

iii

I hereby declare that I have created this work completely on
my own and used no other sources or tools than the ones
listed, and that I have marked any citations accordingly.

Hiermit versichere ich, dass ich die vorliegende Arbeit
selbständig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich
gemacht habe.

Aachen,April 2011
Christopher Kurtz

v

Contents

Abstract xxiii

Überblick xxv

Acknowledgements xxvii

Conventions xxix

1 Introduction 1

1.1 Goals and requirements 4

1.2 Contribution 5

2 Related work 9

2.1 Top-level visualizations 10

2.1.1 Seesoft 10

2.1.2 SHriMP 11

Creole 13

2.2 Special purpose tool sets 13

2.2.1 CodeCrawler 14

vi Contents

X-Ray 15

2.2.2 Cultivate 15

2.3 Program execution 16

2.3.1 CallStax 17

2.3.2 Extravis 18

2.3.3 TraceCrawler 19

2.4 SVs based on class diagrams 20

2.4.1 Relo . 20

2.4.2 VisMOOS 22

2.4.3 MetricView 23

2.5 Map and city metaphors 24

2.5.1 UML-city 24

2.5.2 CodeCity 25

2.5.3 CodeMap 26

2.6 Taxonomies and evaluation 27

2.6.1 Taxonomy by Price 28

2.6.2 Survey by Bassil and Keller 30

2.6.3 Evaluation and the need for integration 32

2.6.4 The effect of layout on comprehension 34

2.6.5 Dynamic visualization tools 35

2.7 Summary . 35

Contents vii

3 Initial user survey 39

3.1 Design . 40

3.2 Results . 41

3.2.1 Background 41

3.2.2 Usefulness of software visualizations 41

Common visualizations 42

Visualizations from research 44

Comments 46

3.2.3 Visualization software 46

SV tool users 47

Non-users 48

Comments 48

3.2.4 Manual visualization 49

Sketching participants 49

Non-sketching participants 50

Comments 50

3.2.5 Software visualization in documenta-
tion . 51

Comments 51

3.3 Summary . 51

4 Paper prototype 55

4.1 Design . 55

viii Contents

4.1.1 Early concepts 56

Thematic heat map 56

Data trace 57

4.1.2 Designs in light of the online survey . 58

Framework flow 59

Structured context diagram 60

Local context view 62

Diagram widgets 64

4.1.3 Designing the paper prototype 66

4.2 Implementation 67

4.2.1 Project integration 69

4.2.2 Creation of a diagram 70

4.2.3 Expanding a diagram 70

4.2.4 Search a diagram 72

4.2.5 Grouping and tagging 73

4.3 Evaluation . 74

4.3.1 Test results 75

Project integration 75

Creating a diagram 75

Editing a diagram 76

4.3.2 Further feedback and observations . . 78

4.3.3 Impact on next prototype 78

Contents ix

5 Silverlight prototype 79

5.1 Design . 80

5.1.1 Tag overlay 81

Visualization 82

Interaction 83

5.1.2 Thematic relation 84

Visualization 85

Interaction 86

5.1.3 Class diagram 86

5.2 Implementation 87

5.2.1 Creating a new diagram 87

5.2.2 Expanding an existing diagram 88

5.2.3 Tag overlay 90

5.2.4 Thematic relations 90

5.3 Evaluation . 93

6 Eclipse implementation 95

6.1 Design . 95

6.2 Implementation 96

6.2.1 Framework 96

6.2.2 Other resources 97

6.2.3 Eclipse integration 98

Diagram creation 98

x Contents

Editor 101

Complementary Eclipse views 102

Drag-and-drop 102

Code editors 103

6.2.4 Class diagram editor 103

Type boxes 103

Inheritance and call relations 104

6.2.5 Tag overlay 107

Sweepline algorithm 108

Highlighting 109

6.2.6 Thematic relations 109

6.2.7 Notes 112

6.3 Evaluation . 112

6.3.1 Goals 113

6.3.2 Test design 114

6.3.3 Results 115

Population 115

Completion rates and completion time 115

Errors 116

Qualitative feedback 117

Questionairre 119

Additional usability questions 120

Contents xi

Individual features 120

6.3.4 Second online survey 121

Comparison of sketches with Code
Gestalt diagrams 123

Qualitative feedback 123

Requested features 124

6.3.5 Summary 126

7 Summary and future work 129

7.1 Summary and contributions 129

7.2 Future work 131

7.2.1 Implementation 131

7.2.2 Diagram customization 132

7.2.3 Scalability 132

7.2.4 Further evaluation 133

7.2.5 Multiple selection in tag overlay . . . 133

7.2.6 Additional metrics 134

A Additional online survey materials 135

A.1 Survey questions 135

A.1.1 Background 136

A.1.2 Visualization software 139

SV users 140

SV non-users 142

xii Contents

All participants 142

A.1.3 Manual visualization 143

Sketching participants 143

