

Code Gestalt: A Software Visualization
Tool for Human Beings

Abstract

Programmers are often faced with the necessity to

visualize source code and grasp its structure. In a

survey we studied how developers deal with this task.

Based on our findings, we present the software

visualization tool Code Gestalt, which assists

programmers in quickly creating class diagrams. We

evaluated and refined our concept using two

prototypes. As a result, Code Gestalt introduces the tag

overlay and thematic relations. These augmentations to

class diagrams display similarities in the vocabulary

used in the underlying source code. This simple, yet

effective toolset empowers the user to explore and

visualize software systems. The preliminary results of a

user study investigating Code Gestalt indicate good

usability.

Keywords

Software visualization, tag cloud, class diagram,

survey, prototype, evaluation, user study

ACM Classification Keywords

H5.2 Information Interfaces and Presentation (e.g.,

HCI): User Interfaces. Graphical User Interfaces.

General Terms

Design, Human Factors

Copyright is held by the author/owner(s).

CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.

ACM 978-1-4503-0268-5/11/05.

Christopher Kurtz

Media Computing Group

RWTH Aachen University

52056 Aachen, Germany

christopher.kurtz@rwth-aachen.de

CHI 2011 • Poster Group 1 May 7–12, 2011 • Vancouver, BC, Canada

929

Introduction

Roughly outlining the structure of a code base or a

software feature is frequently achieved using sketches,

such as pen and paper or whiteboard drawings (see

Online Survey). Although there are many tools

dedicated to the task of software visualization (SV),

they are not widely used in everyday development [9].

We investigated why the computer does not play a

more pivotal role in creating quick visualizations, and

how a software tool has to be designed to become

more attractive for programmers.

Over the course of our exploration, we found that most

SV tools fall into one of two categories: One type is

represented by graph-based applications (like [13]),

which focus on the syntax and structural properties of

source code, but lack the ability to emphasize what a

human developer would deem important. The other

type of tools visualizes metrics (like [5]) to identify

those parts of a code base that may be of interest to a

programmer. These tools usually create rather static

SVs allowing for little or no user customization.

Code Gestalt (CG) is our concept to bridge these two

approaches. The user is able to create and edit graph-

based SVs (we use class diagrams as familiar base-line)

and augment them with more semantic information

that emphasizes important regions according to the

user’s interests (see Figure 1).

To achieve the latter, we focus on the vocabulary of the

source code, since this allows us to exploit the human

understanding existent in the naming of variables,

methods, and type names [12]. Making this source of

information easily accessible for other developers helps

them to carve out the overall gestalt of a code base.

Related Work

Several surveys and evaluations have analyzed and

compared the capabilities of SV tools in the past. A user

study by Park and Jensen [6] suggests that SV tools

help newcomers to an open source project to get

started. Bassil and Keller [1] conducted a survey

among 107 participants to determine which aspects of

SV tools are important to users, and what disparities

exist between user needs and features in available SV

applications. They identified that the interface and

usability did not match the users’ expectations. In 2007

Sensalire and Ogao [9] asked five professional

programmers to evaluate three representative SV tools.

Their study revealed a gap between what the expert

users desired and what was offered by the tools in the

areas of IDE integration, search functions, simplicity,

and flexibility.

Several attempts have been made to incorporate

“human insight” in SVs and to simplify diagram

generation. Sinha et al. [10] presented Relo, an editor

that allows the creation of partial class diagrams. The

user adds types and members to a diagram by

expanding call and inheritance relations of existing

elements. That way, only code artifacts selected by the

user are visible and the user controls layout and scope

of the diagram as it grows. A completely different

approach is taken by the thematic software map by

Kuhn et al. [5]. In this SV types are represented as hills

on a map, where those with similar vocabulary are

placed close to each other. Several overlays can be

displayed on this map, e.g. call relations and search

results.

Our work introduces new visualization and interaction

techniques to integrate the advantages of a

Figure 1. Code Gestalt builds upon

the widely used visualization of

representing types as boxes. We

augment these class diagrams by

allowing users to search for and

visualize regions in the diagram that

deal with common themes or concepts

such as “network”, “undo”, or

“update”.

