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Abstract

Incorporating digital audio into computer music and multi-
media systems with time-based interaction poses unique chal-
lenges. We describe some of these challenges, which we en-
countered whilst building previous systems, and describe our
solution, which we callsemantic time. Semantic time is a the-
oretical framework based on theories of temporal intervals
and denotational semantics. Semantic time defines semantic
timeintervals, such as beats of the music, that are more mean-
ingful units of time than “audio samples”;time functions
describe the mapping between these semantic time intervals
and presentation time (the absolute real time in which the
media is output).Function operatorsmanipulate and trans-
form these functions, andconstraintsdescribe relationships
between functions. All of these form an algebra for time,
which creates interesting possibilities for time-based inter-
action with music and other digital media. We show how a
software implementation of these theories applies to threedif-
ferent interactive computer music systems.

1 Introduction

Most musicians will not dispute the key role that time
plays in music expressivity; control over time and rhythm is
something we often take for granted. Unfortunately, interac-
tion with digital media today often does not take into account
this temporal dimension, being limited to the VCR metaphors
of “play”, “stop”, or “fast-forward”. The important informa-
tion in time-based media such as audio and video, however,
must be perceived over time. In computer music, technolo-
gies such as MIDI and wavetable synthesis circumvent the
problems of manipulating time in digitally sampled audio1

by imposing more structure. However, there are arguments
for working directly with digital audio recordings – today’s
synthesis techniques are still unable to reproduce the subtle
nuances of a world-famous orchestra or jazz band, for ex-
ample. Manipulating the time dimension of such recordings,
however, can be challenging: simply resampling the audio to
time-stretch it results in unwanted pitch shifts. Fortunately,
recent research in high-quality, real-time, pitch-preserving

time-stretching algorithms (Karrer et al. 2006) has partially
addressed this problem.

A problem that remains largely unsolved is how to ade-
quately represent time and temporal transformations for dig-
ital media. For designers and computer musicians working
to build digital audio applications using multimedia frame-
works such as Apple’s Core Audio, Microsoft’s DirectSound,
or Max/MSP, time is referenced primarily by counting audio
samples. The requirement for consistently and evenly spaced
samples originates from the internal clock on audio hardware,
but it is usually not the best unit in which to reference time.A
more appropriate unit of time may be music beats; however,
the mapping between music beats and audio samples is gen-
erally non-linearly to begin with, and changes as the audio is
time-stretched.

For example, let us take one second/two beats of music
sampled at 44.1 kHz (44100 samples). If the length of this
audio snippet is time-stretched by a factor of two, we now
have 88200 samples to represent these two beats. Modern
well-known multimedia frameworks do not preserve the map-
ping between the “semantic time” of beats, and audio sam-
ples. The burden of maintaining this mapping falls upon ap-
plication developers, needlessly distracting them from their
primary task of designing the interaction and system logic.

In previous work (Lee et al. 2006), we introduced these-
mantic timeconcept, together with the Semantic Time Frame-
work, a software framework for interactive orchestral con-
ducting systems that use digital recordings. The Semantic
Time Framework works in “semantic time units” (e.g., beats
of the music), and preserves their mapping to real time, even
after time scale modifications. We demonstrated how the de-
sign of an interactive conducting system can be made signifi-
cantly simpler and more elegant.

We have since refined and expanded this idea of semantic
time to include a more general class of computer music sys-

1To avoid confusion, the term “sampled audio” will always refer to PCM
audio in this paper, which is a sequence of numerical values obtained by
sampling an analog audio signal at some fixed sampling rate. Each numer-
ical value in this sequence is referred to as a “sample”, and should not be
confused with a “sound sample”, a snippet of audio used in modern synthe-
sizers to recreate more realistic sounds.



tems, and also created an expanded set of theoretical tools for
representing time and temporal transformations, which is the
topic of this paper. Our theory of semantic time is inspired
by previous research on temporal intervals (Allen 1983) and
denotational semantics (Schmidt 1986). We demonstrate how
we have applied this theory to prototype three different com-
puter music applications:Rhythmatic, an application for in-
teractively manipulating the rhythm pattern of digital record-
ings; Personal Orchestra, a system for conducting digital
audio and video recordings using conducting gestures that
first started in 2000, and is now in its fourth iteration; and
Beat Tapper, a tool for browsing digital audio recordings and
marking beats.

