
A Semantic Time Framework
for Interactive Media Systems

Von der Fakultät für Mathematik, Informatik und
Naturwissenschaften der Rheinisch-Westfälischen Technischen

Hochschule Aachen zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Eric Lee, M. Sc.

aus Montréal/Kanada

Berichter: Prof. Dr. Jan Borchers
Prof. Dr. Sidney Fels

Tag der mündlichen Prüfung: 7. September 2007

A Semantic Time Framework
for Interactive Media Systems

Von der Fakultät für Mathematik, Informatik und
Naturwissenschaften der Rheinisch-Westfälischen Technischen

Hochschule Aachen zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Eric Lee, M. Sc.

aus Montréal/Kanada

Berichter: Prof. Dr. Jan Borchers
Prof. Dr. Sidney Fels

Tag der mündlichen Prüfung: 7. September 2007

iii

Contents

Abstract xix

Überblick xxi

Acknowledgements xxiii

Conventions xxv

1 Introduction 1

1.1 Malleability of Time . 2

1.2 Scope and Context of this Thesis 3

1.3 Contributions . 5

1.4 Structure . 6

2 Time Design 9

2.1 A Time-Design Space . 10

2.1.1 Conceptual vs. Physical Interaction 11

2.1.2 Multiple Time Domains 15

2.2 User: Conducting Gesture Recognition 16

2.2.1 Design . 18

2.2.2 Feature Detectors 20

Wiggle Profile . 21

iv Contents

Up-Down Profile . 21

Four-Beat Neutral-Legato Profile 22

2.2.3 Profile Selection . 24

2.2.4 Discussion . 25

2.3 User: Rhythmic Analysis of Human Motion 25

Terminology . 26

2.3.1 Design . 26

Movement Detection 27

Interval Analysis . 27

Frequency Analysis 29

Data Fusion . 30

Impulse Folding . 31

Impulse Clustering 31

2.3.2 Discussion . 31

2.4 Medium: MPEG-7 . 33

2.5 Medium: Automatic Beat Detection 34

2.6 Technology: Video Frame Interpolation 37

2.7 Technology: Audio Time-Stretching 40

2.7.1 Basic Phase Vocoder 42

2.7.2 Scaled Phase-Locked Phase Vocoder 44

2.7.3 The PhaVoRIT Algorithm 45

Multiresolution Peak-Picking (MRPP) 46

Sinusoidal Trajectory Heuristics (STH) 47

Silent Passage Phase Reset (SPPR) 47

2.7.4 Discussion . 48

Contents v

2.8 Closing Remarks . 49

3 The Problem of Mappings 51

3.1 Beat Timing in Conducting Gestures 52

Related Work . 53

3.1.1 Experiment Scope and Objectives 54

3.1.2 Hypotheses . 55

3.1.3 Experiment Setup 57

Participants . 58

Procedure . 58

3.1.4 Results . 59

Conductors vs. Non-conductors 59

Effect of Conducting Experience 60

Effect of Musical Instrument Experience 61

Effect of a Metaphor on Conducting 64

Summary of Results 65

3.1.5 Discussion . 65

3.1.6 Design Implications 68

3.2 Rhythmic Correction . 68

3.2.1 Concept . 69

3.2.2 Experiment . 70

3.2.3 Results . 72

3.3 Latency in Audio Time-Stretching 73

3.3.1 Interpreting Time-Stretched Audio 76

Black-Box Approach 77

Hop-Factor Approach 77

vi Contents

Overlap-Add Approach 78

Other Considerations 80

3.3.2 Startup Latency . 81

3.3.3 Dynamic Latency . 83

3.3.4 Discussion . 85

3.4 Synchronization . 85

3.4.1 A Closed Loop System 86

3.4.2 Responding to Timebase Changes 88

3.4.3 Discussion . 90

3.5 Closing Remarks . 92

4 Semantic Time 95

A Conceptual Model Problem 96

4.1 Related Work . 96

4.2 Time as a Hierarchy . 99

4.3 Synchronization as Constraints 101

4.4 An Algebra for Time . 102

4.4.1 Rhythm Maps . 103

4.4.2 Concatenation . 104

4.4.3 Scaling . 105

4.4.4 Averaging . 107

4.4.5 Algebraic Properties 108

4.5 Closing Remarks . 111

5 The Semantic Time Framework 113

5.1 Design Principles . 117

Contents vii

5.2 Semantic Time Framework Version 1 (STFv1) 119

5.2.1 Design . 119

Timebases . 120

Streams . 120

Effects . 120

Graphs . 122

5.2.2 Implementation . 124

5.2.3 Discussion . 124

5.3 Semantic Time Framework Version 2 (STFv2) 126

5.3.1 Design . 127

Time Maps . 128

Nodes . 128

Pipelines . 128

Synchronizers . 129

5.3.2 Implementation . 130

5.3.3 Discussion . 131

5.3.4 Example: HelloSTF 132

5.3.5 Example: MetroSync 135

5.3.6 Comparison With Other Frameworks 137

5.4 Closing Remarks . 138

6 Sample Systems 141

6.1 Personal Orchestra . 142

6.1.1 Personal Orchestra 1 (The Virtual Conductor) . . . 144

6.1.2 Personal Orchestra 2 (You’re the Conductor) 147

6.1.3 Personal Orchestra 3 (Maestro!) 148

viii Contents

6.1.4 POlite . 152

6.1.5 Discussion and Future Directions 155

6.2 DiMaß . 155

6.2.1 Design . 159

6.2.2 An Improved Synchronization Algorithm 161

6.2.3 Forwards and Backwards Scrubbing 164

6.2.4 Beat Tapper . 164

6.2.5 Discussion and Future Directions 166

6.3 iRhyMe . 167

6.3.1 Quartz Composer . 168

6.3.2 Implementation . 169

6.3.3 Discussion . 170

6.4 Closing Remarks . 170

7 Future Work 173

7.1 Time-Design Space . 173

7.2 Semantic Time . 174

7.3 Semantic Time Framework 175

7.4 Design Patterns . 176

7.5 Semantic Time Applications 176

8 Conclusions 179

A Sampling and Quantization Overview 183

A.1 Sampling . 183

A.2 Quantization . 184

A.3 Resampling . 185

Contents ix

A.4 Closing Remarks . 192

B Fourier Theory Overview 193

B.1 The Fourier Transform . 193

B.2 Windowing . 194

B.3 The Short-Time Fourier Transform 195

B.4 Closing Remarks . 196

C Source Code Listings 197

C.1 HelloSTF . 197

C.1.1 HelloSTFController.h 197

C.1.2 HelloSTFController.m 199

C.2 MetroSync . 202

C.2.1 MetronomeView.h 202

C.2.2 MetronomeView.m 204

Bibliography 209

Index 227

Curriculum Vitae 231

xi

List of Figures

1.1 1966 tape recorder and modern media player interfaces. . . 2

1.2 Playback rate controls in common players. 2

2.1 Human-computer interaction. 10

2.2 Time-design space. 12

2.3 Window system architecture. 12

2.4 OSI reference model. 13

2.5 Seven stages of action. 14

2.6 Conducting beat patterns. 19

2.7 Wiggle gesture profile. 21

2.8 Up-Down gesture profile. 21

2.9 Four-Beat Neutral-Legato gesture profile. 23

2.10 An example representation of a rhythm. 26

2.11 Block diagram of our rhythmic analysis system. 28

2.12 The three parameters extracted for movement detection. . . 29

2.13 Example of histogram accumulation. 30

2.14 Result of a 3-beat pattern. 32

2.15 Results for data collected from a Cha-cha-chá dancer. . . . 33

2.16 Example MPEG description. 35

2.17 Video frame rate conversion. 38

xii List of Figures

2.18 3:2 pulldown. 39

2.19 Interlacing artifacts. 39

2.20 Granular synthesis. 40

2.21 Phase vocoder algorithm. 43

2.22 Multiresolution peak picking algorithm. 46

2.23 Incorrectly phase-locked peaks. 47

2.24 Sinusoidal trajectory heuristics. 48

3.1 Temporal interactions. 52

3.2 y vs. t plot of a non-conductor’s gestures. 56

3.3 Devices used in our conducting experiment. 57

3.4 Screenshot of the BeatVisualizer program. 60

3.5 Conductor’s and non-conductor’s gestures. 61

3.6 A comparison of beat features. 62

3.7 Effect of musical ranking on conducting. 63

3.8 Effect of the fishing rod metaphor on conducting. 64

3.9 Correlation between beat variance and beat error rate. . . . 66

3.10 Plot of the normalized beat offset over time. 67

3.11 Proposed rhythmic correction scheme. 70

3.12 Experimental rhythmic correction scheme. 72

3.13 Results of the latency threshold test. 72

3.14 Resampler latency. 75

3.15 Interpretation of time-stretched audio. 79

3.16 Illustration of startup latency. 82

3.17 Illustration of dynamic latency. 84

3.18 Open loop control system. 87

List of Figures xiii

3.19 Closed loop control system. 87

3.20 Effect of instantaneous correction. 88

3.21 Rate adjustment for drift correction. 89

3.22 Synchronization scenario. 89

3.23 Asymptotically stable system (ringing). 91

3.24 Unstable System. 92

3.25 Asymptotically stable system (perfect). 93

3.26 Asymptotically stable system (gradual). 94

4.1 Difference in two conceptual models of time. 97

4.2 Different time representations. 99

4.3 Example temporal interval structure (music). 100

4.4 Example temporal interval structure (speech). 100

4.5 Time maps. 101

4.6 Synchronization as constraints. 103

4.7 Example rhythm map. 105

4.8 Rhythm map concatenation. 106

4.9 Rhythm map scaling. 107

4.10 Rhythm map averaging. 108

4.11 Rhythm map equation. 110

5.1 Example Max/MSP patch. 115

5.2 Overview of SAI components. 116

5.3 Semantic time mapping in STFv1. 121

5.4 Example STFv1 graph. 123

5.5 Example STFv1 graph description. 125

xiv List of Figures

5.6 Conceptual model of STFv2. 127

5.7 Example STFv2 pipeline structure. 129

5.8 Unsynchronized audio and video pipelines. 134

5.9 Video synchronized to audio. 134

5.10 Audio synchronized to video. 135

5.11 MetroSync application. 136

5.12 MetroSync block diagram. 137

6.1 The Virtual Conductor block diagram. 145

6.2 Audio/video rendering engine in The Virtual Conductor. . . 146

6.3 Audio/video rendering in You’re the Conductor. 149

6.4 A/V sync with synthesized music versus digital audio. . . . 150

6.5 Maestro! block diagram. 151

6.6 Audio/video rendering in Maestro!. 153

6.7 POlite block diagram. 154

6.8 DiMaß interaction. 156

6.9 iPod click wheel. 157

6.10 Design space for audio navigation techniques. 157

6.11 Shuttle ring control for play rate. 158

6.12 Timeline slider in QuickTime Player. 158

6.13 DiMaß block diagram. 160

6.14 Plot of mouse input position. 161

6.15 Application of synchronization. 162

6.16 Effect of viscosity. 163

6.17 Viscosity and response time. 164

6.18 Time maps for reverse playback. 165

List of Figures xv

6.19 Theoretical Beat Tapper block diagram. 166

6.20 Actual Beat Tapper block diagram. 167

6.21 Audio editor prototype with DiMaß 168

6.22 iRhyMe rendering engine. 169

7.1 Scrollbar and timeline slider. 177

A.1 Sampling and quantization. 184

A.2 Relationship between a signal and its quantization error. . . 186

A.3 Effects of quantization error. 187

A.4 Nearest neighbour resampling. 189

A.5 Linear interpolation resampling. 190

A.6 Sinc interpolation resampling. 191

A.7 Sinc function. 192

B.1 Spectrum example. 194

B.2 Rectangular window example. 195

B.3 Hanning window. 195

B.4 Hanning window example. 196

xvii

List of Tables

3.1 Summary of results cross-referenced with hypotheses. 65

5.1 Key features of various multimedia frameworks. 118

6.1 Feature summary of systems. 142

xix

Abstract

Despite continuing advancements in computer technology, interaction with time-based media
such as audio and video remain predominantly limited to the 1960s tape recorder metaphors of
“play”, “pause”, “fast-forward” and “rewind”. These metaphors restrict users’ control over the
timebase of the media, making it difficult to, for example, freely manipulate the tempo of an
audio recording. This control is often taken for granted, for example when playing a musical
instrument, or reading a book. While the technologies to build “malleable time” applications
are already available, incorporating and integrating these technologies into a single interactive
system remains non-trivial, and existing design tools and frameworks do not provide adequate
support, especially with designing and implementing time-based interactions for digital media.

This research addresses these shortcomings in a number of ways. A time-design space is proposed
that classifies existing research and technology for constructing interactive media systems into
three domains: user, medium, and domain. This time-design space is a refinement of a traditional
classification scheme used in human-computer interaction, and is inspired by existing work on
conceptual frameworks for interaction design, as well as existing work studying time in computer
music and the media arts. Some challenges of mapping time across these three domains are then
presented; two such challenges include an analysis of how users time their beats relative to the
music when conducting (user to medium time mapping), and an analysis of how processing
latency in phase vocoder-based time-stretching algorithms affects requested audio play rate
changes (medium to technology time mapping). The concept of semantic time is proposed as a
common means of referring to time throughout the system. Semantic time includes mechanisms
to represent time, including stymes (a polymorphic media time interval) and time maps (the
expression of styme over real time); it also includes mechanisms to represent synchronization as
constraints, and an algebra to manipulate beat microtiming for music. These ideas were realized
in the Semantic Time Framework, a software library for constructing interactive media systems:
the framework allows designers to more easily develop malleable time applications by allowing
them to work with time as it is defined by the application (e.g., musical beats), instead of by
the underlying technology (e.g., audio samples). The Semantic Time Framework is a hybrid
architecture, using a data flow model based on the pipes and filters model for media processing,
and declarative constructs for representing and manipulating time. To demonstrate its benefits,
a number of interactive media systems built on the framework were constructed; these systems
include Personal Orchestra, a family of interactive conducting systems; DiMaß, an audio timeline
navigation system using direct manipulation; and iRhyMe, a visual programming environment
for manipulating beat microtiming. These systems illustrate how designers can easily adopt the
Semantic Time Framework for their applications (low threshold), but at the same time use it to
build systems with a high ceiling of functionality.

xx Abstract

xxi

Überblick

Obwohl die Computertechnologie von einem ständigen Fortschritt geprägt ist, haben sich
die Interaktionsmöglichkeiten für zeitbasierte Medien wie Audio und Video seit der Erfind-
ung des Kassettenrekorders in den 60er Jahren nicht wesentlich weiterentwickelt. Die Inter-
aktionsmöglichkeiten beschränken sich auf die bekannten Metaphern

”
Abspielen“,

”
Pause“,

”
Vor-

spulen“ und
”
Zurückspulen“. Die Steuerung des Benutzers ist somit allein auf die Zeitachse des

jeweiligen Mediums beschränkt. Andere Kontrollmöglichkeiten, die beim Spielen von Musikin-
strumenten oder beim Lesen eines Buches als selbstverständlich angesehen werden, wie beispiel-
weise, das Tempo vorzugeben, sind nicht vorhanden.

Technologien, um die Zeit in Anwendungen als etwas Plastisches, Verformbares darzustellen, ex-
istieren bereits. Dennoch stellt das Zusammenführen und Integrieren der vorhandenen Technolo-
gien in ein einziges System eine nicht triviale Aufgabe dar. Die verfügbaren Entwurfswerkzeuge
und Frameworks bieten für das Design und die Implementierung zeitbasierter Interaktion nicht
die notwendige Unterstützung – vor allem nicht für digitale Medien.

Diese Forschungsarbeit leistet einen Beitrag im Bereich zeitbasierter Interaktion, um die aufge-
führten Defizite auf folgende Weise zu reduzieren:

Ein Time-Design-Space wird als Klassifikationsmodell eingeführt. Er unterteilt Forschung und
Technologie für das Design von interaktiven Medien-Systemen in drei Bereiche: Benutzer,
Medium und Technik. Der Time-Design-Space basiert auf dem traditionellen Klassifikation-
sschema der Mensch-Maschine-Interaktion. Die Weiterentwicklung dieses Schemas zum Time-
Design-Space wurde angeregt durch Arbeiten über konzeptionelle Frameworks für Interaktions-
Design, Arbeiten im Bereich der Mediengestaltung sowie Forschung, die den Begriff von Zeit auf
dem Gebiet der Computermusik untersucht.

Die Bedeutung der Zeit von einem der drei Bereiche auf einen anderen Bereich abzubilden
(Time-Mapping) ist eine anspruchsvolle Aufgabe. Zwei der Herausforderungen werden ex-
emplarisch behandelt: eine Analyse, wie die Benutzer beim Dirigieren ihren Taktschlag des
Musiktaktes zeitlich bestimmen (Time-Mapping vom Benutzer zum Medium) und wie sich die
Verzögerung durch die Berechnung der phase-vocoder-basierten Timestretching-Algorithmen auf
die geforderte Abspielgeschwindigkeit des Tons auswirkt (Time-Mapping vom Medium zur Tech-
nik).

xxii Überblick

Als einheitliches Hilfsmittel wird das Konzept der Semantic Time eingeführt, das es er-
möglicht, systemweit auf Zeit Bezug zu nehmen. Semantic Time umfasst Mechanismen, um Zeit
darzustellen. Diese beinhalten

”
Stymes“ (ein polymorphes Medien-Zeit-Intervall) und

”
Time-

Maps“ (Stymes in Echtzeit). Darüber hinaus umfasst Semantic Time Mechanismen, welche die
Synchronisation als Constraints darzustellen, und eine Algebra zur Manipulation von Microtim-
ings innerhalb eines schlags in der Musik.

Diese Ideen werden im Semantic Time Framework, einer Softwarebibliothek für interaktive Me-
diensysteme, realisiert. Das Semantic Time Framework hat eine hybride Architektur: das
Framework benutzt ein Datenflussmodell, das auf dem

”
Pipes and Filters“-Modell für Medi-

enverarbeitung basiert und umfasst deklarative Konstrukte zum Darstellen und Manipulieren
von Zeit.

Der Nutzen des Frameworks zeigt sich in der Entwicklung mehrerer interaktiver Systeme, die das
Framework erfolgreich einsetzen. Personal Orchestra (eine Reihe interaktiver Dirigiersysteme),
DiMaß (ein System zur Navigation in Audiospuren via Direktmanipulation) und iRhyMe (eine
visuelle Programmierumgebung zur Manipulation von Beat-Microtimings).

Die Entwicklung solcher Systeme zeigt, wie Designer das Semantic Time Framework leicht an
ihre Anwendungen anpassen können (low threshold) und zugleich die Konstruktion von Anwen-
dungen unterstützt, die ein Höchstmaß (high ceiling) an Funktionalität aufweisen.

xxiii

Acknowledgements

Pursuing a doctoral degree in any subject, including Computer Science, is a complex and time-
consuming undertaking, one which would not have been possible without the support of many.

First, I would like to thank my advisor, Jan Borchers, for his support and guidance for the last
five years, as well as providing a fabulous environment in which to pursue a doctoral degree. His
willingness to devote precious time in many discussions, as well as his remarkable attention for
detail, have only improved the quality of my work.

I would also like to thank Sidney Fels, both for co-advising this thesis, and for introducing me
to the field of human-computer interaction in the first place, when I was still an undergraduate
student at the University of British Columbia.

I am also extremely grateful to Julius Smith, who provided one of the main inspirations for me
to pursue a PhD. I am furthermore grateful for all the discussions and feedback he has provided
for my work over the years. The speed at which he responds to the email that I send him never
ceases to amaze me, and serves as motivation for me to do the same.

All the people at the Media Computing Group deserve my heartfelt gratitude for their help
and support for a Canadian studying in Germany. First of all, I had the pleasure of working
with a group of excellent Diploma students, including Ingo Grüll, Jan Buchholz, Jonathan
Klein, Marius Wolf, Urs Enke, Georgianna Farmaki, Saskia Dedenbach, and Henning Kiel. The
following people also deserve special mention: Stefan Werner, Jonathan Diehl, Eugen Yu, and
Sarah Mennicken; and of course my fellow PhD colleagues with whom I have had many inspiring
discussions: Rafael “Tico” Ballagas, Daniel Spelmezan, David Holman, and Thorsten Karrer. I
would like to especially thank Elaine Huang and Thorsten Karrer (again) for reading through
parts of this thesis and their helpful suggestions on improving the structure and content; and
Birgit Noack, for her help with the German version of the abstract.

A number of people, both within RWTH and elsewhere, have provided me with helpful insights
and suggestions for my work, all of whom I would like to thank here: Teresa Marrin Nakra,
Marc Davis, Robert Jacob, Mark Asbach, Vince Bárány, Ken Greenebaum, and Conal Elliott.

Of course, all of this would not have been possible without the support of my family, including
my little niece Cassie, even though she is only fourteen months old at the time of this writing.

Last, but not least, I would like to thank you, the reader, for actually reading through this entire
section. If you manage to make it through to the end, you will also have my utmost respect, as
well ⌣̈.

xxv

Conventions

The following conventions will be used throughout this thesis:

Technical terms or jargon that appear for the first time will be set in italics.

Source code and implementation symbols will be typeset using a monospace

font.

The plural “we” will be used throughout this thesis instead of the singu-
lar “I”, even when referring to work that was primarily or solely done by
the author. Some of the material in this thesis has also been previously
published in conferences or journals, and this will be noted in the text.

This thesis follows the Canadian standard for spelling (e.g., “colour” as
opposed to “color”, but “recognize” instead of “recognise”).

1

Chapter 1

Introduction

“All the heavens, seem to twinkle
With a crystalline delight;
Keeping time, time, time,
In a sort of Runic rhyme,

To the tintinnabulation that so musically wells
From the bells, bells, bells, bells...”

—Edgar Allan Poe

When QuickTime 1.0 debuted at Apple’s Worldwide Developer Conference
in December 1991, it was seen as a major technological breakthrough –
a postage stamp sized video played back in real-time! Technology has
advanced significantly since then; computers today are capable of not only
real-time playback of high definition audio and video material, but can also
support complex chains of processing on this material.

Unfortunately, techniques for interacting with time-based media such as Modern

multimedia

interfaces

continue to use

1960s tape

recorder

metaphors.

audio and video have not changed significantly since the 1960s – the same
“play”, “fast-forward”, and“rewind”buttons on a 1966 tape recorder remain
the primary playback controls on the latest versions of QuickTime Player
and Windows Media Player (see Figure 1.1). Most players do not even
offer an option to play audio and video at speeds other than at its nominal
speed. Software applications that do support this functionality usually offer
a simple rate slider as an advanced setting hidden away in the user interface
(see Figure 1.2).

Explicit control over time is often taken for granted when interacting with
many non-computer-based media, and the limited control over time in dig-
ital audio and video directly contradicts this assumption.

2 1 Introduction

Figure 1.1: A comparison of a 1966 RCA YHS-18J tape recorder and
current versions of Windows Media Player and QuickTime Player. The
fundamental interaction metaphors have not changed, and modern media
players continue to use the decades-old “play”, “pause”, “fast-forward” and
“rewind” controls as the primary means for controlling media playback.

Figure 1.2: Recent versions of Windows Media Player and QuickTime
Player allow media playback at rates other than one. However, the range
of allowed rates is limited, and this control is offered as an advanced setting
in the interface.

1.1 Malleability of Time

Imagine a world where reading a book is limited to a constant rate of
100 words per minute (wpm). While pages can be flipped, chapters can
be skipped, and reading may start and stop at arbitrary locations in the
text, actual consumption of the written content is limited to this one rate,
regardless of whether the text is read for comprehension, or simply scanned
for key phrases. It would be hard to imagine such a scenario – it is natural
for us to freely control our reading rate, which we may slow down to 50 wpm
for more difficult or important passages, or speed up to several hundred
wpm when skimming. However, this is the situation that is present today
when, for example, listening to a podcast or other recorded media program.

The temporal nature of audio and video also makes control over the time

1.2 Scope and Context of this Thesis 3

axis much more significant than for traditional “spatial”media such as text.
As Hürst and Stiegeler [2002] observe, only the smallest unit of a continuous
audio and video stream, such as a single video frame or audio sample, can
be conveyed to the user at any moment in time. In contrast, for spatial
media such as a text document, many lines of text can be displayed to the
user at the same time. Moreover, temporal media must often be perceived
over time. While a single time instant of video can be interpreted as a still
image, a single time instant of audio has no meaningful interpretation.

Explicit control over time is also a key component of musical expression Control over time

is key in musical

expressiveness.

[Dobrian and Koppelman, 2006]. Many computer music applications today
continue to use synthesized music, where the audio is rendered using MIDI
(Musical Instrument Digital Interface) or wavetable synthesis. Synthesized
music has the advantage of using an event-based time model, which gives
system designers complete control over when and how certain events, such
as notes or beats, are triggered – that is, time is malleable by controlling
when these events occur. Digital audio and video streams, however, can
offer a higher degree of fidelity and realism compared to synthesized audio,
and despite continuing advances in synthesizing technology and physical
instrument modelling, it is still not possible to reproduce, for example,
the unique character of the Vienna Philharmonic playing in their Golden
Hall of Vienna’s Musikverein. Digital audio and video streams, however,
have a different time model – as the word “stream” implies, these media
types consider time as a continuous flow, and simply shifting audio samples
around like one would with MIDI note events creates unpleasant pop and
click artifacts.

Previous work supports the importance of temporal interaction. One ex-
ample is our previous work in interactive conducting systems, which allow
users to control the speed, volume, and instrument emphasis of a digital
audio and video recording. [Borchers et al., 2004] found that users most
easily identified the interaction with music tempo: in a particular evalua-
tion session where users were silently observed and then interviewed, 93%
of the users recognized that they could control tempo by moving the baton
faster or slower, 77% realized that they could control volume by making
larger or smaller gestures with the baton, and 37% realized that they could
control the instrument emphasis by conducting towards different sections
of the orchestra shown on the large display.

1.2 Scope and Context of this Thesis

Computers and processing capacity continue to advance at rates that ex- Interactive media

systems are

becoming

increasingly

complex.

ceed Moore’s original prediction [1965]. Certain types of processing, such
as using the phase vocoder for changing the speed of an audio recording
while maintaining its original pitch [Flanagan and Golden, 1966] that were
once a fantasy can now run in real-time [Karrer et al., 2006]. Similarly,
continuing research in computer vision enables new interaction methods
[Camurri et al., 2003]. These research areas form the basic building blocks

4 1 Introduction

that, when combined, form an interactive media system. A discussion of
methods to design such systems, and of the challenges of integrating these
various components into a single system, is thus needed. And as interac-
tive media systems become increasingly complex, this discussion likewise
becomes increasingly important, since it is no longer possible for a single
person to understand at depth the intricacies of all aspects of such systems.

Multimedia frameworks have, for a long time, been a part of soft-
ware engineering research. As François [2004] writes, many existing
multimedia frameworks focus on media “storage, retrieval, transmission
and presentation”. Some of these frameworks include the Berkeley
Continuous Media Toolkit [Mayer-Patel and Rowe, 1997], and VuSystem
[Lindblad and Tennenhouse, 1996]; the two main aspects that make such
frameworks unsuitable for building interactive media systems is the miss-
ing ability to insert custom processing, and lack of support for interactivity.
Apple’s QuickTime media framework [Apple, 2006b] also falls into this cat-
egory – while it is relatively simple to open movies from a variety of sources
and present them to a display, it is extremely difficult, if not impossible, to
perform functions that reach beyond the ecosystem provided by the frame-
work. For example, it is extremely difficult (if not impossible) to use an
external, user-controlled clock to control a QuickTime movie’s playback
position and rate. François’ own work on a software architecture for im-
mersipresence (SAI) is one of the few that considers interactivity; however,
even SAI treats time as discrete “pulses” of data and input events, rather
than continuous streams, which we argue is both more general and more
suitable for time-based media.

A specialized category of multimedia frameworks are those designed for
computer music applications. Many of these frameworks focus on audio syn-
thesis, including the Synthesis ToolKit (STK) [Cook and Scavone, 1999],
and the C++ Library for Audio and Music (CLAM) [Amatriain, 2004].
However, since performance is an integral part of music (and thus, com-
puter music), many of these frameworks include capabilities for real-time
interaction – some examples include Max/MSP [Puckette, 2002] and Su-
perCollider [McCartney, 1996]. Computer music frameworks however, are
often tied to the music model of time, and are thus difficult to generalize
beyond music to other multimedia domains.

One aspect of system design that remains to be addressed is the tempo-
ral aspect – the design of systems that respond to continuous input from
the user, and, in response, continuously adjust the timebase of multimedia
streams. These systems also pose a wide range of problems, from issues of
audio time-stretching, to synchronization of multiple timebases, to inter-
pretation of user input in relation to the media.

The work performed in this thesis originated from work on interactive con-
ducting systems. The family of interactive conducting systems created by
members of the Media Computing Group at RWTH Aachen University is
known as Personal Orchestra, and primary responsibility of the Personal
Orchestra project fell to the author beginning with the development of the

1.3 Contributions 5

second system, Personal Orchestra 2 (also known You’re the Conductor
[2004]). You’re the Conductor ’s key accomplishment was the ability to of- This thesis was

inspired by our

ongoing work in

interactive

conducting

systems.

fer arbitrary control over the speed of a synchronized digital audio and video
recording – The Virtual Conductor (Personal Orchestra 1) offered only a
limited range of playback speeds due to the way time-stretching was per-
formed. Indeed, Personal Orchestra remains, today, one of the few systems
that guarantees synchronous playback of digital audio and video media
at arbitrary rates – similar systems, such as Kolesnik’s conducting system
[2004] or the Virtual Symphony Orchestra [Brügge, 2005] employ digital
audio and video media, but no attempt is made to ensure synchronicity
between the audio and video streams is maintained.

The challenges we faced in designing a system that supports synchronous
audio and video playback at arbitrary speeds motivated us to develop the
Semantic Time Framework, a software library for these types of applica-
tions [Lee et al., 2006b]. While the initial focus was on interactive con-
ducting systems, the framework evolved to support an increasing num-
ber of other multimedia applications that allow users to freely manipulate
the temporal dimension of time-based media. We developed additional
applications that, for example, allow users to skim and search through
audio [Lee and Borchers, 2006b], or perform common audio editing tasks
[Lee et al., 2006c]. These applications are not only interesting by them-
selves, but have also created opportunities for additional research in audio
navigation techniques [Lee, 2007b].

The additional experience obtained from developing these interactive media
systems was then incorporated into a second iteration of the Semantic Time
Framework. This second iteration not only offers support for a more generic
class of multimedia systems, but it also includes a discussion of semantic
time, a theory we developed for representing time and temporal trans-
formations [Lee and Borchers, 2006a]. The combined theory and software
implementation allows us to simplify the design process and facilitate code
reuse across multiple systems, and versions of our previous systems were
re-implemented using this second version of the Semantic Time Framework
to demonstrate this.

1.3 Contributions

The primary goal of this thesis is to facilitate the design and construction
of interactive media systems where manipulating the timebase of the media
is a key component of the interaction. This temporal aspect is the main
focus, and the main contributions include:

• The development of a time-design space for interactive media sys-
tems that is an extension/refinement of a well-established classifica-
tion space for general human-computer interaction

6 1 Introduction

• A discussion of the challenges of designing interactive media systems
– in particular, the issues a system designer may encounter when
interpreting and mapping continuous temporal input from the user,
or applying timeline changes to digital time-based media such as audio
and video

• A method for representing time and temporal transformations in in-
teractive media systems

• A software framework that incorporates the above aspects, and offers
a low threshold for designers wishing to build new applications while
still supporting a high ceiling of potential functionality

1.4 Structure

The remainder of this thesis will be divided as follows:

Chapter 2 introduces our time-design space for interactive media systems;
this time-design space consists of three domains: user, medium, and tech-
nology. The scope and areas of research that fall within each of these
domains is described.

Chapter 3 talks about the problems when mapping time across these
domains. Interpretation of both latency in response to user input, and
processing latency in audio time-stretching algorithms will be discussed,
and synchronization methods to address these latencies will be described.

Chapter 4 introduces the concept of semantic time, a common means of
representing time and temporal transformations at the system level.

Chapter 5 describes the Semantic Time Framework, a software framework
we created for constructing interactive media systems. The Semantic Time
Framework realizes the ideas presented in the previous chapters in software,
and we will also describe how the Semantic Time Framework evolved from
a framework for interactive conducting systems to one that supports the
more general class of interactive media systems. Two sample programs will
also be described in detail to illustrate how the Semantic Time Framework
allows designers to easily solve common problems (low threshold) when
working with time-based media.

Chapter 6 presents three more systems that use the Semantic Time Frame-
work as their foundation. These systems are considerably more complex
than the sample programs described in Chapter 5, and demonstrate how
the Semantic Time Framework can be used to develop systems with a high
ceiling of functionality.

Chapter 7 provides an outlook to future challenges, and Chapter 8 sum-
marizes the work presented.

1.4 Structure 7

Finally, supporting material is provided in the appendices of this thesis:
Appendix A introduces the principles of sampling and quantization, Ap-
pendix B is a very brief overview of Fourier Theory, and Appendix C
provides the full source code listings of the programs discussed in Chapter 5.

9

Chapter 2

Time Design

“Space and time are not conditions in which we live;
they are simply modes in which we think.”

—Einstein

Recent advances in technology have enabled increasingly complex inter- Interactive media

systems integrate

research from

many disciplines.

active multimedia systems. Many of these systems incorporate research
from a variety of disciplines, such as computer vision for motion track-
ing [Camurri et al., 2003], artificial neural networks for gesture recogni-
tion [Ilmonen and Takala, 1999], and digital signal processing for audio
and video rendering [Karrer et al., 2006]. As these systems become more
complex, so do the interactions between their software components.

Audio and video media are inherently time-based, and as a result, their Audio and video

semantics are

perceived over

time.

semantics can only be fully comprehended over time; Hürst and Stiegeler
[2002] and Lee et al. [2006c], for example, compare systems for scrolling
through temporal media, such as audio and video, with systems for scrolling
through traditional spatial media, such as text documents.

We feel that this temporal aspect has not otherwise been fully explored The temporal

aspect of media is

not fully explored

in existing

literature.

in existing literature. Discussion of time in engineering complex interac-
tive media systems has been largely limited to issues such as finding tech-
niques for acquiring input data at sufficiently high sampling rates to avoid
aliasing [Marrin Nakra, 2000], or maintaining low-latency, real-time per-
formance [Beamish et al., 2004]. From a design perspective, discussion of
time focuses primarily on the musical aspect [Mathews and Moore, 1970,
Borchers, 1997]. Borchers [2001], for example, developed a series of mu-
sical design patterns for communicating design experience to assist with
the construction of interactive musical systems; one of these patterns is
the Metric Transformer, which addresses the rhythmic dimension of
music, such as how to model timing deviations for groove in the WorldBeat
system [Borchers, 1997].

To facilitate the discussion of the various temporal interactions presented in

10 2 Time Design

Use and Context

U1 Social Organization and Work

U2 Application Areas

U3 Human-Machine Fit and Adaptation

Human

H1 Human
Information
Processing

H2 Language,
Communication
and Interaction

H3
Ergonomics

C1 Input and
Output Devices

Computer
C2 Dialogue
Techniques

C4 Computer
Graphics

C5 Dialogue
Architecture

C3 Dialogue
Genre

Development Process

D4 Example Systems
and Case Studies

D1 Design
Approaches

D3 Evaluation
Techniques

D2 Implementation
Techniques and Tools

Figure 2.1: A space for classifying the various areas of research in human-
computer interaction, from [Hewett et al., 1992].

this thesis, we outline in this chapter our time-design space, which evolved
from an earlier space we first proposed for interactive computer music sys-
tems [Lee and Borchers, 2005]. This time-design space serves as a canvas
and conceptual framework to describe and analyze the issues with time
that we have encountered when designing interactive media systems. After
describing this space, the remainder of this chapter will present examples
of work, each of which lie within one these three domains. Subsequent
chapters discuss the challenges of time design across these domains, and
our solutions.

2.1 A Time-Design Space

Our time-design space1 is inspired by previous work in human-computer in-The SIGCHI

Curricula for HCI

have a design

space for

classifying HCI

research.

teraction and computer music. The ACM SIGCHI (Special Interest Group
on Computer-Human Interaction) Curricula for Human-Computer Interac-
tion [Hewett et al., 1992], for example, classify work in the field of human-
computer interaction into multiple domains (see Figure 2.1). This HCI
space includes domains such as use and context, human, computer, and
development process. Interactive media systems are a specialized form of
human-computer interaction, and our time-design space extends this exist-
ing space for this purpose.

1 Our time-design space should not be confused with the concept of “design spaces”
in human-computer interaction. These design spaces, which are also a form of classifica-

2.1 A Time-Design Space 11

These spaces encompass a huge body of work in human-computer interac-
tion, from human information processing to computer graphics; even lim-
iting ourselves to interactive media systems would be too large of a scope
for a single thesis, and thus we focus our discussion on the temporal aspect
of such systems.

Figure 2.2 shows our time-design space, which consists of the following Our design space

has 3 domains:

user, medium, and

technology.

domains:

• User: The user domain represents time as perceived by the systems’
users. It also includes techniques to extract this timing information
from users, for example, via gesture recognition.

• Medium: The medium domain represents the temporal properties
of the medium. In music, we have a temporal hierarchy based on
measures and beats. In speech, there is a similar structure based on
words and phrases. Even cinema has a strong temporal structure
based on cut sequences to set the pace of the movie for its audience.
Techniques for storing this information, or extracting it from media
fall in this domain.

• Technology: The technology domain represents the time model of
the underlying computer technology used to implement the medium.
Audio, for example, is usually rendered as sequences of numbers, or
samples. Algorithms for processing media, such as time-stretching
audio while preserving the original pitch are also included in this
domain.

Unlike many of the existing spaces presented in literature, of which a short Our time-design

space sets the

context for the

remainder of this

thesis.

overview is given in the next few pages, our emphasis is on designing and
implementing interactive media systems, rather than only analyzing them.

2.1.1 Conceptual vs. Physical Interaction

Our time-design space places the medium between the user and computer
(or, more generally, the technology). This addition was motivated by the
desire to distinguish between the conceptual and physical aspects of the in-
teraction – in the HCI space shown in Figure 2.1, the computer incorporates
aspects of both the conceptual and physical interaction.

Some researchers have already proposed finer divisions within this “com- Gosling et al.’s

window system

architecture

consists of six

layers, from the

application to the

hardware.

puter” domain. Gosling et al.’s window system architecture [1989], for
example, has multiple layers that extend from the hardware up to the ap-
plication (see Figure 2.3). In such an architecture, the question often arises:

tion, typically place systems, techniques or devices into a multi-dimensional space with
categorical axes. One example of such design spaces was developed by Card et al. [1991]
to classify input devices.

12 2 Time Design

Semantic Time

Inter-Domain
Mappings
(Chapter 3)

Semantic Time
Algebra
(Chapter 4)

Semantic Time
Framework
(Chapter 5)

Sample
Systems
(Chapter 6)

Medium TechnologyUser

Conducting
Gesture Recognition
(Section 2.2)

Rhythmic Analysis
of Human Motion
(Section 2.3)

MPEG-7
(Section 2.4)

Automatic Beat
Detection
(Section 2.5)

Audio Time-
Stretching
(Section 2.7)

Video Frame
Interpolation
(Section 2.6)

Figure 2.2: A time-design space for interactive media systems, consist-
ing of three domains: user, medium, and technology. Interactive media
systems often connect these domains: musical gestures (e.g., conducting)
connect the user to the medium, and a programming interface connects the
medium to the underlying technology. Semantic time is the concept we will
introduce to discuss interactions and mappings across these domains.

GIMP

TWM

X11

X11

Dell PCHardware

Application

User Interface Toolkit

Window Manager

Base Window System

Graphics Library

GTK

more conceptual

more physical

Figure 2.3: Window system architecture proposed by Gosling et al.
[1989], with an example of the GIMP image editor running under the X
Window System on a PC.

at which level(s) does the interaction happen? Physically, the user interacts
with the input and output hardware; conceptually, however, the user can
also be said to be interacting with the application, since it is the application
that exposes the system model for the user to interpret and manipulate the
system data.

The Open Systems Interconnection (OSI) reference model is a similar lay-The OSI reference

model for network

communication

has seven layers,

from the

application to the

hardware.

ered architecture for communications and network protocols [Zimmermann,
1980] (see Figure 2.4). Interface standards for communicating between ma-
chines are defined at multiple layers in the hierarchy. The Hypertext Trans-
fer Protocol (HTTP), for example, is commonly used for retrieving web-
pages on the internet. It is an application (layer 7) protocol that uses the
Transmission Control Protocol (TCP) for transferring data reliably (layer

2.1 A Time-Design Space 13

HTTP

TCP

IP

PPTP

802.11Physical

Application

Presentation

Session

Transport

Network

Data Link

more conceptual

more physical

Figure 2.4: OSI reference model for communication and network protocols
between machines, with an example of retrieving a webpage using HTTP,
which is built upon TCP/IP. If the user is connected to the remote host via
a virtual private network (VPN), a data link protocol such as PPTP may be
used, and the 802.11 wireless standard provides the physical communication
layer. In this example, the presentation and session layers are part of HTTP
and TCP.

4), and the Internet Protocol (IP) for establishing the connection (layer 3).
The connection may pass through a virtual private network, in which case
the Point-to-Point Tunnelling Protocol (PPTP, layer 2) may be involved.
Finally, a standard such as 802.11 for wireless communication (layer 1)
provides the physical means of data transmission.

The approaches taken in Gosling’s window system architecture and the
OSI reference model place the application at the highest conceptual layer
within the computer. Some researchers, however, have argued that this
application-centric approach to system design and human-computer inter-
action is flawed. Raskin’s work on The Humane Interface [2000] uses a
document-centric approach, and he argues that, in actuality, the user does
not care about the application, but rather the document (and the data it
contains).

Adopting such an approach for interactive media systems, the primary in-
teraction, at least conceptually, is thus between the user and the medium.
The computer (or, in broader terms, the technology) is simply a mechanism
to facilitate this interaction, or enable interactions that would otherwise be
difficult, or even impossible. Recall our earlier example of an interactive
conducting system. Here, the technology enables users, using a traditional
interaction metaphor (conducting), to interact with music (the medium).

In HCI, the distinction between the conceptual interaction and the physical Foley et al. break

interaction into

conceptual,

semantic,

syntactic, and

lexical elements.

interaction has been proposed by a number of people. Foley et al. [1995]
discuss how interaction design consists of conceptual, semantic, syntactic,
and lexical elements. Conceptual design is based on the user’s conceptual
model of the system, which includes the objects, properties of these objects,
and relationships between the objects. The conceptual design is often based

14 2 Time Design

Goal

Intention

Action Sequence

Execution

World

Perception

Interpretation

Comparison

more conceptual

more physical

Figure 2.5: The seven stages of action, proposed by Norman [2002].

on real-world metaphors. Semantic design specifies the functionality (and
limitations) of the interface, the syntactic design specifies the set of pos-
sible atomic operations, and the lexical design binds the interface to the
input/output hardware. With respect to our time-design space, the con-
ceptual design is part of the medium domain, and the semantic, syntactic,
and lexical design all fall into the technology domain.

Norman [2002] proposes a similar scheme for modelling interaction, whichNorman’s seven

stages of action

includes both

action and

feedback.

he calls the seven stages of action (see Figure 2.5). The execution path
starts with the high level task of forming a goal, then an intention, followed
by specifying an action and then executing it. The feedback follows a similar
path (in reverse order): perceiving the state of the world, interpreting it,
and finally comparing it with the original goal.

The two works described above are used to design, study, and analyze in-
teractions. In contrast, the design space we propose here is a conceptual
framework for contextualizing our work that enables new interactions. In
this way, it is more similar to Gosling’s window system architecture and
the OSI model for communication. Much of the current literature (as illus-
trated in Figure 2.1) tackles the problem of interaction between the user
and the technology; less common, however, is work that examines interac-
tion between the human and the medium, which is the focus of this thesis.
Just like how the network stack consists of both high level interfaces such
as HTTP for retrieving webpages in addition to low level interfaces such
as 802.11 for the transmission of the actual bits, we believe tools for de-
signing interactive media systems should include high level mechanisms
for representing media and time, as well as low level interfaces that allow
manipulation of individual audio samples or pixels in a video frame. The
mechanisms for semantic time that we propose in this thesis are intended
to supply these high level interfaces for designing time-based interactions.

2.1 A Time-Design Space 15

2.1.2 Multiple Time Domains

Schemes for partitioning time into multiple domains have also been pro-
posed before, most notably in the media arts. Bordwell and Thompson
[2003], for example, distinguish between “story time” and “real time” in
their work on the art of film; they describe how this distinction is important
for capturing viewers’ attention and providing them with an entertaining
experience. In his work on Media Streams, Davis [1993] also makes this dis-
tinction, and Media Streams aims to provide a metadata framework that
enables easier and better media reuse for cinema.

In computer music, constructs to understand and manipulate time in mu-
sic have been proposed, most notably by Jaffe [1985], Honing [2001], and
Desain and Honing [1999]. These works examine the relationship between
“score time” and “real time” with the purpose of better understanding ex-
pressivity in a musical performance. Jaffe [1985], in particular, developed
time maps to visualize timing in performances, and time maps are sup-
ported as a protocol for synchronizing to MIDI time code in MusicKit , a
software system for building music and MIDI applications [Smith, 2005].

The works described above use multiple time domains to better understand Multiple time

domains are used

in the media arts.

media such as film or music primarily for artistic purposes. Moreover, with
the exception of Jaffe’s time maps, there is no discussion of how such con-
cepts can impact the design and implementation of interactive media sys-
tems. In contrast, we established our time-design space to better facilitate
a discussion of the time design of interactive media systems.

A similar design space was jointly proposed during the Time Design Work- A similar design

space was

proposed during

the Time Design

workshop at CHI

2004.

shop at the SIGCHI Conference for Human Factors in Computing Systems
in 2004 [Hildebrandt et al., 2004]. This design space, which the author had
an active role in developing, consisted of four domains:

• Interaction: The communication between a user and an object.

• User: The person performing the interaction.

• Object: The target of the interaction.

• Context: The environment in which the interaction is taking place.

Using again our example of an interactive conducting system, the temporal
aspects of each domain are:

• Interaction: The system interprets the user’s conducting gestures.

• User: The user imposes his own tempo through gestures.

• Object: The music has a base tempo and temporal structure as de-
scribed in the score.

16 2 Time Design

• Context: The user’s friends want to leave, thus encouraging the user
to hurry up and get to the end of the interaction sequence.

Our time-design space shown in Figure 2.2 is an evolution of this design
space. With inspirations from the literature outlined above, we developed
it into a conceptual framework specifically for reasoning about time in in-
teractive media systems, and in the remaining sections of this chapter, we
will introduce some specific works that fall within each of the three domains
that we have defined:

• Conducting gesture recognition: These works focus on the problem
of extracting temporal information (beat and tempo), amongst other
parameters, from conducting gestures performed by a human. We in-
clude a discussion of conga, our adaptive conducting gesture analysis
framework. This area falls into the user domain.

• Rhythmic analysis of human motion: These works focus aim to ex-
tract temporal information from human motion, usually dance. We
include a discussion of our work in this area. This area also falls into
the user domain.

• MPEG-7 : An ISO standard for multimedia content description,
MPEG-7 enables a broad range of applications to share multimedia
metadata. As a metadata description and formatting mechanism, it
falls into the media domain.

• Automatic beat detection: These works focus on the problem of ex-
tracting beat and tempo information from audio recordings. As an
example of how metadata is generated, it also falls into the media
domain.

• Video frame interpolation: Changing the playback rate of video
respaces them in time, creating “gaps” that need to be filled. This
type of processing falls into the technology domain.

• Audio time-stretching: Unlike video, changing the playback rate of
audio by simply respacing the audio samples creates undesirable
pitch-shifting artifacts. Numerous algorithms have been developed
to address this issue, including PhaVoRIT, our phase vocoder for in-
teractive time-stretching. This area again falls into the technology
domain.

Subsequent chapters will discuss work that crosses these domains.

2.2 User: Conducting Gesture Recognition

Orchestral conducting has a long history in music, with historical sources
going back as far as the middle ages; in recent years, it has also been an

2.2 User: Conducting Gesture Recognition 17

active area of computer music research. Conducting is fascinating as an
interaction metaphor, because of the high “bandwidth” of information that
flows between the conductor and the orchestra. A conductor’s gestures In conducting, a

large amount of

information flows

between the

conductor and the

music.

communicate beat, tempo, dynamics, expression, and even entries/exits of
specific instrument sections. Gesture-controlled conducting systems have
a long history in computer music research. Mathews [1991] created the
Radio Baton, which triggers a beat when the baton goes below a certain
vertical position; this work has since inspired a number of researchers to
study conducting as an interface to computer music systems.

Ilmonen and Takala’s DIVA system [1999] features a conductor follower
that is capable of classifying and predicting beats, and even sub-beats, to
control tempo and dynamics. The system uses artificial neural networks,
and needs to be trained with user data prior to use.

Usa and Mochida’s Multi-modal Conducting Simulator [1998] analyzes two-
dimensional accelerometer data using Hidden Markov Models and fuzzy
logic to detect beats in gestures. The system features beat recognition
rates of 98.95–99.74%, although it also needs to be trained with sample
data sets prior to use.

Murphy et al. [2003] created a system to conduct audio files, and they use
computer vision techniques to track tempo and volume of conducting ges-
tures. Users’ movements are fitted to one of several possible conducting
templates [Murphy, 2004]. While the system does not require any train-
ing, the user must be familiar with the gesture templates. Murphy used
a combination of C code and EyesWeb [Camurri et al., 2003], a library for
gesture processing.

Marrin Nakra’s Conductor’s Jacket [2000] collects data from sensors along
the arms and upper torso, measuring parameters such as muscle tension and
respiration. She was primarily interested in mapping expressive features to
sections in the music score, rather than obtaining measurements on how
movements map to rhythm and beats. In her later collaboration with us on
You’re the Conductor [Lee et al., 2004], she developed a gesture recognition
system that mapped gesture velocity and size to music tempo and dynam-
ics. Her systems were built using LabVIEW National Instruments [2007],
a graphical development software for measurement and control systems.

Kolesnik [2004] uses, in his work, Hidden Markov Models for recognizing
conducting gestures, although the focus of this work was on expressive
gestures with the off-hand rather than beat recognition with the dominant
hand. His conducting system was built using a combination of EyesWeb
and Max/MSP [Puckette, 2002].

Our own work on conducting gesture recognition was motivated by a need The goal is to

extract tempo and

beat information

from conducting

gestures.

for a more sophisticated gesture analysis subsystem for Maestro! , our third-
generation interactive conducting system [Lee et al., 2006d]. conga, our
framework for adaptive conducting gesture analysis, builds upon our prior
experience with Personal Orchestra [Borchers et al., 2004] and You’re the

18 2 Time Design

Conductor [Lee et al., 2004]. These systems allow the user control over
tempo, by making faster or slower gestures; volume, by making larger or
smaller gestures; and instrument emphasis, by directing the gestures to-
wards specific areas of a video of the orchestra on a large display.

Designing a gesture recognition system for a museum environment poses
unique and interesting challenges, primarily because museum visitors have
a wide range of experience with conducting. Moreover, there is little to no
opportunity to either train a user to use the system, or to train the system
to a specific user; a museum on a busy day may see over 1000 visitors, and
so a visitor will spend, on average, less than one minute at an exhibit. Such
an environment imposes the following requirements on our design of conga,
which also differentiate it from existing systems:

• It must recognize gestures from a user without any prior training
(either for the user or for the system).

• It must recognize a variety of gestures to accommodate different types
of conducting styles.

While conducting is an activity that typically involves the entire bodyconga recognizes

gestures from the

user’s dominant

hand.

[Marrin Nakra, 2000], it is generally agreed that the most important infor-
mation is communicated through the hands [Kolesnik, 2004, Rudolf, 1995].
We designed conga for use in a public exhibit, and have thus far limited our
gesture analysis with conga to input from the user’s dominant hand. For
brevity, we will further limit our discussion here to the problem of extract-
ing rate (tempo) and position (beat) information from conducting gestures.
The design of conga itself does not place any restrictions on the types of
inputs or outputs, however.

Work on conga was split into two stages. In the first stage, a library of fea-
ture detectors and a conducting gesture profile for the four-beat conducting
pattern were developed by Grüll [2005] under the guidance of the author.
The second stage of the project involved a refinement of the four-beat ges-
ture profile, and two additional profiles were constructed using these feature
detectors. An adaptive profile selection mechanism was also developed for
use in our Maestro! conducting system [Lee et al., 2006a,d].

2.2.1 Design

The design of conga is inspired by Rudolf’s work on the grammar of
conducting [1995]. In his book, he models conducting gestures as two-
dimensional beat patterns traced by the tip of a baton held by the con-
ductor’s right hand (see Figure 2.6). Conducting, then, is composed of
repeating cycles of these patterns (assuming the user keeps to the same
beat pattern), with beats corresponding to specific points in a cycle. By

2.2 User: Conducting Gesture Recognition 19

1

3
2

4

1

32

4

Figure 2.6: Beat patterns for the four-beat neutral-legato (top) and
expressive-legato (bottom), as described by Rudolf [1995]. The numbers
indicate where beats are marked in the gestures.

analyzing certain features of the baton’s trajectory over time, such as tra-
jectory shape or baton movement direction, we can identify both the specific
pattern, and the position inside the pattern, as it is traced by the user.

Unlike Murphy’s work on interpreting conductors’ beat patterns [2004], we
do not try to fit the user’s baton trajectory to scaled and translated versions
of the patterns shown in Figure 2.6; as a majority of our target user base

20 2 Time Design

are not proficient conductors, such a scheme would most probably not work
very well for them; in fact, we have found in previous work that even after
explicitly instructing users to conduct in an up-down fashion, the resulting
gestures are still surprisingly diverse [Lee et al., 2005]. Murphy also makes
use of the dynamics encoded in the music that the user is conducting to
differentiate between unintentional deviation from the pattern and inten-
tional deviation to change dynamics; the ability to make this distinction
requires one to assume that the user is already familiar with the music (an
assumption we are unable to make).

