
by
Mario Lukas

FabScan Pi - an
open-hardware

stand-alone
web-enabled

3D scanner

Bachelor’s Thesis at the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Dr.-Ing. Stefan Kowalewski

Registration date: Feb 18th, 2015
Submission date: July 09th, 2015

iii

I hereby declare that I have created this work completely on
my own and used no other sources or tools than the ones
listed, and that I have marked any citations accordingly.

Hiermit versichere ich, dass ich die vorliegende Arbeit
selbständig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich
gemacht habe.

Aachen, July2015
Mario Lukas

v

Contents

Abstract xv

Überblick xvii

Acknowledgements xix

Conventions xxi

1 Introduction 1

1.1 What is 3D Scanning and What is it Good for? 1

1.2 FabScan . 2

1.3 Motivation . 3

1.3.1 FabScan Pi a Web-Enabled Stand-
Alone 3D Scanner 3

1.4 Overview . 4

2 Related Work 5

2.1 Web Technologies 5

2.1.1 WebGL 5

vi Contents

2.1.2 WebSockets 6

2.1.3 Motion-JPEG 6

2.1.4 AngularJS 7

2.2 3D Scanning related Software 8

2.2.1 MeshLab 8

2.2.2 3D File Formats 8

PLY . 8

STL . 9

X3D . 9

2.3 Existing 3D Scanners 10

2.3.1 FabScan CUBE 10

2.3.2 David Scanner 10

2.3.3 MakerBot Digitizer 11

2.3.4 Matter and Form 3D Scanner 13

2.3.5 BQ Cyclop 14

2.3.6 Atlas 3D Scanner 14

2.4 Comparing Existing 3D Scanners 15

2.5 Shortcomings of the FabScan CUBE 16

2.5.1 Scan Speed 16

2.5.2 Post Processing of Scans 16

2.5.3 Scan Quality 16

2.5.4 Usability 17

Contents vii

2.5.5 Build Process and System Dependen-
cies . 17

2.5.6 Summary of Related Work 17

3 Own Work 19

3.1 Requirements 19

3.2 Hardware . 21

3.2.1 First Hardware Prototype 21

Discussion 22

3.2.2 Second Hardware Prototype 23

Discussion 24

3.2.3 Final Hardware Prototype 25

Discussion 26

3.3 Software . 27

3.3.1 General Architecture 27

3.3.2 Protocol Definitions 28

Hardware Control Protocol 28

Back-end Protocols 29

3.3.3 Back-end server 32

3.3.4 Web-enabled User Interface 36

User Interface Mockup 37

Functionality 38

viii Contents

4 Evaluation 43

4.1 Requirements 43

4.1.1 Affordability of FabScan Pi 43

4.1.2 Do-it-Yourself 44

4.1.3 Stand-alone Device 44

4.1.4 Web-enabled User Interface 45

4.1.5 Integration of Meshlab 45

4.1.6 Downloading Scans in Different For-
mats 45

4.1.7 Provide Settings Preview 45

4.1.8 Save and Load Scan Settings 45

4.1.9 Improving Scan Quality 46

4.1.10 Improving Scan Speed 46

4.1.11 Usability 46

5 Summary and future work 47

5.1 Summary and contributions 47

5.2 Future work 48

5.2.1 Adding more REST API functions . . 48

5.2.2 Introducing ICP algorithm 48

5.2.3 Configuration of Meshlab in user in-
terface 49

5.2.4 Scanner auto calibration 49

Contents ix

5.2.5 Auto settings dialog 49

5.2.6 Adding Octoprint support 49

A Raspberry Pi HAT Schematic and Board Layout 51

B Schematics for the Laser Cutter Parts 55

C Source Code 57

Bibliography 59

Index 61

xi

List of Figures

1.1 FabScan . 2

2.1 WebSocket communication 7

2.2 FabScan CUBE 11

2.3 David Scanner 12

2.4 Makerbot Digitizer 12

2.5 Matter Form 3D Scanner 13

2.6 BQ Cyclop . 14

2.7 Atlas 3D Scanner 15

3.1 FabScan CUBE 22

3.2 FabScan Pi HAT 24

3.3 Laser detection with filter foils 25

3.4 Final hardware prototype 26

3.5 Scan with and without LED compared 27

3.6 FabScan Pi software architecture 28

3.7 FabScan Pi server back-end architecture . . . 34

xii List of Figures

3.8 Point cloud to mesh 36

3.9 Mockup Overview 37

3.10 Main view . 38

3.11 Loading dialog 39

3.12 Sharing dialog 40

3.13 Settings dialog 41

A.1 FabScan Pi HAT schematics 52

A.2 FabScan Pi HAT PCB layout 53

B.1 FabScan camera mount 56

xiii

List of Tables

2.1 Scanner comparison 15

3.1 FabScan Pi G-Code 29

3.2 Description of command message elements . 30

3.3 Description of data message elements 31

4.1 FabScan Affordability 44

xv

Abstract

3D scanners become increasingly important because they can be used for digitizing
physical objects in shape and color. Those digitized objects can be 3D printed. In
2011 the FabScan 3D scanner started out as a bachelor thesis [Eng11]. The FabScan
3D scanner is characterized by it’s usability and open source hardware and soft-
ware. Even though it’s open source software there was no progress by developing
new software features in the FabScan community. The FabScan software does not
run on modern operating systems anymore.

The aim of this thesis is to find a solution for this problem. The result - the FabScab
Pi - is a stand-alone web-enabled 3D scanner which is based on the hardware parts
of the FabScan CUBE. The electronic components are replaced by a Raspberry Pi 2
with the Raspberry Pi camera module and a FabScan Pi HAT.

A new software was developed which consists of two parts. The first part is the
back-end server and the second part is the web-enabled user interface. To keep
the software development simple widely-used script languages like Python and
JavaScript are used.

It was possible to solve the most mentioned shortcomings of the old FabScan soft-
ware by using different web technologies and existing software like MeshLab, We-
bGL and Motion-JPEG.Among other things improvements of the hardware, like
adding LED’s for a better ambient lighting, leaded to better scan results.

xvi Abstract

xvii

Überblick

3D Scanner gewinnen immer mehr an Bedeutung, da mit ihnen digitale 3D Modelle
von physikalischen Objekten erzeugt werden können, die sich für beispielsweise
3D-Druck verwenden lassen. Im Jahr 2011 wurde im Rahmen einer Bachelorarbeit
der FabScan 3D Scanner entwickelt [Eng11]. Dieser kostengünstige Bausatz zeich-
net sich durch seine einfache Bedienbarkeit und die Offenlegung der Baupläne aus.
Obwohl die Software open source ist, gab es in der FabScan Community in den let-
zten Jahren keine Beiträge, die das Programm mit den nötigen Updates versorgt
hätten. Auf modernen Betriebssystemen kann man die FabScan Software nicht
mehr verwenden.

Ziel dieser Arbeit ist es, eine Lösung für dieses Problem anzubieten. Das Resul-
tat - der FabScan Pi - ist ein stand-alone web basierter 3D Scanner, basierend auf
dem Gehäuse des weitverbreiteten FabScan CUBE. Die elektronischen Komponen-
ten wurden durch einen Raspberry Pi mit Raspberry Pi Kamera Modul und einem
eigens entwickelten FabScan Pi HAT ersetzt.

Die Software wurde neu entwickelt und besteht nun aus zwei Teilen, dem Back-
end Server und der web basierten grafischen Benutzerschnittstelle. Um die Weit-
erentwicklung der Softwarekomponenten zu vereinfachen, wurden die Spachen
Python und JavaScript eingesetzt, die einen einfachen Einstieg ermöglichen und in
der Community stark verbreitet sind.

Durch den Einsatz unterschiedlicher Technologien und Software, wie MeshLab,
WebGL und Motion-JPEG, konnten einige der genannten Mängel der alten Fab-
Scan Software behoben werden. Unter anderem führten Änderungen an der Hard-
ware, wie das Einführen von kontrollierten Lichtverhältnissen, zu höherwertigen
Scanergebnissen.

xix

Acknowledgements

I would like to thank Prof. Dr. Jan Borchers and Prof. Dr.-Ing. Stefan Kowalewski
for giving me the possibility to do this work. Special thanks go to my supervisor
Renè Bohne and to all the people of the FabLab Aachen for their constant sup-
port and useful input. Special thanks also to Christoph Emonds for some code
reviews during my work on this thesis, Volker Bombien for checking the language
and spelling of this thesis and Stephan Watterott for supporting me with hardware.
Finally I want to thank my girlfriend Ruth Stiefelhagen for being patient with me
the last month while I have besieged our workroom.

Thank you!

xxi

Conventions

Throughout this thesis we use the following conventions.

Text conventions

Definitions of technical terms or short excursus are set off
in coloured boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

Definition:
Excursus

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in American English.

Download links are set off in coloured boxes.

File: myFilea

ahttps://github.com/username/projectname/file number.file

https://github.com/username/projectname/filename.file

1

Chapter 1

Introduction

1.1 What is 3D Scanning and What is it
Good for?

A 3D Scanner is a hardware and software system for digi-
tizing the shape and color of physical objects under known
environmental conditions. The digitized data can then be
used to construct digital three-dimensional models.