Non-sketching participants 144

All participants 145

A.1.4 Documentation 145

A.2 Results and analysis 146

A.2.1 Background 146

A.2.2 Visualizations 148

A.2.3 Visualization software 153

SV tool users 154

Non-users 161

A.2.4 Manual visualization 162

Sketching participants 162

Non-sketching participants 166

A.2.5 Software visualization in documenta-
tion . 166

B Paper prototype user test 169

C Additional user study materials 173

C.1 User study forms 173

C.1.1 Consent form 174

C.1.2 Test tasks 176

Contents xiii

C.1.3 User study questionnaire 181

C.1.4 Error and clutter evaluation scheme . 185

Task #1 185

Task #2 186

Task #3 188

Task #4 189

C.2 Results and analysis 190

C.2.1 Population 190

C.2.2 Completion rates and times 191

C.2.3 Errors 192

D Second online survey materials 197

D.1 Survey questions 197

D.1.1 Diagram/sketch comparison 198

D.1.2 Additional features 198

D.2 Results and analysis 200

D.2.1 Comparison of sketches with Code
Gestalt diagrams 200

Bibliography 203

Index 209

xv

List of Figures

1.1 Example of UML class diagram 3

1.2 Example of pen and paper sketch 4

1.3 Example of the tag overlay 6

1.4 Example of thematic relations 7

2.1 Seesoft visualization 11

2.2 Simple Hierarchical Multi-Perspective view . 12

2.3 SHriMP views in Eclipse 13

2.4 System Complexity View in CodeCrawler . . 14

2.5 Cloud View of Cultivate 16

2.6 CallStax in web browser 17

2.7 Extravis . 18

2.8 TraceCrawler detail 20

2.9 Relo diagram 21

2.10 3DRD and VisMOOS view 22

2.11 MetricView . 23

xvi List of Figures

2.12 UML-City-View 24

2.13 CodeCity . 25

2.14 Thematic software map 27

3.1 Perceived usefulness of common visualizations 43

3.2 Perceived usefulness of research visualizations 45

4.1 Thematic Heatmap Concept 57

4.2 Data Trace Concept 58

4.3 Framework Flow Concept 59

4.4 Structured Context Diagram concept 61

4.5 Local Context View concept 62

4.6 Tabbed diagram type widgets 64

4.7 Type widgets 65

4.8 Integration of diagrams with a project 69

4.9 Creation of a new diagram 71

4.10 Expanding a diagram 72

4.11 Filtering a diagram 73

4.12 Creating groups 74

5.1 Tag overlay concept sketch 81

5.2 Concept drawing of thematic relations 85

5.3 Adding methods to a type widget 88

5.4 Creating a new diagram by drag-and-drop . 89

List of Figures xvii

5.5 Expanding an existing diagram 89

5.6 Prototype of the tag overlay 91

5.7 Thematic relations in Silverlight prototype . 92

5.8 Customizing thematic relations 92

6.1 Code Gestalt plug.in in Eclipse 99

6.2 ‘New Code Gestalt Diagram’ wizard 100

6.3 ‘Create New Diagram From Selection’ options 101

6.4 Properties view for a selected type 102

6.5 The representation of a type 104

6.6 Expand options for types 105

6.7 Collapse options for types 105

6.8 Inheritance relation preview 106

6.9 Call relations 107

6.10 Tag Overlay 108

6.11 Tag overlay sweepline algorithm 109

6.12 Highlighting types 110

6.13 Highlighting tags 110

6.14 Thematic relation contextual controls 111

6.15 Code Gestalt note 112

A.1 Age and programming experience 147

xix

List of Tables

2.1 SV tool comparison 38

3.1 Perceived usefulness of common SVs 42

3.2 Perceived usefulness of experimental SVs . . 44

6.1 Usability questions 120

6.2 Usefulness of individual features 122

6.3 Requested features. 125

A.1 Source code reading frequency 147

A.2 Percentage of unknown code 148

A.3 Comparison of common SVs by profession . 149

A.4 Comparison of common SVs by program-
ming experience 150

A.5 Comparison of common SVs by code read-
ing frequency 150

A.6 Trends of perceived usefulness over source
code reading frequency for common SVs . . 151

A.7 Comparison of common SVs by percentage
of unknown code read 151

xx List of Tables

A.8 Trends of perceived usefulness over percent-
age of unknown code read for common SVs . 152

A.9 Comparison of SVs from research by profes-
sion . 152

A.10 Correlation between programming experi-
ence and perceived usefulness of SVs from
research . 153

A.11 Comparison of SVs from research by code
reading regularity 153

A.12 Comparison of SVs from research by per-
centage of unknown source code read 154