Our general approach is to instead identify specific characteristics (features)conga identifies

specific features in

conducting

gestures, fitting

them into profiles.

in various types of gestures, such as turning points in the baton position
with a certain direction or speed. These features are encoded into gesture
profiles, and the features are triggered in sequence as the user moves the
baton in a specific pattern. The advantage of this approach is that the
system does not require the user to perform the gesture too exactly; as
long as the specific features of the gesture can be identified in the resulting
movements, the overall shape of the gesture is unimportant.

conga, as a software framework, allows a developer to work at several lay-We built 3 gesture

profiles for conga. ers of abstraction; at the most basic level, it provides a library of feature
detectors. These feature detectors can then be linked together into a more
complex graph to identify specific gesture profiles, and to date, we have
encoded three types of gesture profiles into conga, with increasing levels of
complexity: wiggle (for erratic movements), up-down (for an inexperienced
conductor, but one who moves predictably), and the four-beat neutral-
legato (for the more experienced conductor). Finally, we have developed
a profile selector that evaluates which of these profiles best matches the
user’s baton movements at any given time, and returns the results from
that profile.

2.2.2 Feature Detectors

conga’s library of feature detectors offers basic building blocks that provide
a specific function; for example a bounce detector may detect a change in
the baton’s direction. Each feature detector node has one or more input
ports and at least one output port. It takes, as input, a continuous stream of
data (e.g., two-dimensional position of a baton). The output is a“trigger”, a
Boolean value that is true when the feature is detected, and false otherwise.
There may be other outputs from the feature detector, so that any nodes
that use the output from the feature detector can obtain more information
regarding what caused the feature detector to trigger. Other types of nodes
also exist to manipulate data, such as rotating the data about an axis,
applying various types of filters, etc.

These nodes are connected into directed, acyclic graphs. The graph isFeature detectors

are arranged in

DAGs.

evaluated using a pull model, where the output requests data which then
pulls on its input nodes to perform the necessary computation. Further

2.2 User: Conducting Gesture Recognition 21

x

y

Speed

Average
Beat

Accumulator

tempo

beat
∆

∆

Figure 2.7: The conga graph for the Wiggle gesture profile. The gesture
speed determines tempo.

x

y

∆

∆ Tempo

beat
Rotate

π

Bounce
Detector Beat

Predictor

tempo

Figure 2.8: The conga graph for the Up-Down gesture profile. The down-
wards turning points of the gestures correspond to beats; a beat predictor
generates beat values in between these values.

details of the feature detector framework and types of nodes it provides are
given in [Grüll, 2005]; we will present only the feature detectors relevant to
our discussion here. The next three subsections describe the three profiles
that we have built for conga using this feature detector library.

Wiggle Profile

Figure 2.7 shows the conga graph for the Wiggle profile, which is the most Wiggle maps the

speed of the

gestures to

tempo.

fundamental of the three gesture profiles that conga recognizes. Inspired
by Marrin Nakra’s work on You’re the Conductor [Lee et al., 2004], gesture
speed is mapped to tempo (see Figure 2.7). conga falls back to this profile
when it cannot use any other means to interpret the user’s gestures.

The “x” and “y” nodes hold time-stamped positional data from the baton
that has been preprocessed to remove noise. The gesture speed is computed
by taking a numerical time derivative of the baton position, followed by a
moving average of this derivative. Since the gestures themselves are not
synchronized to the music beat, a numeric integral of the speed is used to
arbitrarily derive beat information from the gesture speed.

Up-Down Profile

The Up-Down profile tracks the vertical movement of the user to determine Up-Down maps

downward turning

points to beats.

beat and tempo. Figure 2.8 shows the conga graph for the Up-Down profile.

The primary feature that is detected is the downwards turning point, using

22 2 Time Design

the “bounce detector” node. The bounce detector node takes, as input,
the current velocity of the baton, and looks for a positive to negative zero
crossing in the y component of the velocity (i.e., an upside-down“U”shape).
Since such a detector would normally track the upwards turning point, the
data from the baton must first be rotated by 180 degrees. To prevent false
triggers, the bounce detector imposes a criterion that the magnitude of
the vertical movement over the last few samples be some multiple of the
magnitude of the horizontal movement (set as optional parameters in the
bounce detector node).

The triggers sent by the bounce detector mark whole beats, and so the
tempo can be derived by taking the numerical time derivative of these
beat positions over time. This tempo is then used to predict the current
fractional beat value until the next trigger occurs. If r is the current tempo
in beats per minute, and t0 is the time of beat b0 in seconds, then our
predicted fractional beat value b for time t is computed using:

b = b0 +
r

60
(t − t0) (2.1)

We also impose the additional constraint that b < b0 + 1 until the next
trigger occurs, to ensure that beats are always monotonically increasing.

We found this simple beat prediction algorithm to work well for estimating
the fractional beat values between beats in early prototypes of conga. While
the beat prediction could be improved if we detected more features in the
gesture (e.g., detecting the upper turning point to mark the halfway point
into the beat, in addition to the lower turning point, see Section 6.1.4),
doing so would also place more constraints on the types of movements that
would fit the profile. For example, we found that many users naturally
tend to conduct “pendulum-style”, rather than in strictly vertical up-down
movements.

Four-Beat Neutral-Legato Profile

The Four-Beat Neutral-Legato profile is the most complex and, not sur-Four-Beat

Neutral-Legato

maps turning

points in the

gesture to

fractional beats.

prisingly, most challenging beat pattern to detect. Multiple features are
detected in parallel, which then drive a probabilistic state machine to track
where in the four-beat pattern the user currently is at (see Figure 2.9).

The features that are detected are: the downwards turning point at beat 1;
the upper turning point just after beat 1; the change in horizontal direction
just after beat 2; the change in horizontal direction just after beat 3; and
the upper turning point after beat 4. Note that the features detected do
not necessarily correspond to the beats themselves (see Figure 2.9).

The first and third features are very distinct sharp turns, and so the bounce
detector is again used to track these features. The second feature tends to

2.2 User: Conducting Gesture Recognition 23

π 2

x y

∆ ∆
be

at

R
ot

at
e

π

B
ou

n
ce

D
et

ec
to

r

te
m

po
R

ot
at

e
B

ou
n
ce

D
et

ec
to

r

S
ta

te
[S

1]
0.

00

S
ta

te
[S

2]
0.

12

S
ta

te
[S

3]
0.

31

S
ta

te
[S

4]
0.

63

S
ta

te
[S

5]
0.

84

S
ta

te
 M

ac
h
in

e

1

3
2

4

S
1

S
2

S
3

S
5

S
4

Z
er

o
C

ro
ss

in
g

an
d

=
+

Z
er

o
C

ro
ss

in
g

an
d

=
+

Z
er

o
C

ro
ss

in
g

an
d

=
+

S
1

0.
00

S
4

0.
63

S
3

0.
31S

2
0.

12
S
5

0.
84

F
ig

u
re

2
.9

:
T

h
e

to
p

fi
gu

re
sh

ow
s

th
e

co
n
ga

gr
ap

h
fo

r
th

e
F
ou

r-
B

ea
t

N
eu

tr
al

-L
eg

at
o

ge
st

u
re

p
ro

fi
le

.
F
iv

e
fe

at
u
re

s
ar

e
d
et

ec
te

d
,
w

h
ic

h
ar

e
u
se

d
to

tr
ig

ge
r

th
e

p
ro

gr
es

s
of

a
st

at
e

m
ac

h
in

e
th

at
al

so
ac

ts
as

a
b
ea

t
p
re

d
ic

to
r.

T
h
e

in
p
u
t

to
th

e
st

at
e

m
ac

h
in

e
is

th
e

cu
rr

en
t

p
ro

gr
es

s
(0

to
1)

of
th

e
b
at

on
as

it
m

ov
es

th
ro

u
gh

on
e

co
m

p
le

te
cy

cl
e

of
th

e
ge

st
u
re

,
st

ar
ti
n
g

at
th

e
fi
rs

t
b
ea

t.
T

h
e

b
ot

to
m

fi
gu

re
sh

ow
s

th
e

co
rr

es
p
on

d
in

g
b
ea

t
p
at

te
rn

th
at

is
tr

ac
k
ed

;
n
u
m

b
er

ed
ci

rc
le

s
in

d
ic

at
e

b
ea

ts
,
sq

u
ar

ed
la

b
el

s
in

d
ic

at
e

th
e

fe
at

u
re

s
th

at
ar

e
tr

ac
k
ed

,
an

d
th

ei
r

co
rr

es
p
on

d
in

g
st

at
es

.

24 2 Time Design

be more subtle, and thus we look only for a zero crossing in the baton’s
vertical velocity at that point, without the additional constraint that the
bounce detector imposes, as described earlier. Finally, the fourth and fifth
features also have a softer curvature, and are also tracked with a zero cross-
ing node. Since zero crossing nodes trigger on both positive to negative, and
negative to positive transitions, the undesired trigger is filtered out before
sending it to the state node. The state machine node tracks the progress
through the beat cycle; it also detects and compensates for missed or false
beats using a probability estimation based on the current tempo and time
in which the last trigger was received. For example, if we are currently in
state 4, and the state machine receives a trigger for state 1, it checks to see
how much time has elapsed, and together with the current tempo, guesses
what the correct state should be. If it appears that the feature for state 5
was just simply not detected, the state machine will jump directly to state
1. Otherwise, it will assume the trigger for state 1 was simply a falsely
detected trigger and ignore it.

The state machine node also acts as a beat predictor; however, unlike theA state machine

tracks the user’s

current position in

the profile.

beat predictor in the Up-Down profile, which receives whole beat informa-
tion and predicts beat values in between the whole beats, the state machine
receives fractional beat information – this is to compensate for the phase
shift between the beats and features in the gesture cycle. For the four-beat
pattern, beats 1 to 4 are at 0, 0.25, 0.5 and 0.75 (percentage of one whole
cycle), respectively, while the features occur at values of 0, 0.12, 0.31, and
0.63 (see Figure 2.9).

2.2.3 Profile Selection

The three gesture profiles described above run concurrently in conga, and
the final step in interpreting the user’s gestures is a profile selection scheme
that decides which of the profiles is returning the most reasonable data. Our
algorithm for performing this selection is based on the assumption that the
user does not make erratic changes to the tempo; our informal observations
of users using our prior systems have confirmed that users moving in an up-
down gesture or a four-beat neutral-legato pattern must exert considerable
effort to make relatively sudden changes to the conducting pattern, and
thus, the conducting pattern is usually quite regular.

At each regular update cycle, each of the profile graphs is evaluated toThe active profile

is chosen based

on the consistency

of its results.

determine the current beat. A threshold value is computed based on the
standard deviation of the last four calculated beat values, and a confidence
value returned by the beat predictor for each of the profile graphs. If
this value falls below a certain threshold, we conclude that the profile is
returning a sensible result. Profiles are also given a precedence order, so
that if more than one profile falls below the given threshold, the one with
the highest precedence wins. Our order of precedence from highest to lowest
is: four-beat neutral-legato, up-down, and wiggle.

2.3 User: Rhythmic Analysis of Human Motion 25

2.2.4 Discussion

We performed some preliminary testing with users to evaluate conga’s accu-
racy and response. We asked five users (four male, one female) to conduct
using up-down movements, and three users (all male) to conduct using the
four-beat neutral-legato pattern. The users conducted for approximately
30 seconds each. The three users conducting the four-beat pattern were
already somewhat proficient with the gesture prior to the experiment.

The system starts by default using the Wiggle gesture profile; for all five conga has a high

recognition rate.users, the system switched to the Up-Down profile within the first two
beats. After that, conga did not falsely detect any beats, nor miss any
beats, in the user’s gestures (100% recognition rate). For the Four-Beat
Neutral-Legato pattern, we found that for one user, conga fell back to the
Up-Down profile 8% of the time, and failed to detect his beats 6% of the
time. For the other two users, conga stayed in the Four-Beat profile 100%
of the time, and did not fail to detect any of their beats.

While conga’s accuracy is promising, it unfortunately does not perform as conga still has

latency issues.well with respect to latency, which we defined as the time difference between
when the user marks a beat, and when it is detected by conga. For the up-
down gesture, the latency was roughly 100 ms, and for the four-beat gesture,
the maximum latency was as high as 675 ms, with an average of 200 ms.
High latencies were measured consistently on beats 3, and occasionally for
beat 4. One possible explanation is that the users’ unfamiliarity with the
four-beat gesture confused the beat predictor, resulting in conga behaving
unpredictably. We hope to address these shortcomings in future work.

In the next section, we will describe our work on a related topic – extracting
the more abstract rhythm patterns from human movement such as dance.

2.3 User: Rhythmic Analysis of Human Motion

Few would dispute the essential connection between rhythm and music – There is a strong

connection

between music,

dance, and

rhythm.

some researchers, such as Hasty [1997], have even claimed that music is
the “rhythmization of sound”. Regardless, rhythm indeed plays a strong
role in our perception and interpretation of music. It is also one of the key
components that form the symbiotic relationship between dance and music
that dates back to prehistoric times; body movements and music are closely
linked in a dynamic relationship between acting and listening, cause and
effect.

Unfortunately, there has been little work studying this connection between Existing literature

focuses on spatial

analysis.

rhythm, dance and music in designing new musical interfaces. Existing
systems for creating music from gestures often employ spatial mappings
[Griffith and Fernström, 1998, Paradiso et al., 2000] with little considera-
tion for the temporal aspect of tempo or rhythm. Guedes [2005] designed

26 2 Time Design

Figure 2.10: An example representation of a rhythm. Each circle along
the horizontal time axis represents an impulse, its size signifying the impulse
magnitude. As the pattern strong–weak–weak is repeating, it can be called
a rhythm.

a system that analyzes the video of dancers, and shows how a dance per-
formance’s tempo can be determined by examining brightness changes be-
tween video frames. However, the temporal information derived from dance
movements is limited to only tempo.

The work presented in this section is part of a larger project aimed at
studying rhythm in the context of music and dance [de Jong, 2007]; it is a
collaboration coordinated by Professor Emeritus Leo de Jong in the Nether-
lands. Our contribution to the project was to design a set of algorithms
to extract rhythm information from human motion data collected using ac-
celerometers; work was carried out by Enke [2006] under the guidance of
the author, and also presented in [Lee et al., 2007a].

Terminology

Despite the ubiquity of the term “rhythm”, its exact definition remains a
matter of some controversy [Seppänen, 2001]. Guedes [2005] studied various
views of the term, and in his work, he adopted Parncutt’s definition that “a
musical rhythm is an acoustic sequence evoking a sensation of pulse” [1994].

Another definition, by Dowling and Harwood [1986], is “a temporally ex-Rhythm consists

of a series of

repeating accents.

tended pattern of durational and accentual relationships”. This definition
seems to be appropriate when talking about rhythm and music, and we
adopt a similar definition, and define a “rhythm pattern” as “a repeating
series of accentuations of impulses separated by time intervals”. In a music
setting, impulses would be notes and their accentuations could be deter-
mined by their volume, and in a dance setting, they could be movements
with their respective maximal momentum. A graphical representation of a
sample rhythm pattern is shown in Figure 2.10. We will also use the term
“beat” to refer to a single element within the pattern. A rhythm pattern as
we have defined it, then, consists of multiple beats of varying magnitudes
spaced roughly evenly apart.

2.3.1 Design

The problem of extracting musical rhythm from accelerometer data is, inOur work is

inspired by

algorithms for

tracking beats in

audio.

2.3 User: Rhythmic Analysis of Human Motion 27

some ways, similar to analyzing audio recordings. In such analysis, there is
often first a conversion to a symbolic representation, from which the desired
information is extracted, although there have been attempts to process the
raw audio data directly using comb filters [Scheirer, 1998], auto-correlation
[Gouyon and Herrera, 2003], or Fourier analysis [Smith, 1999]. Inspired by
these works, we combine two types of sensor data analysis: interval and
frequency. Interval analysis has the benefit of low latency (an impulse can
be processed and contribute to an updated result as soon as it is detected);
frequency analysis, on the other hand, has the benefit of being more robust
in the presence of noise. Figure 2.11 shows a block diagram illustrating
our approach to rhythmic analysis of accelerometer data. It consists of the
following steps: movement detection, interval analysis, frequency analysis,
data fusion, impulse folding, and impulse clustering.

Movement Detection

Movement detection takes each channel of sensor data and extracts an Extract an

impulse sequence

from the raw

data.

impulse sequence. Three parameters are extracted from the sensor data
for each impulse: a timestamp, τ(m), a magnitude mag(m), and a spread
∆(m) (see Figure 2.12).

Interval Analysis

The aim of the interval analysis is to find an interval between individual
events in a repeating rhythmic pattern. We define the distance between two
rhythmic events as a beat interval and the length of a repeating rhythmic
pattern a pattern length.

We first compute a set of weighted inter-impulse intervals (IIIs). IIIs are
analogous to the inter-onset intervals defined for rhythm analysis of mu-
sic; we use the interval between the impulse timestamps computed in the
previous step:

III = τ(m1) − τ(m2) (2.2)

These intervals are assigned a weight, which is the minimum of the two
magnitudes:

mag(III) = min (mag(m1),mag(m2)) (2.3)

The inter-impulse interval spread also provides a measurement of uncer-
tainty:

28 2 Time Design

Sensor Signal

Movement Detection Frequency Analysis

Impulse Sequence

Interval Analysis

Data Fusion

Pattern Structure

Impulse Folding

Folded Impulses

Impulse Clustering

Rhythm

Figure 2.11: Block diagram of our rhythmic analysis system. The raw
signal data from the accelerometers is processed using movement detection
followed by interval analysis, and a second path using frequency analysis.
The results are combined using data fusion, followed by impulse folding and
clustering to obtain the final result.

∆(III) =
∆(m1) + ∆(m2)

2
(2.4)

All possible inter-impulse intervals for the last two seconds of data are thenUse

histogramming to

find probable beat

intervals.

accumulated into a histogram; the histogram has the interval size on the
horizontal axis and the magnitude on the vertical axis (see Figure 2.13).

2.3 User: Rhythmic Analysis of Human Motion 29

 0

ac
ce

le
ra

ti
on

 [
g]

time [s]

magnitude

timestamp

spread

Figure 2.12: The three parameters extracted for movement detection.
The midpoint between the start of the pulse and its maximum point of
acceleration is used for the timestamp. The magnitude is simply the max-
imum acceleration, and the spread is calculated from the two closest zero-
crossings of the acceleration graph.

The interval size is quantized in 20 ms intervals, also referred to as“buckets”.
To account for the spread representing the uncertainty, the IIIs are not
accumulated as impulses in a single bucket, but as triangles with height
mag(III) and width ∆(III) (the spread value).

To account for history beyond the last two seconds, and also to guard
against erratic data, the histogram is averaged with the previously calcu-
lated histogram. This one pole low pass filter technique across histograms
was also employed by Seppänen [2001] for similar reasons.

From Figure 2.13, we can see that the pattern length occurs at the maxi-
mum peak in the histogram, and the beat interval at the first “significant”
peak. When searching for peaks, we use two criteria: a data point is con-
sidered a peak if it is larger than its two neighbouring buckets on either
side. A peak must also be larger than the average magnitude across the
entire histogram.

Frequency Analysis

The frequencies we are interested in extracting from the sensor data are Use Fourier

analysis to find

the fundamental

frequency of

movement.

in the range of a few Hertz or less, which requires a time window of a few
seconds. This latency makes the results from a pure frequency analysis, in
general, unsuitable for real-time. However, we still perform the analysis,
and combine it with the results of our interval analysis to increase the
reliability of our results. We transform a ten-second time window of sensor
data into the spectral domain; the fundamental frequency, then, is our
previously defined beat interval. In our current implementation, we first
downsample the data by a factor of six, followed by a 256-point Fast Fourier
Transform (FFT). We consider a data point to be a peak in the signal
spectrum when the amplitude is larger than its two neighbouring frequency
bins.

30 2 Time Design

Impulse Stream

Inter-Impulse Intervals

Histogram

1.8 s

1.5 s

1.2 s

0.9 s

0.6 s

0.3 s

5

1.8 s1.5 s1.2 s0.9 s0.6 s0.3 s0 s

Figure 2.13: Example of histogram accumulation. The histogram is cre-
ated using all possible inter-impulse intervals over the last two seconds
of data. The coloured bars represent the IIIs between the impulses; the
thickness of the bars is an indication of their magnitude. To account for
uncertainty, a triangle with width equal to the III spread is accumulated
into the histogram. The highest peak at 0.9 s is the pattern length; the
first peak at 0.3 s is the beat interval.

Data Fusion

We require a data fusion scheme to combine the results from both mul-Use voting to

combine our

results.

tiple sensors (one for each axis of movement) and analysis types (interval
and frequency). We use a voting scheme where the results of the analyses
are again histogrammed based on the computed beat interval and pattern
length. The values with the highest count are then passed to the impulse
folding module. We again adopt the one pole low pass filtering technique
with previously accumulated histograms here, with the assumption that
data sources that were previously reliable remain reliable for the short-
term.

2.3 User: Rhythmic Analysis of Human Motion 31

Impulse Folding

With the beat interval and pattern length, we now know, approximately, the Fold and

normalize the

repeating patterns

to assist with

clustering.

length of a repeating rhythm pattern. We use this approximate length to
divide the impulse stream into shorter segments and overlay them on top of
each other so that they form a repeating pattern. We assume the first beat
of the pattern is the strongest one, and use that to decide where to perform
this “folding” operation. The divided segments will be of slightly different
length, and to assist the subsequent clustering process, we normalize the
length of the impulse segments to the pattern length.

Impulse Clustering

In this final step of the algorithm, we look for impulses that are close to Cluster impulse to

form a single

pattern.

each other and combine them into a single impulse; the average of the
magnitudes are taken. This produces the repeating pattern shown at the
bottom of Figure 2.11.

2.3.2 Discussion

We tested the algorithms with a variety of rhythm patterns performed by
test users. Sensors were attached to the finger or hand, and the rhythm pat-
tern was performed by waving in mid-air with circular gesturing motions to
trigger multiple axes of movement (such as the strong-weak-weak pattern
shown in Figure 2.14). The system works well for these types of move-
ments; the rhythmic pattern is recognized within 6 seconds, starting from
rest. Both the beat interval and the pattern length are correctly reported.
Our algorithm can correctly identify patterns with pauses in between, such
as the pattern strong-weak-rest-weak, although with less reliability than
patterns with evenly spaced beats.

We did identify several cases where our algorithm reports partially inaccu- Longer patterns

are problematic.rate results. In cases where both the first and second beat are performed
with roughly equivalent magnitude, such as strong-strong-weak-weak, the
pattern is folded at the correct point; however, the second beat event is
visibly more pronounced than the first. We attribute this to an artifact
of the histogramming and clustering inaccuracy. A second case where the
algorithm is problematic in reporting correct results is when the rhythmic
pattern contains more than 5 beats. In this case, half of the histograms
report that the first impulse is the largest (if only by a small amount),
resulting in an incorrect pattern length. It would appear in this case that
the sheer number of pairs one interval apart outweighs the magnitude dif-
ference.

We also ran our algorithm through data recorded from a professional Cha-
cha-chá dancer (see Figure 2.15). While it is not able to capture the exact

32 2 Time Design

Sensor Data

Inter-Impulse Interval Histograms

Extracted Rhythm

be
at
 in

te
rv
al

pa
tt
er
n
len

gt
h

#
 b
ea

ts

Figure 2.14: Result of a user gesturing in a 3-beat (strong-weak-weak)
pattern using circular movements. Such movements trigger accelerometers
along two axes, which are in turn split into positive and negative pulses,
resulting in four histograms. The three numbers beside each histogram
are the beat interval, pattern length, and number of beats per pattern,
respectively. The resulting pattern is correctly identified.

one-two-three-cha-cha rhythm,2 it was able to correctly identify the pattern
length and the accents on the first and third beats.

We hope to improve upon these results in future work, and in the next
section, we will move on to time in the medium domain, beginning with a
discussion of MPEG-7.

2The Cha-cha-chá rhythm is also commonly written as step-step-cha-cha-cha – how-
ever, the last “cha” corresponds to the first accented beat.

2.4 Medium: MPEG-7 33

Sensor Data

Inter-Impulse Interval Histograms

Extracted Rhythm

Figure 2.15: Results of running our algorithm with data collected from
a Cha-cha-chá dancer. The exact rhythm is not captured, but the cor-
rect pattern length is identified, and the algorithm correctly detects the
emphasis on the first beat and a smaller emphasis on the third beat.

2.4 Medium: MPEG-7 – Multimedia Content

Description Interface

MPEG-7 is an ISO (International Standards Organization) standard de- MPEG-7 is about

how to describe

metadata.

veloped by the Moving Picture Experts Group (MPEG) for multimedia
content description [Mart́ınez, 2004]. Unlike the previous MPEG stan-
dards such as MPEG-1, MPEG-2, and MPEG-4, MPEG-7 is not about
data encoding methods; MPEG-7 focuses solely on metadata formatting
and specification. The goal of MPEG-7 is to provide a consistent means
of sharing metadata across a broad range of applications. Since it is not
possible to anticipate the types of applications that will be developed in
the future, MPEG-7 does not specify how the metadata is to be created or

34 2 Time Design

consumed – its scope is limited to laying out a mechanism by which this
metadata can be structured, shared, and possibly interpreted.

To achieve these goals, the MPEG-7 standard supports metadata at a wideMPEG-7 supports

a wide range of

metadata

abstractions.

range of abstraction levels that are application independent. For example,
in the case of a music audio file, this metadata could include high level
descriptors such as the name of the performer, or the date and time when
the recording was created. It could also contain low level information such
as a list of timecodes which correspond to the beats of the music. Again,
MPEG-7 does not describe how this metadata is generated – while au-
tomatic processing such as beat detection (described in the next section)
could be used to generate the metadata for lower abstractions, higher level
metadata may need be to created manually.

MPEG-7 consists of four parts:

• Descriptors are representations of metadata

• Description schemes specify relationships between descriptions and
other description schemes

• A description definition language allow creation of of new descriptors
and description schemes

• Systems tools manipulate descriptions for transmission, encoding, or
association with content

The MPEG-7 description definition language (DDL) is based on XML,MPEG-7

structures

metadata using

XML.

with extensions to support multimedia-specific types such as vectors and
matrices. For the purposes of our discussion here, it is important to note
that the metadata can be associated with either specific points in time in
the media file, or over temporal durations (see Figure 2.16).

Further information on MPEG-7 can be found in [Mart́ınez et al., 2002,
Mart́ınez, 2002, 2004, Manjunath et al., 2002].

In addition to a means of storing metadata, algorithms for generating the
meta-data also fall within the medium domain. In the next section, we will
briefly examine one such category of metadata generation: automatic beat
detection.

2.5 Medium: Automatic Beat Detection

Research in automatic beat detection aims to reproduce the effect of hu-
mans clapping their hands or tapping their feet to the beat of the music.
This problem is interesting from both musical and signal processing per-
spectives, and, furthermore, the metadata generated as a result has a broad

2.5 Medium: Automatic Beat Detection 35

<Mpeg7>

<Description xsi:type="ContentEntityType">

<MultimediaContent xsi:type="AudioType">

<Audio>

<MediaLocator>

<MediaUri>file://disk/bluedanube.aiff</MediaUri>

</MediaLocator>

<MediaTime>

<MediaTimePoint>00:00:00</MediaTimePoint>

<MediaDuration>00:03:43</MediaDuration>

</MediaTime>

<TemporalDecomposition gap="false" overlap="false">

<AudioSegment id="beat1">

<MediaTime>

<MediaTimePoint>00:00:00.000</MediaTimePoint>

<MediaDuration>00:00:01.091</MediaDuration>

</MediaTime>

</AudioSegment>

<AudioSegment id="beat2">

<MediaTime>

<MediaTimePoint>00:00:01.091</MediaTimePoint>

<MediaDuration>00:00:00.906</MediaDuration>

</MediaTime>

</AudioSegment>

.

.

.

</TemporalDecomposition>

</Audio>

</MultimediaContent>

</Description>

</Mpeg7>

Figure 2.16: Example MPEG description for an audio file. The first
block gives the location of the media content on disk. The second block
tells us the media content is 3 minutes and 43 seconds in length. The third
block splits the file into segments, with each segment corresponding to a
beat.

range of applications in interactive systems, from conducting systems such
as Maestro! [Lee et al., 2006d], to augmented disc jockey (DJ) software
[Andersen, 2005], to interactive virtual dancers [Reidsma et al., 2006].

Current algorithms work well for music with a consistent, well-defined beat
(most popular music falls into this category); certain types of polyphonic

36 2 Time Design

music with large changes in tempo, such as an orchestral performance of
Blue Danube Waltz by Johann Strauss, however, remain beyond the capa-
bilities of current automatic beat detection systems. This is not surprising,
as our previous work has shown that even humans have difficulty finding
the beat of such music [Lee et al., 2005]. As such, automatic beat detection
remains an active area of research, and in this section, we provide a brief
overview of the some of the literature in this area.

Scheirer [1998] approaches this problem by processing the audio directly.
He first splits the audio signal using filter banks into six bands, roughly
one octave in range, and then extracts amplitude envelopes. This data
is then processed using a series of comb filters that represent a spectrum
of possible tempi. These results are summed together, and the peak(s)
reveal the tempo information. This result is also used to determine phase
information for beat tracking.

Goto and Muraoka’s early work on processing audio signals to track the beatExtract beats

from audio

directly.

[1995] relies on domain-specific knowledge of bass and snare drum patterns
in popular music; they perform a frequency analysis in the relevant fre-
quencies and match the extracted drum patterns with stored templates to
determine the tempo information, which they also assume to be almost con-
stant. In more recent work [Goto, 2001], they approach the problem using
a combination of high-level music analysis and low-level signal processing
analysis; again making assumptions about the music structure based on
their genre choice of popular music, they perform frequency analysis to
detect chord changes, which they assume correspond to major temporal
events in the music timeline, from which the tempo information can then
be derived.

Rather than working directly with the sampled audio data, some researchersTransform audio

into an

intermediate

symbolic format.

have explored the idea of first transforming the signal into an intermediate
symbolic representation as a stream of inter-onset intervals. Inter-onset
intervals are the durations between the start of musical events, such as
notes, in an audio stream. Desain and Honing [1991] use this idea in their
work on studying timing in musical performances; in later work, Desain
[1992] develops the theories further towards a notion of “expectancy”, with
the aim of modelling human perception of rhythm. His computational
models enable him to, for example, predict future rhythmic events in the
audio timeline.

Other researchers have also approached the problem of automatic beat de-
tection starting with inter-onset intervals. Dixon [2001a, 2001b] first trans-
forms audio data into a symbolic representation of inter-onset intervals,
and uses a clustering algorithm to create a list of tempo candidates. These
candidates are ranked using a tempo induction algorithm, and this list is
used in the beat tracking stage to perform a multiple hypothesis search to
find the beating pattern that best fits the data.

As an alternative to Dixon’s clustering algorithm, Seppänen [2001] uses
inter-onset interval histograms to determine tempo information. This his-

2.6 Technology: Video Frame Interpolation 37

togram approach is more accommodating to changes in tempo; it also in-
spired our work on rhythmic analysis of human motion (see Section 2.3),
and is described in more detail there. Jensen and Andersen [2003] refine
this histogram approach further by using a novel weighting scheme that
scales newly accumulated intervals based on a “beat probability vector”;
this weighting prevents noise and onsets that are not aligned with the beat
from producing erroneous results.

The above algorithms are means of generating temporal metadata from
music, the medium of interest in musical applications. Technology is still
required to use this metadata in meaningful ways, such as arbitrarily alter-
ing the playback rate of the media, and this will be the topic of the next
two sections.

2.6 Technology: Video Frame Interpolation

The interactive media systems of interest to us are all based on the idea
of “malleable time”, and thus, technology to alter the play rate of video
and audio media are fundamental building blocks in these systems. In this
section, we will present an overview of research on video frame interpolation
algorithms, with audio being the focus of the following section.

Video frame interpolation has many applications outside of the area of Video frame

interpolation is

important in the

broadcast

industry.

interactive media systems, and there exists a large body of existing work
on this topic in both industry and research. Conceptually, altering the
video frame rate can be performed by increasing the duration the frames
are displayed on screen. For example, if we wanted to time-expand a video
sequence at 30 frames per second (fps) by one-third, we could increase
the time each frame is displayed on screen from 33.3 ms to 50 ms (see
Figure 2.17). Unfortunately, practical devices place limits on when video
frames can be displayed; if, for example, our device was limited to a refresh
rate of 60 Hz, the resulting time-expanded sequence would be as shown in
Figure 2.17. This temporal quantization creates a visible and disturbing
artifact known as motion judder, where formerly smooth movement in the
video sequence stutters. A more correct solution, then, is to interpolate
across video frames when respacing them in time such that the original
motion is preserved [Dane and Nguyen, 2004].

The problem described above can be said to be analogous to rate convert-
ing a sampled stream via resampling (see Appendix A). Unfortunately the
problem of video frame interpolation cannot be solved simply by resam-
pling the pixel values across time. As de Haan and Bellers [1998] describe,
current video acquisition techniques do not satisfy the requirements of the
sampling theorem, which requires the analog signal to be bandlimited be-
fore it is sampled. In a video camera, the temporal sampling occurs as part
of the capture process when light hits a camera’s CCD (charge-coupled
device); this implies the analog video stream must be optically low pass

38 2 Time Design

video refresh clock

original sequence

time-expanded
sequence (ideal)

time-expanded
sequence (actual)

Figure 2.17: Video frame rate conversion, where a video sequence is time-
expanded by one-third. Since the vertical refresh rate is limited to 60 Hz
(in this example), the resulting video sequence contains motion judder.

filtered along the temporal axis, which is not practically feasible.3

Frame rate conversion is a common problem in the film industry; motion
pictures, which are filmed at 24 fps, must be converted to the PAL (which
runs at 25 fps) or NTSC (29.97 fps) standards for distribution on, for ex-
ample, a DVD. A common solution to convert from 24 fps to 29.97 fps is
3:2 pulldown (see Figure 2.18).

A problem closely related to frame rate conversion is deinterlacing . AsVideo frame

interpolation is

closely related to

deinterlacing.

illustrated in Figure 2.18, many current video formats, including PAL and
NTSC, are interlaced, where the video is split into even and odd fields.
Interlaced video effectively allows a doubling of the video refresh rate while
keeping the data bandwidth constant by displaying the even and odd fields
of each frame in alternating order. The interlacing effect is not noticeable
on legacy CRT (cathode ray tube) based devices because the previous field
persists in the human vision due to the afterglow of the phosphors, and
it serves to reduce overall flicker since the frame rate is effectively dou-
bled. Modern displays based on LCD (liquid crystal display) and plasma
technology do not have this afterglow property, and thus video must be
deinterlaced before it is displayed on such hardware. Since the even and
odd fields are captured at different time points, simply recombining the
separate fields of the image into a single picture results in a combing effect,
especially for pictures with lots of motion (see Figure 2.19).

Restoring the other field in each video frame thus has an aspect of tem-
poral interpolation, in addition to the spatial interpolation of filling the
gap between fields. De Haan and Bellers [1998] provide an overview of
current deinterlacing techniques. The most advanced deinterlacing algo-

3 Note that we are talking about a temporal low pass filter. Optical filters are, of
course, available for spatial low pass filtering, the equivalent of blurring an image.

2.6 Technology: Video Frame Interpolation 39

D

C

C

B

D

D

C

B

A

D

C

B

B

A

D

C

B

A

Original
Film Frame

Video Field
(Odd)

Video Field
(Even)

Resulting
Video Frame

D

B

A

Figure 2.18: An illustration of 3:2 pulldown, used to convert motion film
at 24 fps to NTSC video at 29.97 fps, a ratio of approximately 4:5. The
fifth frame is generated by extending the display time of two out of the
eight fields in every group of four frames.

Even field Odd field Recombined image

+ =

Figure 2.19: Interlacing artifacts. As the even and odd fields of each
image are captured at different time instances, simply recombining them
into an image results in combing artifacts that are visible in video with lots
of motion.

rithms use motion detection and compensation across frames to assist with
the deinterlacing process [Wang et al., 1990, de Haan and Bellers, 1997,
Delogne et al., 1994], and deinterlacing using motion compensation remains
an active area of research [Gao et al., 2005].

In addition to the hurdles of designing interpolation algorithms that are ro-
bust to motion estimation error, yet another major challenge when working

40 2 Time Design

1 2 3 4

1 3

1 2 3 41 2 3 4

original sequence

time-compressed
sequence

time-expanded
sequence

Figure 2.20: Time stretching using granular synthesis. The first figure
shows an audio stream divided into granules. The second and third fig-
ures show the audio time compressed and expanded by a factor of two,
respectively, by dropping or repeating granules.

with video is the amount of data that needs to be processed. For exam-Video can require

up to 104 times

more

computational

resources than

audio.

ple, a single uncompressed frame of HD video at 1920x1280 resolution with
24 bits per RGB pixel is over 7 MB in size – equivalent to 221 MB/s of
data for video at 30 fps. Contrast this with audio, where even 32-bit au-
dio sampled at 96 kHz (CD quality audio is sampled at 44.1 kHz) has a
data rate of less than 0.4 MB/s – almost four orders of magnitude less!
One aspect of research in deinterlacing, then, also focuses on algorithmic
efficiency; Berić et al. [2005], for example, showed how to reduce compu-
tation requirements for deinterlacing algorithms based on the generalized
sampling theorem by over five times, and memory bandwidth requirements
by over three times.

The next section will introduce the audio counterpart to video frame inter-
polation: time-stretching.

2.7 Technology: Audio Time-Stretching

Unlike video, changing the play rate of audio by interpolating between theNäıvely changing

the playback rate

of audio

introduces pitch

shifts.

samples (i.e., resampling) results in undesirable pitch shifting artifacts; the
effect is similar to changing the playback rate on a vinyl record player.
Algorithms for altering the playback rate of audio while preserving the
original audio pitch, also known as time-stretching, have been studied since
Gabor’s [1946] early work on granular synthesis. Granular synthesis works
by dividing an audio stream into granules, snippets of audio that are, for
example, 100 ms in length. To time-expand the audio, certain granules are
repeated, and to time-compress the audio, granules are likewise removed
from the stream (see Figure 2.20). Cross-fading at the granule boundaries
helps to minimize artifacts caused by the resulting discontinuities; however,
the artifacts introduced by such a scheme are noticeable for all but very
small stretching factors.

2.7 Technology: Audio Time-Stretching 41

Rabiner and Schafer [1978] developed a time-domain technique called time
domain harmonic scaling (TDHS). First, the fundamental frequency of an
audio segment is estimated using autocorrelation or other means. Then,
to time-stretch the audio, the input audio is copied to an output buffer
using an overlap-add mechanism; by varying the relative rates of traver-
sal through the input and output buffers, the audio can be time-stretched.
Traversal through the input audio is constrained to keep the pitch of the
estimated fundamental frequency synchronous, and this technique is also
called pitch-synchronized overlap add (PSOLA) [Moulines and Laroche,
1995]. An alternative scheme was developed by Verhelst and Roelands
[1993], which he called waveform similarity overlap add (WSOLA). Rather
than constraining input buffer traversal based on an estimation of the fun-
damental frequency as in PSOLA, it uses an estimation of waveform sim-
ilarity. It chooses segments such that the time-stretched audio maintains
maximum similarity to the original audio at the boundaries between the
segments.

These algorithms are computationally efficient, and are often used in speech PSOLA and

WSOLA are fast,

but audio quality

is limited.

processing applications. Some digital answering machines, for example,
employ these algorithms to allow recorded messages to be played back at
faster or slower rates. Interactive media systems, however, are not limited
to just speech. Time-stretching orchestral music, for example, is signifi-
cantly more challenging than time-stretching speech. Orchestral music is
polyphonic, which makes estimation of the “fundamental frequency” diffi-
cult, if not impossible for algorithms such as PSOLA. Interactive media
systems also require high-fidelity time-stretched audio over a wide range of
stretch factors, and algorithms such as WSOLA typically only work well
for a limited range of stretch factors, usually within ±20% of the original
speed. Moreover, while degradations in quality for time-stretched speech
are normally tolerated as long as the resulting audio is still intelligible, even
subtle degradations in quality for time-stretched music are less tolerable due
to its impact on an otherwise enjoyable experience.

This has motivated continuing research on more sophisticated algorithms
for time-stretching audio. Some algorithms, such as Prosoniq’s MPEX The phase

vocoder

introduces

reverberation and

transient smearing

artifacts.

[Prosoniq, 2006] and zplane.development’s élastique [zplane.development,
2006], are proprietary and little is known about how they work. A frequency
domain algorithm that has received much attention in recent years is the
phase vocoder, originally proposed by Flanagan and Golden [1966]. While
it also uses an overlap-add mechanism to time-stretch the audio, it pro-
cesses the audio to preserve phase coherence of the signal across segments
(henceforth referred to as sample windows). As the processing is performed
in the frequency domain, time-stretching with the phase vocoder requires
orders of magnitude more computation power than the time domain algo-
rithms described above. The phase vocoder also introduces artifacts of its
own; while it maintains phase coherence of individual frequency bins across
sample windows, it does not guarantee phase coherence within sample win-
dows [Laroche and Dolson, 1999], resulting in reverberation-like artifacts.
Moreover, as the algorithm is based on Fourier theory, it works best with
sinusoidal audio signals, and not as well with audio that has many tran-

42 2 Time Design

sients, such as drums. The artifacts that result from processing transients
using a phase vocoder is known as transient smearing.

Despite these shortcomings, the phase vocoder is, overall, able to produceThe phase

vocoder is actively

being developed

in both research

and industry.

higher quality results over a wider range of stretch factors than the time
domain algorithms discussed above. The algorithm also lends itself to real-
time implementations, making it attractive for interactive media systems.
While new schemes for time-stretching are also being developed, such as
the DIRAC algorithm based on wavelets [Bernsee, 2006], research aimed
at improving the phase vocoder to address the reverberation and tran-
sient smearing artifacts continues. Some of this research has resulted in
the development of commercial time-stretching products, such as Pitch ’n
Time [Serato, 2007], based on work by Hoek [2001], and the Amazing Slow
Downer [Roni Music, 2007], based on work by Röbel [2003]. This work
can be roughly classified into two categories: improving phase coherence
and preserving transients. In the remainder of this section, we will focus on
work that addresses the former, including our work on PhaVoRIT, a Phase
Vocoder for Real-time Interactive Time-stretching [Karrer et al., 2006];
methods for detecting and preserving transients are described in [Hammer,
2001, Masri and Bateman, 1996, Bonada, 2000, Röbel, 2003], and Karrer
[2005] provides a comprehensive overview of these techniques in his thesis.
We will first give an overview of the phase vocoder algorithm, and then
continue with techniques to improve phase coherence of the time-stretched
signal.

2.7.1 Basic Phase Vocoder

The basic phase vocoder algorithm divides audio data into a series of over-The phase

vocoder uses

overlap-add to

alter the audio

length.

lapping windows of N samples. Audio duration is expanded and compressed
by varying the amount these windows overlap between the input and output
(see Figure 2.21).

To maintain coherency between the re-spaced windows, the phase of the
signal’s short-time Fourier transform (STFT, see Appendix B) must be ad-
justed. Let us denote tui and tuo to be the times of the uth sample windowThe signal phase

must be realigned

after respacing.

of the input and output, respectively, and Ωk = 2πk
N

to be the centre fre-
quency of the kth frequency bin of the STFT of a sample window. Then
the phase of the output signal, ∠Y (tuo ,Ωk), can be calculated using the
following formulae:

∠Y (tuo ,Ωk) = ∠Y (tu−1
o ,Ωk) + Roω̂k(t

u
i) (2.5)

ω̂k(t
u
i) = Ωk +

1

Ri

∆pΦ
u
k (2.6)

∆Φu
k = ∠X(tui ,Ωk) − ∠X(tu−1

i ,Ωk) − RiΩk (2.7)

∆Φu
k is the heterodyned phase difference between two consecutive input

2.7 Technology: Audio Time-Stretching 43

in
p
u
t

87
.5

%
 o

v
er

la
p
 (

h
al

f
sp

ee
d
)

50
%

 o
v
er

la
p
 (

d
ou

b
le

 s
p
ee

d
)

in
p
u
t,
 r

es
p
ac

ed
 i
n
to

ou
tp

u
t

b
u
ff
er

ou
tp

u
t

w
it
h

co
rr

ec
te

d
 p

h
as

e

R
o

R
i

u
 =

 0

u
 =

 1

u
 =

 2

N

F
ig

u
re

2
.2

1
:

P
h
as

e
v
o
co

d
er

al
go

ri
th

m
.

T
h
e

le
ft

an
d

ri
gh

t
fi
gu

re
s

sh
ow

th
e

p
la

y
b
ac

k
sp

ee
d
,

R
i

R
o
,
d
ou

b
le

d
an

d
h
al

v
ed

,
re

sp
ec

ti
v
el

y.
R

es
p
ac

in
g

th
e

b
u
ff
er

s
re

su
lt
s

in
p
h
as

e
m

is
m

at
ch

es
,
w

h
ic

h
ar

e
co

rr
ec

te
d

u
si

n
g

th
e

p
h
as

e
es

ti
m

at
io

n
ca

lc
u
la

ti
on

.

44 2 Time Design

sample windows; its principal determination between −π and π, ∆pΦ
u
k , is

then used to estimate the instantaneous frequency ω̂k(t
u
i) of a sinusoid in

the kth frequency bin. This frequency value is finally used to calculate
the phase, ∠Y (tuo ,Ωk). A more detailed explanation of the phase vocoder
algorithm is given in [Portnoff, 1981, Laroche and Dolson, 1999].

While the phase vocoder guarantees phase coherence of individual frequency
bins across sample windows, errors in the above phase estimation calcula-
tion result in a loss of phase coherence between the different frequency bins
within a single sample window. This leads to a reverberation-like effect in
the time-stretched audio.

2.7.2 Scaled Phase-Locked Phase Vocoder

The reverberation artifacts exhibited by the basic phase vocoder algorithm
are caused by applying the same computations for phase estimation to
each frequency bin of the STFT, irrespective of whether or not a sinusoid
from the original audio signal exists in that bin. To address this prob-
lem, Puckette [1995] developed a technique called the phase-locked vocoder,
which attempts to preserve phase coherence within sample windows. In this
scheme, the estimated phase for frequency bins with low amplitude are ad-
justed towards neighbouring bins with higher amplitude. The assumption
is that frequency bins with higher amplitudes are the main lobes of a sig-
nal’s fundamental frequency and corresponding harmonics (often referred
to as partials), and in this way, a partial’s side lobes are “phase-locked” to
their main lobe.

Laroche and Dolson [1999] improved on Puckette’s technique, and devel-
oped the scaled phase-locked phase vocoder. Their algorithm works roughly
as follows:

1. Find the frequency bins that contain amplitude peaks in the STFT,
which correspond to sinusoids in the original audio.

2. For each of these peak frequency bins, find the corresponding peak in
the previous sample window.

3. Estimate the phase (see below).

4. For the remaining frequency bins, “lock” their phase to the phase
of the nearest peak frequency bin using the relation ∠Y (tuo ,Ωk) =
∠Y (tuo ,Ωp) + ∠X(tui ,Ωk)−∠X(tui ,Ωp). Ωp is the centre frequency of
the peak frequency bin closest to Ωk.

Laroche and Dolson use a simple local maxima search for the peak picking
algorithm in the first step: a peak is assumed to exist if the STFT amplitude
for a frequency bin is larger than its two neighbouring bins on either side.

2.7 Technology: Audio Time-Stretching 45

Real world signals also consist of time-varying sinusoids, which causes peaks Scaled

phase-locking

imposes added

constraints to

reduce

reverberation

artifacts.

in the frequency spectrum to migrate to different bins across STFT sam-
ple windows. This phenomenon, which the basic phase vocoder does not
take into account, is yet another source of the reverberation artifacts in
the time-stretched audio. Laroche and Dolson, realizing this, placed ad-
ditional constraints on the phase estimation in their scaled phase-locked
phase vocoder to take into account sinusoids that migrate from frequency
bin k0 to k1 across successive sample windows. They modified the phase
estimation calculations (2.5)–(2.7) so that the proper input phase is used:

∠Y (tuo ,Ωk1
) = ∠Y (tu−1

o ,Ωk0
) + Roω̂k1

(tui) (2.8)

ω̂k1
(tui) = Ωk1

+
1

Ri

∆pΦ
u
k1

(2.9)

∆Φu
k1

= ∠X(tui ,Ωk1
) − ∠X(tu−1

i ,Ωk0
) − RiΩk1

(2.10)

In their algorithm, peaks at frequency bin k1 are always locked to the
nearest frequency bin k0 in the preceding sample window.

The scaled phase-locked phase vocoder produces significantly less reverber-
ation artifacts compared to the basic phase vocoder; closer examination
of the resulting audio still yields considerable audio artifacts, however. In
particular, the bass sounds less full, and unwanted musical overtones exist,
when compared to the original signal – artifacts similar to those observed
in audio poorly encoded using the popular MPEG Audio Layer-3 (MP3)
compression algorithm.

2.7.3 The PhaVoRIT Algorithm

The shallow bass and musical overtone artifacts in the scaled phase locked
phase vocoder can be attributed to two factors:

• The constant resolution peak-picking algorithm imposes the same cri-
teria uniformly when searching for peaks over the entire frequency
spectrum.

• A peak at channel k1 is always assumed to be a continuation of a
sinusoid in the preceding sample window, which is chosen to be the
peak in the frequency bin k0 closest to k1.

PhaVoRIT addresses these issues and improves upon Laroche and Dolson’s
scaled phase-locked phase vocoder in three ways: multiresolution peak-
picking, sinusoidal trajectory heuristics, and silent passage phase reset.
This work was completed primarily by Karrer [2005] under the guidance
of the author, building off earlier work developed for You’re the Conductor
[Lee et al., 2004]. A summary of the work also appears in [Karrer et al.,
2006].

46 2 Time Design

0 20 40 60 80 100 120

|X
(t

,
Ω

k
)|

A B C D

frequency bin number (k)

172 Hz 345 Hz 689 Hz

Figure 2.22: Multiresolution peak picking algorithm. An amplitude plot
of the lowest 128 frequency bins is shown, divided into regions that become
exponentially larger for higher frequencies. The criteria for selecting peaks
become more strict for higher frequencies.

Multiresolution Peak-Picking (MRPP)

As mentioned above, Laroche and Dolson’s constant resolution peak-picking
algorithm applies the search criteria to the frequency spectrum on a lin-
ear scale. Previous work has shown, however, that the human ear inter-
prets frequencies on a logarithmic scale [Vary et al., 1998]. Moreover, most
naturally occurring audio signals, including music and speech, have a non-
uniform distribution of partials, with a heavier concentration of partials in
the lower frequencies.

Garas and Sommen [1998] previously proposed an extension to the phaseMRPP takes into

account

non-linearities of

the human ear.

vocoder that also attempts to compensate for the non-uniform character-
istics of the human ear; the validity of this particular technique has been
questioned, however [Bernsee, 2005]. Instead of proposing a wholly new ap-
proach to phase vocoding, we refine the peak-picking algorithm to consider
these non-linearities. We divide the spectrum into regions on a logarithmic
scale, and become more selective in choosing which bins contain a peak
for higher frequencies (see Figure 2.22). For an STFT window size of 4096
samples, we assume that the lowest 16 frequency bins always contain a peak
corresponding to a partial. For the next 16 bins, a bin is considered to con-
tain a peak if its amplitude is larger than both of its neighbouring bins. For
the next 32 bins, the amplitude must be larger than its two neighbouring
bins, and so on.

2.7 Technology: Audio Time-Stretching 47

Ω

t

new note onset

Figure 2.23: Incorrectly phase-locked peaks that occur with Laroche and
Dolson’s scaled phase-locked phase vocoder. The peak corresponding to a
new note onset is incorrectly phase-locked to the nearest, unrelated peak
in the preceding sample window.

Sinusoidal Trajectory Heuristics (STH)

Laroche and Dolson’s scaled phase-locking scheme has the advantage that
it preserves phase coherence for sinusoids that move from one frequency
bin to another across sample windows. However, it also potentially phase-
locks unrelated sinusoids; for example, a note onset will introduce new
partials to a sample window, and these will be incorrectly phase-locked to
another note’s phases, creating high frequency “warbling” artifacts in the
time-stretched audio (see Figure 2.23).

To minimize these artifacts, we introduce heuristics in the peak phase- STH prevents

unrelated peaks

from being

phase-locked.

locking across sample windows. Again assuming a logarithmic distribution,
phase-locking is performed only if the distance between the peaks (i.e.,
|k1 − k0|) is small at lower frequencies, with the constraint relaxed at higher
frequencies (see Figure 2.24). The division is similar to the one used for
multiresolution peak-picking, where peaks in the first 16 bins are phase-
locked only if they are 1 bin apart; for the next 16, 2 bins, and so forth (for
an STFT window size of 4096 samples).

Silent Passage Phase Reset (SPPR)

Laroche and Dolson [1997] showed that the phase unwrapping errors that SPPR resets the

phase to reduce

accumulation

errors.

accumulate in the phase vocoder also contribute to the reverberation arti-
facts of the time-stretched audio. Silent passage phase reset aims to allevi-
ate this problem by resetting the phase of the output when audio becomes
mostly silent. More specifically, if a sample window’s energy drops below
-21 dB, the phases of the next window with energy above -19 dB will be

48 2 Time Design

Ω

t

new note onset

new trajectory started

allowed trajectory jump distance

Figure 2.24: Corrected phase-locking using sinusoidal trajectory heuris-
tics. Unlike Figure 2.23, the peak from the new note onset is not phase-
locked to a peak in the preceding sample window.

reset. While this operation, in theory, creates a discontinuity in the audio
signal, this “click” will be scarcely audible due to the low energy content;
moreover, it will be masked by the subsequent rise in signal energy.

2.7.4 Discussion

The design and implementation of PhaVoRIT is unique is several regards,
which make it particularly relevant to this thesis:

• The audio quality is comparable to modern time-stretchers developed
in both research and in industry. Karrer [2005] presents the results
of an extensive user study comparing PhaVoRIT to three commer-
cial time-stretchers: Prosoniq MPEX-2, Serato Pitch ’n Time, and
Traktor DJ Studio 2 [Native Instruments, 2007]. A variety of audio
material was used, and PhaVoRIT scored second-best overall.

• We have an explicit understanding of the inner workings of Pha-
VoRIT, as it was both designed and implemented by our research
group. This in-depth knowledge is a prerequisite for some of the
work that will be discussed later in this thesis; indeed, if we had cho-
sen a commercial time-stretcher, much of this work would have been
made much more difficult, if not impossible.

• PhaVoRIT is a real-time algorithm that is suitable for use in an in-
teractive system. Certain time-stretchers, such as MPEX , perform
analysis of the entire audio file before time-stretching, making it im-

2.8 Closing Remarks 49

possible to use for arbitrary audio data that are streamed in real
time.