CHI 2011 • Poster Group 1 May 7–12, 2011 • Vancouver, BC, Canada

930

13

8

10

13

24

44

46

46

61

74

Other

Other dependency

Other hierarchy

Membership

Software layers

Sequence and timing

Function/method calls

Data flow

Class dependency

Class hierarchy

customizable graph-based SV with those of metrics-

based SVs, namely finding thematic and conceptual

similarities in types using tag cloud algorithms.

Online Survey

Former surveys and evaluations describe advantages

and deficiencies of existing SV tools. They do however

not answer the question how programmers accomplish

visualization tasks in lack of a suitable SV tool.

We performed an online survey that contained 31

questions, asking about the participant’s background,

impression of common and experimental visualizations,

and working experience with SV tools, sketching, and

visualizations in source code documentation. Links to

the survey were distributed through international

programming forums and mailing lists. We recorded a

total of 128 participants: 67 students, 42 professional

programmers, 11 researchers, 2 teachers, and 4

persons from other areas of software development.

35% of the participants sketch at least once a week,

while only 20% do use an SV tool that often. Class

diagrams were by far the most popular SVs, rated

“useful” by 80% of the participants. Figure 2 illustrates

what aspects of a code base users sketch, when they

do not use an SV tool.

We found that SV tools must allow for fast SV

generation, as time consumption was a primary reason

for many users to completely avoid SV tools.

Qualitative feedback suggests that an adequate SV tool

should give the user control over the visualization and

not be a “one-click-solution”: In open-ended questions,

participants commented that some tools “tend to

become unreadable”, and automatic SV tools “put too

much detail in the diagram”. For details refer to [6].

These findings guided our development of CG. The tool

should support the user in creating an SV step-by-step

based on a class diagram and offer features to discover

and highlight important features.

Paper Prototype

For the first iteration of the CG concept we built a paper

prototype (see Figure 3). We looked at some code

bases and found that naming conventions could be

exploited to gain a certain degree of “human insight”

[12], if the vocabulary used in types could be

visualized. E.g., terms like “message”, “server”, and

“port” have a high probability of appearing in the

implementation of network features.

For this purpose we added a visual filter feature to an

editor inspired by Relo [10], and provided additional

IDE integration. In this concept a user confronted with

an unknown code base can visually filter the diagram

using one or more search results to find types that

share common themes. That way, the programmer is

Figure 2. The responses from 112

participants to the question “What

aspects of your software project or

code artifacts do you usually cover in

sketches?” Participants were allowed

to give multiple answers. 16

participants stated to never sketch.

Figure 3. A mockup UI from the paper

prototype. The editor (left) is inspired

by Relo [10]. The user can perform

searches and define filters (right) that

impact what elements are visible in the

editor. Using the tagging interface

(center), the user can assign colors

and icons to elements, thus grouping

related code artifacts.

The user has identified a group of

listeners and tagged them with the

icon of an ear and a shade of green.

CHI 2011 • Poster Group 1 May 7–12, 2011 • Vancouver, BC, Canada

931

able to identify related elements, which can be grouped

and tagged using colors and icons to create landmarks.

We tested the prototype with five students using twelve

use-cases. The testers had some conceptual problems

with the visual search/filter feature and asked for a

simplified interaction.

Tag Overlay Design

To replace the visual search feature we conceived the

tag overlay (see Figure 4). It is designed to help the

user build a spatial model of the source code (“the

network code is in the top-right”) and emphasize

important aspects.

In CG the user creates a diagram along the lines of

structural relations such as inheritance and method

calls. The tag overlay is an optional visual layer that

can be toggled by the user. It displays a tag cloud on

top of the existing diagram. The terms used for the tag

cloud are parsed from the identifiers of each type. First,

we construct tag clouds for individual types by

assigning each term1 a weight based on its frequency.

The font size of a tag in the overlay represents the

mean of these weights. Similarly, the position of a tag

is the "center of gravity" between the type boxes in the

diagram with respect to these weights. The overlay is

1 We differentiate terms (non-weighted) and tags (weighted).

dynamic and updates as the user moves, creates or

deletes types from the diagram.

This can be seen as an inverse of the approach taken

by the thematic software map [5]. We augment our SV

with spatial and thematic information extracted from

the vocabulary of the source code without sacrificing

the flexibility of the underlying graph editor. Using this

technique, CG gains some of the semantic

expressiveness desired by the participants from our

survey, without becoming a static “one-click-SV”.

