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ABSTRACT 
This paper outlines experiences with latency and 
responsiveness in a distributed application.  We analyze 
latency from the perspectives of the user and the system.  
From these experiences and analyses, we suggest questions 
and highlight tradeoffs that pertain to both HCI and 
systems in the realm of ubiquitous computing. 

INTRODUCTION 
In traditional computer systems, which heavily utilize the 
desktop metaphor and WIMP-style interface, there exists a 
tightly coupled user interaction loop.  Pointer inputs are 
specially integrated into the operating system, bypassing 
normal system event queues.  Thus, the pointer is 
exceptionally responsive to user input; device movements 
are echoed almost instantaneously.  
For the Interactive Workspaces project [2], we have created 
a loosely coupled, room-based interactive space, using a 
system infrastructure, the Interactive Room Operating 
System (iROS), which offers inherent decoupling to better 
support heterogeneous environments.  iROS provides a 
network abstraction consisting of an event server (the 
Event Heap) and a translation intermediary (the Patch 
Panel) to handle communications between workspace 
entities. 
In ubiquitous computing systems, there are several 
advantages to loose coupling, including dynamic 
configurability and ease of integration for heterogeneous 
environments with multiple users, computers, and displays.  
Over three years of experience in the iRoom, we have 
found that the iROS system provides excellent and useful 
coordination between applications and users. 
Given our experiences at the application level, we would 
like to apply the above principles to input.  However, there 
are several drawbacks to loose coupling, the most 
prominent of which is latency.  A common example of 
latency from the traditional computing realm may be found 
in VNC [5], a remote display system that allows a user to 
view his or her computer desktop from another machine 
over the Internet.  Though handy, the VNC user experience 
is often frustrating: no longer is there a single machine, 
tightly coupled pointer input loop. Instead, a stream of 
mouse event messages travels over the network from the 
local computer to the remote computer, and a stream of 
output bitmaps travels back along the same path.  This adds 
a significant delay (latency) between the time the user 

performs a mouse action and the time he or she sees the 
result of the action.  Added flexibility comes at the expense 
of perceived responsiveness, which is noticeably worse 
than the single machine case. 
We examine some of the tradeoffs between system 
flexibility and responsiveness in the design of this and 
other distributed ubiquitous computing systems. 

LATENCY 
To understand responsiveness, we must look at latency 
from the perspectives of both the user and the system, 
prompting two questions.  First, what are the current 
bottlenecks of the system?  This question can be answered 
with benchmark timing measurements, to be provided.  
Second, how much system latency is acceptable for the 
required user interactions?  On the surface, this is a well-
researched topic that should provide us with empirical data 
indicating some thresholds.  Where they have been applied 
to computer science, however, they have mostly been 
applied to traditional computing systems.  It is an open 
question as to how existing results can be applied to 
ubiquitous computing spaces, and where new analyses are 
needed.  Ultimately, the goal is to develop theories for 
design in the presence of latency, which will always be a 
factor in loosely coupled, highly flexible systems. 

Sources of Latency 
Figure 1 outlines the possible sources of latency in one 
example system interaction.  The layout illustrates the 
distributed nature of the overall system, in which input, 
system, and output are not necessarily tightly coupled.  
They may comprise several different devices or computers. 
We have identified three general types of latency in 
ubiquitous computing systems: 

• Internal latency – latencies internal to a single 
system device or computer, e.g. program 
processing times 

• External latency – latencies in communication 
between system devices or computers, e.g., 
networking 

• Human latency – latencies arising from human 
factors, including physical issues of input and 
output, as well as psychological issues such as 
attention and perception 

Note that the arrows themselves may encompass several 
smaller latencies.  For example, the latency of the input 



device arrow may include factors such as hardware sensor 
sampling rate, wireless transmission time, or device driver 
processing time.  Most of these factors are outside the 
control of system designers; we exclude them from the 
diagram for clarity. 
Taken together, these arrows form the overall latency of the 
system.  We seek not only to make measurements of each 
of these factors, but also to understand the deeper 
implications and tradeoffs, and in turn to develop general 
theories and guidelines for HCI and systems designers. 