• The processing load is constant with respect to the output, regard-
less of the requested play rate. This property again makes PhaVoRIT
especially suitable for interactive media systems, which demand real-
time performance. In contrast, for example, the processing load for
AUTimePitch, the time-stretcher in Core Audio [Apple, 2007a], in-
creases with the play rate.

• PhaVoRIT supports arbitrary stretch factors. While the audio arti-
facts do increase with the stretch factor, there is still no practical limit
on how fast or slow audio can be time-stretched using PhaVoRIT. This
property makes PhaVoRIT suitable for use in systems such as DiMaß
(see Chapter 6), which require support for a large range of stretch
factors for interactive audio scrubbing. In contrast, all commercially
available time-stretchers with comparable audio quality that we are
aware of support only a limited range of stretch factors. DIRAC, for
example, is limited to stretch factors between only one-half and twice
normal speed; élastique allows a wider range of stretch factors, but is
still limited to one-tenth and ten times normal speed. As the inner
works of these time-stretchers are unknown, it is not clear whether
this limitation is inherent in the algorithms they employ, a side-effect
of their implementation, or simply an artificial limit set in place for
other reasons.

We will revisit PhaVoRIT in the next chapter, when we discuss process-
ing latency and how it affects timing across the medium and technology
domains.

2.8 Closing Remarks

In this chapter, we introduced a time-design space for examining and un-
derstanding the issues with designing interactive media systems with time-
based interaction. This space divides related research into three domains:
user, medium, and technology. This time-design space is a refinement of a
widely accepted traditional classification scheme used in human-computer
interaction, and is inspired by existing work on conceptual frameworks for
interaction design, as well as existing work studying time in computer music
and the media arts. Unlike existing spaces, our goal is to facilitate design
and implementation of time-based interactions, rather than only studying
or analyzing them. Our time-design space also emphasizes the fact that
while users are physically interacting with the technology, they are concep-
tually interacting with the medium. And while there exists a large body of
work and tools for supporting user-technology interactions, designing and
implementing the user-medium interactions remains largely unsupported,
especially for time-based interactions.

50 2 Time Design

We then presented brief overviews of a number of research topics that fallPhaVoRIT is the

most complex

with respect to

time.

within each of these specific domains. Of the topics discussed in this chap-
ter, audio time-stretching is the most complex with respect to time. While
other topics such as video frame interpolation are also complex in other
ways, the effects of this processing on the temporal axis are more analogous
to resampling than time-stretching. We will revisit audio time-stretching
again in the next chapter.

For the other topics, the goal here was to provide an overview, with exam-
ples, of the quantity and breadth of work that falls into each of the three
domains in our time-design space for interactive media systems. Empha-
sis has been placed in areas where we have made contributions; a rigorous
treatment of any one of these topics is, however, beyond the scope of this
work. Indeed, entire theses have been devoted to most of these topics in-
dividually, and it is our discussion in subsequent chapters, which focuses
on temporal interaction and mappings across these domains, that is the
primary contribution of this thesis.

51

Chapter 3

The Problem of Mappings

“You may delay, but time will not.”

—Benjamin Franklin

In the last chapter, we introduced a time-design space consisting of three
domains: user, medium, and technology. We also provided a brief overview
of the types of time-related problems that are specific to each of these three
domains. In this chapter, we will examine in more detail the problems that
occur when these diverse areas are incorporated into a single system; such
integration requires time to be mapped across these domains.

Using once again the example of an interactive conducting system to con- An interactive

conducting system

has multiple

temporal

interactions.

textualize some of these interactions, we can say that users express their
own sense of time onto the music using conducting gestures; the music
medium, as stored on disk, already has its own timeline from when it was
recorded, and this must be reconciled with the user input as it is rendered
using a computer (see Figure 3.1).

We begin with a discussion of beat timing in conducting gestures, where
we analyzed how conductors and non-conductors perceive their sense of the
beat relative to the musical beat [Lee et al., 2005]. A related topic is rhyth-
mic assistance, where we explored possibilities in offering novice musicians
rhythmic support when improvising to music on the fly. We also discuss
the challenges of mapping a desired timeline to prerecorded media, and the
constraints imposed by the nature of the processing. Finally, in the last sec-
tion, we describe in detail our work on synchronization algorithms, which
are key to addressing the previously mentioned challenges in an interactive
media system.

52 3 The Problem of Mappings

♬

User Medium Technology

Figure 3.1: Temporal interactions in an interactive conducting system.
The user imposes her sense of time on the music, the medium. The actual
time scaling is realized by in the technology by manipulating the audio
waveform.

3.1 Beat Timing in Conducting Gestures

Gesture-based interaction techniques are increasingly popular in human
computer interaction research [Myers, 1998]. Gesture-based interactionsGesture-based

interaction is

increasingly

popular in HCI.

have been shown in popular movies such as Minority Report [Clarke, 2002],
and have also begun to appear in mainstream commercial software such
as the role-playing game Black & White [Lionhead Studios, 2001], and the
motion graphics application Motion [Apple, 2007d]. Gesture-based inter-
action techniques are especially promising for multimedia: conducting and
dance, for example, predate computers for gestural interaction with music.

While qualitatively evaluating our previous conducting systems for pub-
lic spaces [Borchers et al., 2004, Lee et al., 2004], we observed a variety
of usability breakdowns, which we believe to be a result of differing con-
ceptual models. For example, we observed some users conducting to the
musical rhythm (musical pattern formed by the dominant melody/percus-
sion) rather than to the beats (consistently spaced intervals to count time);
since these systems change the tempo in response to beats, conducting to
the rhythm results in erratic tempo changes, confusing the user. We also
frequently observed the “spiral of death”, where users, in response to a
slowdown of musical tempo, slowed down their conducting, which caused
a further slowdown of the music tempo, and so on. We hypothesized this
phenomenon to be a result of the user conducting to or behind the beat (as
if playing an instrument along with the orchestra), rather than ahead of it
as conductors are taught to do. Conductors, on the other hand, frequently
complained that their control of the orchestra was not as “tight” as with a
real orchestra.

These types of usability breakdowns motivated us to study more carefully
the temporal relationship between users’ conducting gestures and the beat
of a musical piece; for example, while conductors are taught to conduct
ahead of the beat, do non-conductors naturally conduct behind it? Does
musical ability, such as expertise playing an instrument, affect this temporal

3.1 Beat Timing in Conducting Gestures 53

relationship between gesture and music beats? We will show in Chapter 6
how the results from this study allowed us to improve the usability of
interactive conducting systems.

Related Work

While there is a large body of research on conducting systems, most of
these systems are designed for interpreting movements of either professional
conductors [Ilmonen and Takala, 1999, Lee et al., 1992, Morita et al., 1991,
Murphy et al., 2003] or non-conductors [Borchers, 1997, Borchers et al.,
2004, Lee et al., 2004], but not both.

Harrer [1975] performed a series of studies with the famous German conduc- Harrer studied

Karajan and his

student.

tor Herbert von Karajan in the 1970s, where he measured the reaction of
Karajan and one of his students to music. He measured and recorded their
electrocardiogram (ECG), breathing, and galvanic skin response (GSR).
The discussion of his findings is brief: both Karajan and his student pro-
duced similar readings that could be traced to the structure of the music.
There is no analysis beyond these readings, nor did Harrer collect readings
from, or compare them with, any other people.

Morita et al. [1991] created a system that follows a human conductor us-
ing a charge-coupled device (CCD) camera and sensor glove. They mea-
sured a conductor’s movements, qualitatively analyzed the position, veloc-
ity, and acceleration of his movements, and mapped these parameters to
music tempo and dynamics. They did not analyze movements from non-
conductors, and their analysis was limited to spatial characteristics of the
gestures.

Usa and Mochida [1998] discussed various aspects of conducting, including Japanese

conductors expect

to lead the beat

by up to 100 ms.

beat timing, in the presentation of their Multi-modal Conducting Simulator .
According to their findings, how much a conductor leads the beat with
their gestures depends on their expertise and cultural background. They
experimentally determined that Japanese conductors feel “satisfied” leading
the beat by 100 ms for music with a tempo of 50 bpm (beats per minute)
and 0 ms for a tempo of 110 bpm. They did not elaborate on these results,
nor did they include non-conductors in their analysis.

Marrin Nakra [2000] compared data from student and professional conduc-
tors measured using her Conductor’s Jacket . This data includes measure-
ments of muscle tension and respiration. She was primarily interested in
mapping expressive features to sections in the music score, rather than
obtaining measurements on how movements map to rhythm and beats.

Research on beat induction aims to computationally model the cognitive
task of tapping to the beat while listening to music. While there is a
large body of current research in computer music and music psychology on
this topic [Desain and Honing, 1999, Palmer and Krumhansl, 1990], they

54 3 The Problem of Mappings

do not examine conducting specifically, where the aim is to guide the beat
in addition to finding it. Moreover, for this study, we were more interested
in where people place the beat than how they find it.

This study was thus unique in the following ways:

• It compared professionally trained conductors to non-conductors.

• It analyzed the temporal characteristics of conducting gestures (place-
ment and timing of the beats) as opposed to their spatial character-
istics (shape, velocity, acceleration).

• It provided quantitative results in addition to a qualitative analysis.

• It examined users’ conceptual models of conducting (how they men-
tally map gestures to music tempo).

3.1.1 Experiment Scope and Objectives

Our study had the following objectives:

1. determine a set of parameters distilled from conducting gestures that
can be used to distinguish between conductors and non-conductors,
and can possibly be used to determine to what degree the user is a
trained conductor

2. quantitatively measure where conductors and non-conductors place
their perception of the beat relative to the actual beat of the music

3. qualitatively understand what factor(s) effect where users place their
beats for a given piece (e.g., familiarity with the music piece, musical
ability, etc.)

4. better understand both conductors’ and non-conductors’ conceptual
models of conducting

Based on preliminary interviews, we determined that conducting gesturesConducting

gestures vary

widely amongst

conductors.

vary widely from conductor to conductor. We observed a similar situation
with non-conductors using our systems. Therefore, a study of the spatial
properties of conducting gestures (e.g., shape, velocity, acceleration) would
not have helped us meet our objectives. Moreover, we received one comment
from a conductor who claimed that professional conductors “probably have
very consistent timing of the beat points”. Thus, we chose to examine
the temporal properties of users’ gestures, such as how the timing of the
beat points is related to the music beats. The problem of extracting beat
information is outside the scope of this discussion; an overview of work in
this area is provided in Section 2.2. For this experiment, we instructed our

3.1 Beat Timing in Conducting Gestures 55

users to conduct in simple up-down motions; their beats are marked by the
lower turning point of the baton for these gestures.

It is important to emphasize that our intention was not to judge how well a
person can conduct – this type of evaluation is well beyond our capabilities
as designers of an interactive conducting system; moreover, it is question-
able whether or not such an evaluation can be performed systematically
given the widely differing conducting styles amongst conductors. What we
hoped to achieve is a measurement of how much conducting training a per-
son has undergone. These results will ultimately be used to create a system
that supports multiple levels of ability (see Chapter 6).

A system that is able to adapt to a user’s conducting ability would also We seek to

establish a

conceptual model

of conducting.

require a good understanding of their conceptual model of conducting, such
as whether users conduct ahead or behind the music beat, or whether they
conduct to the rhythm or to the beat. Also, it would be interesting to
see if these conceptual models can be influenced by introducing a simple
metaphor that could, for example, be given as part of instructions to a
music exhibit in a museum.

To meet our objectives, we observed and collected data on conductors and We used a passive

system to conduct

our experiments.

non-conductors in a controlled environment; thus, we decided to analyze
conducting behaviour using a fixed recording that does not change in tempo
or volume in response to user input. By using this “passive” system, we
ensured our results would not be adversely influenced by our previously
observed usability breakdowns. We assume that our findings apply to an
“active” system where the tempo and volume change in response to user
input, and plan to verify this assumption in future work.

3.1.2 Hypotheses

We begin by defining some of the gesture parameters that we used to mea-
sure conducting ability. Figure 3.2 shows a sample plot of a user’s vertical
baton position over time. As the user was instructed to conduct in a simple
up-down motion, the lower inflection point marks his beats (tu). The actual
beats of the music are also shown on this plot (ta).

• Beat offset: The time difference between where a user places his/her
beat and the actual beat: ∆t = tu− ta. A negative value occurs when
the user conducts ahead of the beat; a positive value occurs when
the user conducts behind the beat. The mean beat offset, ∆t, is the
average of the user’s beat offset over the piece.

• Beat variance: A measure of how much a person’s beat offset varies
over the piece. The beat variance, σ, is the standard deviation of ∆t
over the piece.

• Beat error rate: A measure of how often a user makes a beat error
with his/her gestures; a beat error occurs when the user skips a beat

56 3 The Problem of Mappings

120

100

80

60

45.2 45.4 45.6 45.8 46.2

40
t
u

t
a

Time [s]

V
er

ti
ca

l
B

at
on

 P
os

it
io

n actual beat

beat error

46.0

user beat

Figure 3.2: Sample y vs. t plot of a non-conductor showing where he has
placed his beats (tu) relative to the actual beats (ta). A beat error occurs
at around time t = 45.5 seconds.

or adds a beat that is not in the music (see Figure 3.2). The mean
beat error rate, ǫ, has units of errors/beat.

Based on previous qualitative evaluations of our conducting systems, we
predicted the following:

H1. The ictus (lower turning point) of a conductor’s gestures to a fixed
recording occurs significantly ahead of a non-conductor (∆tc < ∆tn).

H2. The ictus of a conductor’s gestures to a fixed recording varies signifi-
cantly less than with a non-conductor (σc < σn).

H3. A conductor makes significantly less errors when marking the beats
with his/her gestures to a fixed recording than a non-conductor (ǫc <
ǫn).

H4. The ictus of a conductor’s gestures to a fixed recording occurs consis-
tently ahead of the music beat (∆tc < 0).

H5. The ictus of a non-conductor’s gestures to a fixed recording occurs
consistently behind the music beat (∆tn > 0).

H6. A non-conductor’s musical experience1 (expertise with one or more
musical instruments) is correlated to their ∆t, σ and ǫ values. A
person with more musical experience will have ∆t, σ, and ǫ values
closer to a conductor’s.

H7. A non-conductor’s conducting performance (∆t, σ, and ǫ values) can
be improved through the use of a simple metaphor, such as “conduct
as if reeling in a fish, where you pull the beat (fish) with each gesture”.

3.1 Beat Timing in Conducting Gestures 57

Figure 3.3: Devices used in our conducting experiment: 14” iBook laptop
computer and a Buchla Lightning II baton and tracker.

Testing H1, H2, and H3 helped us meet objectives 1 and 2 (determine level
of conducting training, obtain quantitative measurements on gesture beat
timing). Testing H6 helped us meet objective 3 (understand what factor(s)
effect gesture beat timing). Data from H3, H4, H5 and H7 helped us infer
users’ various conceptual models of conducting and thus meet objective 4
(better understand users’ conceptual models of conducting).

3.1.3 Experiment Setup

Our user study was performed with the aid of a Buchla Lightning II system GestureRecorder

records baton

data synchronized

to a movie.

[Buchla, 1995]. The Lightning II consists of a baton that emits an infrared
signal; the emitted signal is tracked by a controller that converts it to MIDI
(Musical Instrument Digital Interface) data. We wrote GestureRecorder, a
custom software that plays back a QuickTime movie and records the current
baton position to a file together with the current position in the movie. For
the study, the software was run on a 14” iBook laptop computer with a
933 MHz G4 CPU, a 1024x768 resolution display, and 640 MB RAM (see
Figure 3.3).

Since we sought to obtain quantitative measurements using this setup, we System latency is

between 90 and

100 ms.

had to account for system latency; this system latency includes the output
latency (time it takes for the system to render video to the display or
audio to the speakers) and the input latency (time it takes for the system
to receive input from the baton). We measured this system latency by

1 We would actually like to test correlation with musical ability. Unfortunately, there
are no clear standards for measuring musical ability. Metrics have been proposed in the
past [Boyle and Radocy, 1987, Lehman, 1968, Wing, 1968], with some more recent work
done by Edwards et al. [2000]. For simplicity, we will use one’s expertise with musical
instruments as an approximate measure of musical ability and qualify this as musical
experience.

58 3 The Problem of Mappings

simultaneously filming, using a Redlake MotionXtra HG-100K high-speed
camera at 500 frames per second, the physical baton and a display showing
its currently tracked position. We determined the latency to be between
90 and 100 ms and subsequently offset data collected from GestureRecorder
by 95 ms prior to analysis.

We selected an audio and video recording of Radetzky March by Johann
Strauss, performed by the Vienna Philharmonic and approximately 3 min-
utes long, as the musical piece for our user studies. We selected this piece
because its mostly constant tempo and percussive nature make its beats
easy to track. We had previously used this piece in one of our conduct-
ing systems, and had observed users interacting with it. Thus, we expected
any differences we would observe in beat placement between conductors and
non-conductors to establish a minimal difference between the two groups;
non-conductors would likely have even more difficulties placing their beat
compared to conductors for more difficult pieces. The tempo of this record-
ing varies between 75 and 125 bpm (beats per minute), averaging around
100 bpm.

The “actual” beats of the piece were required for comparison. These beats
were manually marked using Beat Tapper , a software waveform viewer that
allows a user to mark beats in an audio file as it is playing, and fine-align
them manually (see Section 6.2.4).

Participants

23 volunteers (6 conductors and 17 non-conductors) were recruited for this
user study. Conductors were between 36 and 66 years of age, and had
between 10 and 45 years of professional conducting experience. The 17
non-conductors were between 19 and 53 years of age with varying musical
expertise, but no conducting experience. Participants were compensated
with some chocolate for their time.

Procedure

We divided our studies into two stages: in the first stage we compared
conductors and non-conductors, and in the second stage we compared non-
conductors before and after introducing a “fishing rod” metaphor.

In the first stage of our user studies, all 6 conductors and 11 of the 17 non-Users were asked

to conduct in

up-down gestures.

conductors were first shown a 30-second clip of Radetzky March audio and
video recording to ensure they had some idea of the piece. They were then
asked to use the Buchla baton to “conduct” this recording using up-down
movements; they were aware, however, that their movements did not affect
the movie speed or volume. Each user was asked to conduct the entire
3 minute piece twice, and then requested to fill out a short questionnaire
regarding their level of musical or conducting expertise.

3.1 Beat Timing in Conducting Gestures 59

The remaining 6 non-conductors participated in the second stage of our We explored

whether a “fishing

rod”metaphor

influences

conducting.

studies, and were also asked to conduct the recording twice. The first time
through the piece, they were given the same instructions as in the first stage
(“use up-down motions”); however, for the second time, they were instructed
to use the baton like a fishing rod, imagining that they were pulling a fish
out with each beat.2 This “fishing rod” test was always done on the second
trial to prevent these instructions from influencing the “regular” test; we
believed that this influence would be greater than any learning effect from
always doing the fishing rod test in the second trial.

3.1.4 Results

We implemented a third software utility, BeatVisualizer, to simultaneously BeatVisualizer

shows the movie

together with the

baton data for

analysis.

view the QuickTime movie, music beats, baton position, and graph of ver-
tical baton path (see Figure 3.4). Using this tool, we were able to visually
confirm that our users marked the beats with the lower turning points of
their gestures, and not the upper turning points (there was one exception,
which we will discuss in more detail later). Thus, the lower inflection point
of a y vs. t plot marks the beats (Figure 3.5). However, the gestures of
non-conductors were sometimes erratic, especially in sections of the piece
where the beat was more difficult to track (for example, where there was no
percussion). We also found that non-conductors’ movements often followed
the rhythm of the piece rather than the beat, and that the size of their
gestures naturally followed the volume of the music. Thus, we chose to
manually mark the beats of the conducting gestures rather than process-
ing the data automatically. To reduce the amount of data to process, we
selected a part of the music 40 seconds into the piece and 40 seconds long
(beats 55–121 inclusively).

Conductors vs. Non-conductors

We used Student’s t-test (two-sample, 1-tailed, assuming unequal variances)
to compare conductors and non-conductors. Figure 3.6 shows a plot of the
mean beat offset (∆t), variance (σ), and error rate (ǫ) for the two groups.

The t-test found that conductors conduct on average significantly more Conductors

conduct more

ahead of the beat

than

non-conductors.

ahead of the beat than non-conductors (t = −6.34, df = 13, p < 0.001).
With a 95% confidence interval, conductors conduct on average 152±17 ms
(corresponding to about 1

4 of a beat at 100 bpm) ahead of the beat while
non-conductors conduct on average 52 ± 26 ms (1

12 of a beat) ahead of the
beat.

2 A professional conductor might argue that “fishing” is not the most appropriate
metaphor for conducting, since it places more emphasis on the upwards movement, when
in fact a strong downwards movement is desired in professional conducting. However,
our hypothesis was that by asking users to conceptually think about “pulling” the music
beat, they would naturally lead it rather than follow it. Since proper conducting technique
cannot be taught in one or two short instructions, we did not make it a priority.

60 3 The Problem of Mappings

baton trajectory
(x(t), y(t))

baton trajectory
y(t)

music
beats

Figure 3.4: Screenshot of the BeatVisualizer program, which we wrote for
visualizing users’ baton gestures and marking their beats. The data shown
is from a conductor.

The t-test found that conductors conduct, on average, significantly moreConductors

conduct more

consistently than

non-conductors.

consistently to their beat than non-conductors (t = −2.38, df = 9, p <
0.02). With a 95% confidence interval, the average beat variance is 47 ± 4
ms (1

12 of a beat) for conductors and 72 ± 21 ms (1
8 of a beat) for non-

conductors.

Due to the way our mean beat error rate data was distributed within the
user groups, we did not perform a t-test to compare the two groups and con-
clude that the error rate is not a good metric for distinguishing conductors
and non-conductors.

Effect of Conducting Experience

We found no obvious correlation between a conductor’s experience with
conducting (number of years) and their mean beat offset, variance, and
error rate.

3.1 Beat Timing in Conducting Gestures 61

60

80

100

120

10

30

50

70

46 47 48 49
Time [s]

V
er

ti
ca

l
B

at
on

 P
os

it
io

n

Conductor

Non-Conductor

41 42 43 44

Figure 3.5: Sample y vs. t plot of a conductor and a non-conductor.
Conductors conduct more consistently than non-conductors. The vertical
lines mark the actual beats of the music.

Effect of Musical Instrument Experience

We used the results of the questionnaire users completed after participating We found no

relationship

between musical

experience and

conducting.

in our study to rank our users by music expertise. The criteria we used
in our ranking were: number of musical instruments, experience with each
instrument in years, and self-rated level of ability. We then used this infor-
mation to calculate a “musical ranking” from 0 to 1 for each non-conductor,
with 0 being no musical expertise and 1 being a high level of musical ex-
pertise.

Plots of this ranking against the mean beat offset, variance, and error rate
over this musical ranking are shown in Figure 3.7. Based on these graphs,
we can see that there is no obvious correlation between musical experience
and these three parameters.

62 3 The Problem of Mappings

-200

-150

-100

-50

0

50

User Group

conductors non-conductors

M
ea

n
 B

ea
t

O
ff
se

t
[m

s]

0

20

40

60

80

100

120

140

User Group

B
ea

t
V

ar
ia

n
ce

 [
m

s]

conductors non-conductors

0.00

0.05

0.10

0.15

0.20

User Group

conductors non-conductors

M
ea

n
 B

ea
t

E
rr

or
 R

at
e

[e
rr

or
s/

b
ea

t]

Figure 3.6: A comparison of conductors and non-conductors using the

mean beat offset (∆t), beat variance (σ) and mean beat error rate (ǫ).
The mean beat offset and beat variance for the two groups are significantly
different.

3.1 Beat Timing in Conducting Gestures 63

Musical Ranking

M
ea

n
 B

ea
t

O
ff
se

t
[m

s]
B

ea
t

V
ar

ia
n
ce

 [
m

s]
M

ea
n
 B

ea
t

E
rr

or
 R

at
e

[e
rr

or
s/

b
ea

t]

Musical Ranking

-120

-100

-80

-60

-40

-20

0

20

0.0 0.2 0.4 0.6 0.8

Musical Ranking

0.00

0.05

0.10

0.15

0.20

0.0 0.2 0.4 0.6 0.8

30

50

70

90

110

130

150

0.0 0.2 0.4 0.6 0.8

Figure 3.7: Effect of musical ranking (0 = no experience, 1 = lots of
experience) on conducting. There does not appear to be any correlation
between users’ ability to play a musical instrument and their mean beat
offset, variance, and error rate.

64 3 The Problem of Mappings

M
ea

n
 B

ea
t

O
ff
se

t
[m

s]
B

ea
t

V
ar

ia
n
ce

 [
m

s]
M

ea
n
 B

ea
t

E
rr

or
 R

at
e

[e
rr

or
s/

b
ea

t]

-400

-300

-200

-100

0

100

1 2 3 4 5 6
User

regular fishing rod

0

20

40

60

80

100

120

1 2 3 4 5 6
User

0.0

0.1

0.2

0.3

0.4

1 2 3 4 5 6
User

Figure 3.8: Paired plot of the conducting parameters for each user, before
and after being instructed to conduct “fishing rod” style. The metaphor
does not significantly improve one’s conducting.

Effect of a Metaphor on Conducting

Paired plots of the data collected for the 6 non-conductors who partici-
pated in the “fishing rod” experiment are shown in Figure 3.8. Using aThe“fishing rod”

metaphor does

not affect

conducting.

paired Student’s t-test, we found no significant difference in the three con-
ducting parameters between regular conducting and conducting with the
“fishing rod” metaphor, and conclude that this particular metaphor does
not influence a person’s conducting behaviour.

3.1 Beat Timing in Conducting Gestures 65

Hypothesis Description Supported?

H1 Conductors conduct ahead of non-

conductors.

Yes

H2 Conductors vary their beats less than

non-conductors.

Yes

H3 Conductors make less beat errors than

non-conductors.

No

H4 Conductors conduct ahead of the beat. Yes

H5 Non-conductors conduct behind the

beat.

No

H6 A non-conductor’s musical experience

influences their placement of beats.

No

H7 A non-conductor’s conducting can be

influenced using a fishing metaphor.

No

Table 3.1: Summary of results cross-referenced with hypotheses.

Summary of Results

Table 3.1 shows a summary of the results cross-referenced with our original
hypotheses.

3.1.5 Discussion

Of the data we collected from our 23 participants, we found two outliers Data from two

outliers were

discarded from

the analysis.

in our data that we subsequently discarded from the analysis. Both users
were non-conductors. One participant was a little too enthusiastic in his
conducting, resulting in erratic data that frequently left the range of the
Lightning II tracker (and almost smashing the baton onto the iBook screen
in the process). The other participant appeared to have a different mental
model of synchronizing his gestures to the beats: he conducted in a “pen-
dulum” style, swinging the baton back and forth in an arc like a pendulum
and synchronizing his beats to the upper ends the arc rather than the lower
inflection point. Since all other participants synchronized the music beats
to the lower turning point of their gestures, we discarded this particular
data to maintain consistency in our data set.

Our results support using a user’s beat offset and variance parameters for
determining whether or not the user is a conductor, but not the beat error

66 3 The Problem of Mappings

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

40 60 80 100 120

Mean Beat Variance [ms]

S
q
u
ar

e
R

oo
t

of
 t

h
e

M
ea

n
 B

ea
t

E
rr

or
 R

at
e

Figure 3.9: Correlation (r = 0.91) between beat variance and the square
root of the mean beat error rate.

rate. We examined more closely the data collected from the participantsBest offset and

variance are good

measures of

conducting ability.

with the two highest beat error rates. Replaying their baton movements
synchronously with the movie, we saw that they had a mental model of
conducting to the musical rhythm of the piece rather than to the beat.

There appears to be no correlation between a conductor’s mean beat offset,
variance, and error rate. For non-conductors, the strongest correlation is
between their mean beat variance and the square root of the mean beat error
(rσ,

√
ǫ = 0.91, see Figure 3.9), but no correlation between the other values.

As higher beat variance means that users are having more trouble marking
a consistent beat, and higher beat errors were seen to be associated with
users conducting to the rhythm rather than the beat, perhaps these trends
are related to a person’s experience or natural ability with music. This
theory would also explain why there is no such correlation for conductors.
Further user tests would be required to make a conclusive statement.

Based on our results, however, we can say that a person’s experience/ability
to play a musical instrument does not influence their conducting behaviour
to a fixed recording; some people who have had no musical training were
able to time their beats better and more consistently (relative to a con-
ductor) than a person with over 30 years experience playing the flute and
guitar at an intermediate level, or a person with 6 years experience play-
ing the trumpet at an expert level. More study would be required to see
if this beat timing and consistency is associated with other factors, such
as level of familiarity with the piece or the musical quotient proposed by
Edwards et al. [2000]. However, our results clearly show that there is no
obvious equivalent to professional conducting training/experience that will
cause a person to time his/her beats similar to a conductor.

Our results disprove our original hypothesis that non-conductors conductNon-conductors

do not conduct

consistently

behind the beat.

consistently behind the beat. Only one user had an average beat offset
behind the beat (∆t = 3 ms). However, many users conducted behind the
beat at some point during the piece, which could still explain the “spiral

3.1 Beat Timing in Conducting Gestures 67
N

or
m

ai
li
ze

d
 B

ea
t

O
ff
se

t

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

60 65 70 75 80 85

Time [beats]

Figure 3.10: Plot of the normalized beat offset (∆̃ti = ∆ti−∆t
σ

, where i is
the beat number) for five users over time. The consistent hill suggests that
users are unsure with their placement of the beat and thus hesitating. The
shaded region between beats 64 and 77 marks a section of the piece that is
not part of the main melody, and has no percussion.

of death” problem we have previously observed with existing conducting
systems. Moreover, we believe that users’ familiarity with the piece could
influence their mean beat offset, variance and error rate. The piece we
chose for this study, Radetzky March, was well-known amongst our test
group of Germans (it appeared in a popular television commercial a few
years ago): only one user did not know the piece. The piece also has a
strong percussion, which may help users predict where the beat is. Our
results seem to support this theory. Let us define a user’s normalized beat
offset, ∆̃t, to be:

∆̃ti =
∆ti − ∆t

σ
(3.1)

where i is the beat number. Figure 3.10 shows a plot of the normalized beat
offset over time for five non-conductors, filtered with a 9-point averaging
filter to reduce noise. One can notice a trend where the users are consis-
tently conducting behind their average beat between beats 67 and 77. One
explanation for this phenomenon is that they are hesitating, unsure of their
placement of the beat. In fact, beats 64 to 77 correspond to a section of
the piece that is not part of the main theme (less likely to be familiar) and
the music has no percussion (more difficult to track the beat).

68 3 The Problem of Mappings

3.1.6 Design Implications

The results we have obtained can be used directly to improve the usability
of conducting systems. For example, we now have quantitative metrics to
show that while conductors’ gestures vary widely from conductor to conduc-
tor, their beats are placed consistently ahead of the music beat (and with
little variance). Thus, when designing a conducting system for conductors,
it is important to account for this “lead time” in the tempo following al-
gorithm for matching a musical piece’s tempo with users’ gestures. This
temporal aspect has not been rigorously addressed in previous literature
[Borchers et al., 2004, Usa and Mochida, 1998].

Since we can depend on the precision and reliability of conductors’ move-Conducting

systems should be

more forgiving for

non-conductors.

ments, tempo changes in response to their gestures can be instantaneous. In
fact, since their placement of the beats is less likely to be random and/or un-
intentional, these users would benefit from having their movements“tightly-
coupled” to the music. Non-conductors, on the other hand, would benefit
from some averaging of the data collected from the gestures over a certain
time window. This averaging would mitigate the effects of user errors, and
the size of this time window can be a function of the variance measurement
(higher variance is correlated to higher number of errors). The beat vari-
ance can also be tracked as the user continues through the piece, with the
system reducing the averaging window size if it detects an improvement in
the conducting, or vice-versa.

Such a system would not only be enjoyable for a wider range of users,
but it would also enable us to continue our study of conducting behaviour
amongst conductors and non-conductors, and continue to better understand
peoples’ conceptual models of conducting. We also believe it can be adopted
as a “training wheels” system for student conductors. By allowing them to
produce pleasant results with their conducting from an early stage, we hope
to offer to them a better way to navigate the learning curve.

In the next section, we continue the discussion of latency in user input by
examining how it might be used for rhythmic correction.

3.2 Rhythmic Correction

Despite the abundance of research in new interaction methods for digital
music and other multimedia, the results of much of this work remains out
of reach for the general public. This is partly due to the fact that these
interfaces are geared towards those with a musical background; unfortu-
nately, schools continue to reduce budgets for arts and music education
[BBC News, 2003, Sealey, 2003]. Consequently, for many people, user in-
terfaces for digital music remain largely limited to decades-old metaphors
of play, fast-forward and rewind.

3.2 Rhythmic Correction 69

As part of our work in interactive media systems, we have designed a num-
ber of systems for people with varying levels of musical expertise to interact
with music, including coJIVE [Buchholz et al., 2007], and REXband [Wolf,
2006]. coJIVE and REXband allow users to create music by improvising
using digitally augmented instruments. As these systems were designed for
users with varying levels of musical experience, a key feature was musical
support. This support includes, for example, melodic support where the
kinds of notes users are allowed to play is limited, to prevent them from
playing “wrong” notes.

We evaluated these systems from the perspective of a player and an audience Rhythm is a

challenging aspect

of music for

novices.

member, and an often heard comment was that melodic support by itself is
still not enough to produce pleasant-sounding music. This is not surprising,
as rhythm places a key role in music, and is also one of the more difficult
aspects for a novice musician to grasp. This is further supported in our user
evaluations of REXband, where users often complained that the rhythm is
“hard to follow”; we heard this comment often, in spite of the fact that
we deliberately chose a medieval dance piece with, according to a musical
expert, a relatively easy to follow rhythm. It is not surprising, then, that
users would have a hard time with the even more intricate rhythm patterns
of jazz music.

Rhythmic support has traditionally been disregarded as a viable feature, Rhythmic support

is traditionally

frowned upon.

since it messes with a user’s sense of causality. Borchers and Mühlhäuser
[1998], for example, claim that if the delay between user input and output
exceeds about 150 ms, users will begin to feel like that are controlling an ar-
tificial music generator, rather than playing an instrument. Consequently,
little work has been done on exploring rhythmic correction. Existing liter-
ature, however seems to agree that most people can tolerate latencies of up
to around 100 ms before it is noticed; 100 ms is one-sixth of a beat at 100
bpm. DiFilippo and Greenebaum [2004] study this topic in more detail,
and conclude that for touch leading audio, a difference of 66 ms is assumed
as not noticeable, although this is only tested for single, isolated events,
rather than sequences of input events as is more common in music.

3.2.1 Concept

Our idea of rhythmic correction is to alter the timing of the user input to Alter the timing

of user input to

better fit the

rhythm.

more correctly align with the pre-determined rhythm of the music. There
are multiple ways to approach rhythmic correction. The simplest way is to
simply delay notes up to a certain amount in order to better align it with
the beat – since we cannot predict when user input is coming in, we can
only shift notes in this one direction.

An alternative scheme involves introducing a constant, nominal latency
of, for example, 100 ms from input to output. Even if this latency is
noticeable to some people, existing literature has shown that humans are
able to adapt to constant latencies [Bouillot, 2004], much like how church

70 3 The Problem of Mappings

Time

Musical Beat

Input

Output With
Added Latency

100 ms

Corrected Output

(a) (b)

Figure 3.11: Proposed rhythmic correction scheme. A nominal latency is
introduced to the input (a), which is reduced as needed to give the illusion
of correcting before the input arrives (b).

organ players are able to play well despite a latency in the range of a
few seconds (although latencies of such magnitude require training and
experience). By introducing this constant latency, then, we can then give
the illusion of correcting before the input arrives (see Figure 3.11).

For the experiment presented in this section, we chose to implement the
former scheme, for simplicity.

Blaine and Perkis [2000] previously experimented with a rhythmic quan-
tization feature in their Jam-O-Drum system. It is based on a feature
found in many musical software packages such as Sonar [Cakewalk, 2007]
or Cubase [Steinberg, 2006] that allow users to quantize user input to note
boundaries (e.g., quarter notes, eighth notes, sixteenth notes). In their
system, they delayed all user input to the next occurrence of the music’s
intended beat. They found this scheme ineffective for two reasons, how-
ever: rhythmic quantization is undesirable because users tend to be late
in response to the beat, in which case delaying to next quantization level
makes the problem worse; also, hitting is a gesture that requires immediate
feedback, so the delays were more readily perceivable. They did not test
non-percussive systems, however, or schemes that did not modify all user
input. In contrast, our aim is to selectively modify user input to better fit
the rhythm, rather than quantize all input.

3.2.2 Experiment

To test the viability of rhythmic correction, we designed an experiment that
would:

1. determine a threshold latency for musical input, below which users

3.2 Rhythmic Correction 71

would not notice whether or not their input was corrected

2. verify if correcting user input by the determined threshold in an ac-
tual system would be noticeable by users, and whether the corrected
musical output was significantly better than non-corrected output

The experiment was completed as part of Wolf’s work on REXband [2006] Inspired by early

experiments in

psychophysics.

under the guidance of the author; it is also documented in [Lee et al.,
2007b]. The first stage of the experiment, where the latency threshold
would be determined, was accomplished by performing a user study with
15 participants: 7 hobby musicians with varying levels of musical experi-
ence, and 8 with no musical experience at all. The experiment itself was
inspired by Fechner’s early experiments in psychophysics [1889]. Although
more exact methods have been developed in the meantime, Fechner’s ap-
proach is easy to implement, and we expected to have enough data for a
reasonably accurate estimate of our desired threshold. Users were asked to
play, continuously, a single octave of the C-major scale on a digital piano
keyboard to a rhythmic accompaniment; they were asked to try and make
their input fit the rhythm of the accompaniment to the best of their ability.
They were then asked to complete two tasks:

1. starting with no latency, the latency was gradually increased until
participants indicated that the latency was noticeable

2. starting with a 200 ms latency, the latency was gradually decreased
until participants indicated the latency was no longer noticeable

Each user was tested with both a tambourine percussion track (used in
REXband), and a simple computer-generated bass drum track, with a drum
hit per beat. We found the system latency to be below 1 ms, and thus
insignificant compared to the latency values we were measuring. Both the
order of the tasks (increasing from zero latency, or decreasing from 200
ms) and order of the rhythmic accompaniment were varied across users to
minimize learning effects.

The second stage of the experiment took place after determining the thresh- Test for usefulness

of rhythmic

correction.

old for rhythmic correction, with the aim of determining whether or not
users benefit from rhythmic correction. 10 users participated in this ex-
periment, 4 hobby musicians and 6 non-musicians. Users were asked to
improvise, again using a digital piano keyboard, to the tambourine track
used previously. Users would perform the task twice, both with and with-
out rhythmic correction. The rhythmic correction operated as follows: if
the user input event arrived within a certain time interval before the beat,
it would be delayed to be aligned with the beat (see Figure 3.12). Again,
the order of the trials (assisted or unassisted) was varied across users to
minimize learning effects.

Additionally, we asked each user to listen to recordings of assisted and
unassisted performances of others, and asked whether or not they could
distinguish between the two.

72 3 The Problem of Mappings

Time

Musical Beat

Input

Output

Correction Interval

Figure 3.12: Experimental rhythmic correction scheme. The first note
arrives within 110 ms of the beat, and is delayed until the beat. The
second and third notes are not modified.

0%

20%

40%

60%

80%

100%

20 40 60 80 100 120 140 160 180 200

Average Perceived Threshold [ms]

P
er

ce
n
ta

ge
 o

f
U

se
rs

Figure 3.13: Results of the latency threshold test. Two-thirds of our users
did not detect latencies below 100 ms.

3.2.3 Results

The latency threshold values we measured in the first stage of the experi-Average latency

threshold is

138 ms.

ment varied quite widely, as is typical for an experiment based on Fechner’s
methodology. Our measured threshold values ranged from 35 to 200 ms,
with an average of 138 ms (see Figure 3.13). The average threshold for the
simple drum track was slightly higher than the tambourine track, although
this difference was not significant. We used a value of 100 ms as our cor-
rection threshold for the remainder of the experiment, as our results show
that two-thirds of our users do not notice latencies below this value.

In the second stage of the experiment only 40% of our users correctly iden-

3.3 Latency in Audio Time-Stretching 73

tified which trial was supported by rhythmic correction, and only 40% of
our users rated their own performance as better in the corrected trial. The Users did not

benefit from

rhythmic

correction up to

100 ms.

results were consistent with our listening test, where only 44% of the par-
ticipants were able to identify the recording with rhythmic assistance, and
the difference was not regarded as too strong (3 on a scale of 1 to 5).

Our results indicate that while latencies up to 100 ms do not significantly
impact the user experience for an interactive music system, rhythmic cor-
rection within this range does not, unfortunately, provide any significant
benefit either. In retrospect, this result is not terribly surprising, and we
did not proceed any further in this regard. However, we feel our results still
leave room for further experimentation. For example, at what point does
rhythmic correction significantly benefit users, and how negatively does it
impact the user experience? Is there a consistent trade-off between musical
quality and input responsiveness for users?

In the last two sections, we considered latency with respect to the user; in
the next section, we discuss how processing latency is also an important
consideration in the design of interactive media systems.

3.3 Latency in Audio Time-Stretching

Any non-trivial processing of signals will introduce some degree of latency. Processing latency

is often ignored in

software systems.

If this latency is small, it can usually be ignored without any significant im-
pact on the system behaviour, and this is often assumed in many interactive
media and computer music systems today. The most obvious artifact of im-
properly handling latency in a system is a loss of synchronization between,
for example, the audio and video.

Two recent trends in multimedia systems and computer technology, how-
ever, motivate the need for a re-examination of processing latency for these
systems:

First, computers are increasingly being used for professional multimedia Computers

increasingly used

for tasks where

high precision is

required.

applications, replacing both specialized and expensive hardware. A profes-
sional studio VTR (video tape recorder) capable of frame-accurate synchro-
nization, for example, can cost upwards of ten thousand dollars. Television
and film production studios are slowly migrating to digital production –
Star Wars II, Attack of the Clones, for example, was the first major Holly-
wood film to be captured digitally, rather than on film [Magid, 2002]. More
recently, even media companies, such as Current TV, a news broadcaster in
the United States, have moved away from tape to a completely digital and
computer-based production pipeline [TV Technology, 2007]. This trend re-
quires system designers to migrate to what Greenebaum [2007a] refers to as
a “sample-accurate” mentality when dealing with latency, rather than the
current “best-effort” one.

Second, with the increased availability of computing power, it is now possi-

74 3 The Problem of Mappings

ble to incorporate increasingly complex processing and still maintain real-
time performance. Interactive conducting systems such as Maestro!, forComputers used

to perform

increasingly

complex

processing in real

time.

example, employ a multitude of processing to recognize gestures, stream
compressed audio and video from disk, and time-stretch the audio – all
in real-time. More specifically, let us compare the complexity of an audio
resampler, which was employed in the original Personal Orchestra – a re-
sampler requires a few tens of multiply-add operations per output audio
sample. In contrast, the PhaVoRIT algorithm employed in Maestro! that
performs the time-stretching in real-time requires many orders of magni-
tude more processing per output audio sample. An unfortunate side-effect
of this increased complexity in processing is increased latency.

We will divide our discussion of latency into two aspects: startup latency
and dynamic latency. Startup latency is introduced when the filter is ini-
tially fed with data – many filters require some “priming” before they can
begin to produce output. A 64-point sinc kernel (see Appendix A) used
for resampling an audio signal, for example, requires the first 32 samples
of input data before it can produce the first output sample. If these sam-
ples are being streamed from a real time data source, this introduces a 32
sample latency at startup (see Figure 3.14). Dynamic latency occurs when
filter parameters (for example, the resampling factor) are changed; if the
filter cannot respond immediately to a parameter change, latency will be
introduced. Resampling using a sinc kernel has, for example, zero dynamic
latency – it is theoretically possible to immediately switch from a resam-
pling factor of 0.5 to 2 from one output sample to the next. In contrast,
a phase vocoder algorithm is limited to rate changes at specific block in-
tervals defined by the block size used for processing. Moreover, as we will
show in this paper, there is a non-zero latency in response to rate changes.

In an interactive media system, an accurate handling of dynamic latency isDynamic latency

may accumulate

over time.

critical, as the error introduced by improper handling has the potential to
create a cumulative error that worsens over time. Let us consider again an
interactive conducting system such as Maestro!, where rate changes occur
on the order of ten times per second, or more. An error of just 0.1 ms (just
over 4 samples of audio sampled at 44.1 kHz) per rate change can result
in a worst case cumulative error of 100 ms in under two minutes, which
is sufficient to produce a noticeable loss of synchronization between audio
and video [DiFilippo and Greenebaum, 2004].

To the best of our knowledge, no similar discussion of latency in
phase vocoder-based time-stretching algorithms such as PhaVoRIT ,
or even any time-stretching algorithms of similar complexity, exists.
Sussman and Laroche [1999] describe some of the challenges of synchro-
nizing audio time-stretched using the phase vocoder to an external clock.
However, the discussion is limited to calculating an appropriate input hop
factor and the fact that rate changes are limited to block boundaries.

In the DIRAC software interface documentation, it is claimed that the
processing framework has zero processing latency [Bernsee, 2006]. How-
ever, they define processing latency to be the startup latency when the

3.3 Latency in Audio Time-Stretching 75

64 samples

t = 0

t = 32

t = 48

output

output

output

sinc kernel

sinc kernel

sinc kernel

32 samples

input

input

input

Figure 3.14: Latency introduced by a 64-bit sinc kernel for resampling.
At t = 0 samples, audio data becomes available, and the sinc kernel in-
terpolation filter begins to produce output samples. The first 32 output
samples, however, do not contain any meaningful data – this is the startup
latency. After t = 32 samples, interpolated samples begin to appear at the
output.

rate is set to one times normal speed; this is a gross oversimplification,
as the processing latency of a filter of this complexity is almost certain to
be parameter dependent, as we will show below for PhaVoRIT. Moreover,
they discuss later in the documentation how there is no way to predict
which, or even how many, input samples are required to produce a specific
block of output samples; this supports the conclusion that the input to out-
put sample mapping is, in fact, non-trivial. The élastique documentation
[zplane.development, 2006] contains a similar discussion, and also implies
that the input to output is non-trivial because of internal buffering of the
input data.

There may be multiple reasons for this lack of rigorous discussion of latency
in time-stretching: from a signal processing perspective, it is not clear how
a time-stretching signal can be interpreted, since the nature of the pro-
cessing “smears” a single sample from the original signal across a range
of output samples. This smearing is frequency dependent, resulting in a
reverberation-like effect. There is also no mathematically “correct” answer
to time-stretching of arbitrary signals on which to base such an analysis;
current work on time-stretching algorithms aims to minimize the percep-

76 3 The Problem of Mappings

tual artifacts introduced by the processing to produce a psychoacoustically
pleasant result [Karrer, 2005]. Finally, such a discussion becomes impor-
tant only when sample-accurate synchronization is required, or when there
are frequent rate changes. The former is a topic that is typically neglected
in software systems, as discussed by Greenebaum [2007a]; the latter seldom
occurs in traditional multimedia systems such as video editing, where the
stretch factor is typically held constant over a long period of time (one
use for time-stretching in video editing would be to fit, for example, ten
seconds of material into nine). In interactive media systems, however, rate
adjustments occur orders of magnitude more frequently, and so accumula-
tion errors from an improper treatment of dynamic latency also manifest
themselves much more quickly.

In the remainder of this section, we will focus on analyzing the latency of
phase vocoder-based audio time-stretching algorithms. While our previous
discussion applies equally well to other types of processing, including video
frame interpolation, audio time-stretching is by far the most complex fil-
ter employed in our framework from a temporal perspective, as discussed
in Chapter 2. Video rate changing algorithms are, in general, closer in
complexity along the temporal axis to resampling than time-stretching. To
make the discussion more concrete, we will focus the discussion to an anal-
ysis of latency in PhaVoRIT ; however, it is important to note that our
analysis applies equally well to other phase vocoder-based algorithms.3 We
begin by proposing a scheme for interpreting the timeline of time-stretched
audio, discussing how we can map it back to the original (unstretched) au-
dio timeline. With this foundation, we can then analyze both the startup
and dynamic latency.

3.3.1 Interpreting Time-Stretched Audio

Before we can begin to analyze the perceived latency of rate changes, we
need to examine how one can interpret the timeline of time-stretched au-
dio. Note that our goal here is not to determine an exact, sample-accurate
mapping from output samples to input samples. Such an analysis is not
practically feasible, since it is unclear from a mathematical perspective what
it means to “time-stretch” a signal. The nature of the phase vocoder pro-
cessing introduces a frequency-dependent smearing in the signal similar to
reverberation, and thus the different frequency components of a particular
time instant of input audio may become smeared across an interval in the
output. Moreover, some of the proposed transient detection and process-
ing schemes, such as the one proposed by Röbel [2003], add an additional
non-linear distortion to the time information of the time-stretched signal.

Instead, our aim is to provide a means of interpreting the timeline of time-
stretched audio in a way such that the error is bounded, and, more impor-

3The results of this analysis have, for example, formed the basis of an implementa-
tion of latency reporting in Core Audio’s AUTimePitch audio time-stretching module,
completed by the author during an internship at Apple in 2006.

3.3 Latency in Audio Time-Stretching 77

tantly, does not accumulate over time. Our task is, given a block of output
samples, to determine the corresponding samples in the input audio. We
cannot establish this mapping by simply counting the input samples that
have been requested by the time-stretcher, since it is common for filters of
such complexity to pull ahead and buffer a certain amount of input data.
We will use τ(to) to refer the input time that corresponds to an output
(synthesis) time to; ti is the input (analysis) time (see Section 2.7.1).

Black-Box Approach

The simplest, albeit näıve, approach is to maintain a counter of the current Näıve method:

Use the number

of output samples

scaled by the rate.

input position. The input position, τ , would be incremented for each output
block that is produced by the size of that block, M , scaled by the requested
play rate:

τj = τj−1 +
M

r
; τ0 = 0 (3.2)

The problem is that the increment factor, M
r

is only an estimation that is
based on r. Recall that the rate at which the audio is time-stretched is
represented by the ratio Ri

Ro
, and both Ri and Ro are two integer numbers;

thus, the actual rate at which the audio is time-stretched will not be exactly
r. Moreover, rate changes can only be made at specific intervals defined by
the output hop factor Ro. Since Ro 6= M in the general case, a rate change
that is requested in the middle of a block will not take effect until the next
block. Finally, a requested rate change does not take effect immediately, as
we will demonstrate in the discussion of dynamic latency in Section 3.3.3.
Regardless, it is sufficient for the time being to realize that the calcula-
tion above will always introduce a small amount of error, and that this
error will accumulate over time. This accumulation error also means that
synchronization will be lost over time, and will become increasingly worse.

Hop-Factor Approach

To produce a better result than the one described above, we must examine
how the phase vocoder produces time-stretched audio. Recall, as described
in Section 2.7.1, that the phase vocoder operates on sample windows size
N that are then overlap-added to produce the output blocks. In a real-time
system, the output block spacing Ro is typically held constant, and time-
stretching occurs by respacing the input blocks. For illustration purposes,
we will use the specific example where each sample window has a length
of 8 time units, and the output hop factor is fixed at 2 time units (a 75%
overlap at the output, see Figure 3.15).

An improved approach uses the input hop factor to determine the input
time:

78 3 The Problem of Mappings

τu = tui (3.3)

For example, to create the output for u = 4, samples starting at the inputImproved method:

Use input and

output hop

factors.

time t4i = 10 were fetched from the input and processed. Thus, it would
seem reasonable to say that the starting time of output block 4 corresponds
to time τ = 10. This scheme, which we proposed in [Lee et al., 2006b], is
accurate enough for many applications; it was, for example, used in Mae-
stro!, our third generation Personal Orchestra system [Lee et al., 2006b].
It does, however, require an internal knowledge of how the data is buffered
and how the input and output hop factors are calculated, information which
is typically not available as a client of a time-stretcher module. One impor-
tant characteristic of (3.3) is that the error does not accumulate, since the
current value of τ does not depend on previous computations here, unlike
(3.2).

Overlap-Add Approach

The scheme presented above, however, does not take into account the fact
that each output block produced by the phase vocoder is the result of an
overlap-add with the three preceding processed blocks. One could argue
that this overlap-add results in an “averaging” effect, which reduces arti-
facts in the processed audio, but also results in a “smear” of the timeline.
Moreover, these blocks are windowed with a Hanning (or similar) window
during processing – which means that at the start of output block 4 in
Figure 3.15, the input sample at time t4i = 10 does not even contribute to
the actual output!

This problem was uncovered during the design and implementation of Di-
Maß [Lee and Borchers, 2006b], a technique for audio scrubbing using the
phase vocoder for feedback. With DiMaß, changes to the play rate are both
more diverse and frequent than with Personal Orchestra, and especially at
the slow scrub rates, the error, while bounded, becomes noticeable.

We developed a solution that uses a weighted average of the time stamps ofRefinement: Take

into account

averaging.

the samples that are being summed together to produce the output. The
weights, h(n), are determined by the window used for the short-time Fourier
transform (STFT), which has length N , and the start time of block is thus
a weighted sum of the times with the previous four blocks (see Figure 3.15):

τu =

∑4
j=0 h(j·N

4) ·
(
tu−j
i + j·N

4

)

∑4
j=0 h(j·N

4)
(3.4)

Using, again, our example of u = 4 and a Hanning window for h(n), we
obtain:

3.3 Latency in Audio Time-Stretching 79

in
p
u
t

N

0
4

8
12

2
6

10

0
4

8
2

6

3
7

11
9

4
8

12

6
10

14

10
14

18

8

ou
tp

u
t

τ
4

u
 =

 0

u
 =

 1

u
 =

 2

u
 =

 3

u
 =

 4

t i
t o

F
ig

u
re

3
.1

5
:

A
n

in
te

rp
re

ta
ti
on

of
ti
m

e-
st

re
tc

h
ed

au
d
io

.
T

w
o

ap
p
ro

ac
h
es

ar
e

p
os

si
b
le

:
in

th
e

fi
rs

t,
on

ly
th

e
in

p
u
t

h
op

fa
ct

or
is

co
n
si

d
er

ed
,

re
su

lt
in

g
in

τ
=

10
;
in

th
e

se
co

n
d
,
th

e
ov

er
la

p
-a

d
d

n
at

u
re

of
th

e
al

go
ri

th
m

is
co

n
si

d
er

ed
,
an

d
τ

=
8.

