RWTH

Evaluating
Developer Strategies
in Live Coding
Environments

Master’s Thesis at the

Media Computing Group
Prof.Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Joachim Kurz

Thesis advisor:
Prof.Dr.Jan Borchers

Second examiner:
Prof. Dr.Bernhard Rumpe

Registration date: 15.02.2013
Submission date: 09.08.2013






iii

I hereby declare that I have created this work completely on
my own and used no other sources or tools than the ones
listed, and that I have marked any citations accordingly.

Hiermit versichere ich, dass ich die vorliegende Arbeit
selbstandig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich
gemacht habe.

Aachen, August 2013
Joachim Kurz






Contents

[ Abstract

| Uberblick

[ Acknowledgements|

[ Conventions|

1.1 1vation| .

(1.2 Live Coding|

(1.3 Chapter Overview| . .. ... .........

2 Background|

3 Related workl

[3.1 Live Coding|

xvii

Xix

xx1

xxiii

11



vi

Contents

[3.1.1 Recent Developments| . ... ... .. 13
3.2 Research into Developer Behavior and Errors| 19
B.2.1 The Effectof Liveness . ... ... .. 20
[3.2.2  Programming Errors . . . . ... ... 22
................ 29
4 D 31
.1 Motivation for a New and More High-
&
| Fidelity Prototype| . . . . . .. . ... ... .. 31
4.1.1 Limitations of [Heinen's [2012] Proto- |
| typel. . . ... 32
42 ANewBackend|................. 33
.3 The Prototype| . . . . .. ... ... .. .... 35
typ

.31 Tmplementing [Victor{s [2012a] Visu- |
[ alization| . . . .. ... ... ... ... 36
[Problems with the Skewed Design| . . 37
¥4.32 FHnal Versionl . ............. 38
4.4 Changes to the Backend| . . . ... ... ... 46
5 Study Design| 51

y 8
.1 Motivation for a New Exploratory Study| . . 51
.2 Designing the Tasks|. . . .. .. ... ... .. 54
[p.2.1 Task 1.1: Parsing an RSS-Feed using a |
[ SAX-parser| . . ............. 56
[Retining the Task| . . . . ... ... .. 57




Contents

[Expected Problems| . . . . . ... ... 57

2.2 Task1.2: D Tim. nversi .. D58
[Refining the Task| . . . . ... ... .. 59

0.2.3  Expected Problems| . . . .. ... ... 60
.24  Task 3: Dijkstra’s Algorithm|. . . . . . 60
0.2.5 RefiningtheTaskl . ... .. ... ... 61
p.2.6  Expected Problems| . . . . .. ... .. 63

.3 Recruiting Participants| . . . . ... ... ... 63
p4 StudySetup| .. ......... ... ..., 64
.41 The Development Environment, . .. 65
[Building a Continuous Compilation |

Plugin tor Brackets| . . . .. 65

[Providing a Debugger{ . . . . . .. .. 68

p.4.2 Monitoring| . ............ .. 70
043 Procedurel ... ........... .. 70

6 Evaluationl 73
[6.1 Participants| . .. ................ 73
[6.2 Evaluating theStudy| . . . .. ... ... ... 75
621 Tasks .. ... .............. 75

6.2.2 ToolQuality| . . . . ... ........ 76

[6.3 Evaluating the Live Coding Tool] . . . . . .. 78

[6.3.1 Qualitative Results| . . . ... ... .. 79




viii Contents

16.3.2  Task-Based Quantitative Evaluation| . 84

(lask Correctness| . . . ... ...... 85
(Iask Completion Times| . . . ... .. 85
[Number of Changes| . . ... ... .. 87

[6.3.3 Change-Based Quantitative Evaluation| 88

[Clustering Changes into Change |

I Clusters| . . ... .... ... 89
|[Analyzing the Change Clusters|. . . . 94

64 Discussion] . . .................. 108
(6.5 Improvements to the Prototype| . . . . . . .. 110

(7 Summary and Future Work| 113
[7.1 Summary and Contributions| . ... ... .. 113
72 FutureWorkl . . .. ........ .. ..... 115
[7.2.1 Evaluating the Gathered Data|. . . . . 115

[7.2.2 New Programmer Error Studies| . . . 117

[7.2.3  Improving the Live Coding Tool . . . 117

[7.2.4 Research into Better Understanding |

| of the Effect of Live Coding| . . . . . . 118
[A" Tasks Used in the User Study]| 119
(B Questionnaires| 127
[B.1 Pre Task Questionnaires| . . .. ... ... .. 127

[B.2 TPost Task Questionnaires|. . . . .. .. .. .. 129




Contents

ix

IB.3  Post Session Questionnaires| . . . . .. .. ..

Change Cluster Graphs|

Bibliography|

131

133

133

137

141

145

151






xi

List of Figures

i

Victor(s [2012b] first version of a Live Coding

editor, displaying an implementation of bi-

narysearch.| . ... ...............

B1

Screenshot of the Eclipse program presented

by Edwards[[2004]] . . . . ... .. ... ...

14

B2

A screenshot of Rehearse, showing how each

line is evaluated directly,| . . . . ... ... ..

15

B3

A screenshot of Khan Academy’s simple

Live Coding editor| . . . . . ... ... ....

17

B4

A screenshot of [Victor(s [2012a] second pro-

totype, showing how several values in a loop

can be visualized . . . . . .. ... ... ...

17

B5

A screenshot of [Victor(s [2012a] second pro-

totype with a zoomed out view, showing

how individual values are transformed into

agraphview| . ... ... .. ... ... ..

A1

Screenshot of [Heinens [2012] prototype, dis-

playing an implementation of Bubble Sort.| .

W)

Screenshot of an early version of our proto-

type using a skewed display of variable values.| 36




xii

List of Figures

4.3 Screenshot of an early version of our proto-
type, showing how values quickly dritt off-
screen if long loopsoccur| . . . ... ... .. 37

4.4 A screenshot of our final prototype, showing |
| an implementation of Bubble Sort.| . . . . .. 38

4.5 A list of pictures which illustrates how the |
L iterationselector works| . ... ........ 39

A screensh f th lumn-Resiz ISor
| hovering over an iteration selector| . . . . . . 40

4.7 A screenshot of our final prototype that de- |
| picts how nested functions are displayed.| . . 41

4.8 A screenshot of our final prototype showing |
| the different syntax colorsused.|. . . . . . .. 42

4.9 A screenshot of our tinal prototype illustrat- |
| ing the display of circular objects.|. . . . . .. 42

14.10 A screenshot of our final prototype explain- |
| ing how errors are displayed.| . . . . ... .. 43

4.11 A screenshot of the final prototype in which |
[ the execution indicator is visibilef . . . . . .. 47

4.12 A diagram depicting our changes to the |
| backend process architecture.| . . . .. .. .. 49

.1 The four level nested model by Munzner| |

| 20097]. . . . ... ....... . . .. . ... . 52

5.2 Screenshot of our Continuous Compilation |
| Plugin showing a range of errors.|. . . . . . . 66

5.3 Screenshot of our Continuous Compilation |
| plugin displaying an error message.| . . . . . 67




List of Figures

xiii

[p.4  Screenshot of our Continuos Compilation

plugin showing two nicely aligned error

messages.|. . . . ... ... ... ...,

68

[0.5  Screenshot showing the scripts used for de-

| bugging| . ... ... ... .o oL

[6.1 Histograms showing how difficult partici-

| pants thought the tasks were| . . . . . . . ..

[6.2 Histograms showing the previous experi-

| ence of participants in the task domain.| . . .

[6.3  Error bars for the SUS Ratings of the 7 partic-

| ipants using our Live Coding plugin|. . . . .

78

[6.4 Histograms of participants answer to ques-

[6.5 Participants answers to Question 4: “I under-

stand what the code I wrote does exactly and

why it works (or doesn’t).”]. . . . . .. .. ..

[6.6 Histograms showing participants” answer to

| questions 13/14] . . . . ... ... .. ... ..

[6.7 Histograms showing participants” answer to

| questions 15/16 . . . . . ... ... ... ...

[6.8 Histograms showing participants” answer to

[ question 6| . . ... .... .. ... .. ...

[6.9 Histograms showing participants” answer to

| question5] . . . .. ...

[6.10 Histograms showing participants” answer to

| questions 17/18f. . . . . ... ... ... ...

[6.11 Histograms showing participants” answer to

| question2] . . . ... .. ... ...




xiv

List of Figures

16-12 Histograms showing participants” answer to |

question3] . . . .. ... ... L. 84

[6.13 Error bar charts for the task completion times

of the participants in different tasks and con-

ditions) . . . . ... .o o 85

[6.14 Error bar charts for the number of changes of

the participants in ditferent tasks and condi-

tlons. | . . ... ... . 88

[6.15 An example of a graph showing the changes |

of a participant working on Task 3.|. . . . . . 94

[6.16 Box plots for the gap duration between |

change clusters, by Liveand Task.| . . . . . . 98

.17 Error bar charts for th ration of cl T

grouped by tasks and whether the partici- |

pant used Live Coding ornot|. . . . . .. .. 98

[6.18 Error bar charts for the number of changes

in clusters grouped by tasks and whether the

participant used Live Coding ornot, . . . . . 103

[6.19 Error bar charts for the gap duration of clus-

ters grouped by tasks and whether the par-

ticipant used Live Coding ornot] . . . . . . . 106




XV

List of Tables

[6.1 Programming experience and age of the 13 |
| participants of our study|. . . . ... ... .. 74
[6.2  Occupations of of our subjects,| . . . ... .. 74
[6.3 Summary of the task completion times of our |
[ participants| . . ... ... ... ... ... .. 86
(6.4 Table showing a summary of the number of |
| changes of our participants.| . . . . . ... .. 87
f i f |
change clusters for different threshold y in |
therangeof 1s—60s.| . . . . .. ... ... ... 92
[6.6 Critical values of the y*-distribution at the |
| 5%-significance level| . . . ... ... ... .. 97
[6.7  Development of the Multilevel Linear Model |
| tor the duration of change clusters.| . . . . . . 99
[6.8  Development of the Multilevel Linear Model
tfor the number of changes per change clus-
ters. Part 1. . . ... ... ... oL 102
(6.9  Development of the Multilevel Linear Model
for the number of changes per change clus-
[ tersPart2].................... 103




xvi List of Tables

[6.10 Development of the Multilevel Linear Model
tor the durations of the changeless gaps be-

tween clusters. Part1.) . ... ......... 105

[6.11 Development of the Multilevel Linear Model
tor the durations of the changeless gaps be-




xvii

Abstract

“To err is human’, so programmers make a lot of errors when writing source code,
especially since programming is a mentally taxing activity. Despite this, program-
mers are still mostly on their own when writing computer programs. The pro-
grammer has to “play computer” and mentally execute the code in front of him to
understand what it does. At the same time a computer is idly sitting in front of
him, which could perform this task much better, faster and more accurately.

Live Coding is the idea of letting a computer do this work. In a Live Coding Envi-
ronment the computer executes the complete program whenever it is changed and
shows the changes to the internal runtime state that occur in each line, freeing the
programmer from doing so.

In this thesis we present a robust and fully-functional Live Coding prototype that
has been tested in an extensive user study. We also identify a gap in current soft-
ware engineering research that prevents a well grounded design of Live Coding
environments and design a study to close this gap. We present the design and
some results of this study, including a set of three tasks that can be used in similar
studies.

In our preliminary analysis, we found that developers were convinced of our tool,
but we did not find a significant difference in task completion time or task accuracy.
However, we did find that the usage of the Live Coding environment did signifi-
cantly predict how long the breaks between two change sequences of a developer
are in a later phase of the implementation, although this influence depends on the
task the developer is working on. These vague results indicate that the interaction
between errors a programmer makes and the software development tool they use
is very complex, and we only scratched the surface so far. Nevertheless, the data
gathered in our study is quite rich and can likely be used to answer many of those
questions. We point out several of the questions and analyses that are possible at
the end of this thesis.



xviii Abstract




xix

Uberblick

‘Irren ist menschlich’, so machen auch Programmierer oft Fehler wenn sie Quell-
code schreiben, insbesondere da Programmieren eine mental anspruchsvolle Tétig-
keit ist. Trotz alledem sind Entwickler oft auf sich allein gestellt wihrend sie pro-
grammieren. Sie miissen “Computer spielen”, mental den Quellcode ausfithren um
zu verstehen, was er tut. Gleichzeitig steht vor ihnen ein Computer tatenlos herum,
der die selbe Aufgabe viel besser, schneller und fehlerfreier ausfithren konnte.

Live Coding ist die Idee, den Computer diese Aufgabe tibernehmen zu lassen.
In einer Live Coding Umgebung fiihrt der Computer das Programm immer dann
erneut aus, wenn es gedandert worden ist. Die Live Coding Umgebung zeigt dann
die Anderungen am internen Programmzustand nach jeder Zeile an und entlastet
auf diese Weise den Programmierer.

In dieser Arbeit prasentieren wir einen robusten und voll funktionsfdhigen Live
Coding Prototypen, der in einer ausfiihrlichen Nutzerstudie getestet wurde. Wir
zeigen aufierdem eine Liicke in der aktuellen Softwareentwicklungsliteratur auf,
die das wohl fundierte Design eines Live Coding Prototypen unmoglich macht und
entwerfen eine Studie um diese Liicke zu schlieffen. Wir beschreiben die Studie
selbst und einige Ergebnisse der Studie, auflerdem drei Aufgabenstellungen aus
derselben, die in weiteren dhnlichen Studien wiederverwendet werden konnen.

Unsere vorldaufige Analyse zeigt, dass die Entwickler von unserem Prototypen
tiberzeugt waren. Wir konnten keine signifikanten Unterschiede in der Zeit, die
pro Aufgabe benétigt wurde, oder der Korrektheit der Losungen feststellen. Nur
in der Lange der Pausen zwischen zwei Anderungen konnten wir Unterschiede
feststellen, abhédngig davon, ob Live Coding benutzt wurde oder nicht und welche
Aufgabenstellung bearbeitet wurde. Dies galt jedoch nur in einer spaten Phase der
Implementierung. Diese unklaren Ergebnisse weisen darauf hin, wie komplex der
Zusammenhang zwischen den Fehlern eines Programmierers und den Werkzeu-
gen, die er benutzt, ist. Die gesammelten Daten sind jedoch sehr ergiebig und
viele der offenen Fragen konnen vermutlich damit beantwortet werden. Wir zeigen
mehrere dieser Fragen und mogliche Analysen zum Schluss auf.






xxi

Acknowledgements

First of all,  would like to thank my advisor, Jan-Peter Kramer for letting me work
on a very interesting project (again) and giving me a lot of freedom how to achieve
our goals. Next, I would like to thank Chatchavan Wacharamanotham for again
putting up with my annoying questions about statistics and what kind of test to
use. While we are at it, I would also like to thank Andy Field for his book “Discov-
ering Statistics Using SPSS”, because it is the only sensible way to understand and
use those nasty statistical tests Chat recommends when you ask him. For helping
me write a program to analyze the changes recorded during the study I would like
to thank Moritz Wittenhagen. In advance, I would like to thank Kerstin Kreutz for
handing in my Master thesis, so I can go on vacation.

In general, I would like to thank everyone at the Media Computing group for pro-
viding a very pleasurable working environment. And I would like to thank all of
my participants of the user study, who spent many hours working on those mean
tasks I invented.

I'would like to thank Thomas Freese and Ewgenij Belzmann for providing me with
a lot of feedback and correction on very short notice when I needed someone to
proofread my thesis. I also would like to thank Ewgenij again for fruitful discus-
sion about how to implement the Live Coding tool and implementing most of the
features I requested.

Also, I'would like to thank my mother, my father and my sister for all proofreading
my thesis, also on short notice. I think I could not have completed it without so
many people pointing out all the stupid mistakes I made.

Last, and most importantly I want to thank Leandra for all the things she did for
me over the last few months. For painting our complete flat, while I was in Aachen,
working on my master thesis. For organizing most of our vacation, while I was in
Miinster, working on my master thesis. For providing me with food and drinks
and sweets and cuddles and everything a poor thesis-writing student needs and
at the same time doing all the household chores alone...while I was at my desk,
working at my master thesis. I am not sure who of us is happier that this thesis is
over. ;-)






xxiii

Conventions

Throughout this thesis we use the following conventions.

Text Conventions

Definitions of technical terms or short excursus are set off
in coloured boxes.

EXCURSUS:

Excursus are detailed discussions of a particular point in Definition:

a book, usually in an appendix, or digressions in a writ- '
Excursus

ten text.

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in American English.

Statistical Conventions

Unless otherwise specified, when we speak of results being
significant, we refer to a significance level of p < 0.05.






Chapter 1

Introduction

1.1 Motivation

“To err is human” and, as most programmers know, the first
version of a program is seldom correct. Papert|[1980], when
talking about teaching children how to program, even ar-
gues that this is an important part of the software design
and construction process and should be embraced:

“Learning to be a master programmer is learn-
ing to become highly skilled at isolating and
correcting ‘bugs’, the parts that keep the pro-
gram from working.” [Papert, 1980]

Still, debugging—correcting one’s errors in the code (or
possibly the errors of other programmers)—is often seen
as a separate phase and supported as such by modern In-
tegrated Development Environments: Visual Studio!, Net-
Beans?, Eclipse?, Xcode?, just to name a few of the more
popular ones, all provide a separate debugging mode.

'http:/ /www.microsoft.com /visualstudio/
*https:/ /netbeans.org/

*http:/ /eclipse.org/

*https:/ /developer.apple.com/tools /xcode/

Making errors is
human and
correcting them is an
important part of the
software
construction.

Modern IDEs
distinguish between
code generation and
debugging.


http://www.microsoft.com/visualstudio/
https://netbeans.org/
https://netbeans.org/
http://eclipse.org/
https://developer.apple.com/tools/xcode/

1 Introduction

Today’s debugging
tools make it very
difficult to find and

correct errors or
understand an
unknown program in
detail.

Programming is a
mentally challenging
process. Tools that
reduce memory load
should be welcome.

There has been a lot of research in program understand-
ing and programming support tools, but programmers still
have to use simple, one-directional, breakpoint-driven de-
buggers. While this is already an improvement over the
command line debuggers of the past, the main difference is
the addition of a nice user interface (UI), not a fundamen-
tally different debugging experience. 16 vears ago, Lieber-
man [1997] already criticized the lack of 1mprovement in
the area of debugging tools:

“Debugging is still, as it was 30 years ago,
largely a matter of trial and error.” [Lieberman,
1997]]

While using trial and error does not have to be bad in and
of itself, identifying the errors in the trials should be a lot
easier than hitting ‘compile’, waiting for the compilation to
finish, setting a breakpoint at the correct location, hitting
‘run’, waiting for the program to start up, possibly inter-
acting with the program, to make it hit the breakpoint, and
then examining the program state at the breakpoint.

Instead of making fixing the bugs easier late in the devel-
opment process, we can also look at the code generation
and try to fix more bugs at an early stage. Programming
is a mentally challenging process [Snell, 1997]]. Writing a
program statement cannot be done in isolation. The pro-
grammer has to know what the state of the program was
at the beginning of the current block of code and how the
lines of code between the beginning of the block and the po-
sition of his statement modify this state. Any mistakes the
programmer makes, either in guessing the initial state or in
simulating the preceding code in his head to determine the
new state, likely affect whether the code he adds is correct.
Any tool that can help him in this situation should be quite
welcome.



1.2 Live Coding

1.2 Live Coding

We think it is time for a new tool that solves several of the
previously mentioned problems and that Live Coding En-
vironments can be such a tool. A Live Coding Environ-
ment provides an editor view and a preview that is syn-
chronized with the editor view such that it shows a part of
the program’s state after each line in the editor. This could
be done by simply displaying the result of the execution of
the line as a string (see Figure or in any other way that
describes the state of the program. The preview updates
automatically whenever the source code or the input data
is changed.

‘@00
function binarySearch (key, array) { key = Idf
array = ["8','b','c','d",'e", ' f']
var low = @; low = @
var high = array.length - 1; high = 5
while (1) { low= 0 | 3 | 3
high= 5 | 5 | 3
var mid = floor((low + high)/2); mid= 2 | 4 | 3
var value = array(mid]; value = 'c' | 'e' | 'd'
if (value < key) {
low = mid + 1; low = 3 | |
else if (value > key) {
high = mid - 1; high = | 3 |
else {
return mid; return | | 3

Figure 1.1: The Live Coding editor presented by |Victor| [2012b].
Screenshot from the recording of the live demonstration during the talk.
The source code is on the left, the live preview on the right. The param-
eters of the function, key and array, are set by the user to provide
example data for the execution.

The visualization is usually low-level, showing individual
variables or objects referenced in the corresponding line, in-
stead of abstracted modifications of data. It shows the state
of the program by displaying the data being modified, not
control structures. The preview is just an auxiliary view
augmenting the source code, not replacing the editor view;
it is usually not being used by itself.

A Live Coding
Environment
executes the code
whenever it is
changed and
previews the internal
program state after
each line of code.



1 Introduction

Conventional IDEs
have separate
modes for editing,
debugging and
evaluation.

A Live Coding tool
combines and
interleaves editing,
debugging and
evaluation.

A Live Coding tool
helps finding errors
earlier, reduces
memory load and
supports program
understanding.

Most Live Coding
prototypes have not
been evaluated so
far.

Conventional IDEs have a separate debug and edit mode.
Programming environments for interpreted languages of-
ten have an additional evaluation mode in which program
statements can be entered to get their result and better un-
derstand what they would do. Even for compiled lan-
guages this is often possible when using the debugger.
However, in the evaluation mode, only one line of code at a
time can be evaluated and the written code is not saved, so
it is not well suited to writing the complete code in there.
Also the evaluation has to be invoked explicitly.

A Live Coding tool overcomes all of these limitations by
directly executing and thus instantly evaluating the code in
the editor. This makes the evaluation mode redundant and
likely reduces the needs for the debugging mode a lot, since
a lot of information about the program’s execution behav-
ior can already be taken from the Live Coding preview. We
expect it to have the following benefits:

e By directly executing a newly entered statement and
displaying the result, the programmer can quickly
check their assumptions about changes to the pro-
gram state and more quickly recognize errors. This
can also be used to experiment with unfamiliar state-
ments or functions.

e By showing the program state after each statement,
the programmer does not have to remember it, which
reduces his memory load.

e Understanding a piece of code will become easier, be-
cause the programmer can avoid mentally simulating
the code: The code is already executed and the state
changes are shown.

Although several environments that more or less fit our
definition of Live Coding have already been developed or
at least been proposed (see Section[3.1—“Live Coding}"), al-
most none of them has been evaluated to show which of
the assumptions above are actually true. In addition, even
basic research, providing knowledge about what kind of
runtime state is particularly interesting or what kind of er-
rors programmers make most often, is missing. This also



1.2 Live Coding

means that we do not know what kind of errors could
more easily be found using such a tool. Out of the re-
search that does look at the causes and kinds of errors in
programming, most of it either focuses on high-level, very-
hard-to-fix bugs or on bugs from novice programmers (see
B.2.2—"Programming Errors!’), just as if experienced pro-
grammers would not make any errors, except for the really
difficult ones.

In this thesis we present the following:

1. A plugin for an existing Open Source JavaScript IDE
that adds Live Coding functionality to this IDE and is
robust enough to be used for academic studies with
real-world-like tasks.

2. Anextensive user study in which we observed 13 pro-
grammers working a total of 40 hours on these tasks.
We recorded the complete programming process on
video (screen recording in all cases as well as face-
and voice recording in most cases) and in addition to
that logged the applications the programmers used
in the process and the changes they made to the files
individually. This thesis includes only a preliminary
evaluation of all this data, a lot of future work is pos-
sible and needed to analyze this data in detail. We are
confident that it makes it possible to learn a lot about
how programmers solve code-generation based prob-
lems, what kind of minor and medium errors they
make and how they fix them. This is a topic that is
sadly underrepresented in today’s software develop-
ment research.

3. Three different programming tasks that focus on code
composition instead of asking the programmer to just
find and possibly fix bugs and can be used to evaluate
programmer ability. We used these tasks in our study
with success and think they can be a good starting
point for similar studies, because they provide a good
balance between challenging the developer and being
short enough to be implemented in a few hours.

Research to better
understand the
foundations of Live
Coding is lacking.

We contribute a
robust Live Coding
prototype, a large
amount of data about
programmers
composing
programs,
preliminary results
about Live Coding
and three
programming tasks
that can be reused
for similar studies.



1 Introduction

Background an
Definitions

Related Work

Description of the
Prototype

Study Design

Evaluation

Summary and Future
Work

1.3 Chapter Overview

Chapter[2] In the next chapter we define some terms we
will use in this thesis. We will also describe some
fundamental research that is useful for understand-
ing the rest of the thesis.

Chapter[3] This chapter is split up into two parts due to
the different parts of our contribution. We will first
give an overview over the previous work related to
and origins of Live Coding. After that we give an
overview of previous research into programmer be-
havior and program understanding with a focus on
programming errors.

Chapter[d In chapter four, we describe the prototype we
developed based on previous work. We will describe
previous versions of the prototype, what we changed
and how we changed it, including the design ratio-
nale behind it.

Chapter[5| In this chapter, we describe the study design
and especially the tasks, describing problems we ex-
pected participants to encounter. In addition, we ex-
plain how we arrived at these tasks.

Chapter[6] The results of the study are described in this
chapter. We describe what data we gathered during
the study, to help researchers understand what eval-
uations could be possible using this data. In the end,
we present our preliminary evaluation of parts of the
data. However, evaluating all the data of this study is
beyond the scope of this thesis.

Chapterﬁ] The last chapter is used to summarize our work,
and point out ways in which we think the gathered
data could be used. In addition, we describe possi-
ble future work in the direction of Live Coding and
programmer research.



Chapter 2

Background

In this thesis we will talk a lot about ‘liveness” and other
terms that can be very vague when used in an everyday
setting. We explain several of these terms in this chapter.

2.1 Different Levels of Liveness

Tanimoto|[1990] described four levels of liveness that are of-
ten referred to when talking about ‘live” systems. He used
the levels to describe liveness in visual programming sys-
tems, but they can be applied to programming systems
in general. = On the first level are descriptions of pro-
grams that cannot be executed, like documentation of soft-
ware (whether in text form or a graphic showing how dif-
ferent components work together). On the second level
these descriptions fully specify a program and can be ex-
ecuted. Examples can be source code files or a diagram
written in a visual programming language. But to execute
it, the programmer still has to explicitly request the execu-
tion (e.g., by hitting a “compile & run” button). This is no
longer necessary for systems on the third level of liveness.
Here, a change to the description of the software causes a
(re)execution of the now changed program. But after ex-
ecuting it, the system waits for another change to the de-
scription. On the fourth level of liveness, the software con-

There are four basic
levels of liveness.

Liveness level 1:
Non-executable
program description.
Liveness level 2:
Program description
is only explicitly
executable.

Liveness level 3:
Program description
will be executed
automatically
whenever it is
changed.



2 Background

Liveness level 4:
Program can process
events while being
changed.

Liveness level 5 & 6
add predictive
abilities.

Liveness depends on
which part of a
programming system
is considered.

Definition:
Continuous
Compilation

tinues to run and can be changed while running. Events,
streams of data, etc. are continually processed by the sys-
tem and, by extension, by the software. So, changing the
implementation of the software not only changes what it
will compute next, but changes its behavior in the future
when processing future events.

Recently, [Tanimoto| [2013] added levels 5 and 6 to his live-
ness scale. In both cases the programming system has some
predictive abilities, it guesses what the programmer wants
to do next and already evaluates these possible future ver-
sion. On level 5 it only generates and evaluates nearby ver-
sion (e.g. by auto-completing a method call the program-
mer started to type). On level 6 it makes more high-level
predictions of the programmers intentions and can gener-
ate large program chunks from the current state of the soft-
ware and other knowledge about the intended final prod-
uct.

This liveness can be evaluated for different parts of a pro-
gramming system. For example, most of today’s program-
ming systems, when looking at a software’s runtime behav-
ior, only achieve a liveness level of 2. Programmers change
the code but have to execute the program explicitly to check
how it behaves. But when looking just at the syntactic cor-
rectness of a program most modern Integrated Develop-
ment Environments (IDEs) reach liveness level 3. This is
achieved by running an automatic syntax checker when-
ever the program code is changed and reporting errors by
underlining the infringing parts of the source code. We call
this kind of behavior Continuous Compilation.

CONTINUOUS COMPILATION:

Continuous Compilation means that the file currently
edited is compiled after each change (without an ex-
plicit command by the programmer to save and com-
pile it) and errors are displayed immediately after a
syntactically-wrong expression has been entered, opti-
mally at the location of the error. This is standard be-
havior in today’s IDEs.

A spreadsheet program achieves complete level 3 liveness.



2.2 Errors, Failures, Faults and Bugs

The values displayed in the cells always reflect the current
relation between all the cells and the formulas entered into
them. When a formula is changed all cells depending on
the changed formula’s cell are updated directly and with-
out the need for the user to do anything. However, in this
example we can already see that the liveness of a system de-
pends on what one sees as an atomic change. Spreadsheet
programs are only live on level 3 if we consider the change
of a cell’s content to be atomic, so typing in a completely
new formula or value is just one change. But if we consider
each keystroke to be an individual change, most spread-
sheets programs would not be considered live on level 3,
since they enter a separate edit mode when changing the
contents of a cell and only when the cell is left or the con-
tents are confirmed e.g. by pressing the return key are the
formulas of the spreadsheet (re-)evaluated. Since leaving
the cell or pressing the return key is a separate user action,
we would say they only achieve liveness level 2. However,
this level 2 liveness would probably still feel a lot more
live to a developer than the usual edit-run-cycle of today’s
IDEs.

In this work, we concentrate on systems that still use source
code and ignore most Visual Programming systems. We
also consider a system as a Live Coding system only if it
achieves at least liveness level 3. We look at changes on a
keystroke-basis, so spreadsheets would not be considered
to be fully live on level 3.

2.2 Errors, Failures, Faults and Bugs

It is unclear what exactly constitutes an “error” in a soft-
ware system without a more formal definition. We will use
the terms defined in Ko and Myers| [2005], which are the
following;:

o A runtime failure is a difference between the program-
mers expectation of the output (graphical, textual or
otherwise) or, more generally, behavior of the pro-
gram and the actual output/behavior of the program.

