
by
Christian Mattar

PinguTouch
Investigating Multi-Touch

Technology for
Collaborative Casual

Gaming

Diploma Thesis at the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Dr. T.C. Nicholas Graham

Registration date: Jul 11th, 2007
Submission date: Dec 19th, 2007

iii

I hereby affirm that I composed this work independently and used no other than
the specified sources and tools and that I marked all quotes as such.

Hiermit versichere ich, diese Arbeit selbständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt, sowie Zitate kenntlich
gemacht zu haben.

Aachen, 17.12.2007

(Christian Mattar)

v

Contents

Abstract xv

Überblick xvii

Acknowledgements xix

Conventions xxi

1 Introduction 1

1.1 Cooperative gaming 5

1.2 Peculiarities of game design 8

1.3 Thesis structure 10

2 Related work 11

2.1 Social behavior in tabletop environments . . 11

2.1.1 Territoriality in collaborative tabletop
workspaces 12

2.1.2 Collaborative Coupling 14

2.2 Multi-touch hardware 15

vi Contents

2.2.1 DiamondTouch 15

2.2.2 Apple iPhone & iPod Touch 16

2.2.3 Holowall 17

2.2.4 Frustrated total internal reflection . . 17

2.3 Tabletop applications involving complex
hand gestures 19

2.3.1 CollabDraw 20

2.3.2 RoomPlanner 21

2.4 Cooperative interactive tabletop games . . . 23

2.4.1 Modified commercial games 23

2.4.2 SIDES 23

2.4.3 Jam-O-Whirl 24

2.4.4 Magic Land 26

2.5 Discussion . 27

3 Designing the game 31

3.1 Finding a game concept 32

3.2 Introducing: PinguTouch 36

3.3 Appearance design 37

3.4 Interaction design 38

3.4.1 Flicking of pingus 38

3.4.2 Opening doors 38

3.4.3 Blocking and bridging 40

Contents vii

3.5 Level design 40

3.6 Designing an exhibit 41

4 Refining the game 45

4.1 User studies 45

4.2 Bridging gesture 46

4.3 Switches . 47

4.4 Level design 47

4.5 Score . 49

5 Implementation details 51

5.1 Appearance 51

5.1.1 Architectural overview 51

5.1.2 Modifications 55

5.1.3 Optimizations 58

5.2 TouchLib . 60

5.2.1 Calibration 62

5.3 Interaction . 63

5.4 Gestures . 65

5.4.1 Flicking of pingus 65

5.4.2 Opening doors 66

5.4.3 Blocking and bridging 68

5.5 Level editor 71

viii Contents

6 Evaluation 73

6.1 Part one - analyzing cooperation 75

6.1.1 Methods 75

6.1.2 Results 78

6.1.3 Discussion 78

6.2 Part two - analyzing enjoyment 81

6.2.1 Methods 81

6.2.2 Results 82

6.2.3 Discussion 82

7 Summary and future work 87

7.1 Summary and contributions 87

7.2 Future work 88

7.2.1 Cooperative gestures 88

7.2.2 Navigation 89

7.2.3 Random level events 89

A Questionnaire 91

B Interface definitions 93

Bibliography 95

Index 99

ix

List of Figures

1.1 Various game input devices 2

1.2 A typical gamepad 3

1.3 The Nintendo DS Lite system 4

1.4 PinguTouch installation at the Industrion
museum . 6

1.5 The cooperative Lord of the Rings game . . . 7

1.6 A screenshot of Super Monkey Ball: Banana
Blitz . 9

2.1 Tabletop territories 13

2.2 Investigating collaborative coupling 15

2.3 FTIR overview 18

2.4 User touching the multi-touch surface 19

2.5 Two users performing a partnering gesture
in CollabDraw 20

2.6 The RoomPlanner application 22

2.7 Modified Warcraft III game 24

2.8 Children interacting with SIDES 25

x List of Figures

2.9 The Jam-O-Whirl system 26

2.10 Illustration of the Magic Land system 27

2.11 A design space for cooperative tabletop ap-
plications . 29

3.1 Images of games used as inspiration 34

3.2 The original Lemmings game 35

3.3 The original Pingus game 37

3.4 Flicking gesture 39

3.5 Opening gesture 39

3.6 Bridging gesture 40

3.7 Initial level layout with description of areas . 42

3.8 Design pattern language for interactive ex-
hibits . 43

4.1 Modifications to the appearance of the bridge 47

4.2 Modifications to the appearance of the switch 48

4.3 Revised level layout with description of areas 49

4.4 Score and fireworks display upon finishing
the level . 50

5.1 Architectural overview of the graphics pipeline 52

5.2 Blades forming the octagonal level 55

5.3 Illustration of artwork reaching into neigh-
boring triangle 56

5.4 Drawing sprites overlapping blades 57

List of Figures xi

5.5 Identifier assignment algorithm mismatch . . 61

5.6 Touch calibration grids 62

5.7 Overview of the touch system implementation 63

5.8 Old flicking gesture behavior 67

5.9 New flicking gesture behavior 68

5.10 Possible blob configurations when placing
the edge of the hand on the table 69

5.11 Block placement in collision map 71

5.12 Example screen of the level editor 72

6.1 The Anvil workspace 76

6.2 Possible ways of cooperation 77

6.3 Questionnaire results 83

6.4 Correlation of Q1 and Q3 85

6.5 Correlation of Q1 and Q5 86

A.1 Questionnaire used for user evaluation . . . 92

xiii

List of Tables

2.1 Proxemic distances and associated behavior . 13

6.1 Video analysis results 79

6.2 Questionnaire correlations 84

xv

Abstract

Multi-touch tabletop gaming allows the social experience that a classical board
game offers to be integrated with the interactive capabilities of modern computers.
While several existing tabletop systems exploit these aspects to some degree
individually, none of them makes full use of both the social and the interactive
possibilities.

PinguTouch is a casual cooperative game created to fill this gap, and tap the
full potential of the properties of a multi-touch tabletop setup. The game involves
players performing hand gestures on the table surface to aid penguin-like crea-
tures, called pingus, through an obstacle course. Three gestures are implemented:
flicking of pingus, pulling of levers, and making bridges or blockades.

To fully utilize the co-located scenario, PinguTouch encourages close spatial
cooperation by employing quasi-modes. Since the number of actions one player
can perform at any one point of time are restricted, players must work closely
together in a common workspace to succeed in rescuing a large number of pingus.
This enables a game environment impossible to recreate in a non co-located
scenario.

To further support interpersonal interaction similar to a typical board game,
the visual layout of the game is fashioned in an octagonal form. The “down”-
direction of the game world leads towards the radius of the octagon, while the
“up”-direction leads towards its center, thus allowing all users standing around
the table easy access to their part of the game world.

The system was set up in the Industrion museum, Kerkrade, Netherlands.
After including several improvements based on user observations, a systematic
evaluation was performed involving typical museum visitors. Detailed video
analysis and survey results show that PinguTouch is a highly cooperative and
enjoyable game.

xvi Abstract

xvii

Überblick

Der Einsatz eines multitouch-fähigen Spieltisches ermöglicht die Integration
des sozialen Erlebnisses eines klassischen Brettspieles mit den interaktiven
Möglichkeiten moderner Computer. Obwohl einige bereits vorhandene interaktive
Spieltische diese Aspekte einzeln zu einem gewissen Grad ausnutzen, schöpft
keines von ihnen sowohl die sozialen als auch interaktiven Möglichkeiten voll aus.

PinguTouch ist ein kooperatives Gelegenheitsspiel, das entwickelt wurde,
um diese Lücke zu füllen und das gesamte Potenzial eines multitouch-fähigen
Tisches zu nutzen. Das Spiel erlaubt es den Benutzern, Handgesten auf der
Tischoberfläche auszuführen. Dadurch können Pinguin-artige Wesen, die Pingus,
über Hindernissen hinweg geholfen werden. Drei Gesten wurden implementiert:
das Anschubsen von Pingus, das Ziehen an Hebeln und das Platzieren von
Brücken oder Blockaden.

Um eine möglichst gesellige Situation um den Spieltisch zu erzeugen, sind
alle diese Handgesten quasi-modal. Da so die Anzahl Aktionen, die ein einzelner
Benutzer gleichzeitig ausführen kann, beschränkt ist, müssen die Spieler in einem
gemeinsamen Arbeitsbereich eng zusammenarbeiten, um alle Pingus retten zu
können. Auf diese Weise entsteht eine Spiel-Umgebung, die in einer Situation
ohne gemeinsam genutztes Spielfeld nicht möglich wäre.

Um die typischen zwischenmenschlichen Interaktionen eines Brettspieles zu
ermöglichen, ist das Spielfeld in einer oktagonalen Form angeordnet. Die Richtung
“unten” der Spielwelt führt in Richtung des Radius des Oktagons, während
“oben” in Richtung des Mittelpunkts zeigt. Dadurch erlangen alle Nutzer des
Tisches einfachen Zugriff auf den vor ihnen liegenden Teil der Spielwelt.

Das System wurde im Industrion Museum in Kerkrade, Niederlande, instal-
liert. Nachdem basierend auf Benutzerbeobachtungen einige Verbesserungen
vorgenommen wurden, wurde an Hand typischer Museumsbesuchern eine
systematische Benutzerstudie durchgeführt. Eine detaillierte Video-Analyse
zusammen mit Umfrageergebnissen haben gezeigt, dass PinguTouch ein unter-
haltsames, hoch-kooperatives Spiel ist.

xix

Acknowledgements

The PinguTouch project would not have been possible
without the support of many people, to all of whom I owe
my gratitude.

First of all, I thank Prof. Jan Borchers for sparking my
interest in HCI. He enabled me to create PinguTouch and
always gave me the resources I asked for. I also thank
Dr. Nick Graham from Queen’s University for agreeing to
be second examiner.

It was David Holman who introduced me to multi-
touch technology and supervised the implementation part
of this thesis. Eric Lee continued where David left off,
supervised the evaluation part, and performed countless
correction readings. Without their guidance, PinguTouch
and this thesis would have been of considerably worse
quality.

Elaine Huang, Marius Wolf, and Jonathan Diehl shared
their experience with me regarding user studies. In a simi-
lar way, Jonas Lang helped me increase my understanding
of statistics. The evaluations would have been much more
difficult without their valuable advice.

Wouter van Dillen and the crew from the Industrion
museum patiently supported me during my countless
evaluation trials and we have developed an excellent work
relationship over these months.

I thank all the authors of the non-commercial soft-
ware that I used: Ingo Ruhnke and the contributors to
Pingus—building this game from scratch would have been

xx Acknowledgements

impossible; David Wallin and the contributors to TouchLib;
Michael Kipp for creating Anvil and allowing me to use it
to analyze the video data.

On a more personal note, I thank my study-buddies
Georg, Rene, Seppel, Andre, and Tobias for five years of
geeky fun, work, and friendship. I never could have made
it without you! Here’s to another five years!

Finally, and most importantly, I want to thank my
parents, Carla and Ernst Mattar, for making my studies
possible. You allowed me to keep my focus on computer
science without having to think too much about how to
pay next month’s rent.

Thank you!

xxi

Conventions

Throughout this thesis we use the following conventions:

Source code and implementation symbols will be typeset
using a monospace font.

The plural “we” will be used throughout this thesis instead
of the singular “I”, even when referring to work that was
primarily or solely done by the author.

Unidentified third persons are always described in male
form. This is only done for purposes of readability.

The whole thesis is written in American English.

1

Chapter 1

Introduction

“Most people think video games are all about a
child staring at a TV with a joystick in his hands.

I don’t. They should belong to the entire family.
I want families to play video games together.”

—Shigeru Miyamoto, designer of Mario,
in a BusinessWeek interview

Games have always been part of civilization and pervade Games have always
existed in many
forms.

all of human history. They are a focus of social gatherings,
and can be used for practicing physical fitness, social rules
and skills, or intellect. From simple Roman dice to current
board games, many different forms exist.

With the release of Pong in 1972, the era of video games
was heralded in. The industry is booming: since 2001, it
has generated more revenue per year than the U.S. box
office.1 Traditionally, video gaming consoles have mainly Specialized input

devices can make
video games more
accessible.

been catering to the male demographics of below age 35.2

However, in the last few years, it has been shown that with
titles like EyeToy, Singstar, Buzz, and most recently, Wii
Sports, a more general demographic can be enticed into

1Compare http://www.oecd.org/dataoecd/19/5/34884414.pdf to
http://www.clickz.com/973421.

2See http://web.archive.org/web/20030801073725/
www.theesa.com/EF2003.pdf.

2 1 Introduction

computer gaming.3 All of these games have game mechan-
ics that can be easily learned and utilize input devices that
give continuous feedback, with functions that are immedi-
ately recognized by the users (see Figure 1.1). Even though
the Nintendo Wii Remote is a more generic device com-
pared to the others, it still allows to perform movements
modeled on real-world interactions.

d)Wii Remote

b) Singstar Microphone Packa) EyeToy USB Camera

c) Buzz! Buzzers

Figure 1.1: Various game input devices; a)-c) taken
from http://uk.playstation.com/ps2/hardware/
accessories/; d) taken from http://www.nintendo.
com/accessorieswii.

The often-used gamepad on the other hand (see Figure 1.2),
while quite efficient for a wide range of games, builds a
strong abstraction layer between the intent of the user and
the outcome. It is “just button pressing”, whereas special-
ized input devices not only increase efficiency and satisfac-
tion, but also immerse the player much more into the ap-
plication [Borchers, 2001].

In terms of general-purpose input devices, touch input isMulti-touch hugely
increases bandwidth
upon single-touch.

a step in that same direction, since input and output are
3See minutes 07:00 to 12:00 in webcast at

http://uk.playstation.com/ps2/hardware/accessories/
http://uk.playstation.com/ps2/hardware/accessories/
http://www.nintendo.com/accessorieswii
http://www.nintendo.com/accessorieswii

3

Figure 1.2: The Microsoft Xbox 360 Wireless Con-
troller, an example of a typical gamepad; taken
from http://www.xbox.com/en-US/hardware/
x/xbox360wirelesscontroller/default.htm.

coupled closely from a spatial perspective. The success of
the Nintendo DS portable gaming system (see Figure 1.3),
which advertises single-touch input as one of its main fea-
tures, shows the merits of this input mechanism. Until now,
however, the very low bandwidth of single-touch with only
one point in a two-dimensional grid made this method in-
appropriate for multi-player gaming situations.

Multi-touch input alleviates this concern: the ability of rec-
ognizing multiple points of touching at once hugely in-
creases the input bandwidth. Multi-user applications now
become possible and interaction with such devices should
be much more natural, since they cannot be easily over-
loaded.

Another advantage of multi-touch is the ability to recognize Multi-touch enables
whole-hand
gestures.

whole areas of contact. Users can not only touch the surface
with single fingers, but can use the whole hand, thereby
performing input gestures that are actually relevant to their
underlying semantics (cf. Section 2.3—“Tabletop applica-

http://ms.nintendo-europe.com/e32007/enGB/media.html.

http://www.xbox.com/en-US/hardware/x/xbox360wirelesscontroller/default.htm
http://www.xbox.com/en-US/hardware/x/xbox360wirelesscontroller/default.htm

4 1 Introduction

Figure 1.3: The Nintendo DS Lite system; taken from
http://www.nintendo.co.jp/ds/lite/gallery/
image7.html.

tions involving complex hand gestures”). Some of thePrecision and
ergonomics are weak
points.

disadvantages compared to other input devices, e.g., the
mouse, remain: precision is dependent on the thickness of
the user’s finger and the constant movement of the user’s
arms leads to bad ergonomics for long usage spans.

To further increase appeal to casual users, a horizontal ta-Tabletop setups
improve the social
experience.

ble setup can be used to mimic a traditional board game. As
observed by Magerkurth et al. [2004], board games offer a
unique experience. Players not only interact with the game
board, but also with each other. In contrast, during usual
computer gaming interaction, the players sit in a row next
to each other, and the attention is completely focussed on
the output device, i.e., the screen. Even when users make a
conscious effort to shift their attention to the other players,
recognizing the other players‘ actions by observing their
handling of the input device is barely possible.