The usage of digitized data or three-dimensional models
created by 3D scanners comprises industrial design, medi-
cal diagnosis, cultural heritage, multimedia, entertainment,
rapid prototyping, and digital fabrication.

Different technologies and approaches are available to per-
form 3D scanning, including structured light, coded light,
time of flight and more [Bla04]. The most common tech-
nologies and approaches are already described by detail in
the Thesis of Francis Engelmann [Eng11]. Each technology
comes with limitations, advantages and costs.

Some limitations are depending on the kind of objects that
should be digitized. For example, line laser based 3D scan-
ners have some difficulties with shiny, mirroring or trans-
parent objects. The most important issue is caused by influ-
ence of ambient lighting.

2 1 Introduction

Figure 1.1: The first version of FabScan was the FabScan
100 in 2011.

Since the work of this thesis is based on the FabScan this
document will focus on 3D laser scanners.

1.2 FabScan

The FabScan is an open-source, do-it-yourself 3D laser
scanner that started out as a thesis project by Fancis Engel-
mann [Eng11]. The idea behind the FabScan was to supply
the FabLab Aachen with a low-cost 3D scanner.

In 2014, development of the project was taken over by Renè
Bohne and me. FabScan was featured on Thingiverse1 and
it is supported by a steadily growing user group on Google
Groups.

1http://www.thingiverse.com

http://www.thingiverse.com

1.3 Motivation 3

1.3 Motivation

The current FabScan software highly depends on several
third party libraries like OpenCV and QT . All those de-
pendencies lead to a complicated release process for dif-
ferent operating systems. Developers and users need ad-
vanced programming skills to work on the existing Fab-
Scan software. The usage of different operating systems
aggravates the software support. The aim of this thesis is
to replace the current FabScan software by a new software
which runs on a pocket sized mini computer. The new soft-
ware should be more user and developer friendly. Finally,
it should solve the shortcomings of the previous FabScan
software and hardware which are specified in chapter 2.5.

1.3.1 FabScan Pi a Web-Enabled Stand-Alone 3D
Scanner

FabScan Pi is the next generation of FabScan. The hard-
ware setup is based on the FabScan CUBE . The webcam,
Arduino , and FabScan shield are replaced by a Raspberry
Pi with the Raspberry Pi camera module and a new devel-
oped FabScan HAT for Raspberry Pi. A HAT (Hardware
Attached on Top) is a PCB that extends the Raspberry Pi
just like an Arduino shield extends the Arduino.

The old FabScan software is replaced by a new server-based
software which consists of two parts. A web-enabled user
interface and a back-end FabScan API server. Since the new
FabScan Pi software is web-enabled the user is able to per-
form a scan without installing any software parts on a lap-
top, mobile phone or tablet. The whole scan process can
be controlled over a web-enabled user interface. The user
is able to perform a scan by calling the FabScan Pi server
URL in a web browser.

4 1 Introduction

1.4 Overview

This section gives an overview of the chapters in this thesis
and their contents.

• Chapter 2 “Related Work” is split into a software and
a hardware related section.

The first part of the software section introduces some
common used web-technologies and tools introduced
by the HTML5 web-standard. The second part de-
scribes 3D scanning related software and file formats.

The hardware section gives an overview of existing,
affordable 3D scanners. The end of the section will
show a tabular overview of the mentioned 3D scan-
ning devices.

• The chapter 3 “Own Work” consists of three parts.
The first part starts by listing the requirements for the
FabScan Pi project. In the second section the hard-
ware prototypes are presented. Each prototype is ac-
companied by a short discussion. The third section
of this chapter describes the software front- and back-
end.

• In chapter 4 “Evaluation” we will discuss if the re-
quirements from 3.1 “Requirements” are met.

• Chapter 5 “Summary and future work” contains a
summary of this thesis and some ideas for future
work.

5

Chapter 2

Related Work

This chapter consists of two parts. First it starts by giv-
ing an overview of some common available desktop 3D
scanning devices. In the second part, some HTML5 web-
technologies are introduced. Finally the focus is put on
MeshLab and the most related 3D scanning file formats.

2.1 Web Technologies

In this section first some web technologies are introduced,
which are included in the HTML5 standard. Then a short
overview to AngularJS is given.

2.1.1 WebGL

WebGL (Web Graphics Library) is a JavaScript API for web-
browsers, which supports hardware accelerated 3D graph-
ics without the usage of plug-ins. WebGL is based on
OpenGL ES 2.0 and started out of Canvas 3D, developed
by the Mozilla Foundation in 2006. [Vuk07]

WebGL works with any platform that supports OpenGL.
WebGL is supported in all major browsers including Inter-
net Explorer from version 11 and it works on various mo-

6 2 Related Work

bile platforms including iOS from version 8. The official
WebGL website offers a simple test page1.

2.1.2 WebSockets

The WebSocket Protocol is provided by the HTML5 stan-
dard and defined by rfc6455 [IF11]. It is the next genera-
tion of asynchronous communication from client to server.
Server and client communicate over a single TCP connec-
tion. ”The protocol is full-duplex and its header is much
smaller than the Header of HTTP. HTML5 WebSockets pro-
vide an enormous reduction in unnecessary network traffic
and latency compared to the unscalable polling and long-
polling solutions that were used to simulate a full-duplex
connection by maintaining two connections.” [Kaa13] An-
other effect is that data and notifications can come and go
between browsers and Web servers with no delay and no
need to arrange for additional requests.

A WebSocket interaction begins with a handshake in which
the two parties (browser and server) mutually confirm
their intention to communicate over a persistent connec-
tion. Next, a bunch of message packets are sent over TCP
in both directions. Figure 2.1 outlines how the WebSocket
Protocol works.

2.1.3 Motion-JPEG

JPEG stands for the Joint Photographic Experts Group stan-
dard, a standard for storing and compressing digital im-
ages. Motion-JPEG extends this standard by supporting
videos. In motion-JPEG, each frame in the video is stored
in the JPEG format.

Motion-JPEG is mostly used by video-capture devices such
as digital cameras, IP cameras and webcams. For net-
work cameras the MJPEG codec seems to be ideal, because
it needs hardly any hardware resources for encoding the

1https://get.webgl.org

https://get.webgl.org

2.1 Web Technologies 7

Figure 2.1: WebSocket communication compared to HTTP AJAX polling. Left:
WebSockets communication. Right: HTTP with AJAX polling

video and nearly every browser can play MJPEG streams
[Inc06].

HTTP video streaming with Motion-JPEG is realized by
sending separate images to individual HTTP replies on a
specified marker. The client is informed to expect a new
frame by a special mime-type. The TCP connection is kept
open as long as the client wants to receive new frames and
the server wants to provide new frames.

2.1.4 AngularJS

AngularJS2 is an open source web application framework
which is powered by the Google community. AngularJS
helps to create single page applications and web appli-
cations that don’t require anything more than HTML5,
JavaScript and CSS. It was created to support web pro-
grams with MVC capability which enables easier develop-
ment and testing.

2 https://angularjs.org

 https://angularjs.org

8 2 Related Work

2.2 3D Scanning related Software

This section introduces software which is used for editing
and post processing 3D scanned data. At the end of this
section the most common 3D scanning related file formats
are described.

2.2.1 MeshLab

MeshLab3 is an open source, platform independent and ex-
tensible software for processing and editing 3D triangular
meshes and point clouds. It is mostly used for post pro-
cessing 3D scans. MeshLab can import and export most of
the common 3D file formats. MeshLab is based the VCG li-
brary which was developed at the Visual Computing Lab of
ISTI - CNR. MeshLab was developed at the Computer Sci-
ence Department of the University of Pisa during a course.
MeshLab provides a set of tools for editing, cleaning, heal-
ing, inspecting, rendering and converting point clouds and
meshes. The user can create filter chains which can be used
to create batch operations on 3D files. Filter chains can be
easily exported and imported. MeshLab also provides a
command line client called MeshLab Server.

2.2.2 3D File Formats

PLY

PLY is known as Polygon File Format or the Stanford Tri-
angle Format. It was designed to store three-dimensional
data produced by 3D scanners.

A PLY file consists of a header followed by a list of vertices
and a list of polygons. The number of vertices and poly-
gons in the file are defined in the PLY header. The header
also states what properties are associated with each vertex
such as coordinates (x, y, z) , normals and colors.

3http://meshlab.sourceforge.net

http://meshlab.sourceforge.net

2.2 3D Scanning related Software 9

The file format has two sub-formats: an ASCII represen-
tation for easily getting started, and a binary version for
compact storage and for rapid saving and loading [Bou15].

STL

The Stereo Lithography file format (STL) was introduced
by 3D Systems and is also known as Standard Tessellation
Language. STL files are widely used in Computer Aided
Manufacturing (CAM) and rapid prototyping.

