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Abstract

Modern programming framework and libraries ease programmers lives by provid-
ing solutions to well known problems and hiding the complexities of the solution
behind convenient APIs. Many of those frameworks and libraries are available as
open source projects and each of these projects comes with its own programming
API. Learning an unfamiliar API requires the programmer to invest time and effort
into experimenting with its functions and types. Therefore reducing the feedback
times of edit-compile-run loops due to changes in the program is vital.

With this thesis we introduce Fiddlets, a novel interaction technique to reduce feed-
back times about program changes. Fiddlets achieves this by copying code of in-
terest into a separate context for execution. To help the programmer set up code
experiments, Fiddlets includes values from previous program executions into the
context. Fiddlets provides interactive visualisations the execution result of the code
experiment to help the programmer understand the effects of the code.

We present the necessary requirements needed for a complete implementation of
Fiddlets and an implementation of a proof-of-concept prototype of the system. We
conducted a user study to analyse the usability and performance of our prototype.
Although we could not find significant differences in task completion time and
task completion rate between programmers using Fiddlets and programmers us-
ing established programming tools, our analysis showed that programmers used
Fiddlets in manifold ways.
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Überblick

Moderne Frameworks und Libraries vereinfachen das Leben von Programmier-
ern indem sie Lösungen für wohlbekannte Programmier-Probleme bieten und die
Komplexität dieser hinter komfortablen APIs verstecken. Viele dieser Frameworks
und Libraries sind als Open Source verfügbar und jedes dieser Projekte bringt sein
eigenes API mit. Um ein unbekanntest API zu lernen muss der Programmierer
viel Zeit und Aufwand in das experimentieren mit dessen Funktionen und Typen
investieren. Es ist daher wichtig dass die Feedback-Zeit der Edit-Compile-Run-
Durchläufe auf ein Minimum reduziert wird.

Die vorliegende Arbeit stellt Fiddlets vor, eine neuartige Interaktions-Technik
zur Reduktion der Feedback-Zeit von Programm-Änderungen. Fiddlets er-
reicht dies indem es aktuell interessante Code-Abschnitte in einen separaten
Ausführungs-Kontext kopiert. Um den Programmierer beim Erstellen von Code-
Experimenten zu unterstützen bezieht Fiddlets Werte aus vorhergegangenen
Programm-Ausführungen in diesen Kontext. Fiddlets verfügt über interaktive
Visualisierungen für das Ausführungs-Ergebnis des Code-Experiments und un-
terstützt den Programmierer somit dabei, die Auswirkungen seines Codes besser
zu verstehen.

Wir präsentieren hier die Anforderungen die an eine vollständige Implemen-
tierung von Fiddlets gestellt werden sowie die Implementierung eines Proof-of-
Concept Prototypen. Wir haben eine Benutzer-Studie zur Ermittlung der Be-
nutzbarkeit und Leistung unseres Prototypen durchgeführt. Obwohl wir keine
signifikanten Unterschiede in der “Task Completion Time” und “Task Completion
Rate” zwischen Teilnehmern die Fiddlets benutzten und solchen die es nicht be-
nutzen feststellen konnten, zeigen unsere Analysen dass Fiddlets gut von den Teil-
nehmern aufgenommen wurde und auf vielfältige Weise Einsatz fand.
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Conventions

Throughout this thesis we use the following conventions.

Text conventions

Definitions of technical terms or short excursus are set off
in coloured boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

Definition:
Excursus

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in British English and uses the
generic feminine.

Download links are set off in coloured boxes.

File: myFilea

ahttp://hci.rwth-aachen.de/public/folder/file number.file

http://hci.rwth-aachen.de/public/folder/file_number.file
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Chapter 1

Introduction

1.1 Motivation

iOS, Android SDK, Microsoft .net, Ruby on Rails, Angu-
lar.js — modern application ecosystems come with a rich
set of features already implemented. By leveraging this, Software developers

can choose from a
large selection of
already implemented
functionality

developers can produce powerful programs in very short
time. However, to take full advantage of these function-
alities, developers have to be experienced with the sys-
tems frameworks and APIs, in order to not accidentally “re-
invent the wheel” by wasting time on building their own
implementation of an already existing feature.

With the rising popularity of open source communities
such as GitHub, there has grown a plethora of open source
libraries and APIs that build up new software ecosystems
(Ember.js, Angular.js), provide easier-to-use APIs for exist-
ing functionality (AFNetworking, ThoMo Networking), or
fill gaps in the existing APIs (underscore.js). As many of More and more open

source frameworks
and libraries are
being developed.

them have documentation available as written API docu-
mentation, example code and tutorials, it is yet a difficult
task for a developer to learn and keep track of the many
functionalities offered, especially for fast evolving software
ecosystems like the JavaScript community1. Besides read-
ing all the documentation and example code, developers

1http://bitworking.org/news/2014/05/zero framework manifesto

http://bitworking.org/news/2014/05/zero_framework_manifesto
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eventually have to write code in order to get familiar with
a new API.

Writing code against an unfamiliar API goes along withGetting familiar with
a new API requires

experimentation.
a set of short edit-compile-run cycles: the developer will
write a small section of code that calls out to the API, com-
pile and run the code and verify whether the result of her
code matches her expectation of what the API is supposed
to do. If it does not, she will change her API calls, recom-
pile and re-run the program again. As soon as the expected
result is met, she will add more API calls, exercising the
edit-compile-run loop until the goal which she wanted to
achieve with this API is reached.

The following techniques for exploring unfamiliar APIs can
often be observed among experienced as well as novel de-
velopers:

1. Trial and Error Programming
The programmer changes the code of an existing pro-Developers come up

with different
techniques for

experimentation.

gram and tests the desired API directly in the pro-
gram, using the edit-compile-run cycle as mentioned
before. To make this technique efficient, she needs
fast compile and execution times. Most of the times,
the program itself has to be put into a state, where
the new code is executed, e.g. by pressing a button or
providing special input.

2. Example programs (Spikes)
Spike-Solutions (http://www.c2.com/cgi/
wiki?SpikeSolution) are related to “Trial and
Error Programming”. When writing a “spike” the
programmer writes a small piece of software, inde-
pendent of the program in which the solution will
later be applied, which exercises the unfamiliar API.
By reducing the executed code to the bare minimum
that is necessary to run the API code the compile
time is shortened and the need to put the program in
a specific state is removed.

3. Copy and Paste Programming
For “Spike solutions” as well as “Trial and Error Pro-
gramming” developers often use code copied from

http://www.c2.com/cgi/wiki?SpikeSolution
http://www.c2.com/cgi/wiki?SpikeSolution
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tutorials and examples found on the internet. This
copied code is then modified in ways to match the
behaviour intended by the programmer.

4. REPLs/Fiddles
Many programming languages and development
environments such as Node.js, Ruby on Rails or
Python offer interactive console applications per-
forming Read-Evaluate-Print-Loops (REPL). In these
the programmer interactively writes line after line of
code, with the runtime environment executing these
lines, giving rapid feedback about the correct use of
syntax and API. There are also less interactive RE-
PLs where the programmer has to provide a bunch
of code first, which is then executed, such as Eclipse
Scrapbooks or JSFiddle.net.

Considering the previously mentioned API exploration
and development techniques, it seems that fast feedback
time is a vital aspect to efficiently gain insight into the us-
age of an API or framework. In recent research, there have Feedback time is

vital for
experimentation.

been interesting approaches of new interactions that build
upon these techniques and aim to help developers. One of
the more promising interactions is Live Coding [Kurz, 2013,
Belzmann, 2013, Heinen, 2012]. In Live Coding the pro-
gram is continuously executed while being edited. Inter-
mediate runtime results (valuations of variables, log out-
put, return values of functions) are shown directly in the
editor, providing fast feedback about program changes and
behaviour.

However, Live Coding requires complete program runs
and will only show runtime results for paths of the pro-
gram, that have been executed in a program run. As an ex- Live Coding does not

scale for large
programs and user
interaction.

ample, if the programmer wanted to see the runtime results
of a function that performs financial transactions in a bank-
ing program, she needs to manually trigger the transaction
in the UI. She also has to provide data that is required by
the UI to validate the transaction. Whenever she changes
the transaction code and wants to re-evaluate it using live
coding, she will have to do the same setup again. An-
other often cited drawback of Live Coding is performance.
Live Coding requires instrumentation of the complete pro-
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gram, thus reducing the program execution speed. Big ap-
plications that take up significant amounts of processing
power will perform slower in Live Coding environments
than they would if a standard debugger was used. If the
program performs computations that are time-critical com-
putations, the program might not work properly in a Live
Coding environment, thereby negating the positive effects
of Live Coding.

We believe that a variant of Live Coding that instrumentsRunning small parts
of the program

instead may provide
faster and focused

feedback.

and runs only small portions of a program in a Live Coding
environment will solve these issues. In this kind of local Live
Coding, the environment lets the programmer decide which
part of the code should be executed. For this it finds any
code that is associated to the part of the program that the
programmer is interested in and initialise the data that is
required to execute this code. We believe that such a system
will provide faster and more focused feedback about the
parts of the program that the programmer is interested in.

1.2 Introducing Fiddlets

This thesis introduces “Fiddlets”, a new interaction tech-
nique for rapid code exploration and experimentation that
allows the programmer to execute small pieces of a pro-
gram without running the whole program. Fiddlets focuses
on executing the current line of code that a programmer is
working on by assembling code lines that are related to the
current line into an example program. Whenever FiddletsFiddlets dynamically

creates a context to
execute the current

line of code, without
running the complete

program.

finds a variable whose value could not be determined stati-
cally in the original program, it tries to fill the variable with
values from previous program runs. The example is then
executed and the result of execution is visualised. Visuali-
sations can be interactive and are allowed to change values
in the example code. Offering the possibility to provide dif-
ferent visualisations depending on the code that is executed
in the current line, Fiddlets allows the programmer to inter-
act with the current line of code in a way that is unmatched
by today’s debugging tools.
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Contributions of this thesis are the following:

1. A prototype-driven evaluation of on-demand-
visualisation of the execution and results of a specific
line of code, as well as the interaction with properties
of said line of code.

2. A prototypical implementation of Fiddlets that ap-
plies the insights gained from the evaluation of the
prototypes.

3. A comparative user study that examines the differ-
ence in programmers performance between program-
mers using Fiddlets and programmers using stan-
dard debugging tools.

4. An architectural overview of the components neces-
sary for an advanced implementation of Fiddlets.

1.3 Chapter Overview

This chapter provided an overview over the motivation be-
hind this thesis and listed the contributions for the field of
HCI.

In Chapter 2 “Related work” we will survey existing re-
search regarding programmer performance and program-
mer tools. We will locate our ideas in the corpus of existing
research and identify the gaps that we intend to fill with the
work of this thesis.

Chapter 3 “Design” we will present the design process we
used to iteratively work towards an interaction concept that
suites our vision of a rapid code exploration and experi-
mentation interaction.

In Chapter 4 “Fiddlets” we will discuss the architectural de-
sign of a software that would be able to provide the features
of the final prototype presented in Chapter 3 “Design”.
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To evaluate the our interaction context we conducted a user
study. The setup of the user study as well as the implemen-
tation and limitations of the software prototype we built for
the study will be the subjects of Chapter 5 “Study Design”.

Chapter 6 “Evaluation” will take a look at the data we col-
lected with our user study and will evaluate the data with
respect to programmer performance and usefulness of the
prototype.

Finally, we will wrap up this thesis by summarising the
findings and insights made in the previous chapters and by
pointing out areas for future work in Chapter 7 “Summary
and future work”.
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Chapter 2

Related work

This chapter provides an overview about research in the
fields of programmer performance and programming tools.

Writing programs that perform correctly is a hard task. Complex programs
contain errors that
are often hard to find.

When the complexity of requirements imposed on a com-
puter system grows, the likelihood of programming errors
as well as the variety of said programming errors grow.
The abstract nature of program code makes it hard for pro-
grammers to create a mapping from the syntactic represen-
tation of a program (the source code itself) to the runtime
behaviour of the program.

There have been a lot of tools that aim to help creating this
mapping and thus improve the understanding of the dy-
namic behaviour of a program. Hanson and Rosinski [1985]
surveyed 29 COBOL programmers to find out what kind of
tools they perceive as useful for performing their daily pro-
gramming tasks. The tools that were perceived the most Hanson and Rosinski

surveyed
programmers about
the tools they
perceive the most
useful.

useful in terms of increasing productivity were the follow-
ing: Interactive debuggers, Screen editors, Subnetwork checkers
(a tool for checking whether a network has been set up con-
sistently) and Process (and resource) meters (tools that instru-
ment source code in order to generate performance met-
rics about program execution). Except for the sub-network
checkers, these tools belong to the default tool chain that
programmers use today.
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In order to understand how programming tools can sup-
port programmer performance, it is vital to know about
the questions that programmers try to answer with these
tools. By surveying professional programmers about
hard-to-answer questions about code, LaToza and Myers
[2010b] identified 94 distinct questions that programmers
ask themselves during coding tasks. The questions theyLaToza and Myers

asked developers for
hard-to-answer

questions about
code.

received covered a broad spectrum of programmer activ-
ities. The spectrum covers questions about common pro-
gramming tasks like implementation, refactoring, testing
and debugging, as well as higher level problems like pro-
gram architecture, contracts or dependencies between soft-
ware modules, and even questions that do not directly re-
late to the code itself, like team communication and code
history.

Out of the most frequently submitted questions, we iden-
tified the following to be the most interesting ones in the
context of this thesis:

1. Is this code correct? (Testing)

2. How can I test this code or functionality? (Testing)

3. How did this runtime state occur? (Debugging)

4. What does it do in this case? (Intent and Implemen-
tation)

In the remainder of this chapter we present previous re-
search that addressed these questions. This will cover en-
hancements of existing technologies like debuggers, sys-
tems that try to improve programmer performance by rec-
ommending source code from various sources and contin-
uous feedback tools like Continuous Testing and Live Cod-
ing.

2.1 Debuggers

Interactive Debuggers have been around since the 1960’s
[Evans and Darley, 1965], but despise the addition of
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user interfaces to show runtime state and enable step- Debuggers have not
significantly evolved
during the last 50
years.

ping through the code by pressing buttons, today’s debug-
gers have not evolved very far from their historic precur-
sors. The standard work-flow that programmers are going
through when inspecting a bug with an interactive debug-
ger is as follows:

• Locate the line of code that is suspected to cause the
bug.

• Set a break-point for the line or some lines before.

• Start the program and provide input that triggers the
break-point. Using a debugger

requires several
distinct steps.• Program execution will pause in the line where the

break-point was set.