2 Related Work

In addition to common multimedia frameworks such
as Core Audio, DirectSound, and Max/MSP, various other
frameworks have been developed for computer music and
multimedia:

Hudak et al. (1996) createdHaskore, a language to de-
scribe music using functional programming. It includes data
types such as notes and rests, and supports operations such
as transposing and tempo scaling. The focus of our work is
on the temporal aspect of media: units of time are not limited
to “notes”, nor is our work limited to music. More recently,
Hudak (2004) proposed a polymorphic data type and theo-
rems for representing temporal media; time is represented us-
ing intervals, and Hudak was able to prove that his theory is
both sound and complete. Unfortunately, he does not discuss
the implications of his theory on multimedia systems design.

ChucK (Wang and Cook 2003) is a programming lan-
guage for music that includes mechanisms for interacting
with time to provide on-the-fly, parallel composition. Interac-
tion with time is primarily with musical notes, and scheduling
these notes for playback. Our work, in contrast, represents
time and temporal transformations for user interaction with
prerecorded media.

Representing time in music has also been studied exten-
sively; Honing (2001) gives an extensive overview of current
work in this area, such as time maps (Jaffe 1985), and time
warps (Dannenberg 1997a). Time warps are implemented in
Nyquist, a sound/music synthesis language written in Com-
mon Lisp (Dannenberg 1997b). Honing (2001) has also de-
veloped generalized timing functions for music, and he shows
a partial implementation in Common Lisp. All of these works
seek to represent tempo changes and rhythmic timing (often
differentiating between the two). Our work on semantic time,
however, seeks to generalize beyond traditional musical con-
cepts of beats and measures, making it applicable to other
types of digital media (such as speech). We also use semantic
time to describe time-based interactions, and the implications
of such descriptions on system design.

A number of commercial applications, such as Ableton
Live, Cakewalk Sonar, and Steinberg Cubase allow the user
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Figure 1: Example temporal interval structure for three bars
of Blue Danube Waltzby Johann Strauss. The introduction of
this piece is defined in6/8 time (six musical beats per mea-
sure). The pulses represent the “beat” perceived by a human
tapping alongside the music (two pulses per measure).

to modify the timing and rhythm of digital media and music.
The interaction, however, remains specific to the application,
and they do not introduce any mechanisms to discuss or facil-
itate building other time-based interactive systems.

3 Theory of Semantic Time

Semantic time is inspired by previous work on tem-
poral intervals (Allen 1983) and denotational semantics
(Schmidt 1986). We use a polymorphicsemantic time inter-
val as the basic unit of time, which can be recursively de-
fined to represent different abstractions of time related tothe
temporal structure of a particular medium. In music, such a
temporal structure could be in the form of beats, pulses and
measures (see Figure 1); the beat and measure are defined by
the musical score, and the pulse is defined to be what a hu-
man perceives as the “beat” (e.g., whilst tapping alongside
the music). The structure could continue upwards to musical
phrases, or downwards to the individual audio samples in the
underlying PCM audio buffer.

One could imagine semantic time as described thus far as
an extension of the MIDI time model to digital audio; how-
ever, as we will demonstrate with an example in the next
section, the semantic time intervals are not limited to beats,
pulses, and measures, nor is semantic time necessarily limited
to music. It can be applied to other forms of media such as
speech (which has a similar interval structure of phonemes,
words and sentences). Such a discussion is beyond the scope
of this paper, however.

The mapping between these interval sequences and pre-
sentation time (the absolute real time in which they occur)
are continuoustime functions(see Figure 2). For example,
each beat of music performed at 120 beats per minute maps
to half a second of presentation time. If, later in the perfor-
mance, the music slows to 60 beats per minute, each beat
interval now maps to one second of presentation time. These
time functions are similar to time maps (Jaffe 1985), although
we use this representation as a building block for describing
time-based interaction, not just as a model for representing
time in music.