A.13 SV tools usage frequency 154

A.14 Most frequently created SVs 155

A.15 Reasons for creating SVs 156

A.16 Primarily used SV visualization tools 157

A.17 SV tool compatibility with code base 157

A.18 SV tool results satisfaction 158

A.19 SV tool automation 159

A.20 Time requirement per SV. 160

A.21 Reasons for not creating SVs 162

A.22 Frequency of sketching 163

A.23 Most sketched software aspects 163

A.25 Sketching tools and materials 165

A.26 Time needed to create sketches 166

A.27 Reasons for not creating sketches 167

List of Tables xxi

C.1 Completion rates for test tasks 191

C.2 Comparison of completion rates 191

C.3 Completion times for test tasks 192

C.4 Comparison of completion times 192

C.5 Error count for test tasks 193

C.6 Comparison of error count for test tasks . . . 194

D.1 Comparison of sketches and Code Gestalt di-
agrams . 201

xxiii

Abstract

Code Gestalt is a software visualization tool designed to aid source code explo-
ration and communication between developers. The system implements a novel
approach to combine structural code analysis with tag cloud synthesis.
We introduce the tag overlay and thematic relations to augment partial class diagrams.
We visualize the vocabulary of a code base in the tag overlay to help programmers
find important themes and concepts easily. From the tag overlay the user may cre-
ate thematic relations. These are hyperedges that are visualized as fans, emanating
from a term connecting all types that use that term. In Code Gestalt the user may
create thematic relations with a diagram alongside inheritance and call relations to
connect types. The editor allows the user to seamlessly integrate all kinds of rela-
tions in a diagram and freely pick which relations to include. Using affordances
and constraints, the system helps the user to find relations and prevents the cre-
ation of incorrect diagrams.
The concept is based on an extensive online survey, individual interviews, and
repeated user tests with paper and software prototypes. The final software was
implemented as plug-in for Eclipse. In a user study we compared the system with
pen and paper (the most commonly used tools for software visualization and visual
communication).
The study demonstrates that Code Gestalt is a software visualization tool with
good usability and that our work is a meaningful augmentation for class diagrams.
We show that users of Code Gestalt make significantly fewer errors than users of
pen and paper depending on the task at hand. Only in one case pen and paper
users produced significantly fewer errors than Code Gestalt users.

xxiv Abstract

xxv

Überblick

Mit Code Gestalt stellen wir ein Softwarevisualisierungswerkzeug vor, das Entwick-
lern beim Verständnis von Quellcode hilft und die Kommunikation darüber mit
Kollegen erleichtert. Unser System integriert Ansätze aus der statischen Struktur-
analyse von Quellcode mit der Synthese von Schlagwortwolken (Tag Clouds).
In dieser Arbeit werden das Tag Overlay und thematische Relationen eingeführt, die
eine Ergänzung zu partiellen Klassendiagrammen sind. Im Tag Overlay stellen wir
das Vokabular des Quellcodes räumlich dar und erlauben dem Benutzer aus den
gezeigten Schlagworten thematische Relationen zu erstellen. Thematische Relatio-
nen sind Hyperkanten, die als Fächer visualisiert werden und von einem Begriff
ausgehend alle Typen verbinden, die diesen Begriff verwenden. In Code Gestalt
kann der Benutzer thematische Relationen parallel zu Aufruf- und Vererbungsrela-
tionen zur Verknüpfung von Typen verwenden. Der Editor erlaubt dem Benutzer,
sich aller drei Relationsarten zu bedienen und zu bestimmen, welche Relationen
so wichtig für eine Visualisierung sind, dass sie in das Diagramm aufgenommen
werden. Durch den Angebotscharakter unserer Anwendungsoberfläche hilft das
System dem Nutzer, relevante Relationen zu finden, und verhindert durch die Ein-
haltung von Randbedingungen die Erstellung fehlerhafter Diagramme.
Unser Konzept basiert auf der Auswertung einer Online-Umfrage, Einzelinter-
views und wiederholten Nutzertests mit Papier- und Softwareprototypen. Das
Endprodukt ist ein Plug-In für Elipse, das wir in einer Nutzerstudie mit Stift
und Papier (den gebräuchlichsten Werkzeugen zur Softwarevisualisierung und vi-
suellen Kommunikation) verglichen haben.
Diese Studie zeigt die hohe Benutzerfreundlichkeit von Code Gestalt und die sinn-
volle Ergänzung von Klassendiagrammen durch thematische Relationen. Unsere
Ergebnisse weisen darauf hin, dass Benutzer von Code Gestalt bei einigen Auf-
gabenstellungen signifikant weniger Fehler machen als mit Stift und Papier. Nur
in einem der untersuchten Fälle begingen Nutzer mit Stift und Papier signifikant
weniger Fehler als Code Gestalt-Nutzer.

xxvii

Acknowledgements

The author wants to thank the following people for their continuing support for
Code Gestalt:

Leonhard Lichtschlag, who witnessed all highs and lows of this thesis with calm.

Prof. Dr. Jan Borchers for helping me find a catchy subtitle and providing steady
feedback and encouragement.

Prof. Dr. Armin B. Cremers, Daniel Speicher, and Dr. Günter Kniesel from the
Institut für Informatik III of the University of Bonn for taking interest in the thesis and
allowing me to harness the power of JTransformer and Cultivate.

Jan Nonnen for helping out with anything concerning SWI-Prolog and providing
me with early builds of Cultivate.

Jonathan Diehl, Jan-Peter Krämer, and Dennis Lewandowski for technical assis-
tance.

Sarah Mennicken, Chat Wacharamanotham, and Daniel Spelmezan for helping me
with various statistics-related problems.

The Media Computing Group at the RWTH Aachen University and the Institut für In-
formatik III of the University of Bonn for providing support and locations to perform
user tests.