STL is very useful for 3D printing because it describes only
the surface geometry of a three-dimensional object without
any representation of color, texture or other common CAD
model attributes. STL files can be represented in ASCII or
binary format. ”The surface is tessellated or broken down
logically into a series of small triangles (facets). Each facet
is described by a perpendicular direction and three points
representing the vertices (corners) of the triangle.” [Bur89]

X3D

X3D stands for ”Extensible 3D” and is a XML-based file for-
mat, defined by Web3D Consortium and the World Wide
Web Consortium (W3C). ”It is an ISO ratified standard
that provides a system for the storage, retrieval and play-
back of real time graphics content embedded in applica-
tions, all within an open architecture to support a wide
array of domains and user scenarios.” [Web15]. It is the
third-generation successor to the Virtual Reality Modeling
Language (VRML). Nowadays the most widespread web
browser support the X3D format by default.

X3D files can be exported by MeshLab and it supports col-
ored meshes. With the X3D file format 3D print services are
able to provide printing of colored objects.

10 2 Related Work

2.3 Existing 3D Scanners

In this different 3D Scanners are presented, which are avail-
able on the market now. As the FabScan is a line laser scan-
ner in the following section the focus is set to similar de-
vices.

To perform a scan the object has to be placed on the
turntable. Then the laser is switched on and off while the
webcam is taking pictures of the object. With a mathemati-
cal process, called triangulation [LT09], the depth data can
be calculated out of the taken pictures. To perform a full
scan the turntable has to do a rotation of 360 degrees. The
process continues for each turntable position. If the scan
process is finished the object is digitized and available as a
point cloud.

At the end of this section all devices are compared in a tab-
ular.

2.3.1 FabScan CUBE

FabScan CUBE is a later version of the previous FabScan
which is described in the FabScan thesis. FabScan con-
sists of a line laser, a webcam, a turntable and an Arduino
based controller board for scanning. The FabScan works
like many other 3D laser scanners, but is aided by the incor-
poration of an enclosure that helps to even out light levels,
preventing distortion in the scan. FabScan CUBE ”Do-It-
Yourself 3D Laser Scanner” Kits are available for 130 Euro.

2.3.2 David Scanner

David Scanner4 is a collection of software and hardware
components. Different 3D scan approaches are provided
by David. The David Starter Kit in version 2 is available for

4http://www.david-3d.com/en/products/starter-kit-2

http://www.david-3d.com/en/products/starter-kit-2

2.3 Existing 3D Scanners 11

Figure 2.2: FabScan CUBE

585 Euro. The David Scanner Software which is contained
in the Starter Kit is proprietary and runs only on Windows.
Webcam and a line laser module are delivered within the
Starter Kit. By using the DAVID 3 software the user can
manually merge multiple point clouds from different scans
and convert them to a surface mesh by hand.

2.3.3 MakerBot Digitizer

MakerBot Digitizer5 is a 3D Scanner introduced by Maker-
Bot Industries in 2013. The Digitizer scans objects with two
line lasers and a camera. The object has to be placed on
a rotary platform in front of the camera. Objects can have
a height and diameter of 20cm. The Digitizer is available
for 950 Euro. A full scan in medium resolution is done by
stepping the rotary table 800 times in 12 minutes. After the

5https://store.makerbot.com/digitizer

https://store.makerbot.com/digitizer

12 2 Related Work

Figure 2.3: David Scanner

Figure 2.4: Makerbot Digitizer

scan the digitizer is able to mesh the point-cloud to a STL
file. MakerBots Digitizer is not able to scan the color or tex-
ture of an object. The scan software, called Makerware for
Digitizer, is proprietary and runs only on Windows.

2.3 Existing 3D Scanners 13

Figure 2.5: Matter Form 3D Scanner

2.3.4 Matter and Form 3D Scanner

The Matter and Form 3D Scanner6 works like most of the
other line laser scanners. It offers two line lasers and a
build-in camera module. The camera and laser module can
be moved up and down, for scanning larger objects. Ob-
jects have to be placed on the rotating platform for scan-
ning. The Matter and Form 3D Scanner can fold up it’s
base when it is not used. It is delivered fully assembled
and available for $599.99. The Matter and Form 3D Scan-
ner can perform a scan in 5 minutes and it provides color
scans. Higher resolution scans may require several hours.
The software of Mater and Forms 3D Scanner runs under
Windows and Mac OS.

6https://matterandform.net/scanner

https://matterandform.net/scanner

14 2 Related Work

Figure 2.6: BQ Cyclop

2.3.5 BQ Cyclop

BQ’s 3D Scanner Cyclop7 was introduced at CES in 2015.
The Cyclop uses two red line lasers and a standard USB we-
bcam. The Cyclop is controlled by a custom Arduino based
controller. BQ has developed their own desktop 3D scan-
ning application called Horus8. Horus is open source and
written in Python and runs on Windows and Linux based
operating systems.

2.3.6 Atlas 3D Scanner

The Atlas 3D Scanner9 was funded by Kickstarter. The At-
las 3D Scanner uses two red line lasers modules and a we-
bcam to scan an object on an rotating platform. The At-
las 3D Scanner replaces the Arduino with a Raspberry Pi.
The Atlas 3D Scanner is open-source and it’s software is
called FreeLSS. FreeLSS is written in C++ and runs under
Linux on a Raspberry Pi. FreeLSS is web-enabled and can
be controlled with a browser. FreeLSS can generate results
as PLY, XYZ and STL. The web application consists of three
dialogs, Main Interface, Camera Feed from Scanner and

7http://www.bq.com/gb/ciclop
8https://github.com/bq/horus
9http://www.freelss.org

http://www.bq.com/gb/ciclop
https://github.com/bq/horus
http://www.freelss.org

2.4 Comparing Existing 3D Scanners 15

Figure 2.7: Atlas 3D Scanner

Settings Page. It does not provide a real-time preview of
the scanned point cloud.

2.4 Comparing Existing 3D Scanners

D
o-

It-
Yo

ur
se

lf
Re

ad
y-

To
-P

rin
t

W
eb

-e
na

bl
ed

Po
rt

ab
ili

ty

U
sa

bi
lli

ty

St
an

da
lo

ne
D

ev
ic

e

FabScan CUBE 3 7 7 7 3 7

David Scanner 7 3 7 7 7 7

Makerbot Digitizer 7 3 7 7 3 7

Matter and Form 7 3 7 7 7 7

BQ Cyclop 3 7 7 3 3 7

Atlas 3D Scanner 3 7 3 7 7 3

Table 2.1: Scanner comparison

16 2 Related Work

2.5 Shortcomings of the FabScan CUBE

The FabScan CUBE should be used as base system for this
thesis. Since the first FabScan was released in 2011, some
hardware and software issues came up over the years. The
following list shows the shortcomings of the current Fab-
Scan. These aspects were discussed by users of the Fab-
Scan user group at Google and on some FabScan commu-
nity blogs.

2.5.1 Scan Speed

A scan in medium resolution takes about 15 minutes. Im-
proving the scan speed is one of the suggested features in
the FabScan user group. As the scanning process is running
in a single thread, more performance should be possible by
splitting it up to multiple processes.

2.5.2 Post Processing of Scans

The current version of the FabSacn software is not able to
export clean mesh files for 3D printing. Most users use
MeshLab and it’s filters for cleaning up point clouds and
export it to the needed mesh format.

2.5.3 Scan Quality

Scanning the object texture highly depends on environment
lighting. The current FabScan software does not provide
the possibility to control the light during the scan process.
Also the laser line detection highly depends on the envi-
ronmental light. By using the current FabScan software
and changing the environment light it happens that the
best light for scanning the texture excludes the best light
for laser line detection.

2.5 Shortcomings of the FabScan CUBE 17

The current software has some major bugs which lead to a
software crash by choosing the different scan quality levels.

2.5.4 Usability

Settings can be set in a separated settings dialog. The user
has to test those settings by performing a new scan. While
each scan takes 15 minutes in medium quality, changing
the settings takes time and effort. The settings are highly
depending from the objects color, surface and environmen-
tal light.

2.5.5 Build Process and System Dependencies

Developers of the FabScan community mentioned that the
tool chain to build the FabScan software is too complicated
and depending on special versions of third party software.
It is hard to compile the software on different operating sys-
tems. It is not possible to get the current software working
with all its features under Windows.

2.5.6 Summary of Related Work

In this chapter web technologies, existing 3D scanners and
the mentioned shortcomings of the FabScan are introduced.
These results are used to derive the requirements for the
new FabScan hard- and software in the next chapter.

19

Chapter 3

Own Work

This chapter is introduced by deriving the system require-
ments out of the shortcomings mentioned in section 2.5
“Shortcomings of the FabScan CUBE”. In the second part of
this chapter the new hardware prototypes will be presented
and discussed. In the last section the software design and
architecture will be described.

3.1 Requirements

The FabScan Pi should remain an affordable 3D scanner for
hobbyists and maker. Another aim is to improve the hard-
ware and software to get the best possible scan quality. The
comparison of the existing 3D scanners in 2.4 “Comparing
Existing 3D Scanners” and the shortcomings of the FabScan
in 2.5 “Shortcomings of the FabScan CUBE” result in the
following requirements:

• Affordability of FabScan Pi The budget of the hard-
ware for the new FabScan should be nearby as afford-
able as the hardware that is used for FabScan CUBE.