• Inspect the program state and compare it to the ex-
pected program state.

• Step through the code and watch where out the pro-
gram state becomes inconsistent with the expected
program state.

This interaction assumes that the programmer somehow
knows or has an idea about the location of the code that
causes the bug that she wants to fix. It also implies that
she knows about the kind of input that is required to repro-
duce the bug and to trigger the breakpoint. Another aspect Debugging requires

knowledge about the
location of a bug and
requires the
developer to restore
program state.

that makes debugging a difficult task is that the program-
mer has to keep the program state in mind that she expects
to find in a correct implementation of her program as well
as the lines of code that are expected to create this program
state. Adding to this the observation of the current program
state and the difference between current and expected pro-
gram state illustrates the mental efforts that are imposed on
programmers during debugging.
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2.1.1 Back in Time Debugging

A critical aspect in debugging is that even modern debug-Modern debuggers
only allow stepping

forward in a program.
gers only allow stepping forward in a program. When a
programmer accidentally steps over the line of code that
she wants to inspect, she must restart the whole debugging
process in order to restore the program state that she was
interested in before accidentally stepping over the line of
code in question.

With the ODB (Omniscient Debugger), Lewis [2003]
presents a concept for a debugger that allows the program-
mer to step backwards in program execution. In order toThe Omniscient

debugger allows to
step back in time.

preserve previous program states, ODB creates a complete
program trace history over the course of the execution of
the program. This program trace is then used to restore
previous program states while debugging. This eliminates
the need to manually restore program states for debugging
purposes as explained previously. Furthermore, ODB al-
lows to inspect the values of a variable over time.

Before ODB, ZStep 94 by Lieberman and Fry [1995] ap-
proached reversible debugging for graphics related pro-
grams. ZStep 94 also enabled back in time debugging by
keeping a history program execution and output. The userZStep 94 allows

stepping backwards
in graphical

applications.

interface offered graphic visualisation of program state and
connected the line that caused a certain program state to the
visualisation of that program state. This allows navigation
to a line of code that caused a variable to change by select-
ing the change of the variable in the code. ZStep 94 also
offered Graphical Step Forward and Graphical Step Backward
functionality that only stepped forward and backward be-
tween lines of code that are associated with drawing code.

As back in time debugging needs to track the completeBack-in-Time
debugging is

expensive.
program state over an indefinite execution period, it tends
to be very memory consuming and slows down program
and debugging performance when used in non-trivial pro-
grams. Optimising Runtime and memory space perfor-
mance of Back in Time Debuggers has been subject of cur-
rent research [Lienhard et al., 2008] and with the sinking
costs of computer memory, Back in Time Debugging might
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be usable in practice within the coming years [Barr and
Marron, 2014].

2.1.2 Reachability

Other vital aspects in debugging are the localisation of the Reachability analysis
is crucial for bug
fixing.

source of a bug and the question of how the code that is
suspect to be the source of the bug can be reached in order
to debug it. Both aspects depend on each other — before the
programmer can navigate the debugger to code that may
contain a bug, she has to know which code is suspect to
contain bugs, but to know this, she has to know about the
parts of the code that are responsible for a certain program
behaviour. LaToza and Myers [2010a] refer to these aspects
as Reachability Question.

REACHABILITY QUESTION:
A reachability question is a search across all feasible
paths through a program for statements matching search
criteria. Reachability questions capture much of how we
observed programmers reasoning about causality among
behaviours in a program. [LaToza and Myers, 2010a]

Definition:
Reachability
Question

Reachability questions often arise in complex programs,
where program behaviour is distributed over several
classes and files. By surveying 460 professional software
programmers, they found that programmers deal with
reachability questions more than 9 times a day. In a follow- Developers ask

reachability
questions around 9
times a day.

up study where they observed 17 programmers in the field
they found that in 9 out of 10 longer lasting tasks were asso-
ciated with reachability questions. They therefore conclude
that tools that support programmers in answering reacha-
bility questions would improve programmer performance
[LaToza and Myers, 2010a].

Automatic debuggers, e.g. Jiang and Su [2007], use statisti- Automatic debuggers
can locate bugs
without user
interaction.

cal analysis and stack trace comparison to locate bugs. The
tool by Jiang and Su also locates faulty control flow paths
that lead to the bugs that were found. These control paths
provide a bigger context for the bug by showing which ex-
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ecution paths are responsible for the faulty behaviour. As
the source of a bug does not always correspond with the lo-
cation where the bug can be observed in the program, this
extended context might make fixing the bug easier.

“Oscilloscope” by Gu et al. [2012] uses stack trace analysisOscilloscope finds
bug-fixes by looking
at bugs with related

behaviour.

and a database of stack traces of known bugs, to suggest
bug reports whose stack traces are similar to a program be-
haviour that the programmer suspects to be faulty. Based
on the premise that most of the bugs introduced by pro-
grammers are similar, Oscilloscope harvests information of
known bugs in order to point the programmer to similar
bugs and the solution of those bugs. Gu et al. suggest that
the information provided by Oscilloscope will help the pro-
grammer fix a bug faster, by offering solutions to similar
bugs that she can then employ in her program. However,
their approach requires certain application behaviour to al-
ready be classified as faulty.

The previously mentioned automatic debugging tools as-
sumed that programmers are only interested in the causes
of obvious faulty program behaviour like program crashes
or unexpected return values from third party APIs. Of-
ten times programmers will classify program behaviour as
faulty based on the mismatch of observed and expected
program behaviour. An example for such a type of faulty
behaviour would be a program that draws UI elements in
different colours than expected by the programmer. On an-
other occasion the program behaves correct, but the pro-
grammer is still interested in what causes a certain program
behaviour, for example in order to get a better understand-
ing on how the program works.

“Whyline” by Ko and Myers [2008] allows the program-Whyline lets the
programmer ask
questions about

program behaviour.

mer to explore program code and execution by asking why
did and why didn’t questions on the program output and
behaviour. Whyline lets the programmer demonstrate pro-
gram behaviour, then set the exact point of time in the be-
haviour that they want to inquire about. The programmer
can then select the part of the program output that they
are interested in understanding. Whyline will suggest why
questions related to the behaviour observed in the selected
time frame, by the selected program output (Figure 2.1).
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Figure 2.1: Whyline lets the programmer demonstrate the program behaviour she
is interested in (1). She can then select the precise point in time where the behaviour
was exercised (2). The programmer can select parts of the output that show the
particular behaviour of interest (3). Whyline suggests questions related to the be-
haviour and shows hints for understanding its causes (4)–(7). [Ko and Myers, 2008]

While they could show that programmers using Whyline
could solve bug fixing tasks on a certain type of graphi-
cal application, they state that the concept of Whyline re-
quires specific knowledge of the characteristics of the type
of output that the program produces in order to suggest
helpful why questions. Furthermore, questions suggested
by Whyline are limited to questions about the implemen-
tation of the underlying toolkit that generates the output
for the program, e.g. by asking “Why didn’t this JFrame’s
repaint() method get called?” instead of asking a more nat-
ural and implementation-independent question like “Why
didn’t this window change?”[Ko and Myers, 2008].
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1

2

3

Figure 2.2: Theseus shows call counts for functions (1).
Functions that were not called during execution are marked
grey (2). Selecting a call count shows a log of other func-
tions invoked by this function. [Lieber et al., 2014]

Theseus (Lieber et al. [2014]) helps the user answer-Theseus visualises
run-time behaviour of

programs by
displaying function
call counts next to

functions in the
source code.

ing reachability questions by visualising the run-time be-
haviour of the program inside the editor (Figure 2.2). When
a function was called during program execution, Theseus
shows the number of calls that the function received next
to the function in the editor. Functions that were not called
during program execution are marked with a grey back-
ground. This visualisation helps the user to understand
what parts of the program are involved in certain inter-
actions with the program. By clicking on a function call
count next to a function, Theseus provides an overview of
all functions involved in an interaction, ordered by the time
they were called and nested in a way that relates to who
called them.
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2.2 Source Code Generation and Code
Snippets

When a programmer is unfamiliar with a programming
API, her performance in programming against this API will
be fairly low compared to her performance when program-
ming against a well known API. The reasons for this are Programmers are

faster when they
internalised an API.

that she needs to look up the documentation of the API
very often until she internalises the API classes and func-
tions that relate to the functionality she wants to achieve
in her program. Wrong usage of the API as well as wrong
assumptions about the internal model of the API will add
to this. Finding the proper functions and classes that per-
form a certain functionality of the API is another important
task in using an unfamiliar API that requires the program-
mer to not only read the documentation carefully, but also
to read tutorials and example programs that show how the
API is supposed to be utilised. Due to the popularity of The open source

movement provides a
huge selection of
example code.

community driven knowledge markets like Stack Overflow
and open source repository services like GitHub, the inter-
net now offers a huge selection of code examples. It is how-
ever still up to the programmer to search through all the
examples found on the internet and to adjust the solutions
she found to her own program [Brandt et al., 2009]. This
section presents two approaches to overcome performance
issues caused by unfamiliarity with APIs: automatic source
code generation and code snippet libraries.

2.2.1 Automatic Source Code Generation

CodeHint by Galenson et al. [2014] synthesises source code CodeHint
synthesises program
code for the
developer.

based on the current execution context of the scope in
which the synthesised code is supposed to be executed and
a specification that is given by the programmer. An illus-
trating example on how CodeHint is supposed to help the
programmer is the following piece of source code that is
called whenever the user of the program presses the mouse
button:

1 final JComponent tree = makeTree();
2 tree.addMouseListener(new MouseAdapter(){
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3 public void mousePressed(MouseEvent e){
4 int x = e.getX();
5 int y = e.getY();
6 Object o = null;
7 // Get the menu bar
8 }
9 });

Listing 2.1: The programmer wants the menu bar of the
clicked element to be stored in the variable o. [Galen-
son et al., 2014]

In this example the programmer is interested in getting a
reference to the menu bar of the window that contains the
clicked element. She know that menu bars are represented
as objects of the class JMenuBar. She also knows that she
wants to store the menu bar reference in the variable o (List-
ing 2.1, line 6). To let CodeHint generate the necessary
code, she set a breakpoint after the line 6 and runs the pro-
gram until the breakpoint is hit. She then provides a speci-
fication, for example that as the result of the generated code
the variable o should reference an object of class JMenuBar.
For CodeHint, this specification would look the following:
“o’ instanceof JMenuBar”, where o’ represents the
state of o after the execution of the generated code. Us-
ing this specification and the run-time information that is
provided by the debugger at the breakpoint, CodeHint will
search for functions and method calls that are applicable to
the objects that are available at this point of execution and
executes those in the current context. CodeHint will apply
new operations to the objects in context until the specifi-
cation is fulfilled. When the search is complete, CodeHint
will present the user up to five search results that she can
use in her code.

2.2.2 Code Snippet Libraries

Code snippets are small programs or pieces of programs that
demonstrate the use of programming APIs or demonstrate
simple algorithms. Code snippets are often times included
in the documentation of an API or can be found on the in-
ternet.
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Figure 2.3: SnipMatch uses variables of the context inside
the snippet. [Wightman et al., 2012]

In their paper Using Structural Context to Recommend Source Holmes and Murphy
use structural context
information to
recommend code
snippets.

Code Examples Holmes and Murphy [2005] present a source
code recommendation tool that uses the structural context
of the code under development to find relevant code snip-
pets from an example repository. The example repository
is automatically built from the source code of the frame-
work that is used by the programmer. Since building the
example repository for a framework works without requir-
ing previously existing example code or documentation on
the framework, this approach aims to help understand pro-
grammers in understanding frameworks with little to no
documentation or example programs.

SnipMatch ([Wightman et al., 2012]) introduces a markup
language that allows authors of snippet code to build cus-
tomisable code snippets and an IDE plugin that allows the SnipMatch offers a

markup language to
create customisable
snippets.

programmer to search for snippets and tries to automati-
cally integrate them into the code under development. For
example, if the programmer wanted to sort an array named
playerScores, she presses the keyboard shortcut to open
the search window and start to type “sort playerScores”
(Figure 2.3). SnipMatch will find snippets that match this
query and will automatically replace the placeholder that
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Figure 2.4: Codelets presents code snippets with an interac-
tive helper widget that helps to understand and configure
the snippet. Since interactive widgets are associated with
the snippet code, programmers can close widgets and bring
them up later to configure the snippet. [Oney and Brandt,
2012]

the snippet author placed in the snippet where the name of
the array to be sorted would be.

Codelets by Oney and Brandt [2012] also allows the pro-
grammer to search through a database of pre-defined code
snippets using textual queries. Codelets allows snippetCodelets displays

interactive widgets
along with code

snippets.

providers to create snippets as interactive helper widgets
that help the programmer to understand and integrate the
snippet into her code (Figure 2.4). The IDE treats Codelet
snippets as first-class objects, meaning that after closing the
interactive editor, it will still be associated with the snippet
code. Whenever the programmer wants to change a prop-
erty of the snippet, she can do so by either changing the
snippet code directly or by opening the interactive editor
of the snippet. Oney and Brandt could show that program-
mers using Codelets were able to solve tasks that involved
examples faster than programmers who used standard web
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browsers.

2.3 Live Coding

Live Coding is the concept of development environments
where program code is continuously executed and the out-
put of the program execution is permanently presented
to the programmer. Live Coding provides a continuous Live Coding

continuously
executes the
program and shows
results of execution
in the editor.

stream of feedback to the programmer, enabling her to con-
stantly monitor the execution state of the program over
time. This section presents a short overview of past and
current research in the field of Live Coding.

One of the earliest mentions of Live Coding is the VisiProg
environment by Henderson and Weiser [1985]. The con-
cept of VisiProg envisioned a programming environment
where programs were composed from functional units that
can be linked together as a network. Each functional unit VisiProg envisions

Live Coding for flow
based programming.

would show its internal state as well as the state of its in-
terface (input and output channels that can be connected to
other functional units) to the user. When the user changes
the state of the input of a functional unit, she will see
the changes in the states of other functional units that are
connected to this functional unit. Henderson and Weiser
compare the conceptual model of VisiProg to the model of
analog networks, e.g. electronic circuits. They claim that
VisiProg would be “ideally suited for exploratory code de-
velopment (sometimes called ‘prototyping’)”[Henderson
and Weiser, 1985], but as computers back then did not have
the processing power that is needed for an implementation
of Live Coding, they could not validate their claims.

