
by
René Linden

Multitouchkit: A
Software Framework

for Touch Input and
Tangibles on

Tabletops and
Mobile Devices.

Thesis at the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Dr. Ulrik Schroeder

Registration date: 13/08/2015
Submission date: 30/09/2015

iii

I hereby declare that I have created this work completely on
my own and used no other sources or tools than the ones
listed, and that I have marked any citations accordingly.

Hiermit versichere ich, dass ich die vorliegende Arbeit
selbständig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich
gemacht habe.

Aachen, September2015
René Linden

v

Contents

Abstract xi

Acknowledgements xiii

Conventions xv

1 Introduction 1

2 Related work 5

3 The Multitouchkit - MTK 11

3.1 General design decisions 11

3.2 Touch Processing 14

3.2.1 MTKTrace 16

3.2.2 MTKInputSource 19

3.2.3 Initialization of Touch Processing . . . 23

3.2.4 Recursive Touch Processing 29

3.3 Tangibles . 33

vi Contents

3.3.1 PUCs: Passive Untouched Capacitive
Widgets 34

3.3.2 PERCs: Persistently Trackable Tangi-
bles on Capacitive Multi-Touch Dis-
plays 41

3.3.3 Tangible Simulator 51

3.4 Gestures . 53

3.4.1 Standard Gestures 53

3.4.2 Custom Gesture Recognizer. 56

3.5 Visualization Support 58

3.6 TouchControlCenter 61

3.6.1 TCC in MacOS 61

3.6.2 TCC in iOS 62

3.6.3 MTKTangibleCreationScene 63

3.7 Sample Applications 66

4 Evaluation 69

4.1 Architecture 69

4.2 Scope . 72

4.3 Features . 73

4.4 Summary . 75

5 Summary 77

5.1 Future work 77

Contents vii

Bibliography 79

Index 85

ix

List of Figures

3.1 SpriteKit frame loop. 15

3.2 Different states of MTKTrace. 17

3.3 Sample scene. 25

3.4 Sample scene hierarchy. 26

3.5 Trace distribution decision tree. 27

3.6 Trace distribution shape problem. 28

3.7 Sample scene touch processing. 31

3.8 Illustration of PUC. 34

3.9 Scanline problem. 39

3.10 Two trace triples fit one tangible. 40

3.11 Illustration of PERC. 42

3.12 States of PERCs. 43

3.13 Two position problem. 44

3.14 Four position problem. 45

3.15 PERC decision tree. 52

x List of Figures

3.16 Discrete gesture recognizer states. 54

3.17 States of continuous gesture recognizer. . . . 55

3.18 Star Wars scene. 58

3.19 MTKPieMenu. 59

3.20 TCC for iOS. 63

3.21 MTKTangibleCreationScene. 64

3.22 AirHockey. 66

3.23 ColorFighter. 67

4.1 Possible layers of multi-touch frameworks. . 70

4.2 Overview of existing multi-touch frameworks. 75

xi

Abstract

In this thesis we present the Multitouchkit (MTK), a software framework for touch
input and tangibles on tabletops and mobile devices, which is dedicated to ease the
development of multi-touch applications on MacOs and iOS In contrast to other
frameworks, the MTK can be used in Apple’s development environment. It is
based on SpriteKit, a framework by Apple to develop applications with rich 2D
graphics. The MTK is the first framework to support PUCs and PERCs introduced
by Voelker et al. [2013, 2015]. The MTK enables developers to use any input hard-
ware as source of touch information and use it in an MacOS and iOS application.

xiii

Acknowledgements

I want to thank everybody who supported me in my work, especially Simon
Voelker for providing me with a lot of feedback and support in discussion about
important design decisions. I am very grateful that Prof. Borchers made it possible
for me to work on such an interesting project at his chair. I also want to thank Prof.
Schroeder as my second examiner. I want to thank everyone else at the chair, who
helped me when facing technical problems. Thanks to everyone who proofread my
work. I want to thank my family and friends who supported me in my study and
without whom I would not have been able to write this thesis. Thanks for all the
support!

xv

Conventions

Throughout this thesis we use the following conventions.

The thesis is written in American English.

MTK is short for Multitouchkit, which is the name of the
described framework.

The thesis is written in first person plural. This was not
used because several persons worked on this thesis but for
esthetical reasons.

The MTK is based on a prototype version created by Simon
Voelker. The prototype was fully revisited, refactored, doc-
umented, redesigned and extended.

Any term that is introduced for the first time is written in
italic. Following appearances will not be italic. The ex-
clusion of this convention are Objective-C methods, which
are always written italic. Additionally are these func-
tions reduced to a form without parameters. For exam-
ple, -(void)updateWithTimestamp:(NSTimeInterval)timestamp
will be reduced to updateWithTimestamp:.

1

Chapter 1

Introduction

Multi-touch interaction reached everyday life. Consumers Tangibles are mostly
unknown to
consumers.

use it in smartphones, tablets, laptops, tabletops, and more.
An extension of multi-touch that is not commercially avail-
able yet is the use of tangible widgets which we will call
tangibles.

Tangibles are objects that can be recognized by multi-touch Tangibles are not
new.surfaces. Researched for over a decade they are often re-

ferred to be useful in a large variety of application scenar-
ios in combination with multi-touch surfaces [Rekimoto,
2002][Terrenghi et al., 2007]. Due to their shapes tangibles
can give haptic feedback, which is mostly missing on multi-
touch surfaces. This allows eyes free interaction with multi-
touch surfaces, which is else very cumbersome or impossi-
ble [Weiss et al., 2009].

One of the reasons why tangibles did not reach every- Tangibles are hard to
detect on capacitive
touch.

day life may be that most of the commercially available
multi-touch devices use capacitive touch technology. While
tangibles on capacitive touch technology were already re-
searched for over a decade [Rekimoto, 2002], PUCs - Pas-
sive Untouched Capacitive Widgets by Voelker et al. [2013]
are the first tangibles that could be detected on com-
mercially available and unmodified multi-touch displays.
Other research relies on the user touching the tangible [Yu
et al., 2011], uses modified touch displays [Liang et al.,
2014], or used touch surfaces which use infrared light to

2 1 Introduction

detect touches [Schöning et al., 2010].

To improve PUCs and increase the number of possible ap-PERCs are an
improvement of

PUCs.
plications for tangibles on unmodified multi-touch surfaces
Voelker et al. [2015] developed PERCs - Persistently Track-
able Tangibles on Capacitive Multi-Touch Displays. Those
new tangibles solve some problems that could arise when
using PUCs. For example if a PUC does not move it will last
only 5-30 seconds, depending on the filter mechanics of the
recognition hardware. This arises the problem that the soft-
ware can not distinguish between a tangible that was lifted
and one that was filtered [Voelker et al., 2015]. Which other
problems PERCs solve and how those and PUCs exactly
work is described in Section 3.3.

PERCs can be detected on many commercially availableA framework for
development with

tangibles is missing.
multi-touch surfaces and can be build with costs lower
than 25 Dollar [Voelker et al., 2015]. Hereby they open a
wide range of possible applications. A software framework
that enables applications to receive multi-touch events and
helps recognizing tangibles could ease the development
process of such applications. We listed several frameworks
and toolkits in Section 2 which have these properties. None
of these is capable of detecting PERCs. This was no surprise
since PERCs were developed only recently, but also none of
the frameworks support the development of native iOS or
MacOS applications.

Apple’s MacOS and iOS are the most used operating sys-Neither MacOS or
iOS support

tangibles.
tems after Windows and Android. The AppStore of-
fers about 1.5 million applications. Unfortunately neither
MacOS nor iOS support any tangibles. MacOS is not even
capable of multi-touch other than the recognition of ges-
tures via trackpad. Therefore the demand for such a frame-
work exists.

To fulfill this demand we decided to develop a frameworkWe decided to
develop the MTK. that enables developers to create rich 2D applications that

are capable of multi-touch and tangible interaction. The
framework should be written in Objective-C or Swift to be
fully compatible with all Apple development tools and ap-
plications written for any Apple operating system. Addi-
tionally the developers should be able to use any commer-

3

cially available input source in combination with the frame-
work, but focus should be towards multi-touch surfaces.

With these requirements in mind we implemented the Mul- The MTK introduces
tangibles to MacOS
and iOS.

titouchkit, short MTK, which we present in Chapter 3. We
will evaluate the MTK with the feature list for multi-touch
frameworks presented by Kammer et al. [2010] in Chap-
ter 4. Before these chapters we will discuss existing frame-
works and their fit for our requirements.

5

Chapter 2

Related work

In our search for software frameworks we set the require- None of the found
frameworks was
written in Objective-C
or Swift.

ments that it is written in either Objective-C or Swift and
that it supports multi-touch and tangible input from many
different input sources. Many of the found frameworks
support different hardware as input for multi-touch and
tangibles, but none was written in Objective-C or Swift. We
now shortly explain each of the most relevant frameworks
and toolkits.

GestureWorks is a SDK written in C++ to support the de- GestureWorks is a
commercial
framework developed
by Ideum.

velopment of multi-touch applications written in different
programming languages like C++, C#, Java, and Python.
It is distributed and developed by Ideum. Unfortunately
the framework does not allow the development of applica-
tions for MacOS or iOS. Additionally the framework does
not support tangibles and is not open source, therefore an
adaption of the framework was not possible for us [Ideum].

Breezemultitouch is a multi-touch framework that is tar- Breezemultitouch is
targeted to Microsoft
Windows.

geted to show all internals of windows processes. Breeze-
multitouch allows in comparison to Windows 7 the devel-
oper to see how the rotate, move, etc. actions are inter-
preted, and allows to change this interpretation process. It
targets Windows platforms by relying on Windows Presen-

https://msdn.microsoft.com/en-us/library/ms754130
https://msdn.microsoft.com/en-us/library/ms754130
https://msdn.microsoft.com/en-us/library/ms754130

6 2 Related work

tation Foundation (WPF)1 and is completely oblivious of
tangibles [Mindstorm Inc.].

Miria is a SDK to bring multi-device input UI controls intoMiria is a
multi-device input

SDK for Silverlight
and Moonlight.

Silverlight2 and Moonlight3. The SDK includes a set of
multi-touch ready and gestures based user controls. Unfor-
tunately it does not support MacOS or iOS, neither it does
have any support for tangibles [CodePlex].

jQMultitouch is a lightweight toolkit and developmentjQMultitouch is a
multi-touch web

interface
development

framework and toolkit
inspired by jQuery

framework for multi-touch web interface development
[Nebeling and Norrie, 2012]. It is inspired by jQuery4 and
allows the use of different browsers which support touch
events. It unifies these touch events to allow the devel-
opment of cross-browser applications. Additionally it in-
cludes default gesture recognizer, gesture templates, touch
support as well as touch histories. Nebeling and Norrie
[2012] reported that the implementation has performance
issues.

Midas is a Java framework that is developed to provideMidas is a Java
framework that

allows the developer
to easily create

complex gesture
recognizer.

adequate software engineering abstractions for developers
to close the gap between the evolution in the multi-touch
technology and software detection mechanisms. It mostly
focuses on the declarative definition of gestures. This en-
ables the developer to easily implement gestures without
the need of processing a continuous stream of data from an
input source. Midas allows the unification of input sources
and has an easy way to allow developers the usage of ges-
ture. The framework is not open source and has no support
for tangibles [Scholliers et al., 2011].

TUIO is a protocol defined to transport touch and tan-TUIO is the de facto
standard protocol for

multi-touch
communication via

network.

gible information between hardware and software layer
via network [Kaltenbrunner et al., 2005]. It became the
de facto standard protocol to use [Laufs and Ruff, 2010].
Kaltenbrunner and Bencina [2007] for example use it
in their framework reacTIVision, an open source, cross-
platform computer vision framework allowing the track-

1https://msdn.microsoft.com/en-us/library/ms754130
2http://www.microsoft.com/silverlight
3http://www.mono-project.com/moonlight
4https://jquery.com

https://msdn.microsoft.com/en-us/library/ms754130
https://msdn.microsoft.com/en-us/library/ms754130
https://msdn.microsoft.com/en-us/library/ms754130
http://www.microsoft.com/silverlight
http://www.mono-project.com/moonlight
https://jquery.com

7

ing of fiducial markers attached onto physical objects and
multi-touch finger tracking. The framework is not listed in
this chapter due to the fact that it is fully focused on visual
tracking. Given its high popularity in research we added
the support for receiving relevant TUIO data to the MTK.

TUIO AS3 is a toolkit that supports rapid prototyping of TUIO AS3 combines
TUIO and
ActionScript.

multi-touch user interfaces in combination with tangible. It
was presented by Luderschmidt et al. [2010] and is based
on TUIO and ActionScript5. The idea of TUIO AS3 was
basically to enable applications written for Adobe Flash to
use TUIO. This was an innovation since TUIO needs UDP
or TCP connection which could not be easily achieved with
Adobe Flash.

Argos is a graphical user interface builder for multi-touch Argos is a graphical
UI builder with focus
on musicians.

applications, focused in musical performance and sound
synthesis. One of the main goals of Argos is to provide a
suite of C++ classes to facilitate the creation of innovative
and experimental UI widgets. Argos is written in C++ and
is thereby able to work on all major operating systems. It
is also able to receive input data from many commercial
multi-touch devices [Diakopoulos and Kapur, 2010].

MT4j is a cross platform Java framework presented by MT4j is a cross
platform Java
framework.

Laufs and Ruff [2010]. It is focused to rapid and easy de-
velopment of visually rich 2D and 3D applications. It is
also able to support different kinds of input devices with
a special focus on multi-touch support. The only support
for tangibles is provided using TUIO, which is focused to-
wards visually detected tangibles.

Squidy is a Java framework developed from 2007 to 2012 to Squidy unifies
received data from
different input
sources.

ease the design of natural user interfaces by unifying var-
ious device drivers, frameworks and tracking toolkits in a
common library and providing a central and easy-to-use
visual design environment [König et al., 2009].

Sparsh UI is a project of the Iowa State University’s Virtual Sparsh UI enable
users to easily create
multi-touch
applications.

Reality Applications Center (VRAC). It focuses on enabling
users to easily create multi-touch applications on a variety
of hardware platforms. Sparsh UI supports applications

5http://www.adobe.com/devnet/actionscript.htmActionscript

http://www.adobe.com/devnet/actionscript.htmActionscript

8 2 Related work

written in C/C++ and Java [Ramanahally et al., 2009].

PyMT is a python module for developing multi-touch en-PyMT is written in
python and has

some serious
performance issues.

abled and media rich applications [Hansen et al., 2009].
Laufs and Ruff [2010] complain about performance issues
in some parts written in Python. The developers promised
rebuilds in C and C++ to improve the performance, but no
such updates were done.

Grafiti is a C# framework built on top of a TUIO clientGrafiti manages
multi-touch

interactions in
tabletop interfaces.

which manages multi-touch interactions in tabletop inter-
faces. It can be considered a similar approach to the MTK.
Grafiti is able to support several hardware due to its TUIO
client and may help the developer in his creation process of
an application [De Nardi].

libTisch, also called TISCH framework, is a project tar-libTisch is built for
cross-platform

development of novel
UI applications.

geted to cross-platform development of novel UI applica-
tions [Echtler and Klinker, 2008]. Echtler and Klinker [2008]
describe it as a project to combine the common traits of ex-
isting frameworks. The project is still active and focused
towards vision based touch sensing. The framework has
support for multi-touch, tangible interfaces, and full-body
interaction. It is cross platform compatible with Linux,
MacOS X and Windows.

iGesture is a Java-based gesture recognition framework fo-iGesture is a
framework mostly

focused on gestures.
cusing on extensibility and cross-application reusability. It
includes tools for gesture recognition as well as the cre-
ation and management of gesture sets. iGesture focuses on
single-touch and is meant as an extension of other software.
It was not created to work as a framework that can gather
different input sources of multi-touch hardware to help the
developers creating multi-touch applications [Signer et al.,
2007].