While augmenting traditional tabletop experiences with
computer technology is being heavily investigated

http://www.nintendo.co.jp/ds/lite/gallery/image7.html
http://www.nintendo.co.jp/ds/lite/gallery/image7.html

1.1 Cooperative gaming 5

[Magerkurth et al., 2005], pure computer tabletop gaming Multi-touch enables
real-time multiplayer
gaming on a
tabletop.

has had little exposure. One reason might be that with
single-touch technology, such a system would either be
a single-player experience or a turn taking game. An
interactive single-player game is usually much better
suited for a gaming console or a PC, since the social
component does not have to be considered. Turn taking
games are better served by including real game pieces,
since the interaction with physical objects is much more
immediate and real-time feedback about state changes of
the game world is not as important. With the advent of
low-cost multi-touch technology, however, development of
real-time multiplayer tabletop gaming becomes feasable.

In this thesis, we present the development process of PinguTouch uses the
unique features of a
multi-touch tabletop.

“PinguTouch”, a collaborative casual game using the
unique features of a multi-touch tabletop system. It was
our goal to demonstrate a wide range of possibilities this
new input method offers over previous ways of gaming:

• A highly real-time scenario that would have been
impossible to implement when including real game
pieces.

• Full exploitation of the co-located tabletop design re-
garding the social experience, making the game con-
cept hard to recreate involving other setups.

• Whole hand gestures that go beyond actions typically
associated with general purpose input devices.

PinguTouch was installed at a dedicated multi-touch table
at the Industrion-museum in Kerkrade, Netherlands,4 as
part of their “Games, let’s play!”-exhibition (see Figure 1.4).

1.1 Cooperative gaming

To make full use of the co-located tabletop setup, we de-
cided that a cooperative gaming experience would be a

4See http://www.industrion.nl.

6 1 Introduction

Figure 1.4: PinguTouch installation at the Industrion museum.

new, interesting way to encourage interaction between the
users.

Many traditional board games are competitive in nature.Conflict is part of
most games. While several titles include opportunity for building teams,

only few allow for all players to play on the same side. The
reason for the lack of games of this kind lies in the nature
of gaming: conflict is an important part of any game as de-
fined by Crawford [1984]. As there is little possibility for
other active elements in non-electronic games, the conflict
either has to unfold between the human players, or random
elements have to be added that control the adversarial side.

A good example for a well-received purely cooperative titleRandom events can
control adversaries,
but makes winning
dependent on
chance.

is “Lord of the Rings”, distributed by Fantasy Flight Games.
Players have to pool their gained cards and tokens to be
able to progress through the game (see Figure 1.5). The ad-
versary is controlled by dice rolls and chance cards. This
randomness is often described as the greatest weakness of
the game: although strategy plays a large part in success,
an element of chance is always necessary to keep the game
challenging even for advanced players. With the highly in-
teractive experience a multi-touch screen can offer, the com-

1.1 Cooperative gaming 7

puter can take the part of the adversary. Cooperation be-
comes more feasible and an interesting avenue to explore.

Figure 1.5: The cooperative Lord of the Rings board
game; taken from http://www.fantasyflightgames.
com; reprinted with permission.

Cooperation is usually based on joint discussion about Cooperation requires
interdependence of
outcome and means.

strategy and the concerted execution of that strategy. A
tabletop surface lends itself well to that kind of activity, as
observed in daily situations like business meetings or study
groups. However, not every game is suitable for a cooper-
ative play style. To actually promote cooperation among
players, two conditions must hold as observed by Johnson
and Johnson [1992]:

• Outcome interdependence between players is nec-
essary for the players to actually have an interest in
cooperation.

• Means interdependence between players is neces-
sary for the players to have the opportunity of coop-
eration.

Outcome interdependence is easily achieved in a game,
since goals are usually abstract and can be arbitrarily set.
The simplest way to accomplish this is by setting the exact
identical goal for all players, so that either everyone wins
or everyone loses.

http://www.fantasyflightgames.com
http://www.fantasyflightgames.com

8 1 Introduction

Means interdependence needs to be examined in more de-Physical space is an
important part of
tabletop interaction.

tail. One important new resource offered by a multi-touch
table over a desktop system is space. While on a desktop all
areas are well reachable thanks to mouse acceleration and
similar techniques, the physical length of a tabletop and
comparingly slow and strenuous movement of the arms
can restrict a player. Natural cooperation can emerge by
simply partitioning the table into zones of responsibility:
one player handles one half of the table, while the other
player handles the other half. While this approach is valid,
it only takes advantage of the co-located nature of tabletop
gaming during discussion phases. During execution, inter-
action between the players is restricted to the edges of their
respective zones.

Another interdependent means has to be added. Since in-Quasi-modes
encourage
cooperation.

teraction on a multi-touch table takes place by hand ges-
tures, the usage of quasi-modes [Raskin, 2000] suggests it-
self. If players can only assert control over the game world
in two places at the same time, they are encouraged to be
more flexible in choosing their space. Players acting alone
can easily be overwhelmed and need the assistance of oth-
ers to ensure a good result for the whole team.

PinguTouch is specifically designed to create a new gamePinguTouch
encourages
concurrent use of
workspace.

experience by emphasizing concurrent usage of workspace
instead of neatly dividing the table. Although under ev-
eryday conditions, people usually keep their distance de-
pending on familiarity among each other, the success of ti-
tles like “Twister”5 suggests that while engaged in gaming,
users quite enjoy the unusual situation.

1.2 Peculiarities of game design

For the development of any task-based application, the de-Task knowledge is
meaningless when
designing games.

signer should have a very good idea about the nature of its
users and the nature of the tasks the users perform. In the
context of designing a game, however, “task knowledge”
is a meaningless term. The user wants to be entertained,

5See http://www.hasbro.com/default.cfm?page=browse&brand=667.

1.2 Peculiarities of game design 9

the particular mechanics and goals involved are up to the
developer.

Furthermore, the line between user interface and game Game mechanics
and user interface
greatly influence
each other.

mechanics is often blurred. The game “Monkey Ball” by
Amusement Vision, first released in 2001 as an arcade
game, serves as a graphic example. Its goal is simple: lead
a monkey trapped in a ball through an obstacle course in
less than 60 seconds while avoiding to fall into pits.

A very efficient way of accomplishing that goal could be
controlling the game from a top-down view. The player
could determine the route the monkey should take by set-
ting waypoints with his mouse, and upon clicking a start
button, the monkey would start moving.

In reality, the game presents the player with a third per-
son perspective of the monkey (see Figure 1.6). It can be
directly controlled by an analog thumbstick and a lot of ex-
perience is needed to be able to perform the necessary mo-
tions with the right intensity. Quite clearly, this less efficient
interface leads to a decidingly different and probably more
fun game.

Figure 1.6: A screenshot of Super Monkey Ball: Banana
Blitz; taken from http://www.sega.com.

This example also demonstrates how the game mechanics Game mechanics
have to be adjusted
with the physical
interface.

have to be designed with the possibilities and restrictions
of the physical interface in mind. Without an input de-

http://www.sega.com

10 1 Introduction

vice similar to a joystick available, this type of game would
not be possible. We expect that it will take several ap-
proaches until the interaction metaphors most suitable to
multi-touch gaming will be found. This thesis can only be
a first step towards that.

1.3 Thesis structure

The thesis is organized as follows:

• In Related work, we describe research on real-world
tabletop interactions, multi-touch technology, and
several task-based and gaming-related tabletop ap-
plications.

• In Designing the game, design decisions for
PinguTouch and their reasoning are presented.

• In Refining the game, problems identified during user
tests are described and their solutions presented.

• Implementation details describes the code base of the
game.

• Evaluation describes user observations designed to
test whether we accomplished our design goal of cre-
ating an entertaining cooperative multi-touch game.

• In Summary and future work, we summarize our con-
clusions and present ideas for further improvement
of the work.

11

Chapter 2

Related work

“It usually starts with the research.
I’ll find some subject that I’m reading about
that fascinates me. It will pique my interest

and then I’ll slowly become obsessed with it.”

—Will Wright, designer of “The Sims”,
in an interview with GIGnews.com, April 2002

In this chapter, we will discuss several previous research
efforts that this work touches upon.

Since creation of a social situation similar to a board game
lies at the core of PinguTouch, studies of human behavior
around tabletops will be described first. After that, the re-
lated hardware and technology we used to enable such sit-
uations will be explained. Then, we will describe tabletop
applications making heavy use of complex hand gestural
interaction. Finally, tabletop games allowing for full coop-
eration between all players will be described.

2.1 Social behavior in tabletop environ-
ments

In this section, we will review two previous studies that
analyze behavior in cooperative tabletop situations.

12 2 Related work

2.1.1 Territoriality in collaborative tabletop
workspaces

The work by Scott et al. [2004] examines people’s behavior
regarding space on a traditional non-interactive desk table-
top.

Two studies were performed: in the first one, users were
observed when performing entertainment tasks like solv-
ing puzzle games, playing with Lego, or playing the Pic-
tionary game. In the second one, groups of two or three
were observed creating a furniture layout for a reading
room in a library from paper and cardboard.

According to the findings, each user partitioned the tableThe tabletop space
gets divided into
personal, group, and
storage areas.

into three territories: personal, group, and storage (see Fig-
ure 2.1). Personal territories were the areas on the edge of
the table directly in front of each user. 87% - 100% of the
actions in that area were performed by the user next to it.
This partitioning happened without any explicit negotia-
tion with the other users, but appears to be dictated by so-
cial norms.

Group areas were identified between adjacent people. They
were used by neighboring users to perform the main activ-
ities like assembling tiles.

Location of storage areas could change dynamically and sat
atop the personal and group areas. They were used to store
currently unused puzzle tiles, taking the ownership prop-
erties of the area below them.

In general, these results are supported by many studiesProxemics divides
human-human
interaction spatially
into zones.

done in the field of proxemics, introduced by Hall [1966].
It divides human-human interaction spatially into zones.
Each zone has typical interactions associated with it (see
Table 2.1). Note that these distances can vary from culture
to culture. Latin cultures allow for closer distances, while
Nordic cultures generally prefer larger distances.

Knowledge of territoriality is important for analysis of anyChanges in territorial
behavior can only be
minor.

tabletop situation. This is especially true for PinguTouch,
since it aims to maximize simultaneous interaction in the

2.1 Social behavior in tabletop environments 13

GP

P

P

Figure 2.1: Tabletop territories. P indicates personal territo-
ries; G indicates group territory. Storage territories are not
included.

group territory and to deemphasize individual actions in
the personal territories. We are particularly interested if
the game design can lead to players neglecting the social
boundaries and reach into the personal areas of other play-
ers. However, since territoriality seems to be deeply in-
grained in both human culture and nature, we can only ex-
pect minor changes in behavior for our game.

Zone Distance Typical behavior
Intimate 0.00m - 0.45m Embracing, touching, or whispering
Personal 0.45m - 1.20m Interaction among good friends

Social 1.20m - 3.00m Interaction among acquaintances
Public 3.00m - ∞ Public speaking

Table 2.1: Proxemic distances and associated behavior. Adapted from Hall [1966].

14 2 Related work

2.1.2 Collaborative Coupling

[Tang et al., 2006] describes an application developed toPairs should solve
interfering routing
problems.

observe collaborative coupling, i.e., the way people switch
from performing tasks by themselves to working with oth-
ers (see Figure 2.2). Pairs of users were given the assign-
ment to solve a routing problem along a graph structure.
To encourage negotiation, different sub-tasks designed to
spatially interfere with each other were assigned to each of
the two users.

The application included several tools to facilitate multi-
user collaboration: users were able to lay lenses on top of
the normal view, so that specific information is only visi-
ble within that area without interfering with the rest of the
workspace. They could also use “shadow boxes” to dupli-
cate the display of one area of the table to another.

The participants were video recorded and the video feed
was subsequently analyzed regarding the way people
worked together. The changes between styles of collab-Users fluidly change

their cooperation
style.

oration were fluid and dynamic. The configuration of
the users’ focus was segmented into six separate coupling
styles. At the same time, position arrangements were
coded into seven positions. The coupling styles were cor-
related with the position arrangements, and, as would be
expected, for tighter collaboration the physical closer or
straight across arrangements were chosen.

The authors conclude that potentially many more different
coupling styles could exist. Productive tabletop systems
should support a variety of tools and concepts to support
those styles and provide for fluid transitions between them.
Furthermore, to reduce interference, the authors propose
personal views that could be decoupled from the main dis-
play.

The described research effort gives important baseline in-Research gives
important baseline
information.

formation about the behavior of cooperating users. Al-
though the problem used for analysis was designed with
spatial interference in mind, it also included many oppor-
tunities for users to act individually. PinguTouch aims to
minimize such opportunities, thus focussing even more on

2.2 Multi-touch hardware 15

Figure 2.2: Investigating collaborative coupling; taken from
[Tang et al., 2006]; reprinted with permission.

collaboration.

2.2 Multi-touch hardware

Since an inexpensive, scalable multi-touch screen is the ma-
jor enabling component of this work, several approaches to
multi-touch sensing will be discussed here.

2.2.1 DiamondTouch

The DiamondTouch table [Dietz and Leigh, 2001] allows for DiamondTouch uses
rows and columns of
antennas carrying
electric signatures.

multi-user interaction and identification. Its technology is
based on measuring capacitive coupling between the table
and the user. Image generation is done by simple front pro-
jection onto the table surface.

Isolated antennas are embedded into the table surface in
rows and columns. A transmitter drives a signal with a
unique electric signature through each antenna. Should

16 2 Related work

the hand of a user come near the surface, capacitive cou-
pling transfers current from the nearby antennas to the
user. These signals are then conducted through the user’s
chair to a receiver that can identify their origins by signal
processing. Since each user has his own signal receiver,
each contact area can easily be assigned to a specific user.

A major disadvantage of this method lies in the productionDisadvantages
include difficult
construction and
requirement for
conductivity.

of the antennas and the custom circuitry needed to handle
the electrical signals. Electrical engineering knowledge is
needed, as there is no easy way to recreate this hardware
using of-the-shelf components.

Some other limiting factors have to be kept in mind: users
must always keep contact with their chairs, since only then
can the signal be transferred to the receiver. If users touch
each other, they become part of the same circuitry, and
touch points of one user will be detected by both receivers.
Furthermore, the system can only detect touch when a con-
ducting material is used for contact.

2.2.2 Apple iPhone & iPod Touch

The Apple iPhone and iPod Touch also measure capaci-Apple hardware
measures loss of
capacitance along
rows and columns of
antennas.

tance. However, instead of including the user directly in
the circuit, it detects touch by measuring loss of current to
the user.1

The touchscreen consists of two layers of electrically iso-
lated circuit paths, respectively called driving lines and
sensing lines. The conductors in one path are arranged in
rows, while the others are arranged in columns. Current is
driven into the driving lines, one line at a time. At the in-
tersection points, capacitive coupling transfers the current
to the sensing lines. Should the user touch the screen, he
draws off some of that current. This difference can be de-
tected by the receiver attached to the sensing lines.

Most disadvantages of the DiamondTouch system also ap-
ply to this technique.

1See EU patent no. WO2005114369.

2.2 Multi-touch hardware 17

2.2.3 Holowall

The Holowall [Matsushita and Rekimoto, 1997] uses an op- Holowall detects IR
light reflection.tical approach for touch detection.

An infrared LED light source, an infrared-sensitive camera,
and a projector are positioned behind the Holowall. The
projector is used to back-project an image onto the wall.
The LEDs emit infrared light towards the back side of the
wall. If there is no object there, the light can escape. Should
the user touch the wall or place an object against it, the
light reflects back and is picked up by the camera. The
system can then calculate position and shape of the touch.
It can also detect barcode symbols to provide users with
additional options regarding the device placed against the
surface.