As computers became more powerful, implementations Wilcox et al.
investigated the
effect of Live Coding
on programmer
performance for
visual programming.

of visual programming languages, as envisioned with
VisiProg, became practical to be used for everyday pro-
gramming tasks. In 1997 Wilcox et al. conducted a study
on the effects of continuous feedback for visual program-
ming languages. They could not show significant advan-
tages in terms of debugging time for their Live Coding con-
dition overall. Instead, they could show a significant effect
on accuracy for low performing participants. This suggests
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Figure 2.5: The Live Coding editor by Kurz [2013] continuously executes the pro-
gram code and displays the values of variables next to the code. The sliders in
line 45 and 46 allow the programmer to browse through iterations of the for-loops.
Hovering over a value displays the name of the corresponding variable in a tool-
tip.

that although high performing participants could not ben-
efit from the continuous feedback provided by the system,
continuous feedback could be a useful tool for the low per-
forming users, e.g. novice programmers.

Kurz [2013] built a robust Live Coding environment for
JavaScript programmers that is based on the open source
code editor Brackets by Adobe1. The Live Coding environ-Kurz built a robust

Live Coding
environment for

JavaScript.

ment continuously executes the program that is being writ-
ten and displays intermediate results next to the code in a
separate pane (Figure 2.5). In a user study with 13 partici-
pants, all except one having more than 4 years of program-
ming experience, he could not find significant evidence
for improved programming speed or correctness when us-
ing the Live Coding environment compared to using tradi-
tional development tools.

In 2014 Apple introduced Playgrounds, a Live Coding en-
vironment for the Xcode2 IDE. Similar to the Live Cod-
ing editor by Kurz [2013], Playgrounds executes the pro-
gram continuously and display the results of each line of
code in a separate pane next to the code (Figure 2.6). Be-Xcode Playgrounds

is a Live Coding
environment

developed by Apple.

sides showing variable values, Playgrounds has knowledge
about some special classes of Apple’s GUI programming
framework. This allows the IDE to render the contents of
images directly inside the Playground or to display colours
using the real colour instead of showing colour codes. It is

1http://brackets.io
2https://developer.apple.com/xcode/

http://brackets.io
https://developer.apple.com/xcode/


2.3 Live Coding 21

Figure 2.6: Xcode Playgrounds show the result of the evaluation of a line in a pane
on the right side of the code. Playgrounds can displays image data by rendering
the image into the editor and documentation with rich text formats.

also possible to add documentation for the code in rich text
format. Playgrounds are intended to be used as a platform
to experiment with code, to learn about programming con-
cepts and languages and to provide interactive documen-
tation.

Live Coding has always been criticised for being resource
consuming and leading to bad programming habits ([Hen-
derson and Weiser, 1985, Tanimoto, 2013]). With modern
computers, performance problems of Live Coding seem to
have vanished for smaller programs. This leaves Live Cod- Live Coding can be a

valuable tool for
learning and
documentation.

ing as a valuable tool for educational purposes and for doc-
umentation. The problem of bad programming habits is not
limited to Live Coding as a practice and has to be addressed
outside of the scope of the code editor.

Although continuous feedback in Live Coding environ-
ments could not show significant improvement of pro-
grammer performance, this does not mean that continuous
feedback has no impact on programmer performance. By Continuous testing:

another source for
continuous feedback.

utilising excess CPU cycles on a programmers computer to
continuously execute the unit tests of the software under
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development (Continuous Testing), Saff and Ernst [2003]
could show that programmers wasted 92–98% less devel-
opment time compared to when they had to run the tests
manually. However, in order to work properly Continu-
ous Testing requires that a suitable collection of unit tests
has already been implemented. Furthermore, the quality of
feedback offered by Continuous Testing largely depends on
the quality and expressiveness of the unit tests.

2.4 Summary

Traditional debugging tools and Live Coding build the two
sides of a wide spectrum of feedback systems for computer
programs. On one side of this spectrum we find debuggingDebugging and Live

Coding build the two
ends of a spectrum

of programming
tools.

as we know it today, which provides a focused feedback
about a specific point in time in the execution of a program.
The feedback however is not continuous, since changes in
the program require the programmer to restart the debug-
ging progress in order to restore the debugging context to
further observe the effects of the program change. On the
other side of the spectrum we find Live Coding, where pro-
gram execution is continuous and where feedback about
the program state is constantly reported to the program-
mer. It is the task of the Live Coding environment to keep
the stream of information, that is produced by programs
under Live Coding condition, comprehensible for the pro-
grammer.

It is noted by Wilcox et al. [1997] and Saff and Ernst [2003]
that providing too much information about program execu-
tion might as well have a negative influence on program-
mers performance. We believe that a tool that providesGiving too much

feedback can reduce
programmer

performance.

focused runtime information on demand, yet does not de-
pend on complete program runs and the manual setup of a
runtime context, will solve many of the problems that Live
Coding is suffering from. In the next chapter we present
our prototype driven approach to develop such a tool.
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Chapter 3

Design

The goal of this thesis is to develop a tool for programmers
that could provide fast feedback about program execution,
but to limit the scope of this feedback to a comprehensible
amount. We want the tool to avoid the information over- We want to provide

fast feedback, but
avoid information
overflow.

flow we identified in Live Coding tools as discussed in 2.3
“Live Coding”. At the same time we want the tool to pro-
vide enough information to the programmer that she un-
derstands what is currently happening in the code she is
writing.

We went through three design iterations in which we built
interactive and non-interactive prototypes of programming
tools that would fit our vision. We evaluated each of the We used the

DIA-Cycle and built
prototypes in three
iterations.

prototypes with programmers and incorporated the feed-
back we received on the prototype into the development
of the next prototype. We ended up with a paper proto-
type for a programming tool that seems to fulfil our require-
ments.
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Figure 3.1: Paper prototype of a Life Autocomplete interac-
tion

3.1 First Iteration: Live Autocomplete

3.1.1 Idea

Our first idea was to design a tool that integrates into the
autocomplete system of the editor and shows the program-
mer a live preview of the behaviour that the code suggested
by the autocomplete system would achieve. We called thisLive Autocomplete

would provide a live
preview of the

execution of
suggested code.

idea Live Autocomplete. Every time that the editors auto-
complete function is invoked, Life Autocomplete executes
the program, but without the line that the programmer is
currently working on. Life Autocomplete saves the runtime
state for that line and then uses this runtime state to execute
the different suggestions made by the autocomplete func-
tion against this state. The results of these executions are
shown next to the respective autocomplete suggestion that
caused them.

Figure 3.1 shows a scenario of how Life Autocomplete is
used. The programmer wants to update the itemsPerRow
variable. She types itemsPer and the autocomplete
function offers to complete it to itemsPerPage and
itemsPerRow. The Live Autocomplete shows her that the
itemsPerPage variable currently holds a number object
with the value 42. The itemsPerRow variable is currently
undefined.

A tool like this would allow the programmer to observe the
changes in program behaviour that the intended change of
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undefined ❗
{ "Pop" : ["Pop Question 1", ...], "Science" : ["Science Question 1", ...], ...}
undefined ❗
undefined ❗
undefined ❗
undefined ❗

Figure 3.2: In most of the cases executing the autocomplete suggestions did not
yield useful results.

the program code would produce. Showing multiple au-
tocomplete suggestions together with their effects on the
program behaviour, the programmer could choose the sug-
gestion that fits her intentions the best.

3.1.2 Study: Trivia Implementation

To evaluate the concept of a Live Autocomplete tool, we
conducted a study with 3 programmers. We asked them to We made an

implementation study
with three
developers...

implement a small JavaScript program according to a given
specification (see Appendix A “Live Autocompletion Eval-
uation: Implementation Requirements”. The programmers
were asked to capture the progress of implementing the
program using screen capture. From the screen capture we
selected 9-12 points in their programming progress where
we suspected the Live Autocomplete tool to be useful. We
then tried to come up with values that the tool could possi-
bly provide. Autocomplete suggestions were taken directly ... and tried to come

up with Live
Autocomplete
previews for various
scenarios.

from the editors used by the programmers. Since the pro-
grammers used different code editors, as well as different
autocomplete settings, not all autocomplete suggestions are
considered useful in the selected situations. We still consid-
ered those suggestions, since we wanted to see how Live
Autocomplete would perform in those cases.

3.1.3 Evaluation

Although we found out that most of the suggestions made
by the autocomplete function of the editor did not make
sense in the context of the line of code where autocomplete
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was invoked (and would even break program execution),Most autocomplete
suggestions did not

make sense.
this is clearly an issue of the autocomplete systems used
by the programmers. Another cause of this issue is the dy-
namic typing system of JavaScript. We decided that in cases
where the suggestions did not make sense in the context of
the program, i.e. by leading to runtime exceptions in the
program, we decided that the Live Autocomplete should
still execute these suggestions and show the error message
next to the suggestion. We based this decision on the obser-
vation that we often can not programmatically distinguish
between errors that are caused by inept autocomplete sug-
gestions and those that are caused by the programmer.

The most apparent issue we found with the Live Autocom-
plete tool is the need to provide suggestions for parameters
if the autocomplete suggestion contains a function. If theLive Autocomplete

would need to
provide suggestions

for function
parameters.

autocomplete function suggests a function that has a num-
ber of parameters, the Live Autocomplete tool would need
to fill in parameters for this function in order to display use-
ful results. We suggest two ways to resolve this issue.

In the first solution the Live Autocomplete tool would try
to provide different suggestions for the parameters of the
function. These parameter suggestions would be drawnIt could substitute

parameters with
values from the

runtime.

from the runtime information that is available for the cur-
rent line of code. By using type analysis on the runtime
information, the Live Autocomplete tool would reduce the
suggestions to only contain those parameters that make
sense for the function.

This solution has several drawbacks. One is that the Live
Autocomplete tool will create a list of suggestions for every
function which will grow exponentially depending on the
number of parameters of the function. The programmer
would need to search this list for the most useful sugges-
tion, which will slow her down. Even if the programmerThe number of

parameter
suggestions would
grow exponentially
with the number of

parameters.

decided to ignore the live preview of the autocomplete sug-
gestions and use the autocomplete function like she would
normally do, having more than one entry for each sugges-
tion would render the benefit of the default autocomplete
function useless. Another drawback of this approach is that
it requires the number of parameters of a function to be
known. Programming languages like C or Java allow the
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programmer to create functions with a variable number of
parameters. JavaScript takes this a step further and treats This gets worse with

variable numbers of
parameters.

every function as a function with a variable number of pa-
rameters1. In this case the Live Autocomplete tool would
create an endless list of parameter suggestions.

The second solution to the parameter suggestion problem
is to let programmers themselves enter the parameters for
a suggested function and defer the execution of the sug- Leave it to the

programmer to
provide parameters.

gestion until after the parameters have been set. The Live
Autocomplete tool would then no longer provide autocom-
plete functionality, but rather a visualisation and configura-
tion tool for functions.

Our considerations on the first solution to the parameter
suggestion problem convinced us to drop the idea of a Live
Autocomplete tool and instead focus on on-demand visu-
alisation of the runtime state for the current line that the
programmer is working on.

3.2 Second Iteration: Runtime Data Wid-
gets

In 2.2.2 “Code Snippet Libraries” we discussed Codelets
[Oney and Brandt, 2012], which allows the programmer to
search and insert code snippets into her code. Codelets pro- Codelets widgets are

interactive, but static.vide interactive widgets to configure the parameters of the
code snippet and explain how these parameters affect the
properties of the snippet. Codelets focused on code snip-
pets for UI elements, but the widgets for configuring the
snippets were static. For example, the widget for a snippet
that creates a column layout with HTML and CSS allows
the programmer to change properties of the layout (Figure
3.3). But instead of also showing a preview of the result-
ing layout it just shows an icon of a column layout and
a textual documentation. Codelets also offers no snippets
for standard programming tasks, like iterating over the ele-
ments of an array or sorting an array. Overall, they did not

1http://www.w3schools.com/js/js function parameters.asp

http://www.w3schools.com/js/js_function_parameters.asp
http://www.w3schools.com/js/js_function_parameters.asp
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Figure 3.3: Codelets two-column HTML layout widget lets
the programmer configure the width of the sidebar, but
does not show a preview of the layout [Oney and Brandt,
2012].

include any snippets for working on data and objects in a
program.

3.2.1 Idea

The lack of interactive visualisation for both UI and data
related code in Codelets inspired us to focus more on the
runtime result visualisation we used in the first prototype.Interactive

configuration widgets
for functions.

With the second prototype, we aimed to build prototypes of
interactive configuration widgets for JavaScript functions.
We built three prototypes, using HTML and JavaScript, that
demonstrate different use cases for interactive configura-
tion widgets:

• jQuery Selector Widget

• jQuery Insert Widget

• Function Chain Widget
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JQUERY:
jQuery (https://jquery.com/) is an open source
JavaScript library that aims to simplify the interaction
with HTML in client-side web applications. jQuery of-
fers functions to select DOM elements, create animations,
handle events and many more.

Definition:
jQuery

We designed all widgets as inline widgets. Inline widgets
are activated with a shortcut and are displayed below the
line in which the text cursor is placed.

jQuery Selector Widget

jQuery selectors2 allow the programmer to select various
elements of an HTML document by their name or proper-
ties or even their relation to other elements. In our jQuery jQuery Selector

Widget shows the
result of a selector by
highlighting the
matched elements in
a preview of the
program.

Selector Widget (Figure 3.4) we show the programmer a pre-
view of the rendered HTML document (1). When the pro-
grammer starts typing a selector, that selector is applied to
the HTML document and the matched elements are high-
lighted in green (2). Additionally, we show a list of the
matched elements beneath the preview, which helps when
the programmer wants to match elements that are not ren-
dered visible in the document.

jQuery Insert Widget

jQuery offers an API to manipulate the DOM tree of an
HTML document by adding elements3, removing elements
or changing the properties of elements. The jQuery Insert jQuery Insert Widget

shows the effect of
the append function
by rendering a
preview.

Widget shows the results of jQuery’s append function. The
append function is called on a jQuery element and ap-
pends the jQuery elements that are passed as parameters
to the end of the element on which the function was called.
append can have a variable number of parameters.

2https://api.jquery.com/category/selectors/
3https://api.jquery.com/category/manipulation/

https://jquery.com/
https://api.jquery.com/category/selectors/
https://api.jquery.com/category/manipulation/


30 3 Design

1
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Figure 3.4: jQuery Selector Widget with live preview

Figure 3.5 shows an example on how the widget would be
used. The input section (1) allows the programmer to se-
lect the parameters of the function call. By pressing theAn illustrating

example. plus button she can add more parameters to the function.
Pressing the minus button removes the last parameter. Pa-
rameters are shown as dropdown lists. The lists contain
names of variables that contain elements suitable to be pa-
rameters. In the example, the programmer selected two pa-
rameters: the variable iconView, which holds a jQuery el-
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1

2

Figure 3.5: Demo of the jQuery Insert Widget

ement that references an image element, and the variable
temperatureView, which holds a jQuery element that
references a div element. The preview section (2) shows
the state of the HTML document after the function has
been executed. In the example we see that the contents
of iconView and temperatureView are appended to the
weatherWindow container.