TouchLib is a library for creating multi-touch interactionTouchlib is a library
developed for

creating multi-touch
interaction surfaces.

surfaces. It is written in C++ and works on Windows. It has
capabilities to send recognized touches via TUIO, allowing
the connection to other operating systems like MacOS. Ad-
ditionally it includes a configuration app and a few demos
to get started [NUI Group].

9

The result of the search is that none of the found frame- None of the found
frameworks met the
requirements.

works is written in Objective-C or Swift. Most frameworks
choose a language that allows cross platform compatibili-
ties. Based on these results we decided to implement the
MTK and not to improve any existing framework to our
needs. In the next chapter we will discuss our framework,
the Multitouchkit.

11

Chapter 3

The Multitouchkit -
MTK

In this chapter we explain the different features of the MTK
and its concepts. We start with design decisions and will
continue by explaining each of the features in more detail.
In Chapter 4 we then categorize the MTK in the list of multi-
touch frameworks analyzed by Kammer et al. [2010].

3.1 General design decisions

Support of MacOS and iOS. The MTK is written in The MTK is written in
Objective-C.Objective-C to provide native support for MacOs and iOS.

This also allows the use of any of Apple’s development
tools. It would have been possible to use Swift instead but
since the language is relatively new, still undergoing major
changes and the prototype already written in Objective-C
we decide to not use Swift.

SpriteKit. We decided to base the MTK on SpriteKit1, SpriteKit is used as
base of the MTK.a framework that provides a graphics rendering and an-

imation infrastructure, which is often used to develop
high-performance, battery efficient 2D games for iOS and

1https://developer.apple.com/spritekit/

https://developer.apple.com/spritekit/

12 3 The Multitouchkit - MTK

MacOS. This should allow developers to build any UI or
application required. SpriteKit and the MTK are focused
towards 2D applications, but they can be easily extended
using SceneKit2 to allow 3D elements. We had the option
to use other frameworks like Unity3 or Cocos2D4, but chose
SpriteKit to continue our focus on developing for MacOS
and iOS using Apple’s development tools.

SpriteKit uses a traditional rendering loop where the con-The rendered
content is organized

in a tree with a scene
as root and nodes as

elements.

tent of each frame is processed before the frame is rendered,
see Figure 3.1. Animation and rendering is performed by
an SKView object. The content of this view is organized
into scenes, which are represented by SKScene objects. The
SKScene class is a descendant of the SKNode class. When
using SpriteKit, nodes are the fundamental building blocks
for all content, with the scene object acting as the root node
for a tree of node objects. The scene and its children deter-
mine which content is drawn and how it is rendered.

To create a application using SpriteKit, one either sub-Using the MTK one
has to subclass

MTKScene.
classes the SKScene class or create a scene delegate. An ap-
plication that uses the MTK has to use an active MTKScene
instead, which is a subclass of SKScene. This is due to the
fact that the touch processing, as described in Section 3.2, is
performed in one of SpriteKits callbacks.

AppleDoc. To provide a rich documentation that matchesApple like
documentation is

included in the MTK.
the MTK’s relation to Apple’s operating systems and
frameworks we decided to use AppleDoc5. AppleDoc is an
open source project that generates Apple-like documenta-
tion based on the header file documentation, which we ex-
tensively included in the MTK. Additionally introductory
tutorials and guides for common hardware setups are in-
cluded in the documentation.

Support of several hardware types as input. One of ourNot all input
hardware is

automatically
supported by the

MTK.

main requirements is that developers are able to easily use

2https://developer.apple.com/scenekit/
3http://unity3d.com
4http://www.cocos2d-x.org
5https://github.com/tomaz/appledoc

https://developer.apple.com/scenekit/
http://unity3d.com
http://www.cocos2d-x.org
https://github.com/tomaz/appledoc

3.1 General design decisions 13

any input hardware. We implemented the MTK to de-
velop 2D multi-touch applications targeted for the use with
iPhones, iPads, multi-touch tabletops and similar input
hardware. Due to this fact the limitation of supported in-
put hardware is that their sent information is transformable
to an object of class MTKTrace, explained in Section 3.2.1,
which has all properties to represent a touch point that was
recognized by a multi-touch surface. The only required in-
formation to create such an MTKTrace object is a position
in a 2D coordinate. Hardware input that does not fulfill
this requirement can not be processed in a normal way by
the MTK. To still use this hardware input developers might
implement their own input source, as in Section 3.2.2, to
receive the input data and process it themselves.

For many other input hardware, the MTK allows to choose All multi-touch
hardware is
supported by the
MTK.

between several implemented input sources, which each
represents one type of input hardware. The already imple-
mented sources cover all hardware setups we had in our
development environment. Additionally the JSON6 and
TUIO input sources can receive data via network, which
allows the connection of nearly any input hardware. De-
velopers can implement their own input source subclass
for specific input sources, if none of the given options fits.
A list of supported input source types and a description
of how the implementations work, can be found in Section
3.2.2.

Support of multi-touch. The MTK supports an unre- The MTK supports
any number of
touches.

stricted number of touches of an unrestricted number of
input sources at the same time. The only restriction we
could think of is that the hardware may at some point be
unable to render all cursors, which could cause a huge drop
in the frame rate. All touches, independent from their in-
put source, have a internal representation called MTKTrace,
which we explain in Section 3.2.1. Additionally the MTK
supports gestures by providing a set of standard recogniz-
ers and several customization options, described in Section
3.4.

6http://json.org

http://json.org

14 3 The Multitouchkit - MTK

Support of tangibles. The second main requirement ofPUCs and PERCs
can be recognized by

the MTK.
the MTK is the support of tangibles. The MTK can recog-
nize PUCs and PERCs. The detailed explanation of their
recognition process can be found in Section 3.3. The cur-
rent version of the MTK does not support other tangibles.
As Kammer et al. [2010] reported many other frameworks
support tangibles using TUIO. This could be a valuable ex-
tension of the MTK and could be implemented in the fu-
ture.

Support of standard and custom UI. The use of standardTo ease the
development process

the MTK includes
standard UI

elements.

UI components in combination with touch is a common use
case that is supported by most of the existing frameworks
listed by Kammer et al. [2010] and should therefore be sup-
ported by the MTK, too. We implemented several standard
UI components and created the possibility for developers
to add custom build UI elements based on any SpriteKit
node. This is achieved due to the fact that the touch pro-
cessing is performed in a category of SKNode, which is
the parent class of all nodes in a SpriteKit application. In
Objective-C a category defines additional functionality of
an existing class without subclassing it, even if the source
code is unavailable. Therefore any node is automatically
able to process touches and gestures, which allows the cre-
ation of many different UI elements. Section 3.2 describes
all details about the touch processing.

Customizability. The MTK allows several settings in re-The framework
includes the TCC to

change standard
settings.

gard of input sources, output views, start scenes, tangibles
and more. These configurations are saved in a XML file.
We implemented the TouchControlCenter, short TCC, to pro-
vide a user interface to change these settings, as described
in Section 3.6.

3.2 Touch Processing

In this section we explain the touch processing of the MTK,
which spans from the collection of all input data to the pro-

3.2 Touch Processing 15

Figure 3.1: This image represents the calls executed by
SpriteKit in each frame. This is a copy of the original on
the Apple developer documentation website.

cessing of tangibles and gestures.

As mentioned earlier the MTK is based on SpriteKit. For The touch
processing is
performed in the
update: call of
SpriteKit.

that, we implemented the touch processing in the update:
call of SpriteKit’s processing loop, seen in Figure 3.1. This
callback is the first in each frame and allows us to perform
anything before any other processing of SpriteKit is done.
It is called on the active SKScene. An application that uses
the MTK has to use an active MTKScene instead, which is
a subclass of SKScene. The update: method of MTKScene
starts the touch processing. Any subclass of MTKScene
need to call its parent’s update: method in its own, to en-
sure the correct behavior of the MTK.

The touch processing in the MTK is split into two parts. The touch
processing is split in
two parts.

The first part is the initialization, which starts with the up-
dating of all MTKTrace objects. This is handled by each
MTKInputSource. We will explain the classes MTKTrace
and MTKInputSource the the following two sections. After
this we will explain the initialization of the touch process-
ing in Section 3.2.3 with the first part of the processing.

16 3 The Multitouchkit - MTK

3.2.1 MTKTrace

Each object of class MTKTrace, which we will call trace, rep-All information of one
touch is saved in one

MTKTrace object.
resents the lifetime of one touch. A touch is normally any-
thing that is recognized by the hardware as a human fin-
ger touching the multi-touch surface. For more specialized
hardware it can be anything, but in the MTK it will be in-
terpreted as a touch on a mulit-touch surface.

The lifetime of a touch, which is saved by a trace, consistsThe lifetime of a
touch is saved in an

entry for each frame.
of information saved each frame while the touch was recog-
nized by the hardware. In each frame a new MTKEntry ob-
ject is created and added to the trace containing all current
information of the touch. The object is called entry. Each
input hardware might offer different information for each
touch, but at least a position per recognized touch is re-
quired. Additional information can be saved in the proper-
ties offered by the MTKTrace. Therefore traces are the most
important source of information for all analysis on touch
events, in particular the tangible detection and gesture rec-
ognizers rely on these objects. In the following paragraphs
we will discuss what kind of information is saved in each
trace. Some values are saved per frame, others per trace.

Identifier. The identifier is unique for each trace. WhileEach trace has an
unique identifier. the application is running none of the traces will ever have

the same identifier. The trace’s identifier is determined by
the MTK and is not related to any identifier provided by
the input hardware.

Type of origin. The type of origin is defined by the in-The type of the origin
helps to categorize

touches.
put source that created the trace. It is used to identify from
which kind of input source the trace was created. This is for
example useful when implementing a gesture recognizer
that only work for a specific kind of input source.

Name of origin. The name of origin is set by the inputIdentifies which input
source created the

trace.
source which created the trace, similar to the type of origin.
It is used to identify the exact input source that created the

3.2 Touch Processing 17

Begin Move End

Figure 3.2: Different states of MTKTrace. Traces will start
with a Begin state and finish in the End state. In between
the state is always Move.

trace. This can be used for example to set a specific touch
cursor for each input source.

State. In each frame the trace has one of three states, as Each trace can have
one of three states.seen in Figure 3.2. The state is saved in the entry created

each frame. The first entry has the state Begin. It represents
that the touch corresponding to the trace first appeared in
this frame. The entry created in the frame in which the
hardware signaled the end of the touch has the state End.
This entry is also the last one, no further updates will reach
the trace. The ended traces will be included in the pro-
cessing for one last frame before they are moved to a set
of old traces. All entries in between these will have the
state Move, which implies that the touch is currently mov-
ing and thereby still updated.

Timestamp. All entries of the trace have a timestamp. The timestamps of all
entries are
determined by the
MTK.

The MTK determines one timestamp at the beginning of
each frame. This timestamp is set in all entries created
in that frame. This allows the comparison of events. For
example all signals received from the tangibles bluetooth
devices are also marked with the timestamp used in the
frame and can thereby be compared to the timestamp of
the trace’s Begin state.

18 3 The Multitouchkit - MTK

Position. Each entry contains the position of the trace inA position per trace
has to be provided by

each input source.
the active MTKScene. The transformation from hardware
to scene coordinates is done by the input source. The hard-
ware coordinates are also saved in the entries, but are not
directly accessible. This avoids the misuse of the hardware
position, but makes them still available if needed for ad-
ditional analysis. A position for each active touch is the
minimum information a input source has to provide, every
other information can either be determined by context or
set to standard values.

Size. Major and minor axis. The size of the trace is usedThe size can be
influenced by minor

and major axis.
as size for its cursor. The major and minor axis can also be
sent by the hardware and may help to determine a trace’s
size and shape.

Orientation. The orientation is a vector defining in whichOrientation is not a
required value. direction the touch is pointing. If the hardware supports

the orientation it will be set and can be taken in account in
the cursor creation.

Compression. MTKTrace is the representation of theAn MTKTrace
contains all

information collected
in the lifetime of one

touch.

complete lifetime of one touch on the multi-touch surface.
This history of all information of all traces is especially in-
teresting when recognizing gestures, but this permanent al-
location of new objects caused some problems in perfor-
mance. Therefore we changed the entry not to be an ob-
ject but a C struct. We allocate about 300 entries, which
are about 5 seconds of the applications runtime, for each
trace at a time and fill them before new entries are allo-
cated. This stopped the permanent allocation of objects and
increased the overall performance of the MTK. The C pro-
gramming in this part is hidden from the user and unit tests
were added to the MTK to ensure the reliability.

While the fact that we save all traces with their full historyMTKTraces will fill
your memory. is a nice feature used for example by gesture recognizer,

it will on long application runs use all memory and will
cause the system to crash. To solve this problem we added

3.2 Touch Processing 19

two settings to the MTK to reduce the amount of memory
traces occupy.

The first possibility for the user to reduce memory require- Compressing
MTKTraces will
remove most of the
saved data.

ments is to set a Compress Time. Any trace that is in state
End for a longer period than the Compress Time will have
their entries deleted. All static information that are proper-
ties of the trace are saved separately and will still be avail-
able. Other properties that relied on the analysis of entries
will be unavailable. This option frees a lot of memory if
traces have a long lifetime, but our experience showed that
this is not the case. Therefore does this compress option
not save much memory. To free more memory we added
the second compress option, a Deletion Time.

The Deletion Time is similar to the Compress Time. A trace To really ensure that
the memory is not
filled a Deletion Time
was added.

that is in state End for a longer period than the Deletion
Time will be deleted. All remaining strong references of the
MTK are deleted, which allows the system to free the mem-
ory. This is no enforced memory deallocation. The memory
may not be freed if any other object has a strong reference to
the trace. This option will drastically free memory and al-
lows to avoid memory issues at long application runtimes.

3.2.2 MTKInputSource

Input sources are responsible for receiving data from in- Each input source is
a subclass of
MTKInputSource.

put hardware and converting it into MTKTraces. We im-
plemented several standard input sources to receive data
from specific input hardware. Additionally we introduced
a TUIO and a network (JSON) input source to provide sup-
port for any other possible input hardware. All these input
sources are subclasses of MTKInputSource.

The touch processing starts in each frame with the update All input sources
need to implement
updateWithTime:.

of all traces, by calling updateWithTime: for each active input
source. Input sources that were configured in the Touch-
ControlCenter will be automatically loaded, others can be
added manually to the list of all input sources, which is
located in the MTKTable. In the updateWithTime: call in-

20 3 The Multitouchkit - MTK

put sources are responsible for converting all received in-
put data to MTKTraces. Already existing traces have to be
updated and new ones need to be created.

Input sources have to transfer each touch position given inIt would improve the
MTK to extract the

transformation code.
hardware coordinates to scene coordinates. The current im-
plementation transfers them relatively using a given input
and output resolution. In this part the MTK could be im-
proved to allow a more modular transformation that can
be customized for each input source. A solution we have
planned for future work is the use of a delegate in each in-
put source. The delegate could implement methods that
allow an arbitrary transformation from any input to any
output. This is for example interesting to show traces of
a specific input source in only a specific area of the output.

This was not yet implemented due to time limitations andThe MTK is still able
to achieve an

arbitrary
transformation.

the fact that the MTK is still able to achieve this using the
global delegate. As we will discuss later in this chapter ex-
ists a global delegate exists that is called right after the pro-
cessing of all input sources. At this point all traces could
still be modified before they are used for any other process-
ing.

In the following paragraphs we will present all already im-
plemented input sources, followed by the explanation on
how to create a new one.