Liveness depends on
what is considered to
be an atomic change.

If editing a cell is an
atomic change,
spreadsheets
achieve liveness
level 3.

If typing a character
is an atomic change,
spreadsheets
achieve only liveness
level 2.

Runtime failure:
Unexpected output.



10

2 Background

Runtime fault:
Unexpected runtime
state.

Software error:
Incorrect source

code.
Bug: Any of the three

above or a
combination.

runtime failure
= runtime fault
— software error

o A runtime fault is a difference between the program-
mers expectation of the machine state (variable val-
ues, branches taken, etc.) and the actual machine
state.

e A software error is an incorrect part of the code that
may or may not cause a runtime fault.

e A bug can be any of the three above or a combination
of one or more errors, faults and failures.

Obviously, whenever there is a runtime failure there has
to be an underlying runtime fault and whenever there is
a runtime fault there has to be an underlying software er-
ror. The reverse is not true: There can be software errors
that do not cause runtime faults and runtime faults that do
not cause an observably different behavior of the software,
which would be a runtime failure.

When searching for and fixing a bug, the time to error is the
time from the introduction of a software error to realizing
that a software error must exist (e.g. by noticing a result-
ing runtime failure), not necessarily knowing what exactly
is wrong. The time to fix is the time from this point of real-
ization to the point when the software error has been deter-
mined and fixed.



11

Chapter 3

Related work

In this chapter we describe some of the previous work re-
lated to this thesis. Since our contribution consists of two
big parts, a Live Coding prototype and research into devel-
opers programming behavior, the related work can be split
up in the same way. In the first section we will describe the
origins of Live Coding and some of the more recent work
in this area. After that, we describe previous research into
program understanding and pay special attention to what
kind of studies have been done and what part of a devel-
oper’s behavior and program understanding the research
focused on. Where applicable we will also briefly describe
the study setup, to make it possible to compare it to our
study.

3.1 Live Coding

Live Coding is not actually a new idea. |Henderson and
Weiser| [1985] already extended the idea of VisiCalc—the
first spreadsheet—to programming, by proposing VisiProg.
This environment provided views on the input, source code
and output of a program and automatically updated the
output view to keep all three synchronized when either the
input or the source code changed. Furthermore, program
variables could be selected to be displayed and would then

The chapter is split
up into Live coding
research and
programmer
behavior research.

Live Coding is an
extension of
VisiProg.



12

3 Related work

VisiProg is an
extension of VisiCalc,
the first spreadsheet
program.

Morphic was one of
the first systems to
achieve Liveness
level 4

In Geo-Logo,
previously issued
commands could be
edited to change the
behavior of the
program.

Geo-Logo only
showed the resulting
graphics output, not
internal program
state.

be continuously updated as well.

Actually, the origins of VisiProg—VisiCalc—or spreadsheet
programs in general, could also be seen as a predecessor
of Live Coding, since they also evaluate all formulas con-
tinuously and display the results in the cells. This way the
data that is modified is always visible, although this is not
true for the code (the formulas in the cells). [Shneiderman
[1983] praises VisiCalc for being “programmed without a
traditional procedural control structure” and making the
“impact of changes [...] immediately apparent”. Since it
was advertised as an “instantly calculating electronic work-
sheet” (emphasis ours) in the user manual [Shneiderman,
1983], we know that the Liveness level was an important
feature.

Liveness is also _an_important feature of Morphic [Mal-
oney and Smith} 1995], a Ul construction toolkit and envi-
ronment based on the Self programming language which
featured live editing. This means, all objects could be
inspected and even changed at runtime and the system
would just continue running with the changed objects. It
thus reaches liveness level 4.

Clements and Sarama|[1995] modified a Logo environment
to make it possible to edit previously executed commands,
which were then executed again. In their “Geo-Logo” en-
vironment, children were tasked with programming the
behavior of a turtle that would then solve mathematical
problems (e.g., drawing an equilateral triangle). They no-
ticed that the possibility to change previous commands to
the turtle enabled children to reflect a lot more about their
code and understand more easily that they could combine
statements such as forward 20 and forward 30 into
forward 50. Sequences of commands could also be ex-
tracted into procedures to “teach” the turtle new behaviors.
Updating the implementation of such a behavior would
also update the drawing the turtle produced directly. In
contrast to our Live Coding environment, the Logo envi-
ronment only shows the graphical output, not the values of
any variables in the program.

Snell [1997] proposed “Ahead-of-Time Debugging” (AOT)



3.1 Live Coding

13

in which each statement entered into the editor would be
executed directly and the new state of program variables
would be shown to the developer. He calls the debugging
“ahead-of-time” to contrast it with the usual workflow of
first writing a piece of code and then debugging it. For
example, when programming a function, a programmer
would enter some test values—several sets of values for
different calls of the function were possible—and the pro-
gramming environment would not only show how those
sets of input values were transformed, but also show how
the local variables defined later in the program are trans-
formed in each of the different calls to the function. How-
ever, he did not describe how these values are visualized
and noted that it is unclear whether his approach will be
generalizable from primitive values and simple functions
to more complex object-oriented programs.

In contrast to our approach, only the program state after the
current line is shown, whereas we show the program state
after every visible line, which should make it easier to un-
derstand how values change. Snell|[1997] reports that infor-
mal testing indicates that users find and fix “a substantial
number of bugs during initial code entry” [Snell, 1997], er-
rors propagated less, and users were less stressed and tired
after using the AOT tool. He also announced a formal user
study, but we were not able to find any follow-up papers
that would report results from this study.

Although there were many interesting early ideas going in
a similar direction, many Live Coding environments have
only been developed in recent years. This might be due
to them only now becoming computationally feasible. For
example, Belzmann| [2013] reports that instrumenting the
code to extract the appropriate data for Live Coding slows
down the execution by a factor between 100 and 3000, heav-
ily depending on the kind of code and the amount of data
generated.

3.1.1 Recent Developments

Burnett et al.|[2001] extended the idea of spreadsheets being

Ahead-of-Time
Debugging executes
each statement in
the code as soon as
it is written and
shows the resulting
program state
change.

Only the state in one
line of code is shown,
not different states in
multiple lines.

Forms/3is a
spreadsheet
programming
environment.



14

3 Related work

Forms/3 reaches
liveness level 4.

Continuous Testing is
similar to Live Coding
by also continuously
executing a program
on some test data.

a kind of programming tool and implemented a program-
ming language on the basis of the spreadsheet paradigm.
However, while traditional spreadsheets only achieve live-
ness level 2-3, their spreadsheet programming environment
Forms/3 actually reaches level 4. This is implemented by
each cell not having just one constant value but instead a
formula giving a value of the cell for each point in time.
This way, there can be event-stream cells, having different
events in them depending on the current time. Even de-
bugging by traveling ‘back in time” is possible by looking
at values of cells at an earlier point in time.

Saff and Ernst [2004] introduced Continuous Testing by ex-

tending the idea of Continuous Compilation. Their tool
runs test cases automatically when code changes and dis-
plays the errors immediately after a change. By doing this,
they shortened the time to error. They suspected that this
also shortens the time to fix.

- Resource - Factorial java - Eclipse Platform o] x]
File Edit Sowrce Refactor Navigate Search Projed Run Window Help

- GrO-q- |4 . et . A E pasouros
ATEA T w» =01 *Factorial java 12 o

.call Factorijal.fact pubHc class Factorial iI

T Factorial.fact(l) » 1 - stnnc int fact( Excepuo
call Factorial.fact f (n == 0) magenta

EFactorial.fact(3) » 6 e,lsereturn 1;

T-1 Y
call Factorial.fact } return n * factin-1):
ZTintn = -1 : .

BN s o1 } Skipped code:
En == 0 » false / Examples gray
En o» -1 Factorial.fact(l);
Bnow -1 Factorial.fact(3);
=h-1 » -2 Factorial.fact(-1); Mew example
call fact
Bint n » -2
En = =2
Wn = 0 = false
En o» -2 Exception:
=n » =2
Tn-i e o3 magenta
call fact
= fact(n-1) throws Trace limit exce
throws Trace 1imit exceec
[Factor-m'l fact(-1) throws, Tr.'lce Timit exceeded
b |
b | Mnusehnver._..._.l el I+
nta =

Figure 3.1: The Eclipse plugin presented by . Source
code is on the right, the functions is called with three different input
values at the end of the source code and those executions are show on
the left showing the values of the expressions statement by statement.

Screenshot reproduced from [2004].

Edwards|[2004] expanded on the idea of using input exam-
ples to help a developer write their program by modifying




3.1 Live Coding

15

a concrete example with abstract code. His plugin for the
Eclipse! IDE shows values of expressions in a separate view
next to the source code (see Figure[3.1). But the central idea
is that the developer implements a piece of functionality by
first using an empty template and then specifying example
input and expected output. The plugin then provides sup-
port to write code to make sure that the code written actu-
ally fulfills these requirements and shows which require-
ments fail whenever the code is changed. Although the
first part sounds like simple test-driven development, the
plugin actually provides a lot more support in generalizing
the examples with code by enforcing the requirements and
continuously updating the example view showing which
examples execute correctly. Thus, it provides a completely
different experience.

var s;
undefined

5 = 'thin solid' + color;
thin solidblue
$('#pl').text();

Here is the first paragraph
$('#pl’').css( 'border’', s);
[object Object]

$('#p2').css( 'color', color);
[object Object]

Figure 3.2: A screenshot of Rehearse. Source code is shown in non-
italics, the result of a line is shown in italics below that line. Gray
lines are lines that were entered and executed but have been undone.
Reproduced from|Choi et al.|[2008]].

Choi et al. [2008] showed Rehearse, which comes closest
to the Live Coding approach later made popular by |Victor
[2012b]]. Rehearse provides an environment for interactive
JavaScript development. The editor not only displays the
result of a line of code directly below that line after it has
been entered completely. It also provides undo functional-
ity by allowing the developer to select a line in the editor
and undo the changes to the program state caused by this
line. This enables a very exploratory style of programming.

Thttps:/ /www.eclipse.org/

Edwards provides a
tool that makes it
easy for
programmers to go
from concrete
examples to abstract
programs.

Rehearse executes
each statement as
soon as it is typed
and shows the result
of that statement.


https://www.eclipse.org/

16

3 Related work

Bret Victor’s
‘Inventing on
Principle’ gained a
lot of attention.
Different
creation-focused live
modification systems
were shown.

One of those was a
general-purpose Live
Coding editor.

Victor’s talk inspired
others to develop
Live Coding
environments.

Victor proposed a
new Live Coding
editor with a much
higher focus on
descriptive
visualizations for
runtime states.

In 2012, Bret Victor received a lot of attention, especially
outside the research-community, for his talk ‘Inventing on
principle’ [Victor,2012b], in which he demonstrated several
systems used for creative work with a high level of live-
ness. One of the big topics of this talk was Live Coding;:
He showed a graphics-output focused Live Coding editor,
which executed drawing code live while editing it and was
able to show which part of the code was responsible for
which part of the drawing. Also presented was a video-
game-specific Live Coding editor, which had time-travel
functionality similar to the spreadsheet programming en-
vironment of Burnett et al./s [2001] Forms/3. Lastly, he
demonstrated a simple general-purpose Live Coding edi-
tor that visualized individual variable values by using their
string representations (see Figure [L.1).

Victor’s talk inspired several developers to create their own
Live Coding environments. Among others, a Kickstarter
project” was created to build a new IDE featuring Live Co-
ding, called Light Table®. Also, Khan Academy®, a non-
profit organization with the goal of providing free educa-
tion, created their own a browser-based Live Coding en-
vironment to teach programming (see Figure [Resig)
2012].

Victor saw Khan Academy’s approach to Live Coding and
programmer education, decided it was not what he had in
mind and wrote a long article explaining how it could be
improved in his opinion [Victor, 2012a]. In this article, he
built on his earlier simple Live Coding editor and extended
it with a lot of nice variable visualizations and the ability
to navigate through the execution history of the code (see

Figure .

Figure 3.4/ shows a view from his refined prototype. The
source code is displayed on the left, the graphics output
produced by the code is shown on the right and there is
a view in the middle showing the state of the program af-

*http:/ /www.kickstarter.com/projects /306316578 /light-table
*http:/ /www.lighttable.com/
*http:/ /www.khanacademy.org


http://www.kickstarter.com/projects/306316578/light-table
http://www.kickstarter.com/projects/306316578/light-table
http://www.lighttable.com/
http://www.khanacademy.org

3.1 Live Coding

17

// set the size of the point
strokelWeight(81);

point(100 + 39, 25 * 4);

// pick a lighter stroke weight for the outlines
strokeWeight(10 - 7);

rect(104 * (4 - 2), (300 + 50) / 7 + 89, 107 + 50, 60 * 3);

ellipse(107 + 50, 100 + 60, 40 * 3, 200 - 17);

Figure 3.3: A screenshot from the Khan Academy Live Coding implementation for a simple exam-
ple. Source code is on the left, the graphics output of the program is show on the right. Only the
graphics output is shown, no individual variables or program state is visualized. Animations will

be correctly updated mid-animation when the source code changes.

var 1 = 0; 0

while {i = 28) { 1 t
var scaleFactor = 1 + (20 - i)/20; 2  1.95
resetMatrix(); . .
scale(scaleFactor); 2 1.85

rotate(i * &); - =

filL(i * 30, i * 18, B); @ e o o o o
triangle(0,0, 100,-20, 95,40); - h w vV Y v %
= 1

}

Figure 3.4: Screenshot showing how several values in a loop can be visualized to facilitate com-

parison between them. Image is a frame from a video contained in|Victor|[2012a].

ter each individual line. That one is especially interesting,
since most of the program is inside a loop; thus, each state-
ment is executed multiple times. He solves this problem by
displaying results of multiple executions of the same line
on the x-axis. Results from two different lines are not posi-
tioned at the same x-position but slightly skewed, to show
which of them executes first. This way, to follow the pro-
gram flow, the user can follow the results from top to bot-
tom in the first column and then, at the end of the column,
start at the top again with the second column. They can
also just view the, e.g., 40t statement by using the timeline
at the top.



18 3 Related work

var i = 0; 0
while (i =« 20800) {
var scaleFactor = 1 + pow{sin(i/f12), 3);

Il il

resetMatrix{);

Figure 3.5: Zooming out gives an overview of the values the variable can have and how these
change during the while-loop. In this example it is easy to see that the variable values describe a
cubic sine wave. Image is a frame from a video contained in |Victor|[2012al.

Depending on the type of the variable and some more
semantic knowledge about the kind of data that should
be displayed, he uses a whole slew of different visualiza-

Each semantic data tions. Boolean values are shown with “‘t’ or ‘f’, the double
type has its own scaleFactor and integer i are simply printed as a string,
visualization. the angle given to rotate is shown with a clock-like circle

containing a line pointing in the correct direction, the cho-
sen £i11 color in the graphics context is shown with a cor-
rectly colored circle and the command triangle, which
paints a triangle, actually outputs a small version of the cor-
rectly colored and angled triangle.

Showing number But the interface also allows the user to “zoom out” to get
values as rectangles a better overview of how values change in the loop (see
enables graph Figure 3.5). If there is not enough space to use the string
drawing and thus representation of a number value, a filled rectangle is used.
comparisons. These rectangles are set next to each other which leads to

the group of rectangles for a statement creating a graph of
values. This graph can easily be used to extract information
about what minimum and maximum values of the variable
are in this loop and how the values change during the loop.

Also inspired by Victor’s talk, [Heinen [2012] developed a
Live Coding editor prototype that implemented some of

Heinen implemented the presented ideas. He came up with five different inter-
a prototypical Live face versions and evaluated them in a very small qualitative
Coding environment study (6 participants). After selecting, improving, and im-
and evaluated in a plementing one of those versions, a quantitative user study
small user study. was done comparing the prototype to an IDE without Live

Coding functionality. However, no significant differences
in task completion times were found between participants
with and without a Live Coding editor, although the mean
task completion time in the Live Coding conditions was



3.2 Research into Developer Behavior and Errors

19

slightly shorter. Although the prototype was evaluated, the
task given to the participants was a very simple one not
comparable to real programming tasks and the prototype
had several severe limitations that would have prevented
it from being useful for such real-world tasks.

Building on the prototype of Heinen [2012], Belzmann
[2013]] created a server-client architecture that can be used
for continuos execution of JavaScript code. He did not
provide a new interface, but laid important foundations
to enable the creation of full-featured Live Coding envi-
ronments. Our prototype is based on the foundations of
Heinen| [2012] and [Belzmann!| [2013]].

To conclude, there have been a lot of interesting ideas what
kind of Live Coding could be useful. However, except for
Forms/3 with its mixed results and Heinen's [2012] proto-
type with a very small and simple study, none of the pro-
posed prototypes has been evaluated formally. So, we still
do not know what kind of Live Coding editor works well
and which of all the proposed features are actually helpful
and which can be left out. One would hope that there is
at least some fundamental research into developer behav-
ior, how developers program, what mistakes they make etc.
which might make it possible to judge whether these pro-
totypes could solve some of the problems developers have.
We will look at this direction of research next.

3.2 Research into Developer Behavior and
Errors

In this section we are giving an overview on the research
into developers’ code understanding and general program-
ming behavior as far as it is related to Live Coding. First we
present some of the research looking at the effects of Live-
ness on developers’ behavior and problem solving in gen-
eral. Second, we present some more research into devel-
opers’ programming behavior and the kind of errors they
make.

Belzmann|[2013]
built a server-client
architecture as a
foundation for Live
Coding
environments.

Almost none of the
Live Coding
prototypes have
been formally
evaluated.



20

3 Related work

Progressive
evaluation is
important to novices
and experts alike.

Some research
seems to imply that
liveness inhibits
problem solving
abailities.

Results for
helpfullness of
liveness in Forms/3
were mixed.

Some errors could
be fixed faster live,
some non-live.

3.2.1 The Effect of Liveness

It is rather unclear whether increased liveness supports
problem solving in general or programming specifically.
Most results are mixed or even contradicting each other.

On the one hand, Green and Petre|[1996] explain that “pro-
gressive evaluation”, the ability to evaluate their programs
(and thus their progress) at frequent intervals is very im-
portant for novices and although experts can solve prob-
lems without it, they even use it more than novices, if
they have the possibility to do so. Then again, basic re-
search into problem solving seems to imply the opposite:
Gilmore| [1995] describes several studies showing that in-
creased liveness in the interface actually interferes with the
problem solving ability. He refers to a study in which pro-
grammers had to solve different instances of a tower of
Hanoi puzzle in the optimal number of moves and another
one where they had to solve an Eight Puzzle, one group
using a command line tool, one using a direct manipula-
tion interface. The subjects in the less-live group actually
reached the optimal number of moves earlier than the ones
in the more-live group. The question is now, whether these
results can be applied to programming (and debugging)
just because both activities, programming and puzzle solv-
ing, are a kind of problem solving.

Wilcox et al.| [1997] built a non-live version of Forms/3 and
compared it to the live one in a study with two different
debugging tasks. 29 participants worked on these tasks
in which 5 and 7 bugs respectively had been planted that
should be fixed. Significant differences in debugging ac-
curacy in favor of liveness could only be shown for one of
the tasks (task 1). When looking at the time to fix each of
the 12 errors in the tasks, (Cook et al| [1997] found that 7
of them were fixed significantly faster in the live condition
(4 of task 2, 3 of task 1). For 3 errors they could not find
a significant difference and for 2 (both in task 2) they even
found that the non-live participants fixed the errors signif-
icantly faster. These results imply that the advantage of an
increased liveness level seems to be strongly dependent on
the task and the kind of error to fix. They do not give an ex-



3.2 Research into Developer Behavior and Errors

21

planation as to why they think the helpfulness of liveness
was different for the two tasks.

Saff and Ernst [2003] tried to confirm that a longer time to
error leads to a longer time to fix. They looked at program-
mers using test cases to determine the correctness of the
code and measured the time to error, as the time when the
developers ran test cases and the test failed (so the devel-
opers noticed the software error in form of a failure), and
the time to fix, as the time from the failing test case to the
test passing again. The time of the introduction of the er-
ror was determined by recording all changes to the source
code and checking all intermediate versions of the source
code against the test suite to determine when a test would
have failed for the first time. The gathered times to error
and times to fix where then compared for each case and
a correlation between the two was determined. However,
with an R? = 0.14 for a Perl program and R? = (.34 for a
Java program the correlation is rather small. Also, all of this
data comes from a single developer, so the results cannot be
generalized.

The Continuous Testing tool developed by Saff and Ernst
[2004] was mentioned before. To test whether it had a
positive effect they tested it with 22 student programmers.
Half of those used the Continuous Testing tool, a quarter
used just Continuous Compilation and a quarter used nei-
ther. The participants worked on two different tasks as part
of their regular coursework. Their changes to the code,
whether they manually ran tests, how long it took them to
reach a solution was recorded and the correctness of the so-
lution was measured. Saff and Ernst/ [2004] found that the
kind of tool used predicted whether participants were able
to successfully solve the task. Continuous Testing partici-
pants were three times as likely to complete the task and
Continuous Compilation participants were twice as likely.

However, it is not completely clear from the paper and a
corresponding Master thesis by Saff [2004] whether the dif-
ference between Continuous Compilation and Continuous
Testing is actually statistically significant, since no results
of the posthoc test are given. At least, more direct feedback
seemed to have a positive effect in that case. [Saff] [2004]

The link between
time to error and time
to fix is not
conclusively shown.

Using a Continuous
Testing Tool
improves task
success rate
significantly
compared to no such
tool.

The relationship
between Continuous
Testing and
Continuous
Compilation remains
unclear.



22

3 Related work

The tool used had no
significant effect time
to error and time to
fix.

A more detailed
analysis of the errors
occurring in the study
was not possible due

to the study setup.

We are interested in
simple, low-level
errors, their causes
and ways to prevent
or quickly fix them.

An example for a
simple error is a
syntax error. Those
already have good
support in IDEs.

notes that for one of the tasks the tool used also predicted
the average duration in which the code was compilable and
the average time when it was not compilable.

Several other data points have been recorded and tested,
including the time to error and the time to fix for each er-
ror. However, no significant differences in these times for
any of the predictors have been reported [Saff and Ernst,
2004]. Also, since the time to error was simply determined
by a failing test case, this ignored the possibility of the pro-
grammer becoming aware of the error any other way; thus,
ignoring errors that were not caught by the provided test
suite. These more detailed analyses were not possible in the
study setting, since the only monitoring possible was mon-
itoring the changes of the participants to the source code,
but identifying more errors and determining the time to er-
ror more correctly would probably only have been possi-
ble by using video recordings of the participants. Again, a
breakdown of what types of errors occurred is missing.

3.2.2 Programming Errors

We will now look at the more general developer behav-
ior and programming error research. The problem with
most of this research is that it focuses on program under-
standing and; therefore, on higher level cognitive prob-
lems. However, we are looking for the kind of everyday er-
rors programmers make, that happen even to experienced
programmers but could be prevented or easily fixed with a
tool. One example would be syntax errors: Every program-
mer makes them often, they are simply typing errors, some-
times they result from having forgotten the exact syntax
of a seldom used construct (e.g., a switch-case statement,
which is slightly different in many languages). However,
these kinds of problems are already well-mitigated in many
modern IDEs: Syntax errors are usually easy to discover us-
ing today’s tools and are often found shortly after they have
been introduced. We are also not looking at domain specific
problems and we are not looking for high-level errors like
an overall faulty software architecture or misconception of
the overall workings of a part of the system.



3.2 Research into Developer Behavior and Errors

23

There is a famous saying among programmers: “There
are only two hard problems in computer science: (Imple-
menting) caching correctly, naming things and off-by-one-
errors”. Out of the three errors in this saying, the one we
are most interested in, is the one of the punch-line, usually
forgotten and the least abstract one: The off-by-one error.
Almost every programmer probably made such a mistake,
probably hundreds of them, e.g., stopping the iteration at
array.length instead of array.length-1 or similar.
The errors we are interested in (and the accompanying re-
search) are errors that are like the off-by-one errors. We will
now review some of the research looking at programmers’
errors in this context, mostly in chronological order.

Gould| [1975] looked at 10 experienced FORTRAN pro-
grammers fixing different kinds of software errors. 4 pro-
grams extracted from the IBM scientific subroutines pack-
age were used to create 3 modified versions for each of the
4 programs, such that each version had one of three differ-
ent kinds of software errors: An assignment error, an array
error, or and iteration error. The times needed to identify
an error, the number of errors not found and the number
of incorrectly identified errors were all measured for each
participant.

Johnson et al.| [1983] looked at the software errors 206
novice Pascal programmers introduced working on a sim-
ple programming task by recording the first syntactically
correct version of the program and analyzing the errors in
these versions. 783 errors were categorized as “MISSING”
(a required part of the correct implementation is missing),
“SPURIOUS” (a part of the implementation should not be
there), “MISPLACED” (a part of the implementation was
correct but inserted at the wrong position in the program),
and “MALFORMED” (a part of the implementation was
at the correct position but incorrectly implemented). They
also classified them by the component of the implementa-
tion the errors belonged to, i.e. whether they were related to
input, output, initialization, updates, guards (if- and case-
statements), syntactic, complex plans (requiring more than
one component), or declarations.

For each of the combined error classes (e.g. “MISPLACED

We are looking for
errors like
‘off-by-one’ errors.

Participants had to
find an errorin 12

simple FORTRAN

programs.

Students errors in
working on
programming tasks
were analyzed by
looking at the
compilable version
and the errors it
contained.



24

3 Related work

Students errors in
working on
programming tasks
were analyzed by
looking at the
compilable version
and the errors it
contained.

“Bug War Stories” by
expert developers
were analyzed and
the bugs
categorized.

INITIALIZATION”) the number of errors of that type was
reported. The majority of the errors were of the “MISSING
GUARD” class. This is a problem that should be much eas-
ier to find using a Live Coding system. The errors were
then classified in even more subcategories, 99 in total.

While the breakdown of different errors is quite interest-
ing there are several problems with this study. First, it only
considers novice programmers. Second, they looked at the
first syntactically correct version of a program, thus ignor-
ing bugs that were introduced later on. Additionally, some
of the bugs could simply be incomplete implementations
the programmer was aware of. Also, while frequencies of
the bug types were reported, it is unknown which of those
bugs were difficult to fix for the programmer, since no time
to error or time to fix was recorded.

Spohrer and Soloway [1986] looked at the software bugs
novice non-science student programmers created and clas-
sified them. They conclude that the majority of bugs were
not caused by misunderstanding language constructs but
result from other problems. While they sorted the 284 bugs
found into 101 categories to then decide for each category
whether the bug was caused by misunderstanding a pro-
gramming language construct, they do not report the fre-
quency of different types of bugs. They also just looked
at the first syntactically correct version of a novice’s pro-
gram to find as many bugs as possible before they have
been fixed, leading to the same problems discussed above.
Lastly, by only looking at novice programmers it is unclear
which of the bugs are only due to the programmers” inex-
perience and which also happen to experienced program-
mers.

Eisenstadt [1993] asked programmers on an online bulletin
board for their “tales of debugging” and got 78 responses.
He then classified these bugs in different categories and
looked at some other attributes of the bugs. However, he
specifically asked for hard-to-find bugs in large projects,
but we are more interested in the simpler bugs in any kind
of project.

Ko and Myers|[2003] created a new model of programming



3.2 Research into Developer Behavior and Errors

25

errors and tested its application with 7 programmers work-
ing on different tasks using the Alice programming lan-
guage and environment. In addition to the errors the pro-
grammers made they also looked at the breakdowns that
caused these errors. A breakdown, in this model, consists
of a problem (attentional, knowledge or strategic), an ac-
tion (e.g. “Implementing” or “Understanding”) and an ar-
tifact (e.g. a specific piece of documentation, an algorithm
or even an error). While they do report the frequencies of
the different types of breakdowns in [Ko and Myers| 2003]]
and report which breakdown-chains most often occurred
in Ko and Myers| [2005], they did not classify the different
errors and thus do not report their frequencies. However,
Ko and Myers| [2003] report the distribution of errors over
different artifacts, e.g. noting that most errors are related to
algorithms (33.3%) and language constructs (30.4%).

It is unknown whether the underlying breakdowns causing
errors or the, as Ko and Myers [2005] call it, “surface qual-
ities” of an error are more useful to predict whether a Live
Coding tool would help prevent or more easily fix these er-
rors. At least the data presented is not detailed enough to
be able to judge which of those errors could have been pre-
vented by Live Coding. Also, Alice is a rather simple lan-
guage [Ko and Myers, 2008], targeted at non-programmers
[Conway et al., 2000] and Ko and Myers| [2005] themselves
suspect that the results from their method might be hard
to replicate since “even the smallest interactive details of
a programming system can cause cognitive breakdowns”
[Ko and Myers, 2005], which might differ a lot between dif-
ferent systems.

They later developed a tool, the Whyline. A first version
was developed for Alice [Ko and Myers| [2004] and tested
by repeating the study from Ko and Myers| [2003] with 5
participants and comparing it to the previous results. But
this time, they only looked at how the debugging time
changed and how many tasks were completed, not what
kind of errors could more easily be fixed using the new
tool or whether the distribution of errors that did occur
changed. Tater a version for Java was presented in [Ko and
Myers| 2008]. It was tested with 20 participants (10 with
the tool, 10 without) that worked on two simple debugging

The causes of 7
Alice programmers’
errors are analyzed
in detail.

Errors are not
categorized and not
reported in detail.

This kind of detailed
analysis is likely
highly sensitive to
the programming
environment and
other external
factors.

5 more participants
were tested, but only
their task completion
times and task
correctness was
reported.

20 Java developers
were asked to find
two bugs in a real
application, but could
not change code.



26

3 Related work

10 Java developers
working on 5
maintenance tasks
are observed, but
errors are not
reported in detail.

Participants were
observed working in
a known and an
unknown code base.
Only questions they
ask are reported.

The reported
questions are
interesting to our
cause, but they likely
differ from questions
a programmer asks
when implementing a
new piece of
sotfware.

task [Ko and Myers) 2009]: The subjects had to find a bug in
an existing program and could not change the code, since
the prototype did not contain an editor. So no code-editing
was observed.