The same basic technology is used in the recently an-
nounced Microsoft Surface multi-touch table, except that
multiple cameras are used to allow for a wider field of view
at shorter distance to the surface.

2.2.4 Frustrated total internal reflection

Multi-touch detection based on frustrated total internal re-
flection [Han, 2005] works similarly to the Holowall system
described in the previous section and is the technique em-
ployed by PinguTouch.

The hardware consists of three major parts: an acrylic sheet FTIR multi-touch
uses infrared LEDs
in an acrylic sheet,
an IR camera, and a
projector.

that is flooded with infra-red light by LEDs attached to its
edges, a projector that back-projects onto it, and an infrared
camera aligned towards it. A PC is used for processing the
camera input and generating output.

In the unused state of the touch screen, the infrared light
cannot leave the acrylic sheet through its top or bottom
plane due to an effect called “total internal reflection”. As
long as the angle of the light and the interface between acryl
and air is below a certain threshold, the vast majority re-
flects back inside of the acrylic sheet instead of leaving (see

18 2 Related work

Infrared LED

Total Internal Reflection

Projector Infrared
camera

Diffusor

Figure 2.3: Concept of frustrated total internal reflection-based multi-touch tech-
nology.

Figure 2.3).

However, if another material—or, in this case, a user—FTIR multi-touch
detects spots of light
leaving the table
upon touch.

touches the plane along which light is reflected, the reflec-
tion is frustrated and the light can escape the acrylic. This
escaping infrared light is then detected by the camera as
bright spots, or, “blobs” (see Figure 2.4). From those blobs,
the coordinates of the touch point can be determined with
the help of image processing software.

2.3 Tabletop applications involving complex hand gestures 19

Figure 2.4: User touching the multi-touch surface as seen
by an infrared-sensitive camera. All five touch points are
clearly visible.

The resolution of the touch input is limited only by the res-
olution of the camera and the necessary computing power
for coordinate extraction. In the age of high-performance
multi-core CPUs and 5 megapixel cameras, this solution is
elegantly scalable to even whole walls.

2.3 Tabletop applications involving com-
plex hand gestures

The following applications were designed to explore new
input gestures enabled by multi-touch technology. Since
one goal of PinguTouch is to offer complex input gestures,
we investigated these previous ideas for possible adapta-
tion.

20 2 Related work

2.3.1 CollabDraw

A multiuser drawing and photo organization application
was studied in [Morris et al., 2006]. Users were able to
rotate and move photos and draw simple strokes onto a
DiamondTouch table. To erase ink, users could perform a
wipe-gesture with the palm of their hand.

The stand-out approach in this work is the concept of co-Cooperative gestures
consist of gestures of
multiple users
interpreted as a
single command.

operative gestures: “Cooperative gestures are interactions
where the system interprets the gestures of more than one
user as contributing to a single, combined command.” This
is used as part of the “modify ink” gesture: pairs of users
have to partner by holding hands and touching the table-
top. Then, one partner can draw on the surface by sliding
a single digit along it. The other partner can place two fin-
gers on the surface, and according to their distance, line
thickness changes. Also, line brightness can be influenced
depending on how hard the user presses.

Figure 2.5: Two users performing a partnering gesture in
CollabDraw; taken from [Morris et al., 2006]; reprinted with
permission.

Some of the gestures that are also usable by a single user areProblems:
unintentional global
commands, awkward
social situations.

overloaded when performed by all users at the same time:
The “erase ink”-gesture of wiping over the table works as
a “clear canvas”-command when performed as cooperative
gesture. The “arrange photos”-gesture, that neatly lines up
the photos, can work similarly on a global level. This led
to frustration and confusion of users when the global com-

2.3 Tabletop applications involving complex hand gestures 21

mands were invoked unintentionally. Additionally, some
of the cooperative gestures were described as akward to ex-
ecute: for the completion of several actions, the users had to
be in tactile contact with each other (e.g., by holding hands),
which led to awkwardness in their current social situations.

Since the hardware we used is not able to identify users, Cooperative gestures
also promote close
spatial cooperation,
but often awkward to
execute.

PinguTouch is not designed to require direct contact be-
tween the players to perform actions. However, our idea
to promote close spatial cooperation is similar to that of co-
operative gestures. We expect that the desire for close co-
operation emerges naturally from our game design, thus
avoiding the discomfort described by the players.

Gestures involving sustained movement of the hand, sim-
ilar to the wiping gesture, are also hard to integrate into
our design due to our decision to use quasi-modal gestures.
The repetitiveness of the motion would quickly lead to im-
precision and user fatigue.

2.3.2 RoomPlanner

In [Wu and Balakrishnan, 2003], a collaborative co-located RoomPlanner can be
used to plan room
furniture layout.

workspace was examined by using the RoomPlanner appli-
cation to plan room furniture layout on a DiamondTouch
table. This scenario presented interesting opportunities for
research, e.g., efficient menu navigation, privacy concerns,
and the concept of object ownership.

The system was designed for two users, each working from Supports several
whole-hand
gestures.

one of the long edges of the table. One supported gesture
involves placing the edge of the hand vertically on the ta-
ble to sweep aside several furniture pieces at once. Another
gesture allows a user to obtain general information about
objects by placing the hand horizontally above it. Further-
more, he can then tilt the hand slightly away from him, en-
abling the system to project any private data onto the palm
of his hand.

The application also supports gestures involving two Supports two-hand
gestures.hands: when multiple furniture objects are enclosed be-

tween two vertical hands, movement of the hands towards

22 2 Related work

or away from each other could compress or expand the
empty space between the furniture. Users can also copy
sections of the room into private editing planes by enclos-
ing them with corner-shaped hands.

Figure 2.6: The RoomPlanner application; taken from [Wu
and Balakrishnan, 2003]; reprinted with permission.

Although RoomPlanner implements several complex ges-Gestures difficult to
adapt to our concept
and technology.

tures, adaptation for PinguTouch is impractical. Differen-
tiating between horizontal and vertical placement of the
edge of the hand would be impossible, as players are en-
couraged to move freely around the PinguTouch table. Sim-
ilarly, two different users placing their hands orthogonally
to each other could easily be detected as a corner-shaped
hand in our highly cooperative scenario.

Detecting gestures involving a tilted hand would also be
unreliable with our FTIR hardware, since we cannot de-
pend on electric sensing to detect proximity, as is possible
with the DiamondTouch table.

2.4 Cooperative interactive tabletop games 23

2.4 Cooperative interactive tabletop
games

2.4.1 Modified commercial games

Tse et al. describe attempts to enable commercial desktop Adapted commercial
games were reported
as more engaging on
a tabletop.

games for tabletop interaction [2006]. For behavioral inves-
tigation, the authors modified the games “Warcraft III” and
“The Sims” to support two-player co-located gaming, uti-
lizing both multi-touch and audio input (see Figure 2.7).
The applications were reported to be more engaging and
entertaining than their original desktop versions, but no
more detailed study was presented.

The modified Warcraft 3 game is closest to the system de- Modified Warcraft 3
most similar to
PinguTouch.

scribed in this thesis. It has a pronounced real-time compo-
nent and users have equal control over many areas of the
table. However, since the original Warcraft 3 was not devel-
oped with a co-located gaming scenario in mind, players of
the tabletop version could not act truly independent of each
other. They had to take care not to issue a command while
the respectively other player was also working, or else the
system would confuse the input. This issue practically re-
stricts the game to two players.

This modality of the interface helps to enforce collabora- No close spatial
cooperation.tion, but close spatial cooperation is not encouraged by the

game design.

2.4.2 SIDES

SIDES [Piper et al., 2006] is a game developed to further so- SIDES players have
to find a common
strategy to lead a
frog to the goal.

cial skills in people with Asperger’s Syndrome, an autism
spectrum disorder. The goal of the game is to lead a frog
across a tabletop setup using placable virtual lily pads that
control the direction the frog takes next. Players have to
devise a strategy that includes the tiles available to each
player, and take turns in placing them (see Figure 2.8). The
hardware is based on a DiamondTouch screen that sup-
ports multi-touch functionality including user identifica-

24 2 Related work

Figure 2.7: Modified Warcraft III game; taken from [Tse
et al., 2006]; reprinted with permission.

tion as described in Section 2.2.1—“DiamondTouch”. This
allows enforcement of players adhering to the correct order
to teach group behavior.

Although SIDES is cooperative in nature, it is decidinglyPlayers have to take
turns. different from PinguTouch: due to its turn-taking nature,

the final version of SIDES barely uses the multi-touch as-
pect of the system. It was an explicit design-goal to always
give the players time to discuss strategy, so there are no
time-critical situations.

2.4.3 Jam-O-Whirl

The Jam-O-Whirl system [Blaine and Forlines, 2002] con-Jam-O-Whirl uses
drums and turntables
as input.

sists of a set of games focussed on collaborative musical
composition. A tabletop setup is augmented with four sta-
tions consisting of a drum, a turntable, and a directional
audio speaker each. Visual feedback is projected onto the
tabletop surface and the environment surrounding it.

One game called “CircleMaze” requires players to align

2.4 Cooperative interactive tabletop games 25

Figure 2.8: Children interacting with SIDES; taken from
[Piper et al., 2006]; reprinted with permission.

concentric rings by rotating their turntable. The rings con-
tain pathways, that, when aligned correctly, connect to each
other. A ball projected onto the surface can follow these The game requires

coordination between
all players.

pathways, and has to be guided from the perimeter of the
table towards its center. This requires coordination be-
tween all players.

“Hip Hop”, another game developed for the Jam-O-Whirl
table, requires players to match motives on cards displayed
on the table by using their turntable station. Again, all play-
ers must cooperate to succeed.

While this system was designed from ground-up with col- The fixed input
devices prevent close
spatial cooperation.

laboration in mind, the interaction with the game world by
using the drums and turntables is less direct than the touch-
based system we propose, since input and output are spa-
tially decoupled. Although the instruments stay true to the
musical theme of the game, they also restrict the users: the
turntables are fixed at their position, so every player has his
own set of input devices, completely avoiding close spatial
cooperation.

26 2 Related work

Figure 2.9: The Jam-O-Whirl system running CircleMaze;
taken from [Blaine and Forlines, 2002]; reprinted with per-
mission.

2.4.4 Magic Land

The Magic Land system by Qui et al. [2005] uses augmented
reality to allow the integration of real-time video captured
humans and virtual characters in a tabletop scenario.

Players can record a virtual avatar of themselves in a spe-Players can integrate
a recording of them
with other avatars in
a virtual world.

cially equipped recording room. The data is represented in
form of a cube that the user can carry with him. He can use
this cube to load his avatar onto a table by placing it into a
slot. In a similar way, he can select a virtual landscape by
putting one of several available puzzle pieces into another
slot.

With a head mounted display, he is then able to see a virtual
scene integrating computer controlled characters, his own
avatar, and a real-time recording of another person in the
recording room. The user can direct his avatar by moving
the cube along the table. Should it come close to another
character, the two will interact in a predefined way.

One could imagine multiple persons using this system toThe system is more
art piece than game. cooperatively create a virtual stage play. However, there

2.5 Discussion 27

Figure 2.10: Illustration of the Magic Land system; taken
from [Qui et al., 2005]; reprinted with permission.

are no concrete rules or goals involved and interaction with
the game world is limited to moving the characters. We
believe that in the current iteration, the system is more art
piece than game.

2.5 Discussion

The systems reviewed here can be classified along the three Real-timeness,
perceptibility of
co-location, and
sophistication of
input gestures form a
design space.

criteria by means of which PinguTouch was developed:

• How noticeable is the real-time aspect of the sys-
tem? Does the system employ a concept of time pass-
ing, i.e., can there be system-initiated events that the
user has to react to within a specific timeframe? Low
indicates that the system does not create any events.
High indicates that many events happen, following a
complex rule set. To better differentiate between sys-
tems, any gradation in between is possible.

• How noticeable is the the co-location of multiple
users? How much would the experience change if
the application would be transformed to a networked
setup? Low indicates that the application does not
specifically encourage behavior that exploits the co-
located nature. Medium indicates that the application
encourages discussion among the users. High indi-

28 2 Related work

cates that the application encourages the users to act
physically closely together.

• How sophisticated are the supported input ges-
tures? Low indicates the application only supports
simple pointing. Medium indicates that the appli-
cation supports one or few more complex gestures.
High indicates that the application supports several
more complex gestures.

The design space described by these criteria is visualized
in Figure 2.11. Although the task-based applications we re-
viewed in this chapter are included for sake of complete-
ness, ordering them by a different design space might be
more revealing.

While all of the cooperative tabletop systems discussedPinguTouch occupies
own spot in design
space.

here are viable applications in their own right, none follows
the same design goals as PinguTouch.

Even though our initial game proposal called for highly so-PinguTouch achieves
only medium gesture
complexity.

phisticated gesture support, we had difficulties integrating
many complex gestures into the game due to the employed
technology and contradictions to our other design goals
(cf. Section 2.3—“Tabletop applications involving complex
hand gestures”). Additional research has to be performed
to find other ways to increase gesture complexity.

2.5 Discussion 29

Pe
rc

ep
tib

ili
ty

 o
f c

o-
lo

ca
tio

n

Gesture Complexity

Productivity

SIDES
Warcraft3

CollabDraw

Jam-O-Whirl

PinguTouch

Entertainment

Low Medium High

Lo
w

M
ed

iu
m

H
ig

h

Routing

Magic-Land Roomplanner

Real-timeness
Low High Low High Low High

Figure 2.11: A design space for cooperative tabletop appli-
cations.

31

Chapter 3

Designing the game

“Everyone who has a computer fancies himself a
game designer, just as everyone with a guitar wants

to be a rock star. There is nothing wrong with that
if you remember that success is a long, hard road.”

—David Crane, designer of Pitfall,
in K-Power Magazine, April 1984

Apart from the more basic requirements for cooperation as
discussed in Section 1.1—“Cooperative gaming”, we pro-
pose the following three criteria for a game to be suitable
for a tabletop multi-user experience:

• There must be multiple points of interest at the The game must offer
equal accessibility for
all players, multiple
points of interest,
and possibilities for
high-semantic
gestural interaction.

same time. A game with only a single point of ma-
nipulation at any one time is obviously not suitable
for adaptation to a cooperative multi-touch scenario.
Any game with only one central controllable charac-
ter would be excluded by this requirement.

• The game must offer equal accessibility to all play-
ers. Classical tabletop games are designed in a way
that allows all players equal access to the game board.
In many cases, this is accomplished by fashioning the
fields on the board around a circular way along the
outer edges of the board. The board is usually rectan-
gular, allowing several players to sit around it.

32 3 Designing the game

Since the game developed as part of this thesis should
afford a similar way of interacting, the same design
guidelines apply. The players should have a common
view. Navigation through a game world in a way that
involves multiple players is hard to synchronize and
best be avoided. One player might want to change the
view, while another is still performing an action at a
spot that might be unreachable after the view change.
This requirement excludes any game that is based on
a first-person perspective of the player’s character.

• There must be the right level of semantic involved
in the interactive possibilities. Since actions must
be mapped to two-dimensional hand gestures that
make sense to the user, those gestures should be
clearly distinguishable and relevant to its semantics,
yet not be too complicated. Although this criteria
should not be hard to fulfill, certain types of games
are more amenable to recognizable gestures than oth-
ers. Games that rely mostly on navigational tasks,
e.g., racing games, are not particularly suitable.

In addition to these guidelines, the target demographicsOur users are young,
inexperienced,
short-time gamers.

also played an important role in our design considerations.
Since the game was going to be deployed at the Industrion
museum, we were able to get some user information from
the administration. It was estimated that about 40% of their
visitors are below the age of 18, with most being between
8 and 13. Few of the them were expected to be experi-
enced gamers, so the game mechanics had to be simple.
Understanding the game should not necessitate knowledge
that is common among frequent gamers, but might be lack-
ing among the general population. Furthermore, since the
game is part of a larger exhibition, users should not be re-
quired to play for more than about 10 minutes at most to be
able to experience the whole game.