When the user selects a tag all types are highlighted

that use the corresponding term. The intensity of the

highlight color represents the weight assigned to the

term by each type. Vice versa, the user can select a

type to highlight all tags which terms are used in the

selected type. Again, the color intensity of the highlight

visualizes the corresponding weight. A programmer can

explore the code base and determine what types deal

with what themes by selecting corresponding tags.

Highlighting tags by selecting terms on the other hand

gives the user a better idea of its thematic scope and in

what parts of the diagram related types can be found.

While this overlay already aids in the analysis of the

code base, it is transient and does not interact with the

underlying class diagram. To include a tag in the

diagram, the user can create a thematic relation.

Thematic relations connect all types using the same

term with the corresponding tag. This relation is

visualized as a fan (see Figure 5) and persistent with

respect to the tag overlay toggle. We assign different

transparency levels to the fan segments representing

different weights. Thematic relations are recognizable

landmarks that add structure to the diagram.

Figure 5. Three thematic relations:

The tags canvas, hovering and

thickness connect those types that use

these terms in their source code

vocabulary. The intensity of the fan

segments indicates the relative

frequency of the term in each type.

Figure 4. A small tag overlay for three

classes: Actions, PaintObject, and

PaintCanvas. The user can identify the

“center of gravity” for concepts, such

as undo, which is an important term in

Actions. The font size of each tag is

determined by the mean of the

weights assigned by each type (term

frequency in type).

This naïve algorithm causes an

overexposure of terms like get and

object. In future work we want to

examine different tag cloud metrics

and filters to reduce clutter.

CHI 2011 • Poster Group 1 May 7–12, 2011 • Vancouver, BC, Canada

932

This interface is almost as powerful as the features

introduced in the paper prototype, but offers many

advantages. We can still perform searches (using the

highlighting) and group types (using thematic

relations). Since the vocabulary is visible, searches do

not run the risk of returning no results due to

ambiguous keywords (e.g., “listener”/“observer”). The

overlay additionally helps the user to quickly identify

key terms and build a spatial model of the code.

We created a demo of this concept with the prototyping

system SketchFlow [11]. The demo features animations

and an interactive mockup of the tag overlay. This

prototype was evaluated by discussing it with members

from our group and the Computer Science Department

III of the University of Bonn. The interactions offered

by the tag overlay and thematic relations were well

received. This feedback led to our decision to

implement a working system for further study.

Eclipse Plug-In

We implemented CG as editor plug-in for Eclipse [3].

We use the Eclipse API (JDT) for general Java queries,

such as inheritance and call relations, and Cultivate

[12] to obtain tag metrics. CG diagrams are integrated

as a new document type with Eclipse. They can be

placed everywhere in the project structure a source

code file can, and are compatible with versioning

systems.

The user generates diagrams using drag-and-drop.

Project files and all kinds of code artifacts can be

dragged to the editor from any Eclipse view and are

visualized in a way similar to class diagrams. Types are

represented as boxes (see Figure 6), where fields and

methods can be added to a list of members. At the

bottom there is a tag cloud, displaying the ten most

frequent terms. The tag overlay and thematic relations

are implemented as described in the previous section.

We display relations as context sensitive previews when

diagram elements are selected (see Figure 7). The

user decides on a case-by-case basis, if a relation

should be included in the diagram. The informed

decisions of the human user avoid uncontrolled growth

of the SV and distracting clutter.

Evaluation

We evaluated CG by means of a user study with 16

computer science students and postgraduates from the

RWTH Aachen University and the University of Bonn.

We prepared four tasks, which asked the participants to

look at a specific feature of the Paint source code from

[4] and draw a diagram to explain it. Two diagrams had

to be created using CG and pen & paper each.

Afterwards, the testers were given a questionnaire to

evaluate CG and rate the usefulness of individual

features on a five-point Likert scale.

Code Gestalt scored a mean of 79.53 on the System

Usability Scale [2] (standard deviation 8.37, median

77.5). The participants agreed with the statement, that

CG is a practical alternative to pen and paper (median

4 on a (0..4) scale). Similarly, the thematic relation

(median 4) was rated very useful. The highlighting

features for types (median 3) and tags (median 3) were

rated useful, as was the tag overlay (median 3).