25
.

80 3 The Problem of Mappings

τ4 =
0(10) + 0.5(8) + 1(8) + 0.5(9) + 0(8)

0 + 0.5 + 1 + 0.5 + 0
= 8.25

The astute reader may observe that this interpretation has a major flaw:
namely, the STFT does not, from a mathematical perspective, preserve time
intervals. Let us take, for example, block 0, which starts at time ti = 0
and ends at ti = 8. We assumed in (3.4) that, after processing, the output
block also starts at ti = 0 and ends at ti = 8. However, by definition of
the Fourier transform, the act of transforming the block into the frequency
domain destroys all temporal information.4 A more correct interpretation
would thus be to set the entire output block to time ti = 4, the time at
the centre of the input block. The subsequent windowing and overlap-add
introduce an averaging that restores the continuity of the timeline at the
output. Applying this interpretation to the scenario in Figure 3.15 results
in the following:

τu =

∑4
j=0 h(j·N

4) ·
(
tu−j
i + N

2

)

∑4
j=0 h(j·N

4)
(3.5)

Repeating our calculation of τ4 using (3.5) yields:

τ4 =
0(14) + 0.5(10) + 1(8) + 0.5(7) + 0(4)

0 + 0.5 + 1 + 0.5 + 0
= 8.25

This result is identical to that given by (3.4). It is, in fact, not difficult to
show that the two interpretations always give the same results when the
output hop factor Ro is fixed (which is usually the case with implementa-
tions for real-time systems, such as PhaVoRIT).

Other Considerations

Our scheme could be further improved by taking into account, in the anal-
ysis, the group and phase delay of the filters that perform the phase re-
estimation and transient processing; however, for our purposes, we have
found the above scheme to be sufficient with respect to accuracy, and we
reserve such an analysis for future work.

One further consideration is computing values of τ in the middle of a block,
since equations (3.3) and (3.4) are only valid for the block boundaries.
Since the rate is constant for each block, we feel it is sufficient to simply

4An exception is if the block was transformed into the frequency domain, and then
immediately back into the time domain. However, this defeats the purpose of performing
the Fourier transform in the first place, and is certainly not applicable in the general
case!

3.3 Latency in Audio Time-Stretching 81

compute the values for τ at the start and end of a block, and perform linear
interpolation to obtain the value for τ for in-between values of ts.

3.3.2 Startup Latency

It is typically desirable to specify a starting point in the audio at which to
begin producing time-stretched output. In an audio editor, for example,
the user sets the cursor to a specific part of the audio waveform, and the
audio begins playing from this position. For these type of applications, it
is critical that the audio starts exactly where the user has specified, so that
the audio is consistent with the visual waveform representation.

This problem is often known as “startup synchronization” in multimedia Startup latency is

rate dependent.systems, and has been studied before in existing literature [Greenebaum,
2007b]. Here, we discuss the additional complexity that results from the
use of the phase vocoder. Consider the scenarios illustrated in Figure 3.16,
where we wish to slow down and speed up the audio by a factor of two
(r = 0.5 and 2, respectively). In both cases, we wish to start the time-
stretched audio at τ = 0; however, the time-stretched audio actually begins
at τ = 2 when r = 0.5, and τ = −4 when r = 2. Put another way, we have
a latency of −2 time units when r = 0.5, and 4 time units when r = 2.

Note that this latency is calculated by extrapolating backwards in time
after the block 3 has been processed at the requested rate. It could be
argued that such an extrapolation cannot be correct, since it is impossible
to have a negative latency, which is the case when the audio is slowed down
(i.e., Ri < Ro). An alternative interpretation, and also one that is perhaps
more mathematically correct, is that the first three output blocks are not
actually produced at the requested rate: the first block is always time-
stretched at rate one, and the rate gradually converges to the requested one
over the next two blocks (we will revisit this in the next section on dynamic
latency). However, we feel this is simply a matter of interpretation of the
phase vocoder priming, and it still does not solve the problem that the
audio does not start at the desired point at the requested rate.

To ensure that the time-stretched audio begins at the desired start time,
we must begin pulling the input data at some offset. Based on Figure 3.16,
we can derive a formula for this offset, ∆τ0:

∆τ0 = 2 (Ri − Ro) (3.6)

As mentioned previously, the offset will be negative when Ri is less than The startup

latency is

2 (Ri − Ro).

Ro. As it is not always possible to retrieve data in the past, the data can
simply be zero-padded up to that point.

82 3 The Problem of Mappings

in
p
u
t

N

0
4

8
12

2
6

10

0
4

8
6

1
5

9

2
10

3
7

11

4

ou
tp

u
t

u
 =

 0

u
 =

 1

u
 =

 2

u
 =

 3

t i
t o

u
 =

 0

u
 =

 1

u
 =

 2

u
 =

 3
R

i

R
i

0
4

4
12

8
16

16
20

R
o

R
o

7 6 5 6
5

4
3

2

8

106 8
10 12

12
14 12

8
4

0
-4

0
4

8

1
5

9

2
10

3
7

11

6

0
4 4

12

8
16 16

20

8 8

12 12

r
=

 0
.5

r
=

 2
.0

ττ

F
ig

u
re

3
.1

6
:

Il
lu

st
ra

ti
on

of
st

ar
tu

p
la

te
n
cy

.
In

th
e

fi
rs

t
ca

se
,
au

d
io

is
sl

ow
ed

d
ow

n
b
y

a
fa

ct
or

of
tw

o,
an

d
th

e
fo

u
rt

h
ou

tp
u
t

b
lo

ck
st

ar
ts

at
ti
m

e
τ

=
5,

co
m

p
u
te

d
u
si

n
g

(3
.4

).
E

x
tr

ap
ol

at
in

g
b
ac

k
w

ar
d
s,

th
e

au
d
io

w
ou

ld
st

ar
t

at
ti
m

e
τ

=
2,

w
h
ic

h
is

2
ti
m

e
u
n
it
s

to
o

la
te

.
S
im

il
ar

ly
,
in

th
e

se
co

n
d

ca
se

,
au

d
io

sp
ed

u
p

b
y

a
fa

ct
or

of
tw

o
st

ar
ts

4
ti
m

e
u
n
it
s

to
o

ea
rl

y.

3.3 Latency in Audio Time-Stretching 83

3.3.3 Dynamic Latency

In addition to ensuring the time-stretched audio starts at the desired point, Rate changes do

not take effect

immediately.

it is often desirable to ensure the time-stretched audio stays synchronous
with a reference timebase. Using our earlier audio editor example, if the
user interactively adjusts the audio play rate, we would still like to keep the
play head moving across the visual waveform synchronously to the audio.
Even if the audio and visual play head start synchronously, these two in-
dependent timebases may still gradually drift apart, especially if there are
frequent rate changes. This is because rate changes do not occur instan-
taneously – they can only occur at output block intervals, and even then,
as we will show below, they can take some time to take effect because the
overlap-add mechanism produces a “low-pass filter” effect on rate changes.

To illustrate, let us take the example of a rate change from half speed to
double speed (see Figure 3.17). The rate change is requested at time t0,
just after block 3 has started playing (but before processing for block 4 has
begun). The requested rate change begins to take effect at time t1, when
block 4 begins to play. However, as shown in Figure 3.17, this output block
has an effective rate, reff , of only five-eighths normal speed! This effective
rate was determined by computing the input time that corresponds to the
start and end of that output block using (3.4) – the rate, then, is a ratio of
the number of input samples to the number of output samples.

Using this same process, we can see that the effective rate of output block The dynamic

latency is 2Ro.5 is seven-eighths normal speed, and output block 6 is finally produced
at the desired speed – a latency of two output blocks, or 2Rs! If we had
näıvely assumed that the rate change was applied at time t1, then our actual
audio position could be 23 ms less than what we expect!5 Recall that τ is
effectively computed from a weighted average of three tua values, and thus it
should not be surprising that a rate change will always require two output
blocks, or 2Rs, to take effect.

Unfortunately, the only way to avoid this latency introduced for every rate
change is to discard the previously processed data in the overlap-add buffer
on every rate change. If rate changes are frequent, as they are in our
systems, it dramatically increases the processing load. For example, let us
consider the case where a rate change occurs every output block – instead of
processing only one window of N samples for each output block, we would
have to process four times that much (assuming a 75% overlap)! There
is also the added problem of “seaming” at the block boundaries caused by
resetting the internal state. This seaming will manifest itself in the form
of pops and clicks in the resulting audio; while this could be mitigated by
cross-fading at the block boundaries, the resulting audio quality would still
degrade.

5Using a sample window size of N = 4096 samples, a constant output hop factor of
Rs = 1024 samples, the difference would be 3(1024) − (1

2
(1024) + 5

8
(1024) + 7

8
(1024)) =

1024 samples, or approximately 23 ms for 44.1 kHz audio.

84 3 The Problem of Mappings

in
p
u
t

0
4

8
12

2
6

10

0
4

6

1
5

2

34

ou
tp

u
t

u
 =

 0

u
 =

 1

u
 =

 2

u
 =

 3

t i
t o

R
i

R
o

7 6 5

0
4

8

1
5

9

2
10

3
7

11

6

τ

5
9

13

7
11

15

9
13

17

13

9
13

17

u
 =

 4

u
 =

 5

u
 =

 6

5
9

7
11

15

78 7

9 9

11 11

t o r ef
f

21
2

1.
25

2
1.

75
21

4
8

6
2

10
14

12

6
5

7.
25

11
9

8

9

10

11

F
ig

u
re

3
.1

7
:

Il
lu

st
ra

ti
on

of
d
y
n
am

ic
la

te
n
cy

.
A

ra
te

ch
an

ge
fr

om
h
al

f
sp

ee
d

to
n
or

m
al

sp
ee

d
is

gr
ad

u
al

,
an

d
ta

k
es

tw
o

fu
ll

ou
tp

u
t

b
lo

ck
s

to
co

m
p
le

te
.

3.4 Synchronization 85

3.3.4 Discussion

As we have shown in the above sections, the processing introduced by the Latency analysis

requires

knowledge of the

internals of the

filter.

phase vocoder introduces a non-negligible latency both at startup and at
each rate change. An analysis of these latencies requires knowledge of the
underlying algorithm. It is not possible, as a client, to infer this latency
by examining the behaviour of a black-box time-stretcher, and in these
situations, the best result that can be achieved is as described in Section 3.2
– clearly an unsatisfactory result.

The time-stretcher, then, must report these latency values to the client. In
most situations, it is sufficient for the time-stretcher to report the input to
output sample mapping and the startup latency; the dynamic latency can
be inferred from the input to output sample mapping over time – however,
very few time-stretchers, if any, report these properties to their clients.6 As
will be demonstrated in the next section on synchronization, such properties
are necessary to precisely synchronize time-stretched audio to other media
or a reference time base.

3.4 Synchronization

Synchronization is a well-known problem that requires multiple, indepen-
dent timebases to be coordinated such that desired events can occur in
unison. There exists an abundance of literature on this topic, with per-
haps the most famous being Lamport’s work on clocks and event-ordering
in distributed systems [1978], where he describes synchronization of both
logical and physical clocks. Certain assumptions are made, such as a more-
or-less constant clock rate – an interactive media system, however, violates
many of these assumptions, and we will discuss our work on methods to
synchronize multiple timebases in this section. Moreover, synchronization
is the mechanism by which we can compensate for, or realize, the various
latencies described in this chapter.

The topic of synchronization is not new, and this problem has been exam- Phase-locked

loops used for

synchronization

since the 1940s.

ined before in great detail. The phase-locked loop (PLL) is a well-known
construct in electrical engineering for generating an output signal with
both the same frequency and phase as a reference signal [Viterbi, 1967];
they were used widely in the 1940s to synchronize the horizontal and ver-
tical sweep oscillators in television receivers. More recent work on phase-
locked loops exists, however, offering improvements for specific applications
[Krieger and Salmon, 2005].

6One notable exception is the Core Audio framework that comes with Mac OS X.
Beginning with Mac OS 10.5 (Leopard), the audio units that modify rate (AUVarispeed
and AUTimePitch), support an additional property that reports the input samples that
correspond to the output block that was just rendered. This functionality, however, was
implemented by the author during an internship at Apple in 2006, based on the work
described here.

86 3 The Problem of Mappings

The Network Time Protocol (NTP) [Mills, 1992] was developed to keepNTP can be

accurate to a few

milliseconds.

clocks on various computers connected to the same network synchronized.
A client computer that implements NTP periodically sends a timestamped
packet to a server, which then sends a reply timestamped with when it
thinks the request was received, and when the reply was sent out. Upon
receiving the reply and examining when it arrived, the client is able to de-
termine a relatively accurate estimate of what the time should be. NTP
was designed to keep clocks accurate enough to compare log information
and to make distributed revision control and other, similar applications
work. NTP can maintain time synchronicity of machines connected across
large distances to within a few milliseconds of each other – an impressive
feat. NTP synchronization is based on Marzullo’s algorithm [1984], which
he developed specifically for maintaining synchronicity in noisy and unpre-
dictable environments.

Other software implementations of synchronization also exist; MPlayer
[Gereöffy, 2007], an open source media player, has a synchronization algo-
rithm to keep the audio and video synchronous; Core Audio [Apple, 2007a]
also employs an algorithm to synchronize playback of multiple audio devices
aggregated together into a single, virtual device.

The above systems are designed to compensate for small drifts in the time-
bases, usually caused by small fluctuations in the oscillation frequency of
quartz crystals [Lee, 2007a]. Our systems, in contrast, must respond to con-
tinuous user input, and this input may include large and/or sudden changes
to both position and speed. We also do not have the luxury of correcting
for drift over minutes or hours, as with NTP. Finally, our synchronization
algorithm must be orders of magnitude more accurate.

The remainder of this section will outline the algorithms we have devel-
oped for synchronizing two timebases [Lee et al., 2006b, Lee and Borchers,
2006b, Lee, 2007a]. These algorithms can be accurate to the nearest sample
(roughly 23 µs).

3.4.1 A Closed Loop System

Synchronization is essentially a problem in control theory, a field of study
that spans many disciplines of engineering [Dorf and Bishop, 2004]. The
simple approach of starting devices synchronously and letting them run
independently is called an open loop system (see Figure 3.18). Open loop
systems cannot adapt to changes – even if two timebases were to start
synchronously, if the rate of one changes at some later point in time, the
other would not be able to adapt. Adapting to ongoing changes is, of course,
the primary problem we are trying to solve.

When talking about a control system, there is always one independent vari-
able and one or more dependent variables. When synchronizing an audio
stream to a user’s conducting gestures, for example, the user timebase

3.4 Synchronization 87

User
Input

User
Interface

Audio
Timebase

Audio
Renderer

×

visuals (t
v
)

audio samples (t
a
)

rate

rate

Figure 3.18: Open loop control of audio play rate to maintain synchro-
nization. A constant multiplier attempts to compensate for any differences
in the user and audio timebases.

User
Input

User
Interface

Audio
Timebase

Audio
Renderer

×

visuals (t
v
)

audio samples (t
a
)

rate

rate

∆

t
v
 - t

a

drift

Drift
Estimator

Figure 3.19: Closed loop control of audio play rate to maintain synchro-
nization. The measured difference between the user and the audio positions
is fed back into the system, and the adjusted audio play rate compensates
for any drift.

would be the independent variable, and the audio timebase the dependent
one. The control task, then, is to keep the audio timebase synchronous with
the user timebase, which involves not only making sure they advance at the
same rate, but also in phase (i.e., beats marked by the user are synchronous
with the beat of the music). In an open loop system, we would only be able
to start the audio play rate at the same speed as what the user is gesturing,
but if the user changes her speed, then sync would immediately be lost.

Detecting and correcting these continuous changes requires feedback : in Feedback is

required for

synchronization.

our previous example, the difference between the two outputs, the current
user position and the current audio position, is used to estimate the drift,
which is then used to adjust the dependent variable (the audio play rate).
A system with feedback control is referred to, unsurprisingly, as a closed
loop system (see Figure 3.19).

88 3 The Problem of Mappings

-1

-0.5

 0

 0.5

 1

 0 0.5 1 1.5 2 2.5 3 3.5

S
ig

n
al

 a
m

p
li
tu

d
e

Time [msec]

Figure 3.20: Effect of an instantaneous correction to audio position on
a single 440 Hz tone sampled at 44.1 kHz. The correction at t = 2.27 ms
results in a sudden jump in the audio signal that sounds like a “pop”.

3.4.2 Responding to Timebase Changes

Now that we have established that drift is inevitable, a means to correctPosition-based

adjustment

creates

undesirable

timeline

discontinuities.

this drift is required. At first glance, one might be tempted to do a position-
based adjustment. If we are falling behind, we could simply skip ahead to
the correct position, or if we are ahead, skip back. While this simple ad-
justment works in principle, it is undesirable for most practical applications
because of the resulting discontinuities in an otherwise continuous timeline.
Especially for time-based media such as audio and video, discontinuities are
extremely noticeable, and disturbing, to the user. In audio, for example,
the discontinuities caused by jumping around the audio stream will produce
very audible and annoying pops and clicks due to instantaneous changes in
energy (see Figure 3.20).

Even in the case of a more generic clock, discontinuities can cause a host
of problems. Usually, there is an implicit understanding that time moves
along smoothly and forwards, and often this is an intuitive assumption that
is taken for granted when writing software that depends on time. If we now
have a clock that unpredictably shifts around in time, this assumption no
longer holds, potentially resulting in chaos: for example, timers that are
set to fire at a particular time instant may be executed multiple times, or
even not at all.

A much better solution is, rather than instantaneously adjusting position,
to adjust the speed of the dependent timebase such that it will catch up with
the reference timebase at a future point in time. This way, time remains
continuous and always progresses forwards (see Figure 3.21).

To compute the adjusted play rate, let us examine the scenario illustrated
in Figure 3.22. The horizontal axis represents real time, and the vertical
axis shows the progression of the user and audio timebases over time. We
assume that the user and audio timebases start perfectly synchronously,
but at slightly different rates; note that the values of these rates may not
be known, since they are independent entities. Our goal is to ensure that

3.4 Synchronization 89

-1

-0.5

 0

 0.5

 1

 0 0.5 1 1.5 2 2.5 3 3.5

S
ig

n
al

 a
m

p
li
tu

d
e

Time [msec]

Figure 3.21: A 440 Hz tone using rate adjustment to compensate for
drift, resulting in a distorted but overall much smoother signal, compared
to Figure 3.20.

time

 t
im

eb
as

e
p
ro

gr
es

si
on

t
0

t
1

u(t
1
)

a(t
1
)

t
1
 + ∆t

∆t

u(t
1
 + ∆t)

a(t
1
 + ∆t)

u(t
1
 + ∆t) - a(t

1
)

a(t
1
 + ∆t) - a(t

1
)

u(t
0
), a(t

0
)

Figure 3.22: Synchronization scenario. The thick red line shows user
timebase progression over time, and the thin blue line shows audio progres-
sion.

they continue to advance at the same rate and in phase. Let t0 denote the
start time. After a certain time, at time t1, the current position of the
user, u(t1), and audio, a(t1), are re-examined. The goal is to compute a
new audio play rate, ra1, such that the audio will be synchronous with the
user timebase again at time t1 + ∆t. The play rate, ra, is expressed as a
fraction of the nominal speed (e.g., 0.5 is half speed, 2.0 is double speed,
etc...).

We denote a(t1+∆t) as the expected audio position at time t1+∆t, were it
to progress at its current rate, ra0, and u(t1+∆t) the expected user position
at t1 + ∆t. Using basic geometry, we can derive the following relationship

90 3 The Problem of Mappings

from Figure 3.22:

ra1

ra0
=

u(t1 + ∆t) − a(t1)

a(t1 + ∆t) − a(t1)
(3.7)

Trivially solving for ra1 results in:

ra1 = ra0
u(t1 + ∆t) − a(t1)

a(t1 + ∆t) − u(t1)
(3.8)

An intuitive interpretation of (6.7) is that the current audio rate must be
scaled by the ratio of how much we want the audio to progress and how
much we expect the audio to progress. The algorithm presented above is a
generalized version of the one described by Borchers et al. [2004], one that
does not depend on any particular unit of time.

In the absence of more sophisticated prediction algorithms, we can make
the following approximations:

u(t1 + ∆t) ≃ u(t1) + ∆t
u(t1) − u(t0)

t1 − t0
(3.9)

a(t1 + ∆t) ≃ a(t1) + ∆t
a(t1) − a(t0)

t1 − t0

3.4.3 Discussion

The algorithm described above for gradual adjustment of play rate includes
two parameters that deserve a more detailed discussion: the adjustment
interval, ti − ti−1, and the catch-up interval, ∆t.

Unlike a system such as NTP, where it is sufficient to choose an adjustmentFrequent

adjustments

desirable for

interactive

systems.

interval in the minutes or even hours range, an interactive system such as
Personal Orchestra benefits from more frequent adjustments. While there
is an added overhead with performing the rate adjustment calculations
multiple times per second, it will most likely be insignificant compared
to other processing; moreover, maintaining responsiveness to user input is
more important in a system like Personal Orchestra. The adjustment rate
in such systems, however, may be limited by other factors. For example,
most of our systems employ PhaVoRIT for time-stretching, in which case
the play rate can only be adjusted at a maximum of once per block, roughly
43 times per second.

The other parameter to consider is the catch-up interval, ∆t. Let us define
∆t = γ · (ti − ti−1), and examine the effects of varying values of γ. Select-
ing a value for γ that is less than one is typically undesirable, as we will

3.4 Synchronization 91

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500 600 700

m
ed

ia
 p

ro
gr

es
s

[m
s]

time [ms]

initial drift = 2.0, γ = 0.51

Figure 3.23: Asymptotically stable system. The thick red line shows the
user (reference) timebase, the thin blue line shows the audio (dependent)
timebase. Even though we are overshooting our synchronization point, the
amount we overshoot is small, so the initial ringing will eventually settle
down.

overshoot the desired synchronization point before we are given another
opportunity to adjust, resulting in a ringing effect (see Figure 3.23). In A catch-up

interval that is

too small creates

instability.

fact, if we choose a value of γ that is less than 0.5, the system will become
unstable; that is, the ringing effect will become increasingly worse over time
(see Figure 3.24).

If γ = 1 (∆t = ti − ti−1), the system is still said to be asymptotically sta-
ble. The convergence happens at exactly the start of the next correction;
however, it assumes that the estimates of u(t1+∆t) and a(t1+∆t) are accu-
rate, and there is no over-correction or under-correction (see Figure 3.25).
Since there will, in practice, be an error associated with the estimation of
u(t1 + ∆t) and a(t1 + ∆t), this scenario is unlikely to occur, and the more
likely result will be an occasional ringing as showed in Figure 3.23.

Thus, we restrict our choice of ∆t to those to that are strictly greater
than the adjustment interval, ti − ti−1. The two timebases will converge
exponentially at a rate that depends on the value of γ that is chosen (see
Figure 3.26). We can characterize this convergence more precisely: the rate
at which convergence occurs is 1

γ
, which can then be used to calculate how

fast the dependent timebase will converge to the reference timebase. The
amount of time required before the drift is compensated to within 1% of
the detected difference is given by:

92 3 The Problem of Mappings

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700

m
ed

ia
 p

ro
gr

es
s

[m
s]

time [ms]

initial drift = 1.05, γ = 0.45

Figure 3.24: Unstable system. The thick red line shows the user (refer-
ence) timebase, the thin blue line shows the audio (dependent) timebase.
Even though our initial drift is small (5%), we are overshooting our de-
sired synchronization point by too much, resulting in a ringing effect that
worsens over time.

(
1 −

1

γ

)n

= 0.01 (3.10)

where n is the number of corrections required. For example, for γ = 2,
n is 6.64. If the correction interval is 1024 audio samples, and the audio
sampling rate is 44.1 kHz, then it will take about 150 ms to reach the
desired accuracy.

One possible interpretation of γ is a “smoothing factor”. Higher values of
γ will result in a smoother tracking of the reference timebase over time, at
the expense of taking longer to respond to sharp changes.

3.5 Closing Remarks

In this chapter, we described some of the challenges that occur when map-
ping temporal interactions across the user, medium, and technology do-
mains.

We studied how users conceptually map their beats to the beat of the mu-

3.5 Closing Remarks 93

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

m
ed

ia
 p

ro
gr

es
s

[m
s]

time [ms]

initial drift = 1.5, γ = 1.0

Figure 3.25: Asymptotically stable system. The thick red line shows the
user (reference) timebase, the thin blue line shows the audio (dependent)
timebase. The audio play rate is adjusted such that the audio and user are
perfectly synchronous at the next correction cycle, and no further adjust-
ments are required. This scenario, while theoretically possible, is not likely
to happen in practice.

sic when conducting, and discovered that, for Radetzky March, conductors
conducted an average of 152 ms (approximately one quarter of a beat)
ahead of the beat, while non-conductors conduct on average of only 52 ms
(one-twelfth of a beat) ahead of the beat. Conductors also conduct more
consistently than non-conductors – the beat variance was only 47 ms, while
it was much higher (72 ms) for non-conductors. These differences are sta-
tistically significant, and can thus be used to identify a user as a conductor
or non-conductor by examining these parameters in their beat patterns.

We also examined how users respond to latency for the purpose of rhythmic
correction, and found that users are typically unable to detect latencies of
up to 100 ms. Unfortunately, using this value to adjust the timing of
user input did not significantly improve the quality of the music produced,
although there is room for further investigation.

An analysis of latency in phase vocoder-based algorithms, such as Pha-
VoRIT, was presented. This analysis includes a method to interpret the
timeline of audio time-stretched using these algorithms, and an examination
of both startup and dynamic latency. The startup latency was determined
to be 2 (Ri − Ro), and the dynamic latency to be 2Ro.

94 3 The Problem of Mappings

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600

m
ed

ia
 p

ro
gr

es
s

[m
s]

time [ms]

initial drift = 2.0, γ = 3.0

Figure 3.26: Asymptotically stable system. The thick red line shows the
user (reference) timebase, the thin blue line shows the audio (dependent)
timebase. Convergence to the desired play rate is exponential, without the
ringing effect of Figure 3.23.

Finally, we presented our work on synchronization algorithms to implement
these time mappings. Unlike existing work, our synchronization algorithms
are suitable for interactive applications where large, abrupt changes to the
reference timebase are possible.

In the next chapter, we will take one last step back, and discuss more
general issues related to representing time and temporal transformations.

95

Chapter 4

Semantic Time

“Time is but the stream I go a-fishing in.”

—Henry David Thoreau

We began this thesis with an abstract overview of time design for interactive
media systems, and introduced the three domains of user, media, and tech-
nology. We then focused the discussion on specific aspects of each domain,
such as gesture recognition and audio time-stretching. In the previous chap-
ter, we took one step back and examined the challenges of mapping time
across domains, detailing our work in analyzing latency and synchroniza-
tion. In this chapter, we will continue this discussion at one final step of
abstraction, and discuss the general issue of representing time and temporal
transformations at the system level.

In everyday life, we refer to distance in multiple ways, using, for example, We often refer to

distance using

semantic units.

“distance to the next exit on the highway”; in other situations, we may use
more absolute units, such as“16 km”or“10 miles”. Unsurprisingly, the same
applies to time; whereas time in an interactive conducting system is best
represented in beats, words or sentences are more suitable units of time
for a speech skimming application. There may even be multiple models
of time within a single system – hopefully by now, it should be apparent
that an interactive media system integrates a wide breadth of research
areas, from psychology to low level signal processing. Each of these areas
may represent time differently: in conducting gesture recognition, time is
typically measured in beats; audio processing, however, usually considers
time as a continuous stream of samples. As a system designer, overcoming
these various models of time is a challenge, one that is made even harder
by introducing interactions that modify the timebase of the media.

96 4 Semantic Time

A Conceptual Model Problem

The conflict in time models across these domains can be summarized as
a conceptual model problem. A conceptual model represents how people
are likely to think about and respond to a system [Liddle, 1996]. Whereas
a musician’s conceptual model of time may be based on notes and beats
of music (“media time”), an audio engineer’s model is more likely centred
around a clock ticking at regular intervals (“clock time” or “presentation
time”). Beats and notes are tied to the semantics of the medium, whereas
the clock is used to sample and reconstruct an analog audio and video
stream. This clock drives, for example, audio sampled at 44.1 kHz and
video at 30 frames per second. While consistently spaced samples are more
convenient to work with from a signal processing perspective, it is usually
not the best unit in which to reference time. A more appropriate unit
of time will be dictated by the specific application: in a computer music
system, it may be music beats; in a speech skimming interface, it may be
words.

For applications that do not manipulate time, these two models do not
conflict. Even though the mapping between music beats and audio samples
is generally non-linear, it does not change when the media is simply played
back at the nominal rate. Consider, however, a more complex example of
an audio clip divided into three segments, where the first segment is time
expanded, the second is time compressed, and the third remains unchanged
(see Figure 4.1). The relationship between beats and samples, which is now
non-linear, can no longer be described as easily.

This incompatibility of time models motivated us to propose a the con-Semantic time

unifies multiple

conceptual models

of time.

cept of semantic time. Semantic time clearly distinguishes between “media
time”, tied to the semantics of the medium, and “presentation time”, the
expression of the media timeline in real-time. Semantic time maintains the
mapping between these two; since the exact unit of media time may depend
on the application, we introduce the abstract styme unit, which is a poly-
morphic unit of media time that is consistent throughout the entire system.
Styme definitions are, of course, independent of the media playback rate
(“presentation time”). For example, four beats of music remain four beats
of music whether they are played back at 60 beats per minute or 120 beats
per minute, and four words of speech remain four words of speech whether
they are spoken at 100 words per minute or 200 words per minute. This
is in contrast to one second of audio sampled at 44.1 kHz, which consists
of 44100 samples when played at its nominal rate, and doubles to 88200
samples when time-stretched at half speed.

4.1 Related Work

The idea of decoupling “media time” and “presentation time” has been pro-
posed before, most notably in music and the media arts.

4.1 Related Work 97

A
B

C
A

B
C

sy
st

em
 m

od
el

 (
“c

lo
ck

 t
ic

k
s”

)

ou
r

co
n
ce

p
tu

al
 m

od
el

 (
“b

ea
ts

”)

ti
m

e

F
ig

u
re

4
.1

:
D

iff
er

en
ce

in
tw

o
co

n
ce

p
tu

al
m

o
d
el

s
of

ti
m

e.
O

n
th

e
le

ft
,
an

au
d
io

cl
ip

is
d
iv

id
ed

in
to

th
re

e
se

gm
en

ts
an

d
sh

ow
s

th
e

tw
o

m
o
d
el

s
of

ti
m

es
:

b
ea

ts
an

d
au

d
io

sa
m

p
le

s.
O

n
th

e
ri

gh
t,

se
gm

en
t

A
is

ti
m

e
ex

p
an

d
ed

an
d

se
gm

en
t

B
is

ti
m

e-
co

m
p
re

ss
ed

,
re

su
lt
in

g
in

a
n
on

-l
in

ea
r

re
la

ti
on

sh
ip

b
et

w
ee

n
th

e
tw

o
m

o
d
el

s.

98 4 Semantic Time

Building on his previous work, Haskore [Hudak et al., 1996], and functional
reactive animation (FRAN) [Elliott and Hudak, 1997], Hudak [2004] pro-
posed a polymorphic data type and theorems for representing temporal
media; time is represented using intervals, and he introduces structural op-
erators such as fold and reverse, and temporal operators such as computing
duration. Hudak also discusses a number of semantic properties, such as
defining the meaning of equivalence of two interval sequences, and in the
end is able to prove both soundness and completeness. The discussion re-
mains very theoretical, and there is no discussion on the implications of his
theory on multimedia systems design.

Representations of time in music have also been studied extensively –
Rogers and Rockstroh [1978] offer one of the earliest discussions on the
challenges between converting notes in a score to digital audio samples; in
particular, they discuss the challenges of implementing synthesizers for con-
verting a textual description of note sequences to a digital audio stream,
especially when a variable tempo is desired. While the discussion is fo-
cused on offline synthesis using MUSIC4 (one of the first software packages
to synthesize music, written by Max Mathews), the challenges they describe
are similar to real-time interaction with temporal media.

More recently, many researchers in computer music have used the distinc-
tion between “score time” and “presentation time” to study expressive tim-
ing in musical performances. Honing [2001] gives an extensive overview of
current work in this area, which he divides into three categories: tempo
functions [Todd, 1992], time-shifts [Ashley, 1996, Bilmes, 1993] and time
maps [Jaffe, 1985, Dannenberg, 1997a]. Tempo functions show tempo
changes over time, time-shifts are plots of deviations from the nominal
beat, and time maps plot score time against presentation time. Figure 4.2
shows the difference between these three representations. Time maps are
the most common representation in computer research, but, as Honing
describes, suffer from a number of limitations: most notably, score time
information is lost when time maps are composed, and concatenation is
limited to a connection in performance time. Honing goes on to propose
a generalized timing function based on a combination of time-shifts and
tempo functions. While such constructs are perhaps more appropriate for
studying expressive timing, our focus is on a consistent and generalizable
model for time when designing interactive media systems. We draw on the
experience gained from these works, rather than simply using them as is.

Like music, distinguishing between multiple timebases is also common in
the film arts. Bordwell and Thompson [2003] describes how in film, there
is a distinction between presentation time, story time, and even capture
time. In cinematography, for example, it is common to film sequences out
of order. During post-production, these captured sequences, or “shots”, are
then edited and reordered to form the final sequence; in many cases, it is
possible to completely change the meaning of an edited sequence by simply
changing the order in which the shots are assembled – a phenomenon known
as the Kuleshov effect [Mobbs et al., 2006]. In this way, a two-hour movie
(presentation time) that was filmed over months (capture time) can be used

4.2 Time as a Hierarchy 99

1 0

sc
or

e
te

m
p
o

presentation time

sc
or

e
ti
m

e
sh

if
t

sc
or

e
ti
m

e

presentation time presentation time

Figure 4.2: Illustration of Honing’s three categories of time representa-
tions. Tempo functions (left) plot score tempo as a function of presentation
time. Time-shifts (middle) plot how much the time has shifted from the
score time at its nominal rate. Finally, time maps (right) plot score time
as a function of presentation time.

to tell a story that spans many years (story time). Davis’ work on Media
Streams [1993] was heavily inspired by these theories in the media arts,
although the emphasis on his work is on metadata tagging for media reuse
and content-based editing, rather than interactive media system design.

Our work on semantic time is inspired by these above works, but differs
from them in that our focus and goal is in simplifying system design.

4.2 Time as a Hierarchy

Semantic time is partially influenced by previous work on temporal inter- Stymes are

hierarchical

intervals of media

time.

vals [Allen, 1983] and denotational semantics [Schmidt, 1986]. We use a
polymorphic semantic time interval, or styme, as the basic unit of time,
which can be recursively defined to represent different abstractions of time
related to the temporal structure of a particular medium. In music, such
a temporal structure could be in the form of beats, pulses and measures
(see Figure 4.3); the beat and measure are defined by the musical score,
and the pulse is defined to be what a human perceives as the “beat” (e.g.,
while tapping alongside the music). The structure could continue upwards
to musical phrases, or downwards to the individual audio samples in the
underlying PCM audio buffer.

One could imagine semantic time as described thus far as an extension
of the MIDI time model to digital audio; however, as we will demonstrate,
semantic time intervals are not limited to beats, pulses, and measures, nor is
semantic time necessarily limited to music. It can be applied to other forms
of media such as speech. Speech exhibits a similar hierarchical structure –
for example, syllables combine to form words, which in turn form sentences
(see Figure 4.4).

The relationship between these interval sequences and presentation time
(the absolute real time in which they occur) are continuous functions which

100 4 Semantic Time

8
6

beats

pulses

measures

Figure 4.3: Example temporal interval structure for three bars of Blue
Danube Waltz by Johann Strauss. The introduction of this piece is defined
in 6/8 time (six musical beats per measure). The pulses represent the
“beat” perceived by a human tapping alongside the music (two pulses per
measure).

hǩlō wǩrld. sǩmantik tīm.

syllables

words

sentences

Figure 4.4: Example temporal interval structure for the phrase, “Hello
world. Semantic time.”.

we call time maps (see Figure 4.5). For example, each beat of music per-Time maps relate

stymes to

presentation time.

formed at 120 beats per minute corresponds to half a second of presentation
time. If, later in the performance, the music slows to 60 beats per minute,
each beat interval now corresponds to one second of presentation time. Our
time maps are similar to the time maps described above [Honing, 2001,
Jaffe, 1985], although we use this representation as a building block for
describing time-based interaction, rather than as a model for representing
time in music.

Describing this mapping from media time (e.g., beats of the music) to
presentation time as a mathematical function also allows us to formally
represent not only position, but also rate (tempo) and acceleration as nu-
merical time derivatives of these time functions. Temporal structures, such
as the swing rhythm of jazz, can also be represented and visualized using
this scheme (see Figure 4.5). Specific applications will be interested in the
relationships between these time functions, and in the remainder of this
chapter, we describe two possible applications of semantic time: synchro-
nization using constraints, and an algebra for representing and manipulat-
ing rhythm.

4.3 Synchronization as Constraints 101

0

0.5

1

1.5

2

2.5

0 1 2 3

m
ed

ia
 t

im
e

[b
ea

ts
]

0

1

2

3

4

0 0.6 1.2

presentation time [s]

forwards and backwards
playback

jazz “swing” rhythm

Figure 4.5: Left: Example plot of media time progression over presenta-
tion time for forwards and backwards playback. Right: Mapping for a jazz
“swing” rhythm.

4.3 Synchronization as Constraints

In the previous chapter, we discussed how synchronization can be achieved
by detailing the algorithms for coordinating two timelines. As Greenebaum
[2007a] describes, synchronization is typically a task that is taken for
granted. Modern VCRs and other media devices typically handle synchro-
nization without requiring any user intervention; even as system designers,
we are more interested in the result (“the audio and video is in sync”),
rather than how it is achieved. Thus, it would seem that synchronization
is best described, from a system point of view, declaratively , where the de-
sired result to be computed is specified. In this section, we will show how
this can be achieved using semantic time.

Existing approaches to describe synchronization usually involve describing
the algorithm or some other means to achieve synchronization – an im-
perative approach. Some of our previous work described in the previous
chapter [2006b, 2007a], for example, presents synchronization in this way.
Other approaches for specifying synchronization in multimedia presenta-
tions, such as Nsync [Bailey et al., 1998] and RuleSync [Aygün, 2003] are
rule-based, and express synchronization of discrete events as conditionals –
Aygün calls this “coarse-grained” synchronization, as opposed to the “fine-
grained” synchronization required to maintain lip-sync between audio and
video. Our requirements for synchronization in interactive media systems
fall under “fine-grained” synchronization, as we seek to maintain a tight
coupling between the user and the media, in addition to synchronization
between individual tracks of media. We also treat time as a continuum,
rather than as a sequence of discrete events. Finally, representing synchro-
nization as rules still only specifies how synchronization is achieved rather
than what the desired result is.

102 4 Semantic Time

Our approach to representing synchronization using semantic time is basedSynchronization is

represented as

constraints on

multiple time

maps.

on constraints. Not only does specifying synchronization in this way allow
us to abstract the details of the synchronization algorithm (the “how”)
from the desired result (the “what”) – it also allows us to flexibly represent
multiple types of synchronization. It is based on the time maps introduced
above. For example, let the time maps for audio, video, and user input be
represented by a(t), v(t), and u(t), respectively. Then, the drift between
two timebases is the mathematical difference between the two maps (e.g.,
a(t) − v(t)). To preserve lip sync, video is usually synchronized as closely
as possible to the audio, equivalent to the constraint that a(t) − v(t) = 0.

However, we may wish to relax the constraint or modify it slightly in certain
situations. For example, if we are not synchronizing audio and video, but
audio to user gestures, we may wish to have the audio follow the beat with
some delay. Usa and Mochida [1998], for example, observed that profes-
sional conductors expect to lead the orchestra by some amount dependent
on their cultural background and the tempo of the music; we also studied
this phenomenon in more detail for both conductors and non-conductors,
to obtain the quantitative results presented in Section 3.1. We found, for
example, that conductors expect the orchestra to follow their beat with a
fixed delay (150 ms for Radetzky March), while non-conductors lead the
beat just slightly (50 ms) on average, but alternate between leading and
following the beat: a non-conductor’s perception of the beat is different and
not as precise as a conductor’s. To support these users, we could modify
the algorithm to support various levels of synchronization based on certain
input parameters; this would, however, require the system designer to have
some understanding of the synchronization algorithm itself. We feel a more
elegant solution is to describe synchronization not as an algorithm, but by
modifying the constraint that links the user u(t) to the audio a(t).

An audio delay of one-quarter of a beat behind the user can be specified
using: u(t) − a(t) = 1

4 beats. Or, if we simply want a relaxed constraint
that allows the user to both lead or even lag behind the music beat by up
to one-eighth of a beat: |u(t) − a(t)| < 1

8 beats. Since our time maps are
defined in styme units, constraints can be specified directly in this manner
– no unit conversion from audio samples to beats is required.

Figure 4.6 illustrates these various synchronization schemes, and we will
revisit synchronization again in subsequent chapters.

4.4 An Algebra for Time

Time maps can also be combined in other ways. In this section, we pro-
pose an algebra for time that allows us to represent manipulations of beat
microtiming in music.

Many types of music, such as a Strauss waltz, have a characteristic off-beat
swing or groove rhythm. This phenomenon has been studied extensively

4.4 An Algebra for Time 103
m

ed
ia

 t
im

e
[b

ea
ts

]

presentation time [s]

a(t) - v(t) = 0 u(t) - a(t) = beats | u(t) - a(t) | < beats

0

0.5

1

1.5

2

0 1 2 3

0

0.5

1

1.5

2

0 1 2 3

0

0.5

1

1.5

2

0 1 2 3

1
4

1
8

Figure 4.6: Visualization of three types of constraints for synchronization.
On the left, the audio and video are exactly synchronized. In the middle,
the audio lags behind the user gestures by one-quarter of a beat. On the
right, the audio is allowed to lead or lag behind the user’s gesture by one-
eighth.

in computer music research; Bilmes [1993] developed techniques for rep-
resenting these microbeat deviations for percussive music; more recently,
Wright and Berdahl [2006] explored machine learning techniques for these
microbeat deviations, also for percussion, to generate expressive perfor-
mances automatically. Jazz swing has also been studied [Ashley, 1996],
and studying the role of beat microtiming in expressive performance re-
mains an active area of research.

Algebras have been studied by mathematicians since the eighth cen-
tury. However, only recently have universal algebras or general alge-
bras been studied more extensively, with groundbreaking work done by
Birkhoff and Mac Lane [1997] in the 1930s. While elementary algebras deal
with the real number system, universal algebras are more abstract. Essen-
tially, an algebra consists of a set A, and a series of operations on this
set [Burris and Sankappanavar, 1982]. n-ary operations are functions from
An to A, where An is the set of n-tuples from A; most common are unary
(n = 1) and binary (n = 2) operations. The semantic time algebra proposed
in this section is one example that falls under this definition, and we will
demonstrate how beat microtiming can be represented and manipulated
using this temporal algebra.

4.4.1 Rhythm Maps

Our algebraic set A consists of rhythm maps. We define a rhythm map to Rhythm maps are

specialized time

maps for music.

be a time map where each measure is normalized, such that each measure
is a mapping from [0, 1) to [0, 1). Each measure of the original musical time
map can be represented by the beat intervals < b0, ..., bn−1 >, where n is
the number of beats in the measure. The rhythm map representation uses
normalized beat intervals, b̃i, and thus each measure of a rhythm map is
represented by < ℓ, b̃0, ..., b̃n−1 >, where ℓ =

∑n−1
i=0 bi is the duration of the

104 4 Semantic Time

measure. The normalized beat intervals can be computed using:

b̃i =
bi

ℓ
=

bi∑n−1
j=0 bj

(4.1)

Any arbitrary rhythm map f(t) with m measures can be represented by a
concatenation of its individual measures:

f(t) = < ℓ0, b̃0
0, ..., b̃

0
n−1 > :: ... :: < ℓm−1, b̃m−1

0 , ..., b̃m−1
n−1 > (4.2)

Concatenation will be discussed in more detail in Section 4.4.2.

Note that a rhythm map remains a continuous curve defined by beat con-
trol points at the boundaries between the normalized beat intervals (see
Figure 4.7). Choosing an appropriate interpolation scheme through these
control points is an interesting research question in itself (it can be com-
pared to selecting an interpolation scheme in computer graphics for drawing
a continuous curve through the control points), and we reserve it for future
work. Nevertheless, semantic time facilitates such experimentation; it also
offers a more general representation than existing systems. Live [Ableton,
2007], for example, linearly adjusts the tempo between warp markers placed
at beat boundaries. This is equivalent to connecting the beat markers using
straight lines, resulting in first-derivative discontinuities in the curve that
manifest as sudden (and jarring) tempo changes at the beats.

We now define and examine three function operators to explore combina-
tions of rhythm maps: concatenation, scaling, and averaging.

4.4.2 Concatenation

The first operator is f(t) :: g(t), the concatenation of the two rhythmConcatenating

two time maps

serializes them in

time.

maps f(t) and g(t) (see Figure 4.8). If f(t) and g(t) comprise of m and
n measures, respectively, then the result is a rhythm map with m + n
measures – this can be easily seen from the definition of a rhythm map as
given by (4.2).

Concatenating rhythm maps do not suffer from the same continuity is-
sues that Honing [2001] describes with time maps, because they are con-
strained to the start and end of a measure. The time map of a piece with
m measures can be completely represented using concatenated one-measure
rhythm maps h0 :: h1 :: ... :: hm−1. Note that this formulation places no
restrictions on the number of beats per measure, and even supports the
alternating time signatures found in ancient folk music or Dave Brubeck’s
jazz compositions.

4.4 An Algebra for Time 105

beat duration

beat
control point

normalized beats

n
or

m
al

iz
ed

 t
im

e

1.00 1.33 1.67 2.000.00 0.33 0.67

1.00

1.33

1.67

2.00

0.00

0.33

0.67

measure 1 measure 2

Figure 4.7: Example rhythm map for two measures of a Vienna Philhar-
monic performance of Blue Danube Waltz . In both measures, the second
beat is played early, and the third beat is slightly delayed. Both beats and
time are normalized to values between [0, 1) (per measure).

4.4.3 Scaling

A rhythm map can also be scaled – the musical equivalent of accentuating Scaling a rhythm

map modifies the

groove.

(scale up) or easing (scale down) its swing. This scenario is very typical
in jazz, since different artists swing differently – contrast Oscar Peterson’s
heavy swing with Bill Evans’ lighter swing, for example. Let us define
α · f(t) as the rhythm map f(t) scaled by α. To compute the scaled beat
intervals for a rhythm map of k beats, we must first transform the beat
intervals to the beat control points in the measure:

pi =

i−1∑

j=0

bj ; p0 = 0 (4.3)

Then, we scale the offset of these beat positions relative to a perfectly
quantized beat:

p′i = α

(
pi −

i

k

)
+

i

k
(4.4)

Finally, we transform the scaled beat positions p′i back to beat intervals b′i
using an inverse of (4.3). Figure 4.9 shows the effect of scaling a rhythm
map.

106 4 Semantic Time

0.
00

0.
33

0.
67

1.
00

0.
00

0.
33

0.
67

1.
00

0.
00

0.
33

0.
67

1.
00

0.
00

0.
33

0.
67

1.
00

0.
00

0.
33

0.
67

1.
00

1.
33

1.
67

2.
00

0.
00

0.
33

0.
67

1.
00

1.
33

1.
67

2.
00

f(
t)

g(
t)

f(
t)

 :
:
g(

t)

n
or

m
al

iz
ed

 b
ea

ts

normalized time

F
ig

u
re

4
.8

:
V

is
u
al

iz
at

io
n

of
rh

y
th

m
m

ap
co

n
ca

te
n
at

io
n
.

T
w

o
si

n
gl

e-
m

ea
su

re
rh

y
th

m
m

ap
s,

f
(t

)
an

d
g
(t

),
ar

e
co

n
ca

te
n
at

ed
to

ge
th

er
to

fo
rm

a
rh

y
th

m
m

ap
w

it
h

tw
o

m
ea

su
re

s.

4.4 An Algebra for Time 107

0.00

0.33

0.67

1.00

0.00 0.33 0.67 1.00

n
or

m
al

iz
ed

 b
ea

ts

normalized time

Figure 4.9: Visualization of a rhythm map scaled by α = 2.0 (200%),
resulting in a more accentuated swing. The dotted blue line shows the
original, unscaled rhythm map.

4.4.4 Averaging

A third operator is combining rhythm maps together using a weighted av-
erage. Rhythm maps can be averaged together only if the number of beats, Averaging

combines two

groove patterns.

and the distribution of beats within each measure, is the same. A rhythm
map can be averaged from N other rhythm maps using the weights βj :

average(β0, f0(t), ..., βN−1, fN−1(t)) =
N−1∑

j=0

βjfj(t) ;
N−1∑

j=0

βj = 1 (4.5)

The beat intervals of the averaged rhythm map are calculated as follows:

b′i =

N−1∑

j=0

βj · bi,j (4.6)

Averaging two rhythm maps has the effect of “mixing” two performances
together (see Figure 4.10). For example, one could take a Vienna Philhar-
monic performance and a Boston Symphony Orchestra performance of the
same piece, and create a new performance with the rhythm characteristics
of both.

108 4 Semantic Time

0.00

0.33

0.67

1.00

0.00 0.33 0.67 1.00

n
or

m
al

iz
ed

 b
ea

ts

normalized time

Figure 4.10: Visualization of two rhythm maps averaged together. The
dotted green and blue lines are the two original rhythm maps, and the thick
red line is the averaged result.

4.4.5 Algebraic Properties

Concatenation, scaling, and averaging can also be arbitrarily combined;
for example, we could take the concatenation of three rhythm maps, the
second of which is a weighted average of two other rhythm maps, and scale
the entire map (see Figure 4.11). These operators, in fact can be shown
to satisfy the properties of a universal algebra, which are briefly described
below.

Closure The three operators of concatenation, scaling, and averaging
satisfy the closure property; that is, it is not possible to construct an entity
using these operators that is not in the set of rhythm maps A as defined
by (4.2).

Identity An identity element e is the so-called “neutral” element – apply-
ing e to the rhythm map using an operator does not change it in any way.
For concatenation, e is the rhythm map with 0 measures. For scaling, e is
α = 1. An identity element does not exist for the averaging operator.

Inverse Inverses are related to the identity elements described above.
Applying an element, i, followed by its inverse, i−1, results in the original

4.4 An Algebra for Time 109

rhythm map before i was applied. Concatenation is not invertible – that is,
it is not possible to construct a rhythm map g−1(t) such that f(t) :: g(t) ::
g−1(t) = f(t). The inverse of a scaling factor α is 1

α
. For averaging, let us

examine the basic case of averaging two rhythm maps with equal weights
(β0 = β1 = 1

2). The inverse f−1(t) of a rhythm map f(t) is then given by
−1 · f(t) – that is, the inverse rhythm map is for an averaging operation is
constructed by scaling a rhythm map by −1.

Association Concatenation and scaling are associative: (f(t) :: g(t)) ::
h(t) = f(t) :: (g(t) :: h(t)) (concatenation), and α · (γ · f(t)) = (α · γ) · f(t)
(scaling). Averaging, however, is not: δ (βf(t) + (1 − β)g(t))+(1−δ)h(t) 6=
δf(t) + (1 − δ) (βg(t) + (1 − β)h(t)).

Commutation Only averaging is commutative: βf(t) + (1 − β) g(t) =
(1 − β) g(t) + βf(t). f(t) :: g(t) is clearly not equivalent to g(t) :: f(t), and
f(t) ·α is not a valid construct, with respect to how we have defined scaling.

Distribution Scaling is distributive over concatenation and averaging
(e.g., α · (f(t) :: g(t)) = α · f(t) :: α · g(t)).

Based on the properties describe above we can also make the following
statements about the structure of our algebra:

• The set of rhythm maps and the concatenation operator form a
monoid.

• The set of rhythm maps, real numbers, and the scaling operator form
a semigroup.

These properties can also be used to algebraically reduce complicated
expressions to show equivalence, solve for unknowns, and even improve
performance. While algebras have been proposed before for animation
[Elliott et al., 1994], there appears to be no existing work that explores
algebras for representing time and temporal transformations in computer
music at this level.

The algebra can also be exposed directly to the end user as a visual language
of interconnected building blocks, similar to Max/MSP (see Figure 4.11).
Such an interface offers interesting possibilities for the user to interact with
the tempo and rhythm of music, and we will discuss our software imple-
mentation of this rhythm algebra in Chapter 6.

110 4 Semantic Time

F
ig

u
re

4
.1

1
:

V
is

u
al

iz
at

io
n

of
a

m
or

e
co

m
p
le

x
rh

y
th

m
m

ap
eq

u
at

io
n
.

T
w

o
m

ap
s,

f
(t

)
an

d
g
(t

),
ar

e
av

er
ag

ed
w

it
h

a
w

ei
gh

t
β
.

T
h
e

re
su

lt
is

th
en

co
n
ca

te
n
at

ed
on

ei
th

er
si

d
e

w
it
h

h
(t

)
an

d
k
(t

).
T

h
e

co
n
ca

te
n
at

ed
rh

y
th

m
m

ap
is

fi
n
al

ly
sc

al
ed

b
y

α
.

4.5 Closing Remarks 111

4.5 Closing Remarks

In this chapter, we introduced our theory of semantic time for representing
time and temporal transformations. Semantic time explicitly distinguishes
between media time and presentation time. Media time is represented as a
common polymorphic temporal unit (the styme). Stymes may be organized
in a hierarchy of intervals, and are tied to the semantics of the media; each
application will have a different interpretation of what constitutes a styme.
The relationship between stymes and presentation time results in a time
map, and we showed how these time maps are useful for representing syn-
chronization and beat microtiming. Synchronization constrains the relative
difference between time maps, and manipulations to beat microtiming can
be defined as operators on time maps. These operators collectively define
an algebra for time.

In the next chapter, we will show how the ideas introduced in this chapter
and the previous ones can be realized in a software framework.

113

Chapter 5

The Semantic Time
Framework

“They say that time changes things,
but you actually have to change them yourself.”