Function Chain Widget

Programmers often use the return value of a function to
directly call another function on it or use it as a parame-
ter for a different function. jQuery encourages this style of The chaining of

function calls is a
common pattern in
software.

programming by returning the object on which a function
has been called as return value of that function. This al-
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1
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Figure 3.6: The Function Chain Widget demonstrates the se-
lection of a specific function within a chain and a visualisa-
tion for functions called on Array objects.

lows programmers to build arbitrary long function chains.
For example, the following function chain finds an element
with the id “title”, adds the class “myTitle” to the element
and sets the string “Hello world” as the elements text:

$(’#title’).addClass(’myTitle’)
.text(’Hello world’);

Since this line covers multiple function calls, it is not ob-
vious which function should be visualised in the widget.
It is also not obvious how the programmer decides which
function should be shown in the widget. We created an
interaction for selecting a function in a function chain and
implemented it in the Function Chain Widget (Figure 3.6).

The widget demonstrates a situation in which the program-
mer activated a widget within a chain of function calls.
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Figure 3.7: Moving the focus of the Function Chain Widget

When a widget is activated, it will by default display the
function on which the text cursor is positioned. The wid- Function Chain

Widget demonstrates
the use of a widget
visualisation for a
function call chain.

get displays two buttons that are used to navigate through
the function chain (1). The functions that are currently ac-
tive for the widget are displayed with a blue background
(2). The part of the function chain that is not executed is
displayed in grey (3).

In figure 3.7 the programmer uses the navigation buttons
to select the next function (map) in the function chain. The
widget will now display the visualisation of the results of
the chained splice and map function calls. Since the wid-
get now focuses on the configuration of the map call, the
parameters of the splice call are fixed.

3.2.2 Evaluation

We showed the prototypes to programmers and asked
them for feedback. Programmers generally liked the idea
to see the results of function evaluations inside the editor. We evaluated the

prototypes by
showing them to
developers.

They especially liked the jQuery selector widget, since in-
correctly defined selectors are a frequent source of errors
when programming with jQuery. A selector that does not
match any object in the DOM will return an empty jQuery
object instead of null or undefined. Further operations
on this object will not fail by throwing an exception, but
will instead just do nothing, which regularly poses a hard
to find error. Showing the elements matched by a selec-
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tor both in the preview and the result section of the widget
helps the programmers understand whether their selector
matches the proper objects.

Programmers found the navigation and visualisation of the
currently active function in the function chain widget con-
fusing. They were not sure whether the inactive parts ofNavigating through

the function chain
was not intuitive.

the function chain were already present in the source code
or whether they were in a suggestive state as they know
from autocomplete functions. They further found the navi-
gation buttons inefficient for quick navigation on the func-
tions of the function chain. They would prefer to use key-
board shortcuts to switch between functions or just repo-
sition the text cursor onto the function they are interested
in.

Overall we found out that the list selection, that is used
to configure the parameters of the function, does not pro-
vide any benefits over writing the parameters directly in
the code. The prototype would also still require completeSelecting values

from a list is not
beneficial.

runs of the program in order to generate the data that is
shown in the visualisation. It would therefore run into the
same problems we already identified for Live Coding and
debugging as described in chapter 2 “Related work”.

3.3 Third Iteration: Adding Context

We found out with the prototype for the second iteration
that programmers generally appreciate the inline visualisa-
tion widgets we came up with. We kept the idea of these in-Programmers

appreciated our
efforts.

line visualisations for the third iteration and thought about
other functions we could visualise. In order to set our work
apart from the work that had already been done in Codelets
[Oney and Brandt, 2012] we focused on providing visuali-
sations for data driven functions, i.e. functions that operate
on JavaScript arrays.

With the third iteration we additionally tried to find a solu-The second
prototype still does

not improve Live
Coding performance.

tion to the Live Coding problems we introduced in our pre-
vious prototype. Our goal was to find ways to perform con-
tinuous execution as in Live Coding, but to limit the range



3.3 Third Iteration: Adding Context 35

1

2

3 4

5

Figure 3.8: The third prototype resembles an actual inline widget in Adobe Brackets

of program code that would be executed to an amount that
does not cover the complete program, yet still allows for
a realistic feedback on the outcome of the program oper-
ations that the programmer is interested in. Solving this
trade-off led us to the introduction of a radical new Live
Coding concept that manifested itself as a “context editor”
within the prototype.

3.3.1 Idea

Figure 3.8 shows the third prototype, which we imple-
mented as a high fidelity paper prototype using Adobe
Photoshop. The prototype again shows an inline widget, a We designed the

third prototype in
Photoshop.

style we adopted from the second prototype and refined the
visual aspects to match an actual implementation of an in-
line widget in the Adobe Brackets4 editor. Instead of show-
ing a function chain as the current line of code, we used a
simple function call (1), in order to avoid the confusion that
our visualisation of function chains in the second prototype
caused. We designed the visualisation of the function more
visually appealing and used colours to indicate return val-
ues, parameters and the object on which the function is be-
ing called (2).

The most noticeable change compared to the second pro-
totype is the context editor (3), which contains the current
line for which the tool was opened along with contextual
code that initialises the variables that are being used in the

4http://brackets.io

http://brackets.io
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Figure 3.9: The value selector allows the programmer to initialise variables with
values from previous program runs.

current line. The programmer can edit the variable valuesThe context editor
captures contextual
code of the current

line.

in the context editor manually or by selecting values using
the “value selector” (4). All the code in the context edi-
tor is editable and is executed on every change. The re-
sults of the execution are used as input to the visualisation,
which contains interactive elements (5) that update the pa-
rameters of the function in the context. As an example, the
range picker next to the middle table can be extended and
dragged, updating the start and deleteCount parame-
ters of the splice function.

Figure 3.9 shows an example of the expanded value selec-
tor. The values suggested by the value selector representValues can be

selected from
previous program

runs.

the values that the respective variable will have in an actual
program or unit test run (1). Chapter 4 “Fiddlets” contains
a detailed description of how those values are harvested.
The value selector further shows a hint where each value
originates from (2). As previously mentioned, these val-
ues can derive from program executions — denoted here
as “Run” — or from running the unit test suite — denoted
as “Test”, followed by the name of the actual test case that
caused the value. Selecting a value in the value selector will
change the value that the variable is initialised with in the
context editor.

The last entry of the value selector is the “Expand Context”
entry (3), which is only available if either the variable in
the context was derived from calling a function on another
variable from the actual program that is outside the scope
of the line for which the widget was invoked, or the vari-Expanding the

context loads more
contextual code from
the original program.
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able was declared outside of the scope of this line.This is
often the case when the widget is invoked within a func-
tion. When the programmer chooses to expand the context,
the context editor will load additional lines that relate to the
variable from the original program.

3.3.2 Evaluation

To evaluate the concept of the paper prototype we built pa-
per prototypes for some possible interface states of the ed-
itor and created a visualisation for the map function. We We evaluated the

third prototype by
walking developers
through 9 different
interface states.

prepared a paper prototype walkthrough containing 9 dif-
ferent interface states: one state showing the editor without
the widget opened, two showing the visualisation of the
map function and five showing different interaction states
of the splice function visualisation. The prototypes for
the map and splice visualisations also contain different
states for the value selector in the context editor.

We showed the prototypes to four programmers and asked
them to explain the different interface states. The program-
mers quickly understood the connection between the code
in the context editor and the corresponding code in the
main editor. They discovered the intended meaning of the
colour code we introduced to indicate the various parts of
the current line of code.

None of the programmers could explain the functionality of
the value selector. They expected it to show an unabbrevi- The value selector

was misinterpreted.ated version of the value that was assigned to the variable
in that line of code. We attribute this false expectation to
the lack of interactivity that the paper prototype provides
and expect that in an actual interactive prototype, the pro-
grammers will try to click the value selector and draw the
correct conclusions from the selectors behaviour. Half of
the programmers found it hard to distinguish the context
editor from the surrounding program editor, since due to
its alignment and colour it did not stand out against the
surrounding code.

One programmer found the use of colours to establish the
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visual connection between the parts of the current line and
their counterparts in the visualisation problematic, becauseWe must be aware

about visual
overload.

functions that take many parameters would require many
different colours to match them to the visualisation. The
use of that many colours would quickly make the UI over-
flow visually. The programmer suggested to use a single
colour for parameters, but to only highlight a parameter
whenever the programmer hovers the mouse pointer over
that parameters counterpart.

3.4 Summary

We developed and evaluated three prototypes for tools that
provide fast feedback about the state of program execution.
With the first prototype we tried to reduce the amount of
information displayed in a Live Coding environment to the
kind of information that is most relevant for the current line
and to immediately inform the programmer about the im-
plications introduced through the editing of the code. Our
second prototype focused on providing a more detailed vi-
sualisation of runtime state for a single line of code. The
third prototype added to these visualisations the concept
of a “context editor” and drafted the idea of partial code
execution for increased Live Coding performance.

Feedback on the third prototype convinced us that we were
on the right track to make a valuable tool for programmers
in daily use. The context editor and the continuous exe-
cution and visualisation of the context code are innovative
enough to justify a closer investigation on the performance
of such a system. In the next chapter we will further explain
how the core elements of the system that we envisioned
with our paper prototype are expected to be implemented.
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Chapter 4

Fiddlets

In this chapter we will give a detailed explanation of the
concepts and rationales for the final implementation of
“Fiddlets”.

4.1 Concept

Fiddlets is a plugin for the Adobe Brackets IDE that allows
the execution of a single line of code of a program without
executing the program itself. To achieve this, Fiddlets gen-
erates a “context” for the execution of that line. The context Fiddlets generates a

context to execute
the current line.

consists of code that initialises and manipulates variables
used by the line of code, as well as the line itself. The code
that makes up the context is taken from the original pro-
gram. Whenever a line of the context references additional
variables, Fiddlets tries to resolve these by either integrat-
ing more lines of the original program into the context or
by initialising the missing variables with values that are
known from previous executions of the program (or its test
suite). If Fiddlets fails to find meaningful values, the pro-
grammer can provide her own variable values. The con-
text is then executed and the result of the execution is visu-
alised, using a visualisation that matches the operation that
is performed by the current line.
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Fiddlets’ visualisations are meant to have documentary as
well as a playful traits. The visualisation should help theVisualisations in

Fiddlets are both
documentation and

playgrounds.

programmer understand what the particular line of code
accomplishes and how the parameters of the function re-
late to the resulting behaviour of this line. The content of
the visualisation is updated on every change that is made
to the context code. By changing the function parameters of
the current line—either in the line itself and observing the
changes in the visualisation, or by using the interactive el-
ements of the visualisation and observing the updated pa-
rameters in the current line—the programmers can explore
the effects of different configurations of function parame-
ters without interfering with the original source code of the
program.

Fiddlets lets the programmer investigate the behaviour of
smaller parts of the program without having to run the
complete program, but with the benefit of using real pro-
gram data from previous program runs. This provides fastFiddlets allows to

execute small parts
of a program with
data from actual

program runs.

feedback cycles without the need to copy and paste code
to and from external tools as described in 1.1 “Motivation”.
The programmers can further provide their own variable
values and observe how different parts of the program re-
act to these changes.

4.2 Implementation

In the following section we will explain how the main fea-
tures of Fiddlets are implemented and how the features in-
teract with each other. The main features are: Context, Value
Tracing and Visualisation. Figure 4.1 shows the basic controlContext, Value

Tracing and
Visualisation are the

main features in
Fiddlets.

flow of a Fiddlets instance. Proof-of-concept code for the
front-end1 (visualisation) and the back-end2 (context col-
lection) are available on GitHub.

On invocation, Fiddlets analyses the line of code in which
the cursor is placed, the Current Line. Fiddlets identifies
all variable and function names used in the current line

1https://github.com/laewahn/Fiddlets-Mock
2https://github.com/laewahn/Fiddlets-Backend

https://github.com/laewahn/Fiddlets-Mock
https://github.com/laewahn/Fiddlets-Backend
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"user:12" : ["Alice", "Bob"]
"page_title:25" : ["Hello world"]
"response:130" : [
                  {code:404,data:null},
                  {code:200,data:"<xml:
                   ..."}]

Value 
Database

Editor

Fiddlets

Context

Current Line

Continuous Execution
Continuous Testing

Traced values

Visualization

Program,
Unit Tests

Context Execution

Substitute unknown 
values

update
parameters

Figure 4.1: An overview over the architecture of Fiddlets.

and uses these to create the context (4.2.1 “Context”). Fid- Fiddlets analyses the
current line to build
the context.

dlets also tries to find out what kind of operation is car-
ried out by this line. The kinds of operation that Fiddlets
recognises are: variable declaration, variable assignment
and function call, as well as any combination of these (vari-
able initialisation—function calls with the return value be-
ing assigned to a variable—, etc).

After context generation has finished, Fiddlets fills in miss-
ing variable values (4.2.3 “Value Tracing”) with values from
previous program runs and executes the context together Missing variables are

initialised with values
from previous
executions.

with the current line. Based on the information about the
current line from the previous step, Fiddlets loads and dis-
plays a visualisation for the specific operation that is car-
ried out by the current line (4.2.4 “Visualisation”). The vi-
sualisation is then updated with values from the execution
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of the context and the current line.

As we prototyped it in 3.3 “Third Iteration: Adding Con-
text”, Fiddlets will display the context generated for the
current line in an editor that is separate from the main
editor, the context editor. Once the context for the current
line from the original program is created and put into the
context editor, Fiddlets will use the last line of the contextThe context can be

edited in the context
editor.

editor as source for the visualisation. When the program-
mer changes this last line of the context editor, Fiddlets will
analyse this line and update the current visualisation with
the results of the last execution or, if necessary, replace the
whole visualisation with a new one. The programmer can
change the current line of code in the context either by di-
rectly editing it or interactively in the visualisation.

The remainder of this section will give a detailed explana-
tion on context, value tracing and visualisation.

4.2.1 Context

The context builds up a small program that performs the
necessary declaration and initialisation of variables and
functions that are used by the current line of code. It con-The context consists

of lines of the original
program.

sists of lines of the original program and aims to build an
approximation of the context in which the line would be
executed in an actual program run.