Ko et al.| [2005] observed 10 Java programmers working on
five different maintenance-tasks during a total time of 70
minutes. Three of those required only a single-line change,
but two required creating and modifying several bits of
code. Although Ko et al.|[2005] state that “any errors in-
troduced by the programmer” are recorded, those are not
reported in the paper. Instead only high-level conclusions
from the gathered data are given.

Sillito et al.|[2006] looked at “Questions Programmers Ask
During Software Evolution Tasks” and at the information a
programmer has to gather to successfully perform a change
in a medium or large codebase. To do so they let 9 partic-
ipants work in pairs on a total of 12 software change task
sessions a 45 minutes in an unknown codebase and let 16
programmers work (mostly) alone on 15 software change
task sessions in a known codebase. They found several
questions for which we expect Live Coding to be useful
when trying to answer them, including “What are the argu-
ments to this function?”, “What are the values of these ar-
guments at runtime?”, “How does this data structure look
at runtime?”, or “Why isn’t control reaching this point in
the code?”.

The questions were grouped into categories and a fre-
quency distribution of the questions, showing how often
each type of question was asked, was given in Sillito et al.
[2008]. After that a list of tools was qualitatively evaluated
from literature research to judge whether a given tool could
answer any of the identified questions. However, it was
only checked whether a tool provided “full” or “partial”
support. Also, the tasks were clearly maintenance tasks, for
the first study even in unknown source code. This affects
the kind of questions asked. The questions asked during a
fresh software construction task would likely be different.
Even the number of questions asked for each type of ques-
tion varied quite a lot between the two studies, most likely
because one of the studies was done in unknown source



3.2 Research into Developer Behavior and Errors

27

code and the other in known source code.

The study by LaToza et al.|[2007] had 13 participants work-
ing on two different improvement tasks on jEdit. Each of
the tasks described a problem with the architectural de-
sign of jEdit and asked the participants to fix it. When
analyzing the data from the study, LaToza et al| [2007]
mainly looked at how participants navigated through the
code and what information they were gathering. Although
they also examined the changes introduced by participants,
they only checked the final changes of the participants and
did so on a rather abstract level (e.g. “Six novices and one
expert extracted an update method from getFoldLevel
and had ‘doDelayedUpdate update folds by calling this
method” [LaToza et al.,2007]). They did not consider low-
level errors programmers made while implementing these
changes, but only looked at the conceptual error.

Three years later, they reanalyzed the data in [LaToza and
Myers| 2010]. This time, they clustered the edits into
changes and looked at each such change to determine
whether it contained a bug. If so, they tried to determine
what the root cause of this bug was (e.g. missing informa-
tion or a false assumption). Half of all changes contained
a bug and of those, again half were determined to be re-
lated to reachability questions. Sadly, they do not report
the cause of the other half of bugs. Although not explic-
itly stated, we assume from the description in [LaToza and
Myers| 2010] that they concentrated on conceptual errors
again, not typos or similar smaller errors.

Another study is described in the same paper, this time ac-
tually observing real developers working on real tasks. But
LaToza and Myers|[2010] were only able to take notes about
the developers actions and record audio from the session,
which did not enable them to look at smaller and higher-
frequency errors, but only analyze how developers spend
their time on a coarser level.

Fenwick et al. [2009] looked at the compilation errors oc-
curring in beginning computer science students’” programs,
confirming an earlier study by [Jadud| [2004]. The top 5 er-
rors of Fenwick et al|[2009] appear in the top 6 errors of

13 participants
worked on a software
change task in Java.
Only the navigation
of participants was
analyzed.

This time, the errors
participants made
were analyzed, but
only reported
focusing on one
specific cause of
errors.



28

3 Related work

Compilation Errors of
programming
novices were
analyzed and

classified, repeating
and confirming an
earlier similar study.

Errors of novice
programmers were
analyzed,
categorized and
counted, but only
those that novices
could not solve
themselves.

Software Errors
similar to the
MISSING GUARD
category by |Johnson
et al.|[1983] were
quite common,
again.

Jadud| [2004], and both studies agree that these 6 make up
more than 60% of novice programmers compilation errors
but they do not agree on the exact ranking. They are “Miss-
ing semicolon”, “Unknown variable”, “Bracket expected”,
“Illegal Start of Expression”, “Unknown class”, and “Un-
known method”. However, they only looked at compila-
tion errors and only gathered them, when the students ex-
plicitly compiled the programs. While the abstractness of
the errors matches the level that is interesting to us, we are
interested in semantic errors which are not diagnosable by
a compiler. Obviously, what errors the compiler does find
depends on the programming language (and the compiler)
used. For example, in JavaScript semicolons are often op-
tional, and methods can be assigned to objects at runtime,
so the compiler cannot know whether a specific method
will exist at runtime.

Bryce et al. [2010] also examined novice computer science
students’” errors, but they actually concentrated on the se-
mantic errors. Whenever a student had a problem that they
could not solve themselves, they would come to the tutor’s
lab and ask for help. Before and after fixing the problem the
students were asked to describe their problem and this de-
scription was saved. This data was then analyzed to iden-
tify common errors in students” programs. This was done
for both an introductory computer science course (CS1) and
the more advanced following course (CS2) to be able to see
how the error distribution changes for more experienced
programmers.

The authors identified 20 different software error types,
one of them called “Loop and switch statements”, which
includes the aforementioned common off-by-one errors.
After the general “problem solving” category this is the
most common error type for CS1 students with 28 of the 210
bugs belonging to that category, but only 11 of the 234 bugs
reported by CS2 students belonged to that category. Inter-
estingly, the most common category of Johnson et al.| [1983]],
MISSING GUARD, also included all incorrect guards for
ending a loop, which might make up a large portion of the
observed “Loop and switch statements” error. So although
these two studies are almost 30 years apart, there seems
to be some continuity in the kinds of errors programmer



3.2 Research into Developer Behavior and Errors

29

make.

While some of the bug categories are a bit too abstract or
broad to be helpful for our research (like “Problem Solv-
ing”) and some of them are rather domain specific (e.g.
bugs related to “File I/O”), which might differ a lot be-
tween different programming languages, several of the cat-
egories identified are quite interesting. But there are also
some problems. The first problem with the study is that it,
like many before, only looks at novice programmers. The
bigger problem, however, is that it only looks at bugs the
students could not fix without help. It could be the case
that CS2 students made less “Loop and switch statements”
bugs, but another possibility is that they simply learned
to debug and fix those errors themselves and still make as
many of them as before. Therefore, they might still waste a
lot of time trying to fix those bugs but no longer need the
help of a more experienced programmer to do so. Never-
theless, a tool that makes fixing these bugs easier could be
helpful.

Summary

Many of the studies we found focus only on novices’ er-
rors, but do not analyze which of those errors still happen
to experienced programmers. The studies examining ex-
perienced developers” behavior often just look at debug-
ging, often just letting programmers find a bug, without
ever changing the code. In those few cases in which ex-
perienced programmers are actually asked to write more
than a few lines of code, researchers focus on their high-
level strategies or errors most of the time. Finally, in the
rare cases that researchers closely observed experienced
programmers implementing a non-marginal piece of code
and even recorded the kinds of errors those programmers
made, no attempt is made to classify them and most are
not even reported. Therefore, none of the studies men-
tioned above answer our question what kind of errors ex-
perienced programmers make everyday and which could
be prevented by a tool like Live Coding (or whether there
are no such errors). Some provide important hints, though,

Errors students to
find and fix
themselves could not
be captured.

Most studies did not
provided the
information we
needed.



30

3 Related work

like Ko and Myers [2005], [Johnson et al.| [1983] and
et al.|[2006].




31

Chapter 4

Prototype

In this chapter we will describe the prototype we devel-
oped and why we chose to design it this way. We first ex-
plain our motivation to extend and modify the prototype
of Heinen| [2012]. Next we briefly describe the backend by
Belzmann| [2013] we decided to use. We then outline the
development of our prototype, explaining the design de-
cisions where appropriate and highlighting the problems
we found with earlier versions. In the end, we will high-
light the changes that were necessary to the client-server
architecture for Continuous Execution by Belzmann|[2013]
to enable the features of our prototype.

4.1 Motivation for a New and More High-
Fidelity Prototype

Since we wanted to conduct a user study using real-world
or close-to-real-world tasks (see Section to better un-
derstand what errors programmers make in the real-world
and which of those could be mitigated by Live Coding, we
also needed a Live Coding environment that could sup-
port these real-world tasks. As a starting point we decided
to use the plugin for /Adobe Brackets! by Heinen| [2012].

'http:/ /download.brackets.io

We wanted our
subjects to solve
challenging tasks,
which the original
prototype did not
support.


http://download.brackets.io

32

4 Prototype

function mySort(theArray) {
var temp;
for (var j = @; j < theArray.length-1; j++) {
for (var i = j; i < theArray.length-1; i++) {
if (theArray[i+1] < theArray[i]) {

temp = theArray[il;
theArray[i] = theArray[i+1];
theArray[i+1] = temp;

function mySort(/[70,30,5,2,10,5,11, 12, 20] ) {
var temp;
for (var j = e; @ < [70,30,5,2,10,5,11,12,20].1length-1; 0++) {|
for (var i = 0; @ < [70,30,5,2,10,5,11,12,20] .length-1; @+
if ([70,30,5,2,10,5,11,12,20] [e+1] < [7e,30,5,2,16,5,1
temp = [70,30,5,2,10,5,11,12,20] [6];
theArray[0] = [70,30,5,2,10,5,11,12,20][0+1];
theArray[0+1] = 70;

4 1/8p0
+) {(€d4 1/8r1

1,12,20][6]) {

theArray;|
)j
}

return theArray;

[3e,7@,5,2,10,5,11,12,20] ;
}
J;
);
return [36,2,5,5,10,11,12,20,70];
}s

Figure 4.1: |Heinen|[2012] version of the Live coding plugin for Adobe BracketsIDE!Adobe Brack-
ets displaying code (left) and the evaluated results (right) of simple bubble-sort function.

Code outside of a
function could not be
evaluated and only
on function’s
execution could be
shown at any time.

It did not support
more than 9999
iterations of a loop
and did not respect
outer scope of
functions correctly.

Adobe Brackets is an Open-Source IDE for Web Develop-
ment, focused on HTML, CSS and JavaScript and has a nice
Plugin API that Heinen! [2012] already used successfully.

4.1.1 Limitations of Heinen's [2012] Prototype

The prototype by|Heinen![2012] had several limitations that
were appropriate for the study conducted in [Heinen), 2012]
but prevent it from being used for real-world tasks. It
could evaluate the code of an individual function called
with user-selected parameters and show the runtime state
of the referenced variables (see Figure [£.1). However, this
only worked inside of functions. Code outside of a func-
tion could not be evaluated and only the currently selected
function was evaluated. Thus, it was not possible to split
up the implementation into several functions, provide the
outer function with some test-parameter and see how it af-
fects the inner function.

Also, outer scope of the function would not be respected,
i.e., if a function was declared inside another function and
referenced some of the outer function’s variables, these
would not be defined (see Figure 7] for an example).
Lastly, the prototype was severely limited regarding loop
constructs: It did not support more than two levels of
nested loops and it did not support more than 9999 iter-
ations of a loop. The number of iterations limitation was
introduced to prevent infinite loops, which would also stall
the plugin. This was not a problem in the user study since
none of the tasks needed that many iterations, but we can-
not make that assumption about real-world source-code.



4.2 A New Backend

33

In addition to the functional limitations, there were also a
number of minor and not-so-minor usability flaws in this
version of the prototype. For example, the iterations in a
loop can be stepped through using arrow buttons next to
the iteration index. However, for a large number of itera-
tions this can become quite cumbersome, as mentioned by
several users in the first qualitative study of Heinen|[2012].
To make it easier to go to a specific iteration, [Heinen| [2012]
added a button to go to the first and the last iteration and
made the iteration index editable, so a specific iteration in-
dex could be typed in. However, it is still not possible to
“skim” through several iterations by, e.g., scrolling through
them.

Another problem was that, whenever the code was reexe-
cuted, a lot of data was lost. Firstly, the data used as test-
input to the function was not saved when the code was
changed. This means, whenever the user changed the code,
the input data had to be reentered. Secondly, whenever the
input data was changed or the code was changed, the se-
lected iteration of a loop was reset to the first iteration of
said loop. Both of these limitations made it a lot harder to
quickly test different versions of the code or different inputs
on the same code.

Lastly, the code to evaluate was simply executed on the
main thread, forcing the user interface to wait for the ex-
ecution to finish, potentially making the user-interface un-
responsive. Again, this was not a problem for the sim-
ple problems tested during the study of Heinen! [2012], but
would be a problem in real-world usage.

4.2 A New Backend

Belzmann| [2013] improved the execution backend of
Heinen’s prototype a lot by splitting up the visualization
and the code execution part into a server-client-architecture
and building a robust server that got around several of the
limitations in Heinen’s version. He made the execution in
the background possible for arbitrary code including arbi-
trarily many nested functions and more complicated con-

Skimming through a
large number of
iterations is hard
using the Ul of the
old prototype.

Both specified input
data to a function as
well as the selected
iteration of a loop
were lost when the
cod was reexecuted.



34

4 Prototype

If the executed code
has an infinite loop,
the front-end will no

longer freeze.

A complete
JavaScript file is
instrumented and
executed, not just a
single function.

structs such as functions declared inside functions. Also,
all variable values in the complete source file, no matter
what function they belong to, will be evaluated and can be
reviewed by the user, given a suitable user interface (UI).

Splitting up the implementation in a client and a server
part not only increases reusability of the code (e.g. new
Uls can more easily be built by simply implementing the
specified communication protocol and using the data pro-
vided by the server), it also has the advantage of prevent-
ing the UI from stalling when the backend executes non-
terminating code. JavaScript, by default, is single-threaded;
thus, a simple implementation of such a Live Coding plu-
gin would just block the complete Live Coding UI and in
Adobe Brackets’ case even block the complete editor. Sep-
arating the UI and the backend into two separate processes
also has the advantage that the client can continue to run
even if the backend encounters an unrecoverable excep-
tion and crashes. The continuous execution server imple-
mented by Belzmann| [2013] even spawns separate child-
processes for each execution to keep the server responsive
while executing and prevents it from crashing. This enables
a very smooth recovery from non-terminating code, since
the server will just kill the obsolete child-process and start
a new one when it receives new code to execute.

In contrast to|Heinen|[2012], who simply extracted the cur-
rently selected function from the code, gathered the spec-
ified input data and called the function with this input
data, Belzmann's [2013] version simply instruments and
executes a complete JavaScript file. This way, the possibil-
ity to specify arbitrary input data to a function is lost for
now, but it can simply be augmented by adding a call to the
function in the code directly. This also solves a problem of
Heinen’s version that did not become apparent with small
code examples: When specifying input data for a function
in the Live Coding view, it is unclear in what context this
function call should be executed. Consider the following
code example:

var a = 2;
function bar (b

(b) {
var ¢ = b + a;



4.3 The Prototype

35

a = 3;

When now specifying input 5 for function bar what
should the value of ¢ be? In Heinen’s visualization of the
input fields it is unclear to the user whether a in that case
has the value 2, 3, or undefined. Heinen chose the third
possibility for simplicity. In Belzmann[s [2013] version the
user specifies the location of the call explicitly, e.g.

var a = 2;
function bar

(b
var ¢ = b

) A
+ aj;
bar (5);

This way, it is always clear what the outer scope of the
function call should be. Of course, this is somewhat more
laborious than just inputting the parameters. Also, these
calls pollute the code, but we still decided to keep this so-
lution in our version, since we considered it to be an ac-
ceptable limitation In a later version, this feature can be
added again, but implementing it correctly (respecting all
outer scope) is not trivial in the current implementation of
Belzmann(s [2013] continuous execution server and also re-
quires some careful Ul design to clearly show in what con-
text this test-call to the function is executed. Thus, we de-
cided to concentrate on other features of our improved pro-

totype.

4.3 The Prototype

Heinen/s [2012] plugin for Adobe Brackets had some limi-
tations that prevented it from being used for the tasks we
wanted developers to solve during our study (see
“IDesigning the Tasks!’). To overcome these. we 11sed Belz-
mann's [2013] backend for executing the code, since it al-
ready fixes many of the functional limitations of the first
prototype. However, we also listed a few more usability
issues in Section that we tried to fix with our proto-
type. We will now describe how we changed the prototype

Due to outer scope,
the result of a
function can be
ambiguous even if
the input is fully
specified.

In the new version,
functions have to be
called explicitly to
test them.

Our prototype uses
Belzmann|s [2013]
back end, so we only
have to provide the
front end.



36 4 Prototype

var x = 123, ¢ = 1; a 1231

var f = @, 1 00
g =0, U
h; D

var y = 36; : 36

var z =y - x + 30; [ =57

var a = z * z; L] 3249

var b = Math.sqrt(a); U 57

b =c=2; : 2

var 1i; 1

for (i = 0; i < 10; i += 1) {® @ 1 2 3 4 5 6 7 8 9 10
b x= c; : 4 8 16 32 64 128 256 512 1024 2048

3 '

Figure 4.2: First version of the prototype, inspired by Victor| [2012a]. Each value is displayed
slightly right of the preceding value in execution order. This way it is easy to see in what order they
were executed. Notice the values in the for loop jumping between the two lines nicely visualizing
how the execution progresses in the for-loop.

of Heinen! [2012], what changes were necessary to the back-
end of Belzmann|[2013] and how our prototype evolved.

4.3.1 Implementing Victor's [2012a] Visualization

Although |Heinen| [2012] already tested different visualiza-
tions of the Live Coding preview (the right view in Figure
[.T), including ones that interleaved the preview with the
code, we still found it to be rather cluttered and tried to

Heinen did not test a simplify it. While the version chosen by Heinen| [2012] is
version similar to the one that was preferred out of 5 different versions in a
Victorfs [2012b]. qualitative user study, one of the six users was first con-

fused when seeing the Live Coding preview because he did
not recognize it as the evaluated part, but thought it was
just code. Another participant was worried about loosing
too much screen space.

Heinen did not evaluate a version similar to the one shown
by |Victor| [2012bja], which shows just the resulting values

We considered on the right without the code around it. We expect this ver-
Victor]s [20124] sion to solve the concerns of the users mentioned before, be-
version to be less cause it uses less screen space and is clearly different from
cluttered and started the source code view, while still avoiding the problems of
from there. other versions tested, which interleaved the values with the

code in the editor view. Therefore, we implemented a ver-
sion resembling Victor(s [2012a] example. For each line, it
just shows a value representing the execution of a line, usu-



4.3 The Prototype 37
for Zi = 0; j < theArray.length - 1; j += 1) { 0
for (i = j; i < theArray.length - 1; i += 1) { 0] 1 2 3 4 5! 6 7

if (theArray[i] > theArray[i + 1]) {
var temp = theArray[i];
theArray[i] = theArray[i + 1];
theArray[i + 1] = temp; 70
¥
}
}

var a = 2;

IEEEEEESEEEEEN
~
o

70 70 70 70
10 5 aLil dL7)
70 70 70 70 70

Figure 4.3: The skewed values become a problem if many values have to be displayed. E.g. after
a for-loop with many iterations the values resulting from code after the loop cannot be seen on the
screen anymore, since they have to be off-screen to the right to follow the layout logic. In this
example the result of the declaration var a = 2 is off-screen because of the preceding for-loop’s

many iterations. Some of these problems can be mitigated by automatic

and manual scrolling but it

is still a problem to get all the interesting values on screen at the same time.

ally the result of an assignment operation, instead of the
complete code around it (see Figure[4.2). In addition, there
is a slight offset of later runtime state values compared to
preceding runtime state values, which makes it easier to
understand in what order the code is executed.

Problems with the Skewed Design

When looking at larger examples, we noticed that the val-
ues would quickly drift off-screen, because many values
were displayed and each value had to be slightly right of
the preceding values (see Figure[4.3). We tried to fix this by
introducing an automatic scrolling functionality that would
scroll the leftmost value of the currently selected line to the
left border of the preview, showing as much of the selected
and the following lines as possible. This mitigates the prob-
lem, but does not solve it completely. In the example of Fig-
ure the result of the last declaration is still off-screen,
although this is still a rather small example.

One of the problems—not enough values being displayed
in the preview to be usable—could likely be solved by mak-
ing the interface zoomable, as proposed by |Victor [2012al].
However, doing so raises other questions and we specifi-
cally did not want to focus on the visualization of the Live
Coding values and were afraid that our results would de-
pend too much on the visualization. Therefore, we decided

The skewed design
makes it difficult to
show all the values of
interest if no
zoomable interface is
implemented.



38

4 Prototype

var theArray = [70, 30, 5, 2, 10, 5, 11, 12, 80];

var testString =

3
45 for (var j = 0, ¢ = 2; j < theArray.length - 1; j += 1) {
for (i = j; i < theArray.length - 1; i += 1) {
if (theArray[i] > theArray[i + 1]) {
var temp = theArray[i];
theArray[i] = theArray[i + 1];
theArray[i + 1] = temp;

¥

[70, 30, 5, 2, 10, 5, 11, 12, 80]

< 1/8 > (I 2 truthy(true)
<1/8>1 0 truthy(true)
truthy (truej

70

30

70

Figure 4.4: A screenshot of the final prototype. Only one iteration is shown at a time and as-
signment results are shown. In line 45, two values are shown since two variables are initialized
in the initialization part of the for-loop. The cursor hovers over the first value in line 45, causing
a tooltip with the variable name to appear below it and the statement in the source code that pro-
duced this value to be highlighted. Line 49 is highlighted because it is currently selected and the
highlight extends into the preview to make it easier to find a corresponding line in the preview. The
truthy (true) values are the values of the for-loop- and i f-conditionals on the left. The value
in brackets gives the actual result of the conditional, the value in front shows whether this value will
be interpreted as true (truthy) or false (falsy).

In the final version,
we only show one
values per statement
in a line of code and
keep the
visualization simple.

to abandon this visualization in favor of a much simpler
one, hoping that this simple visualization would still allow
our subjects to get enough of an advantage out of Live Co-
ding.

4.3.2 Final Version

For our final version we reverted our decision to show as
many values as possible to get rid of the iteration selectors
of Heinen| [2012]. Instead, we reintroduced the selectors
and are now showing at most one value for each variable
reference in the code on the left (see Figure[4.4). One impor-
tant difference to Heinen|[2012], in addition to not showing
the code, is that we always show complete results of assign-
ments, whereas Heinen showed the individual values of a
calculation (as shown in Figure .

New Iteration Selectors But the iteration selectors have
been changed in comparison to Heinen [2012]. Instead of
adding start and end buttons and making the iteration in-
dex editable, we decided to make it scrubbable. This means
a user can click and drag on the iteration selector to change



4.3 The Prototype

39

function fibonacci(n) { ,

function fibonacci(n) { : Z/ZIEQl
function fibonacci(n) { : 18
function fibonacci(n) { : 17

function fibonacci(n) { , 6/21891
function fibonacci(n) { ,
function fibonacci(n) { ,
function fibonacci(n) { ,
function fibonacci(n) { 80/21891 >

function fibonacci(n) { ,

I I = = S = S o = S S S Ry =

function fibonacci(n) { ,

Figure 4.5: Illustration of the exponential growth of the iteration selector dragging. By clicking
and dragging on the iteration selector the selected iteration can be changed. The more the cursor is
dragged to the right the more the selected iteration index increases. Growth is linear in the beginning
and then changes to exponential growth after a few iterations to reach the last iteration index when
the cursor reaches the right border of the editor. This case is not shown here since it would need too
much space, but it is indicated by the last one already reaching iteration 5789 of 21891. Dragging a

few more centimeters to the right would reach iteration 21891.

the selected iteration. Dragging to the left will decrease the
selection index, dragging to the right will increase it. This
enables users to quickly skim through a few neighboring it-
erations and glance at the values in these iterations or scrub
through a high number of iterations effortlessly.

The important part is that this dragging does not linearly
increase/decrease the selection index. Instead, the growth
is exponential and the growth function depends on the
number of iterations. It is calculated in a way that dragging
to the left/right border of the editor view will always reach
the minimum /maximum iteration index. This way, a user
can ‘throw’ their mouse pointer to the left/right edge of the
screen to reach the minimum/maximum edge of the screen
making it much easier to reach this minimum/maximum
iteration according to Fitts” Law [Fitts, |1954]. But since
an exponential growth with a small number of iterations
would mean that the user would have to drag quite far to
reach the next iteration, the first few iterations are reached
via a linear growth function, which smoothly changes into
an exponential one later. An illustration of this can be
found in Figure

We implemented
new iteration
selectors to enable
skimming through
iterations.

The growth function
of the iteration
selector is
exponential to always
make it possible to
reach the maximum
value with just one
movement of the
mouse.



40

4 Prototype

We consider the
scrubbing
functionality to be an
expert shortcut.

Figure 4.6: The
Column-Resize
cursor is shown,
when hovering over
the iteration selector,
indicating that the
user can drag
horizontally.

Even without
additional Ul
elements users can
estimate how far they
can drag.

We left out addition
Ul elements to avoid
conflicts with other
parts of the Ul.

On first glance, the possibility for this interaction is not in-
dicated in the Ul in any way, which makes this features
hard to detect. We do not think this is a problem, since we
see this feature as an expert shortcut. It is not necessary to
use the tool, but it will make live easier if it is known.

Intentionally, two independent Ul elements have partially
been left out: (1) An indication that the user can click and
drag on the iteration selector and, after the drag started, (2)
an indicator how far the user has dragged and can continue
to drag.

The UI element is partially there: When the mouse pointer
is over the iteration selector, the mouse pointer changes to a
column-resize pointer (see Figure , which indicates that
a horizontal dragging action is possible. If the user tries it,
they will likely understand what it does.

A second UI element, showing the user’s current drag po-
sition and how far they can still drag is not there. Still, the
user can determine how far they have dragged by simply
comparing the distance of the mouse pointer to their origin.
Also, they can look at the iteration index, which changes
when they drag. The number of iterations also tell them
how far they can still drag. Additionally, dragging to the
edge of the Brackets window will always reach the maxi-
mum value and we expect frequent users of this function-
ality to learn this over time, which provides another fixed
reference point to determine how far they can drag.

The decision to leave out this UI element was made, be-
cause the surrounding Ul is very dynamic and it is diffi-
cult to determine what kind of values are displayed next
to the iteration selector. Since the scrubbing functionality
of the iteration selector is used to skim through runtime
state in different iterations and this runtime state is next to
the iteration selector, a position indicator displayed next to
the iteration selector could hide exactly this runtime state
that was the reason to use the iteration selector in the first
place. Thus, we decided not to display any additional UI
elements.

Still, this functionality is somewhat hidden and although it



4.3 The Prototype

41

is discoverable, it is not easy to do so. Therefore, we ex-
plained this feature to all our participants during the user
study, giving them the kind of knowledge an expert user of
the system would have.

Functions and Nested Functions Another change visible
in Figure is the iteration selector now being used for
functions as well. In our version of the prototype not only
loops have iteration selectors to select a specific iteration,
but functions have one as well to select a specific call to the
function to display. For example, the function fibonacci
in Figure 4.5 was called 21891 times. Next to the function,
the arguments given to it in the selected call are shown.

function createFunction(a) : < 1/2 > 1
return function() { 1 < 1/2 > function
return a; L 1
}; i
h '
[
fl = createFunction(1l); 1 function
f2 = createFunction(2); : function
|
var b = f1(); [ 1
var ¢ = f2(); 1 2
var d = f1(); J 1

Figure 4.7: The function createFunctionis called twice and cre-
ates two different functions. The first of those is called twice the second
version is called just once. Since the currently selected call to the outer
function is the first one, only the two calls to the first version of the
returned function are shown.

Nested functions are handled the same way nested loops
are handled: Inner functions have their own iteration selec-
tor which shows just the calls to the version of the function
declared in the selected call of the outer function (see Fig-
ure 4.7). This way it should always be clear what the cur-
rent outer scope of the function is, because it is shown in
the selected iteration of the outer function call.

Improved Value Display Considerable effort was in-
vested in making the values in the Live Coding preview

Functions have
iteration selectors as
well.

Inner functions are
handled in the same
way inner loops are
handled.



42 4 Prototype

var mo = {}; {3 A
mo.type = 5

mo.so = {2: 3, 8 D8 {2: 3, foo: } e
mo.date = new Date( )8 UTC: 2013-01-01T00:00:00.000Z

var a = mo;

{type: , so: {2: 3, foo: }, date: UTC: 2013-01-01T00:00 \/
$[<body> <form action="wo_en_mensa_ahorn.std.php" n...]
form action="wo_en_mensa_ahorn.std.php" n...

function parse($body) {
var domBody = $body[0];
}

Figure 4.8: Values in the preview are colored according to the syntax highlighting in the code
editor where applicable. Special cases exist for Date objects (line 8), jQuery objects (line 11) and
HTML DOM objects (line 12). Object representations that would make the interface slow when
being displayed in full are abbreviated using an ellipsis (...) as shown in line 11 and 12. Clicking
on the ellipsis expands the complete object representation.

discriminable and easily recognizable as well. By default,
we simply use a string or JSON representation of the val-

By default, a JSON ues, but we added correct syntax coloring to it. In addi-
stringification is tion to the default syntax coloring as used by the Adobe
used. This is Brackets editor, which differentiates objects, numbers and
augmented by colors strings, we also included individual syntax coloring for
and special cases Date objects (green, slightly darker than numbers), HTML
where necessary. DOM objects (blue), and jQuery objects (violet) (see Figure

. JQuery objects are often used as collections; thus, we
display them like an array using square brackets. But, to
make them easily distinguishable from actual arrays, even
for color-blind users, we added a $-symbol in front, which
is often used to represent the jQuery function. Circular ref-
erences in objects are properly indicated, as can be seen in

Circular references Figure[d.9]
are recognized and
. var a = {}; § {}
dlsplayed a.b = {parent: al}; u {parent: {b: circular(root)}}
appropriately.

Figure 4.9: Circular references are detected and displayed in the Live
Coding preview. The path to the first occurence of the referenced object
is given in parentheses. In this case the value of b is the complete object

itself).

