
Designing for Latency: In Search of the Balance Between
System Flexibility and Responsiveness

Brian Lee, Rafael Ballagas
Stanford University

{balee, ballagas}@stanford.edu

Maureen Stone
StoneSoup Consulting

stone@stonesc.com

ABSTRACT
This paper outlines experiences with latency and
responsiveness in a distributed application. We analyze
latency from the perspectives of the user and the system.
From these experiences and analyses, we suggest questions
and highlight tradeoffs that pertain to both HCI and
systems in the realm of ubiquitous computing.

INTRODUCTION
In traditional computer systems, which heavily utilize the
desktop metaphor and WIMP-style interface, there exists a
tightly coupled user interaction loop. Pointer inputs are
specially integrated into the operating system, bypassing
normal system event queues. Thus, the pointer is
exceptionally responsive to user input; device movements
are echoed almost instantaneously.
For the Interactive Workspaces project [2], we have created
a loosely coupled, room-based interactive space, using a
system infrastructure, the Interactive Room Operating
System (iROS), which offers inherent decoupling to better
support heterogeneous environments. iROS provides a
network abstraction consisting of an event server (the
Event Heap) and a translation intermediary (the Patch
Panel) to handle communications between workspace
entities.
In ubiquitous computing systems, there are several
advantages to loose coupling, including dynamic
configurability and ease of integration for heterogeneous
environments with multiple users, computers, and displays.
Over three years of experience in the iRoom, we have
found that the iROS system provides excellent and useful
coordination between applications and users.
Given our experiences at the application level, we would
like to apply the above principles to input. However, there
are several drawbacks to loose coupling, the most
prominent of which is latency. A common example of
latency from the traditional computing realm may be found
in VNC [5], a remote display system that allows a user to
view his or her computer desktop from another machine
over the Internet. Though handy, the VNC user experience
is often frustrating: no longer is there a single machine,
tightly coupled pointer input loop. Instead, a stream of
mouse event messages travels over the network from the
local computer to the remote computer, and a stream of
output bitmaps travels back along the same path. This adds
a significant delay (latency) between the time the user

performs a mouse action and the time he or she sees the
result of the action. Added flexibility comes at the expense
of perceived responsiveness, which is noticeably worse
than the single machine case.
We examine some of the tradeoffs between system
flexibility and responsiveness in the design of this and
other distributed ubiquitous computing systems.

LATENCY
To understand responsiveness, we must look at latency
from the perspectives of both the user and the system,
prompting two questions. First, what are the current
bottlenecks of the system? This question can be answered
with benchmark timing measurements, to be provided.
Second, how much system latency is acceptable for the
required user interactions? On the surface, this is a well-
researched topic that should provide us with empirical data
indicating some thresholds. Where they have been applied
to computer science, however, they have mostly been
applied to traditional computing systems. It is an open
question as to how existing results can be applied to
ubiquitous computing spaces, and where new analyses are
needed. Ultimately, the goal is to develop theories for
design in the presence of latency, which will always be a
factor in loosely coupled, highly flexible systems.

Sources of Latency
Figure 1 outlines the possible sources of latency in one
example system interaction. The layout illustrates the
distributed nature of the overall system, in which input,
system, and output are not necessarily tightly coupled.
They may comprise several different devices or computers.
We have identified three general types of latency in
ubiquitous computing systems:

• Internal latency – latencies internal to a single
system device or computer, e.g. program
processing times

• External latency – latencies in communication
between system devices or computers, e.g.,
networking

• Human latency – latencies arising from human
factors, including physical issues of input and
output, as well as psychological issues such as
attention and perception

Note that the arrows themselves may encompass several
smaller latencies. For example, the latency of the input

device arrow may include factors such as hardware sensor
sampling rate, wireless transmission time, or device driver
processing time. Most of these factors are outside the
control of system designers; we exclude them from the
diagram for clarity.
Taken together, these arrows form the overall latency of the
system. We seek not only to make measurements of each
of these factors, but also to understand the deeper
implications and tradeoffs, and in turn to develop general
theories and guidelines for HCI and systems designers.

A User’s Perspective
From a human-computer interaction perspective, it is
important to understand how users perceive latency. The
arrows representing human factors in Figure 1 describe
some of the effects that add to the perception of latency,
but the issues underlying them are complex and not well
understood. For instance, in existing systems, users
tolerate much more latency in the execution of complex
commands, such as recursive file deletion, than they do in
the movement of mouse cursors. What levels of
responsiveness do users expect and consider acceptable?
How do these expectations vary with modality or task?
A key point in thinking about expectations of
responsiveness is causality, the feeling that user actions
directly correspond to system reactions. Different
modalities appear to have different performance and

feedback requirements for maintaining the impression of
causality; this is the motivation behind the special
integration of mouse and keyboard input in traditional
desktop operating systems, for instance. Other issues that
may affect user expectations include preconceptions from
existing systems (e.g., mouse performance in traditional
computers) and new factors introduced by the distributed
nature of the system (e.g., physical distances from users to
inputs and outputs).
Another interesting question is: how do users cope in the
presence latency? Much of how users deal with latency
has to do with predictability: if delay is predictable, users
can develop strategies that account for known delays, but if
delay is erratic or unknown, they cannot do anything about
it in advance. This may have larger implications in the
underlying design of ubiquitous computing systems, as
minor variances in performance become highlighted and
magnified in user interactions.

