate at which the chips send data.
The chip that sends most frequently data is the gyroscope
chip. It sends data about two times per second. The line is
occupied for only 4.17 milliseconds if a boud rate of 9600
is used and the chip sends two times 20 bit (2x(1startbit +
8databits + 1stopbit)) per second. This means a collision
can hardly happen. Even if one occurs, the damage is most
surely corrected by the next data package sent by the gyro-
scope.
However, this might be improved in the future by imple-
menting a system that either is able to detect if a collision
happened or that is able to prevent them from occurring.

37

Chapter 5

Summary and future
work

5.1 Summary and contributions

This thesis dealt with two main goals. Primary to cre-
ate a networking system and secondly to provide a user-
friendly experience. The networking is done via a Serial
port. By combining the transmitter lines of the connected
chips with the use of 1N4148 signal diodes it is possible
to have communication between two components even if
there are more. The board offers two modi in which the
networking is done. In the first mode the address corre-
sponding to an incoming message is directly written into
the software of the board. The second mode offers more
flexibility. It redirects messages based on the location of the
sender. The system is able to localise where a certain chip
is connected.
Each aspect is designed with user-friendliness in mind. Be-
sides the possibility to have message-passing, either hard-
coded or dependant on the position, the user is able to con-
nect any chip at any location. He can connect or disconnect
chips at any time and the system will adapt to it. The only
thing the user has to think about is, if he uses pass-on mode,
that chips which should communicate have to be located
next to each other. The sockets on the board are designed

38 5 Summary and future work

in a way that it is impossible to connect a chip the wrong
way. The whole board runs on 5V, it has a micro USB con-
nector to power it. But if the user wants, he can connect
any power supply to the board via a JST connector, as long
as it provides a stable 5V. The user can create any chip he
needs because there is a blank chip template, see Figure 3.6.
But he can also adapt more complex hardware to utilize the
standard I2C chip. The user has the option to connect a dis-
play or individually addressable LEDs at the extra socket
to show which chips are connected at which location.

Ideas to take away from this work: it is possible to use Se-
rial communication which is designed to be a communica-
tion protocol between two participants. But it can also be
used to communicate with more than two if the communi-
cation is done via a communication hub. Using diodes it
is possible to simulate direct communication channels be-
tween two members. However, depending on the rate at
which data needs to be transmitted it is possible that colli-
sions might occur.
Another important point is that all input pins must be con-
nected either to the supply voltage or to ground. If one is
left unconnected, this pin might cause havoc, even if the
software does not access it. If all pins are connected the
right way, there might still occur some effects which need
to be handled so that the software can run reliably, see Sec-
tion 3.4.3.

5.2 Future work

For the future there are still some aspects that can be im-
proved.
The most important one would be to shrink the footprint of
all parts. Except from the MKR and the one Arduino Nano,
which are already SMD and cannot easily be shrunk anySMD = surface

mounted device further, all parts are through-hole components. Replacing
them with SMD ones the size can be reduced significantly.
This will increase the comfort for the user while wearing
the system.

Afterwards the next two points are of equal importance.

5.2 Future work 39

The addition of a third mode to the board: this one would
be a mix of the already existing two. This means that the
user has the possibility to hardcode the communication be-
tween certain chips, while leaving some communication to
be determined by the location on the board. This would be
useful in the case that one chip is intended to work with
another specific one, like the seven-segment-display is in-
tended to work with the gyroscope. The activation of the
first chip (e.g. the gyroscope) can be determined by any
chip (e.g. the button) which is placed in front of it. As
shown above it would be possible to use the button chip
with either the toggle or the momentary switch program.
Another possibility: a chip with a potentiometer can be
used to start the communication of the gyroscope if a cer-
tain threshold value is reached.

Additionally to the third mode, the hardcoded mode can
be made a bit more user-friendly by changing the way the
hardcoding is done. Up to now the user has to change the
hardcoded list within the code. The user should be able to
create a simple text document which is stored on a SD card.
While booting, the board checks the text file and adjusts the
definitions how incoming data is redirected to the chips.
This could be done in a way that any connection, that is not
specified by the user, is treated as if the board is in pass-one
mode.

The system can even be more expanded if more chips are
designed. As mentioned in Section 3.4 there is nearly no
limit to the number of possible chips. Especially the cre-
ation of a potentiometer chip would be advantageous. It
would allow the user, for example, to control the rate at
which the gyroscope chip is sending data or to define the
brightness of a LED.
Besides the potentiometer, a SD card chip would be ex-
tremely useful: either to log certain data or to read data
from a file and use it to influence the behaviour of the sys-
tem.
For this purpose a totally new type of chip needs to be cre-
ated as the AtTiny85 does not have a sufficient number of
pins for the SPI communication on which the SD card relies.
It might be possible to create a SPI chip using the physically
bigger brother of the AtTiny85, the AtTiny84. If this proves

40 5 Summary and future work

to be impossible, one could still use an Arduino Nano to
create such a chip.