Describing this mapping of media time (e.g., beats of the
music) to presentation time as a mathematical function also
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Figure 2: Left: Example mapping between media time
and presentation time for forwards and backwards playback.
Right: Mapping for a jazz “swing” rhythm.

allows us to formally represent not only position, but also
rate (tempo) and acceleration as numerical time derivatives of
these time functions. Temporal structures, such as the swing
rhythm of jazz, can also be represented and visualized us-
ing this scheme (see Figure 2). Relationships between time
functions can be described usingfunction operatorsandcon-
straints; these will be described in more detail in the next
section.

4 Applications of Semantic Time

We illustrate how semantic time benefits designers and
musicians building novel computer music systems with time-
based interaction using three different interactive computer
music applications that we have built2. While these applica-
tions differ in their purpose, design, and implementation,all
of them respond to continuous user input to modify the tem-
poral dimension of digitally recorded media.

4.1 Rhythmatic

Certain types of music, such as a Strauss waltz or jazz,
have a characteristic off-beat swing or groove rhythm; such
rhythms are often one of the more difficult aspects for musi-
cians unpracticed in these genres to grasp. We createdRhyth-
matic, an application that allows the user to interactively ma-
nipulate the tempo and rhythm of such musical pieces by ad-
justing the relative timing of the beats. Adjustments can be
made by applying a algorithmically generated groove pattern
to the music, applying the rhythm pattern of an existing per-
formance to another, or any scaled combination of these two.

This idea has been explored previously; commercial mu-
sic sequencing applications such as Cakewalk Sonar and
Steinberg Cubase allow composers and musicians to modify
the rhythm of a MIDI recording. Cakewalk Sonar, for ex-
ample, allows composers to apply rhythm patterns to MIDI
recordings. Ableton Live provides a similar feature, called

2Select audio examples for these applications can be found at
http://media.informatik.rwth-aachen.de/∼eric/time/
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Figure 3: Example rhythm map from a Vienna Philharmonic
performance ofBlue Danube Waltz. The second beat is
played early, and the third beat is slightly delayed. Both beats
and time are normalized to values between[0, 1).

“warp markers” for digital audio. Precomputed groove pat-
terns can also be applied, although Live doesn’t offer as
much flexibility as Cakewalk with respect to applying arbi-
trary groove templates.

Unlike these applications, however, which are used pri-
marily to edit the media offline, the aim ofRhythmaticis to
allow users tointeractivelyexplore and learn about rhythm by
experimenting and combining rhythm patterns from different
sources. These interactions with rhythm are realized using
semantic time.

We define arhythm mapto be a time function where each
measure is normalized, such that each measure is a mapping
from [0, 1) to [0, 1). The rhythm map remains a continuous
curve defined by beat control points, which are determined
from the normalized beat intervalsb̃i of the measure (see Fig-
ure 3). Given the beat intervalsbi of a measure withn beats,
the normalized beat intervals are calculated using:

b̃i =
bi

∑n−1

j=0
bj

(1)

Choosing an appropriate interpolation scheme through
these control points is an interesting research question init-
self (it can be compared to selecting an interpolation scheme
in computer graphics for drawing a continuous curve through
the control points), and we reserve it for future work. Nev-
ertheless, semantic time facilitates such experimentation; it
also offers a more general representation than existing sys-
tems. Ableton Live, for example, linearly adjusts the tempo
between warp markers placed at beat boundaries. This is
equivalent to connecting the beat markers using straight lines,
resulting in first-derivative discontinuities in the curvethat
manifest as sudden (and jarring) tempo changes at the beats.

We now definefunction operatorsto explore combina-
tions of rhythm maps. The first operator isf(t) :: g(t),
the concatenation of the two rhythm mapsf(t) and g(t)
(see Figure 4). Concatenating rhythm maps do not suffer
from the same issues as time maps (Honing 2001), because
they are constrained to the start and end of a measure. The
time function of a piece withn measures can be completely
represented using concatenated one-measure rhythm maps
g0(t) :: g1(t) :: ... :: gn−1(t) and their respective lengths

http://media.informatik.rwth-aachen.de/~eric/time/
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Figure 4: Visualization of rhythm map concatenation. Two
rhythm maps,f(t) andg(t), are concatenated together.