3.1 Finding a game concept

Several game concepts based on existing titles were con-
sidered as a basis for our work. One of the first ideas was

3.1 Finding a game concept 33

a reinvention of the classic Pong game(see Figure 3.1a). It
was envisioned that users could use their hands to create
paddles, thus being able to easily rotate and move them
along the table. Multiple balls could be in the game, de-
pending on the number of hands on the table. Teams could
naturally emerge, grouping players from each side of the
table together.

While the idea would be easy enough to implement, it was A variation of ‘Pong’
was deemed too
unoriginal.

somewhat lacking in novelty. Only one type of gesture
would be involved, and the ability to spontaneously add
paddles anywhere on the table posed a hard design chal-
lenge to balance such a game. For similar reasons, the idea
of a table football game, where the fingers of the players
could represent football players, was rejected.

Another idea was based on the game “The Incredible Ma- ‘The Incredible
Machine’ had no
source code
available.

chine”, produced by Dynamix1 in 1993 (see Figure 3.1c).
Players could build contraptions out of a large set of pre-
defined parts to fulfill senseless goals, e.g., moving a ball
into a basket or firing of fireworks. The concept of build-
ing some sort of machine in collaboration is intriguing, but
including meaningful gestures for building them are hard
to conceive. Furthermore, the implementation would have
to be built nearly from scratch, since only the beginnings of
an open-source version are available.2

From the idea of building a machine, the leap was made to
the player actually performing the processing tasks them-
selves. The fundamental idea consisted of a pipeline of
material that must be processed in multiple steps within
a specific time limit for optimal efficiency. As an example,
the ARKola bottling plant simulation as described by Gaver
et al. [1991] was used (see Figure 3.1b).

Similarly, a game based on the movie “Disney’s Beauty
and the Beast” developed by Infogrames Entertainment3 in
1994 contained a puzzle that required the player to guide

1The company was disbanded in 2001. No information on any devel-
oped products could be found on any officially associated webpage.

2See http://tpm.seul.org/.
3Several subsidiaries of the company have been renamed under the

Atari brand. No product released before 2002 can be found on any web-
page officially associated with the company.

34 3 Designing the game

a) Pong b) ARKola overview

c) The Incredible Machine d) Beauty and Beast

Figure 3.1: Images of games used as inspiration. b) taken from [Gaver et al., 1991].

jumping eggs through a course of kitchen instruments into
a baking form (see Figure 3.1d).

This type of time-critical resource management evolvedUsing ‘Lemmings’
was based on the
idea of processing a
material pipeline.

into the idea to create a game similar to ”Lemmings“. Lem-
mings is a puzzle-game produced by DMA Design Lim-
ited4, that was popular in the early 90’s.

The game is divided into levels. Each level presents a sideLemmings requires
the player to lead
helpless creatures
through a 2D
landscape.

view of a two-dimensional landscape and contains at least
one entry point and at least one exit. Little creatures, the

4The company was renamed to Rockstar North in 2002. No infor-
mation on any projects developed before 2001 could be found on their
official webpage.

3.1 Finding a game concept 35

lemmings, drop out of the entry points and begin to walk in
a fixed direction along the landscape. When they hit an ob-
stacle, they turn around and walk along the other direction.
Thus, by themselves, the lemmings are quite incapable of
navigating through the hardships of life (see Figure 3.2).
This is where the player comes in.

Figure 3.2: A screenshot of the original Lemmings game.

The goal of the game is to lead the lemmings towards the The player can
assign abilities to
lemmings.

level exit without taking too many casualties in the process.
Typical ways for lemmings to die include falling out of the
level, falling down too far, and walking into a trap. The
player can assign abilities to the lemmings to overcome the
obstacles presented in the level. Some typical abilities in-
clude digging, blocking of other lemmings, bridge build-
ing, and climbing. To assign an ability to a lemming, the
player must first enter the corresponding mode by clicking
on the ability icon. He must then click on any lemming he
wants to give that ability to. This is a typical verb-noun
interface similar to those from task-based programs, e.g.,
drawing applications.

At first glance, only the first of the three above mentioned
criteria applies favorably to this game: all of the lemmings
currently in the game (usually more than a dozen) allow for
interaction, so that there are always enough tasks to occupy
multiple players. Additionally, other elements in the game

36 3 Designing the game

world apart from the lemmings could be made interactive.

Equal accessibility, however, is hindered, since the game
would only be viewable correctly from one edge of the ta-
ble. Also, while the general game idea to assign abilities
to lemmings to overcome obstacles is open enough to pro-
vide enough space for different gestures, the verb-noun in-
terface is very clumsy. It does not use any of the possibili-
ties that multi-touch technology provides to communicate
more semantics than simple coordinates. Fortunately, these
two aspects could easily be conceptually resolved.

A tabletop layout is achieved by transforming the gameA tabletop layout can
be achieved by
transforming the
game world to a
circular view.

world from the linear to a circular view. In that sense, the
previous “down”-direction leads towards the perimeter of
the circle, and the “up”-direction towards the center. Thus,
players are always able to sensibly interact with the area
in front of them, independent of their position around the
table.

Since devising meaningful gestures representing the ac-Gestures should be
applied to the
environment, not to
the lemmings.

tions assignable to the lemmings proved difficult, control of
the individual lemmings was replaced by a gesture recog-
nition system that does not give abilities to the creatures
themselves, but changes the environment directly. Those
changes to the environment are performed in a quasi-mode
fashion, so that the cooperation of multiple users is re-
quired to most efficiently lead the lemmings to the goal (cf.
Section 1.1—“Cooperative gaming”).

3.2 Introducing: PinguTouch

As a starting point for our work, the game “Pingus” was
chosen.5 Pingus is a recreation of Lemmings, featuring a
completely self-designed code base and updated artwork.
Its GPL (GNU General Public License)6 enables anyone to
access and modify the source code, and reuse any data dis-
tributed with the game. The basic game mechanics are the

5Available at http://pingus.seul.org.
6See http://www.gnu.org/licenses/old-licenses/gpl-2.0.html.

3.3 Appearance design 37

same as in Lemmings, except that the protagonists are lit-
tle penguins aptly called “pingus”. Hence, we decided to
name our game “PinguTouch”.

Figure 3.3: A screenshot of the original Pingus game; taken
from http://pingus.seul.org.

3.3 Appearance design

For total equality amongst players, a circular form of the Instead of a circle, a
regular octagon was
used for output.

game display would be optimal. However, this would lead
to strong disadvantages in other areas.

From a usability point of view, gestures performed in a cir-
cle are less intuitive: a gesture that looks straight from the
users point of view, e.g., placing the edge of the hand on
the table, would actually be curved in the game world.

On the technical side, implementing true circular output is
hard starting with the available code from the original Pin-
gus. Since there is no practical pixel to pixel mapping from
a rectangle to a circle that keeps the proportions intact, most
of the graphics subsystem, collision detection, level editor,

http://pingus.seul.org

38 3 Designing the game

and probably many other areas that weren’t even consid-
ered would have to be re-implemented.

To avoid these concerns, it was decided that instead of a
circle, a regular octagon would be used for output. This
modification requires less work to implement compared to
the circular form. For the application of gestures, a perspec-
tive change only happens when the user’s gesture crosses
from one segment of the octagon into the next. Observa-
tions revealed no instances of users being confused by this
behavior.

3.4 Interaction design

Three different gestures were devised for the initial design:Flicking, creation of
bridges, and pulling
of levers are possible
gestures.

the flicking of pingus, the creation of bridges or blocks, and
the pulling of levers. The gestures were developed to be
easily distinguishable from each other by users as well as
by the system itself.

3.4.1 Flicking of pingus

With the flicking gesture, the player is able to prod a pinguUsers can perform a
flicking gesture on
the pingus.

towards any direction. It is performed by flicking a finger
over the pingu in the target direction (see Figure 3.4).

3.4.2 Opening doors

This gesture allows the pulling of chained levers with a fin-By keeping a lever
pulled, users could
open doors.

ger to open doors in the level (see Figure 3.5). To further
cooperative behavior, the player must keep the lever pulled
down for the door to stay open.

3.4 Interaction design 39

Figure 3.4: The flicking gesture in action.

Figure 3.5: The opening gesture in action.

40 3 Designing the game

3.4.3 Blocking and bridging

By placing the edge of his hand on the table, the player
can create a block at that place within the level. This blockPlacing the edge of

the hand on the table
creates a block.

can either be used as an obstacle to obstruct the path of the
pingus or as a bridge-way to reach previously unreachable
areas (see Figure 3.6). As soon as the player removes the
hand, the block disappears.

Figure 3.6: The bridging gesture in action (montage for bet-
ter clarity).

3.5 Level design

PinguTouch consists of only one level. The output octagonDifficulty, opportunity
for cooperation, and
visual appeal have to
be balanced.

has a radius of 512 pixel at its peaks, so level space is very
restricted due to the non-changeable view. Any level de-
sign has to balance difficulty with necessity of cooperation
between players, while still keeping some visual appeal.

The level used by the first deployed version of PinguTouch
is shown in Figure 3.7.

3.6 Designing an exhibit 41

The area marked as (1) is the starting area. It is enclosed on
both sides, so that players are not under stress from the start
but have time to become comfortable with the input possi-
bilities. They can either flick the pingus or make a bridge to
transport the pingus across the ledge.

(2) denotes an area where players are forced to act if they
do not want to lose pingus. They must block off the left
side of the area, while transporting the pingu up the ledge
to the right. From there, they must pay attention that the
pingus cross the chasm at (3). The gap is designed to be
rather hard to cross, so that one person will find it difficult
to control the pingus in (2) and (3) at the same time.

(4) introduces levers. Once the players open door (A) with
the correct lever, the pingus walk towards area (5). This
area is designed so that it is more comfortable to coordinate
with another player to open doors (B) and (C) by pulling
the respective levers, rather than one player doing it all by
himself.

Finally, (6) marks the goal area. One player must take care
of moving the pingu into the goal, else they will simply
walk back into the other direction and fall down the gap.

3.6 Designing an exhibit

Besides the low-level game design, special considerations Pattern language
describes exhibit
design experience.

had to be made to make the game suitable as an exhibit. In
this regard, we could build on previous experiences doc-
umented by Borchers [2001] in form of a design pattern
language for interactive exhibits (see Figure 3.8). Design
patterns are generalized descriptions of problems and well
proven solutions, originating from the field of architecture
[Alexander et al., 1977]. Large-scale, abstract patterns can
reference small-scale patterns, thus creating a language in
form of a hierarchy.

Many of the applicable patterns, e.g., COOPERATIVE EX- Many design
patterns easy to
integrate.

PERIENCE, INVISIBLE HARDWARE, INNOVATIVE APPEAR-
ANCE, and SIMPLE IMPRESSION, emerged directly from

42 3 Designing the game

1

2

4

3

5

6

C
C

B

B

A

A

Figure 3.7: Initial level layout with description of areas.

the concept of a cooperative tabletop multi-touch game.
Several others, e.g., LANGUAGE INDEPENDENCE, CLOSED

LOOP, ATTRACTION SPACE, and EASY HANDOVER, could
easily be integrated into the system design. Since the de-
sign consideration of exhibits are similar to that of casual
games, we feel confirmed in our hypothesis that multi-
touch technology lends itself well for the casual gaming
market.

3.6 Designing an exhibit 43

A
T

T
R

A
C

T
–

E
N

G
A

G
E

–

D
E

L
IV

E
R

C
O

O
P

E
R

A
T

IV
E

E
X

P
E

R
IE

N
C

E

D
O

M
A

IN
-A

P
P

R
O

-

P
R

IA
T

E
 D

E
V

IC
E

S

S
IM

P
L

E

IM
P

R
E

S
S

IO
N

IN
N

O
V

A
T

IV
E

A
P

P
E

A
R

A
N

C
E

C
L

O
S

E
D

L
O

O
P

IN
C

R
E

M
E

N
T

A
L

R
E

V
E

A
L

IN
G

A
T

T
R

A
C

T
IO

N

S
P

A
C

E

IN
V

IS
IB

L
E

H
A

R
D

W
A

R
E

A
U

G
M

E
N

T
E

D

R
E

A
L

IT
Y

L
A

N
G

U
A

G
E

IN
D

E
P

E
N

D
E

N
C

E

F
L

A
T

 A
N

D

N
A

R
R

O
W

 T
R

E
E

E
A

S
Y

H
A

N
D

O
V

E
R

IN
F

O
R

M
A

T
IO

N

J
U

S
T

 I
N

 T
IM

E

D
Y

N
A

M
IC

D
E

S
C

R
IP

T
O

R

O
N

E
 I

N
P

U
T

D
E

V
IC

E

IM
M

E
R

S
IV

E

D
IS

P
L

A
Y

Fi
gu

re
3.

8:
Th

e
de

si
gn

pa
tt

er
n

la
ng

ua
ge

fo
r

in
te

ra
ct

iv
e

ex
hi

bi
ts

;t
ak

en
fr

om
[B

or
ch

er
s,

20
01

];
re

pr
in

te
d

w
it

h
pe

rm
is

si
on

.

45

Chapter 4

Refining the game

“Just ship it! We’ll fix it with a patch...”

—Overheard during many game publisher meetings

After deployment of PinguTouch at the Industrion mu-
seum, we had the opportunity for detailed user studies in
the field. During user observations and interviews, several
issues in the game design that hindered enjoyment were
identified and resolved.

4.1 User studies

We observed about ten groups of users playing the game Ten groups of players
were observed, of
which three were
interviewed.

during an afternoon at the museum. Additionally, mem-
bers of three groups allowed us to interview them. The
first interview was with a family of four, the second inter-
view was held with two children of about age ten, and the
third interview was conducted with a woman in her for-
ties. Written permission to make recordings of the inter-
views was granted by the interviewees or, in case of chil-
dren, their parents.

The interview was exploratory in nature, so the questions
were very open ended. They were intended to obtain opin-
ions about the cooperative nature of the game, reveal prob-

46 4 Refining the game

lems, as well as gather hints towards possible avenues to
explore in further evaluations (cf. Section 6—“Evaluation”).
Typical questions included ”Can you tell me how you felt
about playing the game?”, ”Can you tell me how you felt
when playing the game with others?”, and ”Can you tell
what you liked or disliked about the game?”.

The general consensus was that users greatly liked the con-Users greatly liked
cooperation, tabletop
setting, close
interaction.

cept of a cooperative game and indicated it was a novel
idea. The tabletop setting was felt as a good direction for
further development of interactive gaming. The first two
groups explicitly stated they like cooperative gaming bet-
ter than traditional competitive gaming. The woman inter-
viewed in the third group found closely interacting with
others, even strangers, the best part of the game.

4.2 Bridging gesture

We observed multiple times that users perceived problemsTo compensate for
imprecise touch
detection, collision
detection of blocks
was made more
lenient.

with the bridging gesture. The gesture detection is unable
to detect the exact position and angle of the whole hand,
thus, the created bridge is rarely at the exact spot with the
exact angle as intended by the user. To make matters worse,
the user cannot see the actual location of the bridge, since it
is being blocked by his own hand.

Since gesture detection cannot be notably improved with
the technology employed, collision detection regarding
bridges was made more lenient instead. Changes were
made so that the pingus could walk steeper on bridges than
they can on regular ground, and can jump a few pixels if
the beginning of the bridge is not exactly lined up with the
ground.

When the gesture was performed in an area where pingus
were already active, chances were high that the bridge got
created right on top of one or several pingus. This led to the
pingus being stuck in place, unable to move at all. This be-
havior was changed, so that the stuck pingus would jump
on top of the bridge.

4.3 Switches 47

For better visual feedback, a translucent glow was added Blocking graphics
were enhanced for
better visibility.

around the blocking graphics to indicate the extents of the
bridge without actually appearing as solid material (see
Figure 4.1).

Figure 4.1: Left: Original bridge appearance. Right: Re-
vised bridge appearance (montage).