The comments made by the participants during the

study were compiled to a list of feature changes and

improvements. The most desirable features are more

customization and a number of new relation types

Figure 6. A type box with a header

containing the name and package of

the type (1), fields (2), methods (3)

and a tag cloud (4). UI controls like

the close button in the top-right

corner or the resize handle in the

lower-right corner are only displayed,

when the user selects an element.

Figure 7. The preview of a call

relation between methods. Clicking

the semi-transparent arrow makes it

persistent.

1

2

3

4

CHI 2011 • Poster Group 1 May 7–12, 2011 • Vancouver, BC, Canada

933

(dependency, override, etc.). The users would also like

to get previews for elements not yet included in the

diagram to make the tool a substitute for Eclipse’s call

and type hierarchy views and more useful for

exploratory tasks. Another feature in high demand is

the selection of multiple elements in the tag overlay,

using the cross-product of the respective weights for

highlighting. This indicates that users expect multiple

tags to capture a given concept better than one.

Summary

We developed Code Gestalt with the information

obtained from an online survey and the evaluation of

three prototypes. Through this process we introduce

the tag overlay and thematic relations to allow users to

find related code artifacts and take advantage of the

human intelligence that went into the naming of

identifiers. A user study supports these new concepts.

Future Work

We are in the process of evaluating the results from a

second survey among the 16 study participants, who

were asked to rate clarity, comprehensibility, and other

aspects of other testers’ CG diagrams and sketches to

find out how CG performs as means of communication.

Areas for improvement are the mathematical model

behind the tag overlay, which is currently putting too

much emphasis on trivial terms like “get”, and the

scalability of Code Gestalt. An interesting long-term

perspective is the integration of hand-drawn sketches

with the editor as in CodeGraffiti [7].

Acknowledgements

We thank Leonhard Lichtschlag, Jan Borchers, Günter

Kniesel, Daniel Speicher, Jan Nonnen, and Johanna

Nellen for many fruitful discussions and their support.

References
[1] Bassil, S. and Keller, R.K. Software Visualization

Tools: Survey and Analysis. In Proc. IWPC 2001, IEEE

Society Press (2001), 7-17.

[2] Brooke, J. SUS – A Quick and Dirty Usability Scale.

Usability Evaluation in Industry. Taylor & Francis
(1996).

[3] Eclipse, http://www.eclipse.org

[4] Ko, A. J., Myers, B.A., Coblenz, M.J. and Aung,

H.H. An Exploratory Study of How Developers Seek,

Relate, and Collect Relevant Information during

Software Maintenance Tasks. IEEE Transactions on
Software Engineering 12, 32 (2006), 971-987

[5] Kuhn, A., Loretan, P. and Nierstrasz, O. Consistent

Layout for Thematic Software Maps. In Proc. WCRE
2008, IEEE Society Press (2006), 209-218.

[6] Kurtz, C. Code Gestalt: From Class Diagrams to
Code Landscapes. Diploma thesis. To appear in 2011.

[7] Lichtschlag, L. and Borchers, J. CodeGraffiti:

Communication by Sketching for Pair Programming. In
Ext. Abstr. UIST 2010.

[8] Park, Y. and Jensen, C. Beyond Pretty Pictures:

Examining the Benefits of Code Visualization for Open
Source Newcomers. In Proc. VISSOFT 2009, 3-10.

[9] Sensalire, M. and Ogao, P. Visualizing Object

Oriented Software: Towards a Point of Reference for

Developing Tools for Industry. In Proc. VISSOFT 2007,
26-29.

[10] Sinha, V., Karger, D. and Miller, R. Relo: Helping

Users Manage Context during Interactive Exploratory

Visualization of Large Codebases. In Proc. VL/HCC
2006, 187-194.

[11] SketchFlow, http://www.microsoft.com/expression

[12] Speicher, D. and Nonnen, J. Consistent

Consideration of Naming Consistency. In Proc. WSR
2010. 51-52.

[13] Umbrello. http://uml.sourceforge.net/

CHI 2011 • Poster Group 1 May 7–12, 2011 • Vancouver, BC, Canada

934

