
CodeGraffiti: Using hand-drawn sketches connected
to code bases in navigation tasks

Leonhard Lichtschlag
RWTH Aachen University

lichtschlag@cs.rwth-aachen.de

Lukas Spychalski
RWTH Aachen University

spychalski@cs.rwth-aachen.de

Jan Bochers
RWTH Aachen University

borchers@cs.rwth-aachen.de

Abstract—Current IDEs excel at text manipulation, but offer
little support for sketching and capturing informal visual artifacts
that developers create during their work on the code base. Such
artifacts promise to help the examination of existing source bases
and the orientation therein when linked up to corresponding code
fragments. In this paper, we present a design and prototype how
to use linked sketches to assist the the developer in orientating
in the code base. Our evaluation with 32 users shows that testers
adopt the navigation through linked sketches and refer to the
spatial documentation significantly more.

I. INTRODUCTION

Understanding the source code is one of the core software
engineering activities [7], [9], [16]. To navigate a code base
and propose changes to it, a developer has to understand the
conceptual model of the program structure and has to find the
right places to make changes, relying on the means provided
by the IDE. Current IDEs provide rich support for textual
organization, e.g., folders or call navigation. But, the domain of
visual and spatial support for navigation [2], [5], [6], [12], [17]
is employed little. Many of these approaches are automatically
generated, high-level abstractions created on the basis of the
underlying source code. Their advantage is that they require
little effort from the user. But, they cannot be created when a
developer starts by visualizing her design prior to coding, and
they do not provide insight into her conceptual model.

Sketching is an established technique for ideation, explo-
ration, and communication [15], [19]. Software developers use
sketches frequently in different phases of the software develop-
ment process to depict and convey different views and concepts
of the system under development [20]. We approach this by
using such rather informal drawings as means for navigation
and understanding of code bases by integrating them into the
IDE and connecting them to code artifacts (figure 1). This way,
sketches fulfill a role orthogonal to generated visualizations. In
this paper, we introduce CodeGraffiti, a design of integrating
hand-drawn sketches into a software development environment
and connecting these sketches to source code. We built a
prototype plug-in for the Brackets IDE [1] and present a study
of developers exploring a source base, interacting with the
connected sketches to solve their tasks.

II. RELATED WORK

Knowledge about source code often gets visualized in
transient form during short meetings, e.g., on whiteboards
or paper [9]. Sketches are also important for understanding
existing code, designing, or refactoring [4]. They retain value

after the day of creation [3], but since sketches are rarely
recorded and archived afterwards, the knowledge has to be con-
stantly rediscovered [9]. In all studies above, the use of hand-
drawn sketches outweighed both tool-based visualizations and
visualizations created with automated tools, often because
sketching is unconstrained by formal notations, e.g., UML [4],
[12]. Developers establish their own individual workflows in
dealing with sketches, mostly in paper notebooks or on tablet
devices [20]. Developers might redraw a sketch multiple times
in order to get a cleaner version of the original sketch that will
be recognizable in the future by others [3].

Several designs have been put forward to integrate sketches
into the IDE: ReBoard [3] automatically captures and archives
whiteboard images. Calico [11] enhances design processes on
electronic whiteboards and tablet devices by introducing a
grid of multiple virtual whiteboards. Codepad [13] explores
interactions with sketches on touch interfaces that are con-
nected to the IDE. Sketches have also been used as a user
interface description language and in teaching [14]. Previously,
we proposed sketching on the code as a means of expression
for the navigator in pair programming tasks [10].

Approaches to provide a higher abstraction to views
on a code base include line oriented visualizations, e.g.,
SeeSoft [6], vocabulary oriented [12] visualizations like The-
matic Maps [8], or activity map based approaches like Code
Bubbles [2] and CodeCanvas [5]. Corresponding user studies
suggest that these tools can help in understanding code, but
may also lead to an additional layer of confusion.