0.00

0.33

0.67

1.00

0.00 0.33 0.67 1.00

normalized beats

n
o

r
m

a
li

z
e

d
 t

im
e

Figure 5: Visualization of a rhythm map scaled byα = 2.0
(200%), resulting in a more accentuated swing. The dotted
line shows the unscaled rhythm map.

m0 ...mn−1. Note that this formulation places no restrictions
on the number of beats per measure, and even supports the al-
ternating time signatures found in ancient folk music or Dave
Brubeck’s jazz compositions.

A rhythm map can also bescaled– the musical equivalent
of accentuating (scale up) or easing (scale down) its swing.
This scenario if very typical in jazz, since different artists
swing differently – contrast Oscar Peterson’s heavy swing
with Bill Evans’ lighter swing, for example. Let us define
σα(f(t)) as the rhythm mapf(t) scaled byα. To compute
the scaled beat intervals for a rhythm map ofk beats, we must
first transform the beat intervals to the beat control pointsin
the measure:

pi =

i−1
∑

j=0

bj ; p0 = 0 (2)

Then, we scale the offset of these beat positions relative
to a perfectly quantized beat:

p′i = α

(

pi −
i

k

)

+
i

k
(3)

Finally, we transform the scaled beat positionsp′i back
to beat intervalsb′i using an inverse of Equation 2. Figure 5
shows the effect of scaling a rhythm map.

A third operator is combining rhythm maps together us-
ing a weighted average. Rhythm maps can be averaged to-
gether only if the number of beats, and the distribution of
beats within each measure, is the same. A rhythm map can be
averaged fromm other rhythm maps using the weightsβj :

Figure 6: Visualization of a more complex rhythm map equa-
tion. Two maps,f(t) andg(t), are averaged with a weightβ.
The result is then concatenated on either side withh(t) and
k(t). The concatenated rhythm map is finally scaled byα.

m−1
∑

j=0

βjfj(t) ;

m−1
∑

j=0

βj = 1 (4)

The beat intervals of the averaged rhythm map are calcu-
lated as follows:

b′i =

m−1
∑

j=0

βj · bi,j (5)

Averaging two rhythm maps has the effect of “mixing”
two performances together. For example, one could take a
Vienna Philharmonic performance and a Boston Symphony
Orchestra performance of the same piece, and create a new
performance with the rhythm characteristics of both.

Concatenation, scaling, and averaging can also be arbi-
trarily combined; for example, we could take the concatena-
tion of three rhythm maps, the second of which is a weighted
average of two other rhythm maps, and scale the entire map
(see Figure 6). These operators thus form analgebra, and
we have begun to explore the properties of this algebra. Con-
catenation, for example, isassociative(e.g.,(f(t) :: g(t)) ::
h(t) = f(t) :: (g(t) :: h(t))), averaging iscommutative
(e.g., βf(t) + (1 − β)g(t) = (1 − β)g(t) + βf(t)) and
scaling isdistributiveover concatenation and averaging (e.g.,
σα(f(t) :: g(t)) = σα(f(t)) :: σα(g(t))). These properties
can be used to algebraically reduce complicated expressions
to improve performance. While algebras have been proposed
before for animation (Elliott et al. 1994), there appears tobe
no existing work that explores algebras for representing time
and temporal transformations in computer music at this level.

The algebra can also be exposed directly to the end user as
a visual language of interconnected building blocks, similar
to Max/MSP (see Figure 6). Such an interface offers inter-
esting possibilities for the user to interact with the tempoand
rhythm of music; in our prototype implementation, for ex-
ample, the weighting and scaling factors can be dynamically
adjusted while the music is playing, and the user receives im-
mediate feedback on their adjustments to the rhythm.

4.2 Personal Orchestra

Personal Orchestrais an ongoing project that started
in 2000, with various iterations of the project result-



ing in a series of successful interactive museum exhibits
around the world, including the House of Music Vi-
enna (Borchers et al. 2004)3, Boston Children’s Museum
(Lee et al. 2004)4, and Betty Brinn Children’s Museum in
Milwaukee (Lee et al. 2006). Like many other interactive
conducting systems,Personal Orchestraallows the user to
control (amongst other parameters) the music tempo using
conducting gestures; unlike other systems, however,Personal
Orchestracontinues to be one of few systems that guaran-
teesynchronousplayback of time-stretched digital audio and
video recordings; the media is also synchronized in speed
(tempo) and position (beat) with the user’s conducting ges-
tures.