Abbreviating Long Objects Representations When test-
ing our Live Coding plugin to download and parse an RSS
feed (see the tasks of our user study in Section we no-
ticed that the interface became quite unresponsive. This
was due to a function receiving the XML of the feed as an
array of bytes, which would then be displayed in the inter-



4.3 The Prototype

43

face. If the XML file of the RSS feed had a size of just 10kB
this meant, that an array with over 10000 entries would be
displayed, each entry in its own <span>-element and cor-
rectly colored according to the syntax color specification. In
such situations the modification of the DOM using jQuery
in our plugin’s Ul and even the rendering of that HTML
becomes so slow that it is not only noticeable by the users,
but hindering them. We therefore abbreviate long strings
and long arrays to a fixed length and display an abbrevia-
tion indicator (...”) at the end to indicate something was
left out. Clicking on this abbreviation indicator expands the
value display and shows it completely.

for (var i = 03 i < 2; i++) ¢ §< 2/2 > E 1 truthy(true)
e o
var a = foo;
} catch (e) {
if (d)
a.b();

caught: foo is not defined

truthy (1)

Cannot call method 'b' of undefined
}

}

Figure 4.10: Exceptions occurring in the code are also reported. Ex-
ceptions that are later caught appear in yellow, uncaught exceptions are
red. If a loop or function or otherwise repeatable block of code produced
an exception its iteration selector will have a red border to indicate that
some of the iterations had an exception.

Display of Errors and Exceptions In addition to values
of assignments, iteration variables of loops/functions, con-
ditions of loops/conditionals, and parameters of functions,
we also display exceptions that occur. The backend catches
exceptions occurring in the evaluated code and reports
them back to the client. Our client then looks into the in-
formation about the exception and, if a line can be deter-
mined where it occurred (usually from the stack trace), it
will be displayed there similar to a normal value, but in
red. Otherwise the exception will be displayed as a global
exception overlaying other data in the preview. Exceptions
that are caught in the evaluated code are shown in yellow

(see Figure 4.10).

Since not all values are displayed all the time, but only
some selected iterations of loops and calls to functions are
displayed, not all exceptions are always visible. If an ex-

Long values are
abbreviated, both to
fit on the screen and
for performance
reasons.

Exceptions occurring
in the evaluated code
are caught by the
backend and
displayed in the
appropriate location
by the our UL.



44

4 Prototype

If an inner function
has an exception, the
outer function’s
iteration selector will
be red.

No value is being
shown for simple
expression
statements, that do
not assign a value.

As a workaround,
users can use
console.logto
display any value
they like in the
preview.

ception occurred in a function call that is currently not dis-
played, the error itself will not be displayed either. But the
iteration selector of the corresponding function will have
a red and thicker border to indicate that something went
wrong in one of the iterations (see Figure £.10). This is
also propagated through outer functions and loops, ensur-
ing that at least one iteration selector always shows a red
border if an uncaught exception occurred, which makes it
easier to find that exception.

Using console. log to Overcome Limitations In addi-
tion to the missing possibility to provide custom input val-
ues to functions, there is another limitation of our prototype
compared toHeinen's [2012]. In his version, a line with just
an expression (not an assignment) like theArray; would
print the result of the expression. This is something the
backend by [Belzmann [2013]] does not support, yet. The
problem here is that it is again ambiguous what should be
displayed for such an expression in general. Consider the
following code:

myObject.array.push(2);

What should be displayed here? Simply the return value
of the call to push? Or the changed value of myObject?
Most of the time the programmer would likely want to see
the new value of myObject .array. However, determin-
ing that would need a good heuristic and likely extensive
testing. Thus we decided to leave this feature out and pro-
vide a work-around: Whenever the user wants the pre-
view to show a value that is not shown by default he can
use console.log () (JavaScript's equivalent of printf
or System.out.println)and give the requested values
as an argument. It will then be evaluated and the result will
be shown in the preview in the line of the console. log-
statement. Using console. log to print a value in the pre-
view should be very natural to most programmers since
most of them use logging statements for debugging any-
way. Another workaround would of course be to just as-
sign a variable to itself, e.g. theArray = theArray;,
which would also prompt the Live Coding plugin to show
this value.



4.3 The Prototype

45

Again, this makes using a previously existing feature a bit
more laborious. But we are confident that the extra work
required is small enough not to prevent developers from
using it and we hope that in both cases—having to make
function calls explicit instead of just providing test input
and having to use console.log for outputting special
values—our version will have the advantage of forcing the
programmer to make their intent explicit.

Saving the Selected Iteration Through Code Changes
When discussing the limitations of |Heinen(s [2012] proto-
type we mentioned that the selected iteration is reset when
the code is re-executed. In our version the plugin tries to re-
member what iteration was selected in a loop or function.
We identify functions by their location, that is, the starting
line and column and the ending line and column. Since
only one function can be defined at any point in the source
code, this is a unique identifier. This unique identifier is
used as key in a map that saves the selected iteration for
each function across executions.

However, by changing the code, the location of a function
can change as well. Thus, when a previously selected itera-
tion for a function cannot be found we look for neighboring
function identifiers, i.e., functions that start or end in the
next or preceding line or column to the original function.
This way, our storing of selected iterations is robust against
most code changes except for ones where several lines are
changed at once. But, since the code is reevaluated on every
change to the editor, this should not happen too often.

We also differentiate between the displayed selected iter-
ation and the actually selected iteration. The actually se-
lected iteration can be much higher than the current num-
ber of iterations. When the selected iteration should be
displayed, the actually selected iteration index is coerced
into the range of the current iterations. This also makes the
saving of the iteration selector robust against code changes.
Imagine the following code:

for(var 1 = 0; 1 < 12; 1i++) {
// do something interesting

The selected
iteration is stored by
using the location of
a function.

Storage of the
selected iteration is
robust against minor
location changes of
the function.



46

4 Prototype

To achieve additional
robustness against
code changes the
selected iteration is
saved independently
from the displayed
iteration.

We added an
execution indicator to
show whether there
is still code running.

The developer now selects iteration 10, because something
interesting happens there. He then decides to change the
number of iterations to 22. To do so, he first deletes the 1,
which leaves him with the following code:

for(var i = 0; 1 < 2; i++) {
// do something interesting

Now the number of iterations is 2, so the displayed selected
iteration will be iteration 2 (with i=1), but internally the
selected iteration is still 10. Now he adds a second 2 in
front of the first, leaving him with the following code.

for(var i = 0; 1 < 22; 1i++) {
// do something interesting

The number of iterations is now 22, so the selected dis-
played iteration will be 10 again. This way, the loss of the
selected iteration index due to an intermediate code change
with a low number of iterations was avoided and the devel-
oper can continue checking their code.

Adding an Execution Indicator. Since our code evalua-
tion is now happening in the background and can poten-
tially take a long time or even never terminate, we decided
to add an execution indicator (see Figure[d.11). First, when-
ever code is executed in the background a busy indicator
is shown in the lower right corner of the IDE. In addition
to that, a similar busy indicator is shown in the line that
was last executed. This way, the developer can not only see
when a program runs longer than it should, in case of an in-
finite loop he can also detect which statements are executed
over and over again.

4.4 Changes to the Backend

To implement some of the functionality described above we
had to make some changes to the backend, since it did not



O 0 NI O Ul = W IN -

—_
o

4.4 Changes to the Backend

47

® 00 o justAFewAssignments.js — Brackets
x = new Date(); -01T17:07:42.647Z
while (new Date() - x < 3000) { truthy (true)

}
var y = new Date() - x; 1
Zeile 78, Spalte 26 *

86 Zeilen Leerzeichen 4

JavaScript

Figure 4.11: Long-running code that is currently being executed. A
spinning indicator in the lower right corner of the window shows the
current execution and another spinning indicator in line 78 shows that
this is the last line that was executed so far.

support all the functionality we needed.

Nested Functions The backend was already capable of
handling nested functions, but it would only tell the client
which function was entered, identified by the function’s lo-
cation. However, this is not always sufficient, especially in
a functional programming language like JavaScript. Con-
sider the following example:

function foo(a) {
return function bar () {
return a;

}

var £

foo (2);
var g = foo (3);
£0);
g();
g();

In this case the function in line 2 — 4 is executed three times,
but in two different versions. First it is executed in version
1, then twice in version 2. Obviously both versions have
the same location in the code but different semantics, so
we need to differentiate them. But it is impossible to know
how many different versions there will be at compile time,
so a static analysis is not possible. Therefore, we extended
the instrumentation of Belzmann(s [2013] backend to create
a declaration index for each function declaration and func-
tion statement and increase it whenever the corresponding

The location of a
function is not a
sufficient identifier in
the case of calls to
nested functions.

We extended the
backend to register
every defined
function and assign a
declaration index to
it, to make it uniquely
identifiable.



48

4 Prototype

We had to calculate
a source map to be
able to map the
locations of uncaught
exceptions to the
original code.

The source map
generation takes a
long time, so we do it
in an additional
background process.

function declaration/statement is encountered. This way,
we can now identify each version of the function uniquely
via its location combined with the declaration index.

Exception Display Although the backend already caught
exceptions occurring in the executed code, the location in
the stack trace of the error was given in the context of the
instrumented code. Since the backend adds quite a lot of
instrumentation code to the original code, the reported lo-
cation is quite different from the actual location. We solved
this problem by configuring the Escodegen? code generator
used in the backend to also create a source map when gen-
erating the code. The source map provides a mapping from
the location of a statement in the original code to the loca-
tion of the same statement in the instrumented code and
vice versa. It is then used to map locations in the instru-
mented code back to the original code; thus, translating the
location of the errors.

Since the creation of the source map takes a lot of time
(roughly as much time as the complete instrumentation and
code generation itself), we are spawning yet another pro-
cess for the source map generation. The process architec-
ture of the backend before and after our change is described

in Figure @}

Also, the backend would only catch exceptions in the
main execution, not any exceptions occurring in time-
out callbacks or otherwise asynchronous code. We
used Node.js®> error domains and supplied our own im-
plementations of setTimeout, setTimeInterval and
process.nextTick to catch and report exceptions in all
these cases.

JSON stringification By default, the backend uses the
JSON.stringify function to create string representa-
tions of all objects [Belzmann, 2013]. In addition, a de-

*https:/ / github.com/Constellation/escodegen

*Nodejs is a platform to build server-side applications with
JavaScript: http://nodejs.org/. The complete backend is written in
Node.js.


https://github.com/Constellation/escodegen

4.4 Changes to the Backend

49

(  Server )

Server
spawns
spawns \ 4
execution
A manager
code
execution spawns spawns
source map code
generation execution
old new

Figure 4.12: Our changes to the process architecture of the backend.
In the original version the server would spawn a new execution pro-
cess whenever it received code to execute. It then received data about
the execution from the execution process and relayed it to the client. In
the new version the server spawns an execution manager process which
simply spawns two more processes. One to execute the code and one to
calculate a source map from the instrumented code to the original code.
When it receives data from the execution process, it checks whether this
data has to be corrected for incorrect locations (e.g. in the case of un-
caught exceptions) and if so it uses the generated source map to correct
the location. If the source map generation is not done yet, it will buffer
the messages from the execution process and wait for the source map
generation to finish.

cycling library is used which replaces cycles in the object
tree by string references to the first occurrence of an ob-
ject. But we noticed two problems with this stringification.
Firstly, JSON.stringify ignores values such as null,
undefined, NaN, Infinity, and function objects which
could all be interesting to our Live Coding environments.
We therefore extended the stringifcation to include special
cases for these values. Secondly, the decycling of objects
can take a really long time. We tested our plugin by trying
to write a parser for the UIST 2012 conference program?*. It
is a simple 200kB HTML page. But after parsing, the cor-
responding jQuery object of the document object is really

*http:/ /www.acm.org /uist/uist2012 /program.html

JSON stringification
ignores several
important values like
undefined. We
corrected that.


http://www.acm.org/uist/uist2012/program.html

50

4 Prototype

Stringification of
large objects is really
slow, so we added
special cases for
some common large
objects, like
jQuery-objects.

We made sure a
“finished” message is
only sent when the
program has actually
quit.

large. The decycling of this one object alone took 20 seconds
on a state-of-the-art laptop and the resulting string repre-
sentation was 7TMB long, which added a considerable time
just for transferring the data to the client. Thus, we decided
to add a special case to the backend for jQuery and DOM
objects: In these cases we simply use the html-string as a
string representation, which is often orders of magnitude
shorter and much easier to calculate.

Execution management In the original version of the
backend, it would send a “finished” message when the
main part of the code was executed, even if a timeout was
registered that would only fire minutes later, so the applica-
tion actually was still running. We made use of the fact that
a Node.js process exits by itself when no timeouts or other
callbacks are registered anymore. We thus observed the ex-
ecution process and waited for it to quit. Only when it did,
did we send a “finished” message. This way, we were able
to reliably show to the user whether the code they wrote
was still executing.



51

Chapter 5

Study Design

In this chapter we describe the study we designed to eval-
uate the effects of a Live Coding tool on developers and
look at the errors developers make in general, whether us-
ing a Live Coding tool or not. We first highlight, why we
think a new study is necessary and why we developed a
high-fidelity prototype for this study. Next we describe the
tasks our participants had to solve and how we designed
those tasks. After that, we describe the IDE we used and a
custom extension we built to make it more comparable to
state-of-the-art IDEs in use today. In closing, our process
to advertise our study and find participants is explained,
followed by the procedure we used when conducting the
study.

5.1 Motivation for a New Exploratory
Study

Munzner|[2009] describes four nested levels for evaluating
(software) visualization design (see Figure[5.I). The outer-
most level is the domain problem characterization. Here,
the designer must learn about the target domain, the tasks
of the target users and the data they produce. The next level
is the level of data and operation abstraction design. On
this level a decision has to be made what data needs to be

Munzner|[2009]
describe 4 levels on
which a software
visualization tool can
and should be
evaluated.



52

5 Study Design

Design decisions on
inner levels depend
on outer levels.

In our case, we have
to determine the data
to visualize, since the

target domain is
clear.

domain problem characterization —=,
data/operation abstraction design v —
encoding/interaction technique design v
algorithm design v

Figure 5.1: The four levels of the nested model for designing and eval-
uating evaluations by |Munzner| [2009]. Reproduced from |Munzner
[2009].

visualized. On the third level, the visual encoding of this
data and the interaction of the user with the visualization is
designed and evaluated. The last level is the algorithm de-
sign level, which is concerned with the algorithm to use for
implementing this visualization and evaluating the (com-
puting) performance of the resulting system.

Munzner| [2009] explains that the design decisions of the
inner levels depend on the outer levels and failures in the
outer levels make great designs in the inner levels use-
less. For example, by choosing the wrong data to visualize
(level 2), even if the chosen visualization is great (level 3),
it won’t matter and the resulting system will still be useless
to the target users. In our case, the target domain is mostly
clear, our target user group are programmers implementing
some program functionality, especially while they are writ-
ing source code. The problems they face, and our prototype
should solve, are the problems producing correct programs
that do what they are designed to do. However, the data
that should be shown is not that clear. We assume that it
would be helpful to show the runtime state of the program
to the programmer, hoping that faults are more easily dis-
covered that way, which should make fixing the underlying
software errors easier as well. However, we do not know
what runtime data should be shown to the programmers,
so determining that should be the next step.

As we saw in Section most programmer research
looked into program understanding, and if they did look
at programmer’s errors they either looked at difficult to fix
bugs or only novice errors. Even if simpler errors were ob-
served, at most the frequency distribution was described,



5.1 Motivation for a New Exploratory Study

53

but information about how difficult to fix these actually
were or what information could have helped discovering
the errors, is missing.

Therefore, we think a new study looking at programmers’
errors is necessary. This study will try to achieve both an
exploratory approach, and a validating approach. On the
one hand, we will try to gather data that helps us under-
stand what errors programmers make, how long it takes to
fix them and how they fix different errors. On the other
hand, we are interested in measurable effects of Live Co-
ding tools, so we will try to enable some quantitative analy-
ses on the data as well, allowing us to compare Live Coding
users with a control group.

Usually, when developing a new tool, a small low-fidelity
prototype would be built, it would be evaluated, refined,
reevaluated and so on. The problem, in our case, is twofold:
Firstly, it is difficult to build a low-fidelity prototype for a
Live Coding tool. Of course, different visualizations can
be tested with users, e.g. by paper prototypes. But the es-
sential part, the liveness is hard to reproduce, since human
experimenters are too slow to properly replace a computer
in that case. For a system to appear live it should have a
response time less then 100ms [Nielsen, [1993]. We would
loose the feeling of complete liveness, but could likely keep
a feeling of direct interaction and mostly-liveness by filling
the waiting time with incremental updates and progress in-
dicators if we could keep the total response time on the or-
der of seconds. However, even that is most likely impossi-
ble to achieve for a human experimenter tasked with look-
ing at the code a participant produced and producing an
appropriate result. It would only be possible with highly
constrained tasks, which Munzner| [2009] says are inapt for
learning about the data the target users are interested in,
since real tasks could possibly make use of completely dif-
ferent data.

Secondly, Munzner| [2009] argues that the validity of a
tool on the data/abstraction level can only be properly
evaluated downstream, with a complete tool used by real
users on real tasks. Of course, that creates a chicken/egg
dilemma, since a poorly designed visualization could foil

We will try to
integrate both
exploratory and
validating
approaches into the
study.

Liveness is hard to
test using paper
prototypes.



54

5 Study Design

A decision on the
data abstraction level
can only be properly
evaluated using a
complete system
from the lower levels.
But designing a good
system on the lower
levels requires
proper data from the
upper level.

We tried to design a
simple prototype that
has all necessary
characteristics of a
Live Coding
environment.

While not able to use
true real-world tasks,
we tried to find tasks
that came very close
to being real-world
tasks.

the positive effects of a Live Coding tool with the correct
data chosen, but we cannot test different visualizations be-
fore we do not know what data to visualize and we can-
not test what data to visualize before we have a finished
tool to test with. Therefore, we decided to extend an al-
ready existing Live Coding prototype developed by Heinen
[2012], to make it usable for real-world tasks and be able to
analyze its usage in real-world-like settings. To avoid de-
signing a complicated visualization, which we could not
properly test due to time constraints and thus possibly de-
signing a bad visualization, we tried to design a very sim-
ple visualization following a ‘good-enough’ approach. We
also decided to show a lot of different data, on a high level
of detail, avoiding abstraction and provided the possibil-
ity to show more data on request using console. log (see
Section4.3.2—Using console.log to Overcome Limita
[tions{"). While this possibly shows more data than neces-
sary, we hope that this helps to show us what data is ac-
tually needed and used, and does not hide any data that
would be needed. Basically, we tried to design a simple
Live Coding prototype that has no major flaws and that has
enough of the characteristics of a Live Coding environment
to enable us to learn what effects on developers Live Co-
ding has.

5.2 Designing the Tasks

Munzner| [2009] also notes that for determining the nec-
essary data to visualize, target users should be observed
working on their own tasks, not on specifically designed
ones. We were not able to fulfill this requirement com-
pletely, since we wanted to achieve some comparability be-
tween participants, but we tried to choose tasks that could
have been given to programmers in the real world and
give them just a description about what has to be achieved
and then let them work on their own to implement the re-
quirements. We hoped this would give enough freedom
to the programmers to make the same errors they would
make when working on their own tasks, enabling us to see
what errors are common, how programmers go about fix-
ing them and which errors are especially difficult to detect.



5.2 Designing the Tasks

55

Since the previous work by Heinen! [2012] and Belzmann
[2013], on which we built our prototype, implemented Live
Coding for JavaScript, we did so as well. Therefore, we
also wanted to create tasks that used JavaScript as a pro-
gramming language, optimally ones that were familiar to
JavaScript programmers and representative of their normal
programming work. Then again, we did not want to de-
sign specific JavaScript tasks, but ones that could also be
implemented in other languages without a lot of difficul-
ties to enable them to be reused for evaluating other Live
Coding tools designed for other programming languages.
Following these design goals, we chose two areas which
seemed (a) relevant to JavaScript programmers and (b) gen-
eral enough to be relevant in other programming languages
as well: XML-parsing and date/time conversion. Out of
these two areas we created two tasks. We added a third
one that was clearly more academic, but which we hoped
could single out more programming-specific issues (in con-
trast to understanding a protocol, a library or simply find-
ing the right function to use): Implementing a basic algo-
rithm. This way we arrived at three different tasks.

We tested each of the tasks with an experienced program-
mer that did not know JavaScript (we explained it to them
before the task) to get an upper bound on how long par-
ticipants would need to solve the tasks and how difficult
it was. During the first test, the Live Coding plugin was
used, to rule out any major flaws. After that we refined
each of the tasks and tested each of the tasks with two fur-
ther participants, one using the Live Coding plugin and one
without the Live Coding plugin, again to help us estimate
the time needed to solve the tasks and further test our study
setup. The tasks were slightly refined after these two pre-
liminary tests again. The descriptions of the tasks, which
were given to the participants, can be found in Appendix

Al

Our tasks had to use
JavaScript as a
programming
language.

Other than that, we
tried to keep them as
generally applicable
as possible.

Before using the
tasks in the study we
tested them on
experienced
programmers to rule
out major flaws and
measure the task
duration.



56

5 Study Design

In the first task, out
subjects have to
download and parse
an RSS-feed.

Participants used an
XML parsing library.

There are two ways
of XML parsing:
DOM-parsing and
SAX-parsing.

5.2.1 Task 1.1: Parsing an RSS-Feed using a SAX-
parser

Parsing data and handling XML documents is likely a com-
mon task, especially in web development, but also common
in client-server-based programming. We wanted to have an
aspect of asynchronicity and tried to model the task to be as
believably a real-world task as possible. Thus, we decided
the XML file to be parsed should be downloaded first from
an HTTP-webserver.

An application where it is common to download XML files
from web servers is RSS, so we decided to make the first
task about RSS-parsing. We looked for an RSS-feed that had
a sufficient number of different cases that required slightly
different handling on the one hand but was still clean and
structured XML to not make it unnecessarily difficult for
developers on the other hand. A feed that fits this descrip-
tion is the RSS-feed of the weblog Daring Fireball. It only
uses 13 different tags, which makes it simple enough to un-
derstand it, but also uses CDATA-tags, data in attributes,
and tags that have a different meaning depending on what
tags they are nested in to make the task interesting enough
to not be trivial after one understood how to use the parser.

We did not want participants to write a complete XML
parser themselves, but instead they should use a parsing
library. We expect Live Coding to also have benefits work-
ing with unknown APIs, because they can simply be tested
to understand their, behavior possibly sparing a developer
from having to read the complete documentation. There-
fore, designing a task that required making sense of a li-
brary seemed sensible as well.

There are basically two big approaches to XML parsing:
DOM-Parsing and SAX-parsing. A DOM-parser reads in
the complete XML document and constructs the XML-tree
from it. After that, queries can be used to access the data in
the XML tree, often using specific query languages such as
XPath. SAX-parser do not read in the complete document

'http:/ /daringfireball.net


http://daringfireball.net

5.2 Designing the Tasks

57

to save memory. Instead, they post events whenever they
encounter an interesting element (e.g. a tag, or an attribute)
and the client application has to listen to these events and
decide what information to keep and what to ignore. This
is usually done by building a simple state-machine that
checks where in the tree the reported data element is and
decides whether it is worth keeping.

We were afraid that, had we used a DOM-based parser, par-
ticipants would simply spend most of their development
time constructing the correct query string to extract the data
they needed. While Live Coding could have some benefits
there as well, this could also be done using other means,
like a specific XPath query testing tool. We therefore de-
cided to ask participants to use a SAX-Parser. We selected a
popular Node.js library called sax-js?, to make sure that all
participants were using the same libraries to decrease the
variability of results from different participants.

Refining the Task

In a preliminary version of the tasks we asked participants
to also implement the HTTP client to download the XML
file from the server. We noticed that participants already
had several problems doing so and decided to remove this
part from the task to save time during the study. There-
fore, the participants receive a partial implementation that
downloads the XML file from the web server and already
initializes the parser with it. All the participants have to
do in the refined version is to register callbacks for the dif-
ferent events of the parser, extract the requested data, and
report it to the caller using a given callback function.

Expected Problems

We expect participants to make the following errors and
have the following problems during the task:

*https:/ / github.com/isaacs/sax-js

We did not want
participants to simply
choose an optimal
query, so we used a
SAX parsing library.

After noticing
problems with it, we
did no longer ask
participants to
download the XML
file themselves, but
provided the code to
do so.


https://github.com/isaacs/sax-js

58

5 Study Design

We predict several
problems we expect
participants to
encounter.

Date/Time
programming is often
complicated, partially

because of many
different time zones.

Another complication
comes from
inconsequential
implementations in
many frameworks.

e Problems with asynchronous callbacks and correct or-
dering of actions.

e Not initializing or not correctly resetting state-saving
variables.

e Incorrect filtering of tags of interest, since some of the
XML-tags have different meanings depending on the
context. E.g. the title-tag is being used for the title
of an entry but also to specify the title of the complete
feed.

e Finding out what events to listen to when trying to
receive a specific bit of data.

e Correctly interpreting and using the parser-API E.g.,
correctly understanding which arguments each of the
event-callbacks has.

5.2.2 Task 1.2: Date & Time Conversion

Most programmers have to deal with dates and times at
some point. Not only do many different time zones exist
which have a different amount of hours as offset to each
other, some of them even have half-hour offsets. In addi-
tion, the amount of offset depends on the time of the year,
because of Daylight Saving Time in many countries. To
make matters worse, the Daylight Saving Time switch does
not happen at the same time all over the world but on many
different days, again depending on the individual country.
Therefore, it is no wonder that programming using dates
and times is often very complex and even the Date/Time
libraries that are available are often complex to use.

In addition, with minutes and seconds usually being zero-
indexed but days and month being 1-indexed there is a lot
of potential for do-I-start-at-1-or-0-errors and with all the
offsets due to time zones there are many sign-errors possi-
ble (‘should it be +1 or -1?’). The JavaScript Date API makes
it especially easy to make errors, since days start at 1, but
months start at 0, a fact that most programmers probably
would not expect. In addition, when creating a new Date-
object by specifying a date and a specific time of day these



5.2 Designing the Tasks

59

values are interpreted in the local time zone, meaning the
resulting date depends on the system setting for the time
zone of the computer the code is executed on. And lastly,
the getter methods of Date-objects sometimes have confus-
ing names. E.g. getDay does not return the day of the
month, but the day of the week. To get the day of the month
getDate has to be used. In short, there is a lot of potential
for small and ‘stupid” errors when using such an API, so
we decided this would be an ideal task to see what kind
of errors developers make in this context and how they fix
them.

Since some developers might already know the JavaScript
Date API, but we expected several errors to originate from
a wrong mental model about how the API should work
(e.g. months starting at 0), we decided to provoke these
errors by providing our own mental model of how the API
should work that developers had to use. To do so, we spec-
ified a date object that a naive but reasonable programmer
might construct, but which is considerably different from
the JavaScript Date object.

e It let months start at 1, as is done in normal use.
o It specified all times in UTC.

o It specified a property called day that held the day of
the month.

e In addition, it referred to the time properties in sin-
gular (hour, minute, second), whereas JavaScript
refers to them in plural (getHours, getMinutes,
getSeconds).

The task now is to convert this kind of date object into a
correct JavaScript Date object representing the same date
and time.

Refining the Task

This task was originally part of Task 1.1, we split it up to
save time on task 1 and to make it possible for people to

Even some of the
getter methods in
JavaScript's Date
object have

confusing names.

To ensure a more
common starting
point for developers
we chose a date
format that differs in
almost any possible
way from the
JavaScript Date
object.



60

5 Study Design

This task was
originally part of Task
1.1, this is the reason

for it being named
Task 1.2.

We predict several
problems we expect
participants to
encounter.

During the third task,
participants had to
implement Dijkstra’s
algorithm.

work on the date time conversion even though they were
not able to complete Task 1.1. The general idea and moti-
vation for the participants is that they want to extend their
project from Task 1.1 by adding filtering by dates. Since our
design of Task 1.2 is a continuation of Task 1.1, we devel-
oped a complete solution to Task 1.1 up to the point where
Task 1.2 would start. Participants receive this example so-
lution to Task 1.1 as a skeleton of code for working on Task
1.2.

5.2.3 Expected Problems

We expected participants to make the following errors and
have the following problems during the task:

e Conversion from input months to Date months, since
the first starts at 1, the second starts at 0. Both noticing
that the conversion is necessary and then applying it
correctly (‘is it +1 or -1 month?’).

e Using the Date-constructor with UTC-values, not
knowing that it will interpret those in local time.

e Using getDay instead of getDate.

e Using singular versions of time getter-functions, in-
stead of plural or the other way round.

5.2.4 Task 3: Dijkstra’s Algorithm

As a third task we decided to ask participants to do a rather
pure computer science task: Implement an algorithm. We
did not want to use a sort algorithm, since this was already
done by |Heinen! [2012] and seemed too simple. In addition,
most programming languages provide built-in sort func-
tionality or at least have libraries to do so; thus, it is rare for
a programmer to actually have to implement his own sort-
ing algorithm. Instead we decided to use Dijkstrafs [1959]
shortest path algorithm as an example.



5.2 Designing the Tasks

61

Dijkstra’s algorithm is taught to each student at our univer-
sity in one of the basic computer science lectures and we
expect every experienced programmer to know it or be at
least able to understand it in a reasonable amount of time.
It is one of the simpler graph-based algorithms, yet we ex-
pect it to be complicated enough to provoke errors when
implementing it.

5.2.5 Refining the Task

The main challenge in designing this task was to come up
with a suitable data structure for the graph. We did not
want participants to decide for themselves what the data
structure should be like, since we were afraid that would
take too much time and we expected the difficulty of the
task to be strongly dependent on the data structure se-
lected.

One possibility to represent a graph is to represent each
node as an object that has a set of predecessors and pos-
sibly a set of successors, with each predecessor/successor
also being a node object. This way, each node object knows
the whole graph and can reach each other node, which is
a strongly object-oriented approach. But since each node is
connected to each other node, when our plugin tries to vi-
sualize such a node, it will always display the whole graph,
just starting at different nodes. Although the plugin will
recognize and show the circular references, such a visual-
ization is still likely very cluttered, since our prototype is
not designed to handle such situations. For this reason, we
decided not to use this representation, but one that encodes
the edges between the nodes more indirectly and affords a
less cluttered visualization.