A User’s Perspective 
From a human-computer interaction perspective, it is 
important to understand how users perceive latency.  The 
arrows representing human factors in Figure 1 describe 
some of the effects that add to the perception of latency, 
but the issues underlying them are complex and not well 
understood.  For instance, in existing systems, users 
tolerate much more latency in the execution of complex 
commands, such as recursive file deletion, than they do in 
the movement of mouse cursors.  What levels of 
responsiveness do users expect and consider acceptable?  
How do these expectations vary with modality or task? 
A key point in thinking about expectations of 
responsiveness is causality, the feeling that user actions 
directly correspond to system reactions.  Different 
modalities appear to have different performance and 

feedback requirements for maintaining the impression of 
causality; this is the motivation behind the special 
integration of mouse and keyboard input in traditional 
desktop operating systems, for instance.  Other issues that 
may affect user expectations include preconceptions from 
existing systems (e.g., mouse performance in traditional 
computers) and new factors introduced by the distributed 
nature of the system (e.g., physical distances from users to 
inputs and outputs). 
Another interesting question is: how do users cope in the 
presence latency?  Much of how users deal with latency 
has to do with predictability: if delay is predictable, users 
can develop strategies that account for known delays, but if 
delay is erratic or unknown, they cannot do anything about 
it in advance.  This may have larger implications in the 
underlying design of ubiquitous computing systems, as 
minor variances in performance become highlighted and 
magnified in user interactions. 

EXPERIENCE 
Our own experience with system latency stems from 
prototyping user interactions in the iRoom using the iWall 
application.  We developed iWall as a distributed 
blackboard system to experiment with moving items 
around a room.  Using a traditional Model/View/Controller 
design philosophy, we separated the blackboard model 
containing knowledge of object location in this abstract 

Figure 1: Diagram showing possible sources of latency in an example distributed system. 



space from the multiple views around the room, each 
displaying a small subset of the space.  The implementation 
is such that the iWall model is an application that runs on a 
central server and remotely controls each viewer 
application running on separate machines.    
This distributed implementation implies at least one 
network hop is added to the latency of the system.  iWall 
takes advantage of the Event Heap, which serves as a 
useful network abstraction that has many benefits over a 
direct socket connection, despite the fact that it was not 
originally designed for streaming user input events.  The 
Event Heap is a centralized tuplespace with publish / 
subscribe semantics.  Each event posted to the Event Heap 
must first go to the centralized server before it reaches the 
subscribing client, effectively adding an additional network 
hop to the iWall system. 
The goal of the iWall experiment is to understand which 
modalities or combination of modalities were most 
effective for moving information around the room.   We are 
interesting in building a multi-user, post-desktop 
environment, requiring a facility for multi-cursor 
interaction.  We used the iStuff [1] toolkit and architecture 
to provide the multimodal, multi-cursor interaction.  The 
iStuff architecture fundamentally includes a level of 
indirection known as the Patch Panel to quickly map 
devices to applications.  The resulting system (shown in 
Figure 1) includes three Event Heap hops, for a total of six 
network hops.  We realize that building so much flexibility 
into our system will inevitably degrade responsiveness; 
what we seek is a balance of these two goals. 

ANALYSIS 
The iWall provided a sluggish, though usable, user 
experience for moving cursors or objects around the room.  
We made some measurements to get a rough estimate of 
the bottlenecks of the system: 

• Event Heap ping – Measured the time it took for a 
client to receive an event that it sent out. 5-10ms 

• Patch Panel ping – Measured the time it took for a 
client to receive the result of a translation 
corresponding to the event that it sent out. 12-
17ms 

• Standard network ping – For wired network traffic 
on the same subnet, 0.1-0.5 ms; for wireless 
network traffic, 2-3ms 

The insignificance of the network delay in our system was 
somewhat surprising.  The internal latency of the multiple 
system components, including the Event Heap and Patch 
Panel, made up the bulk of the system delay. 
We began to consider certain optimizations to decrease 
system latency, but each optimization has significant 
consequences for the system architecture.  For example, the 
iWall could eliminate the need for the Patch Panel by hard 
coding interfaces for each anticipated device or modality, 

but a consequence of this is an undesirable requirement that 
the iWall code be changed each time a new device or 
modality is introduced.  Alternatively, the Event Heap 
could be modified to include the Patch Panel functionality.  
However, the Event Heap is a well-tested communications 
channel that would ideally be left unmodified, and any 
integration task would require a significant coding effort.  
Lastly, the centralized iWall model could be 
reimplemented as a decentralized model with each viewer 
maintaining a copy of the shared distributed state, but such 
models are generally harder to implement correctly. 
Before putting the effort into any of these paths, we want to 
understand whether these optimizations would provide 
sufficient improvement to system latency.  We anticipate 
using several different interaction models in our 
application, such as direct physical pointers, indirect virtual 
cursors, and voice command.  Each of these interaction 
models is likely to have different responsiveness 
requirements.  We analyze some of the issues brought up 
by the system interactions under consideration. 