Our first version of the Semantic Time Framework was
used to design the media engine forMaestro!5, the third gen-
erationPersonal Orchestra(Lee et al. 2006). This version of
the Semantic Time Framework addresses the problem that
modern well-known multimedia frameworks do not distin-
guish and preserve the relationship between media time and
presentation time; preserving this relationship is necessary
to synchronize the time-stretched audio to the video, and to
synchronize the media to the beats from the user’s conduct-
ing gestures. The Semantic Time Framework preserves this
mapping between media time and presentation time, which
allowed us to simplify a system architecture that required two
independent implementations of a synchronization algorithm.
By introducing a generic “semantic time unit” model in the
framework, we were able to create a reusable synchroniza-
tion module that keeps one or more timebases (e.g., audio and
video) synchronous with another timebase (e.g., user’s beats,
see Figure 7).

Using the semantic time theory presented in this paper,
we can further generalize our synchronization algorithm. In
(Lee et al. 2006), we specified synchronizationimperatively
by describing an algorithm forhowsynchronization is to be
performed, rather thanwhat the desired result is. This im-
perative approach to synchronization is difficult to generalize
without exposing unnecessary details of the algorithm. For
example, we may wish to relax the constraint that the audio
precisely follow the user’s beats, or have the audio follow
the beat with some delay. Usa and Mochida (1998), for ex-
ample, observed that professional conductors expect to lead
the orchestra by some amount dependent on their cultural
background and the tempo of the music; we have recently
also studied this phenomenon in more detail for both con-
ductors and non-conductors (Lee et al. 2005), and obtained
some quantitative results. We found that conductors expect
the orchestra to follow their beat with a fixed delay (150 msec
for Radetzky March), while non-conductors lead the beat just

3The firstPersonal Orchestrawas coordinated by Max Mühlhäuser, now
at Darmstadt University, and in cooperation with the ViennaPhilharmonic.

4Personal Orchestra2, also known asYou’re the Conductor, was a joint
project in collaboration with Teresa Marrin Nakra at Immersion Music, and
the Boston Symphony Orchestra.

5Maestro! was sponsored by the Betty Brinn Children’s Museum, in co-
operation with the Milwaukee Youth Symphony Orchestra.
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(Lee et al. 2006), and beyond the scope of this paper. Gen-
eralizing the algorithm to include other types of synchroniza-
tion requires additional parameters, and requires developers
wishing to synchronize media to understand the algorithm.

slightly (50 msec) on average, but alternate between leading
and following the beat: a non-conductor’s perception of the
beat is different and not as precise as a conductor’s. To sup-
port these users, we could modify the algorithm to support
various levels of synchronization based on certain input pa-
rameters; this would, however, require the application devel-
oper to have some understanding of the synchronization algo-
rithm itself (see Figure 8). We feel a more elegant solution is
to describe synchronization not as an algorithm, butdeclara-
tively by imposingconstraintson the independent timebases
of audio, video, and user input.

Let the time functions for audio, video, and user input
bea(t), v(t), andu(t), respectively. Then, the drift between
two timebases is the mathematical difference between the two
functions (e.g.,a(t) − v(t)). To preserve lip sync, video
is usually synchronized as closely as possible to the audio,
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Figure 9: Visualization of three types of constraints for syn-
chronization. On the left, the audio and video are exactly
sychronized. In the middle, the audio lags behind the user
gestures by 100 msec. On the right, the audio is allowed to
lead or lag behind the user’s gesture by 100 msec.

equivalent to the constraint thata(t) − v(t) = 0. However,
we can vary this constraint when synchronizing to the beats
marked by the user. If the user is a trained conductor, we can
set the music to follow her beat by, for example,1/4 of a beat
(u(t) − a(t) = 0.25 beats). Or, if the user is not a trained
conductor, we can allow their beat to lead or even lag behind
the music beat by up to1/8 of a beat (|u(t) − a(t)| = 0.125
beats, see Figure 9).

While previous work has also introduced the idea
of using “constraints” to describe synchronization
(Bailey et al. 1998), the way in which we formulate con-
straints differs. TheNsyncframework, for example, expresses
temporal constraints as a conditional (e.g.,when (a(t)
> v(t)) then reduce video playrate()); we
argue such a formulation is still imperative, compared to our
declarative approach.