Building a context for a line of code always starts with
analysing the line itself and localising all variables and
functions used by the variable. In the next step Fiddlets
attempts to find other lines that are related to the variables
and functions of the current line. For every variable this
includes the following lines:

• The line in which the variable was declared.Criteria for relevant
lines.

• Lines where the value behind variable was updated.

• Lines where the variable was given a new value.
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Figure 4.2: A simple program (left) and the context that is generated for line 3
(right)

• If the variable references a function, the complete
function is copied to the context.

Fiddlets inserts lines that are matched by these criteria into
the context. For every line inserted into the context that ref-
erences other variables or functions, Fiddlets looks for new
lines to insert into the context, following the same rules as
before. This continues until no new variables and functions
are added to the context.

Figure 4.2 shows how the context for a line in a simple pro-
gram is generated. To generate the context for line 3, Fid-
dlets identifies the variable namesString as relevant. The
function split is a function that is provided from the built
in JavaScript String class and is therefore ignored. Fid-
dlets searches for occurrences of namesString and finds
its initialisation in line 2, which is copied into the con-
text. Since line 2 initialises namesString with a literal and
involves no other variables, the context generation termi-
nates.

In order to prevent the context from growing too much, no
lines that are outside of the scope of the current line are
used in the context. This way, the created context can never Fiddlets restricts

relevant lines to
those within the
scope of the current
line.

grow beyond the size of the function in which the current
line is located, thereby keeping the context comprehensi-
ble. The restriction also allows a developer to reduce the
possible context space by placing the code she is interested
in into a new scope.

When the context generation has finished, Fiddlets gener-
ates declarations for every variable that has been used in
the context, but that was not declared in it. This is often Fiddlets add

declarations for
missing variables.

times the case when the context should use parameters of a
function or variables that are provided by the runtime en-
vironment, e.g. command line arguments or values from
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Figure 4.3: Building the context (right) for line 10: Fiddlets looks for lines that
reference y (blue). Since line 7 references y, but also references z, Fiddlets includes
lines referencing z (green). Since the variable x is declared outside of the scope of
function f, x is considered undefined (orange).

external libraries. In order to initialise these variables with
values from previous program or test runs, Fiddlets inserts
a special tag that contains the name of the variable as well
as the number of the line in which the variable was de-
clared initially. An example format for such a tag could be
<#{fallback}:{variable name}:{line}#>, where
{fallback} is a value that Fiddlets should insert if no
substitution can be found, {variable name} refers to the
name of the variable and {line} is the line in which the
variable is declared or initialised in the program. Knowing
about the line in which the variable was declared is impor-
tant if a variable name is declared in more than one scope.
Variables declared with the same name in different scopes
are treated as independent from each other, so manipulat-
ing the variable in a certain scope does not affect the value
of a variable with the same name in another scope.

An example for a declaration tag for the variable x in Fig-
ure 4.3 would be <#undefined:x:1#>, as the variable x
was declared in line 1 and undefined is the default value
for variables that were not initialised in JavaScript. Choos-
ing undefined as a default value reminds the program-
mer that she needs to substitute it with meaningful values.
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4.2.2 Expanding the Context

In certain situations, programmers find the scope restric-
tion we imposed on the context collection algorithm too
strict. This might happen when some variables that were Expanding the

context considers
lines outside of the
scope of the current
line.

declared outside of the scope of the current line were de-
rived in a certain way and she wants to see how changing
the way that the variable is treated outside of the scope in-
fluences the result of the current line. In this case she can
use the Expand Context option. When expanding the con-
text, Fiddlets tries to resolve any unknown variables in the
current context by searching for occurrences of these vari-
ables in the parent scope of the current line and copying
those lines into the context.

4.2.3 Value Tracing

As mentioned in 4.2.1 “Context”, Fiddlets attempts to sub-
stitute any unknown variable in the context with a value
from previous program or test runs. To achieve this, Fid- Unknown values are

received from a
database of previous
values

dlets uses a database of possible values to find an appropri-
ate initial value for the variable. When it finds more than
one possible value, it offers the programmer to select be-
tween these values. If no matching value could be found,
the variable is initialised with the default value that was de-
cided on context creation and the programmer has to enter
a value herself.

Fiddlets uses an instrumented version of the program to
collect the values for the database. The instrumented pro- Instrumented

program runs are
used to build the
value database.

gram is set up to capture the values of variables along with
the variable name and the location in the program where
the variable had the respective value. The instrumented
version of the program could be run continuously on ev-
ery change, as is currently done for Live Coding, or on
demand. Either of these ways suffers from the same per-
formance problems we discussed in chapter 2.3 “Live Cod-
ing”. Reachability adds more problems to this: if an execu-
tion path of the program flow is not covered by the live exe-
cution of the program, the database will not contain values
for the variables on this path. However, at the time a set of
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possible values for a variable is present in the database, fur-
ther executions of the program can be delayed to the point
where new variables are introduced in the program or the
intended values of a variable change due to modifications
in the data processing. For the time that the programmer
is experimenting with the available variable values in the
context editor, no further execution of the program is nec-
essary.

Another source for variable values is to run the unit test
suite of the program against the instrumented program.
Unit tests are often designed to perform fast—by mock-Unit tests are a great

source for variable
values.

ing external dependencies of the program with defined
values—and cover great parts of the program, making
them an ideal candidate for variable value collection. They
are even able to be run in the background without user
interaction. However, the data used in unit tests is often
made up by the programmer writing the unit test and there-
fore it can be claimed that most of the unit test data does not
represent the entirety of data that the program would need
to operate on. Another problem is that the coverage pro-
vided by the test suite depends on which code execution
paths were decided to be relevant by the programmers. It
is therefore not guaranteed that using a unit test suite alone
will cover all relevant execution paths. To expand the cov-
erage provided by the test suite, the programmers will need
to write more tests. We therefore advocate a mixed solution
to the problem, using live executions as well as unit test
suites as sources for the variable value database. Adding
a code generator that creates unit tests from live execution
sessions (e.g., Kuhn [2013]) would then help in the process
of converting slow live execution for uncovered execution
paths into repeatable unit tests.

A third way to capture variable values is to deploy the in-
strumented program into production. Collecting runtime
information of a deployed application raises serious pri-
vacy concerns, but at the same time this information wouldUsing an

instrumented
program version in
production is risky,

but provides the best
values.

have the most validity and would therefore be the most
valuable data for debugging. Another drawback is that the
decreased performance of the instrumented version of the
program could possibly lead to user dissatisfaction. A pos-
sible solution to this dilemma is to mark values that should
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Figure 4.4: Current line highlights. The parameter high-
light can be set by the visualisation.

be traced with special annotations, an idea that was already
proposed for Live Coding systems by McDirmid [2013].
This approach would allow for data collection on selected
parts of the program, for example parts that have to deal
with a variety of different data or parts that often fail due
to unknown reasons.

4.2.4 Visualisation

Fiddlets uses several visual clues to help the programmer
understand what the code in the context editor does. Ad-
ditionally, a whole section of the Fiddlets inline widget is
dedicated to visualise the execution results of the last line
of the context.

As previously mentioned in 3.3 “Third Iteration: Adding
Context”, the context editor uses colours to highlight cer-
tain aspects of the visualised line of code (Figure 4.4). If We use colour clues

to establish a
connection between
code and
visualisation.

the line performs an assignment of any kind, then the vari-
able on the left side of the assignment is highlighted blue.
If the line calls a function on an object, the object on which
the function is called is highlighted purple. The parameters
of the function can additionally have a green dashed frame
as highlight, but the highlight must explicitly be set in the
visualisation.

We expect visualisations to serve both documentary as well
as experimental purposes. Visualisations should explain Visualisations should

be used for
documentation and
experimentation.

the behaviour of the last line of the context by showing a vi-
sual explanation of the operation that is carried out by the
line. At the same time should they offer affordances that
allow to manipulate and experiment with the parameters
and properties of that line.
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In order to show the difference between the state of an ob-
ject with and without the execution of the last line, the visu-Visualisations

receive a trace of the
context state before

and after the last line
is executed.

alisation is given a trace of the context state before and after
execution of the last line. It receives updated traces of the
context state whenever the context is changed. Each visu-
alisation is allowed to make changes to the last line of the
context. This allows the designer of a visualisation to in-
corporate interactive elements that allow to change certain
properties of the function that is visualised.
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Chapter 5

Study Design

The previous chapter introduced a novel interaction with
program code, where lines of code are taken out of the con-
text of a complete program, in order to build a new con-
text, independent of said program, that tries to resemble
behaviour that is expected in the original program. In or-
der to evaluate the usefulness of this novel concept, we de-
signed a user study with the following research questions
in mind:

• How will programmers use Fiddlets to solve pro-
gramming tasks? How does Fiddlets

affect programmer
performance?• Will programmers using Fiddlets solve certain pro-

gramming tasks faster than programmers without
Fiddlets?

In this chapter we present the design of our user study.
We implemented a prototype based on the requirements of
the previous chapter, but with certain limitations. We de- We implemented a

proof-of-concept
prototype.

scribe the functionalities and limitations of our prototype
and present the visualisations we implemented according
to the requirements imposed by the tasks of our study. We
furthermore describe the setup, procedure and tasks used
in the user study.
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5.1 Prototype

To test the concept of Fiddlets, we implemented a proto-
type of the system that fulfils most of the requirements we
described in chapter 4 “Fiddlets”.

5.1.1 Limitations

The prototype contains a proof-of-concept context build-
ing algorithm that generates valid contexts for the relevant
parts of the source code used in the tasks, but has some
limitations. The algorithm is not able to provide the ex-The algorithm does

not allow to expand
the context.

pand context feature we discussed in 4.2.1 “Context”. In
order to work around this limitation, we refactored the
code of the example programs in a way that the expand con-
text feature would not be needed. For this we moved the
relevant functions and variables of the functions that the
participants were expected to operate within directly into
the scope of said functions. This way, all necessary vari-
ables and functions would be available to the context gen-
erated by the naive algorithm. Some functions and vari-
ables could not be moved into the scope of the functions
that the participants will operate on without breaking the
example program behaviour. The algorithm generates dec-
larations that initialise said variables and functions with the
value undefined. We made sure to minimise the number
of those undefined initialisations.

Another limitation of the algorithm is that is does not con-
sider type deduction for the objects in use. For example, ifOur algorithm has no

type knowledge. the participant decided to alter the contents of an array by
calling the push method, the algorithm will expect push
to be a function that should be defined within the scope of
the current function. Since the push function is defined as
a method of the Array prototype and not defined in the
current scope, the algorithm will create the initialisation for
a variable named push and initialise that variable with the
value undefined. Since this behaviour does not influence
the result of the execution of the context, we decided to ex-
plain this case to the participants and ask them to ignore
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such cases.

To fill in unknown variables as described in 4.2.3 “Value
Tracing” we provided example values and told the partic- Example values are

defined statically.ipants that these had been already generated by previous
runs of the program or the test suite. For tasks that deal
with the source code of real world software projects (see 5.3
“Task Design”), we extracted values that were used within
the test suite of these projects and offered those as fill-ins
for unknown variables.

The context editor of the prototype does not provide an au-
tocomplete function.

5.1.2 Visualisations

We designed and implemented visualisations for the most
necessary functions that our participants will have to work
with in the study. This includes the following visualisa-
tions:

• Assignments

• String.prototype.replace

• String.prototype.split

• Array.prototype.map

• Array.prototype.splice
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Figure 5.1: Visualisation of a variable assignment in the
study prototype.

PROTOTYPE METHODS:
JavaScript is a prototype based language, meaning it
lacks the concept of classes and instead operates on
objects with arbitrary key-value properties. To mimic
classes, objects in JavaScript have a reference to a pro-
totype object which provides access to the methods that
are available for all objects of its type. The prototype of
an object is set on creation of the object an can be changed
during runtime.
The documentation for a method of a JavaScript type
usually references the prototype of that type. In the rest
of this section, readers that are used to object-oriented
programming may treat the prototype object as the class
of the object. For example: String.prototype.map
in JavaScript would be the equivalent of the method map
defined by the String class in an object-oriented lan-
guage.

Definition:
Prototype Methods

Figure 5.1 shows the visualisation of an assignment. TheAssignment
visualisation visualisation informs the programmer about the new value

of the variable on the left side of the assignment and the
type of the object that is assigned to this variable. It is also
used as a fallback whenever no specific visualisation for a
line of code could be found.
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Figure 5.2: Visualisation of the
String.prototype.replace method in the study
prototype

STRING.PROTOTYPE
.REPLACE :
JavaScript’s String.prototype.replace method is
used to match and replace parts of a string object. It
takes two parameters: the first parameter is a string
or a regular expression that should be matched, the
second parameter is either a string that replaces ev-
ery match in the original string or a function that is
called for every match. In the second case each match-
ing string is used as an input for the function which
should then return the replacement for that match.
String.prototype.replace returns a new string
with the replaced matches and does not alter the origi-
nal string.

Definition:
String.prototype

.replace

The visualisation for the String.prototype.replace String.prototype

.replacemethod (Figure 5.2) shows a brief explanation of what the
method is supposed to do, as well as the value of string
on which the method is being called and the return value.
The visualisation highlights the elements matched by the
first parameter of the method and their corresponding re-
placement in the return value. Alternating brightness of
the highlights is used to help the programmer mapping
matches to their replacements.
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Figure 5.3: Visualisation of the String.prototype.split method in the study
prototype

STRING.PROTOTYPE
.SPLIT :
String.prototype.split is a method that separates
a string into components. Its first parameter is a string or
a regular expression that specifies the characters that are
used for separation. It returns a new array with the com-
ponents of the separated string. An optional second pa-
rameter can be used to limit the number of components
in the returned array.

Definition:
String.prototype

.split

Similar to String.prototype.replace, theString.prototype

.split String.prototype.split visualisation (Figure 5.3)
shows a short explanation of the methods intended func-
tionality as well as the object it is called on and the return
value. An additional visualisation shows an intermediate
step of the method call that helps understanding the limit
parameter of the method. The additional visualisation
shows the array that would be returned by the method
if no limit was given in the parameters. All rows of the
elements that make up the return value are marked with
a blue background. Rows with elements that are not
included in the return value have a white background. If
the limit is set in the parameters, an arrow on the left side
of the table allows the programmer to interactively change
it by moving the head of the arrow. The head of the arrow
always points to the last element to be included in the
return value.
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ARRAY.PROTOTYPE.MAP :
Array.prototype.map creates a new array that con-
tains transformed values of the array on which it is
called. The method has a single parameter, which is a
function that is used to transform the values. This func-
tion is called once for every element of the original array,
with the corresponding object used as the parameter, and
should return the transformed value of that object.