• Do-it-Yourself The new FabScan should stay a device
which anyone can build with access to a FabLab or by
ordering an inexpensive FabScan construction kit.

20 3 Own Work

• Usability Untrained users should be able to cope
with the new system. The user should be able to per-
form a high quality scan with a minimum number
of clicks, time and effort. Users of the old FabScan
should be able to use the new FabScan software with-
out much prior knowledge.

• Provide Settings Preview The user should be able to
change the settings for the best scan quality assisted
by the software.

• Save and load scan settings Object specific scan set-
tings should be automatically saved. If the same ob-
ject or an object with similar properties is scanned
again, the user should be able to load settings of a
previous scan.

• Stand-alone Device To provide a device with the
same hardware and software setup for all users,
a small Linux based embedded computer system
should be used to run the FabScan software. The new
FabScan should be usable as a stand-alone hardware
device.

• Web-enabled User Interface With the requirement of
a stand-alone device the system should be control-
lable without the usage of additional built-in hard-
ware. Therefore, the system should provide a web-
enabled user interface which can be used on all de-
vices with a web-browser.

• Downloading Scans in Different Formats The user
shall be able to download scans in different file for-
mats.

• Integration of MeshLab The software should be
able to clean up point-clouds and export watertight
meshes in a printable format. MeshLab should be
integrated in the new software to provide a config-
urable point-cloud post processing mechanism.

• Improving scan quality The scan quality of FabScan
should be improved by new hardware and software
features.

3.2 Hardware 21

• Improving scan speed The scanning speed should be
increased by introducing multi processing scan algo-
rithms.

3.2 Hardware

In this section several DIA-cycle (Design Implement Ana-
lyze) [Car92] [Bor01] iterations will lead to a final hardware
prototype . Every prototype iteration will be tested with a
set of objects with different color, shape, surface and mate-
rial properties. After each iteration it is discussed what was
learned and how to improve the results with the next pro-
totype iteration. The software part was developed during
the hardware iterations.

3.2.1 First Hardware Prototype

The first iteration is based on the FabScan CUBE, presented
in 2.3.1 “FabScan CUBE”. For this prototype a Raspberry
Pi 2 was added to the existing FabScan CUBE setup. The
Raspberry Pi2 has a quad core processor and should pro-
vide enough power for image processing. Therefore the
Logitech C270 webcam is replaced by a Raspberry Pi cam-
era module. With the usage of the Raspberry Pi camera
module there is no need to disassemble a webcam.

RASPBERRY PI:
”Raspberry Pi is a small, single-board computer devel-
oped for computer science education. A United King-
dom (UK) charitable organization called the Raspberry
Pi Foundation developed the device.
Raspberry PI is about the size of a credit card, has a
32-bit ARM processor and uses a Fedora distribution of
Linux for its default operating system (OS). It can be pro-
grammed with Python or any other language that will
compile for ARM v6.” [Rou12]

Definition:
Raspberry Pi

The Arduino with the FabScan shield on top is connected

22 3 Own Work

Figure 3.1: Left: Raspberry Pi 2. Right: Raspberry Pi cam-
era module

to the USB port of the Raspberry Pi 2. An additional 5V
power supply is added for powering the Raspberry Pi 2.
The first software prototype was written in Python. For this
first Python based server prototype a rough web-enabled
user interface was designed for testing basic scanning op-
erations on a Raspberry Pi 2.

Discussion

A scan with the first prototype showed that the Raspberry
Pi 2 in combination with the FabScan CUBE components,
is suitable for fast image processing and 3D scanning. A
quality improvement to the FabScan CUBE was given by
using the Raspberry Pi 2 camera module. The camera mod-
ule has a maximum resolution of 2592 x 1944 pixels [Jon14].
The Logitech c270 webcam, used by the old FabScan CUBE
setup provided a maximal resolution of 1280 x 720 pixels.
Therefore the first quality improvement is done by dou-
bling the camera resolution what results in a higher point
cloud density. Also the assembly of the hardware setup is
easier for the user, because the camera module is ready to

3.2 Hardware 23

use with the Raspberry Pi 2. The camera consists of a small
(25x20x9mm) circuit board, which connects to the Rasp-
berry Pi’s Camera Serial Interface (CSI) bus connector via
a flexible ribbon cable. After it is connected to the Rasp-
berry Pi, it has to be screwed to the FabScan case front. The
wiring of this prototype is overhead. Also the USB connec-
tion to an additional Arduino board with a FabScan shield
can be removed. Because the object shifts when the turn ta-
ble is rotating, the object has to be glued to the table with
some tape.

3.2.2 Second Hardware Prototype

For the second prototype the Arduino and the FabScan
shield are replaced by a Raspberry Pi FabScan HAT, shown
in Figure 3.2.

The FabScan HAT carries the motor drivers 1 for the
turntable and laser stepper motor. The FabScan HAT can
carry up to four motor drivers. The motors can be eas-
ily connected to screw terminals, which are positioned in
front of the motor drivers 3 . A second laser and an
LED port was added to the FabScan HAT 2 . The Fab-
Scan HAT is powered by a 12 Volt power supply, which
can be connected to a power jack 5 . A small step-down
circuit placed on the HAT ensures that the Raspberry PI
2 is powered with 5 Volt. An ATMega328 IC with Ar-
duino Firmware is placed on the HAT 4 . The FabScan
firmware is flashed to the ATMega328. The Arduino Fab-
Scan firmware communicates with the Raspberry Pi 2 over
the GPIO serial connection. The Pololu motor drivers are
replaced by silent step stick motor drivers for smoothing
the motor rotations to prevent object shifting while the table
is rotating. Some white LEDs are placed beside the camera
to get a better texture scan.

24 3 Own Work

Figure 3.2: FabScan Pi HAT mounted on Raspberry Pi 2

RASPBERRY PI HAT:
”A HAT is an add-on board for Raspberry Pi B+ that con-
forms to a specific set of rules that will make life easier
for users. A significant feature of HATs is the inclusion
of a system that allows the B+ to identify a connected
HAT and automatically configure the GPIOs and drivers
for the board, making life for the end user much easier.”
[Ada14]

Definition:
Raspberry Pi HAT

To solve the ambient lighting issue, different colored trans-
parent foils were placed in front of the camera. The idea
was to get a higher laser contrast what should improve the
laser line detection a lot.

Discussion

With this second prototype the wiring was cleaned up and
the assembly process is much more easy. No additional Ar-
duino or FabScan Shield are connected to the USB port of
the Raspberry Pi 2. Just the Raspberry Pi 2 HAT has to be
mounted to the GPIO port of the Raspberry Pi.

3.2 Hardware 25

Figure 3.3: Different colored filter foils in front of the camera module. Left: without
filter. Middle: with blue filter. Right: with red filter.

Figure 3.3 shows the results of using different filters for the
laser line detection. On the left picture no filter foil was
used. The laser line detection is poor. The recognized blue
line lays beside the real laser line. The detected line also
consists of some scattering. For the picture in the middle
a blue filter foil was used. The laser line detection is much
better than in the left image. But also the blue foil doesn’t
serve the best recognized laser line detection. On the right
picture a red filter foil is used. The red foil leads to the
best laser line detection result. Therefore it was shown that
the laser line recognition can be improved by changing the
image contrast by using different filter foils.

Another issue was solved by adding white LEDs beside the
Raspberry Pi camera module. With those white LEDs the
colors and texture of a scanned object is much clearer and
brighter. Further every object texture can be scanned with
the same ambient light conditions.

But a new issue came up by using the filter foils. The scan
process has to be interrupted for manually removing the
foil to get a clear camera image for scanning the texture and
color of the object.

3.2.3 Final Hardware Prototype

For the third Hardware Prototype a RGB LED ring with
12 LEDs was added around the Raspberry Pi 2 Cam-
era module. The camera module was also screwed to a
spring mounted plate. By turning the screws of the spring

26 3 Own Work

Figure 3.4: The final hardware prototype. Left: view from back to front. Right:
view from front to back. 1 Raspberry Pi with FabScan Pi HAT. 2 Raspberry Pi
camera module with mounted LED ring.

mounted plate it is easier for the user to calibrate the cam-
era module. The RGB led replaced the colored foils. By
illuminating the object with different RGB colors nearly the
same contrast effect is reached as by using different col-
ored foils. Furthermore the white colored LEDs used for
the second hardware prototype can be removed, because
the white color can be matched by turning all RGB values
to the maximum.

Discussion

The third and final hardware prototype solves most of the
hardware issues. The RGB LEDs helped to control the color
contrast level and to improve the laser line recognition like
the colored foils of the second hardware prototype did. The
efforts led to the fact that the user is not constrained to man-
ually remove the colored foil before each color and texture
scan.

With using the RGB LED ring instead of the white LEDs
and the color foils, a scan with texture and colors occurs
much better. Figure 3.5 shows two colored point clouds
compared to each other. The left point cloud shows a scan
without LED lighting. The right point cloud shows a scan
where the RGB values of the LED ring are switched to white

3.3 Software 27

Figure 3.5: Scan with different LED light settings. Left:
without LED light. Right: with white LED light

light during the scan.