4.3 Beat Tapper

Automatic beat detection remains an active area of re-
search in computer music, and algorithms have been devel-
oped that work well for many types of music (Dixon 2001).
Nonetheless, certain types of music remain beyond the ca-
pabilities of these algorithms. For example, in a particu-
lar Vienna Philharmonic performance ofBlue Danube Waltz
that we analyzed, the tempo varies from 15 to 80 pulses per
minute, and there is little percussion; we have found even hu-
mans often have trouble finding the pulse. Tracking the mu-
sic beat, which is not only three times faster, but exhibits the
characteristic Strauss waltz swing, is, unsurprisingly, beyond
the capabilities of today’s algorithms. Thus, we have found
a tool likeBeat Tapper, that allows a human to manually tag
audio data with beat metadata, indispensable in our research.

Beat Tapperallows the user to load an audio file into a
waveform view, and “tap along” to the beat while the au-
dio is playing. The inserted beat markers can be manually
fine-aligned in the waveform.Beat Tapperhas features rarely
seen on similar tools, however: users can, optionally, “hear”
the beat (tapping sounds are played together with the mu-
sic); users can arbitrarily adjust the audio playback speed;
and users can “scrub” through the audio. Audible scrubbing
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Figure 10: System architecture for audio scrubbing inBeat
Tapper. The audio is first synchronized to the user input
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The beats are then respaced and synchronized with the time-
stretched audio before output. The dotted line shows that the
“beats to audio” synchronization module has an interdepen-
dency on the unstretched audio stream.

is available in some audio editing applications, and allows
the user to quickly “browse” through the audio by moving
the cursor around in the waveform and hearing the audio at
the same time. These applications, however, either simply
skip to the current cursor position and play a short snippet
(resulting in garbled audio), or play a resampled version of
the audio (resulting in pitch-shifts).Beat Tapper, on the other
hand, time-stretches the audio for continuous, high-fidelity
feedback.

There are two main challenges to support this scrubbing
interaction. Unlike a simple slider, where only the speed
of the audio is synchronized to user input, or scrubbing by
skipping where only the position of the audio is synchro-
nized to user input, both the speed and the position must be
synchronized in the pitch-preserving time-stretching scheme
we introduced forBeat Tapper. Also, the time-stretched au-
dio must be synchronized to the audible beats; these tap-
ping sounds, being transient signals, are not time-stretched
the same way as the audio. Instead, the time at which they
are played must be adjusted according to the time-stretched
audio. A system architecture to implement the scrubbing in-
teraction using an existing multimedia framework, such as
Core Audio or DirectSound, is shown in Figure 10.

This architecture suffers from design issues similar to that
described in (Lee et al. 2006): there are multiple instances
of conversion from one time unit to another, and the mod-
ule for synchronizing the beats requires information not only
from the time-stretched audio, but also from the original (un-
stretched) input. Moreover, there is a “daisy chain” of syn-
chronization modules: the audio is synchronized to the input,
and because of the processing latency in the time-stretching,
the beats must be synchronized to the time-stretched audio
to ensure precise synchronization. An implementation of this
design becomes very specific to the application, and reusing
these modules for another application is not possible.

In a redesign ofBeat Tapperusing the Semantic Time
Framework, the semantic time interval is set to the number
of audio samples that corresponds to one pixel along thex-
axis of the graphical waveform view (see Figure 11). The beat



Figure 11: TheBeat Tapperapplication. Each pixel along
thex-axis of the waveform view corresponds to an interval of
audio samples, which we use as the semantic time interval.

times are also expressed as points in this interval space. With
this choice of the semantic time interval, we can simplify the
system architecture to a design almost identical to the ren-
dering engine ofPersonal Orchestra(see Figure 7). The dif-
ferences between the two systems are the choice of semantic
time units (pixels forBeat Tapper, beats forPersonal Orches-
tra) and the media types (audio and beats forBeat Tapper,
audio and video forPersonal Orchestra).

Beat Tapperthus illustrates the need for apolymorphic
semantic time interval data type, one that is not limited to
only traditional musical notions of time, such as beats.