The numerous participants of my surveys and user studies for taking their time.

Johanna Nellen for invaluable help with my least favorite document markup lan-
guage and typesetting system of them all and proofreading the final version of the
thesis.

And, most importantly, my parents for having my back.

Thank you!

xxix

Conventions

Throughout this thesis we use the following conventions.

Text conventions Definitions of technical terms or short
excursus are set off in colored boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

Definition:
Excursus

Source code and implementation symbols are written in
typewriter-style text.

myClass

Language The whole thesis is written in US English.

Unidentified third persons are described in male and fe-
male form throughout the thesis. It is not the author’s claim
or intent to use both genders with equal frequency to sat-
isfy political correctness.

xxx Conventions

Mathematical symbols This thesis adapts the statistics
notation and methodology from Field [2009]. The follow-
ing symbols are used to denote common statistics.

• Basic symbols:

– df : Degrees of freedom

– p: Probability value

– z: z-score

• Descriptive statistics:

– M : Mean

– Mdn : Median

– N : Sample size

– n, ni: Sample size (usually a sub set from a larger
sample)

– q1: First/lower quartile

– q2: Second quartile (q2 = Mdn)

– q3: Third/upper quartile

– s: Standard deviation

• Test statistics:

– H(df): Kruskal-Wallis test statistic

– r: Effect size (Pearson correlation coefficient)

– rs: Spearman’s rank correlation coefficient

– τ : Kendall’s tau non-parametric correlation co-
efficient

– U : Mann-Whitney test statistic

Conventions xxxi

Significance and effect size We consider results with p <
.05 to be significant, results with p < .01 highly significant,
and results with p ≥ .05 non-significant (ns). Effect sizes
are categorized as follows:

• Small effect: .1 ≤ |r| > .3

• Medium effect: .3 ≤ |r| > .5

• Large effect: .5 ≤ |r|

1

Chapter 1

Introduction

“A good sketch is better than a long speech.”

—Napoleon Bonaparte

Maintaining source code is as important and time consum- Source code is
reused a lot.ing (if not even more so) than writing it in the first place.

Modern programming paradigms aim at creating reusable
source code and we are pretty much depending on utilizing
existing code for almost any programming task imaginable.

Entering the maintenance or development of any existing Understanding code
bases consumes a
lot of development
time.

project means an enormous effort has to be made by the de-
veloper in order to get a grasp of the source code at hand.
Actually, this has been identified as the most time consum-
ing aspect of program maintenance (Singer et al. [1997]).
Hence, there is a strong need for assistance in understand-
ing legacy and third-party code bases.

UNKNOWN SOURCE CODE:
In the following, we will refer to any code bases that are
not familiar to the programmer as unknown, without re-
gard to where the code actually came from. So, e.g., this
shall also include source code a programmer once knew
well, or even wrote himself, but forgot about eventually.

Definition:
Unknown Source
Code

2 1 Introduction

Understanding unknown source code is no trivial task. Ob-The larger the code
base the less reading
code will help a
developer to
understand it.

ject oriented design, event driven architectures, and loose
coupling scatter code around. For an outsider there is usu-
ally no natural order in which to read source code. The
larger the code base the less likely it is that source code
reading alone will be sufficient to develop an understand-
ing for the inner workings of a program (Ko et al. [2006]).

The need to tackle this complexity is a typical use case forVisualizations help to
manage complexity. software visualization tools. Usually, they produce much

more compact views of a given project in comparison with
the raw text sources. For this purpose many visualizations
have been proposed in the past (see chapter 2), but the pre-
dominant formal and automatic way of visualization is the
class diagram (refer to section 3.2).

CLASS DIAGRAM:
Class diagrams are a formal depiction of the static struc-
ture of a software system. Types are rendered as boxes,
containing lists of attributes and methods. Several rela-
tions between types are visualized as lines and arrows
(see figure 1.1). Since class diagrams are part of the Uni-
fied Modeling Language, there exists a formal specification
for class diagrams [Object Management Group, 2010].
In this thesis however, we will not limit ourselves to
the strict formal specification by the Object Management
Group (the organization maintaining the UML standard),
but regard any diagram based on the idea of representing
types as boxes and displaying relations as arrows as class
diagrams. Most diagrams are not complete, but only rep-
resent an aspect of a software system. When we want to
emphasize this incomplete nature we will use the term
partial class diagram.

Definition:
Class Diagram

Although there are a number of systems that allow the cre-Many developers
prefer pen and paper
over software
visualization tools.

ation of UML class diagrams, our own survey shows that
the predominant method of dealing with unknown code in
a visual manner is the creation of informal manual sketches
(see chapter 3). Often a developer will track those parts of
the program already read through. Another common sce-
nario is that of a programmer explaining an aspect of the
code base to a less experienced colleague and creating a

3

sketch as visual reminder and common point of reference
(see section 3.2).

SOFTWARE VISUALIZATION (SV):
Software visualization (SV), is a graphical representation
of source code. It usually hides implementation de-
tails and may include information derived from outside
sources such as the history of the code from a version
control system. Many, but not all SVs are presented
two-dimensional. In the following, SV always carries
the meaning that a specialized software program is em-
ployed to create the visualization, opposed to drawings
created by hand or other means.