Mouse. One of the input source classes we implementedThe mouse input
source can simulate
touches and can be

used for testing
without actual touch

input.

is able to process input data coming from an ordinary com-
puter mouse under MacOS. A main purpose is to enable
devolopment without having a multi-touch interface con-
nected. The mouse input source will emulate touch points
from mouse events that are located in the scene. Any left
mouse button press will generate a touch at the cursors po-
sition. The touch will follow all movements of the cursor
while the left mouse button is held. The touch will disap-
pear if the button is released. A right click creates a per-
manent touch at the cursors position. This touch can be
dragged with the left mouse button and will disappear if
clicked with the right mouse button.

3.2 Touch Processing 21

UITouch. This input source is our standard input source UITouch input source
is based on the
native iOS touch
events.

for iOS. UITouch is the default format in iOS to handle
touch input. Therefore we implemented an input source
that receives all UITouch events from the UIView, which is
opened in any iOS application created with the MTK, and
transforms them into MTKTraces.

TUIO. TUIO is a protocol to send touch and tangible TUIO is widely used
and is therefore
addressed by the
MTK.

events via network. It is used in several research publica-
tions and custom touch table setups, as already discussed
in Chapter 2. TUIO supports different types of touches
and tangible objects ranging from 2D to 3D. Due to the
fact that it is the de facto standard protocol to send multi-
touch events via network we decided to implement an in-
put source for it. The input source is based on the MacOS
client software provided on the TUIO homepage7. It trans-
fers all received TUIO 2D touch events to traces. In doing
so the MTK does support any hardware that is able to send
TUIO elements to the MTK.

While the protocol has build-in tangible support, the MTK The MTK does not
support TUIO
tangibles.

does not support these. The MTK is designed to work
with capacitive multi-touch surfaces, but TUIO was orig-
inally created to work with light based sensing techniques,
as for example in reacTIVision8. Therefore the parameters
received via TUIO protocol are meant for tangibles recog-
nized via light sensing technology. The MTK is targeted to
tangibles recognizes via capacitive touch technology, but it
might still be interesting for future versions to support tan-
gibles that are sensed with other technologies and sent via
TUIO.

JSON. The JSON input source can receive JSON objects The JSON input
source is constructed
as general network
input source.

from a given IP and port. The received data needs to be
formatted as expected by the input source and at least con-
tain a position and id per touch. In terms of compatibility
this input source is the most important since it is created to
work via network with nearly any other hardware.

7http://www.tuio.org/?software
8http://reactivision.sourceforge.net

http://www.tuio.org/?software
http://reactivision.sourceforge.net

22 3 The Multitouchkit - MTK

We use this input source for example with our PPI multi-Any other hardware
can be added to the

support of MTK using
JSON input source.

touch surface. We implemented a windows application
that collects all data from the PPI driver and sends them
as JSON via network to the MTK. The input source reads
this data and converts it to MTKTraces. The same proce-
dure could be done for any other hardware.

We introduced two delegate methods in this inputDelegate methods
increase the

customizability of the
input source.

source, didReceiveNewData: and didAddNewEntryTo-
Trace:basedOnReceivedData:. The first one allows to modify
any data received by the input source, before it is used to
update traces. In case this method is implemented by the
delegate, the received data does not need to be formatted in
the specified way, except that it needs to be a JSON object.
In the call the delegate is then responsible to format the
data in the specified format. The second method is called
after each trace that was updated. It allows developers to
modify the given trace after the input source processed its
input data.

Custom input. The MTK allows the implementation ofIt is possible to
simply add custom

subclasses of
MTKInputSource.

new input sources. To create a custom input source one
has to subclass MTKInputsource and implement the update-
WithTime: callback. An initialized object of the new class
can then be added at runtime to the input sources in the
MTKTable. After this step the input source is part of the
call for trace collection in each frame.

We presented several options to connect input hardware toA general Windows
client would reduce

the overhead.
the MTK, but we have some improvements left for future
work. Most of the the available multi-touch hardware is
probably compatible with Windows and therefore can be
used to generate Windows touch events. A future version
of the MTK could include a client for Windows that collects
all Windows touch events and sends it via network to the
TUIO or JSON input source. This would ease the connec-
tion of new input hardware to the MTK.

We explained traces and input sources, which are respon-
sible for the update of traces. This transformation of input
data to updates for traces is the first step of the initializa-
tion of the touch processing. We will now continue with

3.2 Touch Processing 23

the other steps.

3.2.3 Initialization of Touch Processing

As mentioned earlier, the touch processing of the MTK is The initialization of
touch processing has
eight steps.

split into two parts. The first one is the initialization. It
is performed at the beginning of each frame by the active
scene. It consists of eight steps which we will discuss in this
section. The second part is the processing itself, which is
performed by each node in the currently active scene graph
after the initialization process. The initialization consists of
the following eight steps:

1. Update all MTKTraces

2. Call preProcess: of global delegate

3. Update cursors

4. Update tangibles

5. Update global gesture recognizer

6. Distribute traces to SKNodes in scene

7. Call postProcess: of global delegate

8. Start recursive scene processing

Update all MTKTraces. The first step is the transforma- The first step was
already explained.tion of all input data to traces. Each input source is respon-

sible for updating its traces, depending on the data it re-
ceived from its input hardware. This transformation step
was explained in the last two sections in the description of
the classes MTKTrace and MTKInputSource. The resulting
array of active traces is then used in all of the following
steps. In each of the steps traces can be added, removed or
modified.

24 3 The Multitouchkit - MTK

Global delegate preProcess: call. The second step is theThe global delegate
allows to manipulate

traces before any
processing started.

preProcess: call of the global delegate. The global dele-
gate is a delegate developers can set application wide, it
is therefore independent from the currently active content.
It is called directly after the update of all traces, which al-
lows for manipulation of traces before the actual process-
ing starts. One example would be the transformation of the
traces’ positions depending on their input source.

Update cursors. The next step is updating the cursor forEach trace has one
cursor. each of the traces. A cursor is the visualization of a touch

point. It indicates the position, size and rotation of active
touches. The MTK provides a standard cursor. It is possi-
ble to customize the standard cursor and to set individual
cursors for each of the traces. In case the input source pro-
vided a size or orientation the MTK is able to change the
cursors accordingly.

The MTK does not allow to add any rules that for exampleIn future versions of
the MTK cursors
should be more

customizable.

specify that traces from one input source may always have
a special cursor. It would be a useful feature for future ver-
sions. The MTK is currently able to apply such transforma-
tion using the postProcess: call of the global delegate or the
scene delegate to make this transformation depending on
the currently active scene.

Update tangibles. The next step is the processing of tan-Tangibles always
work with all

available traces.
gibles. In the MTK tangibles are part of the active scene.
Their processing is part of the initialization of the touch
processing since it is explicitly performed by the active
scene. How the tangible processing works, which includes
the recognition and recovery of all tangibles, will be dis-
cussed in Section 3.3. All traces that are used by tangibles
will be removed from the set of traces available for the pro-
cessing of the following steps.

Update global gesture recognizer. After the tangibles allGlobal gestures are
performed on all

traces.
global gesture recognizers are updated. Gesture recogniz-
ers work on a list of traces and look for certain patterns in

3.2 Touch Processing 25

Figure 3.3: A sample scene (blue background) containing
four nodes (differently coloured rectangles) and one trace
cursor (circle with cross in it).

their movement. How they exactly work and which are
available in the MTK is discussed in Section 3.4. Usually
gesture recognizers are attached to a specific node and will
perform their analysis on the node’s traces. Global gesture
recognizers however are not attached to a specific node. In-
stead they are processed at this point of the initialization of
touch processing to allow application wide gestures. They
are processed on all traces that are still available after the
update of tangibles.

Trace distribution. The next step in the initialization of The next step in
touch processing is
the trace distribution.

the touch processing is the distribution of new traces. In
each frame are traces either new or already bound to a node
in the scene. Those traces that are new and not used by the
update of the tangibles or the global gestures need to be
bound to one of the nodes in the scene.

We will use the example scene in Figure 3.4 to illustrate this We use a sample
scene to illustrate the
situation.

distribution. In this scene are several rectangular nodes
and a trace’s cursor. In SpriteKit it is possible to generate
this sample scene in different child parent relations, there-
fore we illustrated their relation in Figure 3.4. Parents are
above their children and nodes further to the left are earlier
in the children array of the parent and therefore rendered

26 3 The Multitouchkit - MTK

Scene

GNode RNode

YNode

PNode

Figure 3.4: The hierarchy of the sample scene. Parents are
above their children.

earlier. Therefore the rendering order is Scene, GNode, PN-
ode, RNode, YNode, Cursor.

We now discuss to which node the trace is bound to inThe trace distribution
is based on a

nodesAtPoint: call.
which case. The distribution is dependent on the hit test of
SpriteKit. We use the function nodesAtPoint: of SpriteKit to
determine which SKNodes are at the position of the trace.

The result of the function is an array of all SKNodes atThe hit test returns
nodes that we do not

want.
the given position. Unfortunately this includes some nodes
that we like to ignore in the trace distribution. Which nodes
we will exclude will be discussed in the following para-
graphs. We illustrated the decision process in Figure 3.5.

The result array includes nodes that are marked as hid-Hidden nodes can
not receive traces. den. It might be an irritating fact for the user to be unable

to touch a node, because an invisible node is blocking the
touch, therefore all hidden nodes are removed. In case a
developer explicitly wants an invisible area that can receive
traces he may set the color of a node to clear color. In this
case it will not get removed from the result array and will
receive touches, but is invisible to the user.

We added the property isTouchable to SpriteKit’s SKNodeOnly touchable
nodes will receive

traces.
using a category. It defines if a node is able to receive
and process traces. SpriteKit does not know about this

3.2 Touch Processing 27

Is hidden?

Is trace position in
accumulated frame?

per node

remove

remove

Is touchable?
removeinclude

Yes No

Yes

Yes No

No

Figure 3.5: The decisions made for each node, to find the one that receives a new
trace. The node which is still included and has the highest absolute zPosition will
be chosen.

extension and will include untouchable nodes in the re-
sult of nodesAtPoint:, therefore we also remove untouchable
nodes.

Additionally the nodes are not ordered as they are visible We order the
received node in the
reverse draw order.

to the user, but in their appearance of the scene structure.
Therefore we reorder the nodes to fit the order in which the
user will see visible nodes.

After the transformation of the result array is the first node GNode will never
receive the trace.in the array the node that will receive the trace. In our

scenario this could be one of four nodes (RNode, YNode,
PNode, Scene), which one it is depends on their type and
setting. The GNode will never be in the returned array of
nodesAtPoint:, because the trace’s position is not in the area
of the GNode, its bounding box or its accumulated frame.
Therefore it can not receive the trace.

If YNode is touchable it will get the trace, independent from YNode is likely to
receive the trace.any other node being touchable or not. This is due to the

fact that YNode is the top node and the trace is in its visible
area.

28 3 The Multitouchkit - MTK

Figure 3.6: In the left scene the array returned by nodesAt-
Point: called with the trace’s position will return RNode. In
the right scene, where RNode is a SKShapeNode instead of
SKSpriteNode, it will not be included in the result array.

In case YNode is not touchable it depends on the settingsThe scene may also
receive the trace. and types of the other nodes. If the RNode is also not touch-

able but PNode is, PNode will get the touch. Again because
the trace is in PNodes visible area. If neither YNode, RNode
nor PNode is touchable the trace is captured by the scene.

The one case that is special and causes some inconsisten-SpriteKits
documentation is

clear with what
nodesAtPoint: should

return.

cies is the following: If YNode is not touchable, but RNode
is. Apple’s documentation of nodesAtPoint: states the fol-
lowing as return value: ”An array of all SKNode objects in
the subtree that intersect the point. If no nodes intersect the
point, an empty array is returned.”. The discussion then
clarifies this with the following sentence: ”A point is con-
sidered to be in a node if it lies inside the rectangle returned
by the calculateAccumulatedFrame: method.”. If we now fol-
low the description of calculateAccumulatedFrame: we get
the following statement by the documentation: ”Calculates
a rectangle in the parent’s coordinate system that contains
the content of the node and all of its descendants.” [Apple
Inc.].

We found one case in which the SpriteKit does not seemSpriteKit is not
consistent with the

result of
nodesAtPoint:.

to work as documented. While it should return all nodes
which accumulated frames contain the trace’s position, this
seems to be untrue for SKShapeNodes. We illustrated two
scenes in Figure 3.6 where in both cases the calculated ac-
cumulated frame of RNode should contain the trace’s posi-
tion and therefore in both cases return the RNode. Unfor-

3.2 Touch Processing 29

tunately is this not the case. If RNode is a SKSpriteNode,
seen in the left sample scene, then the result array contains
RNode, which is the behavior described in the documenta-
tion. But is the RNode a SKShapeNode, seen in the right
scene, then it will not be contained in the result array. The
trace will then be bound to the scene node.

In the current version of the MTK is the inconsistency still A custom
nodesAtPoint:
implementation may
fix the problem.

present, due to the fact that we assumed that the nodesAt-
Point: is an performance optimized function. A custom hit
test may have a huge performance impact and as long as
developers are aware of the inconsistency can they avoid
any problems. It is also possible that future versions of
SpriteKit may fix this problem.

Call global delegates postProcess:. The final step in the The delegate can
perform last
changes.

initialization of the touch processing is the call to the global
delegate. As the preProcess: call, that allowed to manipulate
for example traces before they are used for cursors, tangi-
bles, global gestures, and the distribution in the scene, the
postProcess: call is to manipulate any of these changes made.
At this point the delegate may evaluate any expected re-
sults or change them.

All the explained steps are performed at the beginning of The active scene
starts all initialization
steps of the touch
processing.

each frame. They are initialized by the currently active
scene. After the initialization of touch processing will the
actual processing start, which is a function call of the active
scene, which will be recursively called on each of its chil-
dren and their children. This call is discussed in the next
section.

3.2.4 Recursive Touch Processing

Immediately after the initialization of the touch processing Each node in the
scene will perform
the same steps.

the active scene will continue with the recursive processing
call. The processing is performed by each node in the scene
graph, by executing the function processTraceSetWithTimes-
tamp: which will return a set of traces. We implemented
this call in a category on SKNode to achieve this processing

30 3 The Multitouchkit - MTK

on each node in any given SpriteKit scene. All of the nodes
in the scene and the scene itself will perform the following
steps in this function call:

1. Call preProcess: of delegate

2. Call preProcess:

3. Call processTraceSetWithTimestamp: of all child nodes

4. Update gesture recognizers

5. Call postProcess:

6. Call postProcess: of delegate

7. Propagate traces

We will stick with the example scene in Figure 3.3 and theWe continue with the
given sample for

further explanation.
parent-child relation of Figure 3.4 to discuss those steps in
more detail. All of the nodes are touchable and not hidden.
The active scene will start the whole process by calling its
own processTraceSetWithTimestamp: method after the initial-
ization process.

Call preProcess: of delegate. Each node in the scene canThe delegate allows
to make any changes

before the
processing of the

node starts.

have a trace delegate. This delegate is called at the begin-
ning and the ending of the processing. As in the initializa-
tion of the touch processing the delegate has the chance to
manipulate the node or any bounded trace, to influence the
processing.

Call preProcess: of node. The next step is the call of pre-The preProcess:
method is abstract in

SKNode.
Process: in the node itself. The method is abstract in SKN-
ode and can be overwritten by any subclass. Any process-
ing is possible in the implementation of the method. This
distribution throughout the scene is a paradigm change to
SpriteKit. In SpriteKit the scene will get an update call, in
which the scene will update anything in it as some kind of
controller. Nodes in the scene will not get an update call
in SpriteKit. This pre- and later the postProcess call change
this by giving each node two update calls per frame.

3.2 Touch Processing 31

RNode YNodePNodeScene GNode

pre:

pre:

pre:

pre:

pre:

post:

post:

post:

post:

post:

Figure 3.7: The call chain for the processing the the sample scene.