Last the communication protocol should be changed signif-
icantly. Up to now it is only possible to send a single byte of
information, aside from the case where the board sends the
localisation data. The protocol should be changed in a way
that, after the chip sent its ID, it has to declare the number
of bytes that it intends to send. Thus it would be possible to
have chips that are capable to send and receive more com-
plex data. This would be advantageous for a chip like the
gyroscope, as it is limited to just one axis of rotation at the
moment.

When the above mentioned points are changed or imple-
mented one might start to think about a method to prevent
collisions or at least to detect whether a collision has oc-
curred.

The above described system offers an easy to use and quite
capable entry point into wearable electronics. Its modular-
ity offers the user the possibility to experiment with differ-
ent setups and configurations without previous knowledge
in electronics. As the system is easily expandable, by cre-
ating new modules, it is excellently suited for educational
purposes on nearly every skill level.

41

Appendix A

Git

All software files can be found here: Software1

The hardware files are at this address: Hardware2

1https://github.com/TMei90/BachelerSoftware
2https://github.com/TMei90/BachelorHardware

https://github.com/TMei90/BachelerSoftware
https://github.com/TMei90/BachelorHardware

43

Appendix B

Version History

Software versions after the switch to the Arduino MKR1000
in chronological order.

• MKR1000

– MKR1000ExtraHardwareSerial: Implemen-
tation of a second hardware Serial port —
Successful

– MKR1000Substring: Implementing Serial com-
munication with multiple participants — Suc-
cessful

– MKR1000LocationTest: Implementation of the
localisation subroutine— Successful

– MKR1000LocationTestV2: Expanding V1 by
adding hardcoded message passing — Success-
ful

– MKR1000LocationTestV3: Implementation of
pass on mode — Successful

– MKR1000LocationTestV4: Code cleaning, imple-
mentation of mode change — Successful

• Nano

– NanoSoftwareSerial: Implementation of a soft-
ware Serial port — Successful

44 B Version History

– NanoSoftwareSerialEcho: Echoing Serial data
back to the sender — Successful

– NanoSSIDResponse: Assigning IDs, responding
only if own ID is recognised — Successful

– NanoLocationTest: Implementing the localisa-
tion subroutine — Successful

– NanoIOExpander: Implementation of an IO ex-
pander using a library — Successful

– NanoIOExpanderV2: Implementing the IO ex-
pander without a library — Successful

– NanoGyro: Implementing an I2C gyroscope us-
ing a library — Successful

– NanoGyroV2: Implementing an I2C gyroscope
without a library — Successful

– NanoGyroV3: Adding communication to the
GyroV2 — Successful

• AtTiny85 (most versions are direct adaptations of the
Nanos implementation)

– AtTinySSIDResponse: Adapting NanoS-
SIDResponse for the AtTiny — Successful

– AtTinyLocationTest: Adapting NanoLocation-
Test for the AtTiny — Successful

– AtTinyIOExpander: Adapting NanoIOEx-
panderV2 for the AtTiny — Successful

– AtTinySerialDisplay: Expanding AtTinyIOEx-
pander with Serial communication — Successful

– AtTinyGyro: Adapting NanoGyroV2 for the At-
Tiny — not Successful

– AtTinyButton: Implementing a button, after
pressing a 255 is sent, after releasing the button
a 0 is sent — Successful

– AtTinyLED: Implementing a LED, reading a 255
turns the LED on, reading a 0 off — Successful

– AtTinyToggle: Changing the button to a toggle
switch — Successful

– AtTinyNeoPixelTest: Implementing WS2812b
LEDs to display chip positions — Successful

45

– AtTinyOLEDTest: Implementing a 0,96” OLED
display, displaying chip positions — Successful

– AtTinyNeoPixelV2: Adding network functions
to the AtTinyNeoPixel — Successful

– AtTinyOLEDV2: Adding network functions to
the AtTinyOLEDTest — Successful

– AtTinyOLEDV3: Adding mode change — Suc-
cessful

– AtTinyNeoPixelV3: Adding mode change —
Successful

47

Bibliography

Adafruit. Neopixel, a. URL https://github.com/
adafruit/Adafruit_NeoPixel.

Adafruit. Basic connections, b. URL https://learn.
adafruit.com/adafruit-neopixel-uberguide/
basic-connections.

Adafruit. Tinywirem, c. URL https://github.com/
adafruit/TinyWireM.

Anke Brocker, Simon Voelker, Tony Zelun Zhang, Mathis
Müller, and Jan Borchers. Flowboard: A visual flow-
based programming environment for embedded cod-
ing. In to appear: Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems, CHI ’19, New
York, NY, USA, May 2019. ACM. ISBN 978-1-4503-5971-
9/19/05. doi: 10.1145/3290607.3313247. URL https:
//doi.org/10.1145/3290607.3313247.