Definition:
Software
Visualization (SV)

Figure 1.1: Example of a UML class diagram created with
Umbrello UML Modeller. Created by Karl Pietrzak and re-
leased under public domain.

SKETCH:
In this thesis a sketch (see figure 1.2) is always meant to
be some form of visualization of a piece of software cre-
ated with means not explicitly designed to do so. Pen
and paper serve as clear example in this regard. But
also a graphics tablet with an accompanying general pur-
pose graphics program will create sketches, even though
a computer program is involved. The point is that these
tools are not explicitly meant for creating visualizations
of software, and the user has the freedom and burden to
choose how to visualize the code she wants to illustrate.

Definition:
Sketch

4 1 Introduction

Figure 1.2: Example of a sketch that combines elements
from UML class diagrams and call graphs. Created by a
tester from our study (see section 6.3).

1.1 Goals and requirements

Code Gestalt is meant to close the gap between sketchesCode Gestalt is
supposed to be an
alternative for
sketching.

and SVs. I.e., we want to provide a simple, well integrated
and easy to use tool that allows the user to quickly create
SVs that have practical advantages over sketches. Also, we
go beyond common SVs by adding relations that explore
thematic dimensions of source code.

We set out to accomplish the following:

1. Use semi-automation features (live previews, drag-
and-drop diagram creation, etc.) to support users in
creating diagrams and prevent the creation of invalid
diagrams that do not match a given code base, but let
users stay in control of the diagram scope.

2. Employ a new visualization metaphor that allows the
user to harness the human intelligence present in the
source code (through code vocabulary analysis) and
to better organize the diagram.

3. Achieve good usability and fast diagram creation to
compete with pen and paper techniques.

1.2 Contribution 5

4. The created SVs should be meaningful for any pro-
grammer, not only Code Gestalt users, so they can be
used for inter-developer communication and project
documentation.

1.2 Contribution

Related work (see chapter 2) and the results of a user sur- SV tools are not yet
widely accepted in
the programming
community.

vey (see chapter 3) suggest that, so far, SV tools had several
shortcomings and therefore lacked broad user acceptance.
Presented with pen and paper, programmers often sketch
variations on UML diagrams to illustrate a piece of soft-
ware.

Code Gestalt, the SV tool presented in this thesis, is designed Code Gestalt speeds
up diagram creation
and provides new
tools to support code
understanding.

to better accommodate these users. Our approach is two-
fold: Speed up diagram creation by system-aided, but user-
controlled selective diagram creation, and augment class
diagrams with a new visualization that helps a developer
to understand a code base.

We want to achieve faster creation and better usability by Drag-and-drop, live
previews, and
context sensitive
controls speed up
diagram creation.

using interaction techniques like drag-and-drop, live pre-
views, and context sensitive controls. E.g., the user does not
draw a type box using a rectangle tool and typing in mem-
ber names, but simply drags a file from the project browser
to the canvas, where a graphical representation of the con-
tained types are automatically created.

Our second focus, a novel SV to aid code understanding, This thesis
introduces the tag
overlay and thematic
relations.

is the main contribution of this thesis. We explore, how
a successful visualization, namely class diagrams, can be
augmented with unstructured textual information (in the
form of tags). Thus these diagrams are expanded to visu-
alize not only structural but also thematic dimensions of a
given software (see chapters 4 and 5). We propose two in-
tertwined visualizations: The tag overlay and thematic rela-
tions. We discuss these concepts in detail in chapters 5 and
6.

6 1 Introduction

TAG OVERLAY:
The tag overlay is an (optional) layer on top of a class
diagram, displaying a tag cloud with the terms used in
the identifiers of the visualized types as in figure 1.3. The
tags are located at a ‘center of gravity’, between the types
that use the corresponding term. The force with which
each type attracts a tag is determined by the respective
term frequency.

Definition:
Tag Overlay

Figure 1.3: Example of the tag overlay. ‘thickness’ is the
most frequent term, followed by ‘color’. The types on the
right are drawing tools, the types on the left are UI con-
trollers.

THEMATIC RELATION:
A thematic relation is a relation between all types of a
diagram that use a given term in the identifiers of the
source code. Code Gestalt visualizes thematic relations
as fans, emanating from a tag in the center and connect-
ing all type boxes in the diagram that use that term. An
example is shown in figure 1.4. The opacity of a fan el-
ement illustrates the term frequency in each connected
type.

Definition:
Thematic Relation

Code Gestalt was implemented as plug-in for the openWe implemented
Code Gestalt as
plug-in for Eclipse.

source IDE Eclipse after the concept had matured in two
previous prototypes (chapters 4 and 5). We present the im-
plementation and evaluation of the system in chapter 6. Fi-
nally, chapter 7 gives a short outlook to the possibilities for

1.2 Contribution 7

Figure 1.4: Example of thematic relations. The types connected by a fan use the
center term in at least one of their identifiers.

adopting lessons learned from Code Gestalt for other ap-
plications and possible improvements of the Code Gestalt
system in the future.