By using the RGB LED ring the laser line recognition can
be improved by setting the best contrast light value for the
object which should be scanned.

3.3 Software

In this section the software parts of FabScan Pi are de-
scribed. The first part of this section describes the general
architecture with all its layers. The second part explains
the different communication protocols of FabScan Pi. In the
third part of this chapter the back-end architecture and its
modules are described. Finally, in the last part the focus is
set on the web-enabled user interface.

3.3.1 General Architecture

Figure 3.6 shows the different layers of the FabScan Pi soft-
ware architecture. The base of the software is represented
by the Arduino compatible firmware of the FabScan Pi
HAT which is described in 3.2.2 “Second Hardware Pro-
totype”. The second layer consists of the back-end server.

28 3 Own Work

Figure 3.6: FabScan Pi software architecture

The communication between the firmware and the back-
end server is done by a G-Code based protocol described
in 3.3.2 “Hardware Control Protocol”. The top layer of the
FabScan Pi software is formed by the user interface. Back-
end and user interface communicate over a WebSocket and
a REST API. The protocols are described in 3.3.2 “Protocol
Definitions”

3.3.2 Protocol Definitions

The FabScan Pi Software communicates over three differ-
ent protocols. One protocol is for controlling the FabScan
hardware over the back-end server. It is implemented in
the FabScan Pi HAT’s firmware. The other protocols are
used for the higher level communication between the back-
end server and the web-enabled user interface.

Hardware Control Protocol

The protocol to control the hardware is implemented in the
FabScan Pi HAT firmware. When the FabScan Pi server is

3.3 Software 29

started for the first time it checks by a ping if the firmware
is already flashed to the FabScan Pi HAT. If it’s not flashed
the back-end server starts the firmware flashing process by
calling a Python firmware flash routine. This process guar-
antees that the Raspberry Pi HAT is flashed with the current
firmware. It is no longer required that the user has to flash
the firmware by himself with the Arduino IDE.

The firmware protocol is kept as simple as possible. Since
G-Code , also known as RS-274, [Mes00] is an easy to use
and human readable programming language, a custom G-
code like protocol is chosen for the FabScan Pi software. A G-Code protocol

used for controlling
the FabScan
hardware.

With the FabScan Pi G-Code it is easy for the user to debug
the hardware functionality by sending the G-Code com-
mands in plain text by using a serial connection. Table 3.1
gives a short functional protocol overview.

Command Argument Description

G01 T< n > L< n > Turn table or laser for < n > steps
G06 - Start turning table
G07 - Stop turning table

G100 - Help
M05 R< n > G< n > B< n > Set Led RGB value
M21 - Laser on
M22 - Laser off

Table 3.1: FabScan Pi G-Code

Back-end Protocols

The back-end server communicates by using two different
protocols with the user interface. The first protocol is a sim-
ple WebSocket protocol, it is used for sending and receiv-
ing control commands and for transmitting the point cloud
fragments during the scan. The WebSocket connection is
opened when a client connects to the back-end server. It
is hold open until a client disconnects from the server.
WebSockets give the opportunity to synchronize data be-
tween all connected clients. This mechanism is used to send
the same point cloud synchronous to all connected clients
while a scan is performed. A JSON based

WebSocket message
protocol is used for
representing live
scan data.

30 3 Own Work

The FabScan Pi WebSocket protocol is split into command
and data messages. Those messages are encoded as JSON
(JavaScript Object Notation) strings. Command messages
in general are containing scanner control commands. Data
messages contain scan data. The following section de-
scribes the WebSocket message protocol.

Structure command Messages:

{
"type": "COMMAND"
"data": {

"command": "<scanner_command>"
}

}

type The command message type is always
defined by the word COMMAND

data Data is an object with different at-
tributes. A minimal data object contains
the command attribute.

command The command attribute contains a com-
mand for the FabScan back-end. Possible
commands are SCAN,START, STOP
and UPDATE SETTINGS

<additional> The data object can contain addi-
tional custom attributes. If command
UPDATE SETTINGS is used, data
should contain a attribute settings which
contains the scan settings.

Table 3.2: Description of command message elements

Structure data messages:

{
"type": "ON_NEW_PROGRESS"
"data": {

"points": "<points>",
"resolution": "<value",
"progress": "<value"

}
}

3.3 Software 31

type Type defines which type of data the
message contains. Possible values
are ON NEW PROGRESS and
INFO MESSAGE

data The data object contains the message
data. The message data can be found
in different data attributes. Possible
attributes are points, progress, resolution
and message

point An array with point cloud points of the
current scan position

progress Current scan progress means number of
current picture

resolution Total number of pictures for a full scan
message Message is mostly used for type

INFO MESSAGE and contains
a system message. Example gives
SCAN COMPLETE, SCAN STOPPED,
SCAN STARTED etc.

Table 3.3: Description of data message elements

The second protocol is implemented as a RESTful (Repre- A REST API is used
for handling big data
events.

sentational State Transfer) API. The REST API is used for
loading, downloading and uploading big data. The user in-
terface calls an URL to perform a REST API operation. The
back-end server interprets the contained data and sends a
JSON response string to the user interface. Until now, the
FabScan Pi REST API contains only a basic set of operations
for handling files and folders of scans.

The following GET and DELETE requests operate on the
data of a scan. With GET the web-enabled user interface can
load all scan related data for a given scan id. With DELETE
all related scan data is removed from the FabScan Pi server.

GET:
Request:
http://fabscan.local/api/v1/scans/<scan_id>

Response:
{

"id" : <id>

32 3 Own Work

"date" : <date>
"point_cloud": <ply_file_url>
"preview_thumbnail": <jped_file_url>
"scan_settings": <settings_file_url>
"meshes": {

"stl": <stl_file_url>,
"x3d": <x3d_file_url>

}
}

DELETE:
Request:
http://fabscan.local/api/v1/scans/<scan_id>

Response:
{

"messgae": "Object removed"
}

The following Request can be used to get a full list of scans.

GET:
Request:
http://fabscan.local/api/v1/scans

Response:
{

[
{

"id": <scan_id>
"href": http://fabscan.local/

api/v1/scans/<scan_id>
}

]
}

3.3.3 Back-end server

This section describes the back-end server architecture. Fig-
ure 3.7 gives an overview of the main components and
modules of the FabScan Pi back-end server.

3.3 Software 33

The back-end server is written in Python. Python is Python as the
language for the
back-end server
development.

a widespread and interpreted, object-oriented, high-level
programming language with dynamic semantics. ”Often,
programmers fall in love with Python because of the in-
creased productivity it provides. Since there is no compi-
lation step, the edit-test-debug cycle is incredibly fast. De-
bugging Python programs is easy: a bug or bad input will
never cause a segmentation fault. Instead, when the inter-
preter discovers an error, it raises an exception” [pyt15].

Since one of the ideas behind the Raspberry Pi was to en-
able people to explore computing and learn to program
in languages like Python, this language is a good choice
for the FabScan Pi back-end. With the choice of Python
also less skilled programmers are able to help developing
on the FabScan Pi software. Furthermore there are many
libraries available for Python, such as OpenCV, which is
used for the image processing parts of the FabScan Pi soft-
ware. Libraries can be easily installed by using Python’s
packet manager pip. Python runs on all common operating
systems.

Figure 3.7 shows the different modules of the FabScan Pi
back-end server. The scan processor is the main server
thread of the FabScan Pi back-end software. It contains a
state machine and the hardware controller. The state ma-
chine is responsible to interpret the received commands
from the front-end. All commands are received by the Web-
Socket module and brought to the state machine by the
event bus. Then the received command is parsed and exe-
cuted by the state machine. The related protocol is defined
in 3.3.2 “Back-end Protocols”.

The hardware controller encapsulates the hardware con-
nection and its protocol. It acts like a wrapper between
hardware and state machine and creates a serial connection
to the FabScan Pi firmware. Over this connection the scan
processor is able to send commands to the hardware as de-
scribed in 3.3.2 “Hardware Control Protocol”. The hard-
ware controller also creates the camera class. The camera
class opens a video stream and fills a ring buffer continu-
ously with images of the created video stream. Those im-
ages can also be requested by the state machine by the hard-

34 3 Own Work

Figure 3.7: FabScan Pi server back-end architecture

ware controller.

The scan state of the state machine first starts the color and
texture scan. The scan processor calculates the number of
images depending on the scan resolution. Afterwards the
processor takes as many pictures as it calculated before.
The object scan step is similar with the difference that the
laser is switched on during the whole scan process. Every
picture is packed into an image task and added to the task
queue.