4.3 Switches

Users were often unable to recognize the switches of doors Size of switches was
increased for better
visibility and touch
sensitivity.

as interactive objects. Even if they did, they were unable
to easily find them all. Beyond that, they frequently tried
to pull not on the grip area, but on the chain above the
grip. As a response, the touch-sensitive area of the switch
was changed to also include the chain. Switches were also
made larger and a thin white border was added, so that
they stand out farther from the background (see Figure 4.2).

4.4 Level design

Several specific problems were identified in the initial level
design and resolved in a revised version (see Figure 4.3).

Users found it difficult to leave area (1). Creating a bridge at Difficulty of area (1)
was decreased.the correct position to guide the pingus up the cliff was too

difficult as first task of the game. The cliff was exchanged
for a door mechanism (A). The door is the simplest of the

48 4 Refining the game

Figure 4.2: Left: Original switch appearance. Right: Re-
vised switch appearance.

three gestures, and also has a benign failure mode: when
the user inadvertently aborts the gesture, the door simply
closes, and the pingus stay in the safe area.

To further the cooperative aspect of the game, areas (2), (3),The cooperative
aspect was further
pronounced.

and (4) were changed to need even more user actions.

To lead pingus towards area (3), three gestures need to be
performed: the door (A) has to be opened, the gap has to
bridged or hopped over, and the hill has to be bridged or
hopped over. Similarly, in area (3), two bridges are needed
for the pingus to bridge the ice pit, and another door (B) has
to be opened for the pingus to not turn around and walk
into the pit.

Area (5) was very unchallenging in the first design. To in-Difficulty of area (5)
was increased. crease difficulty, it was changed to always need a bridge for

the pingus to be able to proceed towards the door (C). Area
(6) was left unchanged.

Although it might seem that the changes increased diffi-
culty because of a stronger need for cooperation, the indi-
vidual tasks were designed to be easier to perform correctly.
User trials revealed no problems.

4.5 Score 49

1

2

4

3

5

6

C

C

B

B

A

A

Figure 4.3: Revised level layout with description of areas.

4.5 Score

During user interviews, the lack of any score and perfor-
mance feedback was criticized. Especially users who were
playing multiple rounds asked for comparison informa-
tion. Reward for winning is part of any game, especially
since gratification cannot come from success over other
players in this case. Thus, the lack of even a simple reward
was a considerable omission in the first design.

50 4 Refining the game

To correct this, a score showing the amount of rescued pin-Score display and
fireworks was added. gus at the end of the level was introduced. It would rotate

around the center of the table for equal visibility. Addition-
ally, when more than one third of the pingus were saved, a
small firework animation would play (see Figure 4.4).

Figure 4.4: Score and fireworks display upon finishing the
level.

51

Chapter 5

Implementation details

“Programming is not a zero-sum game.
Teaching something to a fellow programmer doesn’t

take it away from you. I’m happy to share what I
can, because I’m in it for the love of programming.”

—John Carmack, id Software

The task of implementing PinguTouch was logically sep-
arated into four different areas: adapting the appearance
of the game, integrating a touch-detection library, building
interfaces to implement gestures in the game, and imple-
menting the actual gestures.

5.1 Appearance

5.1.1 Architectural overview

Pingus uses a framework called “ClanLib”1 to abstract Pingus builds on
ClanLib, which itself
uses OpenGL for
graphics operations.

hardware access. It allows rapid development of 2D sprite-
based games and simplifies cross-platform development
with its support for managing hardware and software re-
sources, sound mixing, and GUI generation. Most impor-

1See http://www.clanlib.org/.

52 5 Implementation details

tantly for modifications regarding the output of the im-
plementation, it also provides abstractions for OpenGL-
based rendering. For better understanding of the neces-
sary changes, an overview over the rendering pipeline of
the game is given (see Figure 5.1).

CL_Surface CL_PixelBufferCL_Sprite

CL_GraphicsContext

CL_OpenGLState

CL_OpenGLWindow

CL_Canvas

CL_Surface

DrawingContext

Figure 5.1: Architectural overview of the graphics pipeline;
API users can also get hold of CL OpenGLState and use
thinly wrapped OpenGL functions directly.

At the lowest level of the ClanLib graphics abstraction liesCL GraphicContext

is assigned to each
drawable surface.

the class CL GraphicContext. Each drawable surface,
i.e., the backbuffer of the display or drawable textures, has
an instance of CL GraphicContext associated with it that
is retrievable at any time from that surface. This class of-
fers functionality that allows to draw pixels, lines, and tri-
angles, and allows the API user to specify transformation

5.1 Appearance 53

properties for translation, rotatation, and scaling.

Should the programmer need access to a specific OpenGL-
feature that is not wrapped by the CL GraphicContext,
there is a way to directly work with OpenGL by
obtaining an CL OpenGLState object from the
CL GraphicContext. Then, the programmer can
access normal OpenGL functions by using one-to-one
ClanLib-pendants. This has the advantage that ClanLib
can take care of saving and restoring the correct state
when there are multiple such objects in use. However,
drawing sprites on such a low level is tedious work, so
ClanLib provides three additional classes with higher level
abstractions.

A texture wrapped into a CL PixelBuffer object resides Textures of
CL PixelBuffer

instances reside in
main memory, while
textures of
CL Surface and
CL Sprite

instances reside in
the GPU local
memory.

in the main memory of the computer. This has the advan-
tage that it can be processed by the CPU, e.g., as part of
collision detection. However, if it is drawn by ClanLib, it
first has to be uploaded to the memory of the GPU (graph-
ics processor unit). This is a relatively expensive process
performance-wise, that should not be done on a per-frame
basis.

A texture wrapped into a CL Surface object represents a
simple texture in the memory of the GPU. The API sup-
ports functionality like coloring, blending, 2D transforma-
tions and non-power-of-two texture sizes, but does not of-
fer any functionality that is not easily accessible by stan-
dard OpenGL commands.

Finally, the class CL Sprite offers everything that a
CL Surface offers, with additional support for 2D bitmap
animations, e.g., multiple frames packed into one texture.

Additionally, for render-to-texture operations, developers CL Canvas can be
used for
render-to-texture
operations.

can instantiate an object of the class CL Canvas on top of
a CL Surface. It provides a CL GraphicContext for
drawing into that surface like into the backbuffer. Inter-
nally, it is based on the OpenGL PBuffer extension.

Pingus itself uses a class DrawingContext, that can buffer
up drawing requests of surfaces, sprites, fonts, and other
graphical primitives. It can be instructed to draw into a

54 5 Implementation details

CL GraphicContext. For this, it performs z-sorting onDrawingContext

can buffer and z-sort
drawing requests,
and draw them into a
CL GraphicContext.

all buffered objects to reduce overdraw, and then draws all
buffered requests front to back.

All logical high level components of the standard game
view, e.g., the buttons, status bar, and the playfield contain-
ing the actual level, are seperated into own classes. Each
frame, all UI components are instructed to draw into one
common DrawingContext, that then gets drawn into the
CL GraphicContext of the backbuffer of the GPU. For
PinguTouch, all conventional user interface elements were
removed from the game, so that only the playfield is visi-
ble. Accordingly, that is the component this description is
focussing on.

The class Playfield is the user interface component re-Playfield is the UI
component that
displays the level; it
delegates to
SceneContext for
actual drawing.

sponsible for drawing the landscape and all pingus and
other dynamic objects that are part of it.

Playfield holds an instance of the class SceneContext.
While Playfield is responsible for handling UI input and
determining the viewport of the scene, the actual drawing
requests are performed by the SceneContext. It holds all
information necessary to render the landscape fitting to the
position of the viewport and can perform clipping, rotation,
and zooming operations.

The landscape itself is composed of simple sprites duringThe landscape gets
divided into tiles. level creation. These sprites can be flipped horizontally or

vertically, and rotated in 90 degree steps to include more
variation. Instead of rendering all these sprites each frame
one after another, the level is divided into quadratic tiles
of the size 32x32 pixels during level startup. Then, all the
static graphical artwork of the level is rendered into their
respective tiles. For final output only those precomputed
tiles are rendered.

This method eliminates overdraw, i.e., for displaying the
static playfield, pixels will never be written to more than
once during rendering of a frame. This comes at the price of
losing the ability to easily remove only certain sprites from
a tile, since it is impossible to decompose the tiles back into
sprites. No game mechanic needs that ability, however, so
this disadvantage has no impact.

5.1 Appearance 55

During the course of the game, accurate and fast access to Collision information
is held in an array the
size of the level.

collision information is necessary to properly move the pin-
gus along the game world. To achieve constant-time ac-
cess to the collision information of an arbitrary pixel of the
level, the data is held in a simple two-dimensional byte-
array of the size of the level. Whenever a sprite is drawn
into the tilemap, the corresponding bytes in the collision
map are marked. Possible collision markers are empty ar-
eas, ground areas, indestructible areas, and water areas.

5.1.2 Modifications

To create an octagonal output, the level can simply be di- The level is divided
into eight triangles
that are put together
at their edges.

vided into eight triangles for level editing and put together
along the sides of the triangles for display (see Figure 5.2).
Since the artwork composing a level is primarily rectan-

Figure 5.2: Eight triangles (not all visible in this figure) put
together to form an octagon.

gular formed, sprites placed into one triangle could some-
times reach into the next (see Figure 5.3). To alleviate this, a
150 pixel wide gap was introduced between the triangles.

Since the concept is similar to a fan with blades, the term
“blade“ will be used from here on to describe these seg-
ments. For non-ambiguous description of the output, lin-
ear level coordinates will still be used for the description
of position. Accordingly, the beginning of a blade denotes
the pixel associated with the lower left corner of the corre-
sponding segment in level coordinates.

56 5 Implementation details

Figure 5.3: Illustration of artwork reaching into neighboring triangle.

Apart from splitting the level into blades and drawing themWhen pingus leave
one blade, they are
moved to the next.

in form of the octagon, transitions of pingus between the
blades must be handled. From a game logic perspective,
this is easily done: the bottom center point of every pingu
is used as its logical coordinate. This point is used as ori-
gin for drawing and collision detection. Whenever a pingu
moves far enough for the origin to leave the visible area of
a blade, it is immediately moved to the beginning of the
following blade in the direction it is walking.

The visual aspect needs to be handled separately. Even if
the logical coordinate of an object is still in one blade, parts
of it might be drawn outside of it and will get cut off at the
seams of blades. To resolve this behavior, we examine the
basic trigonometry of regular polygons.

Obviously, any sprite should be in its original rotation
again after crossing through all 8 blades, i.e., it gets rotated
by 360 degrees. Since the output gets displayed in a regular
octagon (i.e., all edges have equal length, and all inner an-
gles are equal), it needs to be rotated by 45 degrees during
each step.

Thus, when part of an object reaches outside a triangle, aPingus are drawn on
both sides of gaps so
they are not clipped.

copy of its sprite needs to be moved by 150 pixels to account
for the additional gap between triangles, and then rotated
by 45 degrees in the appropriate direction around the be-
ginning of the triangles it reaches into (see Figure 5.4).

The main part of the modification was done in the

5.1 Appearance 57

45°

150px

Figure 5.4: Sprites reaching outside one triangle are dupli-
cated, moved, and rotated to appear seamless.

SceneContext. The viewport is reduced to the size of Each blade is
rendered into a
texture.

the minimal containing rectangle of a blade. Then, for
each blade, the viewport is moved to the respective po-
sition on the level, and rendered into a texture. Finally,
when the game engine requests the SceneContext to be
drawn, these textures are arranged in the octagonal form.

58 5 Implementation details

Since the textures themselves are rectangular, as opposed
to the triangular blades, some surplus texture data will be
discarded. This must be kept in mind when designing the
level.

To compute the correct vertex coordinates of each blade,
one needs know how to calculate the set of points that make
up a circle.

The equation

(x, y) = (cos(α), sin(α)) | 0 6 α 6 2 · π

delivers all points on the perimeter of the unit circle. To
obtain the vertex coordinates of the 8 points, α has to be
restricted to the values of

αi =
π

4
· i|i ∈ {0, . . . , 7}.

The background image is a special case. Although it is partThe background
image is drawn as a
seperate layer to
make it appear as a
single piece.

of the landscape and as such should be painted as part of
the SceneContext, the segmentation along the edges of
blades would lead to highly visible seams. To prevent this,
it is instead drawn in a seperate pass.

To make it fit into the octagon form of the level, a stencil
buffer is used: in a pre-pass, the stencil buffer is popu-
lated in an octagonal form, using the same geometry that
the drawing of blades uses. The background is then only
drawn on pixels that pass the stencil buffer test.

5.1.3 Optimizations

In the first implementation of PinguTouch, the whole scene
was rerendered for each frame. The pingus and all other
dynamic objects were kept as part of the SceneContext,
like they were in the original Pingus design. This kept the
rendering pipeline simple, as all objects were automatically
drawn at the correct position with the correct rotation.

5.1 Appearance 59

However, rendering the whole level into different textures Static parts of the
level are cached,
dynamic parts are
drawn on top for
better performance.

and then placing those on the screen is quite an overhead.
To improve performance, the architecture was changed so
that the rendering output of the first frame gets cached.
Then, only the dynamic objects get drawn on top of that.
This added some complication to the codebase: all dynamic
objects now had to be rotated and placed independently
into the DrawingContext.

For that, a transformation from level coordinates to screen
coordinates for arbitrary points is needed. The following
algorithm was used:

1. The blade which contains the point is computed. For
this test, ClanLib provides functions to check whether
a point lies within any specific triangle. Should the
point be outside of any blade, it is not visible on
screen, and further calculations can be skipped.

2. The vertical distance dv between the lower edge of the
blade and the point, and the horizontal distance dh

between the left edge of the blade and the point is
measured.

3. To compute the output position, the lower left point
of the blade position on screen is used as starting po-
sition. From there, it is moved by dv pixels along the
height axis that is passing through the center of the
circular output, and by dh pixels parallel to the lower
edge of the blade.

The reverse transformation from screen coordinates to level
coordinates works similarly:

1. The function calculates the on-screen blade the touch
occured in by a simple bounds check of the touch
point for all blades. The level coordinates of the be-
ginning of the resulting blade serve as a starting point
for the following computations.

2. The offset to the x coordinate is obtained by measur-
ing the distance from the left edge of the on-screen
blade to the touch point along an axis parallel to the
lower edge of the blade.

60 5 Implementation details

3. The offset to the y coordinate is obtained by calculat-
ing the distance from the center of the circular output
to the touch point.

5.2 TouchLib

As low-level framework for integrating multi-touch func-
tionality into the game, the “TouchLib” library2 was used.
TouchLib provides the embedder with solid calibration and
cascading image filter possibilities for usage on an FTIR
setup (cf. Section 2.2.4—“Frustrated total internal reflec-
tion”) to obtain touch point information.

Next to position and identification across frames, parame-TouchLib provides
calibration and
cascading image
filters to obtain touch
point information.

ters describing an ellipsis approximating the blob are sup-
plied for each touch point. However, early in the devel-
opment process it became apparent the performance was
insufficient for the purposes of this implementation. For
assigning the identifiers to touch points from one frame to
the next, the library uses the following exponential time al-
gorithm:

1. The distances between all touchpoints from frame
Fn−1 and all touchpoints from frame Fn are calculated

2. All possible permutations of fitting the points from
Fn−1 to the points from Fn are tested

3. Keep the permutation where the sum of the distances
of the assigned points is minimal.

TouchLib was modified to replace this algorithm with aTouchLib
performance was
improved.

more pragmatic and faster one:

1. Again, the distances between all points from Fn−1

and Fn are calculated in a matrix.

2See http://www.whitenoiseaudio.com/touchlib/.

5.2 TouchLib 61

2. The assignment with the lowest distance is chosen
(i.e., the smallest value in the matrix), and the dis-
tances involving these two points from Fn−1 and Fn

are marked as processed and removed from the ma-
trix.