9

Chapter 2

Related work

“Legacy code often differs from its suggested
alternative by actually working and scaling.”

—Bjarne Stroustrup

In the last two decades, numerous software visualizations There exist many
SVs, but not all have
been properly
evaluated.

have been proposed by the research community. Some of
these are special purpose visualizations, while other visu-
alizations try to capture a complete code base with a single
picture. Not all of them have been evaluated with respect
to usability and user productivity. We take a look at some
of those visualizations that share commonalities with the
premise of Code Gestalt and influenced its development.

To categorize the tools that create these visualizations We discuss some
evaluation studies
and taxonomies for
SV tools.

a number of taxonomies have been introduced and ex-
ploratory studies have been performed. We discuss some
of these, as they guided several design decisions for Code
Gestalt.

The grouping of tools in this chapter follows no established For easier
comparison we
group related SVs by
development
influences for Code
Gestalt.

taxonomy. Instead, we organize the tools in five categories
that match design considerations of Code Gestalt. These
are top level visualizations, special purpose tool sets, pro-
gram execution, visualizations based on class diagrams,
and map/city metaphors. We do not discuss visualizations
for algorithms, since we are only interested in systems that

10 2 Related work

visualize how code bases are structured. We end the chap-
ter discussing some evaluations and taxonomies that have
been proposed for SV tools.

2.1 Top-level visualizations

Some SVs attempt to capture a code base from a top-levelTop-level
visualizations try to
tell everything about
a code base in one
picture.

perspective, visualizing as much as possible simultane-
ously. An off-spring of this type of SVs are the map- and
city-based SVs discussed in section 2.5. In the following
SVs we will encounter one metric rather frequently, hence
we introduce it up front: lines of Code.

LINES OF CODE (LOC):
A metric, which is used in many SVs, is the number of
text lines in the source code that make up a code artifact
(e.g., a class). We call this metric lines of code or short LoC.

Definition:
Lines of Code (LoC)

2.1.1 Seesoft

Eick et al. [1992] presented Seesoft, a tool to visualize sta-Seesoft displays
type metrics as
colored bars.

tistical data for a lot of code at once. Each file of source
code is represented by a vertical bar, where each line of pix-
els represents a line of code. These rows are colored de-
pending on the statistical source chosen by the user. Figure
2.1 shows an example of how Seesoft visualizes the age of
source code.

The coloring in the Seesoft implementation was originallyColors indicate the
age of code from
blue (old) to red
(new).

based on the so-called MR number, i.e., the modification re-
quest number to a version control system. The user can
hover over a color in the scale on the left to look up the ac-
tual statistic value represented by that color. Also, when
hovering over the diagram, the line of code under the cur-
sor is displayed at the bottom of the view, allowing the user
to read the actual code.

2.1 Top-level visualizations 11

Figure 2.1: Seesoft visualizes the age of a code base: red
lines are newest, blue lines are oldest. Taken from Ball and
Eick [1996].

Seesoft implements some direct interaction techniques. Interaction is limited
to browsing and
filtering.

When the user hovers over a line of code, only those lines
of code with the same statistic values are shown. Similarly,
if the cursor hovers over a file name, all lines of code except
those with the same values as those in the selected file are
shown. Using mouse clicks, these selections can be made
permanent and combined. We implemented a similar high-
lighting feature for the tag overlay of Code Gestalt (see sec-
tion 6.2.5).

2.1.2 SHriMP

Simple Hierarchical Multi-Perspective views (or SHriMP SHriMP employs
fisheye views for
code browsing.

views) were introduced by Storey and Müller [1995] and
use fisheye views [Sarkar and Brown, 1992] to deal with the
complexity of large code bases. SHriMP was originally im-

12 2 Related work

plemented in Tcl/Tk as visualization for the reverse engi-
neering and documenting tool Rigi [Müller et al., 1993].

The analyzed software is represented as hierarchy of nestedThe SV uses nested
graphs with the
source code at the
highest zoom level.

graphs with the source code at the most detailed zoom
level, through witch the user may browse (see figure 2.2).
The region of current interest is emphasized by the fish-
eye views, while the context of the overall software system
is still maintained. The fisheye view algorithm allows the
user to use several focal points at once.

Figure 2.2: A SHriMP view, taken from Storey and Müller
[1995].

SHriMP has been evaluated against Rigi and a command-Using SHriMP
improves task
correctness.

line interface by Storey [1998], indicating that the use of
SHriMP had a positive influence on task correctness results.
However, the experiment was biased by learning effects, as
the study was not counterbalanced.

2.2 Special purpose tool sets 13

Creole

The SHriMP views were integrated with the IDE Eclipse as The plug-in Creole
provides SHriMP
views for Eclipse.

a plug-in called Creole by Lintern et al. [2003]. This im-
plementation was augmented by integrating SHriMP with
Eclipse’s CVS plug-in. This integration called Xia allows
the system to visualize information based on development
history.

Figure 2.3: Sample configuration of Creole, taken from Lin-
tern et al. [2003]

Creole is one of the tools evaluated in the studies per- Creole was used and
evaluated in several
studies.

formed by Sensalire and Ogao [2007] and Park and Jensen
[2009] discussed in section 2.6.