Our first approach was to encode the graph with two lists
of objects (see Listing [5.I). One list of nodes, with each
node just having a name property, and one list of edges,
with each edge having a weight, a from, and a to prop-
erty, with the from and t o properties just being strings that
gave the name of the corresponding node. This way, there
was no direct connection between nodes or between nodes

The main problem
was finding a suitable
data structure.

An object-oriented
approach would lead
to display problems
with our plugin.



62

5 Study Design

Our first approach
was to encode all
nodes and edges in
two independent
lists.

On of our prestudy
subjects complained
that using this data
structure was
cumbersome, so we
changed it.

var graph = {

nodes: [{name: "a"}, {name: "b"}, {name: "c"},
{name: "d"}, {name: "e"}],
edges: [
{from: "a", to: "b", weight: 1},
{from: "a", to: "c", weight: 2},
{from: "c", to: "a", weight: 3},

{from: "c", to: "b", weight: 9},
{from: "d", to: "a", weight: 10},
{from: "d", to: "c", weight: 5},
{from: "c", to: "e", weight: 2},
{from: "e", to: "d", weight: 7},
{from: "e", to: "b", weight: 6},
{from: "b", to: "e", weight: 4}

i
Listing 5.1: Example of the first selected encoding of the graph in the
Dijkstra’s algorithm task.

and edge. To find all the successors of a node, a program-
mer had to search through the list of edges and look at those
edges that had the searched node’s name as a from prop-
erty. This is obviously more cumbersome than a direct con-
nection, but also not unrealistically complex, since graphs
are often encoded using adjacency matrices which are even
more abstract. We also hoped that this additional level of
indirection would provoke some more interesting errors.

When testing the task with one of our prestudy subjects,
they complained about always having to search through
the whole list of edges to find the corresponding succes-
sor node and proposed using key-value-maps for the en-
coding. Since every object on JavaScript is basically a key-
value-map of property names and values, which can be ar-
bitrarily added and removed at runtime, this seemed like a
sensible suggestion and we decided to change our task ap-
propriately. Therefore, the graph now has a nodes object,
which has a property for each node, with the name of the
node being both the property name and value (see the Task
description for Task 3 in Appendix [A). The edges are rep-
resented by a similar object. Again, it has a property key
for each node’s name, but the value is another key-value
map. This map has a property for each name of a successor
of the selected node. The value of the map is the weight of



5.3 Recruiting Participants

63

the edges between the two nodes. This way, the weight of
the edges between node "a" and "b" can be accessed via
graph.edges.a.b or if the nodes are saved in variables
x and y via graph.edges [x.name] [y.name].

We expected this change to make the code written easier
to understand, by making the connection between nodes
and edges a bit more direct, although not as direct as in
the object-oriented case. It also avoided the need to search
through the list of edges to find the correct one for the cur-
rent node. None of our additional two prestudy partici-
pants had problems with this task, but several of our ac-
tual subjects had serious problems understanding the key-
value-maps and correctly iterating over them using for-
in-loops (see Chapter[6). This was something we did not
expect to happen.

5.2.6 Expected Problems

We expected participants to make the following errors and
have the following problems during the task:

e Incorrectly calculating the new distance between
nodes.

e Incorrectly sorting the nodes by their temporary dis-
tance/selecting the wrong next node, due to incorrect
comparisons.

e Incorrectly iterating through all the nodes/edges, e.g.
stopping too early or producing infinite loops.

5.3 Recruiting Participants

We advertised our study in different ways. To recruit more
participants, we decided to pay participants €25 for their
participation, since we expected them to have to invest
around 3 hours on average to take part in the study. This

We now use a
map-based
approach, which
requires less code to
write but does not
neccessaily make
the code more
understandable.

We predict several
problems we expect
participants to
encounter.

We offered
participants €25 as
reimbursement when
they took part in our
study.



64

5 Study Design

We created a
website to advertise
our study and enable
subjects to register.

The website was
advertised in several
CS lectures, in the
CS building and via a
local developer
meeting.

We used a high-level
MacBook Pro from
2010 running either
Mac OS X 10.8 or
Windows 7.

is still a very low price for a skilled programmer, so we did
not expect participants to take part ‘just for the money’, but
hoped that we could motivate more people to invest this
much time.

We then created a website with a short introduction to the
tool and contact details. The website also included a short
list of self-test tasks to help potential participants determine
whether they had sufficient JavaScript knowledge to take
part in the study. However, passing this self-test was not
a requirement to take part, we simply wanted to prevent
inexperienced programmers from taking part in the study
and then stay there for many hours desperately trying to
solve the tasks. We did want the tasks to be somewhat chal-
lenging, but we did not want to overtax a participants abil-
ities.

The website’s URL with an accompanying short descrip-
tion of the study was advertised by e-mail to students of
our chair’s lectures and another chair’s lectures, which fo-
cused on web development. In addition, we distributed fly-
ers advertising the study in the computer science building
of the university and presented the study at a local devel-
oper’s meeting, to also recruit some professional develop-
ers. The participants that actually took part are described
inl6.1l

5.4 Study Setup

All participants used a MacBook Pro from 2010 with an
2.66GHz Intel Core i7 processor, 4GB of RAM and an SSD.
A 22" screen was connected to this MacBook Pro, which
was used as the main screen, but participants were free to
use the screen of the laptop to gain additional screen space.
Participants could choose whether they would like to use
Windows 7 or Mac OS X 10.8 as their operating system.
We enabled this choice since we expect programmers to
be highly accustomed to their respective operating system,
its specific shortcuts and keyboard layouts which differ in
small but important details. To prevent participants from
having to learn shortcuts and other practices in an unfamil-



5.4 Study Setup

65

iar operating system we provided both possibilities, which
was not a problem, since the Brackets runs on both Mac OS
X and Windows 7. It does not run on Linux, so we could
not offer that choice.

We also offered participants to tell us specific editor short-
cuts they usually used and we would then try to configure
those in Brackets. We provided a Mac hardware keyboard
with a US layout and a Microsoft hardware keyboard with
a German layout, which participants could choose from.
Both could be used with either operating system. We only
provided a simple two-button mouse with a scroll-wheel
but participants were free to bring their own mouse or key-
board and choose a virtual keyboard layout they liked (e.g.
Mac DE, or Win RU).

5.4.1 The Development Environment

The plugin we developed is a plugin for the Adobe Brack-
ets? IDE. It is a web development environment for HTML,
CSS and JavaScript, but we only made use of the JavaScript
editor. Brackets is still in development and currently re-
leased as a beta version. We used Sprint 24, which provides
many features expected of today’s IDEs, like syntax high-
lighting, auto completion, jump to definition, auto-closing
of braces and project-wide as well as file-based search. One
notable exception is the missing syntax checker.

Building a Continuous Compilation Plugin for Brackets

Brackets does have a JSLint plugin that checks the syntax
of the JavaScript source code. JSLint! is a syntax and style
checker developed by Douglas Crockford. It not only finds
syntax errors but also undefined references, bad style and
other problems in JavaScript source code. But the JSLint
plugin of Brackets only runs when the code is saved and
only displays a simple list of errors below the document.

*http:/ /download.brackets.io
*https:/ / github.com/douglascrockford /JSLint

Participants could
bring their own input
devices.

We used the web
development
environment Adobe
Brackets (Sprint 24).

The syntax checking
done by Brackets is
sub-standard and not
live.


http://download.brackets.io
http://download.brackets.io
https://github.com/douglascrockford/JSLint

66

5 Study Design

Comparing a Live
Coding environment
to an environment
without Continuous
Compilation would
be unfair and
unrealistic.

We therefore
developed our own
Continuous
Compilation plugin
for Brackets.

We use JSLint to find
the JavaScript errors.

Although it is possible to click on individual error messages
to jump to the appropriate location in the code, the error
messages are not displayed next to the errors and the code
is not checked live.

But Saff and Ernst|[2004] already reported that Continuous
Compilation improves programmer performance and Con-
tinuous Compilation with error reporting inline is a stan-
dard feature in today’s IDEs. We feared that we would not
be able to distinguish the effect of Continuous Compila-
tion, which is a requirement for Live Coding, from the effect
of Live Coding itself, had we compared Brackets with our
Live Coding plugin to a plain Brackets installation. Also,
we considered Brackets without Continuous Compilation
to be an unrealistic setting compared to other IDEs and
were afraid that our results might not be generalizable to
other IDE:s if it did not support Continuous Compilation.
Therefore, we decided to develop a Continuous Compila-
tion plugin for Brackets.

var a, b;

D4 a=2b-=73

Os "fo0"0;

0: a-c;

Q10 if (a===nNaN) { a=b;}
function foo(alreadyDefined) {

13 var alreadyDefined;
}
ONis a = {: 223;

Figure 5.2: Our Continuous Compilation plugin shows errors found
by JSLint inline in the editor. It displays an error indicator in the line
number column, underlines infringing code or displays an insertion
marker when something is missing. It distinguishes different levels of
seriousness of errors and indicates these by using different colors.

Our plugin makes use of the same JSLint backend already
used in Brackets, so it does not report other errors. How-
ever, it does improve the location information of the errors.
JSLint only provides a start location and even that is some-
times not completely correct. For example, a missing semi-



5.4 Study Setup

67

colon will usually be reported at the location of the next
token, which is normally in the next line or even further
away from the actual error location. For undefined refer-
ence errors, e.g. because of mistyped variable names, we
calculate the length of the variable name to then give a lo-
cation range of the error. These ranges are then used to un-
derline the infringing parts of the code (see Figure[5.2). The
plugin also knows that some errors mean that something is
missing and will display an insertion marker in these cases
instead.

In contrast to JSLint, which reports everything as an error,
even style warnings, our plugin distinguishes three levels
of errors and ignores style warnings, like how many spaces
there should be between an operator and a variable. Yel-
low errors are simply warnings, things like variables that
are declared twice. Orange errors are more serious warn-
ings, for which the syntax checker is pretty sure that some-
thing is wrong with the code, but the code will not crash.
Dark red errors are serious errors that either prevent the
code from compiling, the syntax checker from continuing
the checking process or will lead to a crash when the pro-
gram is run (e.g. an undefined reference). We also classified
missing semicolons as such serious errors although they are
often optional in JavaScript. We did so, since we expect pro-
grammers to usually want to have the semicolons, because
not having them sometimes does lead to an error. Also, this
way the error reporting is consistent with many compiled
languages in which semicolons are mandatory.

Q10 if (a ===

) {a=b;1}
Use theisNaN function to compare with

Figure 5.3: An orange error message. This code will still run and not
crash due to the error, but it most likely will not do what the program-
mer expects it to do. In this case the reason is that NaN === NaN is
false.

Clicking on the error indicators in the line number gut-
ter will toggle the display of the corresponding error mes-
sage(s) (see Figure 5.3). The error messages are aligned

We improve the
location reporting
done by JSLint and
use the new
locations to highlight
the infringing regions
in the code.

We filter out style
warnings and classify
the other errors into
warnings, serious
warning and errors.

Clicking on the error
indicator reveals the
error message.



68

5 Study Design

Our Continuous
Compilation plugin
reports a lot more
errors than a simple
syntax checker.

Brackets does not
have a built-in
debugger.

Thus, we built a
workaround to be
able to execute a

piece of source code

with a click of a

button.

with the error location columns to make it easy to see which
error messages belong to which error (see Figure[5.4).

D4 a=2b=73
Expected ';' and instead saw 'b'.
Expected ';' and instead saw 'foo'.

Figure 5.4: Two errors in the same line. The offset of the error message
is aligned with the error’s location to make the message bubble point at
the error and make it easy to see which message belongs to which error.

Our Continuous Compilation plugin finds a lot more er-
rors and problems with source code than a simple syntax
checker. This will make it more difficult for the Live Coding
plugin to have an advantage since many errors could the-
oretically be found by our Continuous Compilation plugin
(e.g. mistyped variable names). We see this as an advan-
tage of our study since it should make it easier to identify
those kinds of errors Live Coding can help to fix that exist-
ing tools like static analyzers are not useful for.

Providing a Debugger

Brackets does not have a debugger built in and does not
have a button to execute and debug the currently displayed
code in an external debugger. Node.js code is usually exe-
cuted using the node command line tool. But this meant
that participants would have to start a command line in-
terface and execute the node tool with the path of the file
every time they wanted to run the code, which is quite cum-
bersome. We therefore wrote a shell-script for each of the
tasks that executes the source code of that task and displays
the results and any errors. These shell-scripts were put on
the desktop, so they could be executed with one click by the

participants (see Figure[5.5).

Another important part that is missing from Brackets,
which other IDEs usually have, is a graphical debugger.
While the node command line tool provides command line



5.4 Study Setup

69

debugging functionality, it does not have a graphical inter-
face that allows the user to see the whole code and step
through it, set breakpoints in interesting lines and quickly
glance at current variables on the stack. However, the
node-inspector’ command line tool can attach to the
default node debugger and provide a debugging interface
that can then be used by any graphical debugger adher-
ing to a specific remote debugging protocol. One debugger
that implements this protocol is the built-in Chrome debug-
ger, which can then be used to debug Node.js programs us-
ing a graphical interface. To prevent participants from hav-
ing to individually start node, node-inspector, and the
Chrome debugger, we wrote a second set of shell scripts to
combine all of these actions. Now participants can start a
graphical debugger or execute the code with the click of a
button, as it should be for a modern IDE (see Figure .

el

runtask run run task 3.sh «
1-1.sh taskl-2.sh

. . .

debug- debug- debug-

task1l-1.sh task1-2.sh task3.sh

Figure 5.5: Since Brackets does not have functionality to execute or
debug the displayed code we provided two command line programs for
each task. One (top row) to just execute the corresponding code and
one (bottom row) to debug the code. The debugging shell script would
start the program to debug and attach a debugger to it to then start
the Chrome debugger interface which would be attached to the running
debugger to provide a graphical user interface for the debugging session.

Both of these additional tools, the debugging shell scripts
as well as the Continuous Compilation tool were available
to both groups of participants. So there was no difference

*https:/ / github.com /node-inspector /node-inspector

We used
node-inspector
to provide a
graphical debugger
to our participants in
the same way.

Participants can
execute shell scripts
with the click of a
button to debug or
execute their code.


https://github.com/node-inspector/node-inspector

70

5 Study Design

We recorded the the
screen of all
participants and
video and voice of
participants who
opted in.

In addition, we saved
every change
participants made to
the source code.

First, we explained
the study process
and goal to
participants.

between Live Coding participants and non-live coding par-
ticipants, except for our Live Coding plugin. Also, partici-
pants could completely ignore the plugin and program and
debug the old-fashioned way, if they so wished.

5.4.2 Monitoring

To have multiple ways of analyzing how developers
worked on our tasks we recorded their behavior in differ-
ent ways. Firstly, we recorded the screen using a screen
capture software. On Mac OS X we used Silverback?, on
Windows we used Camtasia Studio’. Both tools were run
with a high frame-rate since we wanted to be able to fol-
low the movement of mouse pointers and see typing er-
rors. Also, if participants consented, we recorded the voice
and face of participants to be able to interpret their reac-
tion when working on a problem. To make the analysis of
the coding behavior itself easier, we also saved a version of
the source code whenever the content of the editor changed
and recorded the timestamp. This way, we can later look at
questions like how many changes did developers make on
average, how many versions of the produced source code
actually compiled, for how many versions did a particular
error persist, etc.

5.4.3 Procedure

When participants arrived we explained to them the aim of
the study and asked them to fill out a consent form. We ex-
plained to them that we would record the code they wrote
and record the screen during the study. We also asked
them for permission to record their face and upper body
and their voice to make it easier for us to understand what
they were doing or why they were having problems, but
explained that this was optional and they were free to deny
either or both of those requests.

®http:/ /silverbackapp.com/
"http:/ /www.techsmith.de /camtasia.html


http://silverbackapp.com/
http://www.techsmith.de/camtasia.html

5.4 Study Setup

71

Next, we gathered some statistical data about them, like
their age, their programming experience and how many
hours they program per week, on average. We then ex-
plained the Brackets IDE to them including the extra tools
we provided, like the Continuous Compilation plugin, the
debugging scripts, and, if appropriate, the Live Coding
plugin and asked them to try out the different tools on a test
project. This was also used to check whether the keyboard
layout was set up correctly and everything else worked as
they expected.

After this setup was done, participants were given the first
task. Since Task 1.2 depends on Task 1.1 it was always given
to them after Task 1.1. But other than that, the task order
was counterbalanced with half of participants starting with
Task 1.1 and Task 1.2 and half of participants starting with
Task 3.

There was no time limit for the tasks and participants were
informed of that fact and it was explained to them that they
could just quit a task without any consequences and con-
tinue on the next one, at any point in time. If participants
took considerably longer than expected, the experimenter
would ask whether they would like to quit, but made it
clear that it was entirely their decision and they were free
to go on. This was done to make sure that participants used
the possibility to give up on a task if they were really stuck
and did not continue just because they were afraid to ask
for the next task. Also, participants were allowed to take
breaks at any point in time, but were asked to do so be-
tween the tasks, if possible.

Participants were asked to work on the task as they would
normally work on their own programming tasks. They
were allowed to use the internet and even copy snippets
of code, if they liked. The experimenter explained to the
participants that they were welcome to think aloud and ex-
plain what they were doing or what they were thinking
about, but they were not required to do so.

Before each task, participants were asked to fill out a ques-
tionnaire to assess their knowledge of topics required in the
tasks (see Appendix|B.1) and after each task another ques-

We then explained
the tools to the
participants.

There was not time
limit for the tasks,
participants were
asked to decide for
themselves when
they wanted to stop.

Participants were
asked to work on the
task as they normally
would work on a task
of their own.



72

5 Study Design

After the study and
before and after each
task participants had

to fill out a short
questionnaire.

tionnaire was given to them to measure the subjective diffi-
culty of the task and ask for any problems they encountered
(see Appendix [B.2). After all three tasks were completed
an additional questionnaire was handed to the participants
which asked for feedback about the tool. This questionnaire
included the 10 questions of the SUS by Brooke| [1996] and
an additional 8 of our questions (see Appendix|[B.3).



73

Chapter 6

Evaluation

In this chapter we will describe preliminary results from
our study. We were not able to look at all the data we gath-
ered, due to time constraints, but will report what we found
so far. First, an overview of our participants is given. Next,
we look at the study itself and show that it fulfilled its de-
sign goals as far as we can tell, but will also highlight some
problems. Last, we look at differences between Live Co-
ding participants and participants in the control group.

6.1 Participants

We were able to recruit 13 mostly experienced developers
between the age of 19 and 51 (median: 26 years) of which
only 2 were female. 7 of them used our Live Coding plugin
during the study, for all tasks. A short overview of the pro-
gramming experience of our participants is given in Table
All participants had more than 4 years of programming
experience, except for one, who only had about half a year
programming experience, but also worked with JavaScript
during that time (median: 9.0 years). 3 participants stated
they had no prior JavaScript experience. Out of those, one
only head a lecture including JavaScript, so they just knew
the theory; one used it for a short time and then decided to
use CoffeeScript instead, a modified version of JavaScript

We were able to
recruit 13
participants with a
median age of 26
and all except one
having more than4
years of
programming
experience.



74

6 Evaluation

Some of our
participants did not
have JavaScript
experience, but they
many years of
programming
experience, so we
did not expect this to
be a problem.

Almost a third of our
participants were
students, but most of
them being in senior
years or close

Half of participants
used Mac OS X and
half used Windows.
Some brought their
own input device.

that compiles to JavaScript code; and one simply never
used JavaScript before. Only 4 of the participants had used
Node js before, but since there are no important differences
to web-based JavaScript development in our tasks, we did
not see this as a problem. All of them had sufficient pro-
gramming experience (5, 13 and 13 years), so we did not
expect them to have problems because of a slightly unfa-
miliar language. Our participants programmed between 3
and 40 hours per week, except for one who said he did not
currently spend time programming (median: 10 hours).

Standard
Median | Mean | Deviation
Age 26 28.1 7.9
Programming Exp. (years) 9 11.6 8.8
JavaScript Experience (years) 2 3.5 4.8
Programming per Week (hours) 10 13.6 11.5

Table 6.1: Programming experience and age of the 13 participants of
our study.

All 13 subjects had studied Computer Science, a related
subject (such as software engineering), or were doing so at
the time. 8 of them were still studying computer science
or a related subject for a Master or Bachelor degree, 2 were
doing their PhD, one was working as a post-doctoral re-
searcher and 2 were professional software developers (see

Table[6.2).

Count | Percent

Student 8 61.5%
PhD Student 2 15.4%
PostDoc 1 7.7%
Software Developer 2 15.4%

Table 6.2: Occupations of of our subjects.

7 of the participants did the study with Mac OS X 10.8,
6 with Window 7. A US keyboard layout was used by 9
participants, 4 used a German one. 1 participant mainly
used the US keyboard, but sometimes switched to other,
which we counted as simply using the US keyboard lay-



6.2 Evaluating the Study

75

out. All but one participant used the two-button mouse we
provided, one brought his own Magic Trackpad and one
participant brought his own keyboard.

6.2 Evaluating the Study

We asked participants several questions to determine how
well the study achieved our design goals. After each task,
participants were asked how difficult the task was for them,
the results are shown in Figure After the session we
gave a SUS [Brooke, 1996] questionnaire to participants us-
ing the Live Coding tool, to check whether it was good
enough to be usable.

6.2.1 Tasks

Participants thought that Task 1.1 was not difficult. ~Al-
though two participants were not able to complete it, only
one participant thought is was difficult. But since 5 partic-
ipants also were neutral, we think the Task 1.1 was not too
easy, either.

The results of Task 1.2 are particularly interesting. No par-
ticipant simply agreed or disagreed when asked whether
the task was difficult. They were either neutral, strongly
disagreed or strongly agreed. This could indicate that there
were a few big problems in the tasks some participants
could solve easily and others could not. With almost half
of participants strongly disagreeing with the task being dif-
ficult, we are confident that is was not too difficult for most.

Task 3 seems to be the most difficult one, which is also sup-
ported by the fact that 4 participants were not able to solve
the task. But even more agreed that the task was difficult.
Still, 3 participants thought the task was not difficult, and
4 were neutral, which we interpret as the task not being
too difficult. While we did not look at the errors partici-
pants made in detail, yet, we noticed during the study that

Task 1.1 was not
considered difficult,
but neither easy.

Task 1.2 had mixed
results, but almost
half of students
found it to be easy.
Two found the task
very difficult.

Task 3 was judged
the most difficult one.



76

6 Evaluation

Count
g

il

0 ainlls

Slrongly D|sagree Neulral Agree Slvongly Slrongly Dlsagree Neulral Agree Slrongly Strongly Disagree Neutral Agree Strongly

Disagree gree sagree

The Task was difficult for me. The Task was difficult for me. The Task was difficult for me.
Task 1.1) (Task 1.2) (Task 3)

Figure 6.1: Histograms showing how difficult participants thought the tasks were. Task 1.1 seems
to be the easiest, Task 1.2 produced mixed results and Task 3 was considered to be the most difficult

by participants.

We used the System
Usability Scale to
check whether our
plugin had any major
flaws.

several participants had problems understanding the algo-
rithm correctly and many participants had problems un-
derstanding how to iterate over the properties of the graph
object correctly.

We also recorded how much previous knowledge partici-
pants had of the task domains. The results are shown in
Figure As we expected most participants had previ-
ous knowledge in the domains, e.g. XML-parsing or pro-
gramming using dates and times. However, while 7 partic-
ipants had implemented Dijkstra’s algorithm before at least
once as an exercise, 6 stated they never implemented it so
far. This was a higher percentage than we expected and
might have been part of the problem participants had with
Task 3. Originally, we expected that participants would just
implement an algorithm they had implemented before and
would only needed a refreshment how it worked.

6.2.2 Tool Quality

The System Usability Scale is a “quick and dirty” question-
naire to get a usability rating for any kind of interactive sys-
tem [Brooke, 1996]. It can be used to compare two similar
versions of a system [Bangor et al.,[2008] but it is question-
able whether it can be used to compare two very different
systems. It certainly cannot be used to judge whether a
system is good for the problem it was designed to solve,
since none of the questions in it address whether it actually



6.2 Evaluating the Study 77
Task 1.1 Task 1.2 Task 3
Alot of G : | Very often /
Experience | Regularly
I
|
H D :
_ ° * ) L
2 I
I
I
! D
. f— 1 * -
I
I
I
I
K |
y * | —Once
I
I
I
I
NP e ! — —Never
Experience . . : ] . p— . -
m m m om m >m 3= 3z
3 3 3 23 3 a3 3 353
e e g 82 e 22 °5 ses
o ) o 3o > EXy =2 2=
23 33 2 a2
£ s £ o= s s g 33
= = = o= = = )
= = > &5 = = ‘3“ —‘3‘7
x x s T = o) z 53
= 2 5 33 3 = Q Ta
~ ~ @ g ° 3 =
o » 25 e z = 28
» 3 @ a8
2 Z 3 A 3 5%
é x 3 3 5 S 32
@ g 3 a o " 35
8 s > 3 2 fag )
= @ & ° Q cQ
3 S 7 2 29
= o = © =
5 8 3 83
3 g 3

Figure 6.2: The previous experience of participants in the task domain. Most participants had ex-
perience in using and parsing XML, but only a few had experience with SAX parser. All participants
stated they had at least some experience programming with Dates/Times/Calendars. Regarding Task
3, all participants stated they had experience implementing algorithms and most also said they had
experience implementing graph-based algorithms. More than half of participants said they had im-
plemented Dijkstra algorithm before, but for most it was just an exercise since only one participant

actually implemented Dijkstra’s algorithm in a real application.

helped the user solve their problems or supported them in
their task. But if a system achieves a sufficiently high SUS
score we can rule out any major usability flaws and this is
what we use the SUS for in our case.

After participants that used our Live Coding tool were
done with all three tasks, we gave another questionnaire
to them (see Appendix [B.3), containing the 10 questions of
the System Usability scale. We explained to them that “the
system” meant just the Live Coding tool, not the complete
Brackets IDE and they should answer the questions accord-
ingly. The results are shown in Figure

The mean SUS rating of our participants for the Live Co-



78

6 Evaluation

Our plugin achieved
a SUS score of 81.4
which is good.

100

80

607 =L

Mean Rating

40

207

T T T
SUS Result SUS Usability SUS Learnability
Error Bars: 95% CI

Figure 6.3: Error bars for the SUS Ratings of the 7 participants using
our Live Coding plugin. On the left the mean rating for the complete
SUS rating is shown. We also show the Usability score and Learnability
score postulated by |Lewis and Sauro|[2009)].

ding tool is 81.4 with a minimum rating of 70. Bangor et al.
[2008] analyzed the SUS in detail with many different prod-
ucts and participants. They describe acceptable systems as
reaching a score above 70 (our lowest rating) with “better
products scoring in the high 70s and upper 80s” [Bangor
et al., 2008, a range our mean score falls into. We therefore
conclude that our implementation of the Live Coding plu-
gin has no major usability flaws. We would like to point out
again that this still does not mean that it solves any mean-
ingful problems, but whatever it does, it does in a good and
usable way.

6.3 Evaluating the Live Coding Tool

After checking that our study did not have any major flaws,
such as an ill-designed tool or tasks that were strictly too
easy or too difficult, we will now look at the remaining re-



6.3 Evaluating the Live Coding Tool

79

sults of our study to see whether we can find any advan-
tage of a Live Coding tool. To do so, we will first look at
some qualitative results and identify some trends there. Af-
ter that, we check whether we can find any kind of support
for these trends in our quantitative results.

6.3.1 Qualitative Results

We included eight questions in the post-session question-
naire designed to find out whether the tool was considered
to be helpful by participants. They can be found as ques-
tions 11-18 in the post-session questionnaire in Appendix

B.3l

4 —— 4
3] 3
T
=}
8 2 o
| ’_‘ | ’_‘
0 T T T T T 0 T T T T T
Strongly Disagree Neutral Agree Strongly Strongly Disagree Neutral Agree Strongly
Disagree Agree Disagree Agree
Q11: | found understanding the Q12: I do not think the plugin has
source code easy using the system. benefits for code understanding
(compared to Brackets without the

plugin).

Figure 6.4: All participants except one were convinced that the Live
Coding plugin improved their understanding of their source code. The
one participant, who did not find understanding his source code easy
still strongly disagreed with Question 12.

Regarding benefits to understanding what their own code
does, all but one participants agreed that they found under-
standing source code easy when using the system (see Fig-
ure[6.4). The one participant that strongly disagreed also
strongly disagreed when we suggested that the plugin had
no benefits for code understanding. Thus, he thought that
the tool improved his understanding of the source code, but
it was still difficult to understand. All other participants,
except for one in Q12, also disagreed or strongly disagreed

Almost all
participants were
convinced that the
tool helped them
understand their
code.



80

6 Evaluation

Q4: | understand what the code | wrote does exactly and why it works

Control

(or doesn't).

Live Coding Control Live Coding Control Live Coding

Strongly Agree]|

Agree|

Neutral—|

Disagree|

Strongly Disagree—|

Task 1.1

T
123 456 6 5432101234586 6 543210123456

Task 1.2 Task 3

Figure 6.5: Participants answers to Question 4: “I understand what the code I wrote does exactly
and why it works (or doesn’t).” The results are quite similar between the two groups.

But there are no
significant
differences in code
understanding
ratings between
participants using the
Live Coding tool and
our control group.

Every single Live
Coding participant
thought the tool
improved their
confidence in their
code.

when we suggested the tool had no benefits for code un-
derstanding.

To further understand the relationship of the tool to un-
derstanding their own code, we also asked all participants
whether they thought they understood their code exactly
(see Figure[6.5). Overall the answers are quite similar be-
tween the conditions. While the Live Coding participants
were slightly more confident of their code understanding in
Task 1.1 and 1.2 than the participants of the control group,
they were actually slightly less confident in Task 3. None of
those differences were significant by a Mann-Whitney’s U
test.