EXPERIENCE
Our own experience with system latency stems from
prototyping user interactions in the iRoom using the iWall
application. We developed iWall as a distributed
blackboard system to experiment with moving items
around a room. Using a traditional Model/View/Controller
design philosophy, we separated the blackboard model
containing knowledge of object location in this abstract

Figure 1: Diagram showing possible sources of latency in an example distributed system.

space from the multiple views around the room, each
displaying a small subset of the space. The implementation
is such that the iWall model is an application that runs on a
central server and remotely controls each viewer
application running on separate machines.
This distributed implementation implies at least one
network hop is added to the latency of the system. iWall
takes advantage of the Event Heap, which serves as a
useful network abstraction that has many benefits over a
direct socket connection, despite the fact that it was not
originally designed for streaming user input events. The
Event Heap is a centralized tuplespace with publish /
subscribe semantics. Each event posted to the Event Heap
must first go to the centralized server before it reaches the
subscribing client, effectively adding an additional network
hop to the iWall system.
The goal of the iWall experiment is to understand which
modalities or combination of modalities were most
effective for moving information around the room. We are
interesting in building a multi-user, post-desktop
environment, requiring a facility for multi-cursor
interaction. We used the iStuff [1] toolkit and architecture
to provide the multimodal, multi-cursor interaction. The
iStuff architecture fundamentally includes a level of
indirection known as the Patch Panel to quickly map
devices to applications. The resulting system (shown in
Figure 1) includes three Event Heap hops, for a total of six
network hops. We realize that building so much flexibility
into our system will inevitably degrade responsiveness;
what we seek is a balance of these two goals.

ANALYSIS
The iWall provided a sluggish, though usable, user
experience for moving cursors or objects around the room.
We made some measurements to get a rough estimate of
the bottlenecks of the system:

• Event Heap ping – Measured the time it took for a
client to receive an event that it sent out. 5-10ms

• Patch Panel ping – Measured the time it took for a
client to receive the result of a translation
corresponding to the event that it sent out. 12-
17ms

• Standard network ping – For wired network traffic
on the same subnet, 0.1-0.5 ms; for wireless
network traffic, 2-3ms

The insignificance of the network delay in our system was
somewhat surprising. The internal latency of the multiple
system components, including the Event Heap and Patch
Panel, made up the bulk of the system delay.
We began to consider certain optimizations to decrease
system latency, but each optimization has significant
consequences for the system architecture. For example, the
iWall could eliminate the need for the Patch Panel by hard
coding interfaces for each anticipated device or modality,

but a consequence of this is an undesirable requirement that
the iWall code be changed each time a new device or
modality is introduced. Alternatively, the Event Heap
could be modified to include the Patch Panel functionality.
However, the Event Heap is a well-tested communications
channel that would ideally be left unmodified, and any
integration task would require a significant coding effort.
Lastly, the centralized iWall model could be
reimplemented as a decentralized model with each viewer
maintaining a copy of the shared distributed state, but such
models are generally harder to implement correctly.
Before putting the effort into any of these paths, we want to
understand whether these optimizations would provide
sufficient improvement to system latency. We anticipate
using several different interaction models in our
application, such as direct physical pointers, indirect virtual
cursors, and voice command. Each of these interaction
models is likely to have different responsiveness
requirements. We analyze some of the issues brought up
by the system interactions under consideration.

Pointer Manipulation
With respect to pointer manipulation, Fitts’ law is the most
commonly referenced model for determining acceptable
input lag. Several [3,4] have proposed a slightly modified
version of Fitts’ law that incorporates lag as shown in
Equation 1:

Mean Time = C1 + C2(C3 + MachineLag)ID (Eq. 1)
C3 represents the human processing time required to make
a corrective movement, MachineLag represents the system
processing time, C2ID represents the average number of
iterations of the control loop, and C1 represents the sum of
the initial response time and the time required to confirm
the acquisition of the target. Ware et al [4] applied this
modified Fitts’ Law to 3D virtual reality systems and based
on their task performance measurements define a lag target
of less than 50ms for input devices.
The implications of this result raise several questions for
ubiquitous computing environs. Does this version of Fitts’
law hold in ubiquitous computing applications? If so, how
do the parameters change for this type of environment?
What latency thresholds do these parameters suggest?
Additionally, noting that forearm movement has a
physiological upper bound on rate of control at 3Hz and
also noting that Ware’s results are based on forearm
controlled devices, do other modalities like leg controlled,
or gaze controlled interfaces require different latency
thresholds?