—Andy Warhol

We showed in the last chapters how semantic time, as a common means for
referring to time, facilitates discussion of interactive media system design.
We also exposed some of the issues that designers of these systems may
encounter when mapping time across the user, medium, and technology
domains. The closed-loop synchronization algorithm that we presented
is the primary mechanism to realize this mapping. In this chapter, we
discuss how we incorporated all of these concepts into the Semantic Time
Framework (STF), a software library for building interactive media systems.
STF uses semantic time as the underlying time model, and provides services
to synchronize time. Synchronization can be used to map time from one
domain to another, but can also be used to link two independent timebases
together. For example, we may have two independent sources for audio and
video that we wish to play synchronously. Our framework also incorporates
some of the ideas of declarative programming presented in the previous
chapter.

Multimedia frameworks continue to be actively developed in both industry CLAM is a C++

library for signal

processing and

sound synthesis.

and various fields of research, including computer music and multimedia.
Amatriain [2004] provides an extensive overview of some of these works for
audio and music. Many of the frameworks he describes, including his own
work, CLAM (C++ Library for Audio and Music), focus on low level signal
processing and sound synthesis, and are thus not directly applicable to
building an interactive media system. However, some of these frameworks
offer time models and mappings that are relevant to this discussion.

In computer music, many frameworks allow designers1 to work with the
musical model of time. Hudak et al. [1996], for example, created Haskore,

114 5 The Semantic Time Framework

a language to describe music using functional programming. It includesHaskore is a

language for

music

composition.

data types such as notes and rests, and supports operations such as trans-
posing and tempo scaling. STF supports a more general time model that
generalizes beyond “notes” and music.

As discussed in Chapter 4, representing time in music has been studiedNyquist is a

sound/music

synthesis

language.

extensively, leading to developments such as time maps [Jaffe, 1985], and
time warps [Dannenberg, 1997a]. Time warps are implemented in Nyquist,
a sound/music synthesis language written in Common Lisp [Dannenberg,
1997b], and Jaffe’s time maps are supported as a protocol for synchronizing
to MIDI time code in MusicKit [Smith, 2005]. Honing [2001] has alsoMusicKit is a

Objective-C

library for writing

audio and music

applications.

developed generalized timing functions for music, and he shows a partial
implementation in Common Lisp. All of these frameworks, however, are
not easily extended to other media types other than synthesized music.

More recently, Wang and Cook [2003] developed ChucK , a programming
language for music. While it is also primarily geared towards music, it
is unique in that it was designed for on-the-fly, parallel composition, and
thus includes special mechanisms for interacting with time. InteractionChucK is a system

for on-the-fly,

parallel

composition.

with time is primarily with musical notes, and scheduling notes or note
sequences for playback. The Semantic Time Framework, in contrast, was
designed for systems where users can directly manipulate the timeline of
the media.

There are also a number of commercial computer music packages. Most
notable are Max [Puckette, 2002], and its open source variant, Pure Data
(Pd) [Puckette, 1997]. Max and Pd use a visual programming model,
where processing units, or objects, are linked together into graphs, called
patches (see Figure 5.1). Designers can extend these frameworks by writingMax and Pure

Data are visual

programming

languages for

audio and music.

custom external objects (usually referred to as simply externals) in Java
and C. Max has been actively developed since the mid-1980s, and remains a
popular environment for developing interactive systems for computer music
performances. It is also possible to incorporate digital audio (through the
MSP extension) and video (through the Jitter and Cyclops extensions) into
Max patches. Unlike the Semantic Time Framework, however, there is no
unifying time model across the various media types; Max ’s time model is
based on notes and events, MSP ’s is based on audio samples, and Jitter ’s
is based on video frames.

Outside of computer music, a number of frameworks have also been devel-SAI is a software

architecture for

immersive

systems.

oped for multimedia. François [2004] created SAI, a software architecture
for immersipresence. SAI supports asynchronous parallel processing of
data streams, using message passing to synchronize the streams on specific
events. The primary goal of SAI is to facilitate the construction of inter-
active systems, as demonstrated in [Chew and François, 2003, Chew et al.,

1To avoid overloading the term “user”, which typically refers to end-users of a system,
we will use the word “designer” to refer to the users of a multimedia framework that
design and build systems. The designer, in this case, may or may not be a developer
or programmer – indeed, many users of the computer music frameworks are, in fact,
musicians with little to no coding experience.

115

Figure 5.1: A Max/MSP patch for generating a jazz walking bass pattern,
from [Buchholz, 2005].

2006]. In the SAI architecture, data is provided by sources and processed
using cells. Data is stored in discrete pulses which flow between cells and
sources. Cells can run in parallel, connected by streams that support mes-
sage passing and synchronization (see Figure 5.2). François claims that
this architecture allows for optimum latency in the system, since filters can
be run in parallel and the message passing mechanism ensures that data
processing continues as soon as all the requisite data is ready. However, un-
like the Semantic Time Framework, his architecture treats data as discrete
packets, rather than a continuous stream of data that can be time-expanded
or compressed. Discretizing an audio stream into packets in the way he de-
scribes, for example, can potentially stall the audio pipeline if a processing
node somewhere in the audio path is waiting on a synchronization mes-
sage; STF solves this by dynamically adjusting the rate at which data is
consumed, rather than stopping the flow of data altogether. Moreover, the
synchronization mechanisms in SAI do not take into account the types of
time mappings discussed in this thesis.

The Nsync framework by Bailey et al. [1998] uses constraints to synchronize
media to other media, or discrete user events for multimedia presentations.
More recently, Aygün’s work on spatio-temporal browsing [2003] includes
RuleSync, a rule-based approach for synchronization, also for multimedia

116 5 The Semantic Time Framework

Source
(shared repository)

Passive Pulse:
persistent data

Active Pulse:
volatile data

Cell

Stream
(message passing)

Figure 5.2: Overview of SAI components, from [François, 2004]. Cells
process data provided by sources. Streams connect cells, allowing messages
to be passed between them.

presentations. However, both of these systems use a logical clock to or-Nsync and

RuleSync use

constraints to

synchronize

multimedia

presentations.

der temporal events. User interactions with the multimedia presentation
are primarily discrete events, which Aygün calls “coarse-grained” synchro-
nization, compared to the “fine-grained” synchronization required between
audio and video. These frameworks also do not provide the ability to mod-
ify the timeline of the multimedia; playback control is offered using the
tape recorder metaphors of play and stop.

Media Streams [Davis, 1993] is a framework for manipulating audio andMedia Streams is

a visual

annotation

language for

content-based

retrieval and

editing.

video content. Using a visual iconic language, it is possible to annotate,
retrieve, and reuse media. Davis’ work is heavily inspired by the media arts
[Bordwell and Thompson, 2003], and in his work distinguishes between var-
ious axes of time, including story time, presentation time, and even media
capture time. The emphasis is on media reuse and automatic content-based
editing [Madhwacharyula et al., 2006], rather than real-time interaction.

A number of commercial applications, particularly for professional audio
and video editing such as Final Cut Pro [Apple, 2007c], have features to
synchronize multiple media types together for playback on separate external
devices. However, playback speed, especially for audio, is usually limited
to the nominal speed. Moreover, as these are specific applications and
not frameworks, this functionality cannot be easily incorporated into other
applications.

There exists also a multitude of commercial multimedia frameworks. On
the Windows platform, Microsoft provides XACT for audio development
[Microsoft, 2007b] and the Media Foundation for multimedia playback

5.1 Design Principles 117

[Microsoft, 2007a]. Similarly on the Macintosh platform, there are the Core XACT and Media

Foundation are

multimedia

libraries on

Windows.

Audio [Apple, 2007a], Core Video [Apple, 2007b] and QuickTime libraries
[Apple, 2006b]. Many of these, such as Core Audio and DirectSound, sup-
port only a specific media type (audio). These libraries also reside at a
relatively low abstraction layer – in Core Audio, for example, even the sim-
ple task of playing an audio file requires many operations to create and set
up input and output units. It is possible to extend these low-level frame-
works with custom processing plugins. However, not all designers may wish
to work at such a low abstraction level, and thus more high-level interfaces
are provided in frameworks like QuickTime. Using QuickTime, it is pos-
sible to add simple visual and audio effects to movies, such as transitions
and cross-fades. It is not possible to extend QuickTime to perform custom Core Audio, Core

Video, and

QuickTime are

multimedia

libraries on the

Macintosh.

processing, however, nor is it possible to attach external timing sources to
QuickTime movies. These limitations make it difficult to use QuickTime
by itself for interactive media systems.

Compared to the computer music frameworks described earlier, multimedia
frameworks focus primarily on non-time-based effects and processing. Very
few of the multimedia frameworks described above, for example, support
audio time-stretching. Computer music frameworks, on the other hand,
are difficult to generalize beyond music, but usually expose models of time
closer to the application domain, allowing designers to work directly with
notes and beats. These models of time are closer to the designer’s con-
ceptual model of time in music. This development is not surprising, con-
sidering the key role that time plays in creating expressive performances
[Dobrian and Koppelman, 2006]. Table 5.1 shows a summary of the rele-
vant key features of the multimedia frameworks described so far.

In the remaining sections of this chapter, we will outline our goals and scope
for the Semantic Time Framework, and then proceed with a discussion of
the framework design and architecture, which evolved over two complete
development cycles.

5.1 Design Principles

Our goal with the Semantic Time Framework is to provide designers with a STF is a

meta-framework.high-level interface for multimedia processing, and, more importantly, with
a high-level interface for referring to time. The latter is the key difference
between STF and the other frameworks described above. Our goal is not
to create “yet another multimedia processing framework”, or “yet another
audio synthesis framework”. In a sense, STF might more aptly be called
a “meta-framework”, as it unifies and abstracts components from various
frameworks into a common object-oriented interface. More importantly,
it provides a set of data structures for representing time, and services to
perform temporal operations such as synchronization.

STF, like many modern frameworks, is based on a data flow architecture,
where processing nodes are interconnected to form directed graphs. Graphs

118 5 The Semantic Time Framework

F
ra

m
e
w

o
rk

M
e
d
ia

T
y
p
e
s

T
im

e
M

o
d
e
l

P
u
rp

o
se

sy
n
th

.
m

u
si

c
d
ig

it
al

au
d
io

v
id

eo

C
L
A

M
X

au
d
io

sa
m

p
le

s
si

gn
al

p
ro

ce
ss

in
g

&
so

u
n
d

sy
n
th

es
is

H
as

k
or

e
X

m
u
si

c
m

u
si

c
co

m
p
os

it
io

n

N
y
q
u
is

t
X

X
m

u
si

c
au

d
io

sy
n
th

es
is

M
u
si

cK
it

X
X

n
ot

es
,
sa

m
p
le

s
re

al
-t

im
e

co
m

p
u
te

r
m

u
si

c
ap

p
li
ca

ti
on

s

C
h
u
cK

X
X

n
ot

es
,
sa

m
p
le

s
on

-t
h
e-

fl
y

m
u
si

c
co

m
p
os

it
io

n

M
ax

/M
S
P
,
P

d
X

X
n
ot

es
,
sa

m
p
le

s
re

al
-t

im
e

co
m

p
u
te

r
m

u
si

c
ap

p
li
ca

ti
on

s

J
it
te

r
X

v
id

eo
fr

am
es

re
al

-t
im

e
v
id

eo
p
ro

ce
ss

in
g

S
A

I
X

X
X

lo
gi

ca
l
cl

o
ck

im
m

er
si

v
e

sy
st

em
s

N
sy

n
c

X
lo

gi
ca

l
cl

o
ck

m
u
lt
im

ed
ia

p
re

se
n
ta

ti
on

R
u
le

S
y
n
c

X
lo

gi
ca

l
cl

o
ck

m
u
lt
im

ed
ia

p
re

se
n
ta

ti
on

M
ed

ia
S
tr

ea
m

s
X

X
st

or
y

ti
m

e
co

n
te

n
t-

b
as

ed
ed

it
in

g

X
A

C
T

X
au

d
io

sa
m

p
le

s
au

d
io

p
ro

ce
ss

in
g

M
ed

ia
F
ou

n
d
at

io
n

X
m

ov
ie

ti
m

e
co

n
te

n
t

p
re

se
n
ta

ti
on

C
or

e
A

u
d
io

X
au

d
io

sa
m

p
le

s
au

d
io

p
ro

ce
ss

in
g

C
or

e
V

id
eo

X
v
id

eo
fr

am
es

v
id

eo
p
ro

ce
ss

in
g

Q
u
ic

k
T

im
e

X
X

X
m

ov
ie

ti
m

e
m

u
lt
im

ed
ia

p
re

se
n
ta

ti
on

T
a
b
le

5
.1

:
S
u
m

m
ar

y
of

k
ey

fe
at

u
re

s
of

va
ri

ou
s

co
m

p
u
te

r
m

u
si

c
an

d
m

u
lt
im

ed
ia

fr
am

ew
or

k
s.

5.2 Semantic Time Framework Version 1 (STFv1) 119

are terminated with inputs (such as a file on disk) on one end and outputs
(such as the audio hardware) on the other. As the media flows from the STF is based on a

data flow

architecture.

input to output, it is processed by the nodes along its path. As discussed
by François [2004], the data flow architecture has many advantages for real-
time processing of media streams such as audio and video. As a modular
architecture, it is easier to maintain existing systems as well as reuse com-
ponents for new systems. Separating the processing into well-defined units
also facilitates parallel processing.

In addition to the flow of media data, the second aspect of STF is the flow Semantic time is

an integral part of

STF.

of temporal information, which includes the corresponding semantic time
information for a media stream, and temporal control information to control
the flow of streams through the graph. While this temporal flow is related
to the flow of media data (in STF, the temporal flow is a superset of the
data flow), they are, in theory, separable and can be analyzed separately.

STF evolved over two iterations, which we will refer to as STFv1 and
STFv2, respectively.

5.2 Semantic Time Framework Version 1 (STFv1)

STFv1 was based on the design experience we accumulated while build-
ing interactive conducting systems, including The Virtual Conductor
[Borchers et al., 2004] and You’re the Conductor . It was first introduced
in [Lee et al., 2006b], and formed the foundation for Maestro! [Lee et al.,
2006d].

5.2.1 Design

STFv1 consists of the following components: STFv1

applications are

structured in

directed, acyclic

graphs.

• Timebases: Data structures and utilities for converting between
stymes and audio samples or video frames.

• Streams: Streams are the edges of a STFv1 graph that link the effects
to each other. A stream holds both the media data to be processed,
such as audio samples or video frames, and the semantic time in-
formation for that data. This time information is stored parallel to
the data; that is, each audio sample has an associated semantic time
value.

• Effects: Effects are the vertices in a STFv1 graph. Each effect per-
forms some type of processing on the media.

• Graphs: Each STFv1 application has a single graph composed of
effects (the vertices) interconnected with streams (the edges).

120 5 The Semantic Time Framework

Timebases

Timebases are used to map semantic time to the medium timeline at theTimebases map

semantic time to

medium time.

input of the graph. For example, if our styme is beats, the mapping for an
audio file on disk would be the beat to audio sample number mapping. This
mapping must be bijective – each point on the semantic time timeline maps
to exactly a single point in the audio, and vice versa. This mapping can,
of course, be represented in a variety of ways. Some mappings are better
represented as mathematical functions, such as a mapping from media time
in seconds to samples. Mapping beats to an audio recording is best done
numerically, since beats in a musical performance are usually not evenly
spaced. We use a lookup table for beat mappings, where a beat is an
interval of samples, and linearly interpolate between beat values. Timebases
are used to compute the semantic time values for each audio sample and
video frame that enters the graph; this sequence of paired semantic time
values and media samples are then sent through the graph for processing.

Streams

Streams encapsulate paired time values and media samples. STFv1 sup-Streams carry

both time and

media data.

ports two types of streams, audio and video, which differ only by the data
they store (one stores audio samples, the other stores video frames).

Effects

STFv1 effects are used to process the media; examples are audio equaliza-Effects process

media data. tion and colour balance adjustment. Effects have both input and output
ports: effects acquire data to process through their input ports and pass
the processed data out through their output ports. Each input port can be
connected to at most one output port of one effect; likewise, each output
port can be provide data to at most one input port of one effect. There are
four special classes of effects in STFv1:

• Input : Input effects only provide data (for example, from a file on
disk). An example of such an effect is STMReader, a multi-threaded
input effect that streams audio and video data from disk. STMReader
also parses the semantic time metadata and computes the correspond-
ing semantic time values for each audio sample and video frame using
a timebase.

• Output : Output effects terminate a graph, and thus have only in-
put ports. There can be more than one output node per graph,
usually one per media type. Two examples of output effects
are CoreAudioOutput, which renders audio using Core Audio and
QuickTimeOutput, which displays video to the screen using Quick-
Time.

5.2 Semantic Time Framework Version 1 (STFv1) 121

s
0
' s

1
'

input

output

∆s

s

s'

playback rate 1.0 2.00.5

Figure 5.3: Semantic time mapping for the AudioTimeStretch effect in
STFv1. The semantic time value stored with each audio sample, s, must
be recomputed when the audio is time-stretched, using the corresponding
sample, s′, in the original audio.

• Time-stretch: These effects perform time-based processing on the me-
dia, such as altering the play rate. AudioTimeStretch, for example,
uses PhaVoRIT to time-stretch the audio. Since time-stretching, es-
pecially for audio, alters the temporal meaning of data samples, addi-
tional logic is required to update the semantic time to media sample
mapping, described below. Time-stretch effects typically have the
same number of input and output ports.

• Sync: These effects synchronize multiple streams based on their se-
mantic time values. The Synchronize effect, for example receives
the current time (in units of stymes) and rate (in stymes/s) from an
external source, and synchronizes the media streams attached to it
using this external reference, using the algorithms presented in Sec-
tion 3.4. The adjusted rate it computes is sent to the preceding effect
upstream, which must always be a time-stretch effect. Sync effects
do not actually perform any processing on the data that is streamed
through it, and thus always have the same number of input and out-
put ports.

For effects that do not modify the timeline of the audio, such as a simple
volume adjustment, the semantic time values can simply be copied from
input to output. Time-stretch effects such as AudioTimeStretch, however,
alter the timing of the audio stream. Thus, they must also compute new
semantic time values that correspond to the time-stretched audio samples.
Figure 5.3 illustrates how this mapping is computed, which is based on the
method of interpreting time-stretched audio described in Section 3.3.1.

122 5 The Semantic Time Framework

The output block starts at sample s0 and ends at sample s1, and the cor-
responding input block starts at sample s′0 and ends at sample s′1. These
values are known, since they can be computed based on the input and
output hop factors used for time-stretching, as described in Section 3.3.1.
We first compute the input sample number s′ that corresponds to a given
output sample number, s:

s′ =
s − s0

s1 − s0

(
s′1 − s′0

)
+ s′0 (5.1)

We would now like to compute the semantic time value τs for the output
sample s, given the semantic time value τ ′

s′ for input sample s′. The map-
ping function τ ′

s is only valid for integer values of s′; however, the value of
s′ computed using (5.1) will almost always lie between two samples, and
thus we must interpolate between these samples. In this implementation,
we use simple linear interpolation, since the time interval between samples
is small:

τs =
s′ − ⌊s′⌋
⌈s′⌉ − ⌊s′⌋

(
τ ′
⌈s′⌉ − τ ′

⌊s′⌋

)
+ τ ′

⌊s′⌋ ; ⌈s′⌉ > ⌊s′⌋ (5.2)

Graphs

STFv1 graphs specify the interconnections between effects. They are di-Graphs

interconnect

effects.

rected and acyclic [Cormen et al., 2001]. Figure 5.4 shows an example of a
basic STFv1 graph with both audio and video processing chains. Generic
media processing effects, such as adjusting the colour balance of the video,
can theoretically be inserted anywhere in the graph. It is also, in theory,
possible to have multiple cascading trees of time-stretch and sync effects.
In practice, however, there is seldom any reason to create such a complex
topology, and by rearranging the order of effects, it is possible to describe
STFv1 graphs in the following manner:

Gn = syncn (I0, ... , In−1)

I = timestretcha (Ca) | timestretchv (Cb)

Ca = inputa | Ea

Ea = effecta (Ca,0) | effecta (Ca,0, Ca,1) | ...

Cv = inputv | Ev

Ev = effectv (Cv,0) | effectv (Cv,0, Cv,1) | ...

An STFv1 graph with n media types terminates with a sync effect con-
nected to n output effects, which render the streams to the hardware. Sync

5.2 Semantic Time Framework Version 1 (STFv1) 123

STMReader

AudioTimeStretch

VideoTimeStretch

Synchronize

CoreAudioOutput

QuickTimeOutput

DigitalAudioStream

DigitalVideoStream

DigitalAudioStream

DigitalVideoStream

DigitalAudioStream

DigitalVideoStream

Figure 5.4: Example STFv1 graph, where a movie is read from disk and
split into two processing chains, one for each of audio and video. The audio
and video are time-stretched individually, and then synced to an external
reference timing source before output to the hardware.

effects must be preceded by either an audio or video time-stretch effect, and
there must be exactly n of these time-stretch effects. There is a one-to-one
correspondence between time-stretch effects and output effects. The input
to a time-stretch effect is a tree of other effects, which terminate with in-
puts of the corresponding media type. It is possible for the media to come
from a single data source on disk, as shown in Figure 5.4. Extending the
framework to include other types of media requires implementing another
instance of the input, output and time-stretch effect types. Sync effects do
not process the data, and thus do not need to be modified.

In addition to the topology structure outlined above, an STFv1 graph has
three possible states:

• Created : The initial starting state. Modifications to the graph topol-
ogy are still allowed after a graph have been created, up until it is
initialized.

• Initialized : During initialization, the graph is traversed to check for
structural errors (for example, a video stream cannot be used to in-
terconnect two audio effects). Computational resources are also al-
located at this time. After a graph has been initialized, its topology
may no longer be changed.

• Started : Starting the graph initiates the flow of data through it.
Graphs are executed using a “pull” model, where the output effects
request data from their input effects, which in turn request data from
their input effects, and so on.

After a graph is started, it can be stopped, which puts it back into the
“initialized” state. A graph can also be uninitialized, which frees up com-
putational resources and puts it back further to the“created” state, thereby
also re-enabling topology changes.

124 5 The Semantic Time Framework

5.2.2 Implementation

STFv1 was implemented in C++. It uses the Agraph C librarySTFv1 uses the

Agraph library for

graph creation

and traversal.

[North, 2002] for building and traversing the graph structure. Agraph
is part of GraphViz , a set of open source graph visualization tools
[Gansner and North, 1999]. An Agraph structure can be defined using the
DOT language [Gansner et al., 2006]). The graph description is stored in
a text file, which is loaded at run-time. For STFv1, we use only a subset of
the language, and impose some additional semantics (see Figure 5.5). The
name of the effect is specified in the first line of the “label” field of a vertex
declaration; subsequent lines (delimited with “\n”) can be used for human-
readable comments. There is a one-to-one correspondence between the
effect name and a class in the framework: for example, AudioTimeStretch
will create an instance of the class STF_AudioTimeStretch. Similarly for
streams, the first line of the label field specifies the stream type. The
“sametail” and “samehead” fields specify the ports to which the stream is
connected: the tail of a stream connects to the output port of an upstream
effect, and the head connects to the input port of a downstream effect.2

While it is also possible to create and modify graphs in code, using the
markup language has the benefit that graphs can be modified without hav-
ing to recompile the application, and can moreover integrate with other
tools for viewing or interactively editing graphs.

Audio and video in STFv1 are rendered using Core Audio and QuickTime,
respectively. QuickTime does not provide access to individual video frames,
and we worked around this limitation by simply storing a reference to the
entire QuickTime movie in the stream, together with the current movie
time and corresponding semantic time.

Movie data imported using the STMReader input effect is stored on disk
as a “semantic time movie bundle”, which is a directory on disk. A movie
bundle must contain a semantic time metadata file, one or more audio files,
and one video file.

5.2.3 Discussion

STFv1 was used for the media engine in the Maestro! interactive conduct-
ing system. In the next chapter, we will show how STFv1 was able to
simplify and generalize our previous conducting system architectures. The
STFv1 architecture, however, does have a number of limitations, described
below.

STFv1 is based on a data flow architecture, which is applied to both theThe data flow

architecture in

STFv1 for

semantic time is

limiting.

data and the semantic time values. As discussed at the beginning of this

2 Some may find it counter-intuitive to think about the data flowing from the “tail”
to the “head”, rather than the other way around. However, this terminology was carried
over from DOT, where “head” and “tail” refer to the orientation of the arrow pointing
between vertices, not the flow of data.

5.2 Semantic Time Framework Version 1 (STFv1) 125

digraph SimpleSTFv1Graph

{

/* Create effects (vertices) */

Input [label = "STMReader\nMy Really Awesome Movie"];

AudioOutput [label = "CoreAudioOutput"];

AudioTimeStretch [label = "AudioTimeStretch\nPhaVoRIT"];

VideoTimeStretch [label = "VideoTimeStretch"];

VideoOutput [label = "QuickTimeOutput"];

Synchronize [label = "Synchronize"];

/* Link effects together with streams */

Input > AudioTimeStretch [label = "DigitalAudioStream"

sametail = "0"

samehead = "0"];

Input > VideoTimeStretch [label = "QuickTimeVideoStream"

sametail = "1"

samehead = "0"];

AudioTimeStretch > Synchronize [label = "DigitalAudioStream"

sametail = "0"

samehead = "0"];

VideoTimeStretch > Synchronize [label = "QuickTimeVideoStream"

sametail = "0"

samehead = "1"];

Synchronize > AudioOutput [label = "DigitalAudioStream"

sametail = "0"

samehead = "0"];

Synchronize > VideoOutput [label = "QuickTimeVideoStream"

sametail = "1"

samehead = "0"];

}

Figure 5.5: Example STFv1 graph description for the visual representa-
tion shown in Figure 5.4, using the DOT language. The first block declares
the effects, which are linked together in the second block with streams.

chapter, the data flow architecture has a number of advantages, as it is
both modular and easily parallelized. For media processing, the data flow
architecture is an appropriate one, as shown by François [2004]. How-
ever, applying this architecture to semantic time results in a number of
drawbacks. One drawback is that the semantic time information must be
converted to a similar data flow form; at the input effect, the semantic
time information is “rendered” to a stream of values that are stored parallel
to the data. Performing this conversion consumes both processing power
and memory resources: especially for audio, where a semantic time value
is stored together with each sample of data, the memory requirements are
doubled. Moreover, this conversion of semantic time values to a stream can
result in a loss of information; if our semantic time metadata included not
only beats, but, for example, measures, or even page numbers in the score,
such information would be lost. Representing semantic time values as a
stream of sampled values is not easily generalizable to support this hierar-
chical representation. A second drawback is that synchronization must be
represented in the framework as an effect. However, sync effects are differ-
ent from other effects in that they modify neither the data nor the semantic

126 5 The Semantic Time Framework

time values. Thus, it would seem inappropriate to call them “effects”.

The data flow architecture is an imperative model: a data flow graph ex-
plicitly shows how the data should be processed. The declarative program-
ming model, however, is more suitable for the representations of time and
temporal transformations that we discussed in Chapter 4; we are more in-
terested in specifying what the result should be, rather than how it should
be computed. One option would be to adopt an entirely declarative ar-
chitecture for STF. Orlarey et al. [2004] discuss the advantages of such an
architecture over the traditional data flow architecture, such as the abil-
ity to establish formal semantics and support for recursive computations.
They also created FAUST (Functional Audio Streams), a framework for
real-time audio signal processing and synthesis. FAUST is based on an
algebra of composition operators [Orlarey et al., 2002] organized in a tree
structure, and demonstrates the feasibility of such an architecture. It is
not clear whether such an architecture generalizes from a signal processing
framework to a multimedia processing framework. Moreover, from a prac-
tical perspective, adopting such an architecture, which is radically different
from existing, common multimedia frameworks, raises the adoption barrier
for new designers – they would not be able to easily apply their existing
knowledge and expertise with building systems using the more common
data flow architecture.

The most appropriate solution appears to be a hybrid architecture, where
the data flow architecture continues to be used for media processing, and
a declarative model adopted for representing and manipulating semantic
time. Doing so also removes the requirement to represent synchronization
as an effect, which leads to an additional architectural improvement. Re-
call from our discussion in Section 5.2 that an STFv1 graph consists of
multiple, independent trees of effects that are linked together just before
the output effects with a sync effect. Removing the sync effect from the
graph effectively decouples the graph into multiple, smaller graphs, one for
each media type. Since these subgraphs are independent, modularity of the
framework can be increased.

5.3 Semantic Time Framework Version 2 (STFv2)

STFv2 is based on a hybrid data flow and declarative architecture. We con-STFv2 uses a

hybrid data flow

and declarative

architecture.

tinue to use the data flow model from STFv1, but adopt a declarative model
for representing time. An STFv2 application no longer consists of a single
graph; instead it is built from multiple data processing pipelines that can be
synchronized using constraints. An STFv2 pipeline maintains the directed
acyclic graph structure; however, we prefer the term pipeline for a number
of reasons. Each pipeline has only a single output node, and thus can al-
ways be, at least theoretically, unravelled into a tree structure (it would be
necessary to introduce duplicates of the output node, which implicitly per-
forms a mix-down). For a large majority of STFv2 applications, including
the ones presented in this thesis, these trees rarely exceed a width of two.

5.3 Semantic Time Framework Version 2 (STFv2) 127

Rate Changer

N
od

e

dependent time

N
od

e

reference time

Synchronizer

Figure 5.6: Conceptual model of STFv2. Media streams flow through
pipelines; each type of media (e.g., audio, video) has its own pipeline. Nodes
along the pipeline process the data. A valve on the pipeline adjusts the
stream’s flow rate. Synchronizing the streams ensures buoys placed at var-
ious points in the stream arrive at their respective outputs simultaneously.
This is accomplished by continuously monitoring the buoys (semantic time)
that exit the pipelines and adjusting the valve appropriately.

Thus, calling the processing structure a “graph” or a “tree” is somewhat of
a misnomer, as the terms imply a much more complex structure. The term
pipeline is also more fitting to the conceptual model that we wish to convey
to designers for STFv2. Media data flows through the pipeline in contin-
uous streams, and nodes along the pipeline process the data that passes
through it. Time-stretching is analogous to placing a valve somewhere in
the pipeline to control the rate at which the stream flows through. If buoys
were placed along these streams, then synchronization can be described as
a mechanism that monitors these buoys as they flow through the pipelines,
and adjusts the valves periodically to ensure that the corresponding buoys
exit the pipeline at the same time (see Figure 5.6).

5.3.1 Design

STFv2 consists of the following components:

• Time maps: Time maps are an extension to STFv1 timebases, and
correspond to an implementation of the time functions presented in
Chapter 4. Unlike timebases, whose only role was to provide a bijec-

128 5 The Semantic Time Framework

tive mapping from semantic time to media samples to input effects,
time maps are persistent throughout an entire STFv2 pipeline.

• Nodes: Nodes are similar to STFv1 effects. Unlike effects, however,
nodes are interconnected to each other directly to form pipelines.

• Pipelines: A sequence of nodes of the same media type. Each pipeline
processes a single media type, such as audio or video.

• Synchronizers: Synchronizers monitor the semantic time flowing
through a pipeline relative to a reference and adjust the rate of the
pipeline to ensure synchronicity.

Time Maps

Time maps retain the bijective mapping property of STFv1 timebases.Time maps persist

throughout a

STFv2 pipeline.

However, time maps persist through a pipeline, rather than converting them
into a sequence of discrete semantic time values. Since this conversion is
no longer performed, all information in a time map is preserved through-
out the entire pipeline. Time maps can be arbitrarily complex – while a
simple time map may consist of the trivial media sample to media time in
seconds mapping, a time map for representing music could represent the
full hierarchy of temporal information in a musical score, including beats,
pulses, measures, and so on.

Nodes

STFv2 nodes are similar to effects in STFv1. The primary difference is thatNodes are

analogous to

STFv1 effects.

nodes are connected to each other directly, instead of through streams. A
node may have zero or more data sources, which provide it with data, and
zero or more sinks, which consume processed data. As in STFv1, there are
three special classes of nodes: input, output, and rate-changer. Input and
output nodes are analogous to input and output effects. Rate-changer is
adopted as a more general term for time-stretcher; strictly speaking, time-
stretching only applies to audio, since it is changing the play rate of audio
while preserving the pitch. Examples of other types of rate-changer nodes
are audio resampling and video frame interpolation.

Pipelines

Nodes are assembled to form pipelines. Each pipeline may have only oneEach media type

has its own

pipeline.

output; while there are no restrictions placed on the number of inputs,
there are seldom more than two input nodes in an STFv2 pipeline. Each
pipeline processes only one media type, such as audio or video.

5.3 Semantic Time Framework Version 2 (STFv2) 129

Audio
Input

Audio
Rate Changer

Audio
Output

Video
Input

Video
Rate Changer

Video
Output

Synchronizer

audio time

Synchronizer

video time

rate

rate

reference time

Figure 5.7: An STFv2 pipeline structure that is equivalent to the graph
in Figure 5.4. Synchronization is no longer represented as a node/effect in
the system, but is a separate, independent mechanism that links pipelines
using temporal constraints.

Synchronizers

Synchronizers are no longer classified as an effect (or, in STFv2 terms, Synchronization is

specified as a set

of constraints.

a node). If we consider the time flowing through a pipeline p as a time
function tp, then a synchronizer is said to link a dependent pipeline pdep

to a reference pipeline pref ; that is, a synchronizer can be represented as
the function sync

(
tpref

, tpdep

)
. This formalism allows us to represent many

types of synchronization. For example, let us say a user marking beats
with conducting gestures is the reference, tuser, and the audio pipeline
tpaudio

is our dependent. To keep the audio synchronous to the user’s ges-
tures, our synchronizer function sync (tpuser , tpaudio

) would be defined as
tuser − tpaudio

= 0. If, instead, we wanted the audio to lag behind the user
by one-quarter of a beat as a conductor would expect, we could change the
definition to tuser − tpaudio

= 1
4 . A non-conductor may find such precise

tracking to be disturbing, and so we could again redefine the synchroniza-
tion function: |tuser − tpaudio

| < 1
8 . This definition specifies a relaxed con-

straint, and the user is allowed to lead or lag the beat by up to an eighth
of a beat. This representation of synchronization directly corresponds to
the semantic time algebra representation of synchronization presented in
Chapter 4.

More concretely, synchronizers are always linked to a rate-changer node on
the dependent pipeline. It periodically collects time information from the
output node of the reference and the dependent pipelines, and adjusts the
rate parameter of the rate-changer node to keep the streams synchronous.
Figure 5.7 shows how the STFv1 graph in Figure 5.4 is represented using
STFv2 components.

130 5 The Semantic Time Framework

5.3.2 Implementation

For the implementation, a number of changes were also adopted for STFv2,STFv2 is

implemented in

Objective-C, a

Smalltalk-like

object-oriented

language.

and STFv2 is an entirely new code base compared to STFv1. C++ was
abandoned in favour of Objective-C. Objective-C is an objective-oriented
extension of C, much like C++. Unlike C++, however, Objective-C is based
on the Smalltalk design, and thus offers a number of advantages over C++,
most notably dynamic typing, binding, and loading [Roehrl and Schmiedl,
2002, Borchers, 2006]. The foundation libraries that are native to the Mac-
intosh platform also provide additional infrastructure support, such as stan-
dard container classes and reference counted objects.

As STFv2 pipelines are much simpler compared to STFv1 graphs, we de-
cided not to re-adopt Agraph and the DOT description language again for
STFv2. The DOT description of a STFv1 graph is not complete, in any
case: it does not include the rate control information that flows from sync
effects to time-stretch effects. This connection was implicit in STFv1, and
we wanted to make this aspect more explicit in STFv2.

Another improvement is the introduction of a Core Video implementa-
tion for video rendering; Core Video is a video presentation pipeline that
was released with Mac OS 10.4 in mid-2005, after development on STFv1
had completed. Core Video provides access to individual video frames as
OpenGL textures; these textures can be processed using Core Image, a
hardware accelerated image processing framework. Core Image includes a
number of image processing filters, including distortion, colour correction,
and compositing effects [Apple, 2007b]; it can also be extended with custom
Image Units. Thus, the workaround for video playback using QuickTime
that was required for STFv1 is no longer necessary. Core Image also offers
a larger variety of effects that can be applied to the video frames before it
is rendered to the display. Individual Core Image effects, or entire chains
of Core Image effects, can be placed into a STFv2 node.

The threading architecture was also re-designed in STFv2. Core Audio
and Core Video pull data on high priority I/O (input/output) threads.
While stalling the Core Video I/O thread does not have any adverse effects
other than skipped frames, stalling the audio I/O thread with memory
allocation or a mutex creates gaps in the resulting audio that are highly
disturbing to the listener. In STFv2, all audio processing is performed on
a secondary fixed priority thread, and then sent to the high priority audio
thread through a shared buffer. A small amount of data is buffered to
ensure the audio I/O thread does not stall; while this scheme introduces
a small latency from the time an audio block has finished processing to
the time it hits the speaker, such an architecture is also more robust to
programmer error.

STFv2 is distributed as open source, under the terms of the GNU GeneralSTFv2 is an open

source library. Public License [Free Software Foundation, 1991]. Source code and accom-
panying documentation are available at http://styme.org.

http://styme.org

5.3 Semantic Time Framework Version 2 (STFv2) 131

5.3.3 Discussion

STFv2 is a significant improvement over STFv1. In the next chapter, we
will show the use of STFv1 and STFv2 allowed us to simplify the architec-
ture of our interactive conducting systems. A single system, of course, is
not sufficient to demonstrate the applicability of STF to the more general
class of interactive media systems.

The problem of how to evaluate a framework remains a matter of some
debate. Unlike end-user systems, which can be evaluated by performing
user studies, verifying correctness of the output, or measuring performance,
a framework such as STF is a tool for building systems, not the system itself.
Myers et al. [2000] discuss the impact of toolkits on user interface design
and software development, and present a number of themes for evaluating
toolkits. Most notably, they recommend new tools to be designed with the
goals of both low threshold for adoption, and a high ceiling of functionality.

A toolkit with a low threshold is easy to learn, and easy to apply to cre- Frameworks can

be evaluated

using criteria of

low threshold and

high ceiling.

ate applications. STFv2 accomplishes this by providing high-level abstrac-
tions based on the pipeline model to designers and designers of interactive
media systems. Myers et al. [2000] recommend against including formal-
language-based systems, as it requires designers to learn and use unfamil-
iar programming concepts. This argument supports our decision to not
adopt a declarative model for the media processing in STFv2. Some toolk-
its adopt constraints to specify relationships between entities; the subArctic
toolkit, for example, uses constraints to specify the layout of user interface
elements, including position and size [Hudson and Smith, 1997]. While
constraints can be specified easily and simply, constraint solvers can also
sometimes produce unpredictable results, particularly when the set of con-
straints becomes large. We use constraints to specify synchronization in
STFv2; the number of pipelines in a typical interactive media system is mi-
nuscule compared to the number of elements in a graphical user interface,
and thus, we also do not suffer from this problem of large constraint sets.
Moreover, constraints appears to be the simplest and most elegant way to
specify synchronization, since an imperative model requires the designer to
have intimate knowledge of the synchronization algorithm itself [Lee et al.,
2006b].

In addition to a low threshold, toolkits should also allow designers to imple-
ment a high ceiling of functionality. STFv2 builds on a variety of low-level
multimedia frameworks, including Core Audio, Core Video, and Quick-
Time. These frameworks are used in a large variety of professional mul-
timedia applications, including Final Cut Pro for video editing, Logic for
audio effects, and Aperture for photography post-production. Thus, we feel
STFv2 provides, without doubt, a high ceiling of functionality for real-time
media processing. We will focus the remainder of our discussion on an
evaluation of the semantic time model, and demonstrate, through a series
of examples, how our declarative approach of representing time allows us
to not only easily specify synchronization, but also specify more complex

132 5 The Semantic Time Framework

operations, such as the temporal algebra for beat microtiming presented in
Chapter 4. The following two exemplify how the Semantic Time Frame-
work can be used to solve two common scenarios: synchronous playback of
audio and video from separate sources, and playback of audio synchronized
to an external timing source.

5.3.4 Example: HelloSTF

HelloSTF is an example that demonstrates how the Semantic Time Frame-HelloSTF

synchronizes

audio and video

from separate

data sources.

work can be used to synchronize media from separate sources to each other.
This synchronization problem is an important one, as described in [Lee,
2007a]. Modern media devices are timed using an internal clock, usually
based on a quartz crystal oscillator. Since quartz crystals can only be built
to finite specifications, the actual oscillation frequency will always deviate
from the desired one. Moreover, external factors such as temperature and
age can affect the oscillation frequency. A typical oscillator used in modern
personal computers has an accuracy of approximately 300 parts per million
[Integrated Circuit Systems, 2005], and at an oscillation frequency of 400
MHz, the error could be as much as one second every hour. Thus, data
clocked from separate sources will always drift apart over time – much like
how two initially synchronized clocks will show a noticeably different time
a few days later.

In HelloSTF, we simulate a scenario by using audio and video data stored
separately on disk. The audio consists of 50 millisecond tones spaced one
second apart. The video, likewise, consists of a continuous sweeping circle
at a rate of one revolution per second. To simulate clock drift, however,
the last three seconds of the video have been sped up by one-third. There
are two time maps, one for each of the audio and video, where each period
between tones and each revolution of the sweeping circle is divided into
thirty evenly-spaced semantic time intervals. In a real-life scenario, this
semantic time information could be, for example, replaced by the media’s
SMPTE time code.

The following code segment creates the nodes for the audio pipeline, which
consists of an STAudioOutputNode for rendering the audio to a Core Audio
device, an STAudioPhaseVocoder node for time-stretching audio, and an
STFileReaderNode for streaming audio from a file on disk:

m_audioOutputNode = [[STAudioOutputNode alloc] init];

m_audioRateChangerNode =

[[STAudioPhaseVocoderNode alloc] init];

STAudioFileReaderNode *audioFileReaderNode =

[[[STAudioFileReaderNode alloc] init] autorelease];

To establish the pipeline, the nodes must be linked together:

5.3 Semantic Time Framework Version 2 (STFv2) 133

[m_audioOutputNode setDataSource:m_audioRateChangerNode];

[m_audioRateChangerNode setDataSource:audioFileReaderNode];

We also need to tell the STAudioFileReader object where to get its data
from, which includes both the time map as well as the audio samples:

[audioFileReaderNode setPath:audioDataPath];

STBeatMap *audioBeatMap = [[[STBeatMap alloc]

initWithContentsOfFile:audioStymePath] autorelease];

[audioFileReaderNode setTimeMap:audioBeatMap];

The video pipeline is created in a similar manner. Video is rendered to
a portion of the display, and in a Cocoa-based Mac OS X application,
this must be a subclass of NSOpenGLView. STFv2 provides an imple-
mentation of such a subclass, STVideoView, and an instance of this class
is created using the Interface Builder tool for laying out the graphical
user interface elements in the application. The STVideoOutputNode in-
stance can then be obtained directly from the STVideoView instance. A
STVideoFileReaderNode streams video from disk, and also acts as a rate
changer node. A STVideoFileReaderNode must also be told in what format
it should produce video frames.

m_videoOutputNode = [[m_videoView videoOutputNode] retain];

STVideoFileReaderNode *videoFileReaderNode =

[[STVideoFileReaderNode alloc] init];

m_videoRateChangerNode = videoFileReaderNode;

[m_videoOutputNode setDataSource:videoFileReaderNode];

[videoFileReaderNode setPixelFormat:

[m_videoView graphicsPixelFormat]];

[videoFileReaderNode setOpenGLContext:

[m_videoView graphicsContext]];

[videoFileReaderNode setPath:videoDataPath];

STBeatMap *videoBeatMap = [[[STBeatMap alloc]

initWithContentsOfFile:videoStymePath] autorelease];

[videoFileReaderNode setTimeMap:videoBeatMap];

After the pipelines have been created, they must be initialized:

[m_videoOutputNode setUp];

[m_audioOutputNode setUp];

Likewise, sending the pipelines the start message begins playback of the
audio and video:

[m_videoOutputNode start];

[m_audioOutputNode start];

134 5 The Semantic Time Framework

Audio
Input

Audio
Rate Changer

Audio
Output

Video
Input

Video
Rate Changer

Video
Output

audio time

video time

Figure 5.8: HelloSTF audio and video pipeline. The pipelines run inde-
pendently, resulting in a loss of synchronization. In this scenario, neither
the audio nor video rate changers are in use.

Audio
Input

Audio
Rate Changer

Audio
Output

Video
Input

Video
Rate Changer

Video
Output

audio time

Synchronizer

video time

reference

dependent

rate

Figure 5.9: HelloSTF audio and video pipelines, with the video (depen-
dent) synchronized to the audio (reference). The audio rate changer is
unused.

Since the audio and video pipelines run independently of each other, there
is a visible loss of synchronization (see Figure 5.8). To avoid this, there
are two options: synchronize the video to the audio, or vice versa. First,
however, we must create a STSynchronizer object:

m_synchronizer = [[STSynchronizer alloc] init];

Synchronizing the video to the audio requires the audio pipeline to be set
as the reference, and the video pipeline as the dependent (see Figure 5.9).
The synchronizer is then applied to the rate changer in the dependent (i.e.,
video) pipeline:

[m_synchronizer setSyncReference:m_audioOutputNode];

[m_synchronizer setSyncDependent:m_videoOutputNode];

[m_videoRateChangerNode setSynchronizer:m_synchronizer];

Alternatively, synchronizing the audio to the video could be accomplished
analogously (see Figure 5.10):

5.3 Semantic Time Framework Version 2 (STFv2) 135

Audio
Input

Audio
Rate Changer

Audio
Output

Video
Input

Video
Rate Changer

Video
Output

audio time

Synchronizer

video time

dependent

reference

rate

Figure 5.10: HelloSTF audio and video pipelines, with the audio (de-
pendent) synchronized to the video (reference). The video rate changer is
unused.

[m_synchronizer setSyncReference:m_videoOutputNode];

[m_synchronizer setSyncDependent:m_audioOutputNode];

[m_audioRateChangerNode setSynchronizer:m_synchronizer];

Starting the audio and video pipelines after they have been linked either
way results in synchronous audio and video playback.

The complete source code listing, with comments, for HelloSTF is included
in Appendix C; supporting files, including an Xcode project to build a Mac
OS X application, are available from http://styme.org.

5.3.5 Example: MetroSync

In the previous example, we showed how to create pipelines and synchronize MetroSync

synchronizes

audio to a

user-controlled

metronome.

them. Since STF was designed to assist with the design of interactive media
systems, this typically requires synchronization of pipelines to an external
timing source, and in this example we demonstrate how to accomplish this
task.

The application consists of a simple visual metronome, where a status light
alternates between red and blue on every beat. The tempo can be adjusted
interactively using a slider widget (see Figure 5.11).

The audio pipeline is created in a similar way to the one used in HelloSTF :

m_audioOutputNode = [[STAudioOutputNode alloc] init];

m_audioRateChangerNode =

[[STAudioPhaseVocoderNode alloc] init];

STAudioFileReaderNode *audioFileReaderNode =

[[[STAudioFileReaderNode alloc] init] autorelease];

http://styme.org

136 5 The Semantic Time Framework

Figure 5.11: Metronome control in the MetroSync application. A slider
widget allows the user to interactively adjust the tempo, and a status light
to the right alternates between red and blue on beat changes at the specified
tempo.

[m_audioOutputNode setDataSource:m_audioRateChangerNode];

[m_audioRateChangerNode setDataSource:audioFileReaderNode];

[audioFileReaderNode setPath:audioDataPath];

STBeatMap *audioBeatMap = [[[STBeatMap alloc]

initWithContentsOfFile:audioBeatsPath] autorelease];

[audioFileReaderNode setTimeMap:audioBeatMap];

The metronome is implemented in the MetronomeView class. It stores both
the current tempo setting, and keeps a running counter of the current beat.
A timer fires every ten milliseconds to update this beat counter:

NSDate *now = [NSDate date];

NSTimeInterval deltaTime =

[now timeIntervalSinceDate:m_timeOfLastMetroBeatUpdate];

double currentBeatsPerSecond =

[[self tempo] doubleValue] / 60.0;

m_currentMetroBeat += currentBeatsPerSecond * deltaTime;

[self setNeedsDisplay:YES];

[m_timeOfLastMetroBeatUpdate autorelease];

m_timeOfLastMetroBeatUpdate = [now retain];

To act as a timing source for STF pipelines, MetronomeView must imple-
ment the STSyncObject protocol, which consists of two methods for query-
ing the current styme (beats, in this case), and an estimated styme for a
time point in the future:

 (Float64) currentSyncStyme

{

5.3 Semantic Time Framework Version 2 (STFv2) 137

Audio
Input

Audio
Rate Changer

Audio
Output

Synchronizer

audio time

metronome time
Metronome

View

rate

reference

dependent

Figure 5.12: MetroSync block diagram, showing how the audio pipeline
is synchronized to the custom MetronomeView timing source.

return m_currentMetroBeat;

}

 (Float64) estimatedSyncStymeWithSecondsSinceNow:(Float64)sec

{

Float64 currentBeatsPerSecond =

[[self tempo] doubleValue] / 60.0;

return m_currentMetroBeat + currentBeatsPerSecond * sec;

}

The first method simply returns the current beat counter, and the second
method returns the sum of the current beat counter and the expected num-
ber of beats that will advance in the specified time interval, at the current
tempo. MetronomeView can now act as a reference for a STSynchronizer

object associated with the audio pipeline (see Figure 5.12):

STSynchronizer *synchronizer =

[[[STSynchronizer alloc] init] autorelease];

[synchronizer setSyncReference:self];

[synchronizer setSyncDependent:m_audioOutputNode];

[m_audioRateChangerNode setSynchronizer:synchronizer];

The complete, documented source code listing for MetroSync is also in-
cluded in Appendix C, and online at http://styme.org.

5.3.6 Comparison With Other Frameworks

HelloSTF and MetroSync were implemented with only 265 and and 323
lines of code, respectively, including all comments and header files. Since
STF is an abstraction of the Core Audio, Core Image/Video, and Quick-
Time libraries, it should be no surprise that reimplementing these applica-

http://styme.org

138 5 The Semantic Time Framework

tions using one or more of these libraries would require many, many more
lines of code.

Perhaps the biggest challenge to implementing these two applications using
those frameworks (or any of the ones mentioned in this chapter) would
be synchronizing the media. Synchronization requires a common unit ofSynchronization

would have to be

implemented by

the designer in

other frameworks.

time throughout the audio and video rendering engine – in STF, this is
the abstract styme unit. If we used synthesized music instead of digital
audio, our MetroSync example would be similarly trivial, as MIDI explicitly
exposes a time model based on beats of the music. Synchronizing across
other media types, however, is not as easy, as time units are media and
even rate dependent – an “audio sample” is different from a “video frame”
– and the meaning of an “audio sample” changes when the audio is time-
stretched. Thus, extra logic would be required to track and convert time
between these various units. We will revisit this topic in more detail in our
discussion of Personal Orchestra in the next chapter.

The other aspect of synchronization is the algorithm itself. We use a con-
straints model to specify the desired time relationship between the two
pipelines. STF, as far as we are aware, is unique in this regard. Even
though the Nsync framework, for example, claims to use constraints, they
are specified as conditionals:

when (video_time > audio_time)

then reduce_video_playrate()

Thus, the designer is still responsible for determining how much the video
play rate should be reduced – these are precisely the details that our se-
mantic time model abstracts from. Specifying synchronization in these
other frameworks requires designers to implement the synchronization al-
gorithms presented in Section 3.4, further increasing development time, or,
in the words of Myers et al. [2000], the threshold.

5.4 Closing Remarks

In this chapter we presented the design and implementation of the Semantic
Time Framework, a software library for building interactive media appli-
cations that implements the theoretical principles of semantic time design
presented in this thesis. Development of the framework evolved over two
iterations. The first iteration, STFv1, uses a data flow architecture for
both media data and semantic time. Effects are organized into graphs, and
synchronization is an effect in the framework; other possible effects include
audio time-stretching and colour correction. STFv1 formed the basis of
Maestro!, a complex interactive conducting system; however, an analysis of
its design revealed a number of limitations, most notably in using the data
flow architecture to model and transform semantic time.

5.4 Closing Remarks 139

STFv2 is both an evolution and redesign of the Semantic Time Framework.
It is built on a hybrid architecture, combining a data flow model for media
processing and a declarative model for representing and manipulating se-
mantic time. Media flows through pipelines, where they are processed using
nodes. Synchronization is no longer specified as an effect (or a node, using
STFv2 terminology), but rather as a set of constraints. Our declarative
approach for representing time allows us to not only simply and elegantly
specify synchronization, but also extends to more complex temporal trans-
formations, as we will show in the next chapter.

Evaluating a toolkit for building systems such as STF is not an easy task,
and other researchers have proposed metrics such as a low learning thresh-
old and high ceiling of functionality. With HelloSTF and MetroSync,
two simple STFv2 applications, we demonstrated how the Semantic Time
Framework allows designers to easily create applications to synchronize
media to each other, or to an external timing source. They support the
argument that STF offers a low threshold for easily implementing these
common requirements in an interactive media system.

In the next chapter, we will continue this discussion by demonstrating how
STF allows designers to design and construct “high ceiling” systems.

141

Chapter 6

Sample Systems

“To achieve great things, two things are needed;
a plan, and not quite enough time.”

—Leonard Bernstein

In the last chapter, we presented the Semantic Time Framework, a software Personal

Orchestra,

DiMaß, and

iRhyMe are

examples of high

ceiling systems.

library for building interactive media systems. HelloSTF and MetroSync
were also introduced to demonstrate how, with minimal code, STF can be
utilized to perform basic synchronization tasks. In this chapter, we discuss
how STF also assists developers in constructing a wide range of interactive
media systems with a high ceiling of functionality. In particular, we will
describe the design of the following systems:

• Personal Orchestra: A family of interactive conducting systems in
development since 1999. Users can control the tempo of an audio
and video recording using conducting gestures; the beat of the music
is synchronized to the beat marked by the user. There are three
independent timelines that must be synchronized: user, audio, and
video.

• DiMaß : A technique for direct manipulation audio scrubbing and
skimming. Unlike conventional audio navigation interfaces that offer
only control over the audio play rate, DiMaß allows users to directly
adjust the audio play position; moreover, DiMaß provides users with
high-fidelity time-stretch audio feedback using PhaVoRIT , which re-
quires an audio timeline to be synchronized to the user timeline. Di-
Maß can be used to browse various types of audio, including music
and speech. Beat Tapper is a waveform viewer that incorporates Di-
Maß for audio scrubbing. Using Beat Tapper, users can tag audio files
with beat metadata; these beats can also be played synchronously to-
gether with the music as tapping sounds. Beat Tapper adds another
two timelines to synchronize to the user input: the audible beats and
the visual waveform.