III. DESIGN

The main strength of sketches is their informality and the
ability cover a wide range of contexts with common place
drawing tools. This same quality, however, makes it both tricky
to parse sketches algorithmically and hard to integrate sketches
into a formal environment like an IDE without loosing the very
qualities that make them so powerful in the first place. Building
on designs from the related work [5], [13], we developed the
mission control view (figure 1b). The mission control view
is a semi-transparent, fullscreen overlay that the user invokes
and dismisses by a menu or a keyboard shortcut. This view
is a canvas of infinite size that can be panned and zoomed.
It provides an overview of the whole project and contains
sketches and connections to the code base. These connections
allow the user to navigate to the source code without using
the project tree and its folder structure. In our prototype, only
one mission control view exists per project. The user interface
elements of this view are integrated into the view itself, since



Fig. 1. a) Concept: the sketch refers to many code fragments in multiple files and reveals a structure of the code base. b) The sketch used in the study in the
mission control view. c) Detail with two connection dots visible. The blue one is highlighted because it refers to the lines with the keyboard focus.

the mission control view overlaps all other areas of the editor.
It is useful for sketches that explain a structure of the code base
by bringing together parts of a concept and putting them into
a big picture. These sketches may be composed of multiple
elements referring to multiple code locations, e.g., a workflow
of an algorithm that spans multiple methods.

Our design represents connections as color coded one-to-
one relations between an (x,y)-position in a sketch and a range
of code lines or a file. This does not constrain the semantics of
the connections: positions in a sketch are independent of style,
formalism, or the IDE’s ability to parse the sketch file. Ranges
in code can indicate many levels: individual lines, methods,
uses of a variable, etc. This way, the user has more freedom
to express meaning though connections. The prototype plug-in
implements them as connection dots (figure 1c), i.e., buttons
embedded into the sketches in the mission control view. These
connection dots refer to either a file or to a range of lines
in a file, e.g., a method. When the user clicks on them, the
mission control view is dismissed and the IDE navigates to the
corresponding file and code location. There, the code lines are
colored like the connection dot in the overlay. If the mission
control view is invoked with the keyboard focus in theses lines,
the mission control highlights the corresponding connection
dot. A user thus can navigate in both directions from and to
a sketch: she may look at the sketches in the mission control
view and decide to see where parts that the sketch refers to are
implemented, or she may look at a method and see that it is
referred to in the main sketch. Bringing the mission control to
the front may allow for insights into higher level abstractions
and help her form a model of the code base. CodeGraffiti
monitors edits in the files and, as lines of code move, the
connections are automatically updated.

Our CodeGraffiti prototype is build as a plug-in for Adobe
Brackets [1]. In the current version, the focus of the design is
on exploring navigation through sketches, the user experience
of creating sketches remains underdeveloped. The CodeGraffiti
plug-in is available for download at alongside all materials
used in the user study (hci.rwth-aachen.de/codegraffiti).

IV. STUDY

To test how the design works for developers, we conducted
a between groups user study in which we examined one
navigation task across two conditions. We provided a code base
with pre-existing sketches for our testers: The source base used
in the study is the source code of the Brackets code editor itself
(JavaScript). The sketches were created without any knowledge

of our tool or the task of this study by an active Brackets
developer who works at Adobe. The connections were created
afterwards by the authors. As a result, the sketches did not
indicate the task solution by presence alone.

The task was to locate and identify multiple locations in
the code base, to point out the lines of code in which a change
should be made, and to verbally outline these modifications.
This task was divided into three subtasks T1–T3, which needed
to be accomplished in order (adding a menu item, adding the
corresponding command, linking both in the controller). We
counted the tasks as successfully completed if the presented
solution would result in a working implementation.

In the control condition (C1), users worked with a standard
installation of the Brackets IDE with the sketches of the
organization of the source base presented on a DIN A3 piece of
paper. In the connection condition (C2), users worked with the
Brackets IDE and the mission control view, which showed the
same materials linked with the code. This way, both conditions
used the same editor, code base and sketches, only the sketches
were presented in different ways. Our five hypotheses were:
H1 More programmers solve the task correctly in C2.
H2 Programmers solve the task faster in C2.
H3 Programmers look at sketches more often in C2.
H4 Programmers look at sketches longer in C2.
H5 Programmers (subjectively) find that the connection be-
tween sketches and source code is an additional tool supporting
their software comprehension process by helping them to
understand the conceptual model behind the code.