Another module is the image processor. The image pro-
cessor contains a worker pool and creates image workers
in the pool. The worker pool consists of n image work-
ers. The number of image workers depends on the number
of CPU cores. In case of the Raspberry Pi 2, four image
workers are created. Each image worker has access to the
task queue. An image worker runs a loop which checks if a
new image task is available. When a new task is available

3.3 Software 35

the image worker takes the task out of the queue and starts
processing the tasks data. In case of a color image the im-
age worker saves the image with a reference number to the
Raspberry Pi’s SD-card. If the task contains a laser image,
the image worker starts the triangulation process. At the
end of this process the corresponding color image is loaded
again to find the colors of the triangulated points. The re-
sult is sent to the WebSocket module and back to the state
machine by using the event bus. The WebSocket connection
sends the new point data to the client. The points are also
added to the point cloud instance in the scan processor. Fi-
nally, the scan processor indicates the end of a full turn and
with it the completion of a full scan. The points are written
to a PLY file and the scanning post process is triggered.

The post process calls MeshLab Server to convert the PLY
data into different printable mesh formats. A MeshLab MeshLab Server is

used for exporting
X3D and STL files.

Server batch can be configured by MLX filter scripts. Those
filter scripts contain a list of export, cleaning and meshing
filters which are applied to the input file. Afterwards the
exported files are saved to the FabScan Pi output folder. A
further message is send through the WebSocket connection
to inform the user interface that the scan process is com-
plete. The following listing shows an example of an MLX
filter script which creates a watertight mesh.

1 <!DOCTYPE FilterScript>
2 <FilterScript>
3 <filter name="Smooths normals on a point sets">
4 <Param type="RichInt" value="20" name="K"/>
5 <Param type="RichBool" value="false" name="useDist"/>
6 </filter>
7 <filter name="Surface Reconstruction: Poisson">
8 <Param type="RichInt" value="6" name="OctDepth"/>
9 <Param type="RichInt" value="6" name="SolverDivide"/>

10 <Param type="RichFloat" value="1" name="SamplesPerNode"/>
11 <Param type="RichFloat" value="1" name="Offset"/>
12 </filter>
13 </FilterScript>

Figure 3.8 shows the results of the MeshLab post process-
ing chain. For the process in the image a duck was scanned
with medium resolution. First a filter for meshing the point
cloud to a meshed PLY was applied. The second MLX fil-
ter used a Poison Surface Reconstruction algorithm to get
a watertight mesh. At the end an additional export filter

36 3 Own Work

Figure 3.8: From left to right. First: point cloud output of FabScan Pi. Second: PLY
with mesh reconstruction output of MeshLab, containing colors. Third: meshed
STL in mesh view. Fourth: STL with surface, export by MeshLab. Fifth: Exported
X3D file with full texture information by MeshLab filter.

was used to create a textured mesh of the point cloud. The
textured mesh can be used to print a colored model.

The WebServer module is used to serve the HTML and
JavaScript files to the client. Also the REST API is encap-
sulated by the WebServer. Another task of the WebServer
is to provide an MJPEG camera stream for the live settings
dialog which is described in 3.3.4 “Functionality”.

3.3.4 Web-enabled User Interface

FabScan Pi provides a web-enabled user interface. The in-
terface is an application which is written in JavaScript with
the usage of AngularJS. It is widely independent of the Fab-
Scan back-end server. For the graphical visualization the
user interface uses the WebGL standard. To keep things
simple, the FabScan Pi user interface also uses a JavaScript
3D library called ThreeJS1. This section starts with the a
mockup of the web-enabled user interface. The second part
of this section describes the functionality and different fea-
tures of the final web-enabled FabScan Pi user interface.

1http://threejs.org

http://threejs.org

3.3 Software 37

Figure 3.9: Mock-up of the web-enabled user interface. Right: Main View, Middle:
Settings View, Right: Share View

User Interface Mockup

The first version of the FabScan Pi web-enabled user inter-
face was created with a mockup software tool called bal-
samiq2. The user interface of the old FabScan software
was largely inspired by Apple’s Photo Booth3 [Eng11].
For keeping the users experience the main concept of the
old user interface was adopted (Figure 3.9 Left). But be-
cause FabScan Pi is web-enabled, some concepts have to
be changed. By choosing a responsive design approach the
web-enabled user interface should be usable on mobile de-
vices like tablets and smart phones.

Users in the FabScan group mentioned that it was trouble-
some to use the settings dialog in the old FabScan software.
This is one of the shortcomings described in 2.5 “Shortcom-
ings of the FabScan CUBE”. Users of the old FabScan soft-
ware have to perform a full scan to check if the scan qual-
ity is improved by the updted settings. With an average
scan time of 15 minutes for a scan in medium quality, a lot
of time is lost to find the best scanner settings. Since the
scan quality is largely depending on the laser line recogni-
tion and ambient light, a settings dialog is displayed before
each scan.

The settings dialog provides a live preview of the laser
line recognition (Figure 3.9 Middle). Every time the user

2https://balsamiq.com
3https://www.apple.com/osx/apps/#photobooth

https://balsamiq.com
https://balsamiq.com
https://www.apple.com/osx/apps/#photobooth

38 3 Own Work

Figure 3.10: Main view. The view which is shown when
fabscan.local is called in a browser.

changes the scan, camera or light settings the changes are
visible in a real-time video stream. Also the resolution is
set in the settings dialog. Those settings are saved in a file
beside the other scan data.

When the scan process is completed a share button is
shown. The share button opens the share dialog (Figure
3.9 Right). In the share dialog the user can chose different
options to download or share the scanned data. The share
dialog also offers the possibility of loading the scan settings
which were used for the related object. This can be helpful
when the user wants to scan an object with similar shape,
color or surface properties.

Functionality

The main view of the FabScan Pi web-enabled user inter-
face is shown in Figure 3.10. In the main view the user is
able to call three different dialogs. A dialog opens by click-

3.3 Software 39

Figure 3.11: Loading dialog. Offers the opportunity to load
recent scans.

ing the icons shown at the bottom of the main view.

The folder icon calls the loading dialog. The loading dia-
log is also inspired by Apple’s Photo Booth. It provides a
gallery where the user can slide through previous scans. A
small label on the gallery preview image shows some scan
related meta data like the date of the scan. The user can
explore the gallery by clicking on arrows on both sides. A
scan can be loaded by clicking on the preview image. If the
user clicks on a preview image the loading dialog closes
the scan is loaded in the main window and the share icon
is shown.

When the user presses the share button, the share dialog
opens (Figure 3.12). The share dialog offers different file
operations including several download options. The user
can download the scanned object in PLY, STL or X3D for-
mat. Also, the user is able to load the settings from prior
scanned objects. This is a useful feature if the user wants to
scan an object with similar properties as a previous scanned
object.

40 3 Own Work

Figure 3.12: Sharing dialog. Offers the opportunity to
download scans in different formats and delete scans.

The settings dialog of the FabScan Pi user interface shows a
live video stream on the left side. The video stream contains
a live-view of the current laser line recognition algorithm.
If the user changes the settings sliders on the right side of
the dialog, the laser line recognition changes in real-time.
The recognized laser line is shown by a blue line in the live
video stream. Best scan results are achieved when the blue
laser line and the ”real” red laser line match exactly.

The user has the choice between three different setting tabs.
The first tab includes all scan relevant settings like resolu-
tion and threshold values. The meaning of the threshold
value is described in the FabScan bachelor thesis [Eng11].
The second tab includes camera settings like contrast, hue,
saturation and brightness. The last tab contains the ambi-
ent light settings. With the sliders in the third tab the user
is able to control the lighting in the inside of the FabScan Pi.

The user can start the scan out of the settings dialog by
clicking the scan button. Afterwards the settings dialog

3.3 Software 41

Figure 3.13: Settings dialog. Offers the opportunity to find
the best scan settings. Left side of dialog: live laser line
recognition. Right side of dialog: sliders for changing set-
tings.

is closed and the scan process starts. The points for the
current object position are added to the view as they are
scanned. After a successful scan, the share icon for the
share dialog appears at the bottom left side of the user in-
terface.

43

Chapter 4

Evaluation

4.1 Requirements

In this section, it is discussed whether and to what degree
the requirements from 3.1 “Requirements” are met.

4.1.1 Affordability of FabScan Pi

In this paragraph the cost of the final FabScan Pi hardware
prototype from chapter 3.2.3 “Final Hardware Prototype” is
calculated. The price of the FabScan Pi setup is compared
to the price of the FabScan CUBE setup in Table 4.1.

Table 4.1 shows that the price difference between FabScan
Pi setup and FabScan CUBE setup is about 30 Euro, which
makes the FabScan Pi almost as affordable as the FabScan
CUBE, but with the benefit of a small computer device what
makes the FabScan Pi a stand-alone and web-enabled de-
vice.

44 4 Evaluation

Component Count FabScan Pi Price FabScan CUBE Price
Stepper motor 2 15,88 e 15,88 e
Motor driver 2 9,95 e 7,96 e
Laser cut parts + screws 1 35,00 e 35,00 e
Power supply (12v / 5v) 1 14,95 e 14,95 e
Laser module 1 5,90 e 5,90 e
Arduino 1 - 23,80 e
FabScan shield 1 - 10,00 e
Logitech WebCam 1 - 22,95 e
12 RGB LED Ring 1 7,79 e -
FabScan Pi shield 1 20,00 e -
Raspberry Pi 1 38,95 e -
Raspberry Pi camera 1 20,00 e -

Total 168.42 e 136.44 e

Table 4.1: FabScan Affordability

4.1.2 Do-it-Yourself

Even the FabScan Pi can be build by everyone. The hard-
ware setup changed in a few details. The Arduino and Fab-
Scan shield is replaced by the FabScan Pi shield and the
Raspberry Pi 2. The webcam is replaced by the Raspberry
Pi camera module (see 3.2.1 “First Hardware Prototype”).
Due to the fact that the Raspberry Pi camera module is de-
livered as a small PCB, it is not necessary anymore to dis-
assemble a webcam module. The software installation pro-
cess is also easier with the FabScan Pi. The user only needs
to download and flash the SD-Card image. The firmware is
installed automatically with the first start of the FabScan Pi
server.