Definition:
Array.prototype.map

The visualisation for the Array.prototype.mapmethod Array.prototype.map

uses a two column table (Figure 5.4). In the left column
it shows the values of the array on which the method is
called. The values of the returned array are shown in the
right column of the table. It uses the colour scheme we in-
troduced in section 4.2.4 “Visualisation” to make a visual
connection to the elements in the last line of the context ed-
itor.

ARRAY.PROTOTYPE.SPLICE :
The Array.prototype.splice method changes the
content of an array by removing a range of objects from
the array and replacing it with a variable number of new
elements. All parameters of splice are optional. If
splice is called with no parameters, it returns an empty
array and leaves the original array unchanged. When pa-
rameters are given, the first parameter defines the start-
ing index for the objects that are removed from the array.
The second parameter defines the number of elements
that will be removed. If this parameter is not set, all el-
ements after the start parameter are removed. After the
first two parameters splice takes an arbitrary number
of further parameters. Every parameter represents an ob-
ject that will be inserted into the array at the start index.

Definition:
Array.prototype.splice

Figure 5.4: Visualisation of the Array.prototype.map
method in the study prototype
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Figure 5.5: Visualisation of the Array.prototype.splice method in the study
prototype

The visualisation of the Array.prototype.splice method isArray.prototype

.splice the most complex visualisation of the prototype. It is com-
posed of three single column tables (Figure 5.5). The table
in the middle displays the elements of the array on which
the method is called. Elements of that array that are within
the range defined by the start and deleteCount param-
eters are highlighted with a blue background. Elements
that are not affected—and therefore will stay in the original
array—are highlighted with a purple background. Moving
the head of the arrow on the left side of the table lets the
programmer change the deleteCount parameter similar
to the arrow in the String.prototype.split method.
The arrow itself can be moved up and down to change the
start parameter.

The table on the left displays the contents of the return
value. Selecting more elements of the original array by
either manipulating the arrow UI element or altering the
parameters manually will change the number of elements
in the output array. The table on the right represents the
value of the array on which the splice method is called.
Elements with a purple background remain in the original
array. Elements with a green background are elements that
are added in the method call.

Since the parameters of the splice method are optional,
not all tables are shown all the time: if no parameters are
given, only the middle table is shown, otherwise all tables
are shown.

Errors produced by the execution of the context code areErrors
shown beneath the context editor. Displaying an error does
not remove the current visualisation, but is shown in an
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additional text output. The error message is displayed with
red text colour to stand out against the remainder of the
visualisation.

5.2 Study

We designed the study as a between-subjects study with
two conditions: the “Fiddlets” condition and the “Con-
trol” condition. In the Fiddlets condition participants are We designed the

study as
between-subjects
with two conditions.

allowed to use the prototype to solve the tasks. In the Con-
trol condition the prototype is deactivated and participants
are allowed to use external tools of their choice to solve the
tasks. We neither restrict, nor encourage the usage of spe-
cific tools in the Control condition.

5.2.1 Setup

For the study we use an iMac with a 3.5 GHz Intel Core
i7 processor, 24GB Ram and 500GB SSD storage. The iMac
has an integrated 27” screen with a resolution of 2560x1440
pixel. We reduce screen resolution to 2048x1152 if partici-
pants have trouble with the default resolution. Participants
can decide to use either a USB keyboard with US layout or
a wireless keyboard with German layout. The iMac is run-
ning Mac OS X 10.10 (Yosemite). All tasks are performed
with the Adobe Brackets code editor Release 1.2 build 1.2.0-
15697.

We provide participants with sufficient documen-
tation to solve each task. This includes the doc- We provide the

official
documentation for all
relevant functions.

umentation of the String.prototype.replace
method, the String.prototype.split method,
the Array.prototype.map method, the
Array.prototype.splice method and the docu-
mentation of the JavaScript RegExp type from the official
Mozilla JavaScript documentation1. We also provide them
with a demo of mustache.js. Participants are allowed to

1https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference


58 5 Study Design

use any search engine of their choice to browse for further
documentation. We advise them not to search for the
source code of mustache.js, since that would contain the
solution to the tasks.

To measure the task completion time we added an exten-
sion to the editor showing a task bar with a “Start Task”
button above the editor pane. The extension logs theTask completion time

is measures as the
time between clicking

the “Start task” and
“Hand in Task”

buttons.

date when the participant presses the button and changes
the button title to “Hand in Task”. When the participant
presses the button again, a modal dialog asks her to con-
firm to hand in the task. If she confirms the dialog, the ex-
tension logs the date that the task was handed in and writes
the captured data into a log file. For participants in the Fid-
dlets condition the log also captures time-stamps for every
time that Fiddlets has been invoked and closed. This way
we capture how frequent and for how long a participant
use Fiddlets.

For further analysis and in case that the logging fails we
capture the iMac’s screen and microphone input with the
screen recording feature of QuickTime. We prepared a pre-
questionnaire to be filled out before the study, where we
collect age, gender and occupation information, as well as
information about programming experience (in years) and
JavaScript experience (in years).

We additionally ask users to rank their familiarity with the
following technologies and concepts on a scale from 1 (Not
at all) to 5 (Very familiar):

• Regular Expressions

• Unit TestingPreliminary
knowledge.

• Live Coding

• Node.js

• mustache.js

We additionally hand out an unchanged version of the SUS
scale by Brooke [1996] as a second questionnaire to col-
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lect feedback about the usability of Fiddlets. The ques-
tionnaires used in the study can be found in Appendix D
“Questionaires”.

5.2.2 Procedure

We first explain the purpose and background of the study
to the participant. We then hand her an informed consent Participants can

chose between
German and US
keyboard layout.

form which we additionally explain to her. We offer her to
chose between a keyboard with US or German layout. We
also ask about her preferred mouse scrolling direction and
hand her the first questionnaire.

After the participant has filled out the questionnaire, we
hand her the description for the first task. We ask her to
read the description carefully and to ask questions if any
aspect of the task remains unclear. The task descriptions Task descriptions

contain precise
instructions.

contain precise instructions on how to begin and how to
finish each task. Participants in the Fiddlets condition are
given a brief introduction into the Fiddlets prototype which
also contains a brief explanation of the context algorithm.
We tell them that the values filled in by the context edi-
tor are from actual program runs, although they have been
previously defined and are read from a file.
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We limit the time for each task to a maximum of 20 minutes.Each task is limited
to 20 minutes. If the participant does not solve the task within this time,

we ask her to hand in the task. After each task, we allow the
participant to take a rest and offer snacks and drinks, before
handing out the next task description. The participant is
allowed to ask questions and we answer any question that
do not relate to the solution of the task, e.g., where to find
certain characters like the degree symbol on the keyboard.

When the participant finishes the last task, we hand her the
second questionnaire. We offer the participant to ask fur-
ther questions regarding the prototype and the tasks. Par-
ticipants in the Control condition are offered a quick demo
of the prototype.

5.3 Task Design

In an empirical analysis of the corpus of widely-used
JavaScript programs, Richards et al. [2010] identified Date,
RegExp (Regular Expressions), DOM (Document Object
Model, i.e., rendered HTML) Array objects as well as run-
time errors, as the most frequently used built-in data types
of JavaScript. According to this, we designed our tasksArrays and Regular

Expressions are
among the most
frequently used

built-in data types in
JavaScript.

around RegExp and Array objects, since on the one hand,
they are among the most frequently used data types in most
programming languages, and on the other hand, they pro-
vide certain pitfalls to even experienced developers, e.g.,
off-by-one2 and out-of-bounds3 errors for arrays. RegExp
are especially interesting, as their inherent complexity and
versatility makes them both hard to read and hard to com-
pose, justifying the existence of tools4 that specialise only
on the visualisation of Regular Expressions.

In order to make the tasks as authentic as possible, weThree of five tasks
were centred around

mustache.js
based three out of the five tasks on the source code of
mustache.js5, an open source template system written in
JavaScript. We chose mustache.js for the following reasons:

2https://cwe.mitre.org/data/definitions/193.html
3https://cwe.mitre.org/data/definitions/125.html
4http://www.regexpal.com/
5https://github.com/janl/mustache.js

https://cwe.mitre.org/data/definitions/193.html
https://cwe.mitre.org/data/definitions/125.html
http://www.regexpal.com/
https://github.com/janl/mustache.js
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• It is widely used and supported by other open source
projects.

• With around 600 lines of code it is fairly comprehen-
sible.

• It uses a lot of string parsing and Regular Expressions.

• It provides a comprehensive and fast performing unit
test suite.

The two other tasks are designed around a simple data
processing application written in Node.js. The application We built a simple

data processing
application for tasks
four and five.

reads Base64 encoded JSON data from a file, parses the
JSON data into a collection of separate JavaScript objects
and writes the content of these objects into a “Comma Sep-
arated Values” (CSV) file. We designed this application to
make heavy use of Array objects and native JavaScript ob-
jects. We chose a Base64 encoded input file to make sure
the user cannot imply the content of the processed data by
looking into the input file.

The source code for the data processing application can
be found in Appendix B “Data Processing Tasks: Source
Code”. All task descriptions are part of Appendix C “User
Study Task Descriptions”.

5.3.1 Task 1: Implementing a Regular Expression

In the first task we ask participants to provide a regular Task 1
expression for a call of String.prototype.replace to
replace special characters with their escaped version. The
regular expression should match special characters in a
given set of inputs, which is given in a table that contains
inputs for the function as well as the desired return values.

Participants are allowed to execute the unit tests of the pro-
gram, but the tests do not provide feedback about the cor-
rectness of the solution. Participants have to find their own
way to make sure that their regular expression matches the
expected characters.
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5.3.2 Task 2: Implementing a Regular Expression 2

In the second task the participants have to provide a reg-Task 2
ular expression for a function that is supposed to escape
special characters of HTML (< > ’ " / &). The program
initially has a regular expression matching < and >, but not
matching the remaining special characters.

Participants are encouraged to execute the unit test suite of
the program to verify their solution. This time the unit tests
fail until a correct solution is provided.

5.3.3 Task 3: Bug-fixing a Split Operation

For the third task we introduce a bug into theTask 3
compileTags function of mustache.js. compileTags re-
ceives either an array containing exactly two tags or a string
of the two tags separated by whitespace, and builds regu-
lar expressions that will later be used to scan a template for
the tags to replace. If the tagsToCompile parameter of
the compileTags function is a string, the function calls the
split method, creating an array of the components of the
input string. The split method takes two parameters: the
first one is a regular expression that matches white space,
the second one is a number limiting the size of the array
that is returned by the method. In our case the limit is set
to two. After the input is split, the compileTags func-
tion performs a size check on the tagsToCompile array to
make sure it contains exactly two elements, i.e., the open-
ing and the closing tag. If the tagsToCompile is not an
array with two elements, an exception is thrown. Other-
wise, the function continues to build regular expressions to
match the opening and closing tags.

We introduced a simple but easy to overlooked bug by
changing the limit parameter of the split method call
from initially one to two, resulting in the array returned
by split containing only one element instead of two. The
size check on the value of tagsToCompile subsequently
fails with an exception. Again, we allow participants to use
the unit test suite to ensure the correctness of their solution.
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5.3.4 Task 4: Transforming an Array

The fourth task is to transform JavaScript objects used in Task 4
the data processing application (Appendix B “Data Pro-
cessing Tasks: Source Code”) into a line for a CSV file using
the map method. The code calling the map method, stor-
ing the return value in a variable to be written to file and
the function used as parameter for map are already imple-
mented in the application. The later function is supposed
to return a CSV line from a JavaScript object of the array,
but returns the object it was given in the parameter. We ask
the participants to implement the code that returns the CSV
line string from the function. Participants can run the ap-
plication and observe the output file in order to verify their
solution.

5.3.5 Task 5: Changing Array Contents

The fifth task adds an additional requirement to the data Task 5
processing application: whenever is is run it should replace
the first element of the previously built CSV array with a
header. The first element of the CSV should then be saved
in a separate variable in order to be printed to the standard
output.

Participants are asked to implement this functionality in
a single call of the splice method. JavaScript’s splice
method is a versatile function that can be used to remove,
extract and insert objects into an array. We supply partic-
ipants with an example call of the splice method—but
without parameters—and ask them to provide the param-
eters that are necessary to implement the desired function-
ality. Again, participants can run the program and observe
the output to verify their solution.
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Chapter 6

Evaluation

In this chapter we discuss the results we obtained from our
user study. We start with describing the demographic data
of our participants and the data we obtained from the pre-
liminary questionnaire. We then evaluate the collected us-
age and performance data. Finally we take a look at user
reception and observations we made during the study and
discuss implications for our interaction design.

6.1 Participants

We recruited 14 participants via a university mailing list,
the mailing list of a monthly programmer meet-up and by
directly asking computer science students of the RWTH
Aachen University. The participants were mostly students Participants were

mostly computer
science students.

(12) except for one PhD student and an IT consultant. The
students were enrolled in computer science (10) or com-
puter science related courses (2). The two non-students
both have a degree in computer science. 12 participants
were male, two were female. Participants age ranged from
19 to 53 years, the average age was 25.79 years (Table 6.1).

Participants showed a huge diversity in programming ex- Programming
experience was
widely distributed.

perience. The average overall programming experience
(“Programming XP”) was 8.357 years with a standard devi-
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Mean Median SD Min. Max.
Age 25.79 24.50 8.396 19 53
Programming XP (years) 8.357 8 6.902 1 30
JavaScript XP (years) 3.357 1.25 3.505 0.5 10

Table 6.1: Age and programming experience (XP) of the participants

ation of 6.902 years, ranging from one year up to 30 years.
The average JavaScript experience (“JavaScript XP”) was
3.357 years with a standard deviation of 3.505 years, rang-
ing from half a year up to 10 years (Table 6.1).

Participants were randomly assigned to either the Fiddlets
condition, where they were allowed to use our Fiddlets pro-Conditions were

assigned randomly. totype to solve the task, or the Control condition, where
they were allowed to use any external tool that would help
them solve the tasks. We ended up having equal numbers
of participants in the Fiddlets condition and the Control
condition.