2.2 Special purpose tool sets

In this section we will discuss visualization tools that allow Some of the related
work provides suites
of special purpose
tools.

for more user customization, i.e. specifying how the visu-
alization should be build and what scope it should have.
Many of these tools are actually modular tool sets, contain-
ing different views for different tasks.

14 2 Related work

2.2.1 CodeCrawler

The polymetric view was introduced by Lanza [1999] and im-CodeCrawler
introduces polymetric
views.

plemented in CodeCrawler. It allows the visualization of
up to five metrics per diagram node: position (x- and y-
coordinates), size (width and height), and color. Addition-
ally, relations between nodes can be displayed. E.g., inher-
itance relations can be shown for class nodes.

In CodeCrawler the user has access to several layouts andThe system allows
the user to specify
custom views.

metrics. Some are geared toward visualizing a lot of code at
once, others work better for a limited user selection. Figure
2.4 shows an example of the system complexity view. This SV
is basically a type hierarchy, where width and height of a
type are functions of LoC and NoM.

Figure 2.4: Example of system complexity view in Code-
Crawler from the CodeCrawler homepage.

NUMBER OF METHODS (NOM) AND NUMBER OF AT-
TRIBUTES (NOA):
The method count of types is a metric commonly used
in many SVs and code analysis tools. This metric is of-
ten called number of methods or abbreviated with MoN.
Likewise, the attribute count of a type is called number of
attributes or NoA.

Definition:
Number of Methods
(NoM) and Number
of Attributes (NoA)

2.2 Special purpose tool sets 15

Although many combinations of metrics, layouts and selec- Users tend to limit
themselves to default
views instead of
creating custom
ones.

tions can be chosen to create layouts, not all of them may be
equally useful. CodeCrawler offers predefined views for
software reverse engineering tasks. Most users of Code-
Crawler limit themselves to these default views and rarely
create new ones [Lanza and Ducasse, 2003].

X-Ray

CodeCrawler is written in Smalltalk and as such not of X-Ray makes default
CodeCrawler views
available in Eclipse.

much use for practical applications. An Eclipse plug-in that
recreates three of the default CodeCrawler views is X-Ray,
written by Malnati [2007].

2.2.2 Cultivate

Cultivate1 is an Eclipse plug-in that allows the user to vi- Cultivate provides a
variety of code
analysis tools.

sualize a wide array of metrics to analyze a code base.
Several views are available to help the programmer keep
track of the properties of her source code. Cultivate builds
upon JTransformer2, “a query and transformation engine”
for code bases written in Java.

Figure 2.5 shows the cloud view from the Cultivate tool set, The cloud view
displays a tag cloud
of a given type or
package.

a tool that displays a tag cloud for a selected package or
Java file. Code Gestalt builds upon the Cultivate API to
generate its tag clouds and the tag overlay (see section 6.2).
Other tools that are available within Cultivate include:

• Term dependency view [Speicher and Nonnen, 2010]

• Class dependency view: Displays dependencies be-
tween types in a graph.

• Package dependencies view: Displays dependencies be-
tween packages in a graph.

• Overview pyramid view [Lanza and Marinescu, 2006]

1http://sewiki.iai.uni-bonn.de/research/cultivate/start
2http://sewiki.iai.uni-bonn.de/research/jtransformer/start

http://sewiki.iai.uni-bonn.de/research/cultivate/start
http://sewiki.iai.uni-bonn.de/research/jtransformer/start

16 2 Related work

• Software architecture editor: For a detailed description
refer to the documentation3.

• Metric and smell view: Searches for code smells, i.e.,
indicators for problems and the need of refactoring.

• Smell context view [Speicher and Jancke, 2010]

Figure 2.5: Cultivate’s cloud view shows the terms in the
identifiers of the selected type, file, or package.

The user is given a lot of control over which metrics to vi-Some views are
customizable and
some are context
sensitive.

sualize and what scope of source code to analyze. Some
views follow the user’s selection in the package explorer of
Eclipse and show information regarding the currently se-
lected item.

2.3 Program execution

In this section we will take a look at tools that were de-The SVs in this
section deal with call
graphs and program
execution traces.

signed to give the user a visualization about what parts of
an analyzed program are executed in what order. This in-
cludes simple call graph visualizations obtained from static

3http://sewiki.iai.uni-bonn.de/research/cultivate/tutorial

http://sewiki.iai.uni-bonn.de/research/cultivate/tutorial_working_with_architectures

2.3 Program execution 17

program analysis as well as dynamic information from ac-
tual program execution. These tools are both tailored to-
wards debugging and program understanding. The analy-
sis of run-time behavior can be helpful in identifying hot-
spots for reverse engineering and maintenance tasks.

2.3.1 CallStax

An early example of both visualizing call graphs and us- CallStax is an early
example of a
three-dimensional
SV.

ing three-dimensional graphics is CallStax by Young and
Munro [1997]. The visualization was created to over-
come some limitations of traditional two-dimensional call
graphs, such as crossing lines and constant level-of-detail.