When asked whether they could complete their tasks faster
using the plugin, results are similarly positive (see Figure
[6.6). All but one were convinced that the plugin made them
faster and not a single one doubted the speed improve-
ment.

Results for improved confidence are even better: Every sin-
gle participant stated that the plugin increased their confi-
dence in the correctness of their code (see Figure |6.7). Of
course, that does not mean, that their code was actually
better, it could even be possible that it was worse and they
were still more confident that it was good. We also asked
all participants after each task how confident they were that



6.3 Evaluating the Live Coding Tool

81

Count

T T T T T T T T T T
Strongly Disagree Neutral Agree Strongly Strongly Disagree Neutral Agree Strongly
Agre

Disagree Agree Disagree gree
Q13: | think implementing Q14:1 think | would have been faster
functionality is faster using the or just as fast when implementing
plugin (compared to Brackets the functionality without the plugin.

without the plugin).

Figure 6.6: A majority of the participants was convinced that the Live
Coding plugin helped them solve their tasks faster.

51 5] —
4 — 4
S 34 3+
o
(@]
2- 2
1 1
0 T T T T T 0 T T T T T
Strongly Disagree Neutral Agree Strongly Strongly Disagree Neutral —Agree Strongly
Disagree Agree Disagree Agree
Q15: | felt more confident that my Q16: Using the plugin did not
code is correct because of the increase my confidence in the
plugin. correctness of my code.

Figure 6.7: Every single participant said that the tool improved their
confidence in their own code.

their solution is correct (see Figure[6.8). The distribution for
Live Coding and control group participants for Task 1.1 and
Task 1.2 seem to be almost identical.

However, for Task 3, suddenly a lot more participants were
not confident that their solution is correct. As described
in Section 4 participants were not able to solve Task
3; 2 with Live Coding and 2 without Live Coding. But
4 of the Live Coding participants were not confident that
their solution is correct and only one of the control group
participants was not confident. That means, one control



82 6 Evaluation

Q6: | am confident that my solution is correct.

Control Live Coding Control Live Coding Control Live Coding

Strongly Agree—| i M r
Agree| M M r
Neutral—| M M r

Disagree—| f ! r

Strongly Disagree—| H M r

Task 1.1 Task 1.2 Task 3

Figure 6.8: Most participants were confident that their solution is correct. The differences between
Live Coding participants and the control group are minor for Task 1.1 and 1.2. However, in Task
3 several Live Coding participants were not confident that their solution was correct. Still, the

difference between the Live Coding group and the control group is not significant.

However, the
difference in
confidence between
Live Coding and
control group could
not be confirmed by
the post-task
questionnaires.

If there was a
difference, even
more Live Coding
participants were not
confident of their
code., contradicting
their answers to
question 15/16

group participant, who did not complete the task, was still
confident their solution was correct. This might be due to
the fact that they gave up on the task for time reasons but
thought their solution up to now was correct. Also, two
Live Coding participants were not confident that their so-
lution was correct although they did successfully complete
the tasks and made at most minor mistakes.

The fact that more Live Coding participants were not con-
fident of the correctness of their solution than participants
in the control group seems to contradict the statement of
Live Coding participants that the tool increased their con-
fidence in their code. To assess whether the difference for
Task 3 is significant we ran a one-tailed Mann-Whitney’s
U test, which revealed no significant difference (U = 15,
2= —0.939, p = 0.2).

We also looked at a similar, slightly weaker correctness
statement: "I was able to implement most of the require-
ments". The results are shown in Figure They are
largely similar to the correctness question, but do not have
the anomaly in Task 3. Generally the distributions of an-
swers are quite similar for both conditions in all three tasks.

Of course, showing more data to developers could also be
distracting, so we asked for that as well. A few participants
thought the tool was distracting, but the majority did not
find it distracting.



6.3 Evaluating the Live Coding Tool 83

Q5: | was able to implement most of the requirements.

Control Live Coding Control Live Coding Control Live Coding
Strongly Agree—| M M r
Agree| H H L
Neutral—| M M -
Disagree—| M M r
Strongly Disagree—| M M r
L I S S S S B I B S I P I B S P B B R P I B
Task 1.1 Task 1.2 Task 3

Figure 6.9: Most participants thought they were able to implement most of the requirements. The
differences between tasks and conditions are only small.

4 4 o
3 3]
<
>
8 21 .
| ’_‘ ’_‘ | ’_‘
0 0 T T T T T
S(rong\y Dlsagree Neutral Agree Strongly Strongly Disagree Neutral Agree Strongly
Disagree Disagree Agree
Q17: 1 found the plugin distracting. Q18: The plugin did not distract me

when | did not need it.

Figure 6.10: One participant found the tool distracting and 1-2 par-
ticipants were not sure, but the majority did not find the tool distract-

ing.
Q2: The tool helped me solve the task.
3 ] 3 1 1 37 1 [
2 2 2+ 2
>
o
(&)
1 1 ’—‘ 1
0 T T T T T 0 T T T T T 0 T T T T T
Strongly Disagree Neutral Agree Strongly Strongly Disagree Neutral Agree Strongly Strongly Disagree Neutral Agree Strongly
Disagree Agree Disagree Agree Disagree Agree
Task 1.1 Task 1.2 Task 3

Figure 6.11: Only one participant said that for one task the Live Coding plugin did not help
him. All others were convinced it helped them solve the task or were unsure. There are only small
differences between the tasks.



84

6 Evaluation

Count

Q3: | would have solved the task just as fast without the tool.

S 4 4 S

00_gg/

T T T T T T
Strongly Dlsagree Neutral Agree Slrongly Strongly Dlsagree Neulral Agree Strongly Strongly Disagree Neutral Agree Strongly
gre:

Disagree

Disagree

Task 1.1 Task 1.2 Task 3

Agree

Figure 6.12: Most participants agreed that the Live Coding plugin helped them solve the task
faster. Only for Task 1.2, some disagreed.

Most participants
found the tool helped
them solve the task.

We also wanted to see whether the helpfulness of the tool
depended on the task, so we asked some question in that

direction after each task. The first question we asked was
whether the tool was helpful at all (in whatever way). Al-
most all participants agreed with that statement, although

some were unsure, especially for Task 1.1 and one partici-
pant said it did not help him in Task 1.2 (see Figure [6.11).
Overall, the differences between the tasks are rather small.
Question 3 gives similar results (see Figure[6.12). Two par-
ticipants said they would have solved Task 1.2 just as fast
without the tool, but everybody was convinced they would
not have solved Task 3 as fast without the tool. Only one
participant is unsure for Task 1.1, everybody else thinks
they would not have solved Task 1.1 as fast, had they not

had the plugin.

6.3.2 Task-Based Quantitative Evaluation

As mentioned in Chapter f—Study Designl’, we moni-

tored the changes a participant made to the file and of
course also the time they took. We will now look at some of
this data to see whether we find a difference between par-
ticipants who used a Live Coding plugin and those who

did not.



6.3 Evaluating the Live Coding Tool

85

Task Correctness

Most participants were able to solve the tasks, but some
gave up. 4 participants gave up on Task 3, half of those
were participants using our Live Coding plugin. For Task
1.1, two participants gave up, one of them a Live Coding
user and for Task 1.2 only one participant of the control
group was not able to complete the task. So overall, there
were no differences in the ability to solve the tasks between
the two groups.

Task Completion Times

We measured the task completion time as the time from the
participant deciding to start working on the task (after hav-
ing read and understood the task description, usually when
they started to write code) to the time when they decided
they were finished or gave up. The mean times and stan-
dard deviations can be found in Table 6.3 and Figure [6.13]
shows error bar charts for the different tasks and condi-
tions.

150,00—_ Livecoding
ONo
O Yes
i I No
100,00 I Yes
c ]
©
o B
=
50,007 } %
0,00 T T T
Task 1.1 Time (min) Task 1.2 Time (min) Task 3 Time (min)

Error Bars: 95% Cl

Figure 6.13: Error bar charts for the task completion times of the
participants in different tasks and conditions. Participants in the Live
Coding condition were slightly faster in each task, but the differences
between participants are very big.

Looking at the values and the error bar chart, we directly
see that the difference between participants is very large.

There was almost no
difference in task
correctness between
the two groups.

Task completion time
is measured from the
participant having
understood the task
to them completing
the task or giving up.



86

6 Evaluation

Live Task 1.1 | Task 1.2 | Task 3

Coding | Time (min) | Time (min) | Time (min)

Mean No 91.33 41.25 71.17
Yes 79.00 31.71 56.36

. No 75.5 47.0 58.0
Median Yes 82.0 25.0 50.0
Standard No 40.24 20.46 29.34
Deviation Yes 34.39 22.21 26.48
Min No 50.0 13.5 41.0
Yes 23.0 12.0 17.5

Max No 152.0 63.0 110.0
Yes 122.0 78.0 103.0

Table 6.3: Table showing a summary of the task completion times
of our participants. For almost all cases (mean, median, min, max)
the times for the Live Coding participants are shorter than those of the
control group. However, they are often close, such for Task 1.1 although
the mean task completion time is shorter for the Live Coding condition,
the median task completion time is actually higher. Also the standard
deviations are very high, often almost reaching 50% of the mean with
the differences between the means being much less than that.

While Live Coding
participants seem to
be slightly faster in
solving the tasks, this
difference is not
significant.

While the mean task completion times between the con-
ditions differ by up to 15 minutes or 25% and is always
in favor of the Live Coding condition, the standard devi-
ation in all cases is much higher than that, reaching up to
50% of the mean in some cases. We checked whether any
of the differences were significant using a mixed-design
ANOVA with the task as a repeated measure and Live Co-
ding as a between-groups condition. We found no signifi-
cant main effect for Live Coding on task completion times
(F(1,11) = 0.86), but found a significant main effect of the
task (F'(2,22) = 16.48,p < 0.001). Not even the interaction
between task and Live Coding had a significant effect on
task completion times (F'(2,22) = 0.048). We also looked at
just those participants that were able to complete all tasks
successfully, but the results were similar with only the task
having a significant main effect.



6.3 Evaluating the Live Coding Tool

87

Number of Changes

As mentioned before we also recorded all the changes a
participant did to the source code. We will now check
whether using the Live Coding plugin had a significant ef-
fect on how many changes a participant made. The distri-
bution of the number of changes of the participants is de-
scribed in Table [6.4| with an accompanying error bar chart

in Figure[6.14}
Task 1.1 | Task 1.2 | Task 3

g(:,c?ing gklllmber of | Number of | Number of

anges Changes Changes
Mean No 2060 659 1369
Yes 2135 876 1680
. No 2030 626 1392
Median Yes 2012 718 1757
Standard No 692 274 477
Deviation Yes 634 669 455
Min No 1322 328 741
Yes 1273 238 850
Max No 3134 1100 2072
Yes 3218 2143 2185

Table 6.4: Table showing a summary of the number of changes of our
participants. The number of changes is mostly similar within one task
and does not change much between the conditions. A notable anomaly
is the large standard deviation in Task 1.2 of the Live Coding condition.
It is caused by a single participant, who did more than 2000 changes
while the participant with the second-most changes (of all participants)
only did 1185 changes.

Overall the number of changes are rather similar and do not
differ much between the conditions, although there seems
to be a very small trend to more changes in the Live co-
ding condition. However, the number of changes does dif-
fer a lot between the different tasks, like the task comple-
tion times did. Testing the differences with an ANOVA
again does not reveal a significant main effect of Live Co-
ding (F'(1,11) = 0.908), does reveal a significant main ef-
fect of task (F'(2,22) = 22.982,p < 0.001), and does not re-
veal a significant interaction effect of Live Coding and task

We also recorded
how many changes a
participant made to
the code.

The difference in the
number of changes
was not significant
either.



88

6 Evaluation

The difference in the
number of changes
per minute was not

significant either.

We now look at the
changes in more
detail.

Livecoding

ONo
O Yes
I No
I Yes

3.000

2.000- %
1.000] %

T T T
Changes Task 1.1 Changes Task 1.2 Changes Task 3
Error Bars: 95% Cl

Mean Number of Changes

Figure 6.14: Error bar charts for the number of changes of the par-
ticipants in different tasks and conditions. The number of changes are
mostly similar between the condition in each task, but differ between
the tasks. The large confidence interval for Task 1.2 in the Live Coding
condition is caused by one participant, who did more than 2000 changes
compared to all other participants who did less than 1200 changes.

(F(2,22) = 0.182).

We also looked at how often a participant changed the code,
the changes per minute. The results are similar to the ob-
servations for the task completion time and the number of
changes: Live Coding does not have a significant effect. An
important detail is, that the changes per minute do not dif-
fer significantly in different tasks.

6.3.3 Change-Based Quantitative Evaluation

As we saw in the previous section, we could not find any
significant effect of the Live Coding tool on the overall at-
tributes of participants working on the tasks. This might
be due to the fact, that there is no difference or because we
did not look at the correct part of the data. Optimistically,
we suspect the second case. As explained in Chapter
“Introduction}’, we expect Live Coding tools to have an ef-
fect on how long errors stay in the code and how much time
developers need to fix errors they introduced while writing
code. Thus, it might make sense to look at the individual
changes a developer made.



6.3 Evaluating the Live Coding Tool

89

But developers likely differ a lot in their coding style de-
pending on their programming experience, typing skill
and familiarity with the development environment. There-
fore, we think it does not make sense to look at individual
changes to the editor content, because they will depend too
much on the developers coding style.

Clustering Changes into Change Clusters

To normalize these kinds of changes, we decided to try to
cluster the changes into change blocks. For example, typ-
ing a variable name completely could be a change block or
even typing out a complete if-statement including its body
could be one change to the code. To classify changes as be-
longing to the same or different change block, we used the
following attributes of the changes: The time the change
was made and the location of a change.

We make the following two assumptions: Changes that
happen closely after another have a higher probability to
belong to the same change block. And changes that hap-
pen next to each other (e.g. in the same line) have a higher
probability to belong to the same change block. This lead
to the following algorithm:

Clustering Algorithm Given two changes, the timestamp
they happened and the lines that were changed in these
changes. Let timeDi f f be the time difference between two
changes. Then sort the changes, by the line number of the
first changed line, such that the first changed line of the
first change has a lower or equal line number than the first
changed line of the second change. Then let the lineDif f
be the difference between the last changed line of the first
change and the first changed line of the second change. If
lineDif f <= 0 the two changes overlap.

The algorithm then works in the following way: Depend-
ing on two thresholds x and y with < y, the following
decision is made:

To normalize the
changes we cluster
changes into change
blocks.

We make two basic
assumptions as to
what changes belong
together.

We device a
clustering algorithm
that depends on the
line distance
between to changes
and the amount of
time between to
changes.



90

6 Evaluation

There is a lower
threshold z, because
there is a lower limit
in human cognition
limiting how fast a
new decision can be
made.

There is an upper
threshold y, because
there is an upper limit

how long a person

can concentrate one
single thing.

We choose z = 1s,
based on

Nielsen[s [1993]
response time
heuristic.

timeDiff < x: The two changes belong to the same
change block.

x <= timeDif f < y: Depending on the lineDif f the fol-
lowing decision is made:

lineDif f <=1: The changes belong to the same
change block.

lineDif f > 1: The changes belong to different
change blocks.

timeDif f >=y: The changes belong to different change
blocks.

The reasoning for the algorithm is the following: In terms
of Norman's [1988] Seven Stages of Action, we suspect that
there is a threshold z for the time difference below which
we can be sure that participants made the two changes in
the same action sequence because the time difference is too
small to form a new goal and a new action sequence. And
there is a threshold y above which we can be reasonably
sure that the changes do not belong to the same change
block because the participant most likely started working
on a new (sub)problem or restarted working on the same
problem. If the time difference between the changes falls
between z and y we cannot be sure what the mental model
of the participant about these changes is. We therefore
look at the location of the changes. If they happen in
the same line, we assume that the participant is just con-
tinuing his previous work, e.g. finishing typing a vari-
able name or the head of a for-loop. Similarly we make
this assumption if the changes go over several lines and
overlap (lineDif ference <= 0). Of course, it might be
that the participant finished one line and continues on the
next, therefore we also include adjacent changes in lines
(lineDif ference = 1). If the difference in the location of
the changed lines is greater than 1 we assume that the two
changes belong to semantically unrelated code and thus to
two different change blocks.

Determining the Thresholds For threshold x we decided
to choose x = 1s. This has two reasons: First, according to



6.3 Evaluating the Live Coding Tool

91

Nielsen| [1993], 1 second is “about the limit for the user’s
flow of thought to stay uninterrupted”, which is exactly
what we are looking for. Also, our Live Coding plugins
delay to display results is about 1 second, so even the Live
Coding users could not get feedback on their changes faster
than 1s and thus decided to make another change.

For threshold y we thought about simply choosing y = 10s,
because according to Nielsen![1993], this is “about the limit
for keeping the user’s attention focused” and if users have
to wait for the computer to respond longer than 10s they
“will want to perform other tasks while waiting for the
computer”. Of course, developers do not have to wait for
the computer in our case, so it is not completely applicable,
but from this heuristic, we assume that if developers do not
interact with the computer for more than 10s, it is because
they are working on a different (sub)task, even is this task
is ‘being stuck and trying to find out what to do next’. But
in this case we wanted to double-check our guess, so we
ran our clustering threshold with z = 1s and y ranging be-
tween 1s and 60s in one second steps and looked at a range
of attributes of the resulting clusters, including the clus-
ter length, the length of the gap without changes between
two clusters and the number of changes per cluster. We
assumed that all these attributes would asymptotically ap-
proach a threshold and wanted to choose a threshold such
that the difference between this threshold and our results is
not too big.

The results of these calculations can be found in Table [6.5
Of course a change block or cluster can have more than one
change or consist just of a single change. Since a large per-
centage of clusters (more than 19%, even for y = 60s) con-
sists of only one change we filtered these clusters out in our
analysis of the cluster attributes so they would not hide the
changes in the attributes, due to the large percentage of the
total. We looked at the following attributes:

Mean Number of Changes : The average of the number
of changes in each cluster that had more than one
change.

Mean Duration : The number of seconds between the first

For y = 10s we
partially base our
decision on|Nielsen
[1993] response time
heurstic.

But we also look at
our data and try
choose it based on
the data.

We filter out the
single-change
clusters.



92 6 Evaluation

y Mean Mean Mean Time Number of Number Percentage Perc. Diff. Perc. Diff. Perc. Diff. Perc. Diff. Perce. Diff.

Number of Duration Since Last Clusters>1 of Gaps of 1-Change Mean Mean Mean Time Clusters>1 Change of
Changes Change Clusters  Number of Duration Since Last Number  Number of
Changes Change Change Gaps

1 5,95 1,36 11,62 7247 11585 37,65 %
2 8,58 2,95 17,21 5267 7474 29,89 % 30,70 % 53,83 % 32,46 % 27,32 % 35,49 %
3 10,25 4,28 20,79 4468 6008 26,11 % 16,30 % 30,95 % 17,23 % 15,17 % 19,61 %
4 11,52 5,44 23,33 4001 5241 24,22 % 11,01 % 21,34 % 10,86 % 10,45 % 12,77 %
5 12,71 6,66 25,58 3639 4676 22,82 % 9,36 % 18,38 % 8,82 % 9,05 % 10,78 %
6 13,64 7,71 27,24 3398 4311 21,89 % 6,79 % 13,60 % 6,08 % 6,62 % 7,81 %
7 14,55 8,78 28,67 3191 4032 21,62 % 6,23 % 12,16 % 4,99 % 6,09 % 6,47 %
8 15,21 9,63 29,71 3055 3843 21,30 % 4,37 % 8,88 % 3,50 % 4,26 % 4,69 %
9 15,77 10,39 30,56 2948 3690 20,94 % 3,54 % 7,32 % 2,80 % 3,50 % 3,98 %
10 16,26 11,11 31,27 2861 3570 20,73 % 3,02 % 6,43 % 2,26 % 2,95 % 3,25 %
11 16,80 11,89 31,88 2768 3456 20,80 % 3,24 % 6,58 % 1,90 % 3,25 % 3,19 %
12 17,18 12,62 32,40 2709 3369 20,51 % 2,19 % 5,01 % 1,63 % 2,13 % 2,52 %
13 17,54 13,11 32,85 2655 3295 20,37 % 2,02 % 4,53 % 1,35 % 1,99 % 2,20 %
14 17,87 13,67 33,20 2606 3235 20,40 % 1,87 % 4,08 % 1,08 % 1,85 % 1,82 %
15 18,21 14,30 33,59 2558 3169 20,26 % 1,88 % 4,41 % 1,16 % 1,84 % 2,04 %
60 22,20 25,57 34,68 2103 2566 19,27 % 0,14 % 0,58 % -0,11 % 0,14 % 0,16 %

Table 6.5: A number of attributes of the calculated change clusters for different threshold y in the
range of 1s—60s. The values between 16s and 59s are left out for brevity, but the last row shows
the values reached at y = 60s. Displayed are the means of following attributes of change cluster
(column index in parentheses) that contain more than one change: Number of changes in the cluster
(2), Duration of the cluster (3), length of gap with no changes (4). In addition, we display the
number of cluster with more than one change and the number of gaps without changes between all
cluster (this is roughly equal to the number of all clusters, including the ones with only one change).
These are then used to calculate derived values, such as the percentage of single-change clusters of
all change cluster or the percentage the value changed from the previous threshold calculation. Up
to a certain point these values are monotonically decreasing and we highlighted (in yellow) in each
column the first threshold where they increase, because we think that indicates a point where the
change in these values is only minor from then on, so it would be a good threshold.

change of a cluster and the last change of a cluster for
clusters with more than one change.

Mean Gap Duration : A ‘gap’ is a time frame in which no
change happened. We calculate it as the number of
seconds between the last change of the previous clus-
ter and the first change of the current cluster. In this
case, it does not matter how many changes the cluster
has.

Number of Clusters : This gives the number of clusters
with more than one change, not the total number of
change clusters.

Number of Gaps : This is the number of the aforemen-
tioned gaps.



6.3 Evaluating the Live Coding Tool

93

Percentage of Single-Change Clusters : The percentage of
clusters with just one change of the number of all
Clusters.

For each of these values we then calculated the percentage
change between each two consecutive threshold values, be-
cause we were interested in the threshold from which on
these values only changed marginally. All of these percent-
age change values are quite large in the beginning, mean-
ing the attributes change a lot for the first few thresholds,
so it would likely make quite a difference. At threshold
y = 6, all of them are below 8%, except for the change in
the mean duration, which only falls below 10% at y = 8.
Since all of these values fluctuate a bit, so do the percent-
age changes, so it is not a nice logarithmic decrease, but
there is some variability to it. Since we were looking for the
threshold at which the change in these attributes becomes
marginal, but we did not know what ‘marginal” was, we de-
cided to define a marginal change as one that is relatively
smaller as one that happens for a higher threshold. One ex-
ample for that would be difference in the mean number of
changes between threshold 9 and 10 (shown in Table [6.5/in
row 10): The change is 3.02% of the larger value (the value
of y = 10). But the change for y = 11 is 3.24%, so it is actu-
ally a larger relative change, than the one of y = 10, which
makes the change of y = 10 a marginal change.

For each of the attributes we now determined the first
marginal change.  For 3 out of 5 values we looked at,
the first marginal change happens at y = 10s. Also, the
percentage of 1-Change Cluster actually increases for the
first time after y = 10s. The remaining two first marginal
changes happen at y = 14s. We therefore think that y = 10s
is a reasonable choice for the threshold, above which two
changes will not be considered as belonging to the same
change clusters. We will use this from now on in the fol-
lowing analysis.

We wrote a small application that processes the changes
and draws a graph from the changes, including the clus-
ters. An example is given in Figure We produced such
a chart for each participant and each task to be able to look
at the data and generate hypothesis about how developers

We calculate the
percentage change
of different attributes
between two
threshold levels.

A marginal change is
one that is smaller
than a succeeding
one.

For 3 out of 5
attributes the first
marginal change is at
y = 10s, so we
choose it.

We have created
change-graphs
including the
clustering.



94 6 Evaluation

Figure 6.15: An example of a graph showing the changes of a participant working on Task 3. The
y-axis position gives the line of the change (multiline changes are represented by longer lines), on
the x-axis is the time. The distance between the ticks is always 60s. Green lines indicate additions,
red lines indicate deletions. The clusters are shown by the gray boxes in the background. The blue
lines indicate the current length of the file (in lines) so it can be used to judge the relative position of
a change and shows how the source code grows over time. In the bottom row there is a second view
showing the changes simply grouped together, ignoring the line that was changed. This is useful to
find busy times and changeless times

change the code and in what way they could have been af-
fected by our Live Coding tool. All the graphs can be found
in [C—"{Change Cluster Graphs]".

Analyzing the Change Clusters

We repeated the We repeated the analysis we did for the number of changes
analysis we did for for the attributes of the change clusters: The number of
individual changes, changes in each cluster, the duration of each cluster and the
now for change duration of the changeless gaps. We calculated the mean
clusters, but did not of these values for each task-participant combination and
find a significant then checked whether we found any differences between
difference. the conditions using a mixed-design ANOVA as before. No

significant effects, except for the influence of the task again,
were found, so we will not go into detail here. Instead, we
decided to use another statistical test that is more suited to
the problem at hand.

Naively, one might assume that we could do an ANOVA
on the change clusters directly, since we know for each
change cluster whether it was done in a Live Coding con-
dition or in the control group and from which task it orig-
inated. We would then compare the distributions of e.g.
the durations of the change clusters with a mixed-design
ANOVA and use task as repeated-measure and Live Co-



6.3 Evaluating the Live Coding Tool

95

ding as a between-groups factor as before. However, doing
that would not be correct and violate one of the assump-
tions of ANOVA: The independence of the observations
[Field) 2009]. To use ANOVA we have to assume that the
cases are independent, but this is not the case since some
of the change clusters originate from the same participant.
Change Clusters from the same participant will likely vary
less than change clusters from different participants, which
violates this assumption. So, our problem is, that our cases
have a hierarchical structure: Change clusters belong to
specific participants, and we have several different partici-
pants. A kind of statistical model that can handle this kind
of data is a Multilevel Linear Model [Field) 2009].

Multilevel Linear Models The explanation in the follow-
ing few paragraphs is based on |[Field| [2009] and we refer
the interested reader to him for a more detailed explana-
tion. Multilevel Linear Models are designed to handle a
hierarchical data structure. As almost all other statistical
tests they fit a linear model of the form

Yi=a+b-X;+¢

to the data, with Y being the dependent variable (the out-
come), X; being the value of the independent variable X
for case i, € being an error term and a and b being the actual
coefficients that vary between different models.

After finding the best-fitting model by varying the coeffi-
cients, this new model is compared to a basic model, usu-
ally the overall mean. If our new-found model can ex-
plain significantly more of the variance between the cases
(i.e., it fits much better), we assume that this model re-
flects the reality better and since it usually predicts that the
outcome varies with our independent variable, we assume
that the independent variable has a significant effect. Of
course, more generally, for n independent variables, the lin-
ear model looks like this:

n
Yij=bo+ Y bp-Xpi+e
k=1

In this case, we say that the outcome Y can be predicted

We cannot use an
ANOVA to compare
the change clusters

to each other,
because they are not
independent.

Instead, we have to
use Multilevel Linear
Models

We try to find a good
model and compare
it to our basic model.



96

6 Evaluation

Usually, we only have
fixed coefficients.

Now, we introduce
random coefficients.

Instead of just
coming up with some
complex model, we
should start with a
simple one and build
our model up
gradually.

by the formula above and all we need to know is the co-
efficients b;. We only determine them once, and they hold
for all different cases, so we could say they are fixed. But
because our clusters originate from different participants,
we could assume that the coefficients actually depend on
the participant. Or more generally, the coefficients vary
with a higher-level variable, a level 2 variable (compared
to the cases, which are a level 1 variable). To reflect this in
our model, we introduce a variable part of the coefficients,
called uy ;. It varies with the different levels of the level 2
variable reflected by j. Our formula then looks like this:

n
Y;,j = (b[) + U()J‘) + Z(bk + uk,j) . Xk,i,j + €
k=1

Field|[2009] calls these varying parts of the coefficients ran-
dom coefficients. Similarly, g ; is called a random intercept
and uy, j, k > 11is called a random slope. Now, let us assume
that we guessed that the duration of a change cluster de-
pends on whether a Live Coding plugin was used, what
task it originated from, and additionally, that the intercept
as well as the slope of the task coefficient were both de-
pendent on the participant , but not the slope of the Live
Coding coefficient. We could then propose the following
model and test how well it fits the model:

Duration; ; = (bo + uo,;)
+0b1 - live; ;
+(ba + ug ;) - task; ;
+€ij

with j = participant(i) € participants and ¢ € clusters.

However, according to Field|[2009], a better way is to start
with a simple model (e.g. Duration i, j) = by + bs - task; ;)
and assess the fit of this model and then add a coefficient
to get a more complex model and assess its fit. If the more
complex model fits the data significantly better we use it
and add more coefficients, slowly building up a model. If
it did not fit the data better, we continue to use the simpler
model and try adding other coefficients to it until we end
up with a model we cannot improve by adding more coeffi-
cients. We then assess how much of the variance it explains



6.3 Evaluating the Live Coding Tool

97

compared to the basic model. Thusly, we determine which
of the coefficient’s predictions is actually significant.

To assess the fit of the model, [Field| [2009] recommends us-
ing the -2 log likelihood value. So, to compare two models,
we calculate the difference in the -2 log likelihood. To de-
termine whether the difference is significant, we also calcu-
late the difference in the degrees of freedoms of the model
and compare the difference in the -2 log likelihood with the
corresponding 5%-significance values of the corresponding
x?-statistic for the difference in the degrees of freedom (see

Table [6.6).

df | p=0.05
1 3.84
2 5.99
3 7.81

Table 6.6: Critical values of the x>-distribution at the 5%-
significance level. Taken from |Field| [|2009].

Filtering the Data Before we can do a multilevel linear
analysis we need to clean up the data a bit. We removed
several clusters from the analysis due to considering them
outliers or not interesting for our analysis. Firstly, as ex-
plained above, for the number of changes per cluster and
the duration of clusters is only considered for clusters with
more than one change. The clusters with only one change
obviously always have one change and duration 0, so they
are not interesting.