Call processTraceSetWithTimestamp: of all child nodes.
At this point of the processTraceSetWithTimestamp: call of the After the own

preProcess: all
children will start
their processing.

active scene will the scene call the processTraceSetWithTimes-
tamp: method of all its children. The children will then per-
form the steps we discussed so far and also recursively call
its children, as illustrated in Figure 3.7.

Update gesture recognizers. At this step in the process- The update of the
gestures may or may
not consume
touches.

ing all traces that could possibly reach the node are col-
lected. All children had the chance to propagate touches.
The next step is to update the gesture recognizers. Each
node can have a set of gesture recognizers. Which recog-
nizers exist in the MTK and how they work is discussed in
Section 3.4. Additionally, each node can have a set of ges-
ture recognizers for standard transformations like rotation,
translation, or scaling. These, like normal gesture recogniz-
ers, work on the nodes traces and are updated in this step,
too. Which of those gesture recognizers are enabled can be
set in the property transformationConstraints of the node.

Call postProcess: of node. After these steps the postPro- The postProcess:
call is similar to the
preProcess: call.

cess: of the node is called. Similar to the preProcess: it is an

32 3 The Multitouchkit - MTK

abstract method and can be used by subclasses to imple-
ment any custom behaviors. In contrast to the preProcess:
call, all children already completed their processing here. It
may also be that the set of active traces for the postProcess:
includes more or other traces than in the preProcess:, since
the children could have propagated traces to their parents.

Call postProcess: of delegate. Now all steps of the touchThe delegate can do
final changes. processing are performed and the trace delegate of the node

has the chance to do any changes to adjust the results.

Propagate traces. As mentioned earlier, nodes are able toEach node can
propagate traces to

its parent.
propagate touches to their parents. In this case the traces
are still bound to the node, but they are given to the par-
ent for this processing call so it might use it for process-
ing. Usually all unused traces are propagated to the parent
node, but each node can decide individually for each trace.

After the touch processing the normal SpriteKit frame loop
in Figure 3.1 on page 15 will continue. No future calls are
explicitly used by the MTK for standardized behaviors or
procedures and can be used by developers without inter-
ference of the MTK. We will now continue by explaining
the touch processing, tangible detection and gesture recog-
nizer, which were previously left out.

3.3 Tangibles 33

3.3 Tangibles

The following explanation of tangibles, especially of PUCs
and PERCs, is a summary of information found in [Voelker
et al., 2013] and [Voelker et al., 2015].

Tangibles are physical objects that can be detected by touch Tangibles improve
touch interaction.surfaces. One big advantage of tangibles is their rich hap-

tic feedback in comparison to touch surfaces. Applications
can not take advantage of the human touch senses, which
would be helpful for example in eyes free interaction, be-
cause the user always only feels the screen. In contrast tan-
gibles can have many different forms and materials, pro-
viding the user with rich haptic experience [Voelker et al.,
2013].

PUCs were the first tangibles that could be detected on Tangible recognition
is already
implemented.

an unmodified commercial capacitive touch surface. Ear-
lier tangibles were detected using light based touch sensing
technologies [Kaltenbrunner and Bencina, 2007], modified
capacitive touch surfaces [Liang et al., 2014] or relied on the
user’s touch [Rekimoto, 2002].

In tangible detection the problem with commercially avail- Capacitive touch
tables will not
recognize normal
tangibles.

able touch sensing hardware is often that it is specialized
to sense human fingers. Any other input like tangibles is
filtered out. One approach to deal with this is to have the
contact areas of the tangibles imitate the human touch.

Simply shaping the contact areas like touches will not force PUC and PERC can
be detected without a
user touching them.

touch surfaces to recognize touches or tangibles. As de-
scribed in [Voelker et al., 2013] capacitive touch surfaces
recognize touches by using transparent electrodes located
above the display panel. If the impact of the tangible’s
contact areas on the electromagnet field emitted by these
electrodes is not bigger than the thresholds implemented
by the hardware’s filter mechanics, they will not be recog-
nized as touches. Unfortunately tangibles have typically no
connection to ground and not enough mass to have an im-
pact on the detection field. Therefore Voelker et al. [2013]
introduced PUCs, which use a trick to overcome this filter
mechanics.

34 3 The Multitouchkit - MTK

Figure 3.8: The original PUC illustration by Voelker et al.
[2013]

3.3.1 PUCs: Passive Untouched Capacitive Widgets

One type of tangibles supported by the MTK and work-PUCs introduced
tangibles to

capacitive touch.
ing on unmodified capacitive touch surfaces are PUCs by
Voelker et al. [2013]. One typical PUC is shown in Figure
3.8. PUCs are made of conductive material that contacts
with the multi-touch surface at different positions. The con-
ductive areas touching the surface, we will call them marker,
are in a specific size that is similar to the touch of a hu-
man finger. The markers are connected to each other and
arranged in a special pattern. The pattern will trick the
multi-touch surface to recognize touches without needing
a user to touch the tangible. As mentioned earlier capaci-
tive multi-touch surfaces have a grid of electrodes to detect
touch input. In the scanning process, there is only one elec-
trode active at a time, the others are grounded. The pat-
tern of the tangible ensures that in most cases only one of
the markers is on an active electrode and the others are on
grounded ones. Therefore the marker on the active elec-
trode is grounded by the other two and will be recognized
as a touch.

3.3 Tangibles 35

However some problems remain when using PUCs. The PUCs had some
issues that were
addressed by
PERCs.

first one is that if the tangible stays long enough in one
place the filter mechanics in most recognition hardware
will remove the generated touches after around 5-30 sec-
onds [Voelker et al., 2015]. This causes the problem that the
software can not be sure if the tangible was lifted off the
table or if it is still in place, but the touches were filtered.
The second problem is the identification of the tangibles.
The pattern for PUCs that will generate the most reliable
touches is a circular marker pattern. Other possibilities ex-
ist, but are not that numerous, especially if one tries to dis-
tinguish different tangibles from each other. The only char-
acteristic property of a PUC marker pattern is the distance
between the different markers. To distinguish the tangi-
bles the differences must be big enough to be discernable
from small errors that occur when reading marker posi-
tions, which makes the identification of different tangibles
very hard [Voelker et al., 2015]. It is also important that one
of the distances between the markers is significantly differ-
ent to the others to determine the rotation of the tangible. If
all distances are not distinguishable then the rotation of the
PUC at placement time is arbitrary.

PUCs and PERCs have to have at least three markers, but In the MTK PUCs
and PERCs have
three markers.

could also have more. Three is the minimum amount re-
quired to reliable track the position and rotation. They
could have more than three markers, but it does not add
more functionality. In the MTK we decided to fix the num-
ber of markers to be three.

Definition

PUCs basically consist of three conductive markers ar- PUCs need three
touches to be
described.

ranged in a fixed pattern. Their distances and relative an-
gles to each other are constant, except for possible flicker-
ing of the touches generated by the hardware. The tangible
creation scene, see Section 3.6.3, can be used to create the
description for a PUC. The tangible has to generate three
touches. The MTK will then read all distances and angles
of the touch to each other and save them. This data is re-
quired to identify a tangible in the recognition process.

36 3 The Multitouchkit - MTK

The number of PUCs the MTK can distinguish is limited,The number of PUCs
is limited. since the distances between the markers need to be differ-

ent enough to identify a PUC. The minimum distance be-
tween each marker depends on the hardware. Markers that
are too close to each other may interfere each other by not
generating touches, merging to one touch or generate heav-
ily flickering touches. The maximum distance between the
markers is limited by the maximum size of the touch sur-
face. Often surfaces are very small, like an iPhone or iPad.
Therefore placing more than one tangible at a time already
reduces the maximum distance drastically.

Detection

We now explain step by step how the MTK will recog-
nize PUCs. There are several special cases and problems
we tackled in the implementation, which will be explained
later on. We will now explain the optimal case.

We first have a look at the two recognition states a PUC canThe recognition
process for PUCs is

rather simple
compared to PERCs.

have: Recognized and NotRecognized. A PUC changes to
the Recognized state if three traces where found that match
the tangible’s description. It will stay in this state until all
of the traces are lost again. As long as two traces are active
it will update position and rotation. With only one trace
the rotation and position changes can not be calculated cor-
rectly and are therefore ignored. Is the tangible’s state Rec-
ognized its digital representative is visible, else it is hidden.
A PUC is in state NotRecognized if it has no active trace left.
At the beginning of the recognition process all PUCs are in
the state NotRecognized. The MTK will scan all available
traces to find a triple of traces that fits the distances and an-
gles saved in the tangible’s description. If a matching triple
is found its traces will be set as the active traces of the PUC
and the state will be changed to Recognized.

Recovery

After the recognition of the tangible its recovery function-Touch points
generated by

tangibles may flicker.
ality is used to improve its recognition. Our observations

3.3 Tangibles 37

showed that touches generated by markers are not as con-
sistent as those of a human finger. Touches may disappear
and then immediately or after a while reappear. This flick-
ering is handled by the MTK. The MTK will immediately
try to use new traces to recover a tangible in case one or two
of its traces end. It will use the remaining moving traces of
the tangible in combination with new ones to form triples.
If a triple fits it will replace the ended traces with the new
ones.

This process is faster than a new recognition of the tangible, Local search will
increase the
performance.

since the MTK still knows at least an approximate position
and rotation of the tangible and can filter the possible traces
to those that are near to the tangible’s last position. If only
one trace is active then the tangible is not updating the po-
sition and rotation. Just searching for new triples around
the last position of the tangible may cause problems, if the
tangible still moves, but does not generate touches. This
case is not a common case, since moving PUCs should gen-
erate touches [Voelker et al., 2013]. But to avoid problems in
such situations the last trace is removed from the tangible if
it continues moving away from the tangible’s old position.
In case no more trace of the tangible is active it is returned
to the NotRecognized state and starts searching for traces
in the whole scene.

It is possible that PUCs use traces that are not really part Tangibles could have
wrongly assigned
active traces.

of the tangible, but were wrongly assigned. For example
three finger touches that by accident matched the tangible’s
description. In these cases the tangible has the chance to
detect this using the deformation check.

In each frame the tangible checks if the active traces still Deformation check
helps from
recovering of wrongly
assigned traces.

match the tangible’s description. If this is not the case the
PUC assumes that one or more of its traces are not correctly
assigned. If the tangible has only one trace left the defor-
mation check can not check any distances. The tangible can
react in two different ways, in case two traces are remain-
ing and a deformation is detected. Both traces are removed
from the tangible, if they are both moving. In case only one
is moving, the stationary one is removed. This is due to the
assumption that this one is probably a Ghost Touch. For
more information have a look in Section 3.3.1.

38 3 The Multitouchkit - MTK

Special Cases

The described recognition and recovery features may work
reliable in most cases, but has still some issues that could
not be solved by the software using the given hardware or
that interfere with the normal processes. We will now dis-
cuss these cases.

Filtering of stationary touches. In case the user does notFiltering of PUCs is a
problem. touch or move the tangible for a longer period of time the

touches beneath it will be filtered by most of the available
hardware after around 5-30 seconds [Voelker et al., 2015].
The MTK can in this case not distinguish between a tan-
gible that was lifted off the table and one which touches
were filtered, but remained on the table. PUCs therefore
just return to their NotRecognized state, which will cause
the tangible to be invisible again.

Too few traces at placement. Depending on the layoutIt is possible that not
all marker of the

tangible will generate
touches.

of the hardware scanlines and the size of the tangible, it
is possible that not all three marker will generate touches
when placed on the touch surface (see Figure 3.9) [Voelker
et al., 2013, 2015]. Unfortunately this problem of PUCs is
not solvable by the software. A PUC can not be recognized
before not all of the three traces are active at the same time.
Moving or touching the tangible will in most cases cause
all three markers to generate touches, therefore this case is
rare.

Ghost Touches. The input hardware we used did some-Ghost Touches are
not distinguishable

by software.
times wrongly detect touches. Moving touches generated
from tangible markers stopped moving and remained for
several seconds before disappearing. We are not sure how
and why this is happening. The hardware will still send
updates and therefore we did not find a way to distinguish
those touches from normal ones. We called those touches
Ghost Touches. But since this case is very rare we expected
that it is more likely that the tangible has just one trace left
while being stationary. Additionally we could not observe

3.3 Tangibles 39

Figure 3.9: This is the original illustration of the scanline
problem by Voelker et al. [2015]. In (1) B and C will generate
touches, but A will not. In (2) all markers will generate
touches.

a situation in which it happened with more than one trace
at a time. We assume that this phenomenon is caused due
to some problems in the filter mechanics of the hardware.

It is possible that such a Ghost Touch is used by a tangi- PUCs may
accidentally use
Ghost Touches.

ble. In this case the tangible has the chance to detect this
using the deformation check. If the tangible is moved the
Ghost Touch will remain at its position and the distances
between other traces and the trace of the Ghost Touch will
not be correct any longer. In this case the wrong trace can
be identified as the stationary one and it will be freed from
use with the tangible.

One case the deformation check can not resolve is if the last Ghost Touches are
still a problem.trace of a tangible uses a Ghost Touch. While PERCs have

the chance to check if the tangible is still at the expected
position, PUCs do not have this opportunity. Luckily the
trace will disappear after a while. We could just free the
last trace and hide the tangible. But since this case is very
rare we expected that it is more likely that the tangible has
just one trace left while being stationary.

More than one option. Another big problem of PUCs More than one trace
triple forces the MTK
to guess.

is that the software can not decide which set of traces it

40 3 The Multitouchkit - MTK

Tangible

Figure 3.10: Two trace triple, which match the description
of the tangible arise the question which one the correct one
is.

should use if more than one option is available, as seen
in Figure 3.10. The MTK is forced to guess. A wrongly
used triple can be detected by the deformation check, if
touches change their relation position to each other. Nev-
ertheless is this a mayor flaw, since this causes the prob-
lem that some randomly placed fingers can be recognized
as tangible, which is annoying for users. The frequency of
this problem increases with the amount of patterns saved
as tangibles.

We gathered several ideas to improve the recognition pro-Using the origin of
traces reduces the

options.
cess in such a case. Currently all traces are handled equally
and independent from the input source. This could lead
to the fact that a tangible consists of traces that came from
more than one input source. We can think of specific tangi-
bles where this could be possible, but in our current setup
and use of tangibles it is not possible. A tangible is only
placed on one input source, all used traces should therefore
be from the same hardware. By filtering this it could reduce
the number of possible traces fitting for a tangible.

One of the most promising solutions is probably the adjust-Dynamical
thresholds would be

an important
improvement.

ment of thresholds. How far each of the traces jitters heav-
ily depends on the input hardware and tangible. The MTK
could use filter and learning algorithms to dynamically ad-
just the thresholds for each tangible and input source. In
doing so the number of fitting possibilities for each tangi-
ble could be reduced.

Additionally an analysis of the previous positions of eachAn analysis of the
traces histories may

be interesting.
trace could filter unfitting traces. Tangibles are static

3.3 Tangibles 41

in their form, therefore the distances of their generated
touches are constant, except for some minor flickering. A
triple that is used for tangible detection should in all previ-
ous frames also fit the tangible’s description. In the current
recognition process only the position in the current frame is
considered. If for example a user moves around with three
or more fingers it may happen that they will fit a tangible’s
description in some frames. The current implementation
will then assign a tangible to these touches. Future versions
could avoid this by analyzing their previous positions.

The current MTK version does not consider such an analy- These improvements
are important for
future MTK versions.

sis due to time restrictions. For such a method it is impor-
tant to have a reliable algorithm that takes into account that
it is possible that the distances of the traces change if a user
touches a tangible and that their distances may be differ-
ent when moving. Therefore it would be important to use
dynamical thresholds in combination with this technique.
Due to the fact that most of the problem can be solved using
PERCs we did not investigate in this direction. It is still an
important improvement since the reliability of the PERCs
detection could also be improved using such techniques.