3. Step 2 is iterated until no unassigned points from ei-
ther Fn−1 or Fn are left.

This very simple algorithm runs in O(n3), and has not
shown performance problems in any of our test scenarios.
Figure 5.5 displays an example where the output of the two
algorithms do not match. However, there has yet to occur
a case during our user studies where such a mistake would
have been apparent.

Figure 5.5: A case where the two identifier assignment al-
gorithms lead to different results. Arrows represent move-
ment paths, colors represent identification. Left: Identifier
assignment when minimizing global distance. Right: Iden-
tifier assignment when picking local minimal distances.

The capture resolution of the camera input used in this Capture resolution
sufficed, but capture
rate raised issues.

project is 320x240 pixels at 30 frames per second. With a
game surface of about 85 centimeters, the system can thus
differentiate between single points of ∼ 0.35 cm distance.
However, since the coordinates used as touch points are
based on blobs that are larger than single points, the ac-
tual quantization of the returned data is somewhat finer
grained, as the system can interpolate the center of the blob
based on its dimensions. During tests and deployment of
the system, there were no apparent cases where lack of res-
olution seemed to impair input control.

The system would definitely benefit from a faster capture
rate, however. At the current rate, motion blur effects can

62 5 Implementation details

lead to distorted input data, that has to be factored in when
developing the software (cf. Section 5.4.3—“Blocking and
bridging”).

5.2.1 Calibration

The mapping of the blobs to actual coordinates is imple-Calibration
procedure needs the
user to touch
predefined points.

mented in TouchLib by reverse texture mapping.3 During
the calibration process, a regular grid of points is displayed.
The user then has to touch the screen at each point, so that
the software can derive the coordinates from that specific
spot. Internally, the calibration software segments the en-
tire work area into triangles, using neighboring points as
vertices. When a blob is detected, TouchLib tests which tri-
angle contains it, and then uses the respective parameters
for the transformation.

Since the evaluation took place on an octagonal shaped ta-Calibration grid was
changed from
rectangular to
octagonal.

ble, the integrated calibration routine had to be adapted.
Instead of a regular grid of points, two concentric octago-
nal shapes were used (see Figure 5.6).

Figure 5.6: Rectangular Calibration Grid and Octagonal
Calibration Grid; the segmentation into triangles is not vis-
ible to the user.

3See http://www.cescg.org/CESCG97/olearnik/txmap.htm.

5.3 Interaction 63

5.3 Interaction

For usage of the touch data in PinguTouch, the raw identi- The touch data is fed
into a graph.fication and position information of the touch points is fed

into a graph structure. The vertices of that graph repre-
sent the touch points, while the edges hold the distances
between the points. From there on, all gesture recognition
is performed on the graph structure as visualized in Figure
5.7.

Stroke Group Gesture
EffectorStroke Group Gesture

Effector

Touch Graph

Gesture MatcherGesture Matcher

Stroke Group Gesture
Effector

To
uc

h
Pr

oc
es

sin
g

M
od

ul
e

updates

instantiates

tests

runs

runs

Gesture Matcher
tests

Game World

modifies

Figure 5.7: Overview of the touch system implementation.

For implementation of the graph, an adjacency list from the
Boost Graph Library4 was used. It was chosen over the

4See http://www.boost.org/libs/graph.

64 5 Implementation details

adjaceny matrix from the same library because references
to vertices are memory pointers and stay valid even after
items were added to or removed from the graph. This is an
important technical advantage.

For integrating gestures, two interfaces have been devel-
oped (cf. Appendix B—“Interface definitions”).

For the recognition process, IGestureMatcher has to beImplement
IGestureMatcher

to describe gesture
match conditions.

subclassed and registered with the touch processing mod-
ule. The order in which the gesture matchers are registered
determines the priority of the gestures.

For processing of a recognized gesture,
IGestureEffector has to be subclassed.

Any subclass of IGestureMatcher needs to implement
only two functions: checkForMatches receives the cur-
rent graph structure as argument and generates a list of
StrokeGroups, each containing a set of touchpoints rec-
ognized as matching a new gesture. generateEffector
receives a vector of graph vertices and returns an ini-
tialized instance of the respective implementation of
IGestureEffector that belongs to the gesture matcher.

When an instance of the class StrokeGroup gets created
during successful matching, it receives the instance of the
gesture matcher and the touch points, that are detected as
part of the gesture, as arguments. The StrokeGroup in-
stance then lets the gesture matcher generate an effector
with the members of the gesture.

StrokeGroup instances only serve as wrappers aroundStrokeGroup

handles common
functionality.

multiple touch points. They handle the functionality com-
mon to all gestures, i.e., grouping the touch points, mem-
ory management and logging functions. Actual game play
changes are performed by the effectors.

A list of active StrokeGroups is maintained. During
each frame, this list is traversed and each StrokeGroup
instructs its effector to perform its action by calling
perfomEffect.

During that time, the effector can signal with its return

5.4 Gestures 65

value that it is not required anymore, usually when some IGestureEffector

can decide when to
end gesture.

of the touch points belonging to the gesture are removed.
If that is the case, the StrokeGroup and the effector are
destroyed. All remaining touch points that were part of the
gesture are declared free for usage in new gestures.

The functions getGestureID and getGesturePos can
be used for logging purposed and respecetively return a
unique identifier for the type of gesture the effector imple-
ments, and the position the effect occurs at.

Two deliberate design decisions were made to simplify im- Strokes belong to at
most one gesture
and cannot be added
to an existing
StrokeGroup.

plementation:

Each stroke belongs to at most one gesture effector. This
should be no restriction in most practical cases.

After a gesture effector has been created, no additional
strokes can be added to it. While this restriction might
limit the variety and stability of gestures, it also leads to
more predictable behavior for the user: gestures performed
in high vicinity cannot interfere with each other, as long as
the respective gesture effectors are not created at the same
time. For example, one player can create a blocking ges-
ture, and another player can then perform flicking gestures
nearby without the possibility of them getting recognized
as part of the blocking gesture.

5.4 Gestures

5.4.1 Flicking of pingus

The gesture matcher checks each stroke that is not in use by Flick gesture criteria
involve stroke
duration and
proportions.

another gesture for two criteria:

The stroke must be shorter than 2 seconds. This criterion
disallows triggering the gesture when users are simply rest-
ing a finger on the surface and a pingu walks into it. It still
allows for enough time to move a finger from one side of a
pingu, across the pingu, to the other side to prod it towards

66 5 Implementation details

that direction.

The width-to-length ratio of the stroke must be smaller
than 1.8. This restriction is designed so that the gesture
only gets triggered when the tip of the finger is used.
Specifically, the edge of the hand that is used to trigger a
blocking gesture usually has a higher ratio, so it will never
trigger a flicking gesture. The exact value of 1.8 has been
acquired empirically.

After successful matching, the user has to move the finger
30 pixels from the current location for the pingu to get pro-
pelled into that direction.

In the first implementation, the flight path of a flickedThe path of flying
pingus was changed
to be continuous in
screen coordinates.

pingu was continuous according to level coordinates, apart
from moving the pingu over the level gap from one blade to
the next. User tests showed this to be very confusing when
shown on the screen, as the pingu made a sharp turn when
crossing between two blades (see Figure 5.8).

The behavior was changed so that pingus, that were not in
contact with the ground, were moving in a straight path
on-screen. This was achieved by rotating the pingu’s veloc-
ity vector by 45 degree in the proper direction whenever it
crosses from one blade to the next (see Figure 5.9).

5.4.2 Opening doors

To implement the opening of doors, a general solutionAll world objects are
queried whether to
react to touch.

for interaction with world objects was designed. For
each touchpoint, all world objects are iterated and queried
whether they want to react to that specific point by calling
fingerDown with the level coordinates of the touch point.
If so, all further stroke information for that point is then
routed to that object by calling fingerUpdate. The world
object can control with a return value whether it keeps con-
trol of the stroke. If it does not, fingerUp gets called to
handle any necessary clean-up operations.

A severe limitation of the current design is that world ob-
jects get only fed one stroke at a time, so that gestures con-

5.4 Gestures 67

Figure 5.8: Traversing of the pingu between blades with
continuous level coordinates.

sisting of multiple strokes are very hard to implement with Current design
supports only one
stroke per world
object.

this general solution. This is sufficient for the current us-
age, i.e., for pulling levers, but might need a redesign in
possible future versions.

To get attached to the door in this specific case, the code
checks whether the stroke hits the lever of the door. Then,
when the player moves the finger, the lever gets pulled with
it along the vertical axis. The horizontal movement is ig-
nored. Should the player lift the finger, the lever slowly
moves back into its original position.

During each frame, the collision map is updated. The po-
sition that the door was placed in the previous frame is
cleared in the collision map and the new position is marked
as solid. The code assumes that the door does not clip the
ground of the level in its closed state. If it would, this inter-
section would be marked as clear in the collision map when

68 5 Implementation details

Figure 5.9: Traversing of the pingu between blades with
continuous screen coordinates.

the door is open, even when the ground is still there.

5.4.3 Blocking and bridging

Different players have differently shaped hands or placePlayers have
differently shaped
hands.

their hand on the table in different ways. With some play-
ers, only one blob is visible, reflecting the edge of the hand
(excluding the pinky finger). With other people, an addi-
tional blob is detected for the pinky finger (see Figure 5.10).

To accurately detect which blobs are part of the hand ges-
ture, the following algorithm is performed:

The list of strokes is searched for a seed from which to per-Block gesture criteria
involve proportions
and stability.

form further searches. It has to fulfill the following criteria:

5.4 Gestures 69

Figure 5.10: Possible blob configurations detected by plac-
ing the edge of the hand on the table. Image colors are in-
verted for clarity.

The ratio between length and width of the point has to be
at least 2.2, and the length of the point has to be at least
4 pixels in terms of the camera input. The first value en-
sures that the point is long enough to actually represent the
edge of a hand. The second value enforces that very small
points, which can reach the necessary ratio quite easily sim-
ply out of chance, are ignored. These values were gathered
empirically for children. For adults, a length to width ratio
of 3.0 has led to good results.

The point needs to have stable coordinates for at least 3
camera frames. This criteria is only for technical reasons.
When a player quickly moves his finger across the surface,
the resulting motion blur in the picture makes the blob ap-
pear larger than the size of the contact actually is. The time-
out reduces false positives due to this effect.

At a camera input of 30 frames per second, this restric-
tion introduces a lag of 100 milliseconds from the time of
placing the hand until the bridge actually appears. As
explained by Card et al. [1983], this latency is just at the
threshold needed for real-time interaction and thus should
not measurably impact the user experience.

When a seed is found, all touch points in a diameter of 150 Nearby touch points
with a similar axis are
added to the gesture.

screen pixels from the seed are tested for a similar axis and
a similar rotation as the seed. If any are found, they are
added to the gesture.

70 5 Implementation details

Then, the mean of the coordinates of the seed and all touch
points added in this way is used as center coordinate for the
block. If no additional point is found apart from the seed,
its coordinates are used. In this case, the block might not
appear at the exact spot the user expects: it is shifted some-
what towards direction of the arm. Since it is not reliably
possible to detect the direction of the hand that creates the
touch points, the software cannot correct this shift.

For drawing, a texture wrapped in a CL Surface is used.
This texture is drawn directly on top of the playfield, no
regard has to be taken whether it crosses between blades. It
can use the center coordinates and the orientation directly
from the associated touch point.

For entry into the collision map however, the touch dataBlock collision data is
rotated and drawn
into neighboring
blades.

has to be transformed to level coordinates. All this is
handled on the CPU, so the texture is duplicated in a
CL PixelBuffer. The special case of the block reaching
from one blade to the next must also be handled.

For that purpose, each block-effector holds three
CL PixelBuffers. One is rotated the same way the
drawn texture is, relative to the orientation of the blade it is
drawn into. The other two are rotated 45 degrees clockwise
and counter-clockwise relative to that, respectively. The
collision data is then drawn into the collision map similar
to the way used for objectings spanning over multiple
triangles (see Figure 5.11).

In contrast to the collision map of the original game,
PinguTouch needs the ability to selectively remove ele-
ments not only on a per pixel basis, but on a per sprite
basis. This is necessary when a blocking sprite that partly
overlaps the ground map gets removed from the level.

The solution used here is that parallel to the normal levelThe additional touch
collision map is
rebuilt each frame.

collision map, a touch collision map is constructed with the
same dimensions. At the beginning of each frame, this map
is cleared, and the data for each block is drawn into it. Then,
when testing for possible collisions, the union of both maps
is checked.

5.5 Level editor 71

Figure 5.11: Block placement in collision map to appear as
one piece.

5.5 Level editor

As part of the original Pingus game, a level editor is in- The level editor from
a previous version
had to be used.

cluded. Unfortunately, the level editor for Pingus version
0.7, the version used as a basis for PinguTouch, was not in
a usable state at the time of writing. However, a version
included in the version 0.6 of Pingus could be used. The
file format used to save the level has changed between ver-
sions, but since both are based on XML, an easy transforma-
tion between the two formats was possible by usage of an
XSLT-transformation. An according stylesheet is included
in Pingus 0.7. Although the multi-step process between de-
signing a level and actually playing it was hindering rapid
development, it was adequate for development of the level
used for further evaluation as part of this thesis.

To better support the creation of levels appropriate for us- Areas visible
in-game were
highlighted.

age in PinguTouch, the editor was modified to highlight

72 5 Implementation details

Visible
area

Discarded
area

Visible
area

Figure 5.12: Example screen of the level editor. The areas denoted with a dark
grey background will be discarded for gameplay. Only the light gray areas will be
visible.

the areas that would actually be visible during the game.
This was done using a simple background layer (see Figure
5.12).

Another added ability is proper handling of level pieces
that extend outside one blade and into the next. For this
to render without visible seams in the final output, the
groundpiece has to be rotated and moved to the correct
place in the world. Since the version of Pingus that the edi-
tor is based on uses an older version of the ClanLib frame-
work, implementing proper visualization in the editor for
this feature proved to be too much work for only minor
convenience during level editing.

As an additional method for creating levels, a single im-Level editing by
image manipulation
was integrated.

age file containing the landscape as it would be displayed
in the game can be used. This enables level editing by us-
ing an image manipulation application. Dynamic objects
like entrances and exits still have to be placed in the editor,
however.

73

Chapter 6

Evaluation

“When I show a game to people I don’t ask their
opinion or give them a survey. I just watch their

eyes and their face while they play. Do they smile?
Do they look frustrated? So I guess I do test my

games—but it isn’t very scientific.”

—Shigeru Miyamoto, in an interview with EW.com

To measure whether we succeeded in meeting our design Cooperation has to
emerge from the
players’ actions.

goals of PinguTouch, we planned and performed user eval-
uations. Complexity of gestures and real-timeness of the
system are properties of the application that can be explic-
itly set during the design phase. However, cooperation,
and thus, perceptibility of co-location, has to emerge from
the players’ actions.

Since the primary purpose of our game is entertainment, a Evaluation of
entertainment value
is hard.

study regarding enjoyment was also necessary. Evaluating
the entertainment value of an application requires differ-
ent methods than evaluating the performance of task-based
applications. Enjoyment is hard to measure quantitatively,
and individual preferences of players can heavily influence
the results. While we investigated creating different ver-
sions of PinguTouch to specifically isolate how cooperation
changes assessment of the game, it has proven difficult to
remove single rules of the game without completely de-
stroying the gameplay.

74 6 Evaluation

Removing the quasi-modal property of the gestures, so thatSingling out
individual factors was
deemed impractical.

users only have to remove the obstacles once and let the
game play by itself, would for all intents and purposes re-
move the real-time aspect of the game. Since all tasks neces-
sary to win the game are conceptually easy to recognize, the
lack of feeling achievement would reduce enjoyment. Sim-
ilarly, it seems obvious to us that playing the game alone
leads to a less entertaining experience than playing in a
group.