We recruited a total of 32 participants, 5 female, aged
23 to 36 (average age 28). Four participants were familiar
with the source code of Adobe Brackets. All participants were
asked to fill a pre-session questionnaire in order to assess their
prior knowledge. We counterbalanced the groups with regard
to JavaScript and source code proficiency. Each participant
was given a short introduction to the code editor and its user
interface and we explained the CodeGraffiti plug-in and the
shortcut to toggle the mission control view.

We asked the testers to familiarize themselves with the
tools and condition by working on a pre-task before the actual
evaluation. We limited the working time to 20 minutes for
this pre-task and 25 minutes for the main task. Participants
were asked to think-aloud during the study. Sessions were
videotaped and annotated with respect to H1 to H4 by one of
the authors. In order to gather qualitative data with reference
to H5, we conducted a semi-structured interview about the
potential application of the CodeGraffiti plug-in in actual work



0

2

4

6

8

10

12

14

16

5m

10m

15m

20m

25m

H2H1

all 
testers

successful
testersT1 T3T2 connection group (C2)

control group (C1)

H3 H4

0

5

10

15

20

25

30

1m

2m

3m

4m

5m

6m

7m

8m

9m# testers # testers

Fig. 2. Quantitative results of the user study for hypothesis H1 to H4.

0% 50% 100%

Fig. 3. Histogram of glances towards the sketches, normalized over task
completion time. While most participants of both groups looked at the sketches
after reading the task description (peaks at around 10%), participants of the
C2 continued the engage the mission control view.

projects that the participants are or were recently involved in.

A. Quantitative Results

We reject H1, no subtask showed a significant difference
(Fisher’s, pT1 = 0.48; pT2 = 0.39; pT3 = 0.47). We reject H2,
users did not perform faster in C2 (Fisher’s, p = 0.32). We
accept H3, participants in C2 looked at sketches significantly
more often (t-test, p = 0.003) than in C1. We accept H4,
participants in C2 looked at sketches significantly longer (t-
test, p = 0.001) than in C1 (cf. figure 2).

Figure 3 shows the difference in behavior and interaction
with the sketches with the task completion times normalized
for each of the 32 participants. Consistent with above obser-
vations, the histogram graph depicts that the mission control
view sketches were consulted more frequently in C2 and testers
engaged with them over the whole duration of the task.

B. Qualitative Results

For either group, we observed very clear patterns of behav-
ior. The participants of C1 read the task description and then
looked at the sketches provided on paper, they studied each
sketch to find potential hints on where to start the task. In
the think-aloud comments, most participants stated that they
could not find anything helpful and moved the paper aside.
Working with the editor, participants used standard navigation
operations (tabbed browsing, project tree, scrolling, search,
cf. [7], [18]). If participants reached an impasse, they would
take another look at the sketches to check for missed clues. At
the end of a task, some participants would take another look
at the sketch to check if they might have overseen something:

“I will take another look at the sketches, since they have been
provided, ... there should be something on them.” All in all,
the sketches were used as a reference, but mainly as a last
resort. Most participants looked at the sketches since they were
provided, not because they felt the need to. They used standard
navigation methods to understand the code and solve the task.

Participants of C2 read the task description and then opened
the initially closed mission control view. Similarly to the
control group, participants in the connection group took the
initial glance to get an overview of all sketches. The behavior
of this group then deviated from C1: participants constantly
switched between the mission control view and the source code
in order to navigate the code base. The operations that were
used by the C1 members, however, were in part substituted by
the navigational facilities of the mission control view. Elements
of the mission control view turned out to be suitable even if the
names of the elements did not coincide with the filename or
the method names they were connected to. However, as soon
as the participants felt that the sketches and the connections
provided by the mission control view would not help them,
they fell back into old habits for a short amount of time
and, e.g., started to search within files as well as the whole
project or navigated via the file tree, only to come back to the
mission control view and use its functionality again to continue
with the task. Opposite to C1, testers ‘defaulted’ to sketch
based navigation and used other means as a last resort. A
common observation was that when participants of C1 asked:
“What was I looking for again?”, they immediately opened
the mission control view to find the highlighted connection dot
in order to see where they were with regard to the sketches,
whereas in the same situation most participants of C1 turned to
the task description and not to the sketches provided on paper.
It is particularly noteworthy that most participants partially or
entirely explained the way they understood the tasks and how
they worked together by mentally walking through the steps
in the sketch: This recapitulation of the progress was made
with the opened mission control view, pointing at the sketches
and following the sketched lines as well as clicking onto the
connection dots to get to the corresponding code segments to
prove to themselves, that they had considered every part of the
task. We did not observe such behavior in the control group.