Pointer Manipulation 
With respect to pointer manipulation, Fitts’ law is the most 
commonly referenced model for determining acceptable 
input lag.  Several [3,4] have proposed a slightly modified 
version of Fitts’ law that incorporates lag as shown in 
Equation 1: 

Mean Time = C1 + C2(C3 + MachineLag)ID      (Eq. 1) 
C3 represents the human processing time required to make 
a corrective movement, MachineLag represents the system 
processing time, C2ID represents the average number of 
iterations of the control loop, and C1 represents the sum of 
the initial response time and the time required to confirm 
the acquisition of the target.  Ware et al [4] applied this 
modified Fitts’ Law to 3D virtual reality systems and based 
on their task performance measurements define a lag target 
of less than 50ms for input devices. 
The implications of this result raise several questions for 
ubiquitous computing environs.  Does this version of Fitts’ 
law hold in ubiquitous computing applications?  If so, how 
do the parameters change for this type of environment?  
What latency thresholds do these parameters suggest?  
Additionally, noting that forearm movement has a 
physiological upper bound on rate of control at 3Hz and 
also noting that Ware’s results are based on forearm 
controlled devices, do other modalities like leg controlled, 
or gaze controlled interfaces require different latency 
thresholds?   

Command Interfaces 
Command interfaces, such as spoken instructions, do not 
have the same performance requirements as pointer 
manipulations, but do need to maintain causality: the user 
must perceive that each action causes the appropriate 
reaction in the system.  It is well documented that the 
latency threshold for weblinks is approximately 1 second.  



Does this result apply in some fashion to ubicomp spaces?  
How do properties of modalities affect the maximum 
allowable latency to preserve perception of causality? 

Constant vs. Variable Latency 
Loosely coupled systems with many sources of latency will 
present variable amounts of latency at different times.  Our 
system suffers from highly variable latency.  This is partly 
due to the use of an Ethernet network, which uses statistical 
multiplexing as policy for sharing the network.  Thus, 
network latency is variable and increases as network traffic 
increases.  In addition to network variability, each system 
component is implemented as a Java application.  Each 
Java Virtual Machine adds variability due to the 
unpredictable nature of the garbage collection process. 
There are several real world examples where users can be 
trained to deal with constant latency.  Shooting a gun at a 
moving target requires that the marksman lead the target to 
account for the time it takes for the bullet to travel through 
the air.  As noted above, however, users cannot use the 
same tactics in coping with variable latency.  At what point 
does the user feel the variance of the system?  Does this 
variability make the certain interactions inappropriate for 
our system?  Should system designers use networks and 
programming languages that provide more consistent 
delays or execution times? 

Flow Control 
Our experiments and measurements highlighted other 
system design decisions that have direct impact on the user 
experience.  The Event Heap has no mechanism for flow 
control, so input devices may produce I/O events at a rate 
faster than the iWall application can handle.  If the 
sampling rate of the device were 20Hz, and the iWall 
application were only able to process events at 10Hz, when 
the user interacts with the device for 1 sec, the last event 
would have an additional 1 sec of queue latency in addition 
to the existing system latency.   In practice, we have found 
that event queueing increases latency.  Where possible, 
flow control should be used to avoid queue latency. 

FUTURE WORK 
As computing and network performance increase, so do the 
goals and ambitions of computing systems. Human 
performance, meanwhile, remains relatively constant.  
Thus, we believe that this issue of responsiveness, from the 
perspective of both systems and HCI, will remain an 
interesting one for the foreseeable future.  In addition, there 
are several research directions to be pursued: 
Multimodal interfaces: We are investigating multimodal 
interactions, combining pointers with voice commands.  In 
a distributed system, such interactions will include 
latencies from several different system components, and 
thus possibly introduce new critical paths.  How does 
mixing modes affect latency, from both the user and system 
points of view? 

Precision: Another question is the ability of distributed 
applications to support spatial and temporal precision, 
especially in light of the latency issues already raised.  Can 
distributed applications be designed such that users can 
successfully hit a small button (spatial precision) at a 
precise instant (temporal precision)?  One central tradeoff: 
sampling rate vs. latency, as faster sampling rates generally 
lead to larger latencies, due to system bottlenecks. 
Memory and attention: Interactive spaces and other 
ubiquitous computing environments, with multiple users, 
input modalities, output modalities, etc., often tax users’ 
attention and memory in ways that traditional computing 
systems do not.  The resulting distractions or interruptions 
may have implications for perceived responsiveness. 

CONCLUSION 
As ubiquitous computing systems become both more 
prevalent and more interactive, we need to discover the 
designs and paradigms that will allow users to use these 
spaces as comfortably as they now use workstations.  
Responsiveness is a key element in proper HCI design, 
while flexibility is a key element in proper systems design; 
these two ideals often make conflicting demands when 
designing actual systems.  In this paper, we have identified 
some of the tradeoffs involved.  This workshop presents an 
excellent opportunity to discuss the experiences of 
designers in the ubiquitous computing community. 
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