To confirm the viability of multi-touch gaming and of ourTwo-part study for
analyzing
cooperation and
entertainment with
visitors at the
Industrion.

design, we eventually decided to split the evaluation into
two parts. In the first part we analyzed whether users
played PinguTouch as intended, i.e., using the co-located
setup for close cooperation. The second part was designed
to confirm whether users actually enjoyed the game.

Both parts were performed with visitors at the IndustrionAdvantages: diverse
demographics,
octagonal table,
gaming atmosphere.

museum during normal opening hours. This had several
advantages over performing a study in a controlled envi-
ronment in our lab:

• The demographics at the museum are much more di-
verse than any that we could have realistically pro-
cured from the university campus.

• The multi-touch system at the Industrion features an
octagonal table, fitting to the design of the game. The
table in our lab, on the other hand, is rectangular, thus
impeding accessibility.

• We felt that the work-oriented atmosphere of a lab
might influence the results compared to an environ-
ment more suitable for playing games. Discrepan-
cies of that kind have been discovered in [Reilly and
Inkpen, 2007].

On the other hand, conducting user studies in the uncon-Disadvantages:
limited data
gathering, no fixed
testing procedure,
mostly families.

trolled environment of the museum had several repercus-
sions:

• Our methods of gathering data were generally lim-
ited to only the most unintrusive ways. Visitors go

6.1 Part one - analyzing cooperation 75

to the museum for education and entertainment. It is
unreasonable to expose them to the potentially intru-
sive process of an in-depth user study.

• Visitors would come and go as they pleased. There
was no mechanism to enforce specific tasks. Al-
though we gave a short introduction to users who ap-
proached the table, there was no clear instruction or
testing phase. After quickly explaining the goal of the
game and the three possible gestures, users were told
to proceed as they like.

• Museum groups are often families. Family members
have a tight bond, and their behavior might not be
transferrable to groups in general.

6.1 Part one - analyzing cooperation

6.1.1 Methods

To examine the degree that users were working together, Video observation
was used to measure
cooperation.

video observation was used. A video camera was mounted
above the multi-touch table and set to record the happen-
ings on the table over the course of a day. The camera was
carefully set up in a way that users were not identifiable on
the video feed.

As the first step of our analysis stage, we segmented the
video data into clips containing one group each. Since play-
ers could join or leave the game as they pleased, the group
size did not necessarily stay constant during that time.

The tool “Anvil” by Kipp [2001] was used to annotate the Video annotation by
number of users,
users working
together, users
working in personal
space of others.

video clips along a timeline (see Figure 6.1). We noted three
pieces of information for each point in time:

• the number of active users, i.e., users that were per-
forming a gesture on the table with the purpose of ad-
vancing the game, as opposed to simply experiment-
ing

76 6 Evaluation

Figure 6.1: The Anvil workspace.

• the number of users sharing a workspace, i.e., users
that were working in the same segment of the octag-
onal playfield

• the number of users working in the personal
space of another user as defined in Section 2.1.1—
“Territoriality in collaborative tabletop workspaces”

The third case was particularly interesting to us, since theThe focus on
cooperation might
lead to decreased
importance of
personal space.

intrusion of one player upon another player’s personal
space is a situation that would usually not occur. An inves-
tigation on whether the focus on cooperation would lead
to a significant decrease of territoriality regarding personal
space might lead to further insights about tabletop behav-
ior. The difference between the general case of cooperation
and the specific case of working in another user’s personal
space is illustrated in Figure 6.2.

From the annotated information we could derive three new

6.1 Part one - analyzing cooperation 77

!

!

Figure 6.2: Possible ways of cooperation. Left: simultaneous activity in a space
between players. Right: simultaneous activity in a space in front of a player.

values:

• Summed active play time sums up the active time of We derived summed
active play time,
cooperation rate,
intrusion rate.

all respective players.

• Cooperation participation rate divides the summed
up time of users sharing a workspace by the summed
active play time.

• Personal space intrusion rate divides the summed up
time of users intruding into another users personal
space by the summed active play time.

A typical situation would involve three players, with two
working in the same area, and a third handling another area
of the game. The cooperation participation rate in this sce-
nario would be 66%.

Since user identification was impossible, the figures could No user identification
possible.not be broken down into time per individual, as was done

in [Scott et al., 2004].

78 6 Evaluation

6.1.2 Results

We reviewed 40:29 minutes of video, separated into 7
groups (see Table 6.1). Average cooperation participation
rate was 64%. Average personal space intrusion rate was
21%.

We observed two more groups that were too large forGame also playable
by larger groups. meaningful analysis. There was equal activity in all all ar-

eas of the table, and no fixed personal areas could be de-
fined. Although we did not include these results in our
calculations, we feel that the fact that groups of that size
could successfully play PinguTouch confirms the viability
of multi-touch gaming.

6.1.3 Discussion

For the museum visitors, the complexity of PinguTouchComplexity of
PinguTouch right for
museum visitors.

seemed to find the right balance. Users were engaged and
entertained by the game for up to 9 minutes before moving
on.

To assess whether we succeeded in creating a cooperativeWe cannot isolate
single factors in our
comparisons.

game, we compare PinguTouch to the system described
in Section 2.1.2—“Collaborative Coupling”. However, we
cannot isolate the difference in results to one specific factor,
since the methodologies between the two studies are differ-
ent:

Trials in [Tang et al., 2006] were always performed with
pairs of users, while PinguTouch was often played by larger
user groups. Especially for odd-numbered group sizes, lim-
ited reachability hinders cooperation involving all partici-
pants for purely physiological reasons. Furthermore, users
in the study by Tang et al. were using styluses to interact
with the table. This increases the social distance when com-
pared to interacting using the hand directly. Design of the
table was different as well: while the table used for the rout-
ing application was rectangular, ours is octagonal.

Despite the differences, we can still come to conclusions re-

6.1 Part one - analyzing cooperation 79

Summed active Cooperation Personal space
Group Play time play time paticipation rate intrusion rate

1 7:46 17:55 54% 21%
2 6:37 15:21 70% 22%
3 3:45 9:54 72% 36%
4 8:44 17:50 52% 14%
5 3:11 5:51 83% 0%
6 3:10 5:35 81% 32%
7 7:16 14:53 64% 22%

Avg / time 64% 21%

Table 6.1: Video analysis results.

garding the system as a whole, including the variation in
both the respective applications and table setups.

Tang et al. identify six different coupling styles. The only
one associated with our concept of cooperation is “Same
problem same area”: both users are working on the same
area to cooperatively solve their task. Pairs spent 33,2% of
their time in this work style, compared to 64% in our appli-
cation.

Since the study by Tang et al. was also designed with coop- Our system
compares very
favorable regarding
cooperation.

eration in mind, our results show that we succeeded in our
goal to encourage close spatial cooperation—at least com-
pared to another, similar application. This could either be
due to the application itself or due to another, external fac-
tor as part of the whole system.

As an additional step, we analyze our data regarding
the further going concept of personal space intrusion as
discussed in Section 2.1.1—“Territoriality in collaborative
tabletop workspaces”.

In this context, the result of group 5 is particularly notice- Group 5 had a 0%
personal intrusion
rate.

able. It is the only group with 0% personal space intrusion
rate, that at the same time has the highest measured coop-
eration participation rate. An analysis of the video record
of that group showed that it consisted of only two players.
One player stood at a constant position, while the other
player moved around the table helping the first player to
handle the pingus to either his left or right side. There was

80 6 Evaluation

never a situation where intrusion into the respectively other
player’s personal area was necessary. As this is a valid way
to play the game as designed, we kept the results of those
groups included in our data.

Variations in methodology are more pronounced than inMany differences in
methodology. the previous comparison. Again, the table design is dif-

ferent: the table used by Scott et al. was round and all ar-
eas were equally usable. A large part of it was covered
with a cardboard floor plan, implicitly designated as group
space. On the other hand, the table edges of our octago-
nal table are not usable, due to the design of both the table
itself and the game level. The area of interaction was gener-
ally shifted towards the center. Users in the study by Scott
et al. were sitting mostly in the same position relative to
the table, while users playing PinguTouch were standing
and had to regularly change positions to properly play the
game.

All these differences could again be considered part of theDifferent unit of
measurement. respective systems and included as part of the compari-

son. However, the unit of measurement was also differ-
ent: [Scott et al., 2004] evaluated personal space intrusions
per actions, whereas we measured them by time spent in
that space. To make the numbers vaguely comparable, we
will assume that each user action performed in the study
by Scott et al. requires an equal amount of time.

Members of our groups aggregately spend between 0% and
36% of their time in the personal space of other players,
with an average of 21%. Number of actions of one person
in the personal space of others is reported by [Scott et al.,
2004] as being between 0% to 13%. Since that study does
not offer the number of total actions per group, we are un-
able to calculate numbers that are mathematically equiva-
lent to ours.

Although our numbers look promising, we feel the differ-Our results are
inconclusive. ence is not large enough to warrant any conclusion regard-

ing personal space intrusion, considering the fragile basis
for comparison. A study in a controlled environment where
we set clear tasks and can properly identify users would
lead to more conclusive results.

6.2 Part two - analyzing enjoyment 81

Nevertheless, our overarching goal of high perceptibility of PinguTouch achieves
high perceptibility of
co-location.

co-location is achieved. Adapting PinguTouch to strongly
encourage acting in the personal space of others and gen-
erating comparable data could be the focus of another re-
search effort.

6.2 Part two - analyzing enjoyment

6.2.1 Methods

To obtain quantifiable user data, we decided to conduct an Entertainment value
measured by
questionnaire.

opinion survey by using a questionnaire. To maximize vis-
itor participation, it was deliberately designed to fit on one
page. This limited us to asking demographic information
(age and gender) and five additional questions (Q1 to Q5).
Since a considerable part of the museum audience are chil-
dren and young teenagers, special care had to be taken to
make all questions easily understandable.

• Q1 was aiming to gather a general opinion of the
game.

• Q2 asked whether users liked competitive games.

• Q3 asked whether users like cooperative games.

• Q4 asked whether users found it uncomfortable to
work in areas occupied by others.

• Q5 asked whether users thought that helping other
players handle their pingus was an important part of
the game. The question was included to verify our
theory that cooperation between players is an impor-
tant part of the appeal of PinguTouch.

The questionnaire was provided in both German and
Dutch, and all participants spoke either one of those as their
native language. No additional incentives were provided.

Since previous user observation had already indicated that
PinguTouch promotes cooperation, we expected positive

82 6 Evaluation

correlation between Q1 and Q3, and Q1 and Q5. The cor-We expected
correlations between
Q1 and Q3, Q1 and
Q5, and Q4 and Q5.

relation between Q4 and Q5 should be negative, since the
questions are opposing each other.

To plan the test, we performed a power analysis as sug-
gested by Cohen [1992]. Based on preliminary trials and
the user interviews described in 4.1—“User studies”, we
decided that the population effect size of the expected cor-
relations should be medium, since users enjoyed them-
selves and cooperation was clearly visible. We feel that this
should reflect in the gathered data.

Hence, using Table 2 from [Cohen, 1992], for a type I errorPower analysis was
performed to
calculate needed
participants.

rate of 0.10, a power of 0.80, and expected correlation of
r = 0.30, at least N = 34 participants were needed to get
significant results for a one-tail test.

6.2.2 Results

N = 36 participants were willing to fill out our question-
naire (39% female). The results are visualized in Figure 6.3.
The correlations between the answers to the different ques-
tions are shown in Table 6.2.

6.2.3 Discussion

There is an inherent bias in questionnaires like these. Users
who enjoyed the game are more likely to spend more time
with it and are more willing to assist us in our research.
Furthermore, the personal encounter between visitor and
developer probably leads to a more positive result than us-
ing an anonymous method like mail or internet.

For this reason, care needs to be taken when investigatingThe game was rated
highly positive. the results. Nevertheless, we feel that the predominantly

highly positive feedback to Q1 confirms our general design
ideas. The lack of significant correlation between demo-
graphic information and Q1 suggests that we accomplished
our design goal to create a casual game, i.e., a game that is
attractive to a general audience.

6.2 Part two - analyzing enjoyment 83

Strongly Agree 24 11 16 1 16
Agree 10 17 15 5 16
Neither agree nor
disagree

2 6 4 9 2

Disagree 0 1 1 12 1
Strongly Disagree 0 1 0 9 1

Q1 Q2 Q3 Q4 Q5

Figure 6.3: Questionnaire results.

Q5 has led to similarly positive results. The game idea The cooperative
aspect was deemed
very important.

of pingus overcrowding the area of any one single player
seems to be well accepted by the players.

Answers to Q2 and Q3 might suggest that users generally Users might prefer
cooperative to
competitive gaming.

prefer cooperative gaming to competitive gaming. How-
ever, we should be careful when making such comparisons.
Novelty probably plays a big role here, since only few fully
cooperative titles exist (cf. Section 1.1—“Cooperative gam-
ing”). For future studies, it might be interesting to inves-
tigate how the results change when asking these questions
before and after playing PinguTouch.

Out of all questions, results of Q4 have the widest distri- Answers to Q4 have
the widest
distribution.

bution. Although only 17% of the participants agreed or
strongly agreed that they found it uncomfortable to work in
a space occupied by others, the irregularity of answers con-
firms the results of the research described in Section 2.1.1—
“Territoriality in collaborative tabletop workspaces”: terri-

84 6 Evaluation

Gender Age Q1 Q2 Q3 Q4 Q5
Gender 1

Age 0.21 1
Q1 0.08 -0.06 1
Q2 0.12 0.01 -0.15 1
Q3 0.13 -0.19 0.34 0.36 1
Q4 -0.28 -0.14 -0.17 0.03 0.08 1
Q5 0.27 -0.20 0.18 0.03 -0.06 -0.44 1

Table 6.2: Questionnaire correlations.

toriality is deeply ingrained and hard to overcome.

The correlation between Q1 and Q3 was first calculated asQ1 has relevant
correlation to Q3
after outlier removal.

0.24. By removal of one single data row, the value increased
to a relevant 0.34. We feel this particular data row to be an
outlier (see Figure 6.4). In all other calculations, we kept the
data included.

We could not confirm our theory that Q1 and Q5 correlateQ1 and Q5 do not
correlate relevantly,
maybe due to lack of
variance.

relevantly. This comes unexpectedly to us, as helping other
players handling their pingus is the primary aspect of the
game, and the game itself is very well received. A scatter-
plot of the data generally confirms that the large majority
of participants rated Q1 and Q5 equally (see Figure 6.5).
We suspect that the lack of variance in the results of both
Q1 and Q5 leads to lack of mathematical correlation in this
case.

The correlation of −0.44 between Q4 and Q5 comes as ex-
pected, as helping another player handling his pingus ne-
cessitates acting in the space used by that player.

A correlation of 0.41 is visible in our data between Q2 andThe correlation
between Q2 and Q3
need further
investigation.

Q3. Since either a positive or negative correlation seems
plausible in the real population, we cannot assume a one-
tailed test. Further studying with a larger amount of par-
ticipants would be necessary to get results with a similar
significance as the remaining results.

6.2 Part two - analyzing enjoyment 85

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6

1 2 3 4 5 6

Q1

Q1

Q
3

Q
3

Figure 6.4: Correlation of Q1 and Q3 and regression line. Size of the circles repre-
sent occurrences of correlation. Top: data including outlier (marked red). Bottom:
data excluding outlier.

86 6 Evaluation

Q1

Q
5

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Figure 6.5: Correlation of Q1 and Q5. Size of the circles represent occurrences of
correlation.

87

Chapter 7

Summary and future
work

“At least I’ve learnt something from all of this.”
”What’s that?”

”Never pay more than 20 bucks for a game.”

—Guybrush Threepwood to Elaine Marley,
The Secret of Monkey Island

This chapter summarizes the work performed as part of
this thesis and suggests several ideas for further develop-
ment of PinguTouch.

7.1 Summary and contributions

PinguTouch is a casual collaborative tabletop game using
multi-touch technology. It is designed to use the unique
properties of the employed technology to combine the so-
cial experience of a classical board game with the interac-
tive possibilities of modern computer hardware.