142 6 Sample Systems

System Audio

Type(s)

Video

Type(s)

Timelines Styme

Personal

Orchestra

music video 3 music beats

DiMaß audio none 2 audio samples

Beat Tapper audio,

beats

waveform 4 audio samples

iRhyme music none 2 music beats

Table 6.1: Key differing properties of the systems discussed in this chapter.

• Interactive Rhythm Meddler (iRhyMe): A series of Quartz Composer
plugins that allow users to visually and interactively adjust the beat
microtiming in a music recording by mixing and matching rhythm
patterns from other performances of the same piece. The music is
then synchronized to this user specified rhythm pattern.

These systems share the common theme of allowing users to interactively
mold and reshape the the timeline of digital media streams in real-time.
However, each application differs in its purpose, design, and implementation
(see Table 6.1).

6.1 Personal Orchestra

Interactive conducting systems have grown in both complexity and capa-Modern

conducting

systems

incorporate a wide

range of research.

bility in recent years, together with the advances in commodity hardware
and computing power. Modern conducting systems incorporate research
from a variety of disciplines, from motion tracking, to gesture recognition
and interpretation, to digital signal processing. Indeed, today’s computers
are capable of handling large chains of complex filters and other operations
on digitally sampled audio and video streams in real time. Unfortunately,
many interactive conducting systems, and computer music systems in gen-
eral, continue to use synthesized music, usually MIDI-based. As described
in earlier chapters, the advantage of using synthesized music over digitally
sampled audio streams is access to a more “intuitive” time model that is
tied to the musical semantics of notes and beats. However, digital audio
and video streams can offer a higher degree of fidelity and realism: to-
day’s synthesizing technology is still unable to reproduce, for example, the
unique character of the Vienna Philharmonic playing in their Golden Hall
of Vienna’s Musikverein.

6.1 Personal Orchestra 143

The Virtual Conductor was the first interactive conducting system to
support real-time conducting of a digital audio and video recording
[Borchers et al., 2004]; it was designed in 1999 and installed in the haus

der musik in Vienna as a permanent exhibit in 2000. Since then, we have
developed two follow-up systems: You’re the Conductor, a collaboration
with Teresa Marrin Nakra [Lee et al., 2004], and, most recently, Maestro!
[Lee et al., 2006d]. With each of these systems, we improved the conduct-
ing gesture recognition and/or the audio/video rendering, resulting in ad-
ditional complexity. By using the Semantic Time Framework, however, we
were able to elegantly manage this complexity; STFv1 formed the basis
for Maestro!, and POlite is a prototype conducting application that uses
STFv2.

Interactive conducting systems have been an active area of computer mu- The Radio Baton

was one of the

first conducting

systems.

sic research since Mathews’ [1991] pioneering work on the Radio Baton.
The Radio Baton allowed users to control synthesized music using a baton
and conducting gestures; conducting gestures were determined through the
movement of one or more batons emitting radio frequency signals above a
flat receiver panel. The Radio Baton was also incorporated into an exhibit
at the Children’s Discovery Museum in San Jose, USA in 1995.

Since Mathews’ work on the Radio Baton, a number of conduct-
ing systems have been developed, including Morita et. al’s conduct-
ing system [1991], Marrin Nakra’s Conductor’s Jacket [2000], Sinfonia
[Realtime Music Solutions, 2005], and Usa and Mochida’s Multi-modal
Conducting Simulator [1998]. All of these systems featured improvements
in gesture recognition and/or output quality. Kolesnik [2004] has compiled
an extensive list in his Master’s thesis, and we refer the reader to this
work for a more complete and detailed discussion. Here, we will instead
briefly outline only those systems that incorporate digital video and/or
audio streams, as these are the most relevant to our discussion of STF.

Ilmonen and Takala’s [1999] conducting system used artificial neural net- Ilmonen and

Takala’s

conducting system

shows rendered

avatars.

works, and was perhaps the first conducting system to include video in
addition to audio. However, audio was synthesized using MIDI, and the
video consisted of artificially rendered 3D avatars.

Murphy et al. [2003] created a system that incorporated digital audio Murphy’s

conducting system

uses digital audio

streams.

recordings; audio was time-stretched in real time using a variant of the
phase vocoder algorithm. They did not include video. Audio was processed
using Mixxx [Andersen, 2005], an open source digital DJ system.

Most recently, Kolesnik’s [2004] Master’s thesis work on a conducting recog- Kolesnik’s

conducting system

supports video,

but sync is not

guaranteed.

nition, analysis and performance system incorporated digital audio that
was also time-stretched using a variant of the phase vocoder. There was an
option to show accompanying video output; however, the video playback
was adjusted independently of the audio, and thus, synchronous audio and
video playback was not guaranteed. The audio and video rendering modules
were implemented in Max/MSP, and in his thesis he also described some
workarounds to the challenges he encountered while trying to incorporate

144 6 Sample Systems

a real time phase vocoder module into Max/MSP.

In contrast to the above research, which focus primarily on new methods for
recognizing conducting gestures, our work considers conducting as a natu-
ral metaphor for improving users’ interaction with computer music. While
a majority of our users may have musical experience, they are not neces-
sarily professional conductors. Thus, our systems incorporate techniques
for offering high quality, time-stretched audio synchronized with video of
an orchestra to increase immersiveness.

We will begin our discussion with Personal Orchestra. We will then show
how the improvements in You’re the Conductor resulted in a number of
unnecessary complexities in the architecture, which were addressed in Mae-
stro! using STFv1. POlite further improves on Maestro! by using STFv2,
and we will show how the improvements we made in STFv2 allow for a
increased repertoire of interactions.

6.1.1 Personal Orchestra 1 (The Virtual Conductor)

The Virtual Conductor [2004] is the first system to use audio and video
recordings in an interactive conducting system. It was developed by
Samminger [2002], and installed in the haus der musik in Vienna in 2000.
At the time of this writing, it remains both an active and popular attrac-
tion; it has been featured in a number of Vienna tourist guides, including
Falk [2005] and Lonely Planet [2004]. Figure 6.1 shows a block diagram for
The Virtual Conductor.

The Virtual Conductor recognizes simple up and down gestures, and maps
beats indicated by the lower turning point of the baton’s vertical position
to the beats of the music. The algorithm to compute an adjusted audio and
video play rate such that they remain synchronized to the users’ beating
pattern is described in [Borchers et al., 2004]. A generalized version of this
algorithm was introduced in Section 3.4.

When The Virtual Conductor was developed in 1999, computers were stillThe Virtual

Conductor used

offline processing

for time-stretching

the audio.

unable to perform time-stretching in real time with sufficient quality. Thus,
the Minimum Perceived Loss Time Compression/Expansion (MPEX) algo-
rithm [Prosoniq, 2006] was chosen for time-stretching the audio. While
MPEX produces high quality results, it required 32 seconds of processing
time per second of audio on an Intel 400 MHz Pentium III computer. To
adjust the playback speed of the movie to user input in real time, a set
of thirteen audio tracks were prepared offline, and the system chooses at
run-time the track that best matches the desired speed. In addition to the
large amount of overhead required to prepare new movies for The Virtual
Conductor, this scheme also suffers from the following limitations:

• Since there a finite number of audio tracks, play rates are limited to
between half and double speed, and the playback engine is unable to

6.1 Personal Orchestra 145

U
se

r
B

ea
t

E
x
tr

ac
ti
on

U
se

r
B

ea
t
→
 M

u
si

c
B

ea
t

M
ap

p
in

g

A
u
d
io

 &
 V

id
eo

S
y
n
ch

ro
n
iz

at
io

n

A
u
d
io

 T
im

e
S
tr

et
ch

in
g

V
id

eo
 T

im
e

S
tr

et
ch

in
g

M
ov

ie
 D

at
a

b
at

on
 d

at
a

u
se

r
b
ea

ts

au
d
io

 s
am

p
le

s

v
id

eo
 f
ra

m
es

sy
n
ch

ro
n
iz

ed
au

d
io

 &
 v

id
eo

m
u
si

c
b
ea

ts

m
u
si

c
sp

ee
d

au
d
io

 s
am

p
le

s

v
id

eo
 f
ra

m
es

ad
ju

st
ed

 v
id

eo
 s

p
ee

d

F
ig

u
re

6
.1

:
T

h
e

V
ir

tu
al

C
on

d
u
ct

or
b
lo

ck
d
ia

gr
am

.
B

ea
ts

ar
e

ex
tr

ac
te

d
fr

om
u
se

r
ge

st
u
re

s,
an

d
,

to
ge

th
er

w
it
h

th
e

m
u
si

c
b
ea

ts
as

so
ci

at
ed

w
it
h

th
e

m
ov

ie
fi
le

on
d
is

k
,
ar

e
u
se

d
to

co
m

p
u
te

a
m

u
si

c
sp

ee
d
.

T
h
is

m
u
si

c
sp

ee
d

is
u
se

d
to

ti
m

e-
st

re
tc

h
th

e
au

d
io

.
A

v
id

eo
p
la

y
ra

te
is

th
en

co
m

p
u
te

d
to

en
su

re
th

e
au

d
io

an
d

v
id

eo
re

m
ai

n
sy

n
ch

ro
n
iz

ed
.

146 6 Sample Systems

Video Time
StretchingMovie Data

synchronized
audio & video

Audio Track 1

Video Track

Audio Time Stretching
(Resampling)

audio
samples

Audio & Video
Synchronization

Audio Track n

:

video
frames

music speed

Figure 6.2: Audio/video rendering engine in The Virtual Conductor. The
source movie has thirteen audio tracks pitch-shifted in two semitone incre-
ments. During playback, an audio track is selected using QuickTime, and is
resampled using QuickTime’s internal mechanism to negate the pitch-shift
and achieve the desired playback speed. Audio and video synchronization
is handled internally by QuickTime.

precisely match the desired conducting speed. Moreover, audible pops
and clicks can be heard when switching between tracks, which were
minimized by applying a short cross-fade. To minimize the impact
of these factors on overall audio quality, play rate changes were also
limited to one per second, which unfortunately also increases response
time to user input.

• Since each time-stretched audio track has a different length, audio
and video synchronization becomes a challenge. A workaround was
developed by realizing that the mathematical dual of time-stretching
is pitch-shifting. That is, an audio recording pitch-shifted down by
one octave, and then halved in sampling rate will sound like the origi-
nal recording time-compressed by a factor of two. Since pitch-shifting
does not alter the length of the audio, all thirteen pitch-shifted audio
tracks could be placed into a single movie file, and the problem of
synchronization could be delegated to QuickTime, which performed
both the video play rate conversion and the audio resampling (see
Figure 6.2).

It should be noted that this mathematical inverse relationship between
pitch-shifting and time-stretching holds only in theory. Practically, of
course, the algorithms cannot produce perfect results due to discretiza-
tion and quantization, and thus rather diverse approaches for addressing
the artifacts specific to pitch-shifting and time-stretching have been pro-
posed. Formant correction, for example, is important for pitch-shifting
Lent [1989], while compensating for transient smearing is more applicable
to time-stretching. To achieve the highest quality possible, it is thus unde-
sirable to use the pitch-shifting followed by resampling used in The Virtual
Conductor, and this issue was addressed in a successor system, You’re the
Conductor.

6.1 Personal Orchestra 147

6.1.2 Personal Orchestra 2 (You’re the Conductor)

You’re the Conductor was a collaboration with Teresa Marrin Nakra of
Immersion Music; it was primarily targeted towards children and their par-
ents in a children’s museum, and thus utilized a simpler gesture recognition
scheme which allowed users control over the music speed without the need
for absolute beat-level precision [Lee et al., 2004]. It was installed in the
Boston Children’s Museum in 2003, and has since travelled to over half a
dozen children’s museums in the United States, including the Strong Mu-
seum in Rochester, the Children’s Discovery Museum in San Jose, and the
Magic House in St. Louis.

The overall architecture remains unchanged from The Virtual Conductor, You’re the

Conductor

time-stretched

audio in real time.

shown in Figure 6.1. One of the major improvements of You’re the Con-
ductor over The Virtual Conductor, however, was in the audio/video ren-
dering engine. For this system, we developed an algorithm to perform the
time-stretching in real time, based on Laroche and Dolson’s [1999] scaled
phase-locked phase vocoder (see Section 2.7.2). Since time-stretching the
audio also alters its timebase, we were no longer able to rely on Quick-
Time for the audio and video synchronization. In fact, we discovered that
modern multimedia frameworks are simply not designed to handle media
with continuously changing timebases, and thus, we had to synchronize
the time-stretched audio and video ourselves. For You’re the Conductor,
we chose to synchronize the video to the audio, and calculate an adjusted
video playback speed to ensure the video catches up with the audio.

A closer analysis of this design reveals a number of interesting observations.
The algorithm for synchronizing the audio to the user beats is identical to
the one used to synchronize the video to the audio. Their implementations
differ, however, because one is working with units of beats, and the other
with seconds of media. Moreover, since the tempo of a piece varies during
a performance, the beats in the resulting digital audio data will not be
evenly spaced, and thus a conversion from beats to seconds is non-trivial.
The design presented in Figure 6.1 also consists of multiple stages of syn-
chronization. First, the user beats are synchronized with the audio, and
then the audio is synchronized with the video. Again this “daisy chaining”
is required because the time units implicitly change from beats to seconds
between the first and second synchronization stages – however, there is no
other reason for this.

The parameters required to perform the audio and video synchronization Synchronization

requirements led

to an awkward

software

architecture.

cannot be obtained from the time-stretched audio and video alone, due to
the timebase change that results from audio time-stretching; this is the
primary reason for having to implement a custom audio and video synchro-
nization module instead of delegating this responsibility to the multimedia
framework. Figure 6.3 is a more detailed diagram of the audio/video ren-
dering modules that shows where the parameters required for audio and
video synchronization originate. To compute the adjusted video speed, we
require the length of the unstretched audio block from the original audio

148 6 Sample Systems

signal, indicated by the dotted line in Figure 6.3. This additional connec-
tion is normally unnecessary, as in the case of user to music beat mapping,
and is furthermore inelegant because it is a connection further up the data
flow chain, breaking the modular nature of the intended design.

These above problems could be solved by using synthesized audio and video,
since the semantics of the data are explicitly known (see Figure 6.4). This
observation led us to develop the Semantic Time Framework, where the
semantic nature of the data is retained throughout the processing pipeline.
STFv1 formed the basis for our third conducting system, Maestro!.

6.1.3 Personal Orchestra 3 (Maestro!)

Maestro! is our third-generation interactive conducting exhibit, installed in
the Betty Brinn Children’s Museum in Milwaukee, USA. It was developed
with three aims:

• Improve the quality of the gesture recognition. This motivated the de-
velopment of conga, our adaptive conducting gesture analysis frame-
work (see Section 2.2).

• Improve the quality of the audio time-stretching. This motivated the
development of PhaVoRIT, our phase vocoder for real-time interactive
time-stretching (see Section 2.7).

• Address the architectural shortcomings in You’re the Conductor. This
motivated the development of STFv1 (see Section 5.2), and we will
focus our discussion here on this topic.

As we showed in the last chapter, the Semantic Time Framework exposes
a more general and intuitive time model for digitally sampled multimedia
streams. Using STFv1, we were able to revise the architecture as shown
in Figure 6.5. This architecture contains a single, generic synchronization
module that calculated adjusted play rates based on the abstract styme
unit, set to beats in this case. As mentioned earlier, the algorithm for
synchronizing the audio to the user is the same as for synchronizing the
video to the audio. With this migration to a common styme unit, we can
use the same synchronizer for both operations. Moreover, we can directly
synchronize the video to the user beats, instead of synchronizing the video
the audio, which is then synchronized to the user.

Figure 6.6 shows the revised audio/video rendering engine in more detail.
Unlike the You’re the Conductor design in Figure 6.3, this revised designMaestro! uses

STFv1 to fix the

architectural

limitations of

You’re the

Conductor.

is independent of implementation. The input and output parameters, in
units of semantic time, neatly abstract the implementation details, and the
connection from the movie file to the synchronizer is no longer needed –
one does not need to worry about the details of remapping audio samples
to video frames because of the timebase change, since it is handled by

6.1 Personal Orchestra 149

A
u
d
io

 &
 V

id
eo

S
y
n
ch

ro
n
iz

at
io

n

V
id

eo
 T

im
e

S
tr

et
ch

in
g

M
ov

ie
 D

at
a

sy
n
ch

ro
n
iz

ed
au

d
io

 &
 v

id
eo

A
u
d
io

 T
ra

ck

V
id

eo
 T

ra
ck

A
u
d
io

 T
im

e
S
tr

et
ch

in
g

(P
h
as

e
V

oc
od

er
)

44
10

0
sa

m
pl

es

au
d
io

 s
am

p
le

s

30
 f
ra

m
esv

id
eo

 f
ra

m
es

au
d
io

 s
am

p
le

s

88
20

0
sa

m
pl

es

44
10

0
sa

m
pl

es

v
id

eo
 f
ra

m
es

30
 f
ra

m
es

88
20

0
sa

m
pl

es
&

 3
0

fr
am

es

m
u
si

c
sp

ee
d

(0
.5
×
)

ad
ju

st
ed

 v
id

eo
 s

p
ee

d
 (

0.
51
×
)

44
10

0
sa

m
pl

es

F
ig

u
re

6
.3

:
A

u
d
io

/v
id

eo
re

n
d
er

in
g

in
Y
ou

’r
e

th
e

C
on

d
u
ct

or
.

T
h
e

th
ic

k
b
ro

w
n

li
n
es

sh
ow

th
e

fl
ow

of
d
at

a,
th

e
th

in
re

d
li
n
es

sh
ow

th
e

fl
ow

of
te

m
p
or

al
in

fo
rm

at
io

n
;
ex

am
p
le

va
lu

es
ar

e
gi

v
en

fo
r

on
e

se
co

n
d

of
in

p
u
t

d
at

a
fo

r
cl

ar
it
y.

T
h
e

au
d
io

an
d

v
id

eo
sy

n
ch

ro
n
iz

at
io

n
m

o
d
u
le

m
u
st

re
tr

ie
v
e

te
m

p
or

al
in

fo
rm

at
io

n
fr

om
th

e
or

ig
in

al
au

d
io

d
at

a,
in

d
ic

at
ed

b
y

th
e

d
ot

te
d

re
d

li
n
e,

to
co

m
p
u
te

th
e

ad
ju

st
ed

st
re

tc
h

fa
ct

or
fo

r
th

e
v
id

eo
.

150 6 Sample Systems

V
id

eo

S
y
n
th

es
iz

ed
 M

u
si

c

S
am

p
le

d
 A

u
d
io

 S
tr

ea
m

♪
♪

♪
♪

♪
♪

V
0

V
2

V
4

M
0

M
1

M
2

A
0

A
29

40
A

58
80

V
0

V
2

V
4

M
0

M
1

M
2

A
0

A
44

10
A

88
20

F
ig

u
re

6
.4

:
A

u
d
io

an
d

v
id

eo
sy

n
ch

ro
n
iz

at
io

n
w

it
h

sy
n
th

es
iz

ed
m

u
si

c
v
er

su
s

a
d
ig

it
al

ly
sa

m
p
le

d
au

d
io

st
re

am
.

O
n

th
e

le
ft

is
th

e
or

ig
in

al
m

ov
ie

w
h
er

e
si

x
fr

am
es

of
v
id

eo
ar

e
sy

n
ch

ro
n
iz

ed
w

it
h

th
re

e
M

ID
I

n
ot

e
ev

en
ts

an
d

an
au

d
io

st
re

am
w

it
h

si
x

sa
m

p
le

s.
O

n
th

e
ri

gh
t,

th
e

m
ov

ie
h
as

b
ee

n
ti
m

e-
ex

p
an

d
ed

b
y

50
%

(r
ec

al
l
th

at
v
id

eo
ti
m

e-
st

re
tc

h
in

g
d
o
es

n
ot

ch
an

ge
th

e
to

ta
l

n
u
m

b
er

of
fr

am
es

,
on

ly
th

e
sp

ee
d

at
w

h
ic

h
th

ey
ar

e
p
la

y
ed

).
T

h
e

m
ap

p
in

g
b
et

w
ee

n
sy

n
th

es
iz

ed
m

u
si

c
an

d
v
id

eo
re

m
ai

n
s

th
e

sa
m

e;
h
ow

ev
er

,
th

e
m

ap
p
in

g
of

v
id

eo
fr

am
es

to
au

d
io

sa
m

p
le

s
h
as

ch
an

ge
d
,
b
ec

au
se

of
th

e
in

cr
ea

se
d

n
u
m

b
er

of
sa

m
p
le

s.
M

or
e

in
fo

rm
at

io
n

is
re

q
u
ir

ed
to

re
sy

n
ch

ro
n
iz

e
th

e
sa

m
p
le

d
au

d
io

w
it
h

th
e

v
id

eo
.

6.1 Personal Orchestra 151

U
se

r
B

ea
t

E
x
tr

ac
ti
on

B
ea

t
S
y
n
ch

ro
n
iz

at
io

n
A

u
d
io

 T
im

e
S
tr

et
ch

in
g

V
id

eo
 T

im
e

S
tr

et
ch

in
g

M
ov

ie
 D

at
a

b
at

on
 d

at
a

u
se

r
b
ea

ts

au
d
io

 s
am

p
le

s
&

 b
ea

ts

v
id

eo
 f
ra

m
es

&
 b

ea
ts

sy
n
ch

ro
n
iz

ed
au

d
io

 &
 v

id
eo

au
d
io

 s
am

p
le

s
&

 b
ea

ts

v
id

eo
 f
ra

m
es

&
 b

ea
ts

ad
ju

st
ed

 v
id

eo
 s

p
ee

d

ad
ju

st
ed

au
d
io

 s
p
ee

d

F
ig

u
re

6
.5

:
M

a
es

tr
o
!

b
lo

ck
d
ia

gr
am

(c
om

p
ar

e
w

it
h

F
ig

u
re

6.
1
).

T
h
e

tw
o

sy
n
ch

ro
n
iz

at
io

n
m

o
d
u
le

s
h
av

e
b
ee

n
m

er
ge

d
,
an

d
b
ea

ts
ar

e
u
se

d
as

th
e

ti
m

e
u
n
it
s

th
ro

u
gh

ou
t

th
e

sy
st

em
.

152 6 Sample Systems

the time-stretch effect. The temporal information that flows between the
modules, in units of semantic time, is also more intuitive for developers
who are used to the beat model.

6.1.4 POlite

Personal Orchestra Lite was developed to demonstrate how the improve-
ments in the Semantic Time Framework between STFv1 and STFv2 allows
for even more flexibility with no added complexity. Figure 6.7 shows a block
diagram of POlite; the architecture remains virtually unchanged from the
Maestro! architecture shown in Figure 6.5. The major difference is the
separation of the graph into multiple pipelines, and the use of multiple
synchronizers to link pairs of pipelines. The decision to, once again, syn-
chronize the video to the audio instead of directly to the user input will be
explained shortly.

Maestro! offered a system that adaptively recognized different types ofPOlite uses

STFv2 to support

multiple

conducting skill

levels.

gestures using conga. With POlite, we improved on this by developing
a system that can be customized according to the user’s proficiency with
conducting. As we showed in [Lee et al., 2005], conductors can be distin-
guished from non-conductors by how they time their beats – conductors
consistently lead the beat slightly, while non-conductors will hover around
the beat, sometimes leading, and sometimes lagging. A system that ex-
pects users to consistently time their beat can thus lead to the “spiral of
death” effect that we had previously observed with The Virtual Conductor.
The solution to this, then, is to set the synchronizer such that the audio
pipeline is not precisely tracking the user, but tracking it to within a certain
tolerance. This tolerance is realized by computing an adjusted audio play
rate for both the higher and lower thresholds of the user position, and then
choosing an adjusted play rate that minimizes the play rate change. Recall
that from Section 3.4, the formula for computing an adjusted audio play
rate in response to user input is:

ra1 = ra0
u(t1 + ∆t) − a(t1)

a(t1 + ∆t) − u(t1)
(6.1)

Let us say we wish to constrain the audio to always track the user to within
±δ beats. We should then calculate two adjusted rates, r+

a and r−a :

r+
a1 = ra0

u(t1 + ∆t) + δ − a(t1)

a(t1 + ∆t) − u(t1)
(6.2)

r−a1 = ra0
u(t1 + ∆t) − δ − a(t1)

a(t1 + ∆t) − u(t1)
(6.3)

The actual adjusted audio rate, ra1, is then chosen from the interval[
r−a1, r

+
a1

]
such that |ra1 − ra0| is minimal.

6.1 Personal Orchestra 153

B
ea

t
S
y
n
ch

ro
n
iz

at
io

n

V
id

eo
 T

im
e

S
tr

et
ch

in
g

M
ov

ie
 D

at
a

sy
n
ch

ro
n
iz

ed
au

d
io

 &
 v

id
eo

A
u
d
io

 T
ra

ck

V
id

eo
 T

ra
ck

A
u
d
io

 T
im

e
S
tr

et
ch

in
g

(P
h
as

e
V

oc
od

er
)

1
st

ym
e

@
 6

0
bp

m

au
d
io

 s
am

p
le

s

1
st

ym
e

@
 6

0
bp

m

v
id

eo
 f
ra

m
es

au
d
io

 s
am

p
le

s

1
st

ym
e

@
 3

0
bp

m

v
id

eo
 f
ra

m
es

1
st

ym
e

@
 3

0
bp

m

1
st

ym
e

@
 3

0
bp

m

u
se

r
be

at
in

g
pa

tt
er

n
 (

30
 b

pm
)

ad
ju

st
ed

 v
id

eo
 s

p
ee

d
 (

0.
51
×
)

ad
ju

st
ed

 a
u
d
io

 s
p
ee

d
(0

.4
9×

)

F
ig

u
re

6
.6

:
A

u
d
io

/v
id

eo
re

n
d
er

in
g

in
M

a
es

tr
o
!

(c
om

p
ar

e
w

it
h

F
ig

u
re

6.
3
).

T
em

p
or

al
in

fo
rm

at
io

n
is

n
ow

in
a

m
or

e
in

tu
it
iv

e
sc

al
e

of
b
ea

ts
as

st
y
m

e
u
n
it
s;

th
e

d
es

ig
n

is
al

so
m

or
e

el
eg

an
t,

in
th

at
it

d
o
es

n
ot

ex
p
os

e
an

y
im

p
le

m
en

ta
ti
on

-s
p
ec

ifi
c

d
et

ai
ls

.
A

s
m

en
ti
on

ed
ea

rl
ie

r,
th

e
au

d
io

an
d

v
id

eo
ar

e
p
ro

ce
ss

ed
in

d
ep

en
d
en

tl
y,

so
th

e
ad

ju
st

ed
p
la

y
ra

te
s

af
te

r
sy

n
ch

ro
n
iz

at
io

n
m

ay
b
e

sl
ig

h
tl
y

d
iff

er
en

t
fr

om
ea

ch
ot

h
er

.

154 6 Sample Systems

Audio
Input

Audio
Rate Changer

Audio
Output

Video
Input

Video
Rate Changer

Video
Output

Synchronizer

audio time

Synchronizer

video time

reference

user time
User Beat
Extraction

dependent

rate

rate

reference

dependent

Figure 6.7: POlite block diagram. Architecturally, the system remains
very similar to the Maestro! architecture shown in Figure 6.5.

One might argue that this scheme is incorrect, since there is the possibility
for users to be consistently leading or lagging the beat by δ, as long as they
do not alter the play rate. However, the counter-argument is that if they
were able to conduct this consistently, they would not require this relaxed
constraint scheme in the first place!

It is important to note that we still require exact synchronization between
the audio and video – synchronizing the video to the user and applying
the same relaxed constraint would result in a loss of audio/video synchro-
nization, since the audio and video could be synchronized to opposite ends
of the constraint threshold. Thus, we synchronize the video to the audio
as in You’re the Conductor. Again, however, since the synchronization is
based on styme units, it is reusable for other applications, unlike the syn-
chronization modules in You’re the Conductor, which were specific to beats
and seconds.

To realize the variable tight-loose coupling between the user gestures and
the music, POlite uses a refined version of the conga up-down gesture pro-
file. It tracks both the upwards and downwards turning points of the ba-
ton, and moreover resolves some of conga’s latency issues, discussed in
Section 2.2. Feedback from informal user tests indicates that the level of
control POlite offers far exceeds any of our previous systems.

POlite is released as open source; both an application binary and full source
code are available from http://styme.org.

http://styme.org

6.2 DiMaß 155

6.1.5 Discussion and Future Directions

We showed how the evolution of our interactive conducting systems through
the years resulted in increased architectural complexity and complications.
We believe the evolution of The Virtual Conductor exemplifies the high
ceiling criterion for a good framework. The Virtual Conductor began as
a relatively simple system, implemented in just over 1200 lines of Java
code. In contrast, Maestro! contains almost 30,000 lines of C, C++, and
Objective-C code, and incorporates a number of research projects, includ-
ing conga and PhaVoRIT. The Semantic Time Framework is the“glue” that
integrates these components together and alleviates the architectural com-
plications we encountered in You’re the Conductor. POlite continues this
evolutionary process by illustrating how our system could be taken further
to incorporate our research in exploring temporal mappings.

At the time of this writing, development is just beginning on an up- Future conducting

systems will be

built on POlite.

dated version of The Virtual Conductor for the haus der musik in Vi-
enna. This system will be built on POlite, and will incorporate MICON
[Borchers et al., 2006], a musical stand for interactive conducting. MICON
presents a digital display of a musical score accompanying the music, with
a coloured translucent bar that shows users their current position in the
musical score. The addition of MICON essentially introduces a fourth time-
base to synchronize – the visual score time. The visual score time requires
a mapping from beats to a page number and page position in the score,
information that can be captured using a STFv2 time map.

6.2 DiMaß

While many interfaces for skimming and searching through text, still im- Navigating an

audio timeline

remains awkward.

ages, and, to a certain extent, video exist today, the same is not true for
audio. Even when searching through a movie, one must rely solely on visual
feedback to accurately pinpoint a desired location in the movie timeline.
Part of the challenge is that audio is an inherently time-based medium;
unlike video, where a single time-instant can be interpreted as an image,
no such equivalent exists for audio. To interpret audio, then, it must be
perceived over time; however, care must be taken when adjusting the au-
dio play rate to support scrubbing and skimming, since changing the play
rate using resampling results in disturbing pitch-shifting artifacts that usu-
ally render the audio incomprehensible. Time-stretching is again a natural
alternative for these applications.

Shneiderman [1997] defines a direct manipulation interface as one with“vis-
ible objects and actions of interest, with rapid, reversible, incremental ac-
tions and feedback”, and DiMaß1 is a technique we developed for Direct
Manipulation Audio Scrubbing and Skimming. DiMaß allows users to

1DiMaß is pronounced dee-MAHS ; the “ß” is the German sharp S, an abbreviation
for “ss”, not the Greek letter beta. The word “DiMaß” is a pun on the German word das

156 6 Sample Systems

Figure 6.8: DiMaß interaction: the user “grabs” onto the waveform and
slides it to the left or right. The audio waveform follows the cursor, and
time-stretched audio is played synchronously with the movements.

interact with an audio timeline by “grabbing” on to it and sliding it around
(see Figure 6.8); continuous audio feedback is provided using PhaVoRIT,
so that users are always aware of where they are in the audio. It is another
example of how the Semantic Time Framework enables rapid development
of applications for time-based interaction with multimedia. Consider the
following two usage scenarios:

• Eva has just returned from a Dave Matthews Band concert. She
recorded the entire concert onto her iPod, which the band permits
for personal use. Alas, the recording has no track marks, and she
must scroll through the audio using the click wheel to find the start
of her favourite song (see Figure 6.9).

• Marius has recorded a 30-minute interview with the mayor, and wants
to extract excerpts to include with his weekly five-minute podcast.
This task requires navigating to specific points in the audio and plac-
ing trim markers. Many current audio editing applications, such as
Audition [Adobe, 2006] do not offer audio feedback while trimming
audio sequences, and thus the editor must resort to a tedious, itera-
tive trial-and-error process whereby a marker is placed on the audio
timeline, the audio is played back starting at the marked point at
normal speed, the marker is adjusted, and so forth.

Existing techniques to manipulate an audio timeline can be classified based
on their input mapping and feedback types (see Figure. 6.10).

The input mapping is usually classified as either position (also known asInput mapping

can be position or

rate based.

zero order, see [Zhai, 1995]) or rate (first order). With a position control,

Maß, which means “quantity of measure”. Die Maß, which is pronounced the same way
as DiMaß, is a colloquial term used in southern Germany for “a litre (34 ounces) of beer”
(think Oktoberfest).

6.2 DiMaß 157

Figure 6.9: Navigating an audio timeline using the iPod click wheel.
Clockwise gestures advance the audio position forwards, and counter-
clockwise gestures backwards. No audio feedback is given whilst scrolling
on a standard iPod.

F
e

e
d

b
a

c
k

 T
y
p

e

Input Type

None

Skipping

Resampling

Time-

Stretching

Position Control Rate Control

SpeechSkimmer,

Elastic Audio Slider

DVD player

Adobe Audition

Final Cut Pro

Vinyl record player

DiMaß

CD player,

Answering machine

iPod,

Audacity

Figure 6.10: Design space for audio navigation techniques, populated
with examples of existing devices.

changes to position map to position changes in the audio timeline – that
is, if the user does not move, neither does the the playhead position. The
iPod click wheel (see Figure 6.9) is an example of a position control. In
contrast, changes to position in a rate control map to changes in audio play
rate; once the rate is set, the user does not have to move for the playhead
to continue moving. The ubiquitous fast-forward and rewind controls are
one-bit rate controls; some DVD players, such as the Sony DVP-NS700P,
have a spring-loaded shuttle ring to adjust play rate in a more fine-grained
way (see Figure 6.11). Higher order input methods, such as acceleration

158 6 Sample Systems

Figure 6.11: Spring-loaded shuttle ring control on the Sony DVP-NS700P
DVD player. Rotating the shuttle ring clockwise increases the audio play
rate; when released, the shuttle ring’s spring returns it to its neutral posi-
tion.

Figure 6.12: The timeline slider in QuickTime Player is an example of an
absolute position control, because there is a one-to-one mapping between
the timeline widget and the timeline of the audio. In contrast, the iPod
click wheel in Figure 6.9 is a relative position control.

control (second order), have been previously demonstrated to be less ef-
ficient compared to zero and first order controls [Poulton, 1974], and are
thus less common.

Position and rate controls can be further distinguished as either absolute
or relative [Card et al., 1991]. The audio timeline slider found in many
software interfaces such as QuickTime Player (see Figure 6.12) is an abso-
lute position control, because there is a one-to-one mapping between the
knob position on the slider and the current audio position. In contrast, the
iPod click wheel offers relative position control; the same amount of rota-
tion starting from anywhere on the click wheel in the same direction results
in the same change in audio position. Both are position controls, however,
since changes to input position result in a change to audio position. For the
purposes of this discussion, this distinction between absolute and relative
control is not important, however.

In our survey of existing audio navigation interfaces, we have identified four
possible feedback types:

6.2 DiMaß 159

• None: Systems that do not provide audio feedback while scrolling
still provide a means to play the audio at its nominal rate (e.g., play
button). This feedback is surprisingly common in existing systems – None, skipping,

resampling and

time-stretching

are possible

feedback types.

no feedback is given when scrubbing through audio using an iPod or
Audacity, an open source audio editor, for example.

• Skipping : A short segment of audio (tens of milliseconds) is played
at regular speed when the playhead position is changed. This allows
the user to experience feedback at arbitrary scroll rates without any
pitch-shifting artifacts. The resulting audio is choppy, however. Many
CD players and answering machines provide skipping feedback when
the fast-forward and rewind buttons are held down. It is also common
in video editors such as Final Cut Pro [Apple, 2007c].

• Resampling : The audio is resampled to allow playback at arbitrary
rates. Resampling also pitch-shifts the audio; the effect is the same
as varying the play rate of a vinyl record player. While disc jockeys
(DJs) make use of this feature for artistic effect, pitch shifts to the
audio are typically undesirable as it renders the resulting audio in-
comprehensible. Adobe Audition supports this type of feedback for
scrubbing as a separate mode (“tape-style” scrubbing).

• Time-stretching : The audio is processed using an algorithm such as
WSOLA [Verhelst and Roelands, 1993] or PhaVoRIT [Karrer et al.,
2006] to allow playback at arbitrary rates without changing the pitch.

From this design space, we can see that DiMaß is unique in that it offers
position control of an audio timeline together with time-stretched audio
feedback. Existing research in audio navigation, such as Hürst et al.’s elastic
audio slider [2005b] and Arons’ SpeechSkimmer [1997] support constant
pitch audio skimming for speech, but are based on rate controls.

The use of a time-stretching algorithm such as the phase vocoder for audio
scrubbing has been previously proposed by Sussman and Laroche [1999].
However, there do not appear to be any concrete details on how such a
scheme could be implemented.

6.2.1 Design

Figure 6.13 illustrates the STF pipeline for DiMaß, which can be described
as users imposing their own sense of time onto the audio. In this way,
the interaction is thus very similar to The Virtual Conductor. There are a
number of important differences, however:

• The styme unit of “beats” is not appropriate in this case, since DiMaß
is not limited to music. We instead assign the trivial styme unit of
“seconds of (unstretched) audio”.

160 6 Sample Systems

Audio
Input

Audio
Rate Changer

Audio
Output

Synchronizer

audio time

user time
Input Tracker

rate

reference

dependent

Figure 6.13: DiMaß block diagram.

• In conducting, the play rate rarely falls below half speed or rises
above triple speed, since it is physically difficult, if not impossible, to
conduct faster or slower. However, with audio scrubbing, the mapping
between user movement and the audio timeline is more direct, and
abrupt changes to the speed are possible (e.g., a sudden jerk of the
mouse). Moreover, in audio editing applications, it is common for the
scrub rate to fall below one-tenth of the original speed for fine-grained
trimming.

• Audio can be scrubbed both forwards and backwards. In conducting,
the audio timeline is always advancing in the forwards direction only.

The input tracker in Figure 6.13 is analogous to the user beat extraction
module in The Virtual Conductor (see Figure 6.1): it is responsible for
reporting not only the current position in the user timebase, u(t), but also
the predicted position at a future time u(t + ∆t) (where ∆t is the catch-up
interval). This predicted position can be calculated as follows:

u(t + ∆t) = u(t) + u′(t)∆t (6.4)

where u′(t) is the predicted velocity of user movement. This predicted
position is usually computed based on the past history of input events. If
tj and tj−1 are the timestamps of the last two received input events, u′(t)
can be calculated using:

u′(t) =
u(tj) − u(tj−1)

tj − tj−1
(6.5)

However, because it is possible for the user to quickly change the movement
speed from one input event to another, this prediction is often inaccurate,
producing erroneous results in the predicted position, which in turn affects

6.2 DiMaß 161

16

17

18

19

20

21

22

0 1 2 3 4 5 6 7

time [s]

in
p
u
t

p
os

it
io

n
 x

(t
)

[s
]

mouse down
mouse up

mouse drag

Figure 6.14: Example plot of mouse input position events. Only changes
to mouse position are reported, resulting in irregularly spaced events. In
this example, no new events are received after t = 4 s because the mouse
has not been moved, until the mouse button is released at t = 7 s.

the calculated audio speed. This problem is amplified if a relative input Mouse movement

is more

unpredictable

than conducting

beat patterns.

device such as a mouse is used: a mouse reports only changes in position
(see Figure 6.14), and often at irregular intervals depending on factors such
as the current CPU load. Thus, if no events are received, t can be much
greater than tj , and the estimated value for u(t + ∆t) will be even more
inaccurate. Moreover, it is not possible to know if it is because the user has
stopped moving the mouse, or if the event is simply delayed due to other
factors. For DiMaß, we revise the calculation of u′(t) to include a fall-off
factor:

u′(t) =

(
u(tj) − u(tj−1)

tj − tj−1

)(
1.0 −

t − tj
c

)3

t − tj < c (6.6)

= 0 otherwise

Here, c is the fall-off interval; for a device such as a mouse, we have ex-
perimentally determined a fall-off interval of 250 ms to work well. While
this improvement mitigates the problem for relative input devices such as
a mouse, our synchronization algorithm must still be made more robust to
the unavoidable errors in the predicted position estimate.

6.2.2 An Improved Synchronization Algorithm

Recall from Section 3.4 that the adjusted audio play rate ra1 is calculated
using the following algorithm:

162 6 Sample Systems

time [s]

au
d
io

 p
la

y
 r

at
e

-13

-8

-3

2

7

0 1 2 3 4 5 6 7

Figure 6.15: Effect of applying synchronization algorithm (6.7) to the
input data shown in Figure 6.14. The thick red line is the user input u(t),
and the thin blue line is the adjusted play rate r. The synchronized play
rate overshoots the desired target at t = 4.75 s, resulting in undesirable
oscillations.

ra1 = ra0
u(t1 + ∆t) − a(t1)

a(t1 + ∆t) − a(t1)
(6.7)

where ra0 is the current play rate, a(t) is the audio position at time t,
and u(t) is the user position at time t. Figure 6.15 shows the result of
applying this algorithm to the input data shown in Figure 6.14, using (6.6)
to compute u(t1 + ∆t). We observe that:

• At t = 4.75s, the input device has stopped moving, but the latency in
the velocity estimation results in the audio over-shooting the target
position. Such an effect is disconcerting for users, as they expect the
audio to stop at precisely the position specified, and not oscillate back
and forth.

• The adjusted play rate r contains many spikes, due to the sudden
changes in the input position and velocity.

To address the first problem, we first impose a condition that if the adjusted
play rate does not occur in the direction of movement, then the adjusted
play rate is set to zero. However, this condition does not guarantee syn-
chronization. We observe that an instantaneous rate adjustment, rn, is
given by:

ra1,n =
u(t1) − a(t1)

ǫ
(6.8)

6.2 DiMaß 163

time [s]

µ = 0 µ = 0.99

p
la

y
 r

at
e

-110

-80

-50

-20

10

40

70

100

130

0 1 2 3 4 5 6 7

-9

-6

-3

0

3

6

9

0 1 2 3 4 5 6 7

Figure 6.16: Effect of viscosity µ on the adjusted play rate r (thin blue
line): the play rate is smoother as µ increases. The thick red line is the
input velocity u′(t).

The computed rate corrects for the current difference in user and audio
timebases over the time interval ǫ. While this calculation is not affected by
inaccuracies in v(t), it is only valid for small values of ǫ, and usually results
in even larger jumps to the play rate when the input position changes.
Thus, we use this instantaneous rate adjustment only when its magnitude
is smaller than rg.

To remove the spikes in the play rate, we introduce a “viscosity” parameter
µ, which is used to adjust the catch-up interval ∆t, and to smoothen the
play rate adjustment. (6.7) becomes:

ra1,g = µra0 + (1 − µ)ra0
u(t1 + µ∆t + ǫ) − a(t1)

a(t1 + µ∆t + ǫ) − a(t1)
(6.9)

Here, the value of ǫ ensures the adjusted play rate does not become un- Higher viscosity

results in

smoother

playback but

lower

responsiveness.

defined as µ approaches zero. In our current implementation, we set ǫ in
both (6.8) and (6.9) to the length of an audio block (e.g., 1024 samples).
Figure 6.16 shows the effect of two different values of µ on rg. Note that
a higher viscosity setting increases the interval from when the user stops
moving, to when the audio catches up; we use this interval as a measure
of response time, and Figure 6.17 shows the effect of increasing µ on the
response time. Early user feedback suggests that an appropriate value for µ
depends on the precision of the input device (e.g., mouse vs. DJ turntable),
the audio type (music vs. speech), and the application (editing vs. search-
ing).

164 6 Sample Systems

viscosity, exponential scale (eµ)

re
sp

on
se

 t
im

e
[s

]

0

0.75

1.5

2.25

0 0.2 0.4 0.6 0.8 1

Figure 6.17: Effect of viscosity (µ) on response time.

6.2.3 Forwards and Backwards Scrubbing

The other challenge with DiMaß is supporting both forwards and back-Audio samples are

reversed to

support

backwards

scrubbing.

wards scrubbing through an audio timeline. Backwards audio playback is
currently achieved by simply reversing the order of the audio samples before
they are fed into the remainder of the audio pipeline; the time map asso-
ciated with this audio stream is likewise simply a reflected version of the
original. More sophisticated backwards time-stretching approaches have
been proposed for speech [Arons, 1997, Hürst et al., 2005a], where entire
words or phrases are played back as normal, but the ordering of these words
and phrases are reversed. It is unclear, however how such schemes would
apply to other types of audio, such as music. Regardless, STF supports
any arbitrary scheme, as long as the time map associated with the audio
input is accurate, and will thus be dictated by the specific application. Fig-
ure 6.18 illustrates time maps for both our default scheme for backwards
playback, as well as Hürst’s.

6.2.4 Beat Tapper

As we discussed in Section 2.5, automatic beat detection remains an active
area of research in computer music, and algorithms have been developed
that work well for many types of music [Dixon, 2001a]. Nonetheless, certain
types of music remain beyond the capabilities of these algorithms. For
example, in many of the recordings of orchestral performances that we use
for Personal Orchestra, there is a large range of tempi (15 to 80 bpm within
a single piece is not uncommon), and some pieces have little percussion.
Unsurprisingly, we have found even humans often have trouble finding the
pulse for such pieces. Tracking the beat is thus, unsurprisingly, beyond
the capabilities of today’s algorithms. Thus, we have found a tool like

6.2 DiMaß 165

Hello World

real time

au
d
io

 t
im

e

World Hello

real time

au
d
io

 t
im

e

Hello World

real time

au
d
io

 t
im

e

Figure 6.18: Time maps for reverse playback. The first (top) plot shows
the time map for the original audio segment. The second (bottom left) plot
shows the time map for backwards playback using reversed audio samples,
and the third (bottom right) shows the time map for backwards playback
by reversing segments of the audio.

Beat Tapper that allows a human to manually tag audio data with beat
metadata indispensable in our research.

Beat Tapper allows the user to load an audio file into a waveform view,
and “tap along” to the beat while the audio is playing. The inserted beat
markers can be manually fine-aligned in the waveform. Beat Tapper has
features rarely seen on similar waveform viewing/editing tools, however:

• Users can, optionally, “hear” the beat, and tapping sounds are played
synchronous to the music.

• Users can arbitrarily adjust the audio playback speed using a rate
control slider.

• Users can scrub through the audio using DiMaß.

The addition of a visual waveform view and audible beats increases the Beat Tapper

introduces two

additional

timelines to

synchronize.

number of timelines that need to be synchronized for DiMaß. The waveform
view requires no rate information, and the waveform can be drawn with an
offset based on the current audio position. The audible beats consist of a
short “tapping” sound clip. Since this tapping sound is a transient event, it
would not be appropriate to mix it with the audio before it is time-stretched,

166 6 Sample Systems

Audio
Input

Audio
Rate Changer

Audio
Output

Synchronizer

audio time

user time
Input Tracker

rate

reference

dependent

Synchronizer

beats time

reference

dependent

rate

Beat
Generator

Beat
Rate Changer

Audio
Output

Waveform View

Figure 6.19: Theoretical Beat Tapper block diagram. The audio is first
synchronized to the user input. The tapping audio track is generated in a
separate pipeline, and synchronized to the audio.

and doing so would only amplify the transient smearing artifacts from the
phase vocoder. Instead, these tapping sounds should be “time-stretched”
by respacing them, and then mixed together with the time-stretched audio.
Figure 6.19 shows a theoretical block diagram for Beat Tapper that would
implement such a scheme.

In practice, a separate pipeline is not necessary for these audible beats,
since both pipelines consist of audio data. It is more efficient to combine
the two pipelines. In our current implementation, we extended STF with
two custom nodes: a beat mixer and a beat generator. The beat mixer
receives the time-stretched audio from its data source, and then pulls on its
second input, the beat generator, for respaced beats that are synchronized
to this time-stretched audio (see Figure 6.20).

6.2.5 Discussion and Future Directions

DiMaß illustrates how the Semantic Time Framework helps with the design
and implementation of non-musical media applications. It is also an exam-
ple where our polymorphic semantic time unit is assigned to a unit other
than beats. Other than this difference in definition of semantic time units,

6.3 iRhyMe 167

Audio
Input

Audio
Rate Changer

Synchronizer

audio

time

user time
Input Tracker

rate

reference

dependent

beats time
Beat

Generator

Beat
Mixer

Waveform View

Audio
Output

Figure 6.20: Actual Beat Tapper block diagram. The audio is first syn-
chronized to the user input. A beat mixer examines the time-stretched
audio and requests respaced beats from the beat generator to synchronize
with the time-stretched audio before output.

the architecture for DiMaß is remarkably similar to POlite. We also showed
how this same architecture is able to support both forwards and backwards
playback by defining an appropriate time map for the audio samples.

Beat Tapper is an application that incorporates DiMaß for tagging audio DiMaß is the basis

for further

research on audio

navigation.

files with temporal metadata, and the Semantic Time Framework is able to
support the additional requirements of this application: namely, a visual
waveform view and audible beats synchronized to the audio. Beat Tapper
is not the only application of DiMaß, however, and we have explored using
DiMaß together with iPod-like hardware controls to study audio scrolling
performance [Lee, 2007b]. We have also integrated DiMaß into a prototype
audio editor (see Figure 6.21) to study the effect of varying feedback types
on audio editing performance [Lee et al., 2006c].

6.3 iRhyMe

The Interactive Rhythm Meddler is an implementation of the temporal iRhyMe

implements the

temporal algebra.

algebra presented in Chapter 4. This application demonstrates not only
how this algebra can be realized, but is also an interactive tool for users
to experiment with rhythm and beat microtiming. Certain types of music,
such as a Strauss waltz or jazz, have a characteristic off-beat swing or groove
in their rhythm; such rhythms are often one of the more difficult aspects
for musicians unpracticed in these genres to grasp. Using iRhyMe, users

168 6 Sample Systems

Figure 6.21: Audio editor prototype with DiMaß. Many audio editors
do not provide feedback when selecting parts of a waveform; our prototype
however, incorporates DiMaß to provide this feedback. The user can modify
the selection using the selection markers; as the cursor is scrubbed over the
waveform, the audio at that position is played.

are able to interactively manipulate the tempo and rhythm of such musical
pieces by adjusting the relative timing of the beats. Adjustments can be
made by applying a algorithmically generated groove pattern to the music,
applying the rhythm pattern of one existing performance to another, or any
scaled combination of these two.

Applications for modifying the rhythmic structure of music already exist:
commercial music sequencing applications such as Cakewalk Sonar and
Steinberg Cubase allow composers and musicians to modify the rhythm of
a MIDI recording. Cakewalk Sonar, for example, allows composers to ap-
ply rhythm patterns to MIDI recordings. Ableton Live provides a similar
feature, called “warp markers” for digital audio. Precomputed groove pat-
terns can also be applied, although Live does not offer as much flexibility
as Cakewalk with respect to applying arbitrary groove templates.

Unlike these applications, however, which are used primarily to edit the me-
dia offline, the aim of iRhyMe is to allow users to interactively explore and
learn about rhythm by experimenting and combining rhythm patterns from
different sources. These interactions with rhythm are realized using time
maps in the Semantic Time Framework, and the application is implemented
as a set of Quartz Composer plugins.

6.3.1 Quartz Composer

Quartz Composer is a visual programming environment for Mac OS X
[Apple, 2006a]. Like Max/MSP [Puckette, 2002], it is node-based, with

6.3 iRhyMe 169

Audio
Input

Audio
Rate Changer

Audio
Output

Synchronizer

Rhythm
Source

rate

reference

dependent

Semantic Time Audio

rhythm map

audio file

audio rhythm

Figure 6.22: iRhyMe rendering engine. A rhythm map input serves as
the synchronization source for an audio pipeline.

basic building blocks called patches linked together to form compositions. Quartz Composer

is a visual

programming

environment for

motion graphics.

However, it was primarily designed for motion graphics, rather than audio.
As of Mac OS 10.5, Apple provides a public development kit for building
custom plugins using Objective-C. For this reason, we chose Quartz Com-
poser over other, similar environments (e.g., Max/MSP) to host our iRhyMe
extensions – STFv2 is also implemented in Objective-C, and integrating it
into Max/MSP would require either a Java or a C interface wrapper.

6.3.2 Implementation

iRhyMe consists of four custom patches to implement the temporal algebra.

• SemanticTimeAudio: An audio rendering engine consisting of an
audio pipeline synchronized to an external rhythm map (see Fig-
ure 6.22).

• ConstantRhythmMap: Generates a rhythm map with a constant tempo
and no groove pattern.

• VariableRhythmMap: Loads a rhythm map from disk.

• AverageRhythmMap: Computes a weighted average of two rhythm
maps using the algorithm presented in Section 4.4.4.

The latter three patches are used to generate a single rhythm map that
acts as the synchronization source for a SemanticTimeAudio patch. A
rhythm map is a specialized time map that includes both beat and measure
information.

170 6 Sample Systems

The SemanticTimeAudio patch consists of an audio pipeline synchronized
to a time map. Since time maps are, by themselves, stateless, a simple
wrapper object is required to advance through a rhythm map at its nominal
rate. This wrapper acts as the synchronization reference for the audio
pipeline.

The complete source code and binaries for iRhyMe, together with POlite
and DiMaß, is available at http://styme.org.

6.3.3 Discussion

Rhythm maps illustrate how time maps can be extended with additionaliRhyme uses a

hierarchical time

map.

semantics; whereas the time maps in Personal Orchestra and DiMaß con-
sist only of beat and sample intervals, rhythm maps include both musical
measure and beat information. These additional semantics allow us to im-
plement the temporal algebra proposed in Chapter 4.

By building iRhyMe on top of an existing, established visual programming
environment, we hope to enable other researchers to continue and extend
our work with new algebraic operations.

6.4 Closing Remarks

In this chapter, we presented three applications of the Semantic Time
Framework: POlite, DiMaß, and iRhyMe.

POlite is the cumulation of almost eight years of design experience with
interactive conducting systems. We showed how using the Semantic Time
Framework, we were able to mitigate the complexity associated with incor-
porating on-the-fly audio time-stretching. In particular, STFv1 allowed us
to retain the modularity of the system by not requiring temporal data from
multiple sources in the data processing chain; we were also able to replace
two implementations of the same synchronization algorithm with a more
generic version that operates on stymes. Finally, we showed how the syn-
chronization model of STFv2 neatly encapsulates various synchronization
requirements to accommodate both conductors and non-conductors.