The second kind of tangibles recognized by the MTK are
PERCs. PERCs solve several of the listed problems. We
will now explain PERCs and how the MTK will recognize
them.

3.3.2 PERCs: Persistently Trackable Tangibles on
Capacitive Multi-Touch Displays

PERCs are an improvement of PUCs introduced by Voelker PERCs are improved
PUCs.et al. [2015]. PERCs consist of a marker set similar to

PUCs, but have additional active hardware. The version
presented by Voelker et al. [2015] can be seen in Figure 3.11.

The recognition of PUCs is done only via touches gener- The three main
components are the
bluetooth chip, the
surface sensor and
the light sensor.

ated by the tangible’s markers. PERCs extend this by using
the new hardware to actively send information about their
state to the MTK. The bluetooth chip will connect with the
computer and send every update of the surface and light

42 3 The Multitouchkit - MTK

Figure 3.11: The original PERC illustration by Voelker et al.
[2015], showing the six main components: (1) marker pat-
tern, (2) field sensor, (3) light sensor, (4) micro controller, (5)
Bluetooth element, and (6) lead plate.

sensor. The surface sensor can detect whether the tangible
is on the surface. It searches for the signal a capacitive touch
surface emits when scanning for touches. It will send the
state OnSurface in case the sensor receives the signal and
OffSurface else. The light sensor is measuring the bright-
ness beneath the tangible. Its state can either be White, if
the brightness is high enough, or Black in all other cases.

With these new components the MTK is able to recognizePERCs solve
problems of PUCs. five different states of PERCs, as seen in Figure 3.12. This

solves some problems that occured when detecting PUCs.
The first one is the distinction between a lifted and a filtered
tangible. If the tangible’s touches were filtered the surface
sensor will still sense the signal emitted by the multi-touch
surface. The second one is the identification of different
tangibles. Every bluetooth chip has its own unique iden-

3.3 Tangibles 43

Not in Range In Range On Surface Recognised Lost Tracking

Figure 3.12: All states in which PERCs can be.

tifier, the MTK is therefore always certain which tangible
is placed onto the surface. A distinction via the distances
between markers like it is done in PUCs is not necessary.

We will now discuss the recognition and recovery process
in more detail, to better understand how exactly PERCs
work.

Definition

The description of PERCs is very similar to PUCs, since The description of
PERCs is nearly the
same as for PUCs.

PERCs are basically PUCs with extra hardware. They need
to save all information that were already saved for PUCs.
Additionally they require a bluetooth identifier of the tan-
gible’s bluetooth chip which is required for the bluetooth
communication and an offset from the tangibles position
that defines its light sensor location.

With this information the MTK is able to recognize the tan-
gible. The PERC’s recognition process is based on the pro-
cess used for PUCs, but is much more complex, since the
number of states and possibilities is extended. We will start
with one of the new recognition feature of PERCs, the light
sensor check. Afterwards we present the actual detection
process.

Light Sensor Check

Since the light sensor request is an important step in the Light sensor knows
two states: White
and Black.

recognition of PERCs, we first explain how it works and
which problems can arise before explaining the recognition
process. As already mentioned the light sensor does know
only two states, White or Black, which represent if the area

44 3 The Multitouchkit - MTK

?

?

Figure 3.13: Illustration of problem arising when the hy-
pothenuse is recognized. Two possible positions for the
third trace. Both positions are beneath the tangible.

beneath the light sensor is bright or not. Each change in
that value will be sent via bluetooth to the MTK.

The light sensor check works in the following way. TheThe light sensor
check is very simple. MTK will read the last sent light sensor value of the PERC.

Based on this information it determines the color, that
needs to be shown beneath the light sensor to change its
state. The MTK will place a shape with this color beneath
the position where it expects the light sensor to be. This ex-
pected position is determined using a triple of traces or a
position and rotation, plus the light sensor offset saved for
each PERC. The MTK is sure that the tangible is at the cal-
culated position, if the light sensor of the tangible sends a
color change of its light sensor.

While PUCs could only be recognized if all three traces areHaving only two
touches may be

enough to recognize
the tangible.

active at the same time, it is possible to recognize PERCs
with two traces. With two traces and the tangible’s descrip-
tion the options for the light sensor’s position are limited.
The software can start a light sensor request for each of the
positions and determine the correct one.

The number of possible light sensor positions increases ifA limited number of
options is important. the distances between the tangible’s marker are not distin-

guishable. Our standard tangible, seen in Figure 3.11, for
example has markers forming a right triangle with two sim-
ilar legs and one hypothenuse. Two touches that appear
and fit the tangible’s description then have one of two dis-
tances. If the distance between the two touches is similar to
the length of the tangible’s hypothenuse, two possible po-
sitions for the last touch exist, as illustrated in Figure 3.13.

3.3 Tangibles 45

?

?

?

?

Figure 3.14: Illustration of the problem arising if only the
leg of the triangle pattern is recognized. Four possible po-
sitions for the third one. Some are not beneath the tangible.

Is the distance between the two traces equal to a leg, the Checking two
positions is much
faster than four
positions.

number of options increases to four, as illustrated in Figure
3.14. Checking one option after the other is still possible,
but will cause a delay. The color change of the light sensor
in most cases is received only a few frames after the change,
as long as the light sensor check is testing the correct posi-
tion. Is the position incorrect the check will last for a much
longer period of time to ensure that it is the incorrect posi-
tion and not a delayed response. Therefore, the MTK does
only use the light sensor to recognize a tangible with two
traces if they are the hypothenuse.

As already mentioned, the MTK was designed to work es- The light sensor
shape should not be
visible to the user.

pecially well with the standard PERCs, therefore it would
be advantageous to only test the hypothenuse because the
user may not see the light sensor shape. If the two touches
are the hypothenuse we can check both positions without
the threat that the user may notice this process, since all
possible positions are below the tangible’s area, as seen in
Figure 3.13. If the possibilities increase to four, as seen in
Figure 3.14, some of the tested areas are outside of the tan-
gible and may irritate the user.

If the MTK is used with non standard PERCs this process Future MTK versions
should adapt to
different tangible
shapes.

is flawed. Using the hypothenuse does then not guaran-
tee that the light sensor shape is still covered by the tangi-
ble. Additionally it is then possible that the calculated hy-
pothenuse is not unique, since the pattern does not have to
be a right triangle. In future versions the MTK could adapt
to the situation that the saved pattern is different from the
standard PERC and change its behavior.

46 3 The Multitouchkit - MTK

Unaffected of the size and shape of the tangible the lightMoving triples can
not be checked by

the light sensor.
sensor has the problem that it can not check moving tangi-
bles. The recognition of traces by the hardware, receiving
the data via network and showing the shape takes some
time. If a triple of traces is moving and needs to be checked
the shape that is used for checking will not be beneath
the light sensor. Therefore the result may be corrupted.
It is possible to use prediction algorithms to guess where
the position will be to allow a light sensor check in these
cases, but the current version of the MTK does not have
such strategies. The recognition process implemented in
the MTK avoids the test of any moving trace triple.

Another problem when using the light sensor is that if theThe light sensor
might be checking

the wrong position.
light sensor is checking at an incorrect position, it is pos-
sible that the scene beneath the actual light sensor posi-
tion changes and causes the light sensor to send a state
change. Therefore the check will confirm the wrong po-
sition and the MTK will recognize the tangible with the
wrong touches. To avoid this situation all other possible
positions also show a shape, but in the color the light sensor
currently recognizes, which then will not cause a change.

A problem that is caused by the hardware of PERC itself isThe PERCs
hardware is in a
prototype state.

the low reliability of the light sensor. Due to the experimen-
tal hardware a light sensor request is not guaranteed to give
the correct results. Sometimes it happens that the light sen-
sor state is changed due to light condition changes around
the setup. It is also possible that the light sensor did not
change its state, because the screen was not bright enough
to trigger a change. These problems can not be addressed
by the MTK, but can be resolved by improving the hard-
ware of PERCs. The result of these issues is that the MTK
does not rely on the light sensor results. Some checks are
done more often, for example are triples tested regularly if
no other option is available.

Detection

We now explain step by step how the MTK is able to recog-The recognition of
PERCs starts with a

bluetooth connection.
nize PERCs. The first step of the PERC’s recognition pro-

3.3 Tangibles 47

cess is that the MTK connects to the bluetooth chip of the
tangible. The state of the tangible changes after this process
from its initial NotInRange to the InRange state.

When the tangible is placed on a touch surface the tangi- PERCs will send a
notification about
their placement on
the touch surface.

ble’s surface sensor detects this and will send this infor-
mation via the bluetooth module to the MTK. The MTK
receives the information and changes the tangible’s state
to OnSurface. The process described so far is exclusive to
PUCs, PUCs are oblivious to any of these state changes.

Voelker et al. [2015] reported that the tangible’s touches are Touches generated
by the tangible will be
received by the MTK
in a time window of
150 ms.

recognized in 99% of the cases within a time window of 150
ms around the bluetooth signal. The MTK therefore prefers
traces from within this time interval. This interval is hard-
ware dependent and future versions of the MTK should al-
low to set this for each hardware. In the current implemen-
tation a time window of 200ms is set.

The MTK will start scanning for the tangibles after it re- Traces that began in
the time window are
likely to be part of the
tangible.

ceived the OnSurface signal. So the first thing the MTK
does is to search for all traces that began 100ms before the
signal and start searching for triples that fit the tangibles
description. If any of the triples do fit the description it will
use them to recognize the tangible. As discussed in PUCs
this can cause problems if more than one triple fits. There-
fore the tangible that is recognized via such a guess will be
saved until 100 ms after the OnSurface signal was received.
The tangible stays recognized with the given traces, if not
more than one triple is available after 100ms and none of
the used traces conflict with any other PERC that needs to
be recognized. We illustrated a rough decision tree that is
done for each tangible in each frame in Figure 3.15.

This guessing of a triple is fast, but not guaranteed to be The MTK is
guessing, which
could cause
problems.

correct. It is for example possible that the tangible gener-
ates less than three traces at placement and the used triple
does not consist of traces belonging to the tangible. Voelker
et al. [2015] reported that this is caused due to the align-
ment of the scanlines, as we explained in Section 3.3.1. In
the used hardware it appeared in four angles. One may no-
tice that the reported issues are in the worst case situation
for PERCs, where no human is touching the tangibles and

48 3 The Multitouchkit - MTK

they are not moved at all. Since it is very likely that the
triple is the placed tangible, we decided to guess instead of
verifying the triple with a light sensor check. In doing so
we improve the detection speed and allow the detection of
a single moving tangible, but reduce the reliability.

The tangible will use the light sensor to identify which ofLight sensor checks
will determine if trace

triples are correct.
the triples to use if at the end of the time window more than
one triple is available. At the end of the window the MTK
will save all triples that are available and test each possi-
ble position. If a triple is moving the tangible detection will
wait for it to be stationary before testing it. If a stationary
triple is available it will be checked. Is the check positive
the tangible is detected with this triple, if not it will be re-
moved from the set of remaining possible triples. If only
one possibility is left, the MTK will use the leftover triple
to recognize the tangible without a light sensor check. It is
very likely that the last option is the tangible. Therefore we
use the triple without additional verification, which allows
the recognition of the tangible, even if it is still moving.

In each frame the MTK checks if the triples still fit the tan-The MTK will
maintain all possible

triples.
gible’s description and if the traces are still active to main-
tain a limited set of correct possible triples for the tangi-
ble. A triple is removed from the set, if it does not fit the
description any longer. In case some of the triple’s traces
end successors are searched to replace them. The triple will
be removed if no successor is found. At this the number
of possible options will be reduced to find the correct one
faster.

In two situations this implementation could wrongly de-The implementation
could cause wrongly

detected tangibles.
tected a tangible. The first one is the same as in PUCs. In
rare cases it is possible that none of the checked triples is
the correct one, since the tangible only generated one or
two traces. As already explained, we assume that this case
is rare so we allow the MTK the guess.

The other problem is that the light sensor can not controlMoving trace triples
can not be checked. moving triples. To be faster and to allow the recognition of

a moving triple we continue the evaluation of triples that
are stationary while others are moving. It is possible that,
while one of the stationary triples is checked, the light sen-

3.3 Tangibles 49

sor beneath the moving triple will sent a state change. In
this case the checked stationary triple instead of the mov-
ing one will be used for recognition, instead of the moving
one. We could wait until all triples stopped moving, but
this would cause the whole process to be delayed for an
unknown amount of time. The currently implemented so-
lution is our trade off between fast and responsive detection
on one hand and the number of possible wrongly detected
tangibles on the other. A future MTK version in combina-
tion with improved PERC hardware may be able to create
a better solution.

A tangible reaches the last recognition step in case the MTK If no other method
worked, the tangible
requires a light
sensor confirmed
triple.

could not find a fitting trace triple in the time window,
which did not conflict with other tangibles. In this phase
the MTK searches for fitting trace triples and tuples. As al-
ready mentioned, a PERC can also be detected using only
two traces. The MTK will check each of the possibilities
with the light sensor as described before. The difference
is that the MTK will only recognize the tangible if a set of
traces was confirmed by the light sensor, not if only one is
left. In this state the guessing is not allowed anymore, since
the chances to use a wrong set are increased.

This behavior tries to ensure that tangibles in this phase will Wrongly detected
tangibles are in this
state also possible.

only be detected if the process is sure that the traces can be
associated with the tangible. It is important to note that the
correctness is still not guaranteed. As already explained in
the light sensor description it is not reliable enough to be
completely sure that the confirmed triple is correct.

Does the user at any time in the process lift the tangible Lifting PERCs of
surface will set the
state back to
InRange.

off the table the surface sensor will stop measuring the sig-
nal of the multi-touch surface and send this information to
the MTK. The MTK knows that the tangible left the table
and changes its state to InRange. The recognition process is
stopped and any already guessed traces are removed from
the tangible.

50 3 The Multitouchkit - MTK

Recovery

The recovery process of PERCs is mainly the same as inPERCs have mostly
the same recovery
process as PUCs.

PUCs. If one or two traces are lost PERCs will use the same
functionality as PUCs to recover the lost traces. The differ-
ence is that if all of the tangible’s traces end, PERCs are able
to know that they are still on the multi-touch surface, due
to their surface sensor. Thereby the MTK can filter possible
trace triples for those that consist of traces that are near the
tangibles last position.

The MTK will use the light sensor to perform a stationaryThe stationary check
allows to prove that
the tangible did not

move.

check to ensure that the tangible is not moved from its last
known position. This check is a light sensor check using
the last known position and rotation of the tangible. If the
tangible is still in the same place it will respond and the
tangible will be sure that the position is still correct, else
the MTK will change the tangible’s state back to OnSur-
face. This will hide the tangible and allow the recognition
process to search for traces in the whole scene.

As already discussed, the light sensor is not fully reliable.The unreliable light
sensor causes us to
check several times.

The MTK changes the tangibles state after three failed sta-
tionary checks to reduce the cases in which a tangible is
wrongly hidden again.

Special Cases

Many of the special cases and remaining problems are al-
ready mentioned in the recognition process, which was de-
signed to tackle those. Therefore they are not listed again
in this section.

Too few traces at placement. It is possible that PERCsIn few cases PERCs
generate only one

touch.
generate less than three traces. The MTK has no chance
to recognize the tangible if only one trace is generated by
the tangible, but Voelker et al. [2015] reported that this hap-
pened in less than 3.2% of the cases, as long as the tangible
is not touched by the user or moved.

3.3 Tangibles 51

Ghost Touches. The problem of using Ghost Touches to Ghost Touches are
no problem for
PERCs.

recognize or recover tangibles is still present, but PERCs,
similar to PUCs, use the deformation check to recover from
this situation. In the case that the last remaining trace is
a Ghost Touch, where PUCs could not identify the differ-
ence, PERCs use their surface sensor and stationary check
to make sure that the tangible is still in place.