C. Interview

At the time of the interview, 17 participants were working
on a solo project, 17 were working on team projects. We
initiated the interview session by asking testers how they
would imagine to use the functionality of being able to
connect sketches with source code with regard to their projects:
Participants liked the idea of navigation support through their
own projects via the mission control view using the connection
dots. Some instantly imagined their project affiliated sketches
and visualizations and were excited to connect them to the
source code. Participants imagined the mission control view
to provide an adequate code base overview of the project
and the software architecture, e.g., to see which other team
members had to be involved in the task or which other parts
of the project had to be considered. Some participants had
the idea that the mission control view could be used as a
manager’s view meaning that a project leader could capture
the development progress of the project, i.e., new elements that
had been added to the view or changes that had been made.



Above all, participants imagined this functionality to be very
helpful for on-boarding new team members. They reported
that it is hard for a new team member to catch up with all
the knowledge about the project and the decisions that have
been made during the design process and the implementation
phase. Sketches created during on-boarding meetings could be
an enormous support to get to know the project: “The sketches
were like a road map to me. I think using such a map is easier
than searching because you don’t need to know exactly what
you are looking for. The sketches can complete the missing
parts or even tell you what to look for.”. In conclusion, we
accept H5: there was a consensus among the participants of
C2 that the connections between sketches and source code had
helped them formulate a conceptual model.

Participants also identified and confirmed challenges em-
ploying connected sketches within their projects: Despite the
fact that most participants created sketches or visualizations
as a regular part of their work, they still mentioned that this
is time consuming. Sketches created during team meetings
were seen as valuable byproducts without this drawback.Some
participants considered the quality of their own sketches and
were concerned about the readability of sketches. Very few
participants reported to re-sketch their own sketches if out-to-
date, the foremost mentioned problem was the currentness of
sketches and connections. All testers agreed that maintaining
sketches and connections can be realistic for a rather small
team of developers or a medium-sized project, but larger teams
would have problems to maintain the sketches and their quality.

V. SUMMARY

This paper presents a way to connect source code to
sketches that depict anything from the low-level details of
the source code to the high-level concepts about the source
code. We showed how a code base can be navigated through
connected visual sketches and how it helps developers to
comprehend the context of source code, to orient within the
context, and to support mental walkthroughs. In a between
groups user study, participants used the mission control view
for navigation instead of traditional means, by quickly invoking
it, selecting the target navigation, and dismissing it. Testers
looked significantly longer and significantly more frequent at
sketches on average, with no adverse effects on total time
needed and success on the task. Furthermore, testers made
more use of the sketches which they used to formulate a
conceptual model and finally solve their task. The connection
of a sketch in the IDE promotes sketches to an immediately
available source of information, whereas the printed version
remains an additional, but not directly utilizable source of
information. Hence, CodeGraffiti’s design offers a way to
promote sketch use and sketch retention. Given that many
developers already create these kinds of sketches (on paper,
whiteboard, or tablets), this presents an opportunity: not throw-
ing them away and connecting them to the code base as an
viable alternative to other software visualizations.

VI. LIMITATIONS AND FUTURE WORK

Our study provided less information on two other areas of
developer tasks: team communication and creation of of new
code artifacts. For the first, our testers especially expressed
agreement for our design to connect any visualization to source

code with little restrictions on formality. We look forward
to further investigation of communicating about code bases
through sketches. The biggest problem is that—given that
developers already have sketching practices—our approach
introduces the burden of connecting sketches manually as
well as keeping the sketches up to date and readable despite
the lack of sketching conventions. The focus of our next
design efforts will be that formulating the connections to the
codebase becomes a lightweight operation that fluidly embeds
into the current workflows. Finally, revision management and
the ability to browse prior versions of connected sketches is
interesting future work.