However, we look at all the gaps between the clusters,
when looking at the gap duration, not just those in before
a multi-change cluster. But we consider any gap duration
that is longer than 10 minutes (600s) to be an outlier, since
this is likely due to the participant being severely stuck on
the task or spending a long time researching something,
which are activities the tool will likely not influence. This
is still a very conservative estimate as can be seen by the

boxplots in Figure

We use the -2LL to
assess the fit of our
model.

We ignore 1-change
clusters.

We ignore gaps that
are longer than
300ms.



98 6 Evaluation

6135 588516276 : :
6104 16312 livecoding

ke’ 16347 * 15879 *
6786 Ho
1609916155 16237 16079 —+
K Ak kK 16105+
4965266426 161516466 1609415975

8036
17354 16048
17351 17470 174767679
e 70 d517410 {7304

80297681172057843 7391 {7315

7962 17332 17420
* % ok k 172514 * %
7888772117392 17273 17245

743269917613 1639117037

6823 7171 68411672216683

* Kk ok kK *x k%K 17149
16386 6984 6847 16499 1704317050

6799
*k
6117 61296359

7724

7110, 00071957341 1657816945
, i 1 - . , : L . . , . . . . ,
,00 500,00 1000,00 1500,00

gapDuration

Figure 6.16: Box plots for the gap duration between change clusters, by Live and Task. Using
SPSS’ standard outlier classification for boxplots there are a lot of outliers. We only consider any-
thing above 5 minutes / 300 seconds to be an outlier.

Live Coding Live Coding Live Coding
No Yes No Yes No Yes

Mean duration
O
>

10,00 q)c} $ c[> 5 ({) + c[> + b + <]> ¢ ({) Og

0,00 T T
1 2 3 1G

O
o x

task J

Error Bars: 95% CI

Figure 6.17: Error bar charts for the duration of clusters grouped by tasks and whether the partic-
ipant used Live Coding or not. The letters represent individual participants.

Change Cluster Duration Multilevel Linear Model We
will now build up a multilevel linear model as explained
above. The summary of the build-up process can be found
in Table Figure shows the error bar charts of the
gap duration for each of the participants for each of the
tasks.

We begin with a simple model that has just fixed effects.



6.3 Evaluating the Live Coding Tool

99

Model
Index

Model

—2LL

Diff
—2LL

df

compare
to model
index

significant
change

fixed live,
fixed task,
fixed task*live

23069.024

fixed live,

fixed task,

fixed task*live,

r. intercept (participant)

23018.435

15.546

yes

fixed live,

fixed task,

fixed task*live,

r. intercept (participant),
random slope live

23018.435

no

fixed live,

fixed task,

fixed task*live,

r. intercept (participant),
random slope task

23018.117

0.318

no

fixed live,

fixed task,

fixed task*live,

r. intercept (participant),
fixed whichhalf

23003.154

15.281

yes

fixed live,

fixed task,

fixed task*live,

r. intercept (participant),
fixed whichhalf,

fixed whichhalf*live

23003.138

0.016

10

no

fixed live,

fixed task,

fixed task*live,

r. intercept (participant),
fixed whichhalf,

fixed whichhalf*task

22997.508

5.646

11

no

fixed live,

fixed task,

fixed task*live,

r. intercept (participant),
fixed whichhalf,
random slope whichhalf

23003.154

10

no

Table 6.7: Development of the Multilevel Linear Model for the duration of change clusters.



100

6 Evaluation

We begin with just a
fixed effect for Live
Coding, task and the
interaction of Live
Coding and task.

Adding the random
intercept makes the
model significantly
better.

A random slope for
Live Coding does not
make the model
better.

Whichhalf is the
information whether
the cluster originated
in the first or the
second part of the
task duration.

Adding a fixed effect
for whichhalf
improves the model
significantly.

The effects we consider are the Live Coding Tool (live),
the task participants worked on (task), and the interaction
of the two (live*task). This model has 7 degrees of free-
dom and the -2 log likelihood (—2LL) was calculated as
23069.024. Now we add a random intercept that is de-
pendent on the participant. The new model has 8 degrees
of freedom and a —2LL of 23 018.435, so the difference be-
tween the two models is 15.546. Since the difference in the
degrees of freedom is just 1, our critical value is 3.84 (see Ta-
ble[6.6). The difference between the models is much higher
than that, so it is a significant change.

Next, we try to add a random slope for the Live Coding
effect. The -2LL for this model is no different from the pre-
vious one, so the model did not improve and we remove
the random slope again. Next we try a random slope for
the task. This only improves the model a little bit (—2LL
difference 0.318), which is not a significant difference, so
we remove the effect again.

Clusters also have another attribute that was not men-
tioned before: We know when the changes occurred.
Looking at the change cluster diagrams (e.g. Figurel6.15),
we notice that there seem to be less clusters near to the end.
So we suspect that the cluster’s attributes might actually
depend on when in the task the cluster was created. This
also makes sense intuitively: First the developer writes the
code they think they need and produces some long change
clusters. Later in the task he might just change minor bits
in the code, producing much shorter change clusters. To
check this hypothesis, we saved for each cluster whether it
was started in the first or the second half of the task (we call
this factor whichhalf).

Thus, we now added the whichhalf factor to the model as
a fixed effect. This improves the model a lot, the change in
the —2L L is 15.281, the change in the degrees of freedom is
just 1, so this is a significant change.

We then tried to add some interaction with whichhalf. First
we added the whichhalf*livecoding interaction as fixed ef-
fect. This only changed the model very slightly, so we dis-
carded the interaction again. When looking at the inter-



6.3 Evaluating the Live Coding Tool

101

action of whichhalf*task, the difference in the —2LL was
5.646. But since the difference in the degree of freedoms
was 2, the difference would have to be larger than 5.99 (see
Table. This is not the case, so the difference is not signif-
icant. Lastly we checked whether adding a random slope
for the whichhalf factor made a difference and conclude
that it does not since it does not improve the model.

So the resulting model is the one with fixed effects for Live
Coding, the task, the interaction of Live Coding and the
task, the whichhalf factor and a random intercept depend-
ing on the participant. We then evaluated each of these ef-
fects individually to see whether they are significant.

Only the whichhalf effect is significant (F'(1,2853) =
15.33,p < 0.01). Neither task (F'(2,2859) = 1.38,p = 0.252),
nor Live Coding (F'(1,13.21) = 1.58,p = 0.231) nor the in-
teraction of task and Live Coding (F'(2,2858) = 4.65,p =
0.1) was significant.

Multilevel Linear Model for Number of Changes per
Cluster Next, we will look at the number of changes in
each cluster. We will not describe the model build-up in
detail this time, a summary is given in Table [6.8 and Table
Also, an overview of the distribution of the number
of changes for the different participants and different tasks
can be obtained from the error bar charts in Figure[6.18]

By following the same process as before we build up our
model step by step. The model we end up with is shown
in Table It has fixed effects for Live Coding, task, the
interaction of Live Coding and task, whichhalf, the inter-
action of the task and whichhalf, and finally a fixed ef-
fect for the interaction of Live Coding, the task and which-
half. In addition to that, there is a random intercept de-
pendent on participant and a random slope for task de-
pendent on participant. When looking at which of these
effects are significant, we find the following: Live Co-
ding did not have a significant effect on the number of
changes (F(1,12.80) = 1.915,p = 0.19), neither did task
(F(14.91) = 0.15,p = 0.86) or the interaction of task and
Live Coding (F'(1,14.91) = 0.482, p = 0.63). But whichhalf

We found a final
model and can
analyze it now.

Only whichhalf is
significant.

We now look at the
model for Number of
Changes per Cluster.

Our final model has
the following effects:
fixed live, fixed task,
fixed task*live, r.
intercept
(participant), random
slope task, fixed
whichhalf, fixed
whichhalf*task, fixed
whichhalf*task*live



102 6 Evaluation

. compare | . ..
Model Model _oLL Diff df | tomodel significant
Index —2LL index change
fixed live,
1 | fixed task, 24654.126 - 7 - -

fixed task*live

fixed live,

fixed task,

fixed task*live,

r. intercept (participant)

24560.632 | 93.494 | 8 1 yes

fixed live,
fixed task,
3 | fixed task*live, 24 560.632 0 9 2 no
r. intercept (participant),
random slope live

fixed live,
fixed task,
4 | fixed task*live, 24 555.205 5.427 9 2 yes
1. intercept (participant),
random slope task

fixed live,

fixed task,
fixed task*live,

5 . . 24533.804 | 21.401 | 10 4 yes
r. intercept (participant),

random slope task,

fixed whichhalf

fixed live,
fixed task,
fixed task*live,
6 | 1. intercept (participant), 24532.240 1.564 | 11 5 no
random slope task,
fixed whichhalf,
fixed whichhalf*live

fixed live,
fixed task,
fixed task*live,
7 | 1. intercept (participant), 24523993 | 8.247 | 12 5 yes
random slope task,
fixed whichhalf,
fixed whichhalf*task

Table 6.8: Development of the Multilevel Linear Model for the number of changes per change
clusters. Continued in Table[6.9}



6.3 Evaluating the Live Coding Tool 103

. compare | . ..
Model Model oI Diff df | tomodel significant
change

Index —2LL index
fixed live,

fixed task,

fixed task*live,

g | & intercept (participant), | o 543 356 | 20,607 | 15 7| yes
random slope task,

fixed whichhalf,

fixed whichhalf*task,
fixed whichhalf*task*live

fixed live,

fixed task,

fixed task*live,

r. intercept (participant),
9 | random slope task, 24 503.386 0116 8 no
fixed whichhalf,

fixed whichhalf*task,
fixed whichhalf*task*live,
random slope whichhalf

Table 6.9: Development of the Multilevel Linear Model for the number of changes per change
clusters.

Live Coding Live Coding Live Coding

No Yes No Yes No Yes

Mean
numberOfChanges
H
o
[
O
>

task

Error Bars: 95% ClI

Figure 6.18: Error bar charts for the number of changes in clusters grouped by tasks and whether
the participant used Live Coding or not.



104

6 Evaluation

whichhalf,
whichhalf*task and
whichhalf*task*live
had a significant
effect.

For clusters in the
first half of the task,
Live Coding
significantly predicts
the number of
changes.

We repeat the
analysis for the gap
duration.

did have a significant effect on the number of changes per
cluster (F(1,2841) = 23.955,p < 0.001), as did the interac-
tion of task and whichhalf (F'(2,2841) = 3.964,p = 0.019)
and the interaction of whichhalf, task and Live Coding
(F(1,2840) = 6.898,p < 0.001). To break down the inter-
action, we ran a similar model again on the data for the
two halfs of the task duration independently. The modified
model had the same main effects and interaction terms as
the original model but with the main effects for whichhalf
removed and the interaction effects without the whichhalf
effect. This leaves us with the following 3 fixed effects: live,
task, live*task. For clusters in the first half of the task du-
ration, we found that Live Coding significantly predicted
the number of changes (F(1,12.305) = 6.03,p = 0.03), as
did the interaction of Live Coding and task (F'(2,8.92) =
4.40,p = 0.047). However, the task did not predict the num-
ber of changes significantly (F'(2,8.92) = 1.03,p = 0.395).
In the case of clusters from the second half of the task du-
ration, neither Live Coding (F'(1,12.18) = 0.099,p = 0.76),
nor the task (F(2,16.83) = 0.735,p = 0.49) nor the inter-
action of the two (F'(2,16.83) = 3.058,p < 0.74) had a sig-
nificant effect, although the interaction is just barely non-
significant. To further understand the interaction effect of
Live Coding and task on the number of changes in clusters
in the first half of the task duration, this interaction was
broken down by the task and an appropriately modified
model was run on each of the tasks. For clusters in the first
half of Task 1 we do not find a significant effect on the num-
ber of changes per cluster (F'(1,13.28) = 2.88,p = 0.11).
Neither do we find one for clusters of the first half of Task
2 (F(1,9.55) = 3.07,p = 0.11) or Task 3 (F(1,11.437) =
3.00, p = 0.110).

Gap Duration Multilevel Linear Model = We repeat the
previous analysis for the duration of the gaps between clus-
ters. An error bar chart for the gap duration can be found
in Figure the model build-up is described in Table[6.10]
and Table

The following effects of our models are not significant:
The Live Coding effect (F'(1,14.78) = 3.837,p = 0.069)
and the task (F'(2,21.62) = 2.36,p = 0.119). However,



6.3 Evaluating the Live Coding Tool 105

. compare | . ..
Model Model _oLL Diff df | tomodel significant
Index —2LL index change
fixed live,
1 | fixed task, 35985.739 - 7 - -

fixed task*live

fixed live,

fixed task,

fixed task*live,

r. intercept (participant)

35948.197 | 37.56 | 8 1 yes

fixed live,
fixed task,
3 | fixed task*live, 35948.197 0 9 2 no
r. intercept (participant),
random slope live

fixed live,
fixed task,
4 | fixed task*live, 35930.953 | 17.244 | 9 2 yes
r. intercept (participant),
random slope task

fixed live,
fixed task,
5 | fixedtasiclive, 35901.826 | 29.127 | 10 4| yes

r. intercept (participant),
random slope task,
fixed whichhalf

fixed live,
fixed task,
fixed task*live,
6 | 1. intercept (participant), 35900.601 | 1.225 | 11 5 no
random slope task,
fixed whichhalf,
fixed whichhalf*live

fixed live,
fixed task,
fixed task*live,
7 | 1. intercept (participant), 35878.264 | 23.562 | 12 5 yes
random slope task,
fixed whichhalf,
fixed whichhalf*task

Table 6.10: Development of the Multilevel Linear Model for the durations of the changeless gaps
between clusters. Continued in Table



106

6 Evaluation

Live Coding

No

Live Coding Live Coding

Yes No Yes No Yes

100,007
75,00-
50,00-
zs,oo—i ¢{>

0,00

Mean gapDuration

o b ﬂh M ch K O

.| . Op
2 3 I1G

task J

Error Bars: 95% CI

Figure 6.19: Error bar charts for the gap duration of clusters grouped by tasks and whether the
participant used Live Coding or not.

Our final model has
the following effects:
fixed live, fixed task,
fixed task*live, r.
intercept
(participant), random
slope task, fixed
whichhalf, fixed
whichhalf*task, fixed
whichhalf*task*live,
random slope
whichhalf

For clusters from the
second half the
task-Live-Coding
interaction
significantly predicts
the gap duration.

the following effects are significant: The Live Coding and
task interaction (F'(2,21.62) = 3.71,p = 0.041), whichhalf
(F(1,16.204) = 24.775,p < 0.001), the interaction of which-
half and task (F'(2,3441) = 12.43,p < 0.001) and the in-
teraction of Live Coding task and whichhalf (F'(3,71.91) =
4.59,p = 0.005). As before, to further analyze the inter-
action, we break it down by conducting analyses on the
clusters from the first and second half of the task dura-
tion independently. To do so we use a similar model that
has been modified to accommodate the missing which-
half effect. For the cluster from the first half of the task
duration, none of the three effects is significant, neither
Live Coding (F'(1,12.52) = 1.45,p = 0.251) nor the task
(F(2,20.46) = 1.35,p = 0.0.282) nor the interaction of
the two (F'(2,20.46) = 0.296,p = 0.0.747). When looking
at clusters originating from the second half, however, we
do find that the task (F'(2,15.17) = 4.43,p = 0.0.31) and
the task Live Coding interaction (F'(2,15.17) = 4.52,p =
0.29) significantly predict the gap duration. But Live Co-
ding alone did not have a significant effect (F'(1,15.372) =
3.95,p = 0.065).

To analyze the interaction between task and Live Coding
further we ran the analysis again for the cluster of the sec-



6.3 Evaluating the Live Coding Tool 107

. compare | . ..
Model Model —2LL Diff df | tomodel | >'&" ificant
Index —2LL index change

fixed live,

fixed task,

fixed task*live,

g | & intercept (participant), | 359455 544 | 12.72 | 15 7| yes
random slope task,

fixed whichhalf,

fixed whichhalf*task,

fixed whichhalf*task*live

fixed live,

fixed task,

fixed task*live,

r. intercept (participant),
9 | random slope task, 35859.696 | 5.848 | 16 8 yes
fixed whichhalf,

fixed whichhalf*task,
fixed whichhalf*task*live,
random slope whichhalf

fixed live,

fixed task,

fixed task*live,

r. intercept (participant),
random slope task,

10 | fixed whichhalf, 35858.781 | 0.915 | 17 9 no
fixed whichhalf*task,
fixed whichhalf*task*live,
random slope whichhalf,
random slope
whichhalf*task

Table 6.11: Development of the Multilevel Linear Model for the durations of the changeless gaps
between clusters.

ond half of the task duration, this time for each task, mod-
ifying our model as needed. For none of the tasks did
the Live Coding condition significantly predict the gap du-
ration for gaps originating in the second half of the task
duration (Task 1: F(1,13.00) = 3.93,p = 0.069; Task
2: F(1,6.815) = 2.70,p = 0.145; Task 3: F(1,12.84) =
3.93,p = 0.069).



108

6 Evaluation

The difference
between the tasks
were quite large.

Some participants
acted quite
inexperienced.

6.4 Discussion

As we saw in the quantitative evaluation, participants us-
ing the tool were quite convinced that it helped them. De-
spite this subjective impression, we were not able to find
convincing arguments why or how it helped them. Al-
though participants said they felt more confident using the
tool, participants not using the tool were just as confident
when asked whether their solution was correct. Neither in
the time to solve a task nor in the number of changes per
task could we show significant differences between partici-
pants using the Live Coding plugin and those who did not.

We suspect that one reason is the huge differences between
participants. For example both the slowest and the fastest
participant for Task 1.2 used the Live Coding tool but the
slowest needed 6.5 times as much time as the fastest par-
ticipant. For the other two tasks, this factor is also larger
than 5.5, so there are really big differences and we suspect
that any differences between the two tools were swamped
by the changes between participants.

Another problem is that although all but one participant
claimed they had several years of programming experi-
ence, several clearly had difficulties with basic program-
ming problems. For example, one participant would spent
a lot of time searching for code snippets online and then us-
ing them without even roughly understanding what they
did. This lead to one case were they were looking for a way
to test whether an element is contained in an array. But be-
cause of a bad search term they found code to test whether
an element is an array (using the instanceof operator)
and used that without questioning its correctness. As men-
tioned before, 4 participants were not able to complete the
task in which they had to implement Dijkstra’s algorithm, a
fairly simple graph-based algorithm that is probably part of
at least one basic programming lecture. Judging from our
observations during the study, we suspect that the failure
to complete the task successfully was due to a combina-
tion of inexperience with JavaScript and problems under-
standing the algorithm. An experienced JavaScript devel-
oper would likely have had fewer problems with the syntax



6.4 Discussion

109

and could have concentrated on understanding the algo-
rithm. And had the algorithm been crystal-clear to the par-
ticipants, they probably could have figured out JavaScript
idiosyncrasies. These problems might have been prevented
by a stricter preselection of participants. While we did post
a self-assessment test on the website, and heard from some
potential participants that they took it and decided they
did not know enough JavaScript to take part in the study,
we did not enforce any entry requirements. It might make
sense to do a pretest with potential developers to filter out
inexperienced developers resulting in a more homogenous
group. Of course, this would also limit the generalizability
of the results.

Another reason could be that developers need to get accus-
tomed to such a tool to really use it. For example, one of
our participants did not look at the tool once during the
first 30 minutes working on their first task, but then had a
possibility to use the tool, remembered it, used it success-
fully and from then on used it a lot. It may well be, that to
actually change a developer’s behavior, it takes more than
a few hours and effects of the tool would only be seen in
a long-term study or at least with experienced tool users
compared to non-tool-users.

When looking at the differences on the level of change clus-
ters we had some more success in identifying differences,
but they were still hard to find. For the number of changes
we found a significant effect of Live Coding, but only for
clusters in the first half of the changes and depending on
the task. Interestingly, for the gap duration, we only found
a significant effect of Live Coding for clusters in the sec-
ond half of the task, again, depending on the task. Of
course, this first-half second-half notion is rather arbitrary,
we could have just as well split the task into thirds, or cal-
culate a correlation between the start time of a cluster and
its attributes. However, we wanted to be able to do an easy
posthoc test and were just interested to show that there is
some difference. Future research should look at this rela-
tionship in more detail, to determine the exact relationship
of the time of a change cluster, its attributes and the influ-
ence of Live Coding on those.

It might be, that the
tool has to be
learned and is only
effective after a
longer period of use.



110

6 Evaluation

function obscureFunction(x, y, z) {:

console.log(x);
console.log(y);
console.log(z);

}

12 {a: , b: [[1, [[11]1} function
M 2

{a: , b [[1, [[J]17}

function

Figure 6.20: A situation that we often encountered: A participant use console. log to print
out the values of the arguments to the function, although they are displayed just above.

Apparently, the
arguments of
function display is
difficult to see or
understand.

6.5 Improvements to the Prototype

Several participants have made comments about the pro-
totype while using it, especially mentioning features they
would like to see. Other problems were not specifically
mentioned by the participants, but observed by the exper-
imenter. We will give a short summary of those comments
and observations now.

As mentioned before, users could use console.log to
print any values, they would like to see, to the preview
right of the console. log statement itself. Several users
made use of that functionality. One kind of value that was
printed using this functionality particularly often was ar-
guments to functions. This is particularly remarkable, since
this is a functionality that was already provided by the plu-
gin. When a function is called the arguments it is called
with are displayed next to the function header (see Figure
6-20), so the output of the console.log would be just be-
low the values that they were interested in.

This indicates that participants did not see our preview of
the function values for whatever reason and there is a prob-
lem with the kind of display we chose. In some cases, we
even pointed out that the arguments were displayed at the
function head, because we thought the participant did not
get the explanation in the beginning containing this infor-
mation. But even after that, some forgot again and used
console.log instead.

Another indicator of the UI that participants sometimes
missed was the exception indicator. If an exception oc-
curred inside of an iteration, the associated iteration selec-
tor’s border would turn red and become thicker (see Fig-



6.5 Improvements to the Prototype

111

ure(4.10). Still, several participants missed that. Thus, they
missed an uncaught exception that was probably telling
them about an important error.

One issue some participants encountered, especially in
Task 1.1, where they had to react to a lot of events from the
SAX parser in different ways, was the following: They were
inside a function that was called several hundred times and
handling one special case. To handle this special case they
used an if-statement. But since most of the calls to the func-
tion did not enter this if-statement, the code in the function
was usually not shown to be executed (since only one itera-
tion or call is shown at any one time). So, they did not have
the Live Coding feedback for this part of their code, and
missed it. Participants could scrub through the iterations
to find one that executed the specified line, but they often
felt this was too cumbersome.

3 participants of the 7 Live Coding ones thus requested a
feature to jump to an iteration in which a currently selected
line is executed. This might have also revealed problems
with some of the corresponding if-statements since some of
them were written in a way that their body was never ex-
ecuted and the tool might have told them that there is no
iteration, in which this code is executed. A similar feature
request is, to be able to filter iterations to only show itera-
tions matching a specific criterion.

Another issue some participants encountered, especially
in task 1 with a lot of asynchronous calls, was that they
wanted to know in what order specific functions were
called. This can be useful to, e.g., check their assumption
that function a is called before function b. This is not possi-
ble with the current implementation of our prototype, but is
just a visualization problem. For example, the visualization
in Figure does provide this information and internally
each displayed value has an execution index providing a to-
tal order of all the values. So it is not a technical problem to
get this information, but a visualization problem of how to
show this information without cluttering the display. And
it being a visualization problem is exactly the reason why
we did not solve it: We did not want to concentrate on the
visualization itself.

Participants would
like to be able to
jump to an iteration
in which a specific
line is executed.

Participants would
like to know in which
order functions were
called.






113

Chapter 7

Summary and Future
Work

In this chapter we will briefly summarize our results and
contributions. After that we will highlight different direc-
tions of future work, including improving our Live Coding
prototype, doing studies on developer behavior and evalu-
ating the data gathered during the study we did further.

7.1 Summary and Contributions

Our contribution in this thesis is threefold: We developed
a Live Coding prototype, we designed and used an inter-
esting set of tasks for developers to work on that might be
reused in other studies and provide some feedback on these
tasks, and we evaluated our Live Coding prototype using
these tasks.

In Chapter @l—"[Prototype|’, we described how we com-
bined the prototype developed by Heinen| [2012] with the

Live Coding backend developed by Belzmann| [2013] and
fixed several usability issues and implemented some miss-
ing functionality that prevented it from being used for pro-
ductive work. Although there are still some limitations, we
made sure it supported all common JavaScript language

We have built a
robust prototype.



114

7 Summary and Future Work

Our prototype
achieved an SUS
rating of 81.4.

We conducted a
study to help close a
gap in the HCI and
software engineering
research body.

We could only find a
few statistically
significant difference
between the control
group and the Live
Coding group.

constructs appropriately, was robust against infinite loops
and any kind of exceptions, reported uncaught exceptions
and other errors appropriately, and could also handle asyn-
chronous code and event callbacks without any problems.
The prototype achieved a SUS rating of 81.4, which can be
interpreted as “good” [Bangor et al) 2008]. Also, none of
our participants had major problems using it, so we are
quite confident to have built a great prototype and a rea-
sonable overall product.

Since we realized that the HCI and software engineering re-
search body lacks research about minor and medium pro-
gramming errors that happen to experienced programmers
while writing code and we expect Live Coding to be par-
ticularly helpful in preventing and correcting these kinds
of error, we decided to conduct our own study, looking at
errors programmers make during implementing a piece of
functionality. We combined this with our interest in Live
Coding tools and looked at how Live Coding tools change
the developer’s behavior and whether we could find evi-
dence to support the notion that they help programmers
writing code in any way.

While our subjects were quite fond of the Live Coding tool
and were convinced that the tool improved their confidence
in the correctness of their code, we could not find evidence
for that. We also could not find evidence for the Live Co-
ding tool improving the task correctness or shortening the
task completion time or changing the number of changes a
participant did per task. This was likely due to the large dif-
ferences between individual participants and the fact that
we only had a small sample size, but of course it could also
be that the Live Coding tool did not have an effect on these
variables.

We then looked at individual changes and, to compen-
sate individual coding styles, clustered them into change
groups and analyzed these change groups. We found that
the number of changes in a change group significantly de-
pends on the interaction of the task and whether a Live Co-
ding plugin was used, only for change clusters originating
in the first half of the task duration. We think the fact that
Live Coding has a different effect depending on the time



7.2 Future Work

115

frame in the task could mean that it depends on the pro-
gramming phase the developer is in. For example it might
be more helpful when writing code than when fixing minor
errors in previously written code or the other way around.
For the duration of the breaks between change groups, only
the task and Live Coding interaction effect for clusters from
the second half of a task had a significant effect.

As a side effect of our research, we developed three tasks,
that are mostly independent from the development envi-
ronment and programming language. One task is about
building an RSS-parser, one about date/time conversion
and the last one about implementing [Dijkstra/s [1959] al-
gorithm. They fared well in the tasks and participants did
not find them too easy or too hard. All but one participant
could solve Task 1.2, all but two participants could solve
Task 1.1 and all but 4 participants could solve Task 3.

7.2 Future Work

Although our tool is already the second iteration of a Live
Coding prototype and our study is certainly not the first on
programmer errors there is still a lot of potential for future
work. We will highlight some interesting directions in this
section.

7.2.1 Evaluating the Gathered Data

We already looked at some of the data collected during the
study, but there is a lot more potential in the gathered data.
It was simply beyond the scope of this thesis to look at all
aspect of the gathered data.

Look at Time to Error and Time to Fix One assumption
we have about Live Coding tools is that they reduce the
time to error by making many errors more obvious because
the resulting faults are directly visible. Another assumption
is that a shorter time to error also leads to a shorter time

We propose three
tasks to be used in
similar studies.



116

7 Summary and Future Work

Try to pin down the
relationship between
time to error and time
to fix.

Classify the errors
that occurred.

Analyze the Error
Distribution.

to fix, as was already suspected by Satt and Ernst| [2003]].
However, they were not able to conclusively show that this
relationship exists and is strong. Both assumptions could
likely be tested with our data. To do so the screen record-
ings of the participants working on the task have to be an-
notated to record the errors that occurred and for each error
annotate the time to error and time to fix. We recorded 50
hours of video, 40 hours of those are spent working on the
tasks. We estimate that it would take around one to two
months to annotate the videos properly. To prevent subjec-
tive ratings, optimally such an annotation would be done
by two researchers independently and they would compare
the annotations afterwards.

Classifying Errors Our study is, to our knowledge, the
tirst one to look at experienced programmers all imple-
menting the same small to medium sized bit of function-
ality with the possibility to record every single error they
made. The list of errors programmers made during these
tasks, accompanied by attributes about each error such as
how often it occurred, how long it took to fix it on average
etc., could be quite interesting and should be a good inspi-
ration for new programming tools.

Look at Error Distribution If Live Coding enables devel-
opers to more easily find errors they just made while writ-
ing code, one would expect less errors to build up during
programming. Following this theory, a developer without a
Live Coding tool would write his code, make several errors
and then, when they are done implementing, start to fix the
errors and reduce the number of errors again. This means,
the total number of errors active in a piece of source code
should, on average, be lower for Live Coding developers,
even if they do not make less errors than their peers.

Analyzing the Raw Change Data Since we recorded ev-
ery single change made by a developer we have a lot of raw
data about how developers change their source code. This
makes several potentially interesting analysis possible. For



7.2 Future Work

117

example, one could look at how often code is copied either
from other parts of the code or from outside the code base,
since these changes should be rather easy to distinguish
from the developer simply typing in code (which would
mean an individual change per character). It could also be
used to analyze how much time tools such as Auto Comple-
tion actually save, by looking at how often it was used and
how often the suggestion was correct. Many more analyses
of this kind of change data could be possible.

7.2.2 New Programmer Error Studies

While we hope our study provides a good start into learn-
ing more about experienced programmers everyday errors,
there are still numerous other kinds of tasks developers are
working on, which might differ in important details from
our task selection. Also, when looking at, e.g., different
kinds of errors, it might be interesting to see in what way
these differ between different programming languages and
programming paradigms. For example, how many of the
common everyday errors can type-safe languages prevent
or detect earlier?