3.3.3 Tangible Simulator

While developing a tangible application one may not al- The fake tangibles
are created using
generated touches
and bluetooth
signals.

ways have a working touch surface and tangible at hand,
which is why we created a tangible simulator. The simu-
lator is based on the mouse input source described in Sec-
tion 3.2.2. By emulating touch points and bluetooth signals
the tangible will go through the normal process of tangible
recognition.

The tangible simulator can be controlled with the follow- The simulator has
different fixed
commands.

ing commands. By pressing, Command + T, the scene gets
an overlay showing all available tangibles. Pressing Num-
ber Key + Command selects the available tangible with the
pressed number. 0 + Command selects a new tangible, which
will be created and placed in the scene. Pressing Command
+ Left Mouse Button will create an OnSurface signal and cre-
ate three traces that fit the tangible’s description. Hereby
does the MTK recognize the tangible at the clicked posi-
tion. If the user presses Command + Left Mouse Button on
an already existing tangible he is able to drag the tangi-
ble. Again not the actual tangible is modified, but the traces
used to recognize the tangible. Pressing Option + Left Mouse
Button on an existing tangible allows to rotate the tangible.
Right Mouse Button + Command on an existing tangible will
remove the traces of the tangible and send an OffSurface
bluetooth signal, which will result in a removal of the tan-
gible.

52 3 The Multitouchkit - MTK

not recognized & on
surface

Found fitting
triples?

Is already
guessed?

wait

Is still in time window?

wait guess tangible

Left in this frame?

Found fitting
triples?

Conflict triples?

Found only one
triple?

move self +
conflicting to
light sensor

move to limitedrecognize with
only triple

move to light
sensor

test next triple

Is in limited?

Has triples left?

move to light
sensor

test next triple
or tuple

Conflict triples?

move to light
sensor

No

NoNo

No

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Figure 3.15: A decision tree roughly illustrating the MTK’s decision for each tan-
gible in each frame. Moving to limited means only using the triples of the time
window, moving to light sensor uses all available triples and tuples that fit the
description.

3.4 Gestures 53

3.4 Gestures

Gestures are a common way to enrich the user’s interac- Gestures are widely
used in multi-touch
applications.

tion possibilities with multi-touch surfaces and Kammer
et al. [2010] mentioned them as an important part of multi-
touch frameworks. Therefore we decided to include ges-
ture recognizer into the MTK. In the MTK gesture recog-
nizers work on a list of traces and look for certain patterns
in their movement. Except for global gesture recognizers
they are attached to a specific node and will perform their
analysis on the node’s traces.

The focus of this thesis was to implement the MTK’s hard- Gesture recognizer
in the MTK are
rudimentary.

ware independence and tangible detection. We therefore
did not investigate in finding the perfect realization of ges-
tures, but implemented a basic set which is similar to the set
provided by Apple in iOS. This is used to reinforce the fa-
miliarity of Apple developers with the MTK. Additionally
we added some custom made recognizers and possibilities
for developers to create new ones.

3.4.1 Standard Gestures

Based on the Apple gesture recognizer we implemented We implemented ten
standard gesture
recognizer.

press, release, tap, hold, swipe, pan, rotate and pinch ges-
ture recognizer. Additionally we implemented MoveIn and
MoveOut.

All gesture recognizer are subclasses of MTKGes- The recognizer will
process traces and
cause state changes.

tureRecognizer and implement the function pro-
cessTraces:forNode:withTimestamp:. This method gets a
set of MTKTraces as input, processes them and sets a new
state for the gesture recognizer. It is also possible that the
recognizer uses all traces of the scene, which is done in the
implementation of MoveIn and MoveOut. When changing
states all subclasses have to follow specific state changes
to ensure the correct behavior of the MTK. Which possible
state changes exist depends on the type of gesture. We
classified our gestures in two different sets like Apple did.
We differentiate between discrete gestures, for example a

54 3 The Multitouchkit - MTK

RecognizedFailed

Possible

Figure 3.16: State graph for discrete gesture recognizer.
This is very similar to the states Apple’s gesture recognizer
can have.

tap gesture, that is recognized and immediately finished,
and continuous gestures, for example pan, which are
recognized and then change until they are finished.

Discrete gestures have three different states, as seen in Fig-Discrete gestures
have three states. ure 3.16. The first state is the Possible state. This is the

normal state in which the gesture is neither recognized nor
failed. The other two states are Failed and Recognized. A
gesture changes to Recognized if some of the given traces
fit the gesture. For example a single release gesture checks
if a MTKTrace exists that has the state End. A gesture is
Failed if the given set of traces may not fit the recognizing
process and it is not possible with these traces to recognize
the gesture. For example the recognition of a right swipe
is Failed if the set of traces include only one trace which is
moving from right to left.

The second set is the continuous gesture recognizer. TheseContinuous gesture
recognizer have six

states.
recognizers have six different states, as seen in Figure 3.17.
The states Possible and Failed are similar to discrete recog-
nizer. If the continuous recognizer identifies that the given
traces form the beginning of the gesture the state is set to
Began. This is for example the case if a pan gesture recog-
nizer received a trace which moved a minimum distance.
After the gesture recognizer state changed to Began, it will
send updates with the state Changed for each frame as long
as the gesture is not canceled or recognized. From this state
the recognizer may change to Recognized or Canceled. The
Recognized state represents a correctly ended gesture. Can-

3.4 Gestures 55

BeganFailed

Possible

Changed

RecognizedCanceled

Figure 3.17: States of continuous gesture recognizer. The states are very similar to
those of Apple’s gesture recognizer.

celed is the opposite state, showing that the gesture did not
behave as expected and thereby rendering all previous Be-
gan and Changed states to invalid. In case of a pan gesture
recognizer that only recognizes a right pan, it is possible
that the recognizer changes to Began and Changed after a
trace moved some distance to the right, but when the trace
changes its direction back to the left the gesture is not pan
anymore and the recognizer will change to Canceled.

Kammer et al. [2010] mentioned that it is important for Some trace
information are
important for gesture
recognizer.

frameworks to provide information about touches to ease
the creation of gesture recognizers. Our MTKTrace imple-
mentation provided us with exactly those required infor-
mation. Gestures get all bounded traces of the node they
are bound to and can access all previous states of these
traces directly via the given MTKTrace object. This way we
had no problems with missing information for recognizers.

Additionally, the recognizer can access other traces via the The MTKTable
enables the access
to all traces.

MTKTable and the current scene. That was for example
used in the implementation of the MoveIn and MoveOut
gesture recognizers which check if a trace exists that moved
in or out of the nodes area. Such traces are not bound to the
node and will therefore not reach the recognizer within the
normal processing, but can be accessed via MTKTable.

56 3 The Multitouchkit - MTK

3.4.2 Custom Gesture Recognizer.

The second important part including gestures that KammerDifferent options
exist in the MTK to

create new gestures.
et al. [2010] mentioned is the customizability of gesture rec-
ognizers. A developer using the MTK has different options
to get the recognizers he wants to, action blocks, recognizer
blocks, delegate and implementing a new gesture recog-
nizer.

Action blocks. The first option to customize a recognizerSeveral action blocks
can be added for

each state.
are action blocks. These can be added to a gesture recog-
nizer for each state. In these action blocks the developer
may do whatever he desires. We used it for example in
combination with the pan gesture recognizer to create a
Drag recognizer. An action block is added to the Changed
state of the pan gesture recognizer, in which the position
of the attached node is modified. If the user touches a
node that has a Drag recognizer attached and moves his
finger, the pan recognizer will change its state to Began and
each following frame will send the state Changed. In each
Changed state update the action block is triggered and up-
dates the position of the node accordingly to the traces po-
sition.

Recognizer blocks. Recognizer blocks are performed ifRecognizer blocks
can change the

conditions for the
Recognized state.

the gesture recognizer will change its state to Recognized.
Each block returns a boolean value. If all of these are True,
the recognizer will change its state to Recognized, other-
wise it will stay in its current state. This is for example
used in the gesture recognizer released in node, which is a
combination of the release recognizer and the a recognizer
block. Normally a release recognizer will change its state to
Recognized if a trace ended. The release in node recognizer
will perform the added recognizer block before the change.
The block checks if the trace’s last position was in the node,
if not the recognizer will not change its state.

Delegate. The MTK allows to use a delegate instead ofA delegate is an
alternative to block. blocks. The delegate is called after each state change and

3.4 Gestures 57

may alter whatever it likes while the recognizer is working
normally. Like this more complex changes can be made.

Subclass MTKGestureRecognizer. The last option to Subclassing is the
final option when
creating custom
recognizer.

implement a gesture recognizer is by implementing
a new subclass. To do this a developer has to
subclass MTKGestureRecognizer and implement pro-
cessTraces:forNode:withTimestamp:. As already mentioned,
the states should be changed like we discussed.

These subclass objects are handled as any other gesture rec- All new recognizer
are used in the same
way as existing ones.

ognizer. By adding them to any node using addGestureRe-
cognizer: the processing will automatically call them. The
developer should follow the explained state changes, but
apart from that nothing more is required to make the MTK
work with custom gesture recognizers. Additionally the ac-
tion block, recognizer block and delegate handling is fully
implemented in the MTKGestureRecognizer class and is
therefore already available for any new gesture recognizer
class.

58 3 The Multitouchkit - MTK

Figure 3.18: A sample SpriteKit scene of a Star Wars game
that uses PERCs and multi-touch as input. This image is
taken from Voelker et al. [2015].

3.5 Visualization Support

Figure 4.1 by Kammer et al. [2010] shows the diagram of
features for multi-touch frameworks. The topmost part in
this figure is the visualization support. This includes all
possibilities and support the framework offers to create vi-
sual output.

SpriteKit. Due to the fact that we based the whole MTKSpriteKit offers many
visualization

features.
on SpriteKit, developers can use any functionality provided
by SpriteKit. SpriteKit is designed to enable developers
to create rich 2D applications, which includes animations,
sparkle effects, physics and more. One sample application
can be seen in Figure 3.18, in which SpriteKit and PERCs
are used to create the basic gameplay of a Star Wars table-
top game.

SpriteKit can use SceneKit to be extended by 3D elements.SpriteKit can be
extended to use 3D

scenes.
Apple designed SpriteKit to easily include SceneKit ele-
ments, which are with small adjustments able to process
MTKTraces, too.

3.5 Visualization Support 59

Figure 3.19: This is the MTKPieMenu. It can be set with dif-
ferent numbers of buttons and angles in which the buttons
will be placed.

GUI Elements. When developing applications with The MTK is not able
to use Apple UI
elements.

SpriteKit developers are usually able to use Apple’s stan-
dard UI elements. Unfortunately these elements work with
UITouches or NSEvents which can not be easily generated
by us. We could therefore not integrate the use of standard
Apple UI elements in the MTK. To partly compensate this
lack of UI elements we implemented our own set of con-
trols. The number of elements in the MTK and their func-
tionality is very limited, due to the fact that this was not our
main requirement. Future MTK versions should increase
the amount of available elements.

The elements we implemented are button, switch button, GUI elements can be
modified even if the
specific properties
and functions are not
explicitly included.

slider, rotary slider, grid view, list view, scroll view and
drawing area. How they work and which properties they
offer can be found in the documentation. It is important to
note that most of the functionality is implemented in a way
that allows developers to modify and customize the GUI
elements, even if explicit properties or functions are not of-
fered by the API. All GUI elements are build out of base
types of SpriteKit and therefore all elements are part of the
scene tree and can be easily accessed.

In future versions this part of the MTK needs improve- Still many options left
for future work.ments. The elements are very basic and sometimes cum-

bersome to use. One of the first improvements would be to

60 3 The Multitouchkit - MTK

add a full digital keyboard and a text box. The possibility
to set a style for all GUI elements centrally would also be
a nice feature. Another improvement would be a general
event system which is standardized for all GUI elements
and that may also include gesture events, which do not ex-
ist in the MTK so far.

3.6 TouchControlCenter 61

3.6 TouchControlCenter

The MTK offers a variety of options that can be configured, The TCC allows the
customization of the
MTK without source
code.

like different output windows, different input sources, tan-
gibles and more. All these settings are saved in a file which
is loaded at each start of the MTK. This file may be altered
by developers to customize the MTK without the need of
source code. To ease the process of setting these options we
developed the TouchControlCenter, short TCC. We provide
a MacOS and an iOS Version. The TCC has the goal to offer
a UI for most of the MTK’s configurations.

It is important to note that the TCC does not cover all pos- The current version
of the TCC is not
covering all settings.

sible settings, neither in the MacOS nor the iOS version.
We implemented a basic version that helps setting the most
common information. For future work an improved and
extended version of both the MacOS and the iOS TCC are
important.

3.6.1 TCC in MacOS

The MacOS version is a standalone application based on
Apple’s UI components. It is divided in three segments:
General settings, Application settings and Tangible set-
tings.

General Settings. In the General settings area one can de- General settings
include input sources
and views.

fine different profiles. Each profile defines the size of the
scene and other settings, like size and visibility of the cur-
sors. Profiles also have a list of Viewports. Each Viewport
is defined by two rectangles. The first one is the area in the
scene which is visible in the Viewport and the other one is
the position and size of the window in which the content
of the Viewport is shown. A profile also includes several
input sources. Each input source offers a different set of op-
tions. This part is not fully implemented yet and will need a
much more general approach to work with unknown input
sources in the future.

62 3 The Multitouchkit - MTK

Application Settings. The Application settings allow toIn the application
settings one may set
the active profile and

loaded scenes per
application as well as

all added tangibles
per scene.

set the active profile, the starting scene and the loaded
scenes per application. For each of the loaded scenes it
can be defined which tangibles will be available in the
scene. The list of tangibles is filled with all tangibles that
were defined in the Tangible settings. The list of appli-
cations and available scenes is automatically filled. Every
started application on the machine using the MTK as well
as any MTKScene class included in the started application
is added to the TCC lists.

Tangible Settings. The tangible settings show all definedIn the tangible
settings tangibles

can be defined.
tangibles and recognized bluetooth devices. New tangi-
bles can be created using the MTKTangibleCreationScene,
which can be opened from the Tangible settings. Read Sec-
tion 3.6.3 for further information.

3.6.2 TCC in iOS

The iOS version of the TCC is much smaller. So far we didMany unnecessary
settings were

removed from the
iOS version.

not test how to add other input sources than the UITouch
input source to iOS applications. Therefore all of the set-
tings for the input sources are removed. iOS allows only
one full screen window per application. This is why we
decided to allow only one scene size for MTK applications
started in iOS, which is full screen. Any Viewport or scene
related settings are therefore removed. What is still in-
cluded is the start scene and which tangibles will be in-
cluded in this scene, as well as the definition of new tan-
gibles and the deletion of old ones.

The current version can be seen in Figure 3.20. In the leftFew settings are
available in the iOS

TCC.
column are all available scenes. The selected one is the one
that will be used as start scene. In the other column are
all tangibles which are defined. The selected one will be
added to the starting scene. By pressing delete tangibles
the TCC will switch in deletion mode. If one then selects
tangibles they will be deleted if the delete tangibles button
is pressed again. If one presses the config tangibles button
it will switch to the MTKTangibleCreationScene. The start

3.6 TouchControlCenter 63

Figure 3.20: The current version of the TCC for iOS.

app button will start the selected scene.

The current implementation of the iOS MTK is very lim- A new TCC for future
MTK versions is
required.

ited. Applications built with the MTK have more possible
settings, which can not be set with the current TCC in iOS.
Additionally this TCC for iOS is no standalone application,
but is loaded at each start of the application in iOS. A better
solution would be standalone application that changes the
configuration file, which is then loaded by the MTK.

3.6.3 MTKTangibleCreationScene

The MTKTangibleCreationScene is used by the TCC in The WidgetCreation-
Scene can define
new tangibles.