Kinematics. Tinkerbots robotic building kit. URL
https://www.indiegogo.com/projects/
tinkerbots-robotic-building-kit-toys#.

nickstedman. Softwareserialwithhalfduplex.
URL https://github.com/nickstedman/
SoftwareSerialWithHalfDuplex.

SensorsIot. Tinyozled. URL https://github.com/
SensorsIot/TinyOzOled.

SparkFun. qwiic. URL https://www.sparkfun.com/
qwiic#connections.

Ryoichi Watanabe, Yuichi Itoh, Michihiro Kawai, Yoshi-
fumi Kitamura, Fumio Kishino, and Hideo Kikuchi.

https://github.com/adafruit/Adafruit_NeoPixel
https://github.com/adafruit/Adafruit_NeoPixel
https://learn.adafruit.com/adafruit-neopixel-uberguide/basic-connections
https://learn.adafruit.com/adafruit-neopixel-uberguide/basic-connections
https://learn.adafruit.com/adafruit-neopixel-uberguide/basic-connections
https://github.com/adafruit/TinyWireM
https://github.com/adafruit/TinyWireM
https://doi.org/10.1145/3290607.3313247
https://doi.org/10.1145/3290607.3313247
https://www.indiegogo.com/projects/tinkerbots-robotic-building-kit-toys#
https://www.indiegogo.com/projects/tinkerbots-robotic-building-kit-toys#
https://github.com/nickstedman/SoftwareSerialWithHalfDuplex
https://github.com/nickstedman/SoftwareSerialWithHalfDuplex
https://github.com/SensorsIot/TinyOzOled
https://github.com/SensorsIot/TinyOzOled
https://www.sparkfun.com/qwiic#connections
https://www.sparkfun.com/qwiic#connections

48 Bibliography

Implementation of activecube as an intuitive 3d
computer interface. In International Symposium on
Smart Graphics, pages 43–53. Springer, 2004. URL
https://link.springer.com/chapter/10.
1007/978-3-540-24678-7_5#enumeration.

Jamie Zigelbaum, Michael S Horn, Orit Shaer, and
Robert JK Jacob. The tangible video editor: col-
laborative video editing with active tokens. In
Proceedings of the 1st international conference on Tan-
gible and embedded interaction, pages 43–46. ACM,
2007. URL https://static1.squarespace.
com/static/4f57841c24ac1bb6d947d820/t/
50f828a6e4b02a75e89d8c95/1358440614743/
TangibleVideoEditor_TEI2007.pdf.

Oren Zuckerman. Flowness+ FlowBlocks: uncovering the
dynamics of everyday life through playful modeling. PhD
thesis, Massachusetts Institute of Technology, 2007. URL
https://www.media.mit.edu/publications/
flowness-flowblocks-uncovering-the-dynamics-of-everyday-life-through-playful-modeling/.

https://link.springer.com/chapter/10.1007/978-3-540-24678-7_5#enumeration
https://link.springer.com/chapter/10.1007/978-3-540-24678-7_5#enumeration
https://static1.squarespace.com/static/4f57841c24ac1bb6d947d820/t/50f828a6e4b02a75e89d8c95/1358440614743/TangibleVideoEditor_TEI2007.pdf
https://static1.squarespace.com/static/4f57841c24ac1bb6d947d820/t/50f828a6e4b02a75e89d8c95/1358440614743/TangibleVideoEditor_TEI2007.pdf
https://static1.squarespace.com/static/4f57841c24ac1bb6d947d820/t/50f828a6e4b02a75e89d8c95/1358440614743/TangibleVideoEditor_TEI2007.pdf
https://static1.squarespace.com/static/4f57841c24ac1bb6d947d820/t/50f828a6e4b02a75e89d8c95/1358440614743/TangibleVideoEditor_TEI2007.pdf
https://www.media.mit.edu/publications/flowness-flowblocks-uncovering-the-dynamics-of-everyday-life-through-playful-modeling/
https://www.media.mit.edu/publications/flowness-flowblocks-uncovering-the-dynamics-of-everyday-life-through-playful-modeling/

Typeset May 14, 2019

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Related work
	Commercially available systems
	Academic systems

	Own work
	Requirements
	I2C vs. Serial

	Early Work
	Board
	Upgrade
	Localisation
	Hardware
	Software
	Mode Change
	Communication
	Localisation Routine

	Chips
	Simple Chips
	Button
	LED
	Other

	I2C Chips
	Seven-Segment-Display
	Gyroscope
	Display
	Individually addressable LEDs

	Challenges

	Evaluation
	User-friendliness
	Wearability
	Networking

	Summary and future work
	Summary and contributions
	Future work

	Git
	Version History
	Bibliography
	Index