DiMaß is built on the same basic architecture as POlite. One major dif-
ference is that it does not use a styme unit of music beats, since DiMaß is
not limited to music. We also showed how the Semantic Time Framework
architecture extends to support additional interactions, such as backwards
scrubbing and robustness to erratic movements. We also showed how Beat
Tapper, an application that incorporates DiMaß, uses the Semantic Time
Framework to support synchronization with visuals and a separate audible
beat track.

http://styme.org

6.4 Closing Remarks 171

iRhyMe is, from a functionality perspective, the simplest of the three ap-
plications presented in this chapter. However, it demonstrates yet another
facet of the Semantic Time Framework – it uses more complex time maps
to implement a visual programming environment for interactively manipu-
lating beat microtiming.

These applications demonstrate how the Semantic Time Framework can be
used to enable new interactions with digital time-based media, and create
applications with a “high ceiling” of functionality.

173

Chapter 7

Future Work

“The only reason for time is
so that everything doesn’t happen at once.”

—Einstein

The work presented in this thesis is by no means exhaustive. In this chapter,
we describe some aspects of semantic time that we have set aside for the
future, some possibilities for extending semantic time, and new directions
that have been enabled through this work.

7.1 Expanding the Time-Design Space

We studied some of the mappings that occur across the three domains in our
time-design space. In particular, we examined issues with users’ perception
of latency when conducting or performing rhythmic correction (user domain
to medium domain), and processing latency in phase vocoder-based time-
stretching algorithms (medium domain to technology domain). Further
work could examine other mappings in this space. For example, are there
non-trivial mappings that exist directly between the user and technology
domains?

In our analysis of latency in the phase vocoder, we considered only the
latency introduced by the overlap add, and neglected the phase and group
delay introduced by the phase estimation calculations. We hope to ex-
tend this work by further considering these factors. Such an analysis is
algorithm-dependent – the methods used to perform peak-picking, phase-
locking, and transient re-alignment, for example, will all affect the results.
The delay is also typically signal-dependent, in which case no closed-form
solution is possible. However, there remains some possibilities for future
work:

174 7 Future Work

• Perform an analysis for a specific algorithm, such as the basic phase
vocoder.

• Perform an analysis for the startup latency only, eliminating most
data-dependent factors; these results would still be useful for perform-
ing sample-accurate startup synchronization Greenebaum [2007a].

• Where a closed-form solution is not possible, try to determine an
upper bound on the phase/group delay introduced by the processing,
perhaps using a combination of analytical and empirical methods.

7.2 Extending Semantic Time

We developed semantic time to represent time as a hierarchy of inter-
vals. Together, these intervals form a continuous function over presen-
tation time. The issue of how best to interpolate time within the intervals
is one we left for future work. In our current implementation, we use only
linear interpolation; however, higher order interpolation schemes such as
splines [Ferguson, 1964] could also be used. Using higher order interpola-
tion schemes would ensure smoothness and continuity in time derivatives
of our time maps (e.g., rate, acceleration), which may be important for
applications where the rate and acceleration play a more significant role
than in the applications we have considered in this thesis. The implemen-
tation of such schemes may also require a time-stretching algorithm that is
able to process data at such a level – with PhaVoRIT, the time-stretching
factor may change only once every 23 ms, and, as we showed, there is also
a non-negligible latency involved in changing this time-stretching factor.
In the short term, an analysis and implementation of time map interpola-
tion schemes may be better suited for offline processing; however, research
in time-stretching continues to progress. The wavelet transform used in
DIRAC [Bernsee, 2006], for example, promises a better time-frequency res-
olution than the short time Fourier transform used in the phase vocoder.

We also began exploring using semantic time to represent temporal trans-
formations on multimedia, and future work could extend this library of
temporal transformations. For example, existing research has shown that
intelligibility of time-stretched speech can be significantly improved by tak-
ing into account some of the semantics of the speech to perform non-linear
time-stretching [He and Gupta, 2001], and several schemes have been pro-
posed to realize non-linear time-stretching by analyzing a speech signal’s
transients [Lee et al., 1997], emphasis [Covell et al., 1998], or short-term
energy [Chu and Lashkari, 2003]. Existing research in speech and linguis-
tics examines how the durations of individual phonemes of speech are re-
lated, and how these relative durations are changed as speech rate changes
[Zellner, 1998]. One could imagine an implementation of such a scheme us-
ing semantic time, with semantic time intervals defined for the phonemes of
the speech, and constraints placed on how the durations of these phonemes
may be changed relative to each other for a given stretch factor.

7.3 Semantic Time Framework 175

The semantic time logic can also be further developed using ideas from in-
terval temporal logic (ITL) [Schwartz et al., 1983]. ITL includes semantics
for reasoning about specific intervals and subintervals, and relationships
between intervals such as “next”, or qualifiers such as “always” and “some-
times”. Incorporating ITL into semantic time could broaden the library
of available constructs for reasoning about time. The synchronization al-
gorithms presented in this thesis would be one example for realizing these
constructs for continuous media such as digital audio and video streams.
As the framework is extended to include other types of media, such as mo-
tion graphics or synthesized audio, other implementations may be required,
and thus it may also be prudent to separate the idea of semantic time into
a “logic” part for temporal reasoning, and a “methods” part that includes
algorithms that allows the logic to be realized for various media types.

7.3 Extending the Semantic Time Framework

Our current implementation of the Semantic Time Framework uses
Objective-C, and there are numerous ways in which this implementa-
tion could be improved. For example, the entire framework could be
re-implemented using a programming language such as Objective Caml
(OCaml), an ML-derived language that supports functional, imperative,
and object-oriented programming [INRIA, 2007]. OCaml may be well-
suited for the Semantic Time Framework, since it contains aspects of func-
tional programming for semantic time, imperative programming for signal
processing, and object-oriented programming for modelling the data flow
architecture. One of the practical challenges of implementing the frame-
work exclusively in OCaml is integration with the existing frameworks that
STFv2 uses that are written in C/Objective-C/C++, such as QuickTime,
Core Audio and Core Image/Video.

A less ambitious alternative to re-implementing the entire framework in an-
other language is to integrate a declarative programming front-end. Such a
front-end would allow the constraints and rhythm algebra to be described
more naturally in code, and these could also be interpreted at run-time.
Such schemes have been explored previously – for example, Orlarey et al.
[2006] developed a front-end to the FAUST audio signal processing and
synthesis framework [Orlarey et al., 2004] that uses the Q declarative pro-
gramming language developed by Gräf [2005].

Yet another possibility for further extending the implementation is a visual
front-end for assembling pipelines and specifying their interrelationships.
Visual programming languages have proved to be both a popular and user-
friendly means of supporting non-programmers to build applications – ex-
amples include Max/MSP [Puckette, 2002] for audio and Quartz Composer
[Apple, 2006a] for motion graphics. iRhyMe, presented in Section 6.3, was
already an example of how one aspect of STF could be presented using the
visual programming paradigm; however, iRhyMe presents only the seman-
tic time algebra visually – the pipeline is essentially “hardcoded” into the

176 7 Future Work

SemanticTimeAudio patch. A more complete visual front-end could open
up this patch for editing in the same (or similar) environment. Design-
ers could also be presented with commonly used pipeline “templates” that
are preassembled. For example, a typical audio pipeline consists of the
node triplet AudioFileReader, AudioTimeStretcher, and AudioOutput,
and this could be offered to developers as a default “audio pipeline” suit-
able for many different applications.

7.4 Developing Design Patterns for Semantic
Time Applications

The concept of “design patterns” originated in architecture [Alexander,
1977], and was subsequently popularized in software engineering by
Gamma et al. [1995], and in interaction design by Borchers [2001]. De-
sign patterns are a means of capturing design experience (of buildings or
computer systems) using a textual description (a “pattern language”), and
are much like a “recipe” that can be used to solve similar problems in future
applications. We envision that, as an increasing number of applications are
created using the Semantic Time Framework, “temporal design patterns”
will emerge, and such patterns can be used to assist designers with con-
structing interactive media applications with temporal interaction.

7.5 Increasing the Repertoire of Semantic Time
Framework Applications

We presented only a few possible applications that can be built using the
Semantic Time Framework. The following are some ideas for future devel-
opment:

• An audio editing application that uses semantic time to assist with
skimming, searching, cutting and splicing speech segments. Our
preliminary research shows that this type of application would be
extremely useful for many radio and broadcast institutions, where
editing interviews is currently a tedious and painfully slow process
[Lee et al., 2006c]. It is not uncommon, for example, for a thirty
minute interview to be reduced to only two minutes when it is aired;
furthermore, filler “uhm” and “ah” sounds are typically edited out
from the raw material during editing, a process that is difficult to
automate.

• Improved audio scrolling interfaces for mobile devices, such as an
iPod. The Semantic Time Framework allows such applications to
be easily prototyped on the computer; the remaining challenge is
interfacing the computer with the mobile device.

7.5 Semantic Time Applications 177

Figure 7.1: The scrollbar for document navigation (left) is analogous
to the timeline slider for audio navigation (right). The wiper inside the
scrollbar, which controls the current viewing area in a document, is the
playhead in an audio timeline slider. The arrow buttons at either ends of a
scrollbar correspond to the fast forward and rewind buttons.

Such applications can also be used as a platform for performing additional
research in human-computer interaction. For example, interfaces and de-
vices for document scrolling is an area that is well-studied in existing lit-
erature [Zhai et al., 1997, Hinckley et al., 2002]. In contrast, interfaces for
navigating an audio timeline are less well-studied – the typical mechanism
to navigate a movie timeline, for example, is the timeline slider (see Fig-
ure 7.1), which we showed to be analogous to the scrollbar for navigating
through a text document [2006c]. Zhai et al. [1997] showed that the scroll-
bar is an inefficient means for scrolling through a text document, from
which we can deduce that the timeline slider is also probably not the most
efficient means of navigating through a multimedia stream. This observa-
tion creates a number of possibilities for further research, such as a detailed
study comparing position and rate controls for audio navigation, one which
we have already begun [Lee, 2007b].

179

Chapter 8

Conclusions

“If it weren’t for the last minute, nothing would get done.”

—Anonymous

New possibilities for novel interactions with time-based media continue to
emerge as technology improves. To support the development of these new
interactions, existing design methodologies, data abstractions, and support-
ing frameworks need to be refined, and new ones developed. The goal of
this thesis was to better support the design and construction of interactive
media systems with time-based interaction. That is, users have control over
the timeline of the media – time is “malleable”.

We introduced a time-design space for contextualizing work in these types
of interactive media systems. This time-design space was inspired from a
number of sources, including media arts literature and the SIGCHI cur-
riculum for human-computer interaction. In the latter, human-computer
interaction is typically described as communication between the user and
the computer (technology), and our design space refines this by inserting
the medium domain in between. This refinement is supported by the ar-
gument that users are, conceptually, interacting with the medium, and the
software interface and hardware are merely mechanisms to facilitate this
interaction. Our focus is on improving this conceptual design.

Each of the user, medium, and technology domains contains a number of
stand-alone research topics. We presented a number of these to give readers
an idea of both the scope and depth of this research – some of the topics
presented, including conga, a framework for adaptive conducting gesture
analysis, and PhaVoRIT, a phase vocoder for real-time interactive time-
stretching, were graduate theses completed under the guidance of the au-
thor. This thesis, however, focused on the challenges of integrating results
from these various domains into a single system.

One set of challenges we tackled is related to mapping time across these
domains. One aspect we studied, mapping user time to media time, was in

180 8 Conclusions

how users time their beat relative to the music beat in conducting gestures.
We found that it is possible to differentiate professional conductors from
non-conductors by examining where they placed their beat relative to the
music beat, and how consistently: in the musical piece we used for our
user studies, conductors consistently conduct 152 ms (1

4 of a beat at 100
bpm) ahead of the beat with an average variance of 47 ms (1

12 of a beat).
Non-conductors conduct, on the other hand, an average of only 52 ms (1

12
of a beat) ahead of the beat, with an average variance of 72 ms (1

8 of a
beat). The mapping between medium and technology time is hampered
by issues with processing latency. Such latencies are typically considered
negligible, but with the inclusion of more complex filters such as the phase
vocoder-based time-stretching, the processing latency is significant enough
to cause a noticeable loss of synchronization. We presented an analysis
of startup and dynamic latency of the phase vocoder, that, as far as we
are aware, has never been considered in previous work. We concluded the
discussion by introducing the synchronization algorithms we developed to
realize inter-domain time mappings. While synchronization algorithms are
a topic that has been well-studied in existing literature, our use of synchro-
nization in interactive media systems violates a number of assumptions
made in these previous works; for example, the reference timebase that is
used for synchronization is often subject to erratic changes when controlled
by users.

Another set of challenges faced by designers of interactive media systems
is related to mechanisms for representing time and temporal transforma-
tions. We proposed semantic time, which partitions media time into ab-
stract stymes, or temporal intervals tied to the semantics of the medium.
A styme is polymorphic – its exact definition is application dependent. A
computer music application may use beats; a speech application may use
words. Stymes may also be defined hierarchically: music, for example, has
a temporal hierarchy consisting of beats and measures. The relationship
between stymes and presentation time can be represented using time maps,
and we showed how constraints on time maps can be used to specify syn-
chronization. Unlike existing work, our specification of synchronization is
declarative, in that the result is specified, rather than the method for com-
puting the result. We also presented a temporal algebra for manipulating
beat microtiming using rhythm maps, a specialized form of time map that
makes use of the temporal hierarchy of music.

We then presented the Semantic Time Framework, a software library that
realizes the above ideas. The Semantic Time Framework was developed
iteratively, and the second iteration (STFv2) uses a hybrid data flow and
declarative architecture: data flow is used to model audio and video data
processing, and time is represented declaratively. Unlike many existing
multimedia frameworks, STFv2 uses a consistent model of time (semantic
time) across all media types and timebases. Time is also treated as a
continuum, rather than discrete events.

Myers et al. [2000] proposed that new toolkits should have a low threshold
for adoption, but still support a high ceiling of functionality. We showed

181

how STFv2 offers designers a low threshold for adoption by illustrating
how common problems can be solved in a minimal number of lines of code:
synchronization of audio and video media coming from separate sources,
and synchronization of audio media to an external, user-controlled clock.
We then showed how STFv2 can be used as the foundation for a number
of more complex interactive media applications: Personal Orchestra, Di-
Maß, and iRhyMe. These applications cover a broad range of areas (high
ceiling), from orchestral conducting to audio editing. Personal Orchestra,
in particular, is a system that has evolved over the past eight years, with
each system revision growing in complexity and capability. We showed
how the Semantic Time Framework mitigates this complexity with the in-
troduction of semantic time as a common model for representing time and
synchronization.

We envision that the Semantic Time Framework will continue to facilitate
the design and construction of interactive media systems. These systems
will not only support more interesting interactions with the timeline of
time-based media such as audio and video, but also serve as a platform
for research studying more efficient methods of searching, skimming and
navigating through time-based media.

183

Appendix A

Sampling and Quantization
Overview

Many of the topics discussed in this thesis are applications of digital signal
processing. While an in-depth knowledge of the subject is not required to
apply the results presented, some knowledge of digital signal processing is
helpful to understand how this work was developed. Digital signal process-
ing covers a wide range of topics that would not be possible to cover in
detail in just a few pages. Our goal in the next two chapters is to pro-
vide a cursory overview of selected topics deemed to be the most relevant
to this thesis, for those readers who may be unfamiliar with them. An
intuitive/practical approach will be taken where possible, perhaps at the
expense of some mathematical rigour.

In this chapter, we will cover the topics of sampling, quantization, and
resampling. Frequency domain topics will covered in Appendix B.

A.1 Sampling

Real-world analog signals are continuous in both time and amplitude. To
convert analog signals into digital form appropriate for storage and manip-
ulation by a computer, both the time and amplitude must be discretized.
Sampling is the process of discretizing the temporal axis; quantization,
which will be discussed in the next section, is the process of discretizing
the signal amplitude (see Figure A.1).

Temporal discretization occurs by taking“snapshots”(samples) of the signal
at regular intervals. The sampling frequency is the rate at which these
snapshots are taken, measured in samples per second, or Hertz (Hz). For
example, CD quality audio has a sampling rate of 44,100 Hz. Video is
sampled along three dimensions – one temporal and two spatial (width
and height). For example, video encoded using the PAL standard has a

184 A Sampling and Quantization Overview

original (analog) signal

sampled signal sampled and quantized signal

Figure A.1: Sampling followed by quantization. Sampling discretizes an
analog signal along the time axis; quantization discretizes the amplitude.

temporal sampling rate (or frame rate) of 25 Hz (frames per second), and
a spatial sampling measured in number of pixels – 720 pixels wide and 576
pixels high.

Eventually, a signal must be converted back to analog form for consump-
tion by a human. The Nyquist-Shannon sampling theorem [1949] dictates
the conditions under which the sampling process can be reversed without
any loss of information. This theorem states that an analog signal can be
perfectly reconstructed from its digital representation if the sampling rate
is greater than twice the maximum frequency present in the signal. In prac-
tice, this requires that a signal be bandlimited by removing high frequency
components.

It is also often desirable to change the sampling rate of an already sampled
signal – this is a process known as resampling, and will be discussed in
Section A.3.

A.2 Quantization

Quantization is the process of discretizing the amplitude of the signal (see
Figure A.1). Since computers can only represent samples using a finite
number of bits, the original analog values must be rounded to a fixed set of
values. CD audio, for example, is typically stored using 16 bits per sample;
uncompressed images, or video, are often stored with 24 bits per pixel, 8
bits for each of the red, green, and blue components1.

1Images and video have an additional parameter – the colour space. RGB, YUV, and
CMYK are all examples of colour spaces. Their discussion is beyond the scope of this
introduction, however.

A.3 Resampling 185

It is important to note that quantization is a lossy process – once quantized,
the original signal cannot be recovered. This is unlike sampling, where (in
theory) the original signal can be recovered as long as the criteria set forth
by the Nyquist-Shannon sampling theorem are satisfied.

Another important consideration is that quantizing a signal creates notice-
able artifacts in the resulting signal. Quantization error is defined as the
difference between the original signal and the quantized signal, and it turns
out that there is a strong relationship between the quantization error and
the original signal (see Figure A.2). This relationship makes the quanti-
zation error especially noticeable to the human sensory system. In audio,
quantization results in audible distortion artifacts; in images and video,
quantization creates banding or contouring effects (see Figure A.3(b)). To
minimize the effect of quantization error, dithering is used. Dithering is
essentially the process of adding noise to the signal just before it is quan-
tized; this may seem counter-intuitive, since noise is typically undesirable.
However, the noise in this case disassociates the quantization error from
the original signal, and the result is perceptually more pleasing (see Fig-
ure A.3(c)).

A.3 Resampling

Resampling, also known as sample rate conversion, is the process of con-
verting a signal from one sampling rate to another. Resampling has many
practical applications: in audio, resampling may be required if two devices
with different sampling rates need to be connected. For example, you may
want to play audio acquired from a digital camcorder at 32 kHz on a sound
card which supports only 44.1 kHz audio. Resampling can also be used to
change the duration of the audio – resampling a 44.1 kHz audio stream to
88.2 kHz and playing it back on a 44.1 kHz device will slow it down by a
factor of two – the pitch, however, will also be lowered by twelve semitones
(one octave). For video, spatial resampling can be used to resize an image;
as discussed in Chapter 2, temporal resampling is not a good method to
alter the frame rate of video, however.

As described in Section A.1, a sampled signal is generated by taking “snap-
shots”of an analog signal at regular intervals (see Figure A.1). A resampled
signal has similar snapshots of the original audio signal, just at different
intervals. Thus, the problem is how to compute the values for these “in-
between” samples, given only the samples that we currently have.

For illustrative purposes, we will use in our subsequent discussion the spe-
cific example where the sampling rate is increased by 25% (also known
as upsampling – decreasing the sampling rate is known as downsampling).
One could imagine a number of approaches for determining values to use
for these newly inserted samples.

The simplest, and most computationally inexpensive method, is a nearest

186 A Sampling and Quantization Overview

048 048

-0
.50

0.
5

(a
)

(b
)

(c
)

F
ig

u
re

A
.2

:
A

n
il
lu

st
ra

ti
on

of
th

e
re

la
ti
on

sh
ip

b
et

w
ee

n
a

si
gn

al
an

d
it
s

q
u
an

ti
za

ti
on

er
ro

r.
A

si
n
gl

e
to

n
e

(a
)

is
q
u
an

ti
ze

d
to

ei
gh

t
va

lu
es

(b
).

T
h
e

q
u
an

ti
za

ti
on

er
ro

r
(c

)
ex

h
ib

it
s

th
e

sa
m

e
p
er

io
d
ic

n
at

u
re

as
th

e
or

ig
in

al
si

gn
al

,
w

h
ic

h
m

an
if
es

ts
it
se

lf
as

d
is

to
rt

io
n

in
an

au
d
io

si
gn

al
.

A.3 Resampling 187

(a
)

O
ri
g
in

a
l
im

a
g
e.

(b
)

Im
a
g
e

q
u
a
n
ti
ze

d
to

5
-b

it
s

(3
2

co
lo

u
rs

).
(c

)
5
-b

it
q
u
a
n
ti
za

ti
o
n

w
it
h

er
ro

r
d
iff

u
si
o
n

d
it
h
er

in
g
.

F
ig

u
re

A
.3

:
E

ff
ec

ts
of

q
u
an

ti
za

ti
on

er
ro

r
on

im
ag

es
.

O
ri

gi
n
al

p
h
ot

o
ta

k
en

b
y

T
h
or

st
en

K
ar

re
r.

188 A Sampling and Quantization Overview

neighbour approach, where the desired sample value is simply taken from
the closest existing sample (see Figure A.4). Although this method requires
essentially no computation (just rounding the fractional sample index to the
nearest integer), this method does not yield very satisfactory results relative
to the theoretically “correct” answer. A plot of the spectrum of this signal
further illustrates just how poor this approach is.

A second, slightly better approach is linear interpolation, where the in-
between samples are reconstructed by taking a weighted average of the
two samples to its immediate left and right. The resulting waveform is
somewhat better (see Figure A.5).

Linear interpolation is achieved as follows: given the fractional sample index
x, let xl = ⌊x⌋ and xr = ⌈x⌉. The weighting coefficient is η = x − xl, and
the interpolated sample is s(x) = (1 − η) s(xl) + η s(xr).

To further improve upon linear interpolation, we can do polynomial inter-
polation. This involves fitting a polynomial of some order N to the data
points and using that to interpolate the values. Common types of poly-
nomial interpolation include quadratic interpolation (N = 2) and cubic
interpolation (N = 3).

The techniques described above (nearest neighbour, linear interpolation,
and polynomial interpolation) are often used in computer graphics, to, for
example, resample texture maps, or construct continuous paths from a set
of discrete control points.

We can do better resampling for audio, however, with a little understanding
of digital signal processing theory. Recall that the Nyquist-Shannon sam-
pling theorem states that a sampled signal can be perfectly reconstructed
if the sampling frequency is twice the highest frequency in the signal. This
perfect reconstruction is achieved by using a sinc function to interpolate
the in-between sample values. The sinc function, which is zero at integer
values (except 0), is used to compute a set of weighting coefficients that
is then used to weigh and sum the neighbouring samples to produce the
desired output sample (see Figure A.6).

The sinc function is mathematically defined as sinc(t) = sin(πt)
πt

, which ex-
tends out infinitely in either direction over time t (see Figure A.7). This,
of course, is a problem, since it means that an infinite number of samples
would need to be multiplied with this sinc function, and the reconstruction
would have an infinite delay. Thus, the sinc function must be time-limited
by windowing it (windowing will be described in more detail in Appendix B.
Simply truncating the sinc function at some point is equivalent to the simple
rectangular window; more sophisticated window functions gradually taper
to zero at either end.

Directly multiplying sinc coefficients with the data samples is, in practice,
not a computationally efficient means of performing sinc interpolation, and
a number of more efficient mechanisms have been developed [Ramstad,

A.3 Resampling 189

-1

-0.5

 0

 0.5

 1

 0 1 2 3 4 5

A
m

p
li
tu

d
e

Time [s]

Signal (Time Domain)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

A
m

p
li
tu

d
e

Angular frequency [rad]

Spectrum (Frequency Domain)

Figure A.4: Nearest neighbour resampling. The blue triangles show the
original samples, and the purple diamonds show the interpolated samples.
This interpolation scheme produces a lot of unwanted frequencies that can
be seen in the signal’s spectrum – ideally, since we are using the example
of a single frequency, there should be only a single spike in the frequency
spectrum.

190 A Sampling and Quantization Overview

-1

-0.5

 0

 0.5

 1

 0 1 2 3 4 5

A
m

p
li
tu

d
e

Time [s]

Signal (Time Domain)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

A
m

p
li
tu

d
e

Angular frequency [rad]

Spectrum (Frequency Domain)

Figure A.5: Linear interpolation resampling. The blue triangles show
the original samples, and the purple diamonds show the interpolated sam-
ples. The unwanted frequencies are significantly reduced, compared to Fig-
ure A.4.

A.3 Resampling 191

-1

-0.5

 0

 0.5

 1

 0 1 2 3 4 5

A
m

p
li
tu

d
e

Time [s]

Signal (Time Domain)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

A
m

p
li
tu

d
e

Angular frequency [rad]

Spectrum (Frequency Domain)

Figure A.6: Sinc interpolation resampling. The blue triangles show the
original samples, and the purple diamonds show the interpolated samples.
The result is an almost perfect reconstruction – an almost perfect spike in
the spectrum corresponding to the input tone, especially when compared
to Figures A.4 and A.5.

192 A Sampling and Quantization Overview

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -5 0 5 10

si
n
c(

x)

x

Figure A.7: Plot of the sinc function.

2004, Smith, 2002].

A.4 Closing Remarks

The discussion included in this chapter is aimed at giving only a very cur-
sory introduction to the issues of sampling and quantization. For a more
in-depth discussion we refer the reader to the following references:

• The book “Discrete-Time Signal Processing” by Oppenheim et al.
[1999] is a classic text on digital signal processing.

• Smith has a large number of online publications on signal process-
ing on his website at http://ccrma.stanford.edu/~jos/pubs.html.
The emphasis is on audio processing applications.

• Pharr and Humphrey’s computer graphics text [2004] contains a chap-
ter on sampling; the discussion focuses on images and rendering for
computer graphics.

http://ccrma.stanford.edu/~jos/pubs.html

193

Appendix B

Fourier Theory Overview

Fourier theory is a key component of modern digital signal processing for
audio and images. As in Appendix A, it is simply not possible to give any
but the most cursory of introductions to this topic in the space allotted
here. The intent, again, is to give readers only a short introduction to the
select topics relevant to this thesis.

B.1 The Fourier Transform

Fourier theory is based on the idea that any signal can be represented as a
(potentially infinite) sum of individual frequencies (sine waves) of varying
amplitudes. The Fourier transform converts such signals into this frequency
representation (the spectrum of a signal, see Figure B.1). The spectrum
consists of two components: the magnitude, which is the amplitude of these
frequencies, and the phase, which is the offset of the sine wave’s starting
point; note that since sine waves are periodic (with period 2π), the phase
can be represented as a value between 0 and 2π. Interestingly, most of
the information in real-world signals is stored not in a signal’s spectral
magnitude, but in its phase.

To represent the spectrum digitally, it must also be sampled. The discrete
Fourier transform (DFT) converts a sampled signal into its sampled spec-
trum (and back again). Each sample of the spectrum is referred to as a
frequency bin.

The Fast Fourier Transform (FFT) is a class of algorithms for efficiently
computing the discrete Fourier transform; many of these algorithms are
based on work done by Cooley and Tukey [1965].

194 B Fourier Theory Overview

Time [s]

A
m

p
li
tu

d
e

-π

 0

 π

0 1 2 3 4 5 6 7 8 9 10

Frequency [Hz]

P
h
as

e
[r
ad

]

0 1 2 3 4 5 6 7 8 9 10

Frequency [Hz]

M
ag

n
it
u
d
e

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure B.1: Example frequency spectrum for a signal composed of two
sine waves: x(t) = sin(10t) + 0.5 cos(30t). The magnitude plot shows two
spikes at 1.6 Hz and 4.8 Hz, with the latter exactly half the size of the
former, as expected. The phase plot shows that the phase at 1.6 Hz is −π

2
(−90 deg), and 0 at 4.8 Hz; this result is also expected, since the sine curve
is nothing more than a cosine curve phase-shifted by 90 degrees.

B.2 Windowing

Real-world signals are, of course, time-limited. Taking the discrete Fourier
transform of a time-limited signal implicitly converts the original signal
into an infinite-length, periodic signal by repeating that segment. One of
the side-effects of this is that a number of “false” frequencies are gener-
ated (see Figure B.2). These frequencies originate from the discontinuities
at the seam between repetitions of the original signal. To minimize these
discontinuities, a windowing function is used to taper the original signal
off to zero at either end (see Figure B.3). Windowing a signal, however,
also distorts it (see Figure B.4); thus there is a trade-off between mini-
mizing these distortions and minimizing the frequencies introduced by the
discontinuities.

B.3 The Short-Time Fourier Transform 195

Frequency [Hz]

M
ag

n
it
u
d
e

5 100

850 ms

Figure B.2: Example of applying a 850 ms rectangular window (i.e.,
simple truncation) to a signal consisting of a single, 5 Hz tone. The DFT
implicitly repeats the signal on either side – note the discontinuity in the
signal at the window borders. This discontinuity results in a number of
undesired sidelobes in the frequency spectrum that are unrelated to the
original signal.

 0

 0.5

 1

0 25 50 75 100

Figure B.3: A Hanning window, which gradually tapers off to zero at

either end. The Hanning window is defined by h(n) = 0.5
(
1 − cos(2πn

N−1)
)
,

where N is the window length (in this example, N = 100). The Hanning
window is also known as a raised cosine window.

B.3 The Short-Time Fourier Transform

Real-world signals are also time-varying; that is, the frequency distribution
changes over time. This is to be expected – otherwise, music would sound
incredibly boring! Thus, the frequency changes over time are usually of
interest in an analysis of a signal. However, while the Fourier transform of
a signal is a convenient (and often the most practical) means to perform
this analysis, it also has the unfortunate side-effect of discarding all time
information. The short-time Fourier transform is essentially the application
of the Fourier transform not to the entire signal at once, but to short

196 B Fourier Theory Overview

M
ag

n
it
u
d
e

Frequency [Hz]

5 100

850 ms

Figure B.4: Example of applying an 850 ms Hanning window to the sig-
nal shown in Figure B.2. Since the window tapers the signal to zero at
either end, there is no discontinuity. In the frequency spectrum, the side-
lobes are greatly reduced, compared to Figure B.2. However, the distortion
introduced by the window results in a wider main lobe.

segments of the audio. Each segment is typically windowed to prevent
discontinuities at the endpoints from introducing undesirable frequencies
as described above. Choosing a length for the segments to be transformed
is a trade-off between time and frequency resolution. Shorter segments
have good time resolution: that is, the time-varying nature of the signal
can be better resolved. However, short segments also have a poor frequency
resolution, since there are not enough data points to properly determine the
frequencies contributing to the signal (imagine the extreme case where each
segment consists of only one sample). The reverse is true for long segments:
they have good frequency resolution but poor time resolution.

Segments are also overlapped to preserve continuity of spectral information.
Especially if the segments are windowed with a function that tapers off to
zero at either end, it is desirable to overlap the segments to ensure all data
is included in the analysis. However, there is, again, a trade-off to be made:
while increased overlap results in smoother, more continuous spectral data
across windows, it also means more data must be processed.

B.4 Closing Remarks

For a more in-depth discussion of the topics introduced in this chap-
ter, we again refer the reader to “Discrete-Time Signal Processing”
[Oppenheim et al., 1999], or to“Mathematics of the Discrete Fourier Trans-
form”, which is available online [Smith, 2003].

197

Appendix C

Source Code Listings

This appendix contains the full source code listings for the HelloSTF and
MetroSync applications presented in Chapter 5. The intent is to provide a
more complete picture of what is involved in developing a complete STF
application.

C.1 HelloSTF

HelloSTF is a simple application demonstrating how audio and video media
from separate sources can be synchronized using the Semantic Time Frame-
work. The complete source code, together with sample data files, can be
downloaded from the subversion repository located at http://styme.org.

C.1.1 HelloSTFController.h

///

//

3 // HelloSTF

// Copyright (C) 2007 Eric Lee

//

// This program is free software; you can redistribute it and/or

// modify it under the terms of the GNU General Public License

8 // as published by the Free Software Foundation; either version 2

// of the License, or (at your option) any later version.

//

// This program is distributed in the hope that it will be useful,

// but WITHOUT ANY WARRANTY; without even the implied warranty of

13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// GNU General Public License for more details.

//

// You should have received a copy of the GNU General Public License

// along with this program; if not, write to the Free Software

18 // Foundation, Inc., 51 Franklin Street, Fifth Floor,

// Boston, MA 021101301, USA.

//

http://styme.org

198 C Source Code Listings

///

23 #import <Cocoa/Cocoa.h>

#import "STVideoView.h"

#import "STSynchronizer.h"

#import "STVideoOutputNode.h"

28 #import "STAudioOutputNode.h"

/// Main controller class for the HelloSTF application.

/**
This simple STF application demonstrates how to synchronize media from

33 two different sources. The audio is a simple tone sequence, with a

"beep" rate of once per second. The video is a sweeping circle at an

assumed rate of one revolution per second. If the two media were

perfectly in sync, then a tone would sound exactly once every revolution

of the circle. To simulate clock drift, in this example, however, the

38 last three revolutions in the video were purposely rendered to be 33%

faster than they should be. This information is captured in the

respective beatmaps for the audio and video.

Starting the audio and video pipelines independently results in a

43 visible loss of synchronization in the last three seconds of the

multimedia sequence. To fix this synchronization problem, a

STSynchronizer object is created and used to link the audio and video

pipelines. There are two options for synchronization: audio to video,

or video to audio. Both options are demonstrated in this example.

48

The audio pipeline consists of:

 a STAudioFileReaderNode to read in a wave file and its corresponding

beatmap file from the application bundle

 a STAudioPhaseVocoderNode to perform the timestretching

53 a STAudioOutputNode to render the processed audio to the hardware

The video pipeline consists of:

 a STVideoFileReaderNode to read in a QuickTime movie and its

corresponding beatmap file from the appliation bundle; it also acts

58 as the rate changer node

 a STVideoOutputNode to render the processed video to the hardware

using OpenGL

*/

@interface HelloSTFController : NSObject

63 {

IBOutlet STVideoView *m_videoView;

IBOutlet NSPopUpButton *m_syncMode;

NSNumber *m_isPlaying;

68

STSynchronizer *m_synchronizer;

STVideoOutputNode *m_videoOutputNode;

STNode<STRateChangerNode> *m_videoRateChangerNode;

73

STAudioOutputNode *m_audioOutputNode;

STNode<STRateChangerNode> *m_audioRateChangerNode;

}

78 (IBAction) play:(id)sender;

// KeyValue coding compliance for Cocoa Bindings.

 (NSNumber *) isPlaying;

 (void) setIsPlaying:(NSNumber *)isPlaying;

C.1 HelloSTF 199

83

@end

C.1.2 HelloSTFController.m

1 ///

//

// HelloSTF

// Copyright (C) 2007 Eric Lee

//

6 // This program is free software; you can redistribute it and/or

// modify it under the terms of the GNU General Public License

// as published by the Free Software Foundation; either version 2

// of the License, or (at your option) any later version.

//

11 // This program is distributed in the hope that it will be useful,

// but WITHOUT ANY WARRANTY; without even the implied warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// GNU General Public License for more details.

//

16 // You should have received a copy of the GNU General Public License

// along with this program; if not, write to the Free Software

// Foundation, Inc., 51 Franklin Street, Fifth Floor,

// Boston, MA 021101301, USA.

//

21 ///

#import "STVideoView.h"

#import "STVideoOutputNode.h"

26 #import "STVideoFileReaderNode.h"

#import "STAudioOutputNode.h"

#import "STAudioPhaseVocoderNode.h"

#import "STAudioFileReaderNode.h"

#import "STBeatMap.h"

31

#import "HelloSTFController.h"

#define SYNC_MODE_NONE 0

#define SYNC_MODE_VIDEO_TO_AUDIO 1

36 #define SYNC_MODE_AUDIO_TO_VIDEO 2

@interface HelloSTFController (Private)

 (void) stop:(NSTimer *)timer;

41

@end

#pragma mark

46 @implementation HelloSTFController

/// Deallocator.

 (void) dealloc

{

51 // Tear down the pipelines.

[m_videoOutputNode tearDown];

[m_audioOutputNode tearDown];

56 // Destroy the pipelines. Since nodes are reference counted and

200 C Source Code Listings

// retained within the pipelines, we only need to release the objects

// that we retained.

[m_videoOutputNode release];

[m_videoRateChangerNode release];

61

[m_audioOutputNode release];

[m_audioRateChangerNode release];

[m_synchronizer release];

66

[super dealloc];

}

71 /// Initialize UI.

 (void) awakeFromNib

{

[NSApp orderFrontStandardAboutPanel:self];

[self setIsPlaying:[NSNumber numberWithBool:NO]];

76 }

/// Notification that gets called when application has finished launching.

/**
81 IMPORTANT: The video pipeline must be created after the UI has been

initialized i.e., NOT in awakeFromNib.

*/

 (void) applicationDidFinishLaunching:(NSNotification *)notification

{

86 // Get the paths of various media files we need.

NSString *audioDataPath =

[[NSBundle mainBundle] pathForResource:@"audio" ofType:@"wav"];

NSString *audioStymePath =

[[NSBundle mainBundle] pathForResource:@"audio" ofType:@"beatmap"];

91 NSString *videoDataPath =

[[NSBundle mainBundle] pathForResource:@"video" ofType:@"mov"];

NSString *videoStymePath =

[[NSBundle mainBundle] pathForResource:@"video" ofType:@"beatmap"];

96

// Create video pipeline.

m_videoOutputNode = [[m_videoView videoOutputNode] retain];

STVideoFileReaderNode *videoFileReaderNode =

[[STVideoFileReaderNode alloc] init];

101 m_videoRateChangerNode = videoFileReaderNode;

[m_videoOutputNode setDataSource:videoFileReaderNode];

[videoFileReaderNode setPixelFormat:[m_videoView graphicsPixelFormat]];

[videoFileReaderNode setOpenGLContext:[m_videoView graphicsContext]];

106 [videoFileReaderNode setPath:videoDataPath];

STBeatMap *videoBeatMap =

[[[STBeatMap alloc] initWithContentsOfFile:videoStymePath]

autorelease];

[videoFileReaderNode setTimeMap:videoBeatMap];

111

// Create audio pipeline.

m_audioOutputNode = [[STAudioOutputNode alloc] init];

m_audioRateChangerNode = [[STAudioPhaseVocoderNode alloc] init];

116 STAudioFileReaderNode *audioFileReaderNode =

[[[STAudioFileReaderNode alloc] init] autorelease];

[m_audioOutputNode setDataSource:m_audioRateChangerNode];

C.1 HelloSTF 201

[m_audioRateChangerNode setDataSource:audioFileReaderNode];

121 [audioFileReaderNode setPath:audioDataPath];

STBeatMap *audioBeatMap =

[[[STBeatMap alloc] initWithContentsOfFile:audioStymePath]

autorelease];

[audioFileReaderNode setTimeMap:audioBeatMap];

126

// Create synchronizer.

m_synchronizer = [[STSynchronizer alloc] init];

131

// Setup the pipelines.

[m_videoOutputNode setUp];

[m_audioOutputNode setUp];

}

136

/// Start playback.

 (IBAction) play:(id)sender

{

141 // Update UI state.

[self setIsPlaying:[NSNumber numberWithBool:YES]];

// Link the two pipelines (or not) based on the requested mode.

switch ([m_syncMode indexOfSelectedItem])

146 {

default:

case SYNC_MODE_NONE:

break;

151 case SYNC_MODE_VIDEO_TO_AUDIO:

[m_synchronizer setSyncReference:m_audioOutputNode];

[m_synchronizer setSyncDependent:m_videoOutputNode];

[m_videoRateChangerNode setSynchronizer:m_synchronizer];

break;

156

case SYNC_MODE_AUDIO_TO_VIDEO:

[m_synchronizer setSyncReference:m_videoOutputNode];

[m_synchronizer setSyncDependent:m_audioOutputNode];

[m_audioRateChangerNode setSynchronizer:m_synchronizer];

161 break;

}

// Start the pipelines.

[m_videoOutputNode start];

166 [m_audioOutputNode start];

// Install a timer to stop the pipelines when movie playback is

// finished.

[NSTimer scheduledTimerWithTimeInterval:7.0 target:self

171 selector:@selector(stop:) userInfo:nil repeats:NO];

}

#pragma mark KeyValue coding compliance

176 /// Get isPlaying state.

 (NSNumber *) isPlaying

{

return [[m_isPlaying retain] autorelease];

}

202 C Source Code Listings

181

/// Set isPlaying state.

 (void) setIsPlaying:(NSNumber *)isPlaying

{

186 [m_isPlaying autorelease];

m_isPlaying = [isPlaying retain];

}

@end

191

#pragma mark

@implementation HelloSTFController (Private)

196 /// Stop playback.

 (void) stop:(NSTimer *)timer

{

// Stop the pipelines.

[m_videoOutputNode stop];

201 [m_audioOutputNode stop];

// Reset the pipelines.

[m_videoOutputNode resetAll];

[m_audioOutputNode resetAll];

206

// Unlink the pipelines.

[m_videoRateChangerNode setSynchronizer:nil];

[m_audioRateChangerNode setSynchronizer:nil];

211 // Update the UI state.

[self setIsPlaying:[NSNumber numberWithBool:NO]];

}

@end

C.2 MetroSync

MetroSync is a simple application demonstrating how an audio stream can
be synchronized to an external, user-controlled clock. More specifically, the
beats of a music file are synchronized to a user-controlled metronome. The
complete source code, together with sample data files, can be downloaded
from the subversion repository located at http://styme.org.

C.2.1 MetronomeView.h

///

//

// MetroSync

// Copyright (C) 2007 Eric Lee

5 //

// This program is free software; you can redistribute it and/or

// modify it under the terms of the GNU General Public License

// as published by the Free Software Foundation; either version 2

// of the License, or (at your option) any later version.

10 //

http://styme.org

C.2 MetroSync 203

// This program is distributed in the hope that it will be useful,

// but WITHOUT ANY WARRANTY; without even the implied warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// GNU General Public License for more details.

15 //

// You should have received a copy of the GNU General Public License

// along with this program; if not, write to the Free Software

// Foundation, Inc., 51 Franklin Street, Fifth Floor,

// Boston, MA 021101301, USA.

20 //

///

#import <Cocoa/Cocoa.h>

25 #import "STSynchronizer.h"

#import "STAudioOutputNode.h"

/// Main class for MetroSync.

/**
30 This simple STF application demonstrates how to synchronize media

(audio, in this case) to an external timing source (a metronome). The

external timing source must implement the STSyncObject protocol, after

which it can be set as a STSynchronizer reference. The tempo setting

on the metronome can be adjusted interactively by the user.

35

This class should (theoretically) only be responsible for drawing the

custom metronome view. The code for creating the audio pipeline and

updating the other UI elements was thrown in here as well, so that all

the code can be found in one place (there isn’t much of it anyway).

40 Doing so also makes it easier to see how everything fits together.

The audio pipeline consists of:

 a STAudioFileReaderNode, to read in an mp3 and its corresponding

beatx file from the application bundle

45 a STAudioPhaseVocoderNode to perform the timestretching

 a STAudioOutputNode to render the processed audio to the hardware

*/

@interface MetronomeView : NSView <STSyncObject>

{

50 NSNumber *m_tempo;

double m_currentMetroBeat;

NSDate *m_timeOfLastMetroBeatUpdate;

NSNumber *m_currentAudioRate;

55 NSNumber *m_currentAudioBeat;

NSNumber *m_audioDurationBeats;

STAudioOutputNode *m_audioOutputNode;

STNode<STRateChangerNode> *m_audioRateChangerNode;

60

NSTimer *m_updateTimer;

}

// Actions

65 (IBAction) startAudio:(id)sender;

// KeyValue coding compliance for Cocoa Bindings.

 (NSNumber *) tempo;

 (void) setTempo:(NSNumber *)tempo;

70 (NSNumber *) currentAudioRate;

 (void) setCurrentAudioRate:(NSNumber *)currentAudioRate;

 (NSNumber *) currentAudioBeat;

204 C Source Code Listings

 (void) setCurrentAudioBeat:(NSNumber *)currentAudioBeat;

 (NSNumber *) audioDurationBeats;

75 (void) setAudioDurationBeats:(NSNumber *)audioDurationBeats;

@end

C.2.2 MetronomeView.m

///

//

3 // MetroSync

// Copyright (C) 2007 Eric Lee

//

// This program is free software; you can redistribute it and/or

// modify it under the terms of the GNU General Public License

8 // as published by the Free Software Foundation; either version 2

// of the License, or (at your option) any later version.

//

// This program is distributed in the hope that it will be useful,

// but WITHOUT ANY WARRANTY; without even the implied warranty of

13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// GNU General Public License for more details.

//

// You should have received a copy of the GNU General Public License

// along with this program; if not, write to the Free Software

18 // Foundation, Inc., 51 Franklin Street, Fifth Floor,

// Boston, MA 021101301, USA.

//

///

23 #import "STAudioFileReaderNode.h"

#import "STAudioPhaseVocoderNode.h"

#import "STBeatMap.h"

#import "MetronomeView.h"

28

@interface MetronomeView (Private)

 (void) updateCurrentMetroBeat:(NSTimer *)timer;

 (void) updateGUI:(NSTimer *)timer;

33

@end

#pragma mark

38 @implementation MetronomeView

/// Initializer.

 (id) initWithFrame:(NSRect)frameRect

{

43 self = [super initWithFrame:frameRect];

if (!self) return nil;

m_updateTimer = nil;

48 return self;

}

/// Deallocator.

 (void) dealloc

53 {

C.2 MetroSync 205

[m_updateTimer invalidate];

[m_updateTimer release];

if ([m_audioOutputNode isRunning]) [m_audioOutputNode stop];

58 [m_audioOutputNode tearDown];

[m_audioOutputNode release];

[m_audioRateChangerNode release];

[super dealloc];

63 }

/// Initialize UI.

 (void) awakeFromNib

{

68 // Create the audio pipeline.

NSString *audioDataPath =

[[NSBundle mainBundle] pathForResource:@"Symphony40" ofType:@"mp3"];

NSString *audioBeatsPath =

[[NSBundle mainBundle] pathForResource:@"Symphony40"

73 ofType:@"beatx"];

// Create audio pipeline.

m_audioOutputNode = [[STAudioOutputNode alloc] init];

m_audioRateChangerNode = [[STAudioPhaseVocoderNode alloc] init];

78 STAudioFileReaderNode *audioFileReaderNode =

[[[STAudioFileReaderNode alloc] init] autorelease];

[m_audioOutputNode setDataSource:m_audioRateChangerNode];

[m_audioRateChangerNode setDataSource:audioFileReaderNode];

[audioFileReaderNode setPath:audioDataPath];

83 STBeatMap *audioBeatMap =

[[[STBeatMap alloc] initWithContentsOfFile:audioBeatsPath]

autorelease];

[audioFileReaderNode setTimeMap:audioBeatMap];

88 // Create synchronizer and link the audio pipeline to the metronome

// (this class).

STSynchronizer *synchronizer =

[[[STSynchronizer alloc] init] autorelease];

[synchronizer setSyncReference:self];

93 [synchronizer setSyncDependent:m_audioOutputNode];

[m_audioRateChangerNode setSynchronizer:synchronizer];

// Setup the pipeline.

[m_audioOutputNode setUp];

98

// Initialize tempo and beat information for the metronome.

[self setTempo:[NSNumber numberWithFloat:60.0]];

m_timeOfLastMetroBeatUpdate = [[NSDate date] retain];

m_currentMetroBeat = 0.0;

103 [self setAudioDurationBeats:

[NSNumber numberWithDouble:[audioBeatMap stymeForSample:

[audioFileReaderNode durationSamples] withRate:44100.0]]];

// Schedule timer for periodically updating the metronome beat counter.

108 NSTimer *timer = [NSTimer timerWithTimeInterval:0.03 target:self

selector:@selector(updateCurrentMetroBeat:)

userInfo:nil repeats:YES];

[[NSRunLoop currentRunLoop] addTimer:timer

forMode:NSDefaultRunLoopMode];

113 [[NSRunLoop currentRunLoop] addTimer:timer

forMode:NSEventTrackingRunLoopMode];

206 C Source Code Listings

// Redraw UI.

[self setNeedsDisplay:YES];

118 }

/// Draw custom view contents.

 (void) drawRect:(NSRect)rect

{

123 // Draw a box with alternating colours depending on the current beat.

int beat = floor(m_currentMetroBeat);

NSColor *color = (beat % 2) ? [NSColor redColor] : [NSColor blueColor];

[color set];

NSRectFill([self bounds]);

128 }

#pragma mark Actions

/// (Re)start audio playback.

133 (IBAction) startAudio:(id)sender

{

if ([m_audioOutputNode isRunning])

{

[m_audioOutputNode stop];

138 [m_audioOutputNode resetAll];

}

m_currentMetroBeat = 0.0;

[m_audioOutputNode start];

143

if (!m_updateTimer)

{

m_updateTimer = [[NSTimer timerWithTimeInterval:0.2 target:self

selector:@selector(updateGUI:)

148 userInfo:nil repeats:YES] retain];

[[NSRunLoop currentRunLoop] addTimer:m_updateTimer

forMode:NSDefaultRunLoopMode];

[[NSRunLoop currentRunLoop] addTimer:m_updateTimer

forMode:NSEventTrackingRunLoopMode];

153 }

}

#pragma mark KeyValue Coding

158 /// Get current metronome tempo.

 (NSNumber *) tempo

{

return [[m_tempo retain] autorelease];

}

163

/// Set current metronome tempo.

 (void) setTempo:(NSNumber *)tempo

{

[m_tempo autorelease];

168 m_tempo = [tempo retain];

}

/// Get current audio rate.

 (NSNumber *) currentAudioRate

173 {

return [[m_currentAudioRate retain] autorelease];

}

/// Set current audio rate.

C.2 MetroSync 207

178 (void) setCurrentAudioRate:(NSNumber *)currentAudioRate

{

[m_currentAudioRate autorelease];

m_currentAudioRate = [currentAudioRate retain];

}

183

/// Get current audio beat.

 (NSNumber *) currentAudioBeat

{

return [[m_currentAudioBeat retain] autorelease];

188 }

/// Set current audio beat.

 (void) setCurrentAudioBeat:(NSNumber *)currentAudioBeat

{

193 [m_currentAudioBeat autorelease];

m_currentAudioBeat = [currentAudioBeat retain];

}

/// Get audio duration in beats.

198 (NSNumber *) audioDurationBeats

{

return [[m_audioDurationBeats retain] autorelease];

}

203 /// Set audio duration in beats.

 (void) setAudioDurationBeats:(NSNumber *)audioDurationBeats

{

[m_audioDurationBeats autorelease];

m_audioDurationBeats = [audioDurationBeats retain];

208 }

#pragma mark STSyncObject overrides

213 /// Get the current beat.

 (Float64) currentSyncStyme

{

return m_currentMetroBeat;

}

218

/// Get the estimated beat for a future time point.

 (Float64) estimatedSyncStymeWithSecondsSinceNow:(Float64)seconds

{

Float64 currentBeatsPerSecond = [[self tempo] doubleValue] / 60.0;

223 return m_currentMetroBeat + currentBeatsPerSecond * seconds;

}

@end

228

#pragma mark

@implementation MetronomeView (Private)

233 /// Update the metronome beat counter.

 (void) updateCurrentMetroBeat:(NSTimer *)timer

{

// Increment the beat based on the time elapsed since the last update

// and the current tempo.

238 NSDate *now = [NSDate date];

NSTimeInterval deltaTime =

208 C Source Code Listings

[now timeIntervalSinceDate:m_timeOfLastMetroBeatUpdate];

double currentBeatsPerSecond = [[self tempo] doubleValue] / 60.0;

243 m_currentMetroBeat += currentBeatsPerSecond * deltaTime;

[self setNeedsDisplay:YES];

[m_timeOfLastMetroBeatUpdate autorelease];

m_timeOfLastMetroBeatUpdate = [now retain];

248 }

/// Update the user interface.

 (void) updateGUI:(NSTimer *)timer

{

253 Float64 currentBeat = [m_audioOutputNode currentStyme];

if (currentBeat >= [[self audioDurationBeats] doubleValue])

{

// We’ve reached the end of the music, stop the audio pipeline.

[m_audioOutputNode stop];

258 [m_audioOutputNode resetAll];

[self setCurrentAudioBeat:[NSNumber numberWithDouble:0]];

[m_updateTimer invalidate];

[m_updateTimer release];

m_updateTimer = nil;

263 }

else

{

[self setCurrentAudioBeat:[NSNumber numberWithDouble:currentBeat]];

}

268

[self setCurrentAudioRate:[NSNumber numberWithDouble:

[m_audioRateChangerNode rate]]];

}

273 @end

209

Bibliography

Falk Spirallo Reiseführer Wien. Falk-Verlag, first edition, 2005.

Ableton. Live, 2007.
http://www.ableton.com/.

Adobe. Audition, 2006.
http://www.adobe.com/products/audition/.

Christopher Alexander. A Pattern Language: Towns, Buildings, Construc-
tion. Oxford University Press, 1977.

James F. Allen. Maintaining knowledge about temporal intervals. Com-
munications of the ACM, 26(11):832–843, 1983.

Xavier Amatriain. An Object-Oriented Metamodel for Digital Signal Pro-
cessing with a focus on Audio and Music. PhD thesis, Universitat Pom-
peu Fabra, Barcelona, Spain, October 2004.

Tue Haste Andersen. In the mixxx: Novel digital DJ interfaces. In Extended
Abstracts of the CHI 2005 Conference on Human Factors in Computing
Systems, pages 1136–1137, Portland, USA, April 2005.

Apple. Core Audio, 2007a.
http://www.apple.com/macosx/features/coreaudio/.

Apple. Core Image Programming Guide, January 2007b.
http://developer.apple.com/macosx/coreimage.html.

Apple. Final Cut Pro, 2007c.
http://www.apple.com/finalcutpro/.

Apple. Motion, 2007d.
http://www.apple.com/motion/.