The game allows multiple players to lead small penguins,
the pingus, across a 2D landscape. Users can perform hand
gestures on the table to guide the pingus across obstacles.

88 7 Summary and future work

The game features a highly real-time environment and en-
courages close spatial interaction between the players, thus
takes advantage of the interactive co-located scenario pro-
vided by the tabletop setup.

After describing previous cooperative tabletop applica-
tions, we presented our own design ideas and the revi-
sions made after performing user observations. Finally, we
conducted user evaluations in form of video analysis and
questionnaires to examine whether we reached our design
goals. Results show that we were successful in creating an
enjoyable game that encourages cooperation.

7.2 Future work

Although PinguTouch is already a complete game in the
sense that players gain an enjoyable experience from it, sev-
eral areas of the game could be enhanced for exploration of
further tabletop interactions:

• add cooperative gestures

• add cooperative navigation for increased level size

• include random level events

7.2.1 Cooperative gestures

To enhance the diversity of the game, more gestures areCooperative gestures
might work better in
entertainment
context.

necessary. In this context, the concept of “Cooperative Ges-
tures” as described in Section 2.3.1—“CollabDraw” could
be revisited. Although inappropriate in a task-related envi-
ronment, allowing even tighter cooperation between users
within a single gesture might prove entertaining and would
further pronounce the cooperative aspect.

One possible gesture that was thought of, but not im-
plemented, was the “popped balloon”-gesture: one user
would have to stretch out a pingu using two fingers of each

7.2 Future work 89

hand, while another touches the center of the pingu. The
pingu would then explode, similar to a needle hitting a
balloon. The force of the explosion could remove walls or
other obstacles, similar to the original Lemmings game.

7.2.2 Navigation

To enable larger levels, yet still allow equal accessibility Change concept of
circle to that of spiral
offers research
opportunity for
navigation.

among all players, the concept of a circular level could be
extended towards a spiral. Players could move the view
along the spiral by moving the whole hand across the sur-
face, in either the left or right direction.

Parts of a level that are further inside of the spiral could be
visible in the background of the active plane, and parts of
a level that are further outside of the spiral could be visible
as a translucent foreground.

Awareness of level location visible in the current game
view and different ways of synchronization between play-
ers could offer interesting research opportunities.

7.2.3 Random level events

The game experience could be diversified by adding ran- Random level events
could be used to
research warning
signals.

dom events involving the game world. For example, rock
falls that would crush the pingus could regularly occur at
random parts of the level. Players would have to protect
the pingus by performing a blocking gestures above their
heads.

Since those events would be unpredictable and might not
immediately be noticed by the players on the large tabletop
screen, they could be used for research into warning signals
that alert busy users to a specific location.

91

Appendix A

Questionnaire

92 A Questionnaire

Fragebogen zum Pinguin-Spiel

Mein Alter: ____

Mein Geschlecht:

männlich weiblich

1. Ich hatte Spaß daran, das Pinguin-Spiel zu spielen

Stimme überhaupt

nicht zu
Stimme eher nicht

zu
Stimme weder zu

noch nicht zu

Stimme
überwiegend zu

Stimme voll zu

2. Ich spiele gerne Spiele, bei denen ich mit anderen Spielern im Wettbewerb stehe, das

Ziel zu erreichen

Stimme überhaupt
nicht zu

Stimme eher nicht
zu

Stimme weder zu
noch nicht zu

Stimme
überwiegend zu

Stimme voll zu

3. Ich spiele gerne Spiele, bei denen ich mit anderen Spielern zusammenarbeiten muss,

um das gemeinsame Ziel zu erreichen

Stimme überhaupt
nicht zu

Stimme eher nicht
zu

Stimme weder zu
noch nicht zu

Stimme
überwiegend zu

Stimme voll zu

4. Mir war es unangenehm in Bereiche des Pinguin-Spieltisches zu greifen, in denen

andere Spieler bereits arbeiteten

Stimme überhaupt
nicht zu

Stimme eher nicht
zu

Stimme weder zu
noch nicht zu

Stimme
überwiegend zu

Stimme voll zu

5. Anderen Spielern zu helfen, die sich um zu viele Pinguine kümmern mussten, war

für mich ein wichtiger Teil des Spieles

Stimme überhaupt
nicht zu

Stimme eher nicht
zu

Stimme weder zu
noch nicht zu

Stimme
überwiegend zu

Stimme voll zu

Figure A.1: Questionnaire used for user evaluation; German version.

93

Appendix B

Interface definitions

class IGestureEffector {
public :

virtual bool performEffect () = 0 ;
virtual int getGestureID () = 0 ;
virtual void getGesturePos (int &x , int &y) = 0 ;

} ;

class IGestureMatcher {
public :

virtual std : : list<StrokeGroup∗> checkForMatches (
Graph∗ touchGraph) = 0 ;

virtual IGestureEffector∗ generateEffector (
std : : vector<Vertex>∗ aGroupMembers) = 0 ;

virtual ˜IGestureMatcher () {} ;
} ;

class WorldObj {
...
public :

virtual bool fingerDown (int x , int y) ;
virtual bool fingerUpdate (Stroke∗ stroke) ;
virtual void fingerUp () ;

} ;

95

Bibliography

Christopher Alexander, Sara Ishikawa, and Murray Silver-
stein. A Pattern Language: Towns, Buildings, Construction.
Oxford University Press, USA, 1977.

Tina Blaine and Clifton Forlines. Jam-o-world: evolution of
the jam-o-drum multi-player musical controller into the
jam-o-whirl gaming interface. In NIME ’02: Proceedings of
the 2002 conference on New interfaces for musical expression,
pages 1–6, Singapore, Singapore, 2002. National Univer-
sity of Singapore. ISBN 1-87465365-8.

Jan Borchers. A Pattern Approach to Interaction Design. Wiley
& Sons, 2001.

Stuart K. Card, Allen Newell, and Thomas P. Moran. The
Psychology of Human-Computer Interaction. Lawrence Erl-
baum Associates, Inc., Mahwah, NJ, USA, 1983. ISBN
0898592437.

Jacob Cohen. A power primer. Psychological Bulletin, (112):
155–159, 1992.

Chris Crawford. The Art of Computer Game De-
sign. McGraw-Hill/Osborne Media, 1984. URL
http://www.vancouver.wsu.edu/fac/peabody/
game-book/Coverpage.html.

P. Dietz and D. Leigh. Diamondtouch: A multi-user touch
technology. In Proceedings of UIST, pages 219–226, 2001.

William W. Gaver, Randall B. Smith, and Tim O’Shea. Effec-
tive sounds in complex systems: the arkola simulation.
In CHI ’91: Proceedings of the SIGCHI conference on Hu-
man factors in computing systems, pages 85–90, New York,
NY, USA, 1991. ACM Press. ISBN 0-89791-383-3. doi:
http://doi.acm.org/10.1145/108844.108857.

http://www.vancouver.wsu.edu/fac/peabody/game-book/Coverpage.html
http://www.vancouver.wsu.edu/fac/peabody/game-book/Coverpage.html

96 Bibliography

Edward T Hall. The Hidden Dimension. Anchor Books, 1966.

Jefferson Y. Han. Low-cost multi-touch sensing through
frustrated total internal reflection. In UIST ’05: Pro-
ceedings of the 18th annual ACM symposium on User in-
terface software and technology, pages 115–118, New York,
NY, USA, 2005. ACM Press. ISBN 1-59593-271-2. doi:
http://doi.acm.org/10.1145/1095034.1095054.

D. Johnson and R. Johnson. Positive interdependence: Key
to effective cooperation. In R. Hertz-Lazarowitz and
N. Miller, editors, Interaction in cooperative groups: the the-
oretical anatomy of group learning. Cambridge University
Press, Cambridge, 1992.

Michael Kipp. Anvil - a generic annotation tool for multi-
modal dialogue. In Proceedings of the 7th European Confer-
ence on Speech Communication and Technology (Eurospeech),
pages 1367–1370, 2001.

Carsten Magerkurth, Maral Memisoglu, Timo Engelke, and
Norbert Streitz. Towards the next generation of tabletop
gaming experiences. In GI ’04: Proceedings of the 2004 con-
ference on Graphics interface, pages 73–80, School of Com-
puter Science, University of Waterloo, Waterloo, Ontario,
Canada, 2004. Canadian Human-Computer Communi-
cations Society. ISBN 1-56881-227-2.

Carsten Magerkurth, Adrian David Cheok, Regan L.
Mandryk, and Trond Nilsen. Pervasive games: bring-
ing computer entertainment back to the real world. Com-
put. Entertain., 3(3):4–4, 2005. ISSN 1544-3574. doi: http:
//doi.acm.org/10.1145/1077246.1077257.

Nobuyuki Matsushita and Jun Rekimoto. Holowall: de-
signing a finger, hand, body, and object sensitive wall. In
UIST ’97: Proceedings of the 10th annual ACM symposium
on User interface software and technology, pages 209–210,
New York, NY, USA, 1997. ACM. ISBN 0-89791-881-9.
doi: http://doi.acm.org/10.1145/263407.263549.

Meredith Ringel Morris, Anqi Huang, Andreas Paepcke,
and Terry Winograd. Cooperative gestures: multi-user
gestural interactions for co-located groupware. In CHI
’06: Proceedings of the SIGCHI conference on Human Fac-
tors in computing systems, pages 1201–1210, New York,

Bibliography 97

NY, USA, 2006. ACM Press. ISBN 1-59593-372-7. doi:
http://doi.acm.org/10.1145/1124772.1124952.

Anne Marie Piper, Eileen O’Brien, Meredith Ringel Morris,
and Terry Winograd. Sides: a cooperative tabletop com-
puter game for social skills development. In CSCW ’06:
Proceedings of the 2006 20th anniversary conference on Com-
puter supported cooperative work, pages 1–10, New York,
NY, USA, 2006. ACM Press. ISBN 1-59593-249-6. doi:
http://doi.acm.org/10.1145/1180875.1180877.

Tran Cong Thien Qui, Ta Huynh Duy Nguyen, Asitha
Mallawaarachchi, Ke Xu, Wei Liu, Shang Ping Lee,
Zhi Ying Zhou, Sze Lee Teo, Hui Siang Teo, Le Nam
Thang, Yu Li, Adrian David Cheok, and Hirokazu Kato.
Magic land: live 3d human capture mixed reality interac-
tive system. In CHI ’05: CHI ’05 extended abstracts on Hu-
man factors in computing systems, pages 1142–1143, New
York, NY, USA, 2005. ACM Press. ISBN 1-59593-002-7.
doi: http://doi.acm.org/10.1145/1056808.1056853.

Jef Raskin. The Humane Interface. New Directions for Design-
ing Interactive Systems. Addison-Wesley Longman, Ams-
terdam, March 2000.

Derek F. Reilly and Kori M. Inkpen. White rooms and mor-
phing don’t mix: setting and the evaluation of visualiza-
tion techniques. In CHI ’07: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages
111–120, New York, NY, USA, 2007. ACM. ISBN 978-1-
59593-593-9. doi: http://doi.acm.org/10.1145/1240624.
1240640.

Stacey D. Scott, M. Sheelagh, T. Carpendale, and
Kori M. Inkpen. Territoriality in collaborative tabletop
workspaces. In CSCW ’04: Proceedings of the 2004 ACM
conference on Computer supported cooperative work, pages
294–303, New York, NY, USA, 2004. ACM Press. ISBN 1-
58113-810-5. doi: http://doi.acm.org/10.1145/1031607.
1031655.

Anthony Tang, Melanie Tory, Barry Po, Petra Neumann,
and Sheelagh Carpendale. Collaborative coupling over
tabletop displays. In CHI ’06: Proceedings of the SIGCHI
conference on Human Factors in computing systems, pages
1181–1190, New York, NY, USA, 2006. ACM Press.

98 Bibliography

ISBN 1-59593-372-7. doi: http://doi.acm.org/10.1145/
1124772.1124950.

E. Tse, S. Greenberg, C. Shen, and C. Forlines. Multimodal
multiplayer tabletop gaming. In PerGames 2006, May
2006.

Mike Wu and Ravin Balakrishnan. Multi-finger and whole
hand gestural interaction techniques for multi-user table-
top displays. In UIST ’03: Proceedings of the 16th annual
ACM symposium on User interface software and technology,
pages 193–202, New York, NY, USA, 2003. ACM Press.
ISBN 1-58113-636-6. doi: http://doi.acm.org/10.1145/
964696.964718.

99

Index

appearance
- background image . 58
- octagonal . 37–38, 55–58
- optimization . 58–60

blade . 55
Boost Graph Library . 63–64

ClanLib . 51–53
- CL Canvas . 53
- CL GraphicContext . 52–53
- CL OpenGLState . 53
- CL PixelBuffer . 53
- CL Sprite . 53
- CL Surface . 53

classes
- DrawingContext . 53–54
- IGestureEffector .64
- IGestureMatcher . 64
- Playfield . 54
- SceneContext . 54
- StrokeGroup . 64–65

CollabDraw . 20–21
collision detection . 54–55, 67–68, 70
cooperation . 7–8

- coupling . 14–15
- means interdependence . 7
- outcome interdependence . 7

cooperative gaming . 5–7
- design space . 27–28

design goals. .5
design patterns . 41–42

evaluation . 73–84
- Anvil . 75–76
- environment . 74–75
- questionnaire . 81–84, 91
- video analysis . 75–81

100 Index

future work . 88–89

game controllers
- Buzz buzzers . 1–2
- Eye Toy camera . 1–2
- gamepad . 2
- single-touch . 2–3
- Singstar microphones . 1–2
- Wii remote . 1–2

game design
- criteria. .31–32
- gesture design . see gesture design
- level design . see level design
- peculiarities . 8–10
- suitable concept . 32–36

gesture design
- blocking and bridging . 38–40, 46–47
- flicking . 38
- opening doors . 38, 47

gesture implementation
- blocking and bridging . 68–70
- flicking . 65–66
- opening doors . 66–68

gestures . 3–4

Jam-O-Whirl . 24–25

Lemmings . 34–35
level design

- initial . 40–41
- revised . 47–48

level editor . 71–72

Magic Land . 26–27
multi-touch . 2–5

- Apple hardware. .16
- DiamondTouch . 15–16
- FTIR . 17–19
- Holowall . 17

Pingus. .36–37
proxemics. .12

RoomPlanner . 21–22

score display . 49–50
SIDES . 23–24

tabletop territoriality . 12–13
TouchLib . 60–62

- calibration . 62

Index 101

- optimization . 60–61

user interviews . 45–46

Typeset December 17, 2007

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Cooperative gaming
	Peculiarities of game design
	Thesis structure

	Related work
	Social behavior in tabletop environments
	Territoriality in collaborative tabletop workspaces
	Collaborative Coupling

	Multi-touch hardware
	DiamondTouch
	Apple iPhone & iPod Touch
	Holowall
	Frustrated total internal reflection

	Tabletop applications involving complex hand gestures
	CollabDraw
	RoomPlanner

	Cooperative interactive tabletop games
	Modified commercial games
	SIDES
	Jam-O-Whirl
	Magic Land

	Discussion

	Designing the game
	Finding a game concept
	Introducing: PinguTouch
	Appearance design
	Interaction design
	Flicking of pingus
	Opening doors
	Blocking and bridging

	Level design
	Designing an exhibit

	Refining the game
	User studies
	Bridging gesture
	Switches
	Level design
	Score

	Implementation details
	Appearance
	Architectural overview
	Modifications
	Optimizations

	TouchLib
	Calibration

	Interaction
	Gestures
	Flicking of pingus
	Opening doors
	Blocking and bridging

	Level editor

	Evaluation
	Part one - analyzing cooperation
	Methods
	Results
	Discussion

	Part two - analyzing enjoyment
	Methods
	Results
	Discussion

	Summary and future work
	Summary and contributions
	Future work
	Cooperative gestures
	Navigation
	Random level events

	Questionnaire
	Interface definitions
	Bibliography
	Index