4.1.3 Stand-alone Device

By using a Raspberry Pi 2 with the FabScan Pi server soft-
ware and the web-enabled user interface, there is no need
to install software on third party hardware like computers,
laptops, etc. The FabScan Pi is a full usable stand-alone 3D
scanner.

4.1 Requirements 45

4.1.4 Web-enabled User Interface

In chapter 3.3.4 “Web-enabled User Interface” the devel-
opment process of the web-enabled user interface is de-
scribed. With the web-enabled user interface the user is
able to perform a scan from any device which supports an
HTML5 compatible web-browser with WebGL support.

4.1.5 Integration of Meshlab

The FabScan Pi back-end server calls the Meshlab com-
mand line client for the meshing post process. With this
mechanism the user is able to decide what file format he
wants to export. The user is able to write new Meshlab fil-
ter chains as described in 3.3.3 “Back-end server”.

4.1.6 Downloading Scans in Different Formats

The FabScan Pi’s web-enabled user interface provides the
opportunity of downloading the scans in different file for-
mats. The user is able to download scans in STL, PLY and
X3D.

4.1.7 Provide Settings Preview

The FasbScan Pi’s web-enabled user interface provides a
live settings dialog (see 3.3.4 “Web-enabled User Inter-
face”). In this dialog the user can change the scan settings
and he gets a direct feedback of the current laser line recog-
nition.

4.1.8 Save and Load Scan Settings

Scan settings made in the settings dialog are saved with the
scan result. The user is able to load those scan settings, re-

46 4 Evaluation

lated to the scanned object, by using the share dialog. With
this feature the user can scan objects with similar proper-
ties without the effort of finding the best scan settings in
the settings dialog.

4.1.9 Improving Scan Quality

A new feqautre of the FabScan Pi hardware is an RGB LED
ring that increases the quality of the scan results. With a
white light during a color scan the colors are brighter and
clearer. The second quality improvement was reached by
introducing the live settings dialog with the web-enabled
user interface. The settings dialog in the web-enabled user
interface helps the user to get the best results without much
configuration effort. The user can find the best laser line
recognition by a live video stream which shows the recog-
nized laser line.

4.1.10 Improving Scan Speed

The FabScan Pi back-end server supports multi core oper-
ations that divide the scan process into multiple image cal-
culation tasks. This process increases the speed of the Fab-
Scan software. A scan in medium quality with the FabScan
CUBE software on a PC takes about 15 minutes. The same
object scanned with the FabScan Pi software on a Raspberry
Pi takes only about 3 minutes. The scan speed is increased
by a factor of 5.

4.1.11 Usability

The web-enabled interface is kept as simple as possible.
With FabScan Pi the user is able to perform a scan with a
minimum number of clicks. With the new settings dialog
the user can get the best scan result without repeating the
scan process for each scanner settings change.

47

Chapter 5

Summary and future
work

In the previous chapters the idea and the development pro-
cess of the FabScan as a web-enabled stand-alone 3D Scan-
ner were presented. At last, this chapter will give a sum-
mary of the most important aspects and the possible in-
sights into the future.

5.1 Summary and contributions

In this work, an open-source, web-enabled, stand-alone 3D
scanner was created. As basis of my work the FabScan
CUBE was used. The proposals of the FabScan Google user
group were examined and the shortcomings of the FabScan
CUBE were determined. With the determined shortcom-
ings and the comparison of current available 3D scanners
the requirements for the FabScan Pi system were formed.
After several hardware prototypes some of the issues of the
FabScan CUBE were improved and a stand-alone device
was made out of the FabScan CUBE. With the development
of the FabScan Pi software, the FabScan turned into a web-
enabled 3D scanner.

My contribution to the community is a new version of the

48 5 Summary and future work

FabScan 3D scanner. The new scanner is with about 160
enearby as affordable as the FabScan CUBE. The new soft-
ware offers several advantages, like improvements of us-
ability, scan speed and quality.

5.2 Future work

In this chapter some ideas and suggestions which came up
during the process of the thesis are presented. As this thesis
concentrates on the shortcomings and user group sugges-
tions of the FabScan 3D scanner, the following states poten-
tial further improvements of the FabScan Pi.

5.2.1 Adding more REST API functions

Currently the FabScan Pi back-end server provides only ba-
sic REST API functionality. In a new version it can be useful
if the REST API supports also command functions. With
command functions in the REST API the FabScan Pi back-
end can be controlled through third party web applications.

5.2.2 Introducing ICP algorithm

One aspect of laser range scanners is that most objects with
re-entrant angles are difficult to digitize. The laser can not
reach those angles or the camera is not able to capture parts
of the object where the laser is covered by other object parts.

The ICP (Iterative Closest Point) algorithm can solve this
problem. ICP is used to match point clouds. With the im-
plementation of ICP it would be possible to scan the object
with different positions. Several point clouds of different
object positions could be matched to one point cloud. With
this feature the re-entrant angle problem can be solved.

5.2 Future work 49

5.2.3 Configuration of Meshlab in user interface

In FabScan Pi Meshlab was introduced. The current Fab-
Scan Pi software does not provide an upload or selection
mode for custom filter scripts. It would be better if the user
can create and upload custom created Meshlab filter scripts.
For this purpose a drop down selection box, for selecting
the export filters, has to be added to the settings dialog.

5.2.4 Scanner auto calibration

During the work on this thesis several FabScan users on-
line and at Maker Faires mentioned their FabScan user ex-
periences. It became clear that the FabScan needs an auto
calibration mechanism. An auto calibration mechanism can
be realized by placing a checkerboard on the turntable and
measuring the distances of camera and turntable. Also the
horizontal and vertical alignment of the camera can be de-
termined by the measurement mechanism.

5.2.5 Auto settings dialog

The usability could be improved by introducing an auto
settings dialog. If the FabScan is able to detect the object
material and color, it would be possible to detect the best
matching scanner settings. With an auto setting feature
maybe the scan process speed and quality can be increased.

5.2.6 Adding Octoprint support

Octoprint is a print server for 3D printers which is runnable
on a Raspberry Pi. Octoprint support in the FabScan Pi
web-enabled user interface would enable the user to use
the FabScan Pi as a copy device. Octoprint supports a REST
API with an extensive feature set. Through a REST API an
interface for the FabScan Pi to Octoprint is easy to develop.

51

Appendix A

Raspberry Pi HAT
Schematic and Board
Layout

The schematics files for the PCB are provided under the fol-
lowing download link. The files are updated when there is
a new version available.

File: RPI-FabScan-HAT.brda

ahttps://github.com/watterott/RPi-FabScan-HAT/RPI-FabScan-HAT.brd

File: RPI-FabScan-HAT.scha

ahttps://github.com/watterott/RPi-FabScan-HAT/RPI-FabScan-HAT.sch

https://github.com/watterott/RPi-FabScan-HAT/RPI-FabScan-HAT.brd
https://github.com/watterott/RPi-FabScan-HAT/RPI-FabScan-HAT.brd

52 A Raspberry Pi HAT Schematic and Board Layout

Figure A.1: FabScan Pi HAT schematics

53

Figure A.2: FabScan Pi HAT PCB layout

55

Appendix B

Schematics for the Laser
Cutter Parts

The laser cutable parts are provided under the following
download link. The files are updated when there is a new
version available.

File: picam mount.dxfa

ahttps://github.com/mariolukas/FabScanPi-LaserCutParts

https://github.com/mariolukas/FabScanPi-LaserCutParts

56 B Schematics for the Laser Cutter Parts

Figure B.1: FabScan camera mount

57

Appendix C

Source Code

The source code of the back-end and the web-enabled user
interface can be found under the following download link.
The code can also be found on GitHub.

File: FabScan Pi Frontenda

ahttps://github.com/mariolukas/FabScanPi-Frontend

File: FabScan Pi Backenda

ahttps://github.com/mariolukas/FabScanPi-Backend

https://github.com/mariolukas/FabScanPi-Frontend
https://github.com/mariolukas/FabScanPi-Backend

59

Bibliography

[Ada14] James Adams. Definition of raspberry pi
hat. https://www.raspberrypi.org/
introducing-raspberry-pi-hats/, 2014.
Accessed: 2015-05-01.

[Bla04] F. Blais. Review of 20 years range sensor develop-
ment. Journal of Electronic Imaging, 2004.

[Bor01] Jan Borchers. A Pattern Approach to Interaction De-
sign. 2001.