7.2.3 Improving the Live Coding Tool

In Section [6.5}—"Improvements to the Prototype” we listed
several feature requests participants made during our
study and highlighted a few other problems with our pro-
totype. These observations could be used to improve our
prototype further. But there are also other interesting di-
rections. For example, one could think about integrating
current code-proposal tools such as Auto-Completion with
Live Coding. This way, when looking for a specific function
to use one would not only see the different possibilities of
functions and possibly the accompanying documentation,
one would also see how the previewed function would af-
fect the code without actually adding it to the code. Such
a Live Coding plugin would approach Tanimoto’s Liveness
level 5 (see Section 2.1}—"|Different Levels of Liveness|’).

There are likely more
analyses possible.

There is still a lot of
room for
improvement for the
Live Coding tool.



118

7 Summary and Future Work

7.24 Research into Better Understanding of the Ef-
fect of Live Coding

We suspect that a Live Coding tool, when used in every-
day programming strongly affects the way programmers
program. Some of our participants, when using the Live
Coding plugin, made statements like “it tempts me into ex-
perimenting”. Also, the author himself, when implement-
ing and testing the prototype suddenly felt an urge to “just
try” things instead of reading up on how to correctly use
that function or API. For example, it was possible to imple-
ment the RSS parser correctly without ever looking at the
underlying XML feed once, just by looking at the data that
got passed around in the functions and then incrementally
modifying the functions to take the data apart and convert
it to the desired format. Therefore, a long-term study eval-
uating the effects of a Live Coding plugin could be very
interesting. Will Live Coding users do a lot more trial-and-
error programming? And will that lead to better or worse
code quality? Might that be actually faster?



119

Appendix A

Tasks Used in the User
Study

[Jaskl1-1



Task 1.1: RSS-Feed Parsing

You want to build a simple RSS-Reeder to read and search through articles from
daringfireball.net using JavaScript/Node.js. To do so, you plan to implement a function
getArticles (), which takes a callback and asynchronously calls it as soon as the RSS-
XML-file was successfully parsed. The articles extracted from the feed should be given as
an argument to the callback. For performance reasons, you want to use a stream-based
SAX XML parser (see hints for more information about SAX parsers).

The method you implement should have the following signature:

getArticles (callback)

* callback: a function that should be called when the requested entries have been
retrieved. It takes one argument, an array of articles. Each article object should have
the following form:

- {
title: The title of the article. (String)
published: The date the article was published, in UTC/GMT. (Date)
link: Aurlto the article. (String)
shortURL: A short url to the article. (String)
author: The name of the author. (String)
content: The content (the complete html) of the article. (String)

¥

Example input:

getArticles (function (articles) {
// array of articles should have 47 articles
// with the required properties

1)

A web server for testing purposes is installed on your machine. The URL of the RSS-Feed
for this task is http://localhost/daringfireball/index.xml. It is already used
in the provided implementation. The published-dates in the XML are in UTC/GMT. You
may use a browser to look at the file, if you like.

Hints

+ A SAX parser does not construct a complete XML-Tree but instead posts events when it
encounters nodes. You can register for the events you are interested in, e.g., when the
parser encounters an opening-tag or when it encounters a text-node. A link to the
documentation of the SAX parser you should use is given below. An excerpt of the
documentation can be found at the end.

« A SAX parser does not tell you what the parent of the current node is or what is children
are, so you have to write your own code to remember that.

« The Date constructor accepts the date-strings in the RSS-Feed-XML.

+ You do not have to implement a true RSS-parser, it is fine if it just works for the Daring
Fireball feed. You also do not have to retrieve other data then specified in the article
object description above.

+ You can assume that the XML is valid and always has the format given in the example
file.



Useful documentation links:
« Date: https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global Objects/Date

* Array: https:/developer.mozilla.org/en-US/docs/JavaScript/Reference/Global Objects/Array/
+ SAX-Parser: https://github.com/isaacs/sax-js#usage

Possibly useful events the SAX parser emits:

e error: Indication that something bad happened. The error will be hanging out on
parser.error, and must be deleted before parsing can continue.

e text: Text node. Argument: String of text.
e opentag: An opening tag. Argument: object with name and attributes.

e closetag: Aclosing tag. Note that self-closing tags will have closeTag emitted
immediately after openTag. Argument: tag name.

e attribute: An attribute node. Argument: object with name and value.
e opencdata: The opening tag of a <! [CDATA [ block.

e cdata: Thetext of a <! [CDATA[ block. Since <! [CDATA [ blocks can get quite large,
this event may fire multiple times for a single block, if it is broken up into multiple
write ()S. Argument: the String of random character data.

e closecdata: The closing tag (11>) of a <! [CDATA [ block.
¢ end: Indication that the closed stream has ended.

Example Code:

Parse XML.:

var sax = require ("sax");

var parser = sax.parser (true); //strict
parser.onerror = function (error) {

console.log(error.message) ;

}i

parser.onopentag = function (node) {
console.log ("Opened tag " + node.name) ;

}s

parser.onend = function () {
console.log("Reached end of document");

}i

parser.write ("<myDoc>foo</myDoc>") ;
parser.close();



Task 1.2: Filtering by Dates

You want enhance your RSS-Reeder for daringfireball.net by adding functionality to filter
by dates. To do so you you changed your function getArticles () to
getArticlesBetweenDates () and implemented a date comparison. Now you want to
make the input more flexible and not require all the properties of a date to be set. E.g. if
just a day is given it should be interpreted as the given day of the current month of the
current year at midnight. That is, your method should accept partial objects. All that is left
to change now is to convert these partial objects into actual and complete Date objects.

To do so you have to implement a method with the following signature:

createDateFromDateInfo (dateInfo)
* dateInfo: an object representing the date that should be constructed:
* |
year: the year of the date (e.g. 2013). Use current year if not given.
month: the month of the year (1-12). Use current month if not given.
day: the day of the month (1-31). Use current day if not given.
hour: the hour of the day (0-23). Use 0 if not given.
minute: the minutes of the hour (0 - 59). Use 0 if not given.
second: the seconds of the minute (0-59). Use 0 if not given.
}
+ This parameter will always be defined, but it might be an empty object.
The properties are all in UTC/GMT.
e Return Value: a Date object representing the time and date specified by the input
object, in UTC.

Example input for the complete function:

getEntriesBetweenDates ({month: 5, day: 1, hour: 0}, {}, function (articles) {
// array of articles should have 19 articles
// with the required properties

) ;

Hints

+ You don‘t have to check the input dates for the correct format (e.g. day = 32, or month
=13, or second = 100). You can assume that only valid values will be used.

+ You can ignore leap seconds.

+ Time zones are important, though. Remember that the input date dictionaries as well as
the output Date objects of the article’s objects should be in UTC.

Useful documentation links:

+ Date: https:/developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Date
* Array: https:/developer.mozilla.org/en-US/docs/JavaScript/Reference/Global Objects/Array/




Task 3: Dijkstra's Algorithm

You want to implement Dijkstra‘s algorithm using JavaScript/Node.js to solve the single-
source shortest-path problem on a given graph, i.e., for a given start node in the graph find
the shortest paths to all other nodes.

The method you implement should have the following signature:

calculateShortestPathFromNodeToOtherNodesInGraph (startName, graph)
* startName: a String providing the name of the start node, for which to calculate the
shortest paths
* graph: a graph in the following format
* {

* nodes: An object/dictionary with the node names as keys and the nodes
as value. The nodes have the following form. {

* name: the name (unique identifier) of the node

}

* edges: Object/dictionary with the from-node names as keys and the
values being arrays objects/dictionaries again with the to-node name as
key and the weight as value (see example).

}
* Return Value: return the original graph, but modify the nodes so each has two
additional properties:
* predecessor: name of the predecessor in the shortest path from the start node
to this node.
* distance: The distance of this node from the start node. (number)
* You do not have to copy the graph or the nodes, it is fine if you modify the input.

Example input:

var graph = {
nodes: { a: {name: "a"}, b: {name: "b"}, c:{name: "c"}, d:
{name: "d"}, e:{name: "e"} }
i
graph.edges = {
: {b: 1, c: 2},
{e: 6},
{a: 3, b: 9, e: 2},
{a: 10, c: 5},
{d: 7, b: 4}

O O Q O W

}s

var result = calculateShortestPathFromNodeToOtherNodesInGraph ("d",

graph) ;
console.log(result.nodes.a.predecessor); // prints "c"



Graphical Representation of the graph in the example input and its shortest paths.

7/
start node

Dijkstra‘s algorithm (as explained on Wikipedia)

Let the node at which we are starting be called the initial node. Let the distance of node
Y be the distance from the initial node to Y. Dijkstra's algorithm will assign some initial
distance values and will try to improve them step by step.

1.

2.

o o

Assign to every node a tentative distance value: set it to zero for our initial node and
to infinity for all other nodes.

Mark all nodes unvisited. Set the initial node as current. Create a set of the
unvisited nodes called the unvisited set consisting of all the nodes except the initial
node.

For the current node, consider all of its unvisited neighbors and calculate their
tentative distances. For example, if the current node A is marked with a distance of
8, and the edge connecting it with a neighbor B has length 1, then the distance to B
(through A) will be 8 + 1 = 9. If this distance is less than the previously recorded
tentative distance of B, then overwrite that distance. Even though a neighbor has
been examined, it is not marked as "visited" at this time, and it remains in the
unvisited set.

When we are done considering all of the neighbors of the current node, mark the
current node as visited and remove it from the unvisited set. A visited node will
never be checked again.

If the unvisited set is empty, stop. The algorithm has finished.

Select the unvisited node that is marked with the smallest tentative distance, and
set it as the new "current node" then go back to step 3.



Useful documentation links:

* Array: https:/developer.mozilla.org/en-US/docs/JavaScript/Reference/Global Objects/Array/
+ Array forEach(): Takes a function and applies it to each element of the array

* https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global Objects/Array/
forEach

Array sort(): Takes a function with two arguments and uses it to compare elements of

the array to each other and then sort the array.
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global Objects/Array/sort

Array shift(): Removes the first element of an array and returns it.

https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Array/shift

Hints

* Please do not search for (pseudo) code and just copy the implementation but instead
implement the algorithm yourself using the explanations given above.

+ For performance reasons, Dijkstra‘s algorithm is usually implemented using a priority
queue for the set of unvisited nodes. This is not necessary in this task. You can simply
use a normal JavaScript array and sort it to find the node with the smallest tentative
distance to the start node or simply iterate through it to find the smallest one. We are only
interested in a working implementation, for now, not the most efficient one.

+ Dijkstra‘s algorithm requires a graph in which all edges have a positive weight. You can
assume that this requirement is fulfilled by input provided to the function and do not have
to check it yourself.

* You can assume that the graph is fully connected.

Example Code

// Iterate over the properties of an object

var myObj = {firstName: "Paul", middleName: "Bar", lastName: "Pi"},
names = [];

var property;

for (property in myObj) ({
names.push (myObj [property]) ;

}

console.log(names) // will print: ["Paul", "Bar", "Pi"]






127

Appendix B

Questionnaires

B.1 Pre Task Questionnaires

Live Coding Pre Task 1 Questionnaire

Participant ID:

Experience with

No
Experience

A lot of
Experience

1. XML

. XML-Parsing

2
3. Using SAX-Parsers
4

Programming using Dates/
Times/Calendars

Figure B.1: The questionnaire participants received before Task 1.1 and Task 1.2.



128 B Questionnaires

Live Coding Pre Task 3 Questionnaire

Participant ID:
Never Once Very often/
Regularly
1. | have implemented
Dijkstra‘s algorithm myself
2. | have implemented
Dijkstra‘s algorithm myself
in a real application (not just
as an exercise)
Experience with No Alot of
Experience Experience
3. Implementing Algorithms
4. Implementing Graphs and
Graph-based Algorithms

Figure B.2: The questionnaire participants received before Task 3.




B.2 Post Task Questionnaires 129

B.2 Post Task Questionnaires



130 B Questionnaires

Participant ID:
Task:

Strongly Strongly
Disagree Agree

1. The task was difficult for me.

2. The tool helped me solve the task.

3. | would have solved the task just as
fast without the tool.

4. | understand what the code | wrote
does exactly and why it works (or
doesn't).

5. | was able to implement most of the
requirements.

6. | am confident that my solution is
correct.

What made the task difficult?

What problems did you encounter (minor ones as well)?

Figure B.3: The questionnaire participants received after each task.



B.3 Post Session Questionnaires 131

B.3 Post Session Questionnaires



132 B Questionnaires

Participant ID:

Strongly Strongly
Disagree Agree

1. I think that | would like to use this
system frequently

2. | found the system unnecessarily
complex

3. [|thought the system was easy to use

4. |think that | would need the support of a
technical person to be able to use this
system

5. | found the various functions in this
system were well integrated

6. |thought there was too much
inconsistency in this system

7. 1 would imagine that most people would
learn to use this system very quickly

8. | found the system very awkward to use

9. [ felt very confident using the system

10. | needed to learn a lot of things before |
could get going with this system

11. | found understanding my source code
easy using the system

12. | do not think the plugin has benefits for
code understanding (compared to
Brackets without the plugin)

13. | think implementing functionality is
faster using the plugin (compared to
Brackets without the plugin)

14. 1 think | would have been faster or just
as fast when implementing the
functionality without the plugin.

15. | felt more confident that my code is
correct because of the plugin.

16. Using the plugin did not increase my
confidence in the correctness of my
code.

17. | found the plugin distracting.

18. The plugin did not distract me when |
did not need it.

Figure B.4: The questionnaire the Live Coding participants received after they completed all tasks.



133

Appendix C

Change Cluster Graphs

In this appendix we show all the change cluster graphs of
all participants and all tasks.

C1 Task1.1

e T [ I N ] (] LR [ R ENIN I N I i wi we

Figure C.1: Change Cluster Graph for Participant E. For an explanation of the graph please refer

to Figure[6.15]

Figure C.2: Change Cluster Graph for Participant G. For an explanation of the graph please refer

to Figure[6.15]



134 C Change Cluster Graphs

FUW 00w [} || nouren IR AR )] LU I i R | mn (LT Ot 1 T . T 7]

Figure C.3: Change Cluster Graph for Participant H. For an explanation of the graph please refer

to Figure[6.19]

Figure C.4: Change Cluster Graph for Participant F. For an explanation of the graph please refer

to Figure

Figure C.5: Change Cluster Graph for Participant I. For an explanation of the graph please refer

to Figure[.15]

Figure C.6: Change Cluster Graph for Participant ]. For an explanation of the graph please refer

to Figure[6.15]



C.1 Task1.1 135

i n 1 L TLUTER T LTI R I I S A N N W TCT l T  T lN T ] [ \VI\VIT. T ] I

Figure C.7: Change Cluster Graph for Participant C. For an explanation of the graph please refer

to Figure[6.19]

Figure C.8: Change Cluster Graph for Participant M. For an explanation of the graph please refer

to Figure[6.15]

Figure C.9: Change Cluster Graph for Participant L. For an explanation of the graph please refer

to Figure[6.15]

Figure C.10: Change Cluster Graph for Participant B. For an explanation of the graph please refer

to Figure



136 C Change Cluster Graphs

Figure C.11: Change Cluster Graph for Participant K. For an explanation of the graph please refer

to Figure[6.15]

Figure C.12: Change Cluster Graph for Participant A. For an explanation of the graph please refer

to Figure[.15]

TN LRRL ) e e [T T T Hiw |l LI I o

Figure C.13: Change Cluster Graph for Participant D. For an explanation of the graph please

refer to Figure[6.19]



C2 Task12 137

C.2 Task 1.2

Figure C.14: Change Cluster Graph for Participant E. For an explanation of the graph please refer

to Figure[6.15]

Figure C.15: Change Cluster Graph for Participant G. For an explanation of the graph please refer

to Figure[6.15]

3

Figure C.16: Change Cluster Graph for Participant H. For an explanation of the graph please

refer to Figure



138 C Change Cluster Graphs

—
m I 1 1 B0 . | 1 I D

Figure C.17: Change Cluster Graph for Participant F. For an explanation of the graph please refer

to Figure[6.19]

Figure C.18: Change Cluster Graph for Participant I. For an explanation of the graph please refer

to Figure

Figure C.19: Change Cluster Graph for Participant ]. For an explanation of the graph please refer

to Figure[.15]

Figure C.20: Change Cluster Graph for Participant C. For an explanation of the graph please refer

to Figure[6.15]



C2 Task12 139

Figure C.21: Change Cluster Graph for Participant M. For an explanation of the graph please

refer to Figure

Figure C.22: Change Cluster Graph for Participant L. For an explanation of the graph please refer

to Figure[6.15]

Figure C.23: Change Cluster Graph for Participant B. For an explanation of the graph please refer

to Figure[6.15]

Figure C.24: Change Cluster Graph for Participant K. For an explanation of the graph please refer

to Figure



140 C Change Cluster Graphs

Figure C.25: Change Cluster Graph for Participant A. For an explanation of the graph please refer

to Figure[p.15]

Figure C.26: Change Cluster Graph for Participant D. For an explanation of the graph please

refer to Figure[p.19]



C3 Task3 141

C.3 Task3

Figure C.27: Change Cluster Graph for Participant E. For an explanation of the graph please refer

to Figure[6.15]

Figure C.28: Change Cluster Graph for Participant G. For an explanation of the graph please refer

to Figure[6.15]

(L B ] WU EENE Wi om0 e N e ee e mane e IIZ 1 i il 1 I|ITI7I

Figure C.29: Change Cluster Graph for Participant H. For an explanation of the graph please

refer to Figure[6.19]



142 C Change Cluster Graphs

LU O WANIT (U1} I WO e mn n n HHH\I\H [} R [ I i

Figure C.30: Change Cluster Graph for Participant F. For an explanation of the graph please refer

to Figure[6.19]

Figure C.31: Change Cluster Graph for Participant I. For an explanation of the graph please refer

to Figure

Figure C.32: Change Cluster Graph for Participant ]. For an explanation of the graph please refer

to Figure[.15]

Figure C.33: Change Cluster Graph for Participant C. For an explanation of the graph please refer

to Figure[6.15]



C3 Task3 143

i CLURUIR R RO i) ] LU LT I ] [ N LI B (Il T m [l

Figure C.34: Change Cluster Graph for Participant M. For an explanation of the graph please

refer to Figure

Figure C.35: Change Cluster Graph for Participant L. For an explanation of the graph please refer

to Figure[6.15]

Figure C.36: Change Cluster Graph for Participant B. For an explanation of the graph please refer

to Figure[6.15]

Figure C.37: Change Cluster Graph for Participant K. For an explanation of the graph please refer

to Figure



144 C Change Cluster Graphs

Figure C.38: Change Cluster Graph for Participant A. For an explanation of the graph please refer

to Figure[p.15]

Figure C.39: Change Cluster Graph for Participant D. For an explanation of the graph please

refer to Figure[p.19]



145

Bibliography

Aaron Bangor, Philip T Kortum, and James T Miller. An
Empirical Evaluation of the System Usability Scale. Inter-
national Journal of Human-Computer Interaction, 24(6):574—
594, July 2008.

Ewgenij Belzmann. Utilization and Visualization of Pro-
gram State as Input Data in a Live Coding Environment.
Master’s thesis, RWTH Aachen University, Aachen,
April 2013.

John Brooke. SUS-A quick and dirty usability scale. Usabil-
ity evaluation in industry, 189:194, 1996.

Renée C Bryce, Alison Cooley, Amy Hansen, and Nare
Hayrapetyan. A one year empirical study of student pro-
gramming bugs. In Frontiers in Education Conference (FIE),
2010 IEEE, October 2010.

Margaret M Burnett, John Atwood, Rebecca Walpole Djang,
James Reichwein, Herkimer Gottfried, and Sherry Yang.
Forms/3: A first-order visual language to explore the
boundaries of the spreadsheet paradigm. Journal of Func-
tional Programming, 11(2), March 2001.

W Choi, ] Brandt, and S R Klemmer. Rehearse: Coding
Interactively while Prototyping. 2008.

Douglas H Clements and Julie Sarama. Design of a logo en-
vironment for elementary geometry. The Journal of Math-
ematical Behavior, 14(4):381-398, December 1995.

Matthew Conway, Steve Audia, Tommy Burnette, Dennis
Cosgrove, and Kevin Christiansen. Alice. In the SIGCHI
conference, pages 486—493, New York, New York, USA,
2000. ACM Press.



146

Bibliography

Curtis Cook, Margaret M Burnett, and Derrick Boom. A
bug’s eye view of immediate visual feedback in direct-
manipulation programming systems. ESP "97: Papers pre-
sented at the seventh workshop on Empirical studies of pro-
grammers, October 1997.

E. W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1(1):269-271, December
1959.

Jonathan Edwards. Example centric programming. SIG-
PLAN Notices, 39(12), December 2004.

M Eisenstadt. Tales of Debugging from the Front Lines.
Empirical Studies of Programmers: Fifth Workshop, 1993.

James B Fenwick, Jr, Cindy Norris, Frank E Barry, Josh
Rountree, Cole ] Spicer, and Scott D Cheek. Another look
at the behaviors of novice programmers. In SIGCSE "09:
Proceedings of the 40th ACM technical symposium on Com-
puter science education. ACM Request Permissions, March
20009.

Andy Field. Multilevel Linear Models. In Discovering statis-
tics using SPSS. Sage Publications Ltd, London, 2009.

P M Fitts. The information capacity of the human motor
system in controlling the amplitude of movement. Jour-
nal of Experimental Psychology, 47(6):381-391, May 1954.

David ] Gilmore. Interface Design: Have we got it wrong.
INTERACT, 1995.

John D Gould. Some Psychological Evidence on How Peo-
ple Debug Computer Programs. 1975.

T. R. G. Green and M Petre. Usability analysis of visual
programming environments: A ’‘cognitive dimensions’
framework. Journal of Visual Languages and Computing, 7
(2):131-174, 1996.

Bjorn Heinen. A Live Coding Editor. PhD thesis, RWTH
Aachen University, September 2012.

Peter Henderson and Mark Weiser. Continuous execution:
the VisiProg environment. In ICSE '85: Proceedings of the
8th international conference on Software engineering. IEEE
Computer Society Press, August 1985.



Bibliography

147

Matthew C Jadud. A First Look at Novice Compilation Be-
haviour Using Blue]. Computer Science Education, 15(1):
25-40, December 2004.

W L Johnson, E Soloway, B Cutler, and S Draper. Bug cata-
logue: 1., 1983.

Andrew ] Ko and Brad A Myers. Development and evalu-
ation of a model of programming errors. In IEEE Sympo-
sium on Human Centric Computing Languages and Environ-
ments, 2003. 2003, pages 7-14. IEEE, 2003.

Andrew ] Ko and Brad A Myers. Designing the whyline: a
debugging interface for asking questions about program
behavior. In CHI '04: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. ACM Request
Permissions, April 2004.

Andrew ] Ko and Brad A Myers. A framework and
methodology for studying the causes of software errors
in programming systems. Journal of Visual Languages and
Computing, 16(1-2), February 2005.

Andrew ] Ko and Brad A Myers. Debugging reinvented.
In Software Engineering, 2008. ICSE "08. ACM/IEEE 30th
International Conference on, 2008.

Andrew ] Ko and Brad A Myers. Finding causes of program
output with the Java Whyline. In CHI "09: Proceedings
of the SIGCHI Conference on Human Factors in Computing
Systems. ACM Request Permissions, April 2009.

Andrew ] Ko, Htet Htet Aung, and Brad A Myers. Elicit-
ing design requirements for maintenance-oriented IDEs:
a detailed study of corrective and perfective maintenance
tasks. In Software Engineering, 2005. ICSE 2005. Proceed-
ings. 27th International Conference on, pages 126-135, 2005.

Thomas D. LaToza and Brad A Myers. Developers
ask reachability questions. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineer-
ing, pages 185-194, May 2010.

Thomas D. LaToza, David Garlan, James D Herbsleb, and
Brad A Myers. Program comprehension as fact finding.
In ESEC-FSE '07: Proceedings of the the 6th joint meeting of



148

Bibliography

the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engi-
neering. ACM Request Permissions, September 2007.

James Lewis and Jeff Sauro. The Factor Structure of the Sys-
tem Usability Scale. In Masaaki Kurosu, editor, Lecture
Notes in Computer Science, pages 94-103. Springer Berlin
/ Heidelberg, 2009.

Henry Lieberman. The Debugging Scandal and What to Do
About It. Communications of the ACM, 40(4):26-29, April
1997.

John H Maloney and Randall B Smith. Directness and live-
ness in the morphic user interface construction environ-
ment. In UIST "95: Proceedings of the 8th annual ACM sym-
posium on User interface and software technology. ACM Re-
quest Permissions, December 1995.

T Munzner. A Nested Model for Visualization Design and
Validation. [EEE Transactions on Visualization and Com-
puter Graphics, 15(6):921-928, 2009.

Jakob Nielsen. Chapter 5. In Usability Engineering. Aca-
demic Press, Inc, Cambridge, 1993.

Donald A Norman. The Design of Everyday Things. Basic
Books, basic books edition, April 1988.

Seymour Papert. Mindstorms: children, computers, and pow-
erful ideas. Basic Books, Inc., January 1980.

John Resig. Redefining the Introduction to Computer Sci-
ence, August 2012. URL http://ejohn.org/blog/
introducing-khan-cs/.

David Saff. Automated continuous testing to speed soft-
ware development . Master’s thesis, MIT Department
of Electrical Engineering and Computer Science, Cam-
bridge, February 2004.

David Saff and Michael D Ernst. Reducing wasted devel-
opment time via continuous testing. Software Reliability
Engineering, 2003. ISSRE 2003. 14th International Sympo-
sium on, pages 281-292, 2003.


http://ejohn.org/blog/introducing-khan-cs/
http://ejohn.org/blog/introducing-khan-cs/

Bibliography

149

David Saff and Michael D Ernst. An experimental evalua-
tion of continuous testing during development. In ISSTA
'04: Proceedings of the 2004 ACM SIGSOFT international
symposium on Software testing and analysis. ACM Request
Permissions, July 2004.

B Computer Shneiderman. Direct Manipulation: A Step
Beyond Programming Languages. Computer, 16(8), 1983.

J Sillito, G.C Murphy, and K De Volder. Asking and An-
swering Questions during a Programming Change Task.
IEEE Transactions on Software Engineering, 34(4):434-451,
2008.

Jonathan Sillito, Gail C. Murphy, and Kris De Volder. Ques-
tions programmers ask during software evolution tasks.
In SIGSOFT "06/FSE-14: Proceedings of the 14th ACM SIG-
SOFT international symposium on Foundations of software
engineering. ACM Request Permissions, November 2006.

J L Snell. Ahead-of-time debugging, or programming not in
the dark. In Software Technology and Engineering Practice,
1997. Proceedings., Eighth IEEE International Workshop on
[incorporating Computer Aided Software Engineering, pages
288-293. IEEE Computer Society, 1997.

J C Spohrer and E Soloway. Alternatives to construct-based
programming misconceptions. In CHI ‘86: Proceedings
of the SIGCHI Conference on Human Factors in Computing
Systems. ACM Request Permissions, April 1986.

Steven L Tanimoto. VIVA: A visual language for image pro-
cessing. Electronic Notes in Theoretical Computer Science, 1
(2):127-139, June 1990.

Steven L Tanimoto. A Perspective on the Evolution of Live
Programming. Workshop on Live Programming (LIVE),
2013.

Bret Victor. Learnable Programming, Septem-
ber 2012a. URL http://worrydream.com/
LearnableProgramming/.

Bret Victor. Inventing on Principle, January
2012b. URL http://worrydream.com/
InventingOnPrinciple/l


http://worrydream.com/LearnableProgramming/
http://worrydream.com/LearnableProgramming/
http://worrydream.com/InventingOnPrinciple/
http://worrydream.com/InventingOnPrinciple/

150 Bibliography

E M Wilcox, John Atwood, Margaret M Burnett, ] ] Cadiz,
and Curtis R Cook. Does continuous visual feedback
aid debugging in direct-manipulation programming sys-
tems? In CHI '97: Proceedings of the ACM SIGCHI Confer-
ence on Human factors in computing systems. ACM Request
Permissions, March 1997.



Typeset August 27, 2013



	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Motivation
	Live Coding
	Chapter Overview

	Background
	Different Levels of Liveness
	Errors, Failures, Faults and Bugs

	Related work
	Live Coding
	Recent Developments

	Research into Developer Behavior and Errors
	The Effect of Liveness
	Programming Errors
	Summary



	Prototype
	Motivation for a New and More High-Fidelity Prototype
	Limitations of Heinen:2012ue's Heinen:2012ue Prototype

	A New Backend
	The Prototype
	Implementing Victor:2012tu's Victor:2012tu Visualization
	Problems with the Skewed Design

	Final Version

	Changes to the Backend

	Study Design
	Motivation for a New Exploratory Study
	Designing the Tasks
	Task 1.1: Parsing an RSS-Feed using a SAX-parser
	Refining the Task
	Expected Problems

	Task 1.2: Date & Time Conversion
	Refining the Task

	Expected Problems
	Task 3: Dijkstra's Algorithm
	Refining the Task
	Expected Problems

	Recruiting Participants
	Study Setup
	The Development Environment
	Building a Continuous Compilation Plugin for Brackets
	Providing a Debugger

	Monitoring
	Procedure


	Evaluation
	Participants
	Evaluating the Study
	Tasks
	Tool Quality

	Evaluating the Live Coding Tool
	Qualitative Results
	Task-Based Quantitative Evaluation
	Task Correctness
	Task Completion Times
	Number of Changes

	Change-Based Quantitative Evaluation
	Clustering Changes into Change Clusters
	Analyzing the Change Clusters


	Discussion
	Improvements to the Prototype

	Summary and Future Work
	Summary and Contributions
	Future Work
	Evaluating the Gathered Data
	New Programmer Error Studies
	Improving the Live Coding Tool
	Research into Better Understanding of the Effect of Live Coding


	Tasks Used in the User Study
	Questionnaires
	Pre Task Questionnaires
	Post Task Questionnaires
	Post Session Questionnaires

	Change Cluster Graphs
	Task 1.1
	Task 1.2
	Task 3

	Bibliography
	Index

