
CodeGraffiti: Communication by Sketching
for Pair Programming

Leonhard Lichtschlag Jan Borchers
RWTH Aachen University
52056 Aachen, Germany

{lichtschlag, borchers}@cs.rwth-aachen.de

ABSTRACT
In pair programming, two software developers work on their
code together in front of a single workstation, one typing,
the other commenting. This frequently involves pointing to
code on the screen, annotating it verbally, or sketching on pa-
per or a nearby whiteboard, little of which is captured in the
source code for later reference. CodeGraffiti lets pair pro-
grammers simultaneously write their code, and annotate it
with ephemeral and persistent sketches on screen using touch
or pen input. We integrated CodeGraffiti into the Xcode
software development environment, to study how these tech-
niques may improve the pair programming workflow.

ACM Classification: H5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Graphical user interfaces.

General terms: Design, Human Factors

Keywords: Pair programming, code annotation, pen input

INTRODUCTION
In pair programming, two developers share one workstation:
while the driver edits the code, the navigator observes his
work, with roles swapped frequently. The navigator cannot
perform any editing, but has to communicate her thoughts to
the driver who then edits the code, making the team more
aware of design decisions, pitfalls, and mistakes. This ex-
treme collaboration technique has been shown to signifi-
cantly lower development times and coding error rates [2].

However, this communication happens not just verbally or
through written code. By pointing, gesturing, sketching
diagrams and scribbling annotations, programmers explain
graphical properties to each other, test ideas, or visualize
complex software structures. Current IDEs rely on keyboard
and mouse input to create syntactic content such as code, and
offer little support for graphical content. Thus, programmers
have to express documentation and other semantic content
either textually, in external programs, or physical artifacts:
Automated tools like Doxygen (see doxygen.org) that parse
textual comments in the code are widespread but unsuitable
for capturing quick annotations or graphical content. Graph-
ics created in separate pen-based applications offer greater
expressiveness, but require mode switches, and do not link
sketches to code. Physical artifacts such as whiteboards
or paper offer quick creation of highly expressive, informal

Copyright is held by the author/owner(s).
UIST’10, October 3–6, 2010, New York, New York, USA.
ACM 978-1-4503-0271-5/10/10.

Figure 1: Pair programmers using CodeGraffiti. The
driver controls syntactical code input (left), the navi-
gator controls the sketching cursor (right). Both share
the same view on the code, but with independent cur-
sors. The code annotations point out some semantical
errors and improvements.

notes, but outside the IDE. Such notes are also easily thrown
away or wiped from the board, being captured digitally only
if they seem valuable enough.

Other professions such as manuscript editors often use edit-
ing marks to communicate revisions and opinions [3, 6],
which has also been proposed for teachers when reviewing
code [4, 5]. CodeGraffiti extends graphical input for gen-
eral semantics [1] in the IDE. It places sketches, documenta-
tion, explanations on structure and design decisions directly
in line with the code. This lets pair programmers communi-
cate graphically right in the IDE. Our hypotheses are that this
lets programming teams communicate graphical ideas more
effectively, that they retain more sketches for documentation
than via physical artifacts, and that sketches are integrated
better into code structures.

INTERACTION DESIGN
Our design rationale is to give the navigator a way to support
team conversation by sketching directly on the shared screen
(Fig. 1). Sketching (Fig. 2) and annotating should be as easy
as picking up a pen to draw or write on paper or a white-



Figure 2: QuickSort explained via a sketch. The
sketch directly references the declared variables.

board. The driver is still the only person entering syntactical
code (Fig. 1). The navigator enters semantic graphics that
do not compile, making it easy to quickly jot down a sketch,
explain a design idea or point out a typo to the driver. Simi-
lar to copy editor marks, annotations provide information to
a word or line using underlining, exclamation marks, or cir-
cling. Sketches (Fig. 2) are broader in scope and may refer to
multiple points, e.g., to highlight a software design pattern.
Hand-drawn sketches and annotations look appropriately in-
formal, and can be adapted easily as design decisions change.