[Bou15] Paul Bourke. Ply - polygon file format. http://
paulbourke.net/dataformats/ply/, June
2015. Accessed: 2015-06-02.

[Bur89] Marshall Burns. The stl format. http://
www.fabbers.com/tech/STL_Format, Octo-
ber 1989. Accessed: 2015-06-02.

[Car92] JM Carroll. Getting around the task-artifact cycle.
ACM Transactions on Information Systems. 1992.

[Eng11] Francis Engelmann. Fabscan affordable 3d laser
scanning of physical objects. Bachelor thesis,
RWTH Aachen, The Media Computing Group,
2011.

[IF11] A. Melnikov I. Fette. The websocket protocol.
https://tools.ietf.org/html/rfc6455,
December 2011. Accessed: 2015-06-01.

[Inc06] On-Net Surveillance Systems Inc. Mjpeg vs
mpeg4 - understanding the differences, ad-
vantages and disadvantages of each com-
pression technique. http://www.onssi.

https://www.raspberrypi.org/introducing-raspberry-pi-hats/
https://www.raspberrypi.org/introducing-raspberry-pi-hats/
http://paulbourke.net/dataformats/ply/
http://paulbourke.net/dataformats/ply/
http://www.fabbers.com/tech/STL_Format
http://www.fabbers.com/tech/STL_Format
https://tools.ietf.org/html/rfc6455
http://www.onssi.com/downloads/OnSSI_WP_compression_techniques.pdf
http://www.onssi.com/downloads/OnSSI_WP_compression_techniques.pdf
http://www.onssi.com/downloads/OnSSI_WP_compression_techniques.pdf

60 Bibliography

com/downloads/OnSSI_WP_compression_
techniques.pdf, 2006. Accessed: 2015-05-05.

[Jon14] Dave Jones. picamera - documentation of
the python raspberry pi camera interface.
https://picamera.readthedocs.org/en/
release-1.10/fov.html, 2014. Accessed:
2015-04-22.

[Kaa13] Corporation Kaazing. What is websocket? http:
//www.websocket.org, 2013. Accessed: 2015-
06-10.

[LT09] Douglas Lanman and Gabriel Taubin. Build your
own 3d scanner: 3d photography for beginners.
August 2009.

[Mes00] Thomas R. Kramer; Frederick M. Proctor; Elena R.
Messina;. The NIST RS274NGC Interpreter - Version
3. 2000.

[pyt15] python.org python. What is python? executive
summery. https://www.python.org/doc/
essays/blurb/, 2015. Accessed: 2015-06-29.

[Rou12] Margaret Rouse. Hardware glossary
- definition: Raspberry pi. http:
//whatis.techtarget.com/definition/
Raspberry-Pi-35-computer, April 2012.
Accessed: 2015-06-30.

[Vuk07] Vlad Vukicevic. Canvas 3d historical.
https://wiki.mozilla.org/Canvas:
3D/Historical, April 2007. Accessed: 2015-04-
27.

[Web15] Consortium Web3D. What is x3d. http://www.
web3d.org/x3d/what-x3d, October 2015. Ac-
cessed: 2015-06-02.

http://www.onssi.com/downloads/OnSSI_WP_compression_techniques.pdf
http://www.onssi.com/downloads/OnSSI_WP_compression_techniques.pdf
http://www.onssi.com/downloads/OnSSI_WP_compression_techniques.pdf
http://www.onssi.com/downloads/OnSSI_WP_compression_techniques.pdf
https://picamera.readthedocs.org/en/release-1.10/fov.html
https://picamera.readthedocs.org/en/release-1.10/fov.html
http://www.websocket.org
http://www.websocket.org
https://www.python.org/doc/essays/blurb/
https://www.python.org/doc/essays/blurb/
http://whatis.techtarget.com/definition/Raspberry-Pi-35-computer
http://whatis.techtarget.com/definition/Raspberry-Pi-35-computer
http://whatis.techtarget.com/definition/Raspberry-Pi-35-computer
https://wiki.mozilla.org/Canvas:3D/Historical
https://wiki.mozilla.org/Canvas:3D/Historical
http://www.web3d.org/x3d/what-x3d
http://www.web3d.org/x3d/what-x3d

61

Index

3D Scanner, 1
3D Scanning related Software , 7
3D Systems, 9
3D scanning, 1

AngularJS, 7
Arduino, 3, 21
Atlas 3D Scanner, 14

back-end architecture, 33
back-end protocols , 29–32
back-end server , 32–36
balsamiq, 37
Bohne, Renè, 2
Borchers, Prof. Dr. Jan, xix
BQ Cyclop, 13

Camera Serial Interface, 23
Canvas 3D, 5
Computer Aided Manufacturing, 9
CSI, see Camera Serial Interface

David Scanner, 10
David Starter Kit, 10
Design Implement Analyze, 21
DIA-cycle, see Design Implement Analyze

Engelmann, Fancis, 2
evaluation, 43–46
existing 3D scanners , 9–15
Extensible 3D, 9

FabScan, 2
FabScan CUBE, 3, 15
Fabscan CUBE, 10
FabScan Pi, 3
FabScan Pi server back-end architecture, 33
FabScan Pi software architecture, 27
FabScan Pi WebSocket protocol, 30

62 Index

FabScan shield, 3, 21
final hardware prototype , 25
final prototype , 27
first hardware prototype , 21–23
functionality , 38–39
future work, 48–49

G-Code, 29

HAT, see Raspberry Pi HAT
Horus, 14
HTTP video streaming, 7

ICP, see Iterative Closest Point
image processor, 34
introduction, 1–4
Iterative Closest Point, 48

JavaScript, 5
JavaScript Object Notation, 30
JPEG, 6
JSON, see JavaScript Object Notation

Kowalewski, Prof. Dr.-Ing., xix

LED ring, 25
loading dialog, 39
Loading View, 36
Logitech C270, 21

Main view, 38
MakerBot Digitizer, 11, 12
MakerBot Industries, 11
Makerware, 12
Matter and Form 3D Scanner, 12
MeshLab, 8, 35
MeshLab Server, 8
MJPEG, 7
MLX filter script, 35
Motion-JPEG, 6
Motivation, 3
Mozilla Foundation, 5

Octoprint, 49
OpenCV, 3
OpenGL, 5
overview, 4
own work, 19

Photo Booth, 37
PLY, 8

Index 63

Poison Surface Reconstruction algorithm, 35
Polygon File Format, 8
protocol definitions , 28–32
Python, 32

QT, 3

Raspberry Pi, 3, 21
Raspberry Pi 2, 21
Raspberry Pi camera module, 21
Raspberry Pi HAT, 3, 23
related work, 5–17
REST API, 31
RS-274, 29

second hardware prototype , 23–25
settings dialog, 39–40
sharing dialog, 39
sharing view, 39
software , 27–41
Stanford Triangle Format, 8
Stereo Lithography file format, 9
STL, 9

University of Pisa, 8

VCG library, 8
Virtual Reality Modeling Language, 9
Visual Computing Lab, 8

Web Technologies , 5–7
web-enabled user interface , 36–41
Web3D Consortium, 9
WebGL, 5
WebSocket Protocol, 6
WebSockets, 6
World Wide Web Consortium, 9

X3D, 9

Typeset July 7, 2015

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	What is 3D Scanning and What is it Good for?
	FabScan
	Motivation
	FabScan Pi a Web-Enabled Stand-Alone 3D Scanner

	Overview

	Related Work
	Web Technologies
	WebGL
	WebSockets
	Motion-JPEG
	AngularJS

	3D Scanning related Software
	MeshLab
	3D File Formats
	PLY
	STL
	X3D

	Existing 3D Scanners
	FabScan CUBE
	David Scanner
	MakerBot Digitizer
	Matter and Form 3D Scanner
	BQ Cyclop
	Atlas 3D Scanner

	Comparing Existing 3D Scanners
	Shortcomings of the FabScan CUBE
	Scan Speed
	Post Processing of Scans
	Scan Quality
	Usability
	Build Process and System Dependencies
	Summary of Related Work

	Own Work
	Requirements
	Hardware
	First Hardware Prototype
	Discussion

	Second Hardware Prototype
	Discussion

	Final Hardware Prototype
	Discussion

	Software
	General Architecture
	Protocol Definitions
	Hardware Control Protocol
	Back-end Protocols

	Back-end server
	Web-enabled User Interface
	User Interface Mockup
	Functionality

	Evaluation
	Requirements
	Affordability of FabScan Pi
	Do-it-Yourself
	Stand-alone Device
	Web-enabled User Interface
	Integration of Meshlab
	Downloading Scans in Different Formats
	Provide Settings Preview
	Save and Load Scan Settings
	Improving Scan Quality
	Improving Scan Speed
	Usability

	Summary and future work
	Summary and contributions
	Future work
	Adding more REST API functions
	Introducing ICP algorithm
	Configuration of Meshlab in user interface
	Scanner auto calibration
	Auto settings dialog
	Adding Octoprint support

	Raspberry Pi HAT Schematic and Board Layout
	Schematics for the Laser Cutter Parts
	Source Code
	Bibliography
	Index