5 Discussion and Evaluation

How one evaluates a set of theories or a software frame-
work is a question that is open to debate. For example, lan-
guage theorists often use mathematical proofs to prove sound-
ness and completeness (Hudak 2004). In our work, we have
adopted an iterative design/implement/analyze approach.Our
evaluation in the first iteration of the Semantic Time Frame-
work (Lee et al. 2006) showed how using the Semantic Time
Framework reduced the overall complexity of the system ar-
chitecture of an interactive conducting system.

The goal of this next iteration is to both develop the se-
mantic time theory further, and to expand the application do-
main beyond interactive conducting systems. We believe the
three applications we presented here are all steps towards this
goal.

Rhythmatic improves upon existing interactions with
groove and digital audio, and incorporates an algebra for rep-
resenting rhythm. Not only does such an algebra make the in-
teraction with rhythm more general than existing implemen-
tations, but it also offers opportunities for real-time, interac-
tive experimentation with rhythm; we believe such interaction
has applications in, for example, music education.

Personal Orchestraand Beat Tapperillustrate how two
rather different interactions (conducting and audio scrubbing)
actually result in very similar requirements for a flexible-time

media engine. And while the time-stretching and synchro-
nization mechanisms for these two applications would nor-
mally be implemented differently using conventional multi-
media frameworks, the Semantic Time Framework allows the
same software modules to be reused for both applications.

Our expanded theory of semantic time has also allowed
us to respecify a previously developed synchronization algo-
rithm using constraints. Furthermore, we can also generalize
this specification to include additional interactions based on
the differences in how conductors and non-conductors mark
beats relative to the music beat.

Finally, Beat Tapperis an example of where the semantic
time interval is not set to the music beats or measures, but is
instead set to an interval of audio samples as represented ina
graphical user interface.

6 Future Work

As we continue with our work on semantic time, we
would like to explore the following areas:

We have begun exploring an algebra for working with
time that includes concatenation, scaling and averaging. We
are working to develop this algebra further, with more oper-
ators and the implications of combining these operators. Us-
ing rules of algebraic simplification, we believe we can also
apply algebraic reductions to a complex rhythm equation to
improve performance.

Our current prototypes demonstrating the ideas presented
in this paper were implemented in Objective-C. As we con-
tinue to develop the Semantic Time Framework, we are inves-
tigating the use of a functional programming language such
as Haskell or ML. These languages have traditionally been
criticized for their poor performance, and while recent trends
show significant improvement in this regard, one promising
approach is to use a functional programming-based front end
that communicates with a high-performance back-end that
performs the computationally expensive audio and video pro-
cessing. Such a scheme has been adopted successfully before
(Greenebaum 1997).

Finally, we are continuing to explore new application ar-
eas for the Semantic Time Framework. Research in compre-
hension of fast versus slow speech has shown, for example,
that different aspects of pronunciation change when humans
talk faster or slower (Zellner 1998). This implies that the
naı̈ve approach to changing the playrate of a speech recording
by simply varying the playrate linearly could be improved.
One possible approach is to define the semantic time inter-
vals as the phonemes of a speech signal, and impose con-
straints on how these intervals are time-stretched relative to
each other. This would, for example, reflect how we elim-
inate certain consonants when talking faster, or increase the
relative length of pauses between words when talking slower.



7 Conclusions

We presentedsemantic time, a theory for representing
time and temporal transformations in computer music sys-
tems. This theory is based on an interval structure tied to the
semantics of the media, but defined according to the needs
of a particular application. The mapping between media time
and presentation time results in a time function. When nor-
malized over a measure, these time functions form rhythm
maps, and we introduced three rhythm map operators, scal-
ing, concatenation and averaging, which form an algebra. We
also showed how constraints imposed on time functions can
be used to specify varying degrees of synchronization be-
tween media and user input. Finally, we showed an example
where it is useful to define the semantic time interval as a unit
other than a music beat.

While the ideas and concepts behindRhythmatic, the
fourth iteration ofPersonal Orchestra, andBeat Tapperare
only incremental improvements over existing systems, each
of these applications presents an improved temporal interac-
tion with digital audio and video over previous work. Further-
more, semantic time enabled us to propose elegant solutions
to the problem of designing and implementing these time-
based interactions.

As we continue to develop semantic time, we hope that it
will promote further research in the field of time-based inter-
action with music and multimedia.
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