Command Interfaces
Command interfaces, such as spoken instructions, do not
have the same performance requirements as pointer
manipulations, but do need to maintain causality: the user
must perceive that each action causes the appropriate
reaction in the system. It is well documented that the
latency threshold for weblinks is approximately 1 second.

Does this result apply in some fashion to ubicomp spaces?
How do properties of modalities affect the maximum
allowable latency to preserve perception of causality?

Constant vs. Variable Latency
Loosely coupled systems with many sources of latency will
present variable amounts of latency at different times. Our
system suffers from highly variable latency. This is partly
due to the use of an Ethernet network, which uses statistical
multiplexing as policy for sharing the network. Thus,
network latency is variable and increases as network traffic
increases. In addition to network variability, each system
component is implemented as a Java application. Each
Java Virtual Machine adds variability due to the
unpredictable nature of the garbage collection process.
There are several real world examples where users can be
trained to deal with constant latency. Shooting a gun at a
moving target requires that the marksman lead the target to
account for the time it takes for the bullet to travel through
the air. As noted above, however, users cannot use the
same tactics in coping with variable latency. At what point
does the user feel the variance of the system? Does this
variability make the certain interactions inappropriate for
our system? Should system designers use networks and
programming languages that provide more consistent
delays or execution times?

Flow Control
Our experiments and measurements highlighted other
system design decisions that have direct impact on the user
experience. The Event Heap has no mechanism for flow
control, so input devices may produce I/O events at a rate
faster than the iWall application can handle. If the
sampling rate of the device were 20Hz, and the iWall
application were only able to process events at 10Hz, when
the user interacts with the device for 1 sec, the last event
would have an additional 1 sec of queue latency in addition
to the existing system latency. In practice, we have found
that event queueing increases latency. Where possible,
flow control should be used to avoid queue latency.

FUTURE WORK
As computing and network performance increase, so do the
goals and ambitions of computing systems. Human
performance, meanwhile, remains relatively constant.
Thus, we believe that this issue of responsiveness, from the
perspective of both systems and HCI, will remain an
interesting one for the foreseeable future. In addition, there
are several research directions to be pursued:
Multimodal interfaces: We are investigating multimodal
interactions, combining pointers with voice commands. In
a distributed system, such interactions will include
latencies from several different system components, and
thus possibly introduce new critical paths. How does
mixing modes affect latency, from both the user and system
points of view?

Precision: Another question is the ability of distributed
applications to support spatial and temporal precision,
especially in light of the latency issues already raised. Can
distributed applications be designed such that users can
successfully hit a small button (spatial precision) at a
precise instant (temporal precision)? One central tradeoff:
sampling rate vs. latency, as faster sampling rates generally
lead to larger latencies, due to system bottlenecks.
Memory and attention: Interactive spaces and other
ubiquitous computing environments, with multiple users,
input modalities, output modalities, etc., often tax users’
attention and memory in ways that traditional computing
systems do not. The resulting distractions or interruptions
may have implications for perceived responsiveness.

CONCLUSION
As ubiquitous computing systems become both more
prevalent and more interactive, we need to discover the
designs and paradigms that will allow users to use these
spaces as comfortably as they now use workstations.
Responsiveness is a key element in proper HCI design,
while flexibility is a key element in proper systems design;
these two ideals often make conflicting demands when
designing actual systems. In this paper, we have identified
some of the tradeoffs involved. This workshop presents an
excellent opportunity to discuss the experiences of
designers in the ubiquitous computing community.

ACKNOWLEDGMENTS
Terry Winograd has been one of the principle advisors and
sources of wisdom for this research. Also, several students
have worked on components mentioned herein: Jeff
Raymakers was the author of the iWall rendering engine;
Andy Szybalski worked extensively with the Patch Panel;
Susumu Harada and Jennifer Hwang worked on speech
interfaces for iWall applications.

REFERENCES
1. Ballagas, R., Ringel M., Stone M., Borchers, J. iStuff: a

Physical User Interface Toolkit for Ubiquitous
Computing Environments. Proc. Of CHI ’03 (Ft.
Lauderdale FL, April 2003).

2. Johanson B., Fox A., and Winograd T. The Interactive
Workspaces Project: Experiences with Ubiquitous
Computing Rooms. IEEE Pervasive Computing
Magazine 1(2), April-June 2002.

3. MacKenzie, S., and Ware, C. Lag as a Determinant of
Human Performance in Interactive Systems. Proc. Of
INTERCHI ’93, 488-493. New York: ACM.

4. Ware, C., and Balakrishnan, R. Reaching for Objects in
VR Displays: Lag and Frame Rate. April 20, 2000.

5. Tristan Richardson, Quentin Stafford-Fraser, Kenneth
R. Wood & Andy Hopper, "Virtual Network
Computing", IEEE Internet Computing, Vol.2 No.1,
Jan/Feb 1998 pp33-38.