MacOS as well as in iOS. It allows to create and define new
tangibles. The difference in functionality only concerns the
Close button. In iOS it will return to the TCC, while in
MacOS the close will close the window in which the MTK-
TangibleCreationScene was opened.

The first thing to do when configuring a new tangible, is to First step is to decide
if PUC or PERC.decide if the tangible is a PUC or PERC. If any bluetooth

64 3 The Multitouchkit - MTK

Figure 3.21: A sample SpriteKit scene of a Star Wars game
that uses PERCs and multi-touch as input. This image is
taken from Voelker et al. [2015].

module is in range and not used for another tangible de-
scription a button with the name is added in the top left
corner of the scene. With these buttons one can select an
bluetooth identifier for the creation of a PERC, if none is
selected the created tangible will be a PUC. The currently
selected identifier is shown in the label at the top of the
scene.

After this the tangible should be placed in the gray area. IfThe scene will
automatically get the

description of the
three markers.

all three markers generate touches the Scan button should
be pressed. If there are exactly three touches in the gray
area, a new tangible will be generated using those traces.
Pressing Save will then add the new tangible description to
the existing ones.

Using the arrows on the right one may change the size andMost values are not
directly configurable. offset of the tangible’s area. All other settings are set to

standard values and can be accessed via the configuration
file. The Clear button will delete all of the existing tangible
descriptions.

3.6 TouchControlCenter 65

This scene is a good helper to define standard tangibles, but The MTKTangible-
CreationScene is in
its current version
insufficient to
configure tangibles.

if a non standard pattern is used some settings will only be
accessible through direct manipulation of the configuration
file. This is impossible in iOS since the access of data from
other apps is not allowed and the scene itself does not offer
any access to the file. In MacOS this is possible, but often
cumbersome. Setting for example the offset of the light sen-
sor is important but not that easy in non standard pattern,
since it is not clear where the actual position of the tangible
is and how the x- and y-axis is placed. Especially this set-
ting could be done automatically by the MTK. Turning one
half of the scene white and the other black should allow to
identify on which side the tangible is. Doing the same thing
with the correct half of the scene will result in some kind of
binary search and will ultimately find the light sensors po-
sition and thereby the offset of the light sensor.

66 3 The Multitouchkit - MTK

Figure 3.22: Two players using PERCs to play AirHockey. This picture is taken
from the video by Voelker et al. [2015].

3.7 Sample Applications

We implemented several sample application using the
MTK. Three of the most prominent are listed in this section:
Tangible Demo, Airhockey and ColorFighter.

Tangible Demo. When using the MTK or configuring tan-Tangible Demo
shows the

recognition of
tangibles.

gibles it is always important to know if the detection of
tangibles is correct and that the application is running cor-
rectly. The tangible demo is included in the MTK and is
a scene where all tangibles are replaced using a holo in-
dicating the current position and rotation of the tangible.
Additionally the name of the tangible is listed.

AirHockey. We implemented a small airhockey game.The airhockey scene
is the scene mostly

used for demos.
Thanks to Florian Busch we got two tangibles that look like
air hockey mallets. We used the physics of SpriteKit to add
digital objects that follow each tangible mallet. These dig-
ital objects will collide with the digital airhockey puc. By

3.7 Sample Applications 67

Figure 3.23: ColorFighter is a game similar to Space Invaders. The player has to hit
enemy ships with a shot colored as the enemy’s ship.

adjusting friction and bounciness we achieved a relative
realistic feeling. The game works like a normal airhockey
game. If the airhockey puc will hit the edges it will bounce
back and if it goes in one of the goals the other player will
get a point and eventually win. To show that this combi-
nation of real and digital world is capable of more than the
physical tables, we added a power up that will add another
puc to the game if collected.

ColorFighter. Another implementation is the game Col- ColorFighter is
another demo
application for the
MTK.

orFighter. The player gets three ships that will automati-
cally shoot. At the opposite side of the screen smaller en-
emy ships will spawn. They try to reach the player’s side
before getting shot. If they archive this the player will lose
a live, which is indicated by the health bar at the left side.
After the player loses 10 lives the game is over. To make
the game more interesting enemy ships have different col-
ors. Each ship can only be destroyed if it is hit by a shot
with the same color. The color of the shot is defined by the
color of the ship that fired the shot. The player has three dif-
ferently colored ships. If two ships are close to each other

68 3 The Multitouchkit - MTK

their colors will mix and create a new one. This effect is lost
if they are moved away from each other. If both of the other
ships are in reach of the third it will turn white. Like this
the player can achieve 7 different colors. Enemy ships will
have one of these colors. In the current implementation the
players ship are movable using drag and rotate gestures. In
a future version we plan to use tangibles for this game, too.

69

Chapter 4

Evaluation

I this chapter we take a look into the work of Kammer et al. Kammer et al. [2010]
did an analysis of
existing multi-touch
frameworks.

[2010], who analyzed different existing multi-touch frame-
works. He identified several components with which he
can distinct multi-touch frameworks. In Figure 4.1 one can
see an overview of the features Kammer et al. [2010] iden-
tified. We will now proceed from bottom to top in this di-
agram and evaluate how the MTK addresses the different
parts which are divided into features, scope, and architec-
ture.

4.1 Architecture

The lowest area in Figure 4.1 is the architecture. It is di-
vided in two layers. The lowest layer consists of two parts:
Platform and hardware independence. The layer above
consists of the event system. We will discuss all three parts
below.

Platform independence. The fact that the framework is Platform
independence allows
frameworks to run on
different systems.

not bound to one operating system but can be used on any
platform is called platform independence. A platform in-
dependent framework can reach a bigger number of users,
since it can be used on more systems. Frameworks often

70 4 Evaluation

Visualization Support

Gesture Extensibility

Standard Gestures

Gesture Parameters

Tangible Objects Touches

Event System

Platform Independence Hardware Independence

Features

Scope

Architecture

Figure 4.1: Replication of the diagram in Kammer et al.
[2010]. It shows the different layers and features a multi-
touch framework can have.

accomplish this by using programming languages like Java
(Laufs and Ruff [2010]), Python (Hansen et al. [2009]) or
JavaScript (Nebeling and Norrie [2012]), which are plat-
form independence.

The disadvantages of platform independence is for exam-Platform independent
frameworks may be

slower than native
ones.

ple the loss of performance and the lack of platform specific
features. Performance often suffers when using cross plat-
form languages like Java [Hansen et al., 2009, Nebeling and
Norrie, 2012], since they may need additional overhead to
run on all systems. Other languages may offer cross com-
piling to overcome this performance issue. Nevertheless
will developers of cross compiled applications lack the abil-
ity to use the native IDEs and frameworks developed for a
specific operating system or programming language.

Since our main focus is to develop a framework forWe want a
framework with

native support for
MacOS and iOS.

MacOS and iOS applications we decided that we will use
Objective-C. Using this the MTK will be a native frame-
work for MacOS and iOS, but not run on any other oper-
ating system. This allows us to use software development
features for iOS and MacOS provided by Apple, but limits
the operating systems the framework supports.

4.1 Architecture 71

Hardware independence. The second part in the lowest Multi-touch
frameworks often
support several
hardware via TUIO.

layer of Figure 4.1 is the hardware independence. Hard-
ware independence means that the framework may sup-
port touch input from many input sources. The usage
of several input sources should be eased by the frame-
work. Most of the existing frameworks achieve this by us-
ing TUIO [Kammer et al., 2010], but some also support Win-
dows 7 Touch and custom device adapters. An overview
can be found in Figure 4.2.

We introduced several implementations of input sources in The MTK supports
TUIO, Windows 7
Touch and any other
device adapter.

Section 3.2.2 to ensure the hardware independence of the
MTK. We implemented a TUIO input source and custom
implementations for other sources. Also Windows 7 Touch
and any other device is supported using the JSON input
source and its possibilities to modify received data via del-
egate.

Event system. The third part in the architecture layer is Kammer et al. [2010]
does two distinctions
in the event system.

the event system. In this part Kammer et al. [2010] identi-
fies two variants. The first one is that the framework has
some kind of gesture server which may process all ges-
tures and sends all gesture events for example via network.
This achieves some kind of loose coupling, allowing sev-
eral clients to listen to the same gestures. The second al-
ternative is that the framework’s gesture recognizers raise
gesture events which will be processed by the listeners.

In the MTK we implemented the second variants. Ges-
tures as well as all touch input are processed locally on
each node. The delegate of the recognizers or the set action
blocks may react on state changes.

The second distinction done by Kammer et al. [2010] in the A framework’s
gesture recognition
can be done either
decentral or central.

event system is also related to gestures, but part of the ac-
tual gesture recognition instead of the distribution of the
gesture events. In some frameworks the gesture processing
is done central using a gesture registry and an abstraction
of the UI. The registry then queries the application about its
visual components to associate gestures with UI elements.
The decentral approach is that each UI element allowing
gestures processes them by itself.

72 4 Evaluation

In this case the argumentation is the same: The MTK is
decentral, since the touch and gesture processing is com-
pletely done on each node.

4.2 Scope

The second area in Figure 4.1 is the scope. Scope has three
parts: gesture parameters, tangible objects, and Touches.
As in the architecture section we will now discuss each part.

Tangible objects. Kammer et al. [2010] state that most ofMost frameworks
support tangibles via

TUIO.
the frameworks support tangibles simply by implementing
the TUIO protocol. Like this the framework can either pro-
cess tangibles or send recognized tangibles to clients via
network. Only a few of the frameworks actually focus on
tangibles.

As already explained in Section 3.3, the MTK has a focusWe focused on PUCs
and PERCs. on recognizing PUCs and PERCs. It is not capable of rec-

ognizing TUIO tangibles. This is a feature that could be
integrated in future versions.

Touches. Kammer et al. [2010] stated no clear distinc-Which touch
information are

available depends on
the framework.

tion that can be made in this area, but discussed what
touch information each framework provided. While some
frameworks provide only a position per touch, many other
frameworks have additional information like direction,
size, and more.

In Section 3.2.1 we presented MTKTrace, which containsThe MTK provides
access to any

information ever
received for a touch.

all information the MTK provides for a single touch. It in-
cludes a history of all information ever received for a single
touch, including identifier, position, size, and more. Sev-
eral analysis are also already implemented, like the check if
the trace is stationary or how old it is. Additionally can ges-
tures and other objects perform any needed analysis using
the trace’s entries, which serve as the touch’s history.

4.3 Features 73

Gesture parameters. As in the previous paragraph, Kam- Most multi-touch
frameworks provide
gesture parameters.

mer et al. [2010] did not provide a clear definition of what
gesture parameters are and how they judged if a frame-
work provides them or not. In general this point means
that the framework provides parameters of recognized ges-
tures, which specific parameters are provided depends on
the gesture.

In case of the MTK this is highly dependent on the gesture
recognizer itself. All gesture recognizers provide the traces
they used for recognition, but no other gesture parameters
that are the same for all recognizer are provided. Each ges-
ture can define its own set of parameters. This may be a
limitation of the MTK if such parameters are required, since
developers may have to extend the gestures to be provided
with these parameters.

4.3 Features

The top area in Figure 4.1 by Kammer et al. [2010] is named
features. It is separated in three layers: standard gestures,
gesture extensibility, and visualization support.

Standard gestures. The first layer, standard gestures, con- All evaluated
multi-touch
frameworks support
standard gestures.

tains everything related to the support of standard ges-
tures. All frameworks evaluated by Kammer et al. [2010]
support gestures. The distinction which is made is if the
framework supports online and offline gestures. Online
gestures are gestures like rotation and scale, which are pro-
cessed while the user still interacts with the system. Offline
gestures are evaluated after an interaction, like the analysis
of touches forming a circle to activate a menu.

Both of these gesture types are supported by the MTK. As We support online
and offline gestures.described in Section 3.4, gestures are processed on each

node with the nodes bounded traces. In doing so the im-
plementation of online gestures like scale and rotation are
easily performed. Additionally can gesture recognizers re-
ceive more touches by accessing the node’s old traces or

74 4 Evaluation

all traces in the scene. This allows the processing of offline
gestures.

Another gesture type Kammer et al. [2010] defined areThe MTK supports
global gestures. global gestures, which some frameworks support. These

gestures are available application wide and can be per-
formed independently from the content. As we already de-
scribed in Section 3.2.3, they are processed in the fifth step
of the initialization of the touch processing. Here they are
processed independently from the active scene.

Gesture extensibility. The second layer is the Gesture ex-Most frameworks
extend gestures by

subclassing existing
ones.

tensibility. Each framework should provide a simple way
to implement new gestures. Kammer et al. [2010] reported
that the evaluated frameworks range from providing just
raw data to subclassing.

The gesture recognizers and their extensibility are ex-The MTK provides all
gesture

extensibilities
Kammer et al. [2010]

listed.

plained in Section 3.4. Each existing gesture can be modi-
fied using a delegate, action blocks and a recognition block.
Additionally any new gesture can be implemented by sub-
classing MTKGestureRecognizer, which already provides
functionalities like the block management. All gesture rec-
ognizers provide all traces related to their recognition pro-
cess, as well as access to all other existing traces, which
equivalents an access to all sent raw data. Therefore the
MTK offers all possibilities for gesture extensibility Kam-
mer et al. [2010] described.

Visualization support. The last layer in Figure 4.1 is theKammer et al. [2010]
state the need of

visualization support
for any multi-touch

framework.

visualization support. Kammer et al. [2010] state that any
framework needs visualization support, either in having an
own set of extensible UI components, or the possibility to
create own UI elements.

The MTK provides built-in UI elements as well as the cre-The MTK provides
visualization support
due to the support of
any SpriteKit scene.

ation of own ones. As described in 3.5, SpriteKit is a frame-
work to render nearly any possible 2D scene. The base of all
scenes are SKNodes, which we extended with categories to
be touchable. Because of this any scene build with SpriteKit

4.4 Summary 75

Figure 4.2: This overview of all features of existing multi-touch frameworks is
taken from Kammer et al. [2010].

can be combined with the MTK to process touches, ges-
tures, tangibles, and all other things the MTK provides.
Some frameworks also have the possibility to provide 3D
scenes. 3D is not explicitly included into the MTK, but can
be achieved due to SceneKit which supports 3D and can be
easily integrated into SpriteKit scenes.

4.4 Summary

Kammer et al. [2010] identified several aspects to distinct
existing frameworks. We evaluated each part for the MTK.
To sum up this evaluation we revisit Figure 4.1 in which
Kammer et al. [2010] listed all evaluated frameworks and
their features.

The MTK can now also be placed in this figure. Going from
left to right in the figure, and top to bottom in this chapter:

76 4 Evaluation

The MTK ...

• ... is partly cross-platform, since it supports MacOS
and iOS, but no other platform.

• ... has no gesture server, but has an integrated library.

• ... supports parts of TUIO.

• ... can support Windows 7.

• ... can support any device adapter.

• ... has decentral gesture events.

• ... has a focus on tangibles (PUCs and PERCs).

• ... provides touch parameters.

• ... can provide gesture parameters.

• ... supports online and offline gestures.

• ... supports gesture extensibility via super class, raw
data, delegate and blocks.

• ... includes visualization support due to the support
of any SpriteKit scene and custom UI elements.

77

Chapter 5

Summary

We introduced the MultiTouchKit, a framework to inte-
grate multi-touch, PUCs and PERCs into MacOS and iOS.
We described all current features, ongoing developments
and possible improvements of the MTK. Additionally we
compared those features against those Kammer et al. [2010]
identified in their evaluation of existing multi-touch frame-
works. To summarize we can state that the MTK addressed
all features presented by Kammer et al. [2010].

5.1 Future work

Since the development time of the framework was limited,
we concentrated on a reliable basis and had to ignore some
features that may be very interesting for future versions.
Some of those were already discussed at different points in
the work. In this section we list some essential features we
would like to see in future versions.