Group Mean SD 95% CI
RegExp c 3.857 0.690 [2.60, 3.40]

f 3.000 0.577 [3.38, 4.33]
Unit Testing c 2.714 1.380 [2.12, 3.89]

f 3.000 1.291 [1.77, 3.66]
Live coding c 1.429 0.787 [2.63, 3.94]

f 3.286 0.951 [0.89, 1.97]
Node.js c 2.000 1.414 [1.65, 3.21]

f 2.429 1.134 [1.03, 2.97]
mustache.js c 1.714 1.496 [1.06, 2.37]

f 1.714 0.951 [0.69, 2.74]

Table 6.2: Reported preliminary knowledge about tools
and concepts from the first questionnaire

According to the reported preliminary knowledge we sur-
veyed with the first questionnaire, participants in the Fid-Fiddlets participants

reported higher
knowledge in Live

Coding and Unit
Testing, Control

participants in
Regular Expressions.

dlets group had a small bias towards Unit Testing (M =
3.286) and Live Coding (M = 3.000). They also reported
a slightly higher knowledge of Node.js (M = 2.429) than
participants in the Control group, but since the value is be-
low a rating of “Neutral”, we consider this knowledge ir-
relevant. The same holds true for the reported knowledge
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of mustache.js, which both groups reported equally low
(M = 1.714). More detailed information about reported
preliminary knowledge is listed in Table 6.2.

6.2 Results

We recall the research questions we stated in chapter 5
“Study Design”, which were:

• How will programmers use Fiddlets to solve pro-
gramming tasks?

• Will programmers using Fiddlets solve certain pro-
gramming tasks faster than programmers without
Fiddlets?

6.2.1 Usage

To answer the first question we analysed the usage data, We looked at
average and
maximum usage
times.

i.e., how often and for how long did the participants use
Fiddlets. From the usage data collected in the user study
we calculated the following values for each task and each
participant:

avg usage seconds: Average time in seconds that the par-
ticipant used Fiddlets.

max usage seconds: Longest period in seconds in which
the participant used Fiddlets.

avg usage rel: Average Fiddlets usage relative to the task
completion time.

max usage rel: Longest Fiddlets usage relative to the task
completion time.

count: Number of times that the participant used Fiddlets
in a task.
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Figure 6.1

From the data we see that participants used Fiddlets on av-
erage 11.21 times per task. One participant even used Fid-
dlets 45 times in task 1. Fiddlets usage accounts for an av-Fiddlets was used for

around 20% of Task
Completion Time.

erage of 20.68% of participants task completion time. The
longest time an instance of Fiddlets was opened accounted
for 97.71% of the task completion time, in this case also for
task 1. Table 6.3 shows the mean values, standard deviation
and maximum values for the collected usage data.

Mean SD Max
avg usage seconds 131.4 149.7 799.3
max usage seconds 371.8 320.5 1203
avg usage rel 0.2068 0.1654 0.6491
max usage rel 0.5059 0.2805 0.9771
count 11.21 9.999 45

Table 6.3: Average usage time, maximum usage time and
count of usage of all participants

In order to see how average usage times and maximum rel-
ative usage are distributed among the tasks, we sorted theWe looked at the

usage times for
individual tasks.

values by task and plotted averages and confidence inter-
vals per task for each measurement. Figures 6.1 and 6.2
show the results. Figure 6.3 shows the distribution of the
count of Fiddlets invocations per task.
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Figure 6.2: Maximum relative usage per task

Figure 6.3: Number of Fiddlets invocations per task

We tested the tasks against each other using ANOVA for Fiddlets usage did
not vary significantly
among tasks.

every measurement, but the analysis reported no signifi-
cant differences. The values however indicate that partici-
pants used Fiddlets in a diverse manner.
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6.2.2 Programmer Performance

We use the “Task Completion Time” (TCT) as an indicator
of programmer performance. The TCT was measured as
the time in seconds between the beginning and the handing
in of a task. We relate lower TCT to greater programmerTCT and TCR were

used as measures of
programmer

performance.

performance. We considered the number of successfully
completed tasks (“Task Completion Rate”, TCR) as another
factor for programmer performance: more completed tasks
meaning more productivity.

We expected the participants of the Fiddlets condition to
perform better in solving the tasks than participants in the
Control condition. In order to evaluate our assumptions we
stated the following hypotheses:

1. Participants using Fiddlets will be able to solve moreHypotheses
tasks than participants in the Control group (higher
TCR in the Fiddlets condition).

2. Participants using Fiddlets will solve tasks faster than
participants in the Control group (lower TCT in the
Fiddlets condition).

We removed the data points of tasks that were not com-
pleted within 20 minutes and calculated averages and con-
fidence intervals for both hypotheses. Table 6.4 shows the
results for task completion rate.

Group Mean 95% CI
c 4.29 [3.73, 4.85]
f 3.71 [2.69, 4.74]

Table 6.4: “Task Completion Rate”: number of successfully
solved tasks by each participant

We see that participants in the Fiddlets group were able to
solve an average of 3.73 task, whereas participants in the
Control group solved an average of 4.29 tasks. ParticipantsThe control grouped

reached a higher
average TCR.

in the Control group were therefore able to solve more tasks
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on average than participants in the Fiddlets group. How-
ever, running a t test against these values shows that this
difference is not significant (t(12) = 0.961, p = 0.356).

Next up, we look at the TCTs. Table 6.5 shows the results for
each condition, grouped by task number. Figure 6.4 shows
plots of the mean values and confidence intervals for each
task.

Task Group N Mean (s) SD 95% CI (s)
Task 1 c 3 607.7 165.2 [420.76, 794.64]

f 3 758.7 238.3 [489.04, 1028.36]
Task 2 c 7 346.1 206.3 [193.27, 498.93]

f 5 499.1 198.1 [325.46, 672.74]
Task 3 c 5 639.8 271.2 [402.09, 877.51]

f 6 531.9 227.4 [349.95, 713.85]
Task 4 c 7 560.1 278.2 [354.01, 766.19]

f 6 506.3 127.4 [404.36, 608.24]
Task 5 c 7 254.2 266.7 [56.63, 451.77]

f 6 381.2 166.1 [248.29, 514.11]

Table 6.5: “Task Completion Time” for conditions and
tasks.

Participants in the Fiddlets group solved Task 3 and Task
4 on average faster than participants in the Control group.
They were on average 107,9 seconds faster in Task 3 and Fiddlets participant

were faster in Tasks
3 and 4, Control
participants were
faster in Tasks 1,2
and 5, differences
are not significant.

53.8 seconds faster in Task 4. Both values are within the
standard deviation. Participants of the Fiddlets group
solved Task 1, 2 and 5 slower than participants in the Con-
trol group. The differences here are 151.0 seconds for Task
1, 153.0 seconds for Task 2 and 127.0 seconds for Task 5.
The differences are again within the standard deviation. We
again used the t test to check if the differences are signifi-
cant (Table 6.6). The data shows no significant difference in
task completion time for each task.

When we look at the demographic data of our partici- High variation in
programmer
experience could
explain the missing
significance.

pants (6.1 “Participants”), we see that they show a huge
variation in programming experience (between one and 30
years) as well as JavaScript experience (0.5 to 10 years).
High standard deviations in both programming (6.9 years)
and JavaScript (3.5 years) experience suggest that our par-
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Task t df p
Task 1 -0.902 4 0.418
Task 2 -1.287 10 0.227
Task 3 0.719 9 0.491
Task 4 0.435 11 0.672
Task 5 -1.007 11 0.335

Table 6.6: t test results for TCT, assuming a difference be-
tween conditions (Fiddlets vs. Control)

ticipants group represents a vivid mixture of professional
as well as novice programmers. With respect to the com-
parably low overall number of participants in each condi-
tion (7 participants per condition) we became curious what
insights the data would provide if we compared not only
conditions, but additionally include the skill level of partic-
ipants into our evaluation.

We used the programming and JavaScript experience We grouped
participants by
experience.

scores and calculated an experience score for each partic-
ipant. The experience score is calculated as follows:

xp score(participant) = wprog ·
prog xpparticipant
ageparticipant

+ wjs ·
js xpparticipant

prog xpparticipant

with prog xpparticipant being the participant’s programming
experience in years, js xpparticipant being the participant’s
JavaScript experience in years and ageparticipant being the
participants age, again in years. wprog and wjs are used to
weight the respective part of the formula. The first part of
the formula determines the programming experience of a
participant relative to her age. The second part determines
the JavaScript experience of a participant relative to pro-
gramming experience in years. The formula rates partici-
pants with only few years of programming experience ex-
clusively in JavaScript high for relative JavaScript experi-
ence, but low on overall relative programming experience.
A participant with years of programming experience, that
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had just recently started using JavaScript, would score high
for overall relative programming experience, but low for
relative JavaScript experience. Using the weights, the for-
mula can be adjusted to either prefer relative programming
experience over relative JavaScript experience or vice versa.

The fact that JavaScript combines sophisticated styles of
programming—e.g., object oriented programming, struc-
tured programming—makes it easily accessible for pro-JavaScript is easy

accessible, but
contains concepts

unfamiliar to object
oriented

programming.

grammers who are already familiar with those program-
ming styles. The dynamic type system and lack of debug-
ging tools however promote the introduction of errors that
are quickly overlooked by inexperienced JavaScript pro-
grammers and only show up at program execution. We
therefore used 0.4 as value for wprog and 0.6 for wjs in order
to value JavaScript experience slightly above overall pro-
gramming experience.

After calculating the xp score for each participant we used
the median xp score (0.2973) and the condition to classify
the participants. Participants with an xp score equal toWe used the median

xp score to classify
participants.

or higher than the median were classified as advanced par-
ticipants, whereas those with a score below the median
were classified as beginner participants. Table 6.7 shows
the distribution of participants according to our classifica-
tion. f beginner and c beginner contain those who were clas-
sified as beginner in their condition, whereas f advanced and
c advanced contain those classified as advanced in their con-
dition.

Classification Frequency Percent
f beginner 5 35.7
c beginner 2 14.3
f advanced 2 14.3
c advanced 5 35.7

Table 6.7: Classification of the participants according to
their xp score

The distribution of beginner and advanced participants be-
tween the Fiddlets and Control condition suggests an in-
equality of skill between those groups, which could explainDistribution among

beginner and
advanced

participants indicates
a bias towards the

Control group

the low performance of the Fiddlets group in the user study.
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We used the classification as factors for an ANOVA analysis
against the task completion times to see whether the data
would support our suspicion. The results of the analysis
are shown in Table 6.8. Again, the data shows no signifi-
cant differences for task completion time.

Task df F p
Task 1 2 0.309 0.755
Task 2 3 0.829 0.514
Task 3 3 2.398 0.154
Task 4 3 0.198 0.895
Task 5 3 0.594 0.634

Table 6.8: Results of ANOVA against TCT, using the classi-
fication based on the median xp score as factor

In a last attempt we looked at the differences in reported
preliminary knowledge across the Fiddlets group and the
Control group. Using the data from Table 6.2 in Section
6.1 “Participants”, we observed that the participants of
the Control group on average reported a higher prelimi-
nary knowledge of regular expressions (3.857, mean value)
than the participants in the Fiddlets group (3.00, mean
value).With t(12) = 2.52, p < 0.05 this difference is sig- Control group

participants reported
a significantly higher
knowledge of
Regular Expressions.

nificant. Participants of the Fiddlets group on the other
hand reported on average a higher preliminary knowledge
regarding the Unit Testing (M = 3.0000), Live Coding
(M = 3.286) and Node.js (M = 2.429), with the difference
in Live Coding being significant (t(12) = 3.98, p < 0.05).
Since we had no Live Coding specific tasks, we don’t con-
sider this to be an advantage for solving the tasks. Both
groups reported on average the same preliminary knowl-
edge regarding mustache.js (M = 1.714), showing that nei-
ther of the groups had any advantage in solving the mus-
tache.js tasks, which accounted for more than half of the
tasks. Table 6.9 lists the significance values of reported pre-
liminary knowledge.
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t df p
RegExp 2.52 12 0.027
Unit Testing -0.40 12 0.696
Live coding -3.98 12 0.002
Node.js -0.63 12 0.543
mustache.js 0.00 12 1.000

Table 6.9: t-values for reported preliminary knowledge, as-
suming no difference

6.2.3 User Reception and Observations

Fiddlets received an average SUS score of 85.71 (SD = 8.63,
95% CI [79.32, 92.11]), which according to Bangor et al.
[2008] maps to an adjective rating of “Excellent”. AlthoughSUS: 85.71
this value has no influence on programmer performance,
the SUS shows us that interacting with Fiddlets was not
perceived as cumbersome or disruptive and was easy to un-
derstand. It also shows us that apparently no major bugs
were introduced into the prototype that made using the
prototype awkward.

Despite the good SUS score, we identified areas of improve-
ment of the prototype through observation and participant
interviews. We will briefly discuss the most striking obser-
vations.

None of the participants in the Fiddlets condition used the
interactive elements of the split and splice visualisa-
tion. In case of the split visualisation, some participantsParticipants largely

ignored interactive
elements in the

visualisations.

tried to change the number of elements in the returned ar-
ray by directly clicking the last element they wanted to in-
clude in the output array. Participants were so heavily con-
vinced that this was the primary interaction to select the
size of the return array, that they tried double clicking the
element in question after single clicking it did not show
any effect. In case of the splice visualisation, the partic-
ipants preferred to directly interact with the parameters of
the method. An explanation for this could be that the ef-
fort that is needed to move from the keyboard to the mouse
does not outweigh the gains of using our mouse-oriented
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interaction to manipulate the parameters. Given the size Interactive
visualisations
required a higher
effort than changing
parameters manually.

and number of parameters that needed to be entered in the
functions, the cost of initially positioning the text cursor in
the parameter list of the method and from thereon using
the keyboard to change them is much lower than the cost
to switch to the mouse and precisely point and drag the in-
teractive elements.

Some of the participants in the Fiddlets group expected that
changes made in the context editor would also be applied
to the main editor. One of the reasons we did not imple- Participants

expected changes in
the context code to
be reflected in the
main editor.

ment this feature was the assumption that programmers
would use the context editor to experiment with the code.
We assumed that applying changes in the context editor di-
rectly to the main editor would hamper programmers from
experimenting freely, as they might fear to break the pro-
gram. However, contrary to our assumption we observed
that participants tended to write experimental code in the
main editor and used Fiddlets to quickly execute their ex-
perimental code and observe the outcome in the visualisa-
tion. One participant scattered log commands throughout
the program and tried to use fiddlets to execute them in-
place. Since we did not consider such an interaction, the
prototype did not offer a visualisation for log commands.