Apple. Quartz Composer programming guide, 2006a.
http://apple.com.

Apple. QuickTime reference, 2006b.
http://developer.apple.com/quicktime/.

Barry Arons. SpeechSkimmer: a system for interactively skimming
recorded speech. ACM Transactions on Computer-Human Interaction
(TOCHI), 4(1):3–38, 1997.

http://www.ableton.com/
http://www.adobe.com/products/audition/
http://www.apple.com/macosx/features/coreaudio/
http://developer.apple.com/macosx/coreimage.html
http://www.apple.com/finalcutpro/
http://www.apple.com/motion/
http://apple.com
http://developer.apple.com/quicktime/

210 Bibliography

Richard Ashley. Aspects of expressive timing in jazz ballad performance. In
Proceedings of the Fourth International Conference on Music Perception
and Cognition, pages 485–490, Montréal, Canada, 1996.

Ramazan Savaş Aygün. Spatio-Temporal Browsing of Multimedia Presen-
tations. PhD thesis, University of New York at Buffalo, 2003.

Brian Bailey, Joseph A. Konstan, Robert Cooley, and Moses Dejong. Nsync
- a toolkit for building interactive multimedia presentations. In Proceed-
ings of the MM 1998 Conference on Multimedia, pages 257–266, Bristol,
UK, 1998. ACM Press.

BBC News. School arts ‘undermined by curriculum’, 2003.
http://news.bbc.co.uk.

Timothy Beamish, Karon Maclean, and Sidney Fels. Manipulating music:
multimodal interaction for DJs. In Proceedings of the CHI 2004 Confer-
ence on Human Factors in Computing Systems, pages 327–334, Vienna,
Austria, April 2004.

Neal Bedford. Lonely Planet Vienna. Lonely Planet Publications, fourth
edition, 2004.

Aleksandar Berić, Gerard de Haan, Ramanathan Sethuraman, and Jef van
Meerbergen. Algorithm/architecture co-design of the generalized sam-
pling theorem based de-interlacer. In Proceedings of ISCAS 2005 IEEE
International Symposium on Circuits and Systems, volume 3, pages 2943–
2946, May 2005.

Stephan M. Bernsee. Time stretching and pitch shifting of audio signals -
an overview, 2005.
http://www.dspdimension.com.

Stephan M. Bernsee. DIRAC: C/C++ library for high quality audio time
stretching and pitch shifting, 2006.
http://www.dspdimension.com/index.html?dirac.html.

Jeffrey Adam Bilmes. Timing is of the Essence: Perceptual and Com-
putational Techniques for Representing, Learning, and Reproducing Ex-
pressive Timing in Percusive Rhythm. Master’s thesis, Massachusetts
Institute of Technology, Massachusetts, USA, September 1993.

Garrett Birkhoff and Saunders Mac Lane. A Survey of Modern Algebra. A
K Peters, 1997.

Tina Blaine and Tim Perkis. The Jam-O-Drum interactive music system:
A study in interaction design. In Symposium on Designing Interactive
Systems, pages 165–173, New York, USA, August 2000.

Jordi Bonada. Automatic technique in frequency domain for near-lossless
time-scale modification of audio. In Proceedings of the ICMC 2000 In-
ternational Computer Music Conference, Berlin, Germany, 2000.

http://news.bbc.co.uk
http://www.dspdimension.com
http://www.dspdimension.com/index.html?dirac.html

Bibliography 211

Jan Borchers. WorldBeat: Designing a baton-based interface for an in-
teractive music exhibit. In Proceedings of the CHI 1997 Conference on
Human Factors in Computing Systems, pages 131–138, Atlanta, USA,
March 1997.

Jan Borchers. A Pattern Approach to Interaction Design. John Wiley &
Sons, New York, USA, 2001.

Jan Borchers. Designing interactive systems II. Lecture Notes, April 2006.
http://media.informatik.rwthaachen.de/dis2.html.

Jan Borchers and Max Mühlhäuser. The design of interactive musical sys-
tems. IEEE Multimedia, 5(3):36–46, July-September 1998.
http://doi.ieeecomputersociety.org/10.1109/93.713303.

Jan Borchers, Eric Lee, Wolfgang Samminger, and Max Mühlhäuser. Per-
sonal Orchestra: A real-time audio/video system for interactive conduct-
ing. ACM Multimedia Systems Journal Special Issue on Multimedia Soft-
ware Engineering, 9(5):458–465, March 2004. Errata published in ACM
Multimedia Systems Journal 9(6):594.

Jan Borchers, Aristotelis Hadjakos, and Max Mühlhäuser. MICON: A mu-
sic stand for interactive conducting. In Proceedings of the NIME 2006
Conference on New Interfaces for Musical Expression, pages 254–259,
Paris, France, June 2006.

David Bordwell and Kristin Thompson. Film Art: An Introduction.
McGraw-Hill, New York, 2003.

Nicolas Bouillot. The auditory consistency in distributed music perfor-
mance: A conductor based synchronization. Information Sciences for
Decision Making, 13:129–137, February 2004.

J. David Boyle and Rudolf E. Radocy. Measurement and Evaluation of
Musical Experiences. Schirmer Books, New York, 1987.

Bernd Brügge. Virtual symphony orchestra, 2005.
http://wwwbruegge.in.tum.de/twiki/bin/view/VSO.

Jan Buchholz. A Software System for Computer-aided Jazz Improvisation.
Diploma thesis, RWTH Aachen University, Aachen, Germany, May 2005.

Jan Buchholz, Eric Lee, Jonathan Klein, and Jan Borchers. coJIVE: A
system to support collaborative jazz improvisation. Technical Report
AIB-2007-04, RWTH Aachen, 2007.
http://aib.informatik.rwthaachen.de/2007/200704.pdf.

Don Buchla. Lightning II MIDI controller, 1995.
http://www.buchla.com/.

Stanley N. Burris and H. P. Sankappanavar. A Course in Universal Algebra.
Springer-Verlag, 1982.
http://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html.

Cakewalk. Sonar, 2007.
http://www.cakewalk.com.

http://media.informatik.rwth-aachen.de/dis2.html
http://doi.ieeecomputersociety.org/10.1109/93.713303
http://wwwbruegge.in.tum.de/twiki/bin/view/VSO
http://aib.informatik.rwth-aachen.de/2007/2007-04.pdf
http://www.buchla.com/
http://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html
http://www.cakewalk.com

212 Bibliography

Antonio Camurri, Barbara Mazzarino, and Gualtiero Volpe. Analysis of
expressive gesture: The EyesWeb expressive gesture processing library.
In Gesture Workshop 2003, volume 2915 of Lecture Notes in Computer
Science, Genova, 2003. Springer.

Stuart K. Card, Jock D. Mackinlay, and George G. Robertson. A morpho-
logical analysis of the design space of input devices. ACM Transactions
on Information Systems, 9(2):99–122, 1991.

Elaine Chew and Alexandre R. J. François. MuSA.RT: Music on the spiral
array . real-time. In Proceedings of the ACM Multimedia Conference
2003, pages 448–449, Berkeley, USA, November 2003.

Elaine Chew, Jie Liu, and Alexandre R. J. François. ESP: roadmaps as
constructed interpretations and guides to expressive performance. In
Proceedings of AMCMM 2006 Audio and Music Computing for Multime-
dia Workshop, pages 137–145, Santa Barbara, USA, October 2006.

Wai C. Chu and Khosrow Lashkari. Energy-based nonuniform time-scale
compression of audio signals. IEEE Transactions on Consumer Electron-
ics, 49(1):183–187, February 2003.

Darren Clarke. MIT grad directs Spielberg in the science of moviemaking.
MIT Tech Talk, 47(1), July 2002.
http://web.mit.edu/newsoffice/2002/underkoffler0717.html.

Perry Cook and Gary Scavone. The synthesis toolkit (STK). In Proceedings
of the ICMC 1999 International Computer Music Conference, pages 164–
166, Beijing, China, September 1999.

James W. Cooley and John W. Tukey. An algorithm for the machine
calculation of complex fourier series. Mathematics of Computation, 19
(90):297–301, 1965.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT Press, second edition, 2001.
http://mitpress.mit.edu/algorithms/.

Michele Covell, Margaret Withgott, and Malcolm Slaney. Mach1: nonuni-
form time-scale modification of speech. In Proceedings of ICASSP IEEE
International Conference on Acoustics, Speech, and Signal Processing,
pages 349–352, Seattle, USA, May 1998.

Gökçe Dane and Truong Q. Nguyen. Motion vector processing for frame
rate up conversion. In Proceedings of ICASSP IEEE International Con-
ference on Acoustics, Speech, and Signal Processing, volume 3, pages
III–309–III–312, 2004.

Roger Dannenberg. Abstract time warping of compound events and signals.
Computer Music Journal, 21(3):61–70, 1997a.

Roger Dannenberg. The implementation of Nyquist, a sound synthesis
language. Computer Music Journal, 21(3):71–82, 1997b.

http://web.mit.edu/newsoffice/2002/underkoffler-0717.html
http://mitpress.mit.edu/algorithms/

Bibliography 213

Marc Davis. Media streams: An iconic visual language for video annotation.
In Proceedings of the 1993 IEEE Symposium on Visual Languages, pages
196–202, Bergen, Norway, 1993. IEEE Computer Society Press.

Gerard de Haan and Erwin B. Bellers. De-interlacing of video data. IEEE
Transactions on Consumer Electronics, 43(3):819–825, August 1997.

Gerard de Haan and Erwin B. Bellers. Deinterlacing – an overview. Pro-
ceedings of the IEEE, 86(9):1839–1857, September 1998.

Leo de Jong. Sensor music project, 2007.
http://www.multipro.demon.nl/html/sensor_music_project.html.

Paul Delogne, Laurent Cuvelier, Benoit Maison, Beatrice Van Caillie, and
Luc Vandendorpe. Improved interpolation, motion estimation, and com-
pensation for interlaced pictures. IEEE Transactions on Image Process-
ing, 3(5):482–491, September 1994.

Peter Desain. A (de)composable theory of rhythm perception. Music Per-
ception, 9(4):439–454, 1992.

Peter Desain and Henkjan Honing. Quantization of musical time: a con-
nectionist approach. In Peter M. Todd and Gareth Loy, editors, Music
and Connectionism, pages 150–167. MIT Press, October, 1991.

Peter Desain and Henkjan Honing. Computational models of beat induc-
tion: The rule-based approach. Journal of New Music Research, 28(1):
29–42, 1999.

Derek DiFilippo and Ken Greenebaum. Perceivable auditory latencies. In
Ken Greenebaum and Ronen Barzel, editors, Audio Anecdotes: Tools,
Tips, and Techniques for Digital Audio, pages 65–92. A K Peters, 2004.
http://www.audioanecdotes.com/.

Simon Dixon. An interactive beat tracking and visualisation system. In
Proceedings of the ICMC 2001 International Computer Music Confer-
ence, pages 215–218, Havana, Cuba, 2001a. ICMA.

Simon Dixon. Automatic extraction of tempo and beat from expressive
performances. Journal of New Music Research, 30(1):39–58, 2001b.

Christopher Dobrian and Daniel Koppelman. The ‘E’ in NIME: Musical
expression with new computer interfaces. In Proceedings of the NIME
2006 Conference on New Interfaces for Musical Expression, pages 277–
282, Paris, France, June 2006.
http://nime.org/2006/proc/nime2006_277.pdf.

Richard C. Dorf and Robert H. Bishop. Modern Control Systems. Prentice
Hall, tenth edition, 2004.
http://www.prenhall.com/dorf/.

W. Jay Dowling and Dane Harwood. Music Cognition. Academic Press,
San Diego, USA, 1986.

http://www.multipro.demon.nl/html/sensor_music_project.html
http://www.audioanecdotes.com/
http://nime.org/2006/proc/nime2006_277.pdf
http://www.prenhall.com/dorf/

214 Bibliography

Alistair D. N. Edwards, Ben P. Challis, John C. K. Hankinson, and Fiona L.
Pirie. Development of a standard test of musical ability for participants
in auditory interface testing. In International Conference on Auditory
Display, Atlanta, USA, 2000.

Conal Elliott and Paul Hudak. Functional reactive animation. In Proceed-
ings of ICFP 1997 International Conference on Functional Programming,
pages 263–273, Amsterdam, The Netherlands, 1997.

Conal Elliott, Greg Schechter, Ricky Yeung, and Salim Abi-Ezzi. TBAG: A
high level framework for interactive, animated 3D graphics applications.
In Proceedings of the SIGGRAPH 1994 Conference on Computer Graph-
ics and Interactive Techniques, pages 421–434, Orlando, USA, July 1994.
ACM Press.

Urs Enke. DanSense: Rhythmic Analysis of Dance Movements Using
Acceleration-Onset Times. Diploma thesis, RWTH Aachen University,
Aachen, Germany, September 2006.

Gustav Theodor Fechner. Elemente der Psychophysik. Breitkopf & Härtel,
Leipzig, Germany, second edition, 1889.
http://gutenberg.spiegel.de/.

James Ferguson. Multivariable curve interpolation. Journal of the ACM,
11(2):221–228, April 1964.

James L. Flanagan and Roger M. Golden. Phase vocoder. In Bell Systems
Technical Journal, volume 45, pages 1493–1509, November 1966.

James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes.
Computer Graphics: Principles and Practice. Addison-Wesley, second
edition, 1995.

Alexandre R. J. François. A hybrid architectural style for distributed par-
allel processing of generic data streams. In Proceedings of the ICSE 2004
International Conference on Software Engineering, pages 367–376, Edin-
burgh, Scotland, May 2004.

Free Software Foundation. GNU general public license, June 1991.
http://www.gnu.org/copyleft/gpl.html.

Dennis Gabor. Theory of communication. Journal of Institution of Elec-
trical Engineers, pages 429–457, 1946.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1995.

Emden Gansner, Eleftherios Koutsofios, and Stephen North. Drawing
graphs with dot, January 2006.
http://www.graphviz.org/Documentation/dotguide.pdf.

Emden R. Gansner and Stephen C. North. An open graph visualization
system and its applications to software engineering. Software – Practice
and Experience, 30(11):1203–1233, 1999.
http://www.graphviz.org.

http://gutenberg.spiegel.de/
http://www.gnu.org/copyleft/gpl.html
http://www.graphviz.org/Documentation/dotguide.pdf
http://www.graphviz.org

Bibliography 215

Xinbo Gao, Juxia Gu, and Jie Li. De-interlacing algorithms based on mo-
tion compensation. IEEE Transactions on Consumer Electronics, 51(2):
589–599, May 2005.

John Garas and Piet C.W. Sommen. Time/pitch scaling using the constant-
Q phase vocoder. In Proceedings of the 1st STW Workshop on Semi-
conductor Advances for Future Electronics (SAFE 98), pages 173–176,
Mierlo, The Netherlands, November 1998.

Árpád Gereöffy. MPlayer - the movie player, 2007.
http://www.mplayerhq.hu.

James Gosling, David S. H. Rosenthal, and Michelle J. Arden. The
NeWS Book: An Introduction to the Network/extensible Window Sys-
tem. Springer-Verlag, 1989.

Masataka Goto. An audio-based real-time beat tracking system for music
with or without drum-sounds. Journal of New Music Research, 30(2):
159–171, 2001.

Masataka Goto and Yoichi Muraoka. A real-time beat tracking system for
audio signals. In Proceedings of the ICMC 1995 International Computer
Music Conference, pages 171–174, Banff, Canada, September 1995.

Fabien Gouyon and Perfecto Herrera. Determination of the meter of mu-
sical audio signals: Seeking recurrences in beat segment descriptors. In
114th Convention of the Audio Engineering Society, Amsterdam, The
Netherlands, March 2003.

Albert Gräf. Q: A functional programming language for multimedia appli-
cations. In Proceedings of the 3rd International Linux Audio Conference,
pages 21–28, Karlsruhe, Germany, April 2005.
http://qlang.sourceforge.net.

Ken Greenebaum. Synchronization demystified: An introduction to syn-
chronization terms and concepts. In Ken Greenebaum and Ronen Barzel,
editors, Audio Anecdotes III: Tools, Tips, and Techniques for Digital Au-
dio. A K Peters, 2007a. In Print.
http://www.audioanecdotes.com.

Ken Greenebaum. Sample accurate synchronization using pipelines: Put a
sample in and we know when it will come out. In Ken Greenebaum and
Ronen Barzel, editors, Audio Anecdotes III: Tools, Tips, and Techniques
for Digital Audio. A K Peters, 2007b. In Print.
http://www.audioanecdotes.com.

Niall Griffith and Mikael Fernström. Litefoot - a floor space for recording
dance and controlling media. In Proceedings of the ICMC 1998 Inter-
national Computer Music Conference, pages 475–481, Ann Arbor, USA,
1998.

Ingo Grüll. conga: A Conducting Gesture Analysis Framework. Diploma
thesis, University of Ulm, April 2005.

http://www.mplayerhq.hu
http://q-lang.sourceforge.net
http://www.audioanecdotes.com
http://www.audioanecdotes.com

216 Bibliography

Carlos Guedes. Mapping Movement to Musical Rhythm: A Study in Inter-
active Dance. PhD thesis, New York University, New York, USA, 2005.

Florian Hammer. Time-scale modification using the phase vocoder. Diploma
thesis, Graz University of Music and Dramatic Arts, Graz, Austria,
September 2001.

Gerhart Harrer. Grundlagen der Musiktherapie und Musikpsychologie. Gus-
tav Fischer Verlag, Stuttgart, 1975.

Christopher Hasty. Meter As Rhythm. Oxford University Press, 1997.

Liwei He and Anoop Gupta. Exploring benefits of non-linear time com-
pression. In Proceedings of the ACM Multimedia Conference 2001, pages
382–391, Ottawa, Canada, 2001.

Thomas T. Hewett, Ronald Baecker, Stuart Card, Tom Carey, Jean Gasen,
Marilyn Mantei, Gary Perlman, Gary Strong, and William Verplank.
ACM SIGCHI Curricula for Human-Computer Interaction. ACM Press,
New York, 1992.
http://sigchi.org/cdg/.

Michael Hildebrandt, Alan Dix, and Herbert A. Meyer, editors. Time De-
sign Workshop, Vienna, Austria, April 2004. CHI 2004 Conference on
Human Factors in Computing Systems.
http://timedsn.net/.

Ken Hinckley, Edward Cutrell, Steve Bathiche, and Tim Muss. Quanti-
tative analysis of scrolling techniques. In Proceedings of the CHI 2002
Conference on Human Factors in Computing Systems, pages 65–72, Min-
neapolis, USA, 2002.

Steven Marcus Jason Hoek. Method and apparatus for signal processing for
time-scale and/or pitch modification of audio signals. US Patent 6266003,
2001.

Henkjan Honing. From time to time: The representation of timing and
tempo. Computer Music Journal, 25(3):50–61, 2001.

Paul Hudak. An algebraic theory of polymorphic temporal media. In
Bharat Jayaraman, editor, Proceedings of the PADL 2004 Symposium on
Practical Aspects of Declarative Languages, volume 3057 of Lecture Notes
in Computer Science, pages 1–15. Springer, 2004.

Paul Hudak, Tom Makucevich, Syam Gadde, and Bo Whong. Haskore
music notation - an algebra of music. Journal of Functional Programming,
6(3):465–483, May 1996.

Scott E. Hudson and Ian Smith. Supporting dynamic downloadable ap-
pearances in an extensible user interface toolkit. In Proceedings of the
UIST 1997 Symposium on User Interface Software and Technology, pages
159–168, Banff, Canada, 1997.

Wolfgang Hürst and Patrick Stiegeler. User interfaces for browsing and
navigation of continuous multimedia data. In Proceedings of NordiCHI
2002, pages 267–270, Århus, Denmark, 2002.

http://sigchi.org/cdg/
http://timedsn.net/

Bibliography 217

Wolfgang Hürst, Tobias Lauer, and Cédric Bürfent. Playing speech back-
wards for classification tasks. In Proceedings of the ICME 2005 Inter-
national Conference on Multimedia and Expo, Amsterdam, The Nether-
lands, July 2005a. IEEE.

Wolfgang Hürst, Tobias Lauer, Cédric Bürfent, and Georg Götz. Forward
and backward speech skimming with the elastic audio slider. In Pro-
ceedings of the 19th British HCI Group Annual Conference, Edinburgh,
Scotland, 2005b.

Tommi Ilmonen and Tapio Takala. Conductor following with artificial neu-
ral networks. In Proceedings of the ICMC 1999 International Computer
Music Conference, pages 367–370, Beijing, China, October 1999. ICMA.

INRIA. Objective Caml, 2007.
http://caml.inria.fr.

Integrated Circuit Systems. Programmable Timing Control Hub for Desktop
P4 Systems, August 2005.
http://www.idt.com/products/getDoc.cfm?docID=2537884.

David Jaffe. Ensemble timing in computer music. Computer Music Journal,
9(4):38–48, 1985.

Kristoffer Jensen and Tue Haste Andersen. Beat estimation on the beat.
In Proceedings of the 2003 IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics, pages 87–90, October 2003.

Thorsten Karrer. PhaVoRIT: A Phase Vocoder for Real-Time Interactive
Time-Stretching. Diploma thesis, RWTH Aachen University, November
2005.

Thorsten Karrer, Eric Lee, and Jan Borchers. PhaVoRIT: A phase vocoder
for real-time interactive time-stretching. In Proceedings of the ICMC 2006
International Computer Music Conference, pages 708–715, New Orleans,
USA, November 2006. ICMA.

Paul Kolesnik. Conducting Gesture Recognition, Analysis and Performance
System. Master’s thesis, McGill University, June 2004.

Alex Krieger and John Salmon. Phase-locked loop synchronization with
gated control. In Proceedings of the 2005 Canadian Conference on Elec-
trical and Computer Engineering, pages 523–526, Saskatoon, Canada,
May 2005.

Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, July 1978.

Jean Laroche and Mark Dolson. Phase-vocoder: about this phasiness busi-
ness. In Proceedings of IEEE ASSP Applications of Signal Processing to
Audio and Acoustics, New Paltz, USA, October 1997.

Jean Laroche and Mark Dolson. Improved phase vocoder time-scale modi-
fication of audio. IEEE Transactions on Speech and Audio Processing, 7
(3):323–332, 1999.

http://caml.inria.fr
http://www.idt.com/products/getDoc.cfm?docID=2537884

218 Bibliography

Eric Lee. Dynamic synchronization: Drifting into sync. In Ken Greenebaum
and Ronen Barzel, editors, Audio Anecdotes III: Tools, Tips, and Tech-
niques for Digital Audio. A K Peters, 2007a. In Print.
http://www.audioanecdotes.com.

Eric Lee. Towards a quantitative analysis of audio scrolling interfaces. In
Extended Abstracts of the CHI 2007 Conference on Human Factors in
Computing Systems (Student Research Competition), pages 2213–2218,
San Jose, USA, April 2007b.
http://doi.acm.org/10.1145/1240866.1240982.

Eric Lee and Jan Borchers. The role of time in engineering computer music
systems. In Proceedings of the NIME 2005 Conference on New Interfaces
for Musical Expression, pages 204–207, Vancouver, Canada, May 2005.
http://nime.org/2005/proc/nime2005_204.pdf.

Eric Lee and Jan Borchers. Semantic time: Representing time and temporal
transformations for digital audio in interactive computer music systems.
In Proceedings of the ICMC 2006 International Computer Music Confer-
ence, pages 204–211, New Orleans, USA, November 2006a. ICMA.
http://icmc2006.org.

Eric Lee and Jan Borchers. DiMaß: A technique for audio scrubbing and
skimming using direct manipulation. In Proceedings of AMCMM 2006
Audio and Music Computing for Multimedia Workshop, Santa Barbara,
USA, 2006b.
http://doi.acm.org/10.1145/1178723.1178740.

Eric Lee, Teresa Marrin Nakra, and Jan Borchers. You’re the Conductor:
A realistic interactive conducting system for children. In Proceedings of
the NIME 2004 Conference on New Interfaces for Musical Expression,
pages 68–73, Hamamatsu, Japan, June 2004.
http://nime.org/2004/NIME04/paper/NIME04_2A01.pdf.

Eric Lee, Marius Wolf, and Jan Borchers. Improving orchestral conducting
systems in public spaces: examining the temporal characteristics and
conceptual models of conducting gestures. In Proceedings of the CHI
2005 Conference on Human Factors in Computing Systems, pages 731–
740, Portland, USA, April 2005. ACM Press.
http://doi.acm.org/10.1145/1054972.1055073.

Eric Lee, Ingo Grüll, Henning Kiel, and Jan Borchers. conga: A framework
for adaptive conducting gesture analysis. In Proceedings of the NIME
2006 Conference on New Interfaces for Musical Expression, pages 260–
265, Paris, France, June 2006a.
http://nime.org/2006/proc/nime2006_260.pdf.

Eric Lee, Thorsten Karrer, and Jan Borchers. Toward a framework for
interactive systems to conduct digital audio and video streams. Computer
Music Journal, 30(1):21–36, 2006b.
http://www.mitpressjournals.org/toc/comj/30/1.

Eric Lee, Henning Kiel, and Jan Borchers. Scrolling through time: Improv-
ing interfaces for searching and navigating continuous audio timelines.

http://www.audioanecdotes.com
http://doi.acm.org/10.1145/1240866.1240982
http://nime.org/2005/proc/nime2005_204.pdf
http://icmc2006.org
http://doi.acm.org/10.1145/1178723.1178740
http://nime.org/2004/NIME04/paper/NIME04_2A01.pdf
http://doi.acm.org/10.1145/1054972.1055073
http://nime.org/2006/proc/nime2006_260.pdf
http://www.mitpressjournals.org/toc/comj/30/1

Bibliography 219

Technical Report AIB-2006-17, RWTH Aachen, December 2006c.
http://aib.informatik.rwthaachen.de/2006/.

Eric Lee, Henning Kiel, Saskia Dedenbach, Ingo Grüll, Thorsten Kar-
rer, Marius Wolf, and Jan Borchers. iSymphony: An adaptive interac-
tive orchestral conducting system for conducting digital audio and video
streams. In Extended Abstracts of the CHI 2006 Conference on Human
Factors in Computing Systems, Montréal, Canada, April 2006d. ACM
Press.
http://doi.acm.org/10.1145/1125451.1125507.

Eric Lee, Urs Enke, Jan Borchers, and Leo de Jong. Towards rhythmic
analysis of human motion using acceleration-onset times. In Proceedings
of the NIME 2007 Conference on New Interfaces for Musical Expression,
pages 136–141, New York, USA, June 2007a.
http://nime.org/2007/.

Eric Lee, Marius Wolf, Yvonne Jansen, and Jan Borchers. REXband: a
multi-user interactive exhibit for exploring medieval music. In Proceed-
ings of the NIME 2007 Conference on New Interfaces for Musical Ex-
pression, pages 172–177, New York, USA, June 2007b.
http://nime.org/2007/.

Michael Lee, Guy Garnett, and David Wessel. An adaptive conductor
follower. In Proceedings of the ICMC 1992 International Computer Music
Conference, pages 454–455, San Jose, USA, 1992.

Sungjoo Lee, Hee Dong Kim, and Hyung Soon Kim. Variable time-scale
modification of speech using transient information. In Proceedings of
ICASSP IEEE International Conference on Acoustics, Speech, and Signal
Processing, pages 1319–1322, Munich, Germany, April 1997.

Paul R. Lehman. Tests and Measurements in Music. Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1968.

Keith Lent. An efficient method for pitch shifting digitally sampled sounds.
Computer Music Journal, 13(4):65–71, 1989.

David Liddle. Design of the conceptual model. In Terry Winograd, editor,
Bringing Design to Software, pages 17–31. Addison-Wesley, 1996.

Christopher J. Lindblad and David L. Tennenhouse. The VuSystem: A
programming system for compute-intensive multimedia. IEEE Journal
on Selected Areas in Communications, 14(7):1298–1313, September 1996.

Lionhead Studios. Black & White, 2001.
http://www.bwgame.com/.

Chitra L. Madhwacharyula, Marc Davis, Philippe Mulhem, and Mohan S.
Kankanhalli. Metadata handling: A video perspective. ACM Trans-
actions on Multimedia Computing, Communications, and Applications
(TOMCCAP), 2(4):358–388, November 2006.

http://aib.informatik.rwth-aachen.de/2006/
http://doi.acm.org/10.1145/1125451.1125507
http://nime.org/2007/
http://nime.org/2007/
http://www.bwgame.com/

220 Bibliography

Ron Magid. George Lucas discusses his ongoing effort to shape the future
of digital cinema. American Cinematographer, September 2002.
http://www.theasc.com/magazine/sep02/exploring/index.html.

B. S. Manjunath, Philippe Salembier, and Thomas Sikora, editors. Intro-
duction to MPEG-7: Multimedia Content Description Interface. Wiley,
April 2002.
http://wiley.com/cda/product/0,,0471486787,00.html.

Teresa Marrin Nakra. Inside the Conductor’s Jacket: Analysis, interpre-
tation and musical synthesis of expressive gesture. PhD thesis, Mas-
sachusetts Institute of Technology, 2000.

José M. Mart́ınez. Overview of MPEG-7 description tools, part 2. IEEE
Multimedia, 9(3):83–93, July–September 2002.
http://doi.ieeecomputersociety.org/10.1109/MMUL.2002.10027.

José M. Mart́ınez, editor. MPEG-7 Overview. International Organisation
for Standardisation, 2004.
http://www.chiariglione.org/mpeg/standards/mpeg7/mpeg7.htm.

José M. Mart́ınez, Rob Koenen, and Fernando Pereira. MPEG-7: The
generic multimedia content description standard, part 1. IEEE Multime-
dia, 9(2):78–87, April–June 2002.
http://doi.ieeecomputersociety.org/10.1109/MMUL.2002.10016.

Keith Marzullo. Maintaining the time in a distributed system: an example
of a loosely-coupled distributed service. PhD thesis, Stanford University,
Stanford, USA, February 1984.

Paul Masri and Andrew Bateman. Improved modelling of attack transients
in music analysis-resynthesis. In Proceedings of the ICMC 1996 Interna-
tional Computer Music Conference, pages 100–103, Hong Kong, August
1996.

Max V. Mathews. The conductor program and mechanical baton. In Cur-
rent Directions in Computer Music Research, pages 263–282. MIT Press,
Cambridge, 1991.

Max. V. Mathews and F. Richard Moore. GROOVE – a program to com-
pose, store, and edit functions of time. Communications of the ACM, 13
(12):715–721, 1970.

Ketan Mayer-Patel and Lawrence A. Rowe. Design and performance of the
berkeley continuous media toolkit. In Martin Freeman, Paul Jardetzky,
and Harrick M. Vin, editors, Multimedia Computing and Networking,
volume 3020, pages 194–206. SPIE, 1997.

James McCartney. SuperCollider: A new real time synthesis language. In
Proceedings of the ICMC 1996 International Computer Music Confer-
ence, pages 257–258, Hong Kong, August 1996.

Microsoft. Microsoft media foundation SDK, 2007a.
http://msdn.microsoft.com.

http://www.theasc.com/magazine/sep02/exploring/index.html
http://wiley.com/cda/product/0,,0471486787,00.html
http://doi.ieeecomputersociety.org/10.1109/MMUL.2002.10027
http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm
http://doi.ieeecomputersociety.org/10.1109/MMUL.2002.10016
http://msdn.microsoft.com

Bibliography 221

Microsoft. Microsoft cross-platform audio creation tool (XACT), 2007b.
http://msdn.microsoft.com.

David Mills. RFC 1305: Network time protocol (version 3) specification,
implementation, March 1992.

Dean Mobbs, Nikolaus Weiskopf, Hakwan C. Lau, Eric Featherstone, Ray J.
Dolan, and Chris D. Frith. The kuleshov effect: the influence of contex-
tual framing on emotional attributions. Social Cognitive and Affective
Neuroscience, 1(2):95–106, August 2006.

Gordon E. Moore. Cramming more components onto integrated circuits.
Electronics, 38(8), April 1965.
http://download.intel.com/research/silicon/moorespaper.pdf.

Hideyuki Morita, Shuji Hashimoto, and Sadamu Ohteru. A computer music
system that follows a human conductor. IEEE Computer, 24(7):44–53,
1991.
http://doi.ieeecomputersociety.org/10.1109/2.84835.

Eric Moulines and Jean Laroche. Non parametric techniques for pitch-
scale and time-scale modification of speech. Speech Communication, 16:
175–205, February 1995.

Declan Murphy. Live interpretation of conductors’ beat patterns. In 13th
Danish Conference on Pattern Recognition and Image Analysis, pages
111–120, Copenhagen, 2004.

Declan Murphy, Tue Haste Andersen, and Kristoffer Jensen. Conducting
audio files via computer vision. In Gesture Workshop 2003, volume 2915
of Lecture Notes in Computer Science, pages 529–540, Genova, 2003.
Springer.

Brad Myers. A brief history of human computer interaction technology.
ACM interactions, 5(2):44–54, March 1998.

Brad Myers, Scott E. Hudson, and Randy Pausch. Past, present, and future
of user interface software tools. ACM Transactions on Computer-Human
Interaction (TOCHI), 7(1):3–28, March 2000.

National Instruments. LabVIEW, 2007.
http://www.ni.com/labview/.

Native Instruments. Traktor, 2007.
http://www.nativeinstruments.com/index.php?id=traktor3_us.

Donald A. Norman. The Design of Everyday Things. Basic Books, 2002.
http://www.jnd.org.

Stephen C. North. Agraph Tutorial. AT&T Shannon Laboratory, Florham
Park, NJ, USA, July 2002.
http://www.graphviz.org/Documentation/Agraph.pdf.

Alan V. Oppenheim, Ronald W. Schafer, and John R. Buck. Discrete-Time
Signal Processing. Prentice Hall, second edition, 1999.

http://msdn.microsoft.com
http://download.intel.com/research/silicon/moorespaper.pdf
http://doi.ieeecomputersociety.org/10.1109/2.84835
http://www.ni.com/labview/
http://www.native-instruments.com/index.php?id=traktor3_us
http://www.jnd.org
http://www.graphviz.org/Documentation/Agraph.pdf

222 Bibliography

Yann Orlarey, Dominique Fober, and Stéphane Letz. An algebra for block
diagram languages. In Proceedings of the ICMC 2002 International Com-
puter Music Conference, pages 542—547, Gothenburg, Sweden, Septem-
ber 2002.
http://www.grame.fr/pub/fausticmc2002.pdf.

Yann Orlarey, Dominique Fober, and Stéphane Letz. Syntactical and se-
mantical aspects of Faust. Soft Computing - A Fusion of Foundations,
Methodologies and Applications, 8(9):623–632, 2004.

Yann Orlarey, Albert Gräf, and Stefan Kersten. DSP programming with
Faust, Q and SuperCollider. In Proceedings of the ICMC 2006 Interna-
tional Computer Music Conference, pages 692–699, New Orleans, USA,
November 2006.
http://www.grame.fr/pub/lac06.pdf.

Caroline Palmer and Carol Krumhansl. Mental representations for musical
meter. Journal of Experimental Psychology - Human Perception and
Performance, 16(4):728–741, 1990.

Joseph Paradiso, Kai-Yuh Hsiao, Joshua Strickon, Joshua Lifton, and Ari
Adler. Sensor systems for interactive surfaces. IBM Systems Journal, 39
(3&4):892–914, 2000.

Richard Parncutt. A perceptual model of pulse salience and metrical accent
in musical rhythm. Music Perception, 11(4):409–464, 1994.

Matt Pharr and Greg Humphreys. Sampling and reconstruction. In Physi-
cally Based Rendering: From Theory to Implementation, pages 279–367.
Morgan Kaufmann, 2004.
http://www.pbrt.org.

Michael Portnoff. Time-scale modification of speech based on short-time
fourier analysis. IEEE Transactions on Acoustics, Speech, and Signal
Processing, 29(3):374–390, June 1981.

E. C. Poulton. Tracking skill and manual control. Academic Press, New
York, 1974.

Prosoniq. MPEX: minimum perceived loss time compression/expansion,
2006.
http:/mpex.prosoniq.com.

Miller Puckette. Phase-locked vocoder. In Proceedings of IEEE ASSP
Applications of Signal Processing to Audio and Acoustics, pages 222–225,
New Paltz, USA, October 1995.

Miller Puckette. Pure data. In Proceedings of the ICMC 1997 Interna-
tional Computer Music Conference, pages 224–227, Thessaloniki, Greece,
September 1997.

Miller Puckette. Max at seventeen. Computer Music Journal, 26(4):31–43,
2002.

http://www.grame.fr/pub/faust-icmc2002.pdf
http://www.grame.fr/pub/lac06.pdf
http://www.pbrt.org
http:/mpex.prosoniq.com

Bibliography 223

Lawrence R. Rabiner and Ronald W. Schafer. Digital Processing of Speech
Signals. Prentice-Hall, 1978.

Tor A. Ramstad. Rate conversion. In Ken Greenebaum and Ronen Barzel,
editors, Audio Anecdotes: Tools, Tips, and Techniques for Digital Audio,
pages 237–258. A K Peters, 2004.

Jef Raskin. The Humane Interface: New Directions for Designing Interac-
tive Systems. Addison-Wesley Professional, 2000.
http://rchi.raskincenter.org.

Realtime Music Solutions. Sinfonia, 2005.
http://rms.biz.

Dennis Reidsma, Anton Nijholt, Ronald Poppe, Rutger Rienks, and Hendri
Hondorp. Virtual rap dancer: Invitation to dance. In Extended Abstracts
of the CHI 2006 Conference on Human Factors in Computing Systems,
pages 263–266, Montréal, Canada, 2006.

Axel Röbel. Transient detection and preservation in the phase vocoder. In
Proceedings of the ICMC 2003 International Computer Music Confer-
ence, pages 247–250, Singapore, 2003. ICMA.

Armin Roehrl and Stefan Schmiedl. Objective-C: the more flexible C++.
Linux Journal, September 2002.
http://www.linuxjournal.com/article/6009.

John Rogers and John Rockstroh. Score-time and real-time. In Proceedings
of the ICMC 1978 International Computer Music Conference, pages 332–
354, Evanston, USA, 1978.

Roni Music. Amazing slow downer, 2007.
http://www.ronimusic.com/.

Max Rudolf. The Grammar of Conducting: A Comprehensive Guide to
Baton Technique and Interpretation. Schirmer Books, 3rd edition, June
1995.

Wolfgang Samminger. Personal Orchestra: Interaktive Steuerung syn-
chroner Audio- und Videoströme. Diploma thesis, Johannes Kepler Uni-
versität Linz, Linz, Austria, September 2002.

Eric D. Scheirer. Tempo and beat analysis of acoustic musical signals.
Journal of the Acoustical Society of America, 103(1):588–601, 1998.

David A. Schmidt. Denotational semantics: a methodology for language
development. William C. Brown, Dubuque, USA, 1986.

Richard L. Schwartz, P. M. Melliar-Smith, and Friedrich H. Vogt. An
interval logic for higher-level temporal reasoning. In Proceedings of the
Second Annual ACM symposium on Principles of Distributed Computing,
pages 173–186, 1983.

http://rchi.raskincenter.org
http://rms.biz
http://www.linuxjournal.com/article/6009
http://www.ronimusic.com/

224 Bibliography

Geraldine Sealey. Just the three R’s? budget tightening, standards blamed
for squeezing favorite programs striking a chord with kids. ABC News,
August 2003.
http://abcnews.go.com.

Jarno Seppänen. Computational Models of Musical Meter Recognition. Mas-
ter’s thesis, Tampere University of Technology, Tampere, Finland, Au-
gust 2001.

Serato. Pitch ’n Time, 2007.
http://www.serato.com.

Claude E. Shannon. Communication in the presence of noise. Proceedings
of the IRE, 37(1):10–21, 1949.

Ben Shneiderman. Designing the User Interface. Addison Wesley, 3rd
edition, 1997.

Julius O. Smith. Digital audio resampling home page, January 28 2002.
http://ccrma.stanford.edu/~jos/resample/.

Julius O. Smith. Mathematics of the Discrete Fourier Transform (DFT).
W3K Publishing, 2003.
http://ccrma.stanford.edu/~jos/mdft/.

Leigh M. Smith. The MusicKit, 2005.
http://musickit.sourceforge.net/.

Leigh M. Smith. A Multiresolution Time-Frequency Analysis and Interpre-
tation of Musical Rhythm. PhD thesis, University of Western Australia,
Perth, Australia, July 1999.

Steinberg. Cubase, 2006.
http://www.steinberg.net.

Rob Sussman and Jean Laroche. Application of the phase vocoder to pitch-
preserving synchronization of an audio stream to an external clock. In
Proceedings of the 1999 IEEE Workshop on Applications of Signal Pro-
cessing to Audio and Acoustics, pages 75–78, New York, October 1999.
IEEE.

Neil P. McAngus Todd. The dynamics of dynamics: A model of musical
expression. Journal of the Acoustical Society of America, 91(6):3540–
3550, June 1992.

TV Technology. News bytes, March 2007.
http://www.tvtechnology.com/dailynews/issue.php?w=20061103.

Satoshi Usa and Yasunori Mochida. A multi-modal conducting simulator.
In Proceedings of the ICMC 1998 International Computer Music Confer-
ence, pages 25–32, Ann Arbor, USA, 1998.

Peter Vary, Ulrich Heute, and Wolfgang Hess. Digitale Sprachsignalverar-
beitung. B.G. Teubner, Stuttgart, 1998.

http://abcnews.go.com
http://www.serato.com
http://ccrma.stanford.edu/~jos/resample/
http://ccrma.stanford.edu/~jos/mdft/
http://musickit.sourceforge.net/
http://www.steinberg.net
http://www.tvtechnology.com/dailynews/issue.php?w=2006-11-03

Bibliography 225

Werner Verhelst and Marc Roelands. An overlap-add technique based on
waveform similarity (WSOLA) for high quality time-scale modification
of speech. In Proceedings of the ICASSP 1993 International Conference
on Acoustics, Speech, and Signal Processing, volume II, pages 554–557.
IEEE, 1993.

Andrew Viterbi. Principles of Coherent Communications. McGraw-Hill
Education, 1967.

Feng-Ming Wang, Dimitris Anastassiou, and Arun N. Netravali. Time-
recursive deinterlacing for IDTV and pyramid coding. In Proceedings of
the IEEE International Symposium on Circuits and Systems, volume 2,
pages 1306–1309, New Orleans, USA, 1990.

Ge Wang and Perry Cook. ChucK: A concurrent, on-the-fly, audio program-
ming language. In Proceedings of the ICMC 2003 International Computer
Music Conference, pages 217–225, Singapore, 2003. ICMA.

Herbert D. Wing. Tests of musical ability and appreciation. Cambridge
University Press, Cambridge, 1968.

Marius Wolf. REXband: A Multi-User Interactive Exhibit to Explore Me-
dieval Music. Diploma thesis, RWTH Aachen University, Aachen, Ger-
many, August 2006.

Matthew Wright and Edgar Berdahl. Towards machine learning of expres-
sive microtiming in Brazilian drumming. In Proceedings of the ICMC
2006 International Computer Music Conference, pages 572–575, New Or-
leans, USA, November 2006.

Brigitte Zellner. Temporal structures for fast and slow speech rate. In
Proceedings of the ESCA/COCOSDA International Workshop on Speech
Synthesis, pages 143–146, Jenolan Caves, Australia, 1998.

Shumin Zhai. Human Performance in Six Degree of Freedom Input Control.
PhD thesis, University of Toronto, Toronto, Canada, 1995.

Shumin Zhai, Barton A. Smith, and Ted Selker. Improving browsing per-
formance: A study of four input devices for scrolling and pointing tasks.
In Proceedings of INTERACT 1997 Conference on Human-Computer In-
teraction, pages 286–292, Sydney, Australia, 1997.

Hubert Zimmermann. OSI reference model – the ISO model of architecture
for open systems interconnection. IEEE Transactions on Communica-
tions, 28(4):425–432, 1980.

zplane.development. élastique time-stretching, 2006.
http://www.zplane.de.

http://www.zplane.de

227

Index

3:2 pulldown . 38

Adobe Audition . 156, 159
Agraph . 124, 130
Amazing Slow Downer. .42
Aperture . 131
audio scrolling . 9, 155
AUTimePitch . 49, 76, 85

beat detection . 27, 34–37, 164
beat microtiming . 103, 167
Beat Tapper . 58, 164–166
Berkeley Continuous Media Toolkit . 4
Blue Danube Waltz . 36, 100, 105

C++ Library for Audio and Music . 4, 113
CCD . see charge-coupled device
charge-coupled device . 37, 53
ChucK . 114
circular reference . see reference, circular
CLAM . see C++ Library for Audio and Music
closed loop system. .87
coJIVE. 69
conceptual model . 13, 52, 55, 96, 117, 127
conducting . 3, 5

- beat patterns . 18
- beat timing . 51–68, 102
- four-beat profile. .22–24
- gesture recognition . 16–25, 54
- profile selection. .24
- spiral of death . 52, 152
- up-down profile . 21–22
- wiggle profile . 21

Conductor’s Jacket. .17, 53, 143
conga . 17–25
Core Audio . 49, 86, 117, 120, 130, 131, 137
Core Video . 117, 130

data flow model . 117, 124, 126
declarative programming. .101, 113, 126
deinterlacing . 38
DiMaß . 49, 78, 159–161
DIRAC . 42, 74
direct manipulation . 155
DIVA . 17
DOT . 124, 130

228 Index

elastic audio slider . 159
élastique . 41, 49, 75

FFT . see Fourier transform
Final Cut Pro . 116, 131, 159
Foley . 13
Fourier transform. 27, 193

- fast .29, 193
- short-time . 42, 78, 194–196

FRAN . see functional reactive animation
functional reactive animation . 98

granular synthesis . see rate changing
GraphViz . 124

Hanning Window. .194
Hanning window . 78
Haskore . 98, 113
HelloSTF. .132–135, 197–202
high ceiling . 131, 141
high-speed camera . 58
Humane Interface . 13

imperative programming . 101, 126, 131
inter-impulse interval . 27
inter-onset interval .27, 36
Interface Builder . 133
International Standards Organization . 16
iRhyMe. .167–170
ISO . see International Standards Organization

Karajan, Herbert von. .53
Kolesnik, Paul . 17, 143
Kuleshov effect . 98

latency
- artificial introduction of . 69–70
- conducting gestures . 51–68
- perception of .70–73
- phase vocoder. .81–83
- resampling . 74

Logic .131
low threshold. .131

malleable time . 2, 179
mappings

- conducting . 51–68
- inter-domain . 6

Max/MSP . 4, 114, 143, 168
Media Foundation . 116
Media Streams . 15, 116
MetroSync . 135–137, 202–208
MICON . 155
MIDI . see Musical Instrument Digital Interface
Mixxx. .143
Moore’s Law . 3
MPEG-7 . 32–34
MPEX. 41, 48, 144

Index 229

MPlayer . 86
Multi-modal Conducting Simulator .17, 53, 143
multimedia framework . 4
Murphy, Declan . 17, 143
museum . 18
MUSIC4 . 98
Musical Instrument Digital Interface . 3, 99, 168
MusicKit . 15, 114

network time protocol . 86
Nsync . 101, 115
NTP. .see network time protocol
Nyquist-Shannon sampling theorem . 184

Objective-C . 130, 169
open loop system . 86
OSI reference model . 12

Pd . see Pure Data
Personal Orchestra . 4

- Personal Orchestra 1 (The Virtual Conductor) 5, 119, 143–146
- Personal Orchestra 2 (You’re the Conductor) 5, 18, 119, 146–148
- Personal Orchestra 3 (Maestro) 17, 35, 74, 124, 148–152
- Personal Orchestra Lite . 152–155

phase vocoder . see rate changing
phase-locked loop. .85
PhaVoRIT . 45–49, 74, 80, 141, 159
Pitch ’n Time . 42
PLL. .see phase-locked loop
PO . see Personal Orchestra
Pure Data. .114

Quartz Composer . 168
QuickTime . 4, 117, 131, 137, 146
QuickTime Player . 2, 158

Radetzky March. .58
Radio Baton. 17, 143
rate changing

- audio . 40–49
granular synthesis . 40
interpreting . 76–81
phase vocoder .3, 41–45, 74
pitch-synchronized overlap add . 41
time domain harmonic scaling . 41
waveform similarity overlap add . 41

- video . 37–40
reference

- circular . see circular reference
resampling . 40, 146, 159, 185–192

- latency . 74
REXband . 69
rhythm

- correction . 68–73
- definition . 26
- in human motion . 25–32
- swing . 103

rhythm map . 103–104

230 Index

RuleSync . 101, 115

SAI. .see software architecture for immersipresence
semantic time. .5, 113

- algebra . 102–109
- analogy . 95
- definition . 96
- effects . 119
- framework . 5, 113

version 1 . 119–126
version 2 . 126–138

- graphs . 119
- nodes . 128
- pipelines . 128
- streams . 119
- styme . 99
- synchronizers. .128
- time maps . 100, 127
- timebases . 119

seven stages of action . 14
SIGCHIsee Special Interest Group Computer Human Interaction
Sinfonia . 143
SMPTE . 132
software architecture for immersipresence . 4, 114
Special Interest Group Computer Human Interaction . 15

- curricula . 10
SpeechSkimmer . 159
STF . see Semantic Time Framework
STFT . see Fourier transform
STK . see Synthesis ToolKit
SuperCollider .4
synchronization . 76, 85–92, 113, 147, 161

- as constraints . 100–102
Synthesis ToolKit. .4

tape recorder metaphors . 1
tempo functions . 98
temporal interaction . 3, 4
time maps (Jaffe) . 15, 98, 114
time warps . 114
time-design space . 5, 10–16
time-shifts .98
time-stretching . see rate changing

Vienna Philharmonic . 3, 142
Virtual Symphony Orchestra . 5
VuSystem . 4

window systems . 11
Windows Media Player . 2
WorldBeat . 9
WSOLA. .see rate changing

XACT . 116

231

Curriculum Vitae

Personal Data

Eric Lee
Media Computing Group
RWTH Aachen University
Telephone: +49 241 80 21051
Email: eric@cs.rwth-aachen.de

11-Dec-1976 Born in Montréal, Canada.

Sep 1994 – Apr 2000 Bachelor of Applied Science in Computer Engineering,
University of British Columbia, Canada.

Jun 1997 – Apr 1998 Internship at Sony Research in Tokyo, Japan.

May 1998 – Aug 1998 Internship at MacDonald, Dettwiler and Associates in
Richmond, Canada.

Jun 2000 – Aug 2002 Software Engineer at Sony Electronics in Culver City,
USA.

Sep 2002 – Sep 2003 Master of Science in Electrical Engineering, Stanford
University, USA.

Oct 2003 – Sep 2007 Doctoral Candidate at the Media Computing Group,
Department of Computer Science, RWTH Aachen
University, Germany.
Advisor: Prof. Dr. Jan Borchers.

Typeset November 20, 2007

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Malleability of Time
	Scope and Context of this Thesis
	Contributions
	Structure

	Time Design
	A Time-Design Space
	Conceptual vs. Physical Interaction
	Multiple Time Domains

	User: Conducting Gesture Recognition
	Design
	Feature Detectors
	Wiggle Profile
	Up-Down Profile
	Four-Beat Neutral-Legato Profile

	Profile Selection
	Discussion

	User: Rhythmic Analysis of Human Motion
	Terminology
	Design
	Movement Detection
	Interval Analysis
	Frequency Analysis
	Data Fusion
	Impulse Folding
	Impulse Clustering

	Discussion

	Medium: MPEG-7
	Medium: Automatic Beat Detection
	Technology: Video Frame Interpolation
	Technology: Audio Time-Stretching
	Basic Phase Vocoder
	Scaled Phase-Locked Phase Vocoder
	The PhaVoRIT Algorithm
	Multiresolution Peak-Picking (MRPP)
	Sinusoidal Trajectory Heuristics (STH)
	Silent Passage Phase Reset (SPPR)

	Discussion

	Closing Remarks

	The Problem of Mappings
	Beat Timing in Conducting Gestures
	Related Work
	Experiment Scope and Objectives
	Hypotheses
	Experiment Setup
	Participants
	Procedure

	Results
	Conductors vs. Non-conductors
	Effect of Conducting Experience
	Effect of Musical Instrument Experience
	Effect of a Metaphor on Conducting
	Summary of Results

	Discussion
	Design Implications

	Rhythmic Correction
	Concept
	Experiment
	Results

	Latency in Audio Time-Stretching
	Interpreting Time-Stretched Audio
	Black-Box Approach
	Hop-Factor Approach
	Overlap-Add Approach
	Other Considerations

	Startup Latency
	Dynamic Latency
	Discussion

	Synchronization
	A Closed Loop System
	Responding to Timebase Changes
	Discussion

	Closing Remarks

	Semantic Time
	A Conceptual Model Problem
	Related Work
	Time as a Hierarchy
	Synchronization as Constraints
	An Algebra for Time
	Rhythm Maps
	Concatenation
	Scaling
	Averaging
	Algebraic Properties

	Closing Remarks

	The Semantic Time Framework
	Design Principles
	Semantic Time Framework Version 1 (STFv1)
	Design
	Timebases
	Streams
	Effects
	Graphs

	Implementation
	Discussion

	Semantic Time Framework Version 2 (STFv2)
	Design
	Time Maps
	Nodes
	Pipelines
	Synchronizers

	Implementation
	Discussion
	Example: HelloSTF
	Example: MetroSync
	Comparison With Other Frameworks

	Closing Remarks

	Sample Systems
	Personal Orchestra
	Personal Orchestra 1 (The Virtual Conductor)
	Personal Orchestra 2 (You're the Conductor)
	Personal Orchestra 3 (Maestro!)
	POlite
	Discussion and Future Directions

	DiMaß
	Design
	An Improved Synchronization Algorithm
	Forwards and Backwards Scrubbing
	Beat Tapper
	Discussion and Future Directions

	iRhyMe
	Quartz Composer
	Implementation
	Discussion

	Closing Remarks

	Future Work
	Time-Design Space
	Semantic Time
	Semantic Time Framework
	Design Patterns
	Semantic Time Applications

	Conclusions
	Sampling and Quantization Overview
	Sampling
	Quantization
	Resampling
	Closing Remarks

	Fourier Theory Overview
	The Fourier Transform
	Windowing
	The Short-Time Fourier Transform
	Closing Remarks

	Source Code Listings
	HelloSTF
	HelloSTFController.h
	HelloSTFController.m

	MetroSync
	MetronomeView.h
	MetronomeView.m

	Bibliography
	Index
	Curriculum Vitae