A common focus is considered essential to maintain the
higher quality of pair-programmed code. Therefore, despite
separate text and sketching cursors, we decided not to allow
the navigator to scroll to a different part of the code. By shar-
ing the same view, neither member can wander off and work
on separate tasks or even files.

The IDE links graphics within code bodies persistently to one
or more anchors in the text. It also links anchors visually to
the graphics so that sketch and code can provide explanations
for each other. These graphics show up for every program-
mer who opens the code base with CodeGraffiti installed, and
can become a permanent part of the software documentation
over time.

We also allow ink over interface widgets, reference docu-
mentation, and other screen elements not related to source
code for illustration and gesturing purposes. Missing this
link to source code, however, they are treated as ephemeral,
fading out after five seconds.

PROTOTYPE
We implemented CodeGraffiti in two parts: a server running
as a plug-in in the IDE, and clients for various input modal-
ities. The plug-in was written for Xcode1, the free, native
development IDE for Apple devices. It accepts input from
three clients:
• finger painting gestures on iPad and iPhone (Fig. 3a),
• pen input on a graphics tablet (Fig. 3b),
• pen input on a tablet display (Fig. 3c).
The server stores sketches in a companion file to each source
file, and keeps a table linking them to anchors in the text.
This way, users without the plug-in do not see any artifacts,
and CodeGraffiti integrates well into revision control sys-
tems. As lines are inserted, anchors move to another file,
or referenced variables are renamed, the IDE updates sketch

1www.apple.com/macosx/developers/

Figure 3: CodeGraffiti clients on a) Apple iPad/iPhone,
b) Wacom Intuos tablet, c) Wacom Cintiq tablet display.

positions accordingly. When the text anchor is removed the
sketch becomes uncoupled, and the programmer can reattach
it to a different position.

An interesting challenge is that the driver might scroll the
view while the navigator is sketching. If both share only one
physical display (Fig. 3b), this is unlikely. If the navigator
has a mirrored display (Fig. 3a,c), we wait until she finishes
drawing and then snap it to the driver’s new view.

SUMMARY and FUTURE WORK
We presented a rationale and prototype for simple and inte-
grated sketching in pair programming. While designed with
pair programming in mind, a single programmer or code re-
viewer can also benefit from the sketching facilities provided.

Our next steps are to deploy CodeGraffiti to both single
and pair programmers, and explore how sketching input is
adopted, and how it fits into the workflows of single pro-
grammers, pair programmers, and code reviewers. We also
hope to learn how the three input modalities compare for dif-
ferent tasks. Finally, preliminary tests already indicated that
the second cursor might be distracting to the driver. To al-
leviate this problem we plan to fade out the pen cursor if it
moves near the main cursor.

ACKNOWLEDGMENTS
This work was funded by the German B-IT Foundation. We
would also like to thank Tom Igoe for fruitful discussions and
Thorsten Karrer for his support.

REFERENCES
1. Borchers, J. HyperSource: A Hypermedia Program De-

velopment And Documentation System. Proc. Third In-
ternational World-Wide Web Conference, 1995.

2. Bryant, S., P. Romero and B. du Boulay. Pair Program-
ming and the Mysterious Role of the Navigator. Int. J. of
Human–Computer Studies, 66(7):519–529, 2008.

3. Liao, C., F. Guimbretière and K. Hinckley. PapierCraft:
a Command System for Interactive Paper. Proc. UIST
2005, 241–244.

4. Plimmer, B. and P. Mason. A Pen-based Paperless En-
vironment for Annotating and Marking Student Assign-
ments. Proc. AUIC 2006, 37–44.

5. Plimmer, B., J. Grundy, J. Hosking and R. Priest. Ink-
ing in the IDE: Experiences with Pen-based Design and
Annotation. Proc. VLHCC 2006, 111–115.

6. Schilit, B. N., G. Golovchinsky and M. N. Price. Beyond
Paper: Supporting Active Reading with Free Form Digi-
tal Ink Annotations. Proc. CHI 1998, 249–256.