Another possible explanation for the low rate of experimen-
tation we observed among participants could be a missing
interaction for copying additional lines of code from the
main editor into the context code. An illustrating example:

In Task 5, a participant opened Fiddlets in Variables initialised
in the main program
were not
automatically
available in the
context code.

the line with the splice method call. At
that point the context editor contained the
weatherInfoCSV variable initialisation and
the current line of code with the split
method call on the object referenced by said
weatherInfoCSV variable. The participant
entered the first two parameters (start and
deleteCount) for the splice method. She
then tried to enter the csvHeader string as the
third parameter, which was defined in the main
editor, but not copied into the context editor. It
was therefore not available during execution of
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the context code, which then resulted in a ref-
erence error that was being displayed in the vi-
sualisation. Confused by this result, the partic-
ipant started using a literal value for the third
parameter in order to observe how the splice
method behaves, instead of copying the initiali-
sation of the csvHeader variable.

A solution to this problem would be to search the context
code for the usage of variables that have been defined in
the main editor, but not in the context editor. Upon find-The context editor

could suggest to
copy missing values
from the main code.

ing such a usage, the it could offer the user to copy the ini-
tialisation from the main editor. This behaviour could also
be integrated into an autocomplete function in the context
editor, where when the user types a variable, the autocom-
plete would offer her to instead copy the initialisation of
that variable from the main editor.

6.3 Summary

We evaluated our user study by looking at the usage and
performance data of the participants. We saw that through-
out the tasks, participants in the Fiddlets condition actively
used the tool in diverse ways. From our performance dataParticipants made

great use of Fiddlets,
but did not perform

significantly different
from the Control

group.

we could not find any proof for our hypotheses. Neither
did the data show a higher task completion rate for partic-
ipants in the Fiddlets condition, nor did it support our hy-
pothesis that participants using Fiddlets finished the tasks
faster than the participants in the control group.

We were however able to identify minor flaws in the de-
sign of Fiddlets and received interesting insights into how
participants interacted with it. The next chapter will wrap
up the ideas and future work that we derive from these in-
sights.
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Chapter 7

Summary and future
work

This chapter summarises our contributions made to the
field of HCI and takes a final look at the results of our user
study. We discuss the efforts needed to turn the prototype
we developed into a mature program that could be used in
everyday work. We conclude with opportunities for future
research in the direction of Fiddlets.

7.1 Summary and contributions

With this theses we introduced Fiddlets, a novel interac- We introduced
Fiddlets as a novel
interaction with
source code...

tion technique that enables programmers to quickly exe-
cute small parts of a program without the need to run it
as a whole. We introduced the notion of an execution con-
text that captures the minimal amount of related code that
is necessary to execute certain program parts. Besides that
we described how runtime values can be provided for such
contexts by capturing them through the instrumented exe-
cution of the complete program. We enhanced the display
of the results of context execution with interactive visuali-
sations that are tailored to the line of interest of the context.
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We provided an architectural overview over the compo-... and described the
architecture

necessary to enable
this interaction.

nents that are necessary to implement Fiddlets and de-
scribed the parts that are the most critical: generation of
the context, capturing runtime values and providing inter-
active visualisations.

To show the feasibility of our idea, we built a prototyp-We built a
proof-of-concept

prototype and
evaluated its

performance in a
user study.

ical implementation of Fiddlets. Using the prototype we
conducted a between-subjects user study in which we in-
vestigated both user acception and the effect on program-
mer performance. An average SUS score of 85.71 and our
evaluation of the usage data showed that Fiddlets was well
accepted by the participants. The performance data mea-
sured in the study showed no significant differences be-
tween those participants who used Fiddlets and those who
did not. Some aspects of the data showed indications of
an unbalanced distribution of programming experience be-
tween the two groups, favouring the Control group.

7.2 Future work

Despite the usage and performance data we identified vari-
ous areas of improvement to our prototype during the user
study. These and other insights of the study offer opportu-
nities for future work in the direction of Fiddlets.

In 4.2.1 “Context” we explained our vision of a mature con-Improved context
generation algorithm text generation algorithm. The algorithm that was used in

the prototype had several limitations which we outlined
in 5.1.1 “Limitations”. It would be interesting to imple-
ment a more sophisticated algorithm that closer matches
the features we envisioned and to evaluate its performance
in terms of resource consumption and execution time.

For the user study, we restricted the number of visualisa-More visualisations
tions to those that were related to the code in the tasks (5.1.2
“Visualisations”. JavaScript provides a plethora of built-in
types and function worth a visualisation. Other examples
of functions that could benefit from elaborate visualisations
can be found in jQuery. We already explored some of the
possibilities with our prototypes in 3.2 “Second Iteration:
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Runtime Data Widgets”. It would be interesting to see how
a working implementation of those visualisations in Fid-
dlets would perform against traditional development envi-
ronments.

The only part of our architectural sketch (4.2 “Implemen- Trace collector
implementationtation”) missing in the prototype for the user study was the

collection of runtime traces and variable values. Research
on Live Coding (2.3 “Live Coding”) already showed that
continuous execution and the capturing of program traces
is feasible with the capabilities of modern computers. Hav-
ing a working implementation that collects variable values
from both program and unit test execution would allow to
design user studies with more open ended implementation
tasks.

Since the results of our user study showed no signifi- More user studies
cance, we encourage the design of further user studies on
the interaction provided with Fiddlets. Besides the afore-
mentioned open ended tasks, we could imagine task de-
signs that are more focused on single functions or types
and provide narrower stimuli. A study could for example
ask the participants to write regular expressions to sepa-
rate various sets of strings. Another study could ask the
participants to implement functions used along with the
Array.prototype.map method to perform arbitrary ob-
ject transformations.

We still believe that the interaction we implemented with
Fiddlets can be a valuable tool for programmers in their
daily work. With these hopefully inspiring ideas we hand
our vision on to future research, looking forward to a time
when great tools will allow us to develop even greater soft-
ware.
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Appendix A

Live Autocompletion
Evaluation:
Implementation
Requirements

A.1 Trivia Game Requirements

Implement this game of trivia with any number of players.
No GUI needed, just log what is happening on the console.

A.2 Board Setup

• There are 12 fields numbered from 0-11

• The players traverse the fields in sequential order

• After field 11 comes field 0

A.3 Questions

Every field links to one out of four question categories
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• 0,4,8 are “Pop”

• 1,5,9 are “Science”

• 2,6,10 are “Sports”

• 3,7,11 are “Rock”

There are 50 questions for each category

• The questions consist only of their category plus their
index (e.g. “Pop 1”) instead of being actual questions

• Questions are in sequential order

A.4 Rules

• Players take turn in the order they were added to the
game

• On each turn, a player throws a dice (1-6), then moves
the according number of fields and answers the ques-
tion corresponding to the field she lands on

• If the question is answered correctly, the player wins
a gold coin

• If the question is answered incorrectly, the player is
put into penalty

– The player can get out of penalty by throwing an
odd number when it is his turn. If she does so,
she moves to the field according to the number
she threw

– If the player throws an even number, she does
not move, is not asked a question and has to wait
for the next turn

• The first player to have 6 golden coins, wins the game
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A.5 Things to log

• Player creation

• Dice rolls

• Moves

• Questions asked

• Correct or incorrect answers

• Entering and leaving penalty

• Received gold coins
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Appendix B

Data Processing Tasks:
Source Code

1 var fs = require("fs");
2
3 function readWeatherInfoFromFile(filepath) {
4 var sampleWeatherDataRaw = fs.readFileSync(

filepath, "utf8");
5 var buffer = new Buffer(sampleWeatherDataRaw, "

base64");
6 var sampleWeatherData = buffer.toString();
7
8 return sampleWeatherData;
9 }

10
11 var weatherJSON = JSON.parse(readWeatherInfoFromFile

("./info.dat"));
12
13 var i;
14 var myWeatherInfo = []
15 for(i = 0; i < weatherJSON.list.length; i++) {
16 var info = {};
17 info.mtemp = weatherJSON.list[i].main.temp;
18 info.wdesc = weatherJSON.list[i].weather[0].

description;
19 info.atmpress = weatherJSON.list[i].main.pressure;
20 info.dt_txt = weatherJSON.list[i].dt_txt;
21 info.wnd = {
22 v: weatherJSON.list[i].wind.speed,
23 dir: weatherJSON.list[i].wind.deg
24 };
25 myWeatherInfo.push(info);
26 }
27
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28 var weatherInfoCSV = myWeatherInfo.map(
buildWeatherInfoCSVLine);

29 exportWeatherAndPrintCurrent();
30
31 function buildWeatherInfoCSVLine(weather) {
32 var date = new Date(weather.dt_txt);
33 var localeTimeString = date.toLocaleTimeString();
34 return localeTimeString + "," + weather.mtemp +

"C," + weather.wdesc + "\n";
35 }
36
37 function exportWeatherAndPrintCurrent() {
38 var csvHeader = "time,temperature,description\n"

;
39 var weatherNow = weatherInfoCSV.splice(0,1,

csvHeader);
40
41 fs.writeFile("forecast.csv", weatherInfoCSV.join

(""), function(err) {
42 if(err) {
43 console.error(err);
44 }
45 });
46
47 console.log("Weather now: " + weatherNow);
48 }
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Appendix C

User Study Task
Descriptions



Task 1
In the following tasks, you will be working on mustache.js, a JavaScript 
templating system. A demo on how mustache.js works can be found at https://
mustache.github.io/#demo.

For this task you will complete the function escapeRegExp, which escapes 
characters that are special characters in regular expressions. For a given 
string, the function should return a string with the regular expression symbols 
escaped. The following table provides example input and outputs for the 
function:

Your task is to write a regular expression that matches the reserved 
special characters as shown in the table.

1. Read this instruction carefully. If you have any questions left, ask the study 
supervisor.

2. When you feel prepared for the task, click the „Start Task“ button.

3. Go to line 37. This is where the escapeRegExp function is located.

4. Fill in the missing regular expression

5. If you feel confident about your solution, click the „Hand in task“ button

You are allowed to use any online resources you might need to fulfill the task, 
except the original source code of mustache.js.

Hint: When used in the second argument of the string replace method, “$&” 
will be replaced by the substring matched by the first argument of the replace 
method.

Input Output

? \\?

[% \\[%

<[{ <\\[\\{

** \\*\\*

Input Output

{ \\{

{{ \\{\\{

|{ \\|\\{

{ name } \\{ name \\}



Task 2
In the next task you will complete the escapeHTML function, which escapes 
string used in HTML documents. The replacer function is already 
implemented. However, the regular expression that should match HTML 
special characters (<, >, ‘, “, &, /) is not correct. 

Your task is to fix regular expression in the escapeHTML function.

1. Read this instruction carefully. If you have any questions left, ask the study 
supervisor.

2. When you feel prepared for the task, click the „Start Task“ button.

3. Go to line 60. This is where the escapeHTML function is located.

4. Fix the regular expression in line 61.

5. If you feel confident about your solution, click the „Hand in task“ button

You are allowed to use any online resources you might need to fulfill the task, 
except the original source code of mustache.js.

Hint: you can test your implementation by running npm test on the 
command line inside the tasks folder.



Task 3
For the next task, a bug was introduced into the compileTags function, which 
takes an array with the opening and closing tag or a string consisting of the 
opening and closing tag separated by whitespace, and creates regular 
expressions to search for these exactly these tags in a template.

You can observe the bug by running the test suite (using npm test): the test 
suites render-tests.js and parse-tests.js are failing.

Your task is to fix the error in the compileTags function.

1. Read this instruction carefully. If you have any questions left, ask the study 
supervisor.

2. When you feel prepared for the task, click the „Start Task“ button.

3. Go to line 128. This is where the compileTags function is located.

4. Find the bug inside the function and fix it.

5. If you feel confident about your solution, click the „Hand in task“ button

You are allowed to use any online resources you might need to fulfill the task, 
except the original source code of mustache.js.



Task 4
For the next tasks you will work on a small node.js application that reads 
weather forecast information in a proprietary format from a file and transforms 
parts of it into csv format.

After the weather forecast information is read and decoded, it is transformed 
into an intermediate array of JavaScript objects, from which you will extract 
the specified fields, which will make up your csv data, by using the array map 
function.

For every weather forecast object in the array, the csv should contain the 
following information:

1. The time of the forecast

2. The temperature with the unit symbol (ºC)

3. The description of the forecast

An example cvs line could look like the following: 

“2015-11-01 12:00:00,13.36 ºC,light rain”

Your task is to implement the function that is used by map to create csv 
lines.

1. Read this instruction carefully. If you have any questions left, ask the study 
supervisor.

2. When you feel prepared for the task, click the „Start Task“ button.

3. Run the application by calling node weather.js. It will create a new file 
forecast.csv.

4. Go to line 40. This is where map is called on the forecast array.

5. Implement the buildWeatherInfoCSVLine function to return a csv 
string as specified before

6. If you feel confident about your solution, click the „Hand in task“ button

You are allowed to use any online resources you might need to fulfill the task.



Task 5
The csv you generated in the task before needs a header that describes its 
fields. The program should also exclude the first forecast from the csv and 
instead write it to the terminal.

Removing and replacing elements of an array in JavaScript is done with the 
splice function. Use splice to accomplish this task.

Your task is to implement the function that is used by map to create csv 
lines.

1. Read this instruction carefully. If you have any questions left, ask the study 
supervisor.

2. When you feel prepared for the task, click the „Start Task“ button.

3. Run the application by calling node weather.js. It should create a file 
called forecast.csv.

4. Line 38 defines the header line you should include in your csv.

5. In line 39 you will find the splice call that should replace the first element 
with the header line. Fix this line to behave as explained above.

6. If you feel confident about your solution, click the „Hand in task“ button

You are allowed to use any online resources you might need to fulfill the task.
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Appendix D

Questionaires
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D.1 Pre-Questionaire

Fiddlets User Test Report 
 
Your answers to the following questions will help the study researchers to analyze the 
test results. 
 
Age: 
 
Gender:  o Male  

o Female 
 
Occupation: 
 
Major: 
 
Experience with programming (in years): 
 
Experience with JavaScript (in years): 
 
 
Familiarity with the following concepts and technologies: 

 
 
 
 
 
 
 
 
Investigator fields (do not fill out yourself) 
 
 
Participant ID: 
 
Fiddlets: 
 

Task 1 Task 2 Task 3 Task 4 Task 5 
     

 

 5  
(Very 

familiar) 

4 3  
(Neutral) 

2 1  
(Not at all) 

Regular 
Expressions 

     

Unit testing      

Live coding      

NodeJS      

mustache.js      

Figure D.1: Questionaire handed out before the tasks
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D.2 SUS Scale
 

 

 

 

 

 

 

Figure D.2: Questionaire handed out after all tasks were completed: SUS scale by Brooke [1996]
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