Enhance UI and Gestures. We already explained that our Enhance the
standard UI
Elements

focus was to integrate different input sources and to recog-
nize tangibles, therefore gestures and standard UI elements
are in a very basic state. Especially the UI elements would
benefit from a common event system, which could be ex-

78 5 Summary

tended to gesture events. A loadable GUI configuration file
which may include a color template would also be a nice ex-
tension to customize UI elements without recompiling the
MTK or manipulating them in the source code.

The TCC is a helpful tool to configure the MTK. Unfortu-Improve the
TouchControlCenter nately it is missing several settings due to the complexity of

the settings the MTK offers. It needs a complete redo to be a
perfect configuration tool for the MTK. Additionally, since
iOS now allows the access of data from other applications,
it would be much more helpful if the TCC is a standalone
application that configures a shared settings file. The cur-
rent implementation is a scene that is loaded before the ac-
tual application.

The MTK is able to receive touch information via TUIO, butSupport TUIO
tangibles. none of TUIO’s tangible information are used. We could

support any kind of light sensing technology if we address
TUIO input in more detail. The MTK could easily support
tangibles here, which are different from PUCs and PERCs.

The development of the MTK was done mostly for standardSupport of better and
other PERCs. PERCs. This was a given requirement by the supervisor

since it would probably result in the most reliable tangible
detection for the MTK. We think that it is possible to imple-
ment a similar reliable implementation that works on any
form of PERCs. In many cases we already implemented
the detection in a general manner, but in some situations it
is still focused on the standard design.

Additionally are some cases in the detection not reliable be-PERCs are not fully
reliable so far. cause PERCs still have some flaws. For example is the light

sensor not very reliable. We could improve the recognition
process if the hardware is more reliable. It may also be pos-
sible that PERCs get an updated hardware that may allow
new interaction possibilities, which may allow a much bet-
ter recognition. For example Florian Busch works in his
thesis on movable PERCs, which is another connection be-
tween digital and real world using tangibles that can react
to changes in the digital world. We already included very
basic support to sent data to tangibles, but this could be
extended to allow easy access to the tangible’s data.

79

Bibliography

Apple Inc. Sknode class reference. URL https:
//developer.apple.com/library/ios/
documentation/SpriteKit/Reference/SKNode_
Ref/. Accessed: 2015-09-17.

CodePlex. Miria sdk - multi device input ui controls
for silverlight and moonlight. URL http://miria.
codeplex.com. Accessed: 2015-09-17.

Alessandro De Nardi. Grafiti - gesture recognition manage-
ment framework for interactive tabletop interfaces. URL
https://grafitiproject.wordpress.com. Ac-
cessed: 2015-09-17.

Dimitri Diakopoulos and Ajay Kapur. Argos: An open
source application for building multi-touch musical in-
terfaces. In International Computer Music Conference, 2010.

Florian Echtler and Gudrun Klinker. A multitouch software
architecture. In Proceedings of the 5th Nordic conference on
Human-computer interaction: building bridges, pages 463–
466. ACM, 2008.

Thomas E. Hansen, Juan Pablo Hourcade, Mathieu Vir-
bel, Sharath Patali, and Tiago Serra. Pymt: A post-
wimp multi-touch user interface toolkit. In Proceedings
of the ACM International Conference on Interactive Table-
tops and Surfaces, ITS ’09, pages 17–24, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-733-2. doi: 10.
1145/1731903.1731907. URL http://doi.acm.org/
10.1145/1731903.1731907.

Ideum. Gestureworks - multitouch & hci software frame-
work. URL http://gestureworks.com/. Accessed:
2015-09-17.

https://developer.apple.com/library/ios/documentation/SpriteKit/Reference/SKNode_Ref/
https://developer.apple.com/library/ios/documentation/SpriteKit/Reference/SKNode_Ref/
https://developer.apple.com/library/ios/documentation/SpriteKit/Reference/SKNode_Ref/
https://developer.apple.com/library/ios/documentation/SpriteKit/Reference/SKNode_Ref/
http://miria.codeplex.com
http://miria.codeplex.com
https://grafitiproject.wordpress.com
http://doi.acm.org/10.1145/1731903.1731907
http://doi.acm.org/10.1145/1731903.1731907
http://gestureworks.com/

80 Bibliography

Martin Kaltenbrunner and Ross Bencina. reactivision: A
computer-vision framework for table-based tangible in-
teraction. In Proceedings of the 1st International Confer-
ence on Tangible and Embedded Interaction, TEI ’07, pages
69–74, New York, NY, USA, 2007. ACM. ISBN 978-1-
59593-619-6. doi: 10.1145/1226969.1226983. URL http:
//doi.acm.org/10.1145/1226969.1226983.

Martin Kaltenbrunner, Till Bovermann, Ross Bencina, and
Enrico Costanza. Tuio: A protocol for table-top tangi-
ble user interfaces. In Proc. of the The 6th Int’l Workshop
on Gesture in Human-Computer Interaction and Simulation,
pages 1–5, 2005.

Dietrich Kammer, Mandy Keck, Georg Freitag, and Markus
Wacker. Taxonomy and overview of multi-touch frame-
works: Architecture, scope and features. In Workshop on
Engineering Patterns for Multitouch Interfaces, 2010.

Werner A. König, Roman Rädle, and Harald Reiterer.
Squidy: A zoomable design environment for natural user
interfaces. In CHI ’09 Extended Abstracts on Human Fac-
tors in Computing Systems, CHI EA ’09, pages 4561–4566,
New York, NY, USA, 2009. ACM. ISBN 978-1-60558-247-
4. doi: 10.1145/1520340.1520700. URL http://doi.
acm.org/10.1145/1520340.1520700.

Uwe Laufs and Christopher Ruff. Mt4j - a cross-platform
multi-touch development framework. In Workshop of the
ACM SIGCHI Symposium on Engineering Interactive Com-
puting Systems, 2010.

Rong-Hao Liang, Liwei Chan, Hung-Yu Tseng, Han-Chih
Kuo, Da-Yuan Huang, De-Nian Yang, and Bing-Yu Chen.
Gaussbricks: Magnetic building blocks for constructive
tangible interactions on portable displays. In Proceed-
ings of the 32Nd Annual ACM Conference on Human Factors
in Computing Systems, CHI ’14, pages 3153–3162, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-2473-1.
doi: 10.1145/2556288.2557105. URL http://doi.acm.
org/10.1145/2556288.2557105.

Johannes Luderschmidt, Immanuel Bauer, Nadia Haubner,
Simon Lehmann, Ralf Dörner, and Ulrich Schwanecke.
Tuio as3: A multi-touch and tangible user interface rapid

http://doi.acm.org/10.1145/1226969.1226983
http://doi.acm.org/10.1145/1226969.1226983
http://doi.acm.org/10.1145/1520340.1520700
http://doi.acm.org/10.1145/1520340.1520700
http://doi.acm.org/10.1145/2556288.2557105
http://doi.acm.org/10.1145/2556288.2557105

Bibliography 81

prototyping toolkit for tabletop interaction. In Self Inte-
grating Systems for Better Living Environments: First Work-
shop, Sensyble, pages 21–28, 2010.

Mindstorm Inc. Breezemultitouch - multi-touch frame-
work for wpf 3.5. URL https://code.google.com/
p/breezemultitouch/. Accessed: 2015-09-17.

Michael Nebeling and Moira Norrie. jqmultitouch:
Lightweight toolkit and development framework for
multi-touch/multi-device web interfaces. In Proceedings
of the 4th ACM SIGCHI Symposium on Engineering Inter-
active Computing Systems, EICS ’12, pages 61–70, New
York, NY, USA, 2012. ACM. ISBN 978-1-4503-1168-7.
doi: 10.1145/2305484.2305497. URL http://doi.acm.
org/10.1145/2305484.2305497.

NUI Group. Touchlib - a multi-touch development kit. URL
http://nuigroup.com/touchlib/. Accessed: 2015-
09-17.

Prasad Ramanahally, Stephen Gilbert, Thomas Niedziel-
ski, Desirée Velázquez, and Cole Anagnost. Sparsh ui:
A multi-touch framework for collaboration and modular
gesture recognition. In ASME-AFM 2009 World Conference
on Innovative Virtual Reality, pages 137–142. American So-
ciety of Mechanical Engineers, 2009.

Jun Rekimoto. Smartskin: An infrastructure for free-
hand manipulation on interactive surfaces. In Pro-
ceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’02, pages 113–120, New York,
NY, USA, 2002. ACM. ISBN 1-58113-453-3. doi: 10.
1145/503376.503397. URL http://doi.acm.org/10.
1145/503376.503397.

Christophe Scholliers, Lode Hoste, Beat Signer, and Wolf-
gang De Meuter. Midas: A declarative multi-touch
interaction framework. In Proceedings of the Fifth In-
ternational Conference on Tangible, Embedded, and Embod-
ied Interaction, TEI ’11, pages 49–56, New York, NY,
USA, 2011. ACM. ISBN 978-1-4503-0478-8. doi: 10.
1145/1935701.1935712. URL http://doi.acm.org/
10.1145/1935701.1935712.

https://code.google.com/p/breezemultitouch/
https://code.google.com/p/breezemultitouch/
http://doi.acm.org/10.1145/2305484.2305497
http://doi.acm.org/10.1145/2305484.2305497
http://nuigroup.com/touchlib/
http://doi.acm.org/10.1145/503376.503397
http://doi.acm.org/10.1145/503376.503397
http://doi.acm.org/10.1145/1935701.1935712
http://doi.acm.org/10.1145/1935701.1935712

82 Bibliography

Johannes Schöning, Jonathan Hook, Tom Bartindale, Do-
minik Schmidt, Patrick Oliver, Florian Echtler, Nima Mo-
tamedi, Peter Brandl, and Ulrich von Zadow. Building
interactive multi-touch surfaces. In Christian Müller-
Tomfelde, editor, Tabletops - Horizontal Interactive Dis-
plays, Human-Computer Interaction Series, pages 27–49.
Springer London, 2010. ISBN 978-1-84996-112-7. doi:
10.1007/978-1-84996-113-4 2. URL http://dx.doi.
org/10.1007/978-1-84996-113-4_2.

B. Signer, U. Kurmann, and M.C. Norrie. igesture: A gen-
eral gesture recognition framework. In Document Analy-
sis and Recognition, 2007. ICDAR 2007. Ninth International
Conference on, volume 2, pages 954–958, Sept 2007. doi:
10.1109/ICDAR.2007.4377056.

Lucia Terrenghi, David Kirk, Abigail Sellen, and Shahram
Izadi. Affordances for manipulation of physical ver-
sus digital media on interactive surfaces. In Proceedings
of the SIGCHI Conference on Human Factors in Comput-
ing Systems, CHI ’07, pages 1157–1166, New York, NY,
USA, 2007. ACM. ISBN 978-1-59593-593-9. doi: 10.
1145/1240624.1240799. URL http://doi.acm.org/
10.1145/1240624.1240799.

Simon Voelker, Kosuke Nakajima, Christian Thoresen,
Yuichi Itoh, Kjell Ivar Øvergård, and Jan Borchers.
Pucs: Detecting transparent, passive untouched capac-
itive widgets on unmodified multi-touch displays. In
Proceedings of the 2013 ACM International Conference on
Interactive Tabletops and Surfaces, ITS ’13, pages 101–104,
New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2271-
3. doi: 10.1145/2512349.2512791. URL http://doi.
acm.org/10.1145/2512349.2512791.

Simon Voelker, Christian Cherek, Jan Thar, Thorsten
Karrer, Christian Thoresen, Kjell Ivar Øvergård, and
Jan Borchers. Percs: Persistently trackable tangi-
bles on capacitive multi-touch displays. In Proceed-
ings of the 28th Annual ACM Symposium on User Inter-
face Software and Technology (to appear), UIST ’15, New
York, NY, USA, November 2015. ACM. doi: 10.
1145/2807442.2807466. URL http://dx.doi.org/
10.1145/2807442.2807466.

http://dx.doi.org/10.1007/978-1-84996-113-4_2
http://dx.doi.org/10.1007/978-1-84996-113-4_2
http://doi.acm.org/10.1145/1240624.1240799
http://doi.acm.org/10.1145/1240624.1240799
http://doi.acm.org/10.1145/2512349.2512791
http://doi.acm.org/10.1145/2512349.2512791
http://dx.doi.org/10.1145/2807442.2807466
http://dx.doi.org/10.1145/2807442.2807466

Bibliography 83

Malte Weiss, Julie Wagner, Yvonne Jansen, Roger Jen-
nings, Ramsin Khoshabeh, James D. Hollan, and Jan
Borchers. Slap widgets: Bridging the gap between vir-
tual and physical controls on tabletops. In Proceedings
of the SIGCHI Conference on Human Factors in Comput-
ing Systems, CHI ’09, pages 481–490, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-246-7. doi: 10.
1145/1518701.1518779. URL http://doi.acm.org/
10.1145/1518701.1518779.

Neng-Hao Yu, Li-Wei Chan, Seng Yong Lau, Sung-Sheng
Tsai, I-Chun Hsiao, Dian-Je Tsai, Fang-I Hsiao, Lung-
Pan Cheng, Mike Chen, Polly Huang, and Yi-Ping Hung.
Tuic: Enabling tangible interaction on capacitive multi-
touch displays. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’11, pages
2995–3004, New York, NY, USA, 2011. ACM. ISBN 978-1-
4503-0228-9. doi: 10.1145/1978942.1979386. URL http:
//doi.acm.org/10.1145/1978942.1979386.

http://doi.acm.org/10.1145/1518701.1518779
http://doi.acm.org/10.1145/1518701.1518779
http://doi.acm.org/10.1145/1978942.1979386
http://doi.acm.org/10.1145/1978942.1979386

85

Index

AirHockey . 66
AppleDoc . 12
Argos . 7

Breezemultitouch . 5–6

ColorFighter . 67–68

entry . 15–16
evaluation . 69–76

future work . 77–79

gestures . 53–57
GestureWorks . 5
Ghost Touch . 38–39
Grafiti . 8

iGesture. .8
input source . 19–23
introduction . 1–3

jQMultitouch . 6
JSON input source . 21–22

libTisch . 8

marker . 33–34
Midas . 6
Miria. .6
mouse input source . 20–21
MT4j . 7
MTKEntry . 15–16
MTKInputSource . 19–23
MTKTangibleCreationScene . 63–65
MTKTrace . 15–19
Multitouchkit .11–68

node . 12

86 Index

PERC. 41–51
PUC . 33–41
PyMT . 8

related work . 5–9

scene . 12
SKNode . 12
SKScene . 12
Sparsh UI . 7, 8
SpriteKit . 11–12
Squidy . 7

Tangible Demo . 66
Tangible Simulator . 51
Tangibles . 33–51
TISCH framework. .see libTisch
touch processing . 14–32
TouchControlCenter . 61–65
Touchlib . 8
trace . 15–19
TUIO . 6–7
TUIO AS3 . 7
TUIO input source . 21

UITouch input source . 21

visualization support . 58–60

Typeset September 28, 2015

	Abstract
	Acknowledgements
	Conventions
	Introduction
	Related work
	The Multitouchkit - MTK
	General design decisions
	Touch Processing
	MTKTrace
	MTKInputSource
	Initialization of Touch Processing
	Recursive Touch Processing

	Tangibles
	PUCs: Passive Untouched Capacitive Widgets
	PERCs: Persistently Trackable Tangibles on Capacitive Multi-Touch Displays
	Tangible Simulator

	Gestures
	Standard Gestures
	Custom Gesture Recognizer.

	Visualization Support
	TouchControlCenter
	TCC in MacOS
	TCC in iOS
	MTKTangibleCreationScene

	Sample Applications

	Evaluation
	Architecture
	Scope
	Features
	Summary

	Summary
	Future work

	Bibliography
	Index