REFERENCES

[1] Adobe Brackets. http://brackets.io/
[2] Bragdon, A., Zeleznik, R., Reiss, S.P., Karumuri, S., Cheung, W.,

Kaplan, J., Coleman, C., Adeputra, F., and LaViola Jr, J.J. “Code
Bubbles: A Working Set-based Interface for Code Understanding and
Maintenance”. In Proc. CHI 2010, pages 2503–2512.

[3] Branham, S., Golovchinsky, G., Carter, S., and Biehl, J.T. “Let’s go
from the whiteboard: supporting transitions in work through whiteboard
capture and reuse”. In Proc. CHI 2010, pages 75–84.

[4] Cherubini, M., Venolia, G., DeLine, R., and Ko, A. J. “Let’s Go to the
Whiteboard: How and Why Software Developers Use Drawings”. In
Proc. CHI 2007, pages 557–566.

[5] DeLine, R. and Rowan., K. “Code canvas: zooming towards better
development environments”. In Proc. Software Engineering, 2010.

[6] Eick, S.G., Steffen, J.L., and Sumner, E.E. “Seesoft—A Tool for
Visualizing Line Oriented Software Statistics”. IEEE Trans. Software
Eng., vol. 18, no. 11, pages 957–968, 1992.

[7] Ko, A. J., Myers, B.A., Coblenz, M.J., and Aung, H.H. “An Exploratory
Study of How Developers Seek, Relate, and Collect Relevant Informa-
tion during Software Maintenance Tasks”. IEEE TSE, vol. 32, no. 12,
pages 971–987, 2006.

[8] Kuhn, A., Loretan, P., and Nierstrasz, O. “Consistent Layout for
Thematic Software Maps”. In Proc. WCRE 2008, pages 209–218.

[9] LaToza, D., Venolia, G., and Deline, R. “Maintaining Mental Models: A
Study of Developer Work Habits”. In Proc. ISCE 2006, pages 492–501.

[10] Lichtschlag, L. and Borchers, J. CodeGraffiti: “Communication by
Sketching for Pair Programming”. In Ext. Abstr. UIST 2010.

[11] Mangano, N., Baker, A., Dempsey, M., Navarro, E., and van der Hoek,
A. “Software design sketching with calico.”. In Proc. IEEE Automated
Software Engineering 2010, pages 23-32.

[12] Kurtz, C. “Code Gestalt: a software visualization tool for human
beings”. In Ext. Abstr. CHI 2011, pages 929934.

[13] Parnin, C., Görg, C., and Rugaber, S. “CodePad: Interactive Spaces
for Maintaining Concentration in Programming Environments”. In
Proc. SOFTVIS 2010, pages 15–24.

[14] Plimmer, B. and Freeman, I. “A toolkit approach to sketched diagram
recognition”. In Proceedings of the 21st British HCI Group Annual
Conference on People and Computers, pages 205–213, 2007.

[15] Schön, D.A. “The Reflective Practitioner: How Professionals Think in
Action”. Basic Books, 1983.

[16] Singer, J., Lethbridge, T., Vinson, N., and Anquetil, N. “An examination
of software engineering work practices”. In Proc. CASCON, pages 174–
188, 2010.

[17] Sinha, V., Karger, D., and Miller, R. “Relo: Helping Users Manage Con-
text during Interactive Exploratory Visualization of Large Codebases”.
In Proc. VL/HCC 2006, pp. 187–194.

[18] Starke, J., Chris, L., and Sillito, J. “Searching and skimming: An
exploratory study”. In Proc. IEEE Software Maintenance, 2009.

[19] Tversky, B. and Suwa, M. “Thinking with sketches”. In Tools for
Innovation, vol. 1, no. 9, pages 75–85, 2009.

[20] Walny, J., Haber, J., Dork, M., Sillito, J., and Carpendale, S. “Follow
that sketch: Lifecycles of diagrams and sketches in software develop-
ment.”. In Proc. IEEE Workshop on VISSOFT 2011, pages 1–8.