The implementation is based on Superscape Viscape, a Call stacks are
visualized as stack of
boxes.

browser plug-in to access virtual reality (VR) websites. In-
stead of rendering a graph of nodes and call-relations,
CodeStax visualizes each path in the call graph from the
root to the leaves as individual column of stacked boxes,
representing the called functions (see figure 2.6).

Figure 2.6: CallStax integrated with other views in an inter-
net browser. Taken from Young and Munro [1997]

The user can interact with the visualization by clicking The user can
navigate and filter
the views.

individual functions. Those stacks that are not contain-
ing the selected function are moved to the bottom of the
view, while the other stacks are aligned at the height of

18 2 Related work

that function. When the user inspects a stack more closely
(i.e. moves in closer in the VR environment), further details
about the selected function is revealed. The information
displayed may come from different sources, such as met-
rics like the McCabe complexity [McCabe, 1976] or profiling
information.

2.3.2 Extravis

This visualization is based on program execution traces.Extravis provides two
SVs for execution
traces.

Cornelissen et al. [2007] presented the tool Extravis to cre-
ate so called massive sequence and circular bundle views. An
annotated screen shot is shown in figure 2.7.

Figure 2.7: Extravis with both massive sequence and circu-
lar bundle views. Taken from Cornelissen et al. [2007].

The circular bundle view displays the call-relations be-Circular bundle views
display the flow of
messages between
parts of the source
code in a given time
interval.

tween the structural entities of the program on the ring
by connecting them with bundled splines. Elements on
the ring are organized according to their structural rela-
tion (e.g. package inclusion) and can be collapsed and ex-
panded. Relations of collapsed children are bundled and
associated with the visible father, thus allowing for abstrac-

2.3 Program execution 19

tion. The color of the splines either indicate, when in the
execution trace the represented call occurs, or how the call
relation is orientated (the latter mode is selected in figure
2.7). The user may choose to limit the amount of visualized
information in the view, by restricting it to a time segment
of the execution trace.

The massive sequence view is designed to give an overview Massive sequence
uses the y-axis for
execution time.

of the selected part of the full execution trace. Structural in-
formation about the program is given at the top of the view,
followed by a full record of calls between these program
parts ordered along a vertical time-axis.

The authors present three use cases that demonstrate the Extravis is evaluated
by use-case
discussions only, not
actual users.

application of Extravis for exploration, feature location,
and feature comprehension using three Java code bases.
Based on repeating patterns in the massive sequence view,
the user can identify the occurrences of similar events. The
circular bundle view on the other hand is suited to identify
which parts of the program communicate with each other
at any given time interval. No actual user study was per-
formed.

2.3.3 TraceCrawler

TraceCrawler is an extension of CodeCrawler by Greevy Three-dimensional
polymetric views are
used by
TraceCrawler.

et al. [2006] and is based on three-dimensional polymetric
views. TraceCrawler visualizes not only the static structure
of a software system, but also its run-time behavior. Trace-
Crawler is a visualization build on top of TraceScraper, a
feature analysis tool, and Moose, a language-independent
reverse engineering platform.

The ground plane of the visualization (called dynamic fea- The third dimension
is used to stack the
instances of a class.
Red lines indicate
method calls.

ture interaction view) is basically the system complexity
view introduced by CodeCrawler (see section 2.2.1 and also
available via X-Ray (compare section 2.2.1). The run-time
instances of any type create a new node that is stacked
on top of the type node. Currently active nodes are high-
lighted in green. When a call between two objects occurs,
a line is drawn between these objects. An example of this
view is shown in figure 2.8.

20 2 Related work

Figure 2.8: Detail view of the ‘Edit Page’ feature from Small-
Wiki. Taken from Greevy et al. [2006].

The interface of TraceCrawler allows the user to navigateThe user controls
navigation and
inspector views.

forward and backward in an execution trace and thus in-
spect the creation and destruction of objects as well as the
exchange of messages.

2.4 SVs based on class diagrams

This section discusses approaches that take some aspects ofSeveral SVs expand
class diagrams. class diagrams and use them as a basis for their own visu-

alizations.

2.4.1 Relo

Relo is an interactive diagram editor for Eclipse presentedIn Relo users build
class diagrams
iteratively.

by Sinha et al. [2006]. Diagrams created with Relo are par-
tial class diagrams. Relo allows the user to incrementally

2.4 SVs based on class diagrams 21

built a diagram by expanding nodes along inheritance and
call relations. A sample for a Relo diagram is shown in fig-
ure 2.9.

Figure 2.9: A diagram created with Relo. Taken from Sinha
et al. [2006].

Types are represented as boxes that contain a (partial) list The editor offers
contextual expansion
options depending
on the current
selection.

of members. When the user selects a type or member, he is
offered a number of buttons that allow to expand the dia-
gram along relations such as inheritance and method calls.
These relations are shown alongside containers that visu-
alize the package structure of the analyzed Java software.
The user can view types and methods at different levels of
detail, down to a view where the source code of individual
methods is directly editable in the diagram editor.

The strength of Relo lies not so much in its visualization The interaction
encourages
exploration and lets
the user control the
scope.

than in its interaction techniques. By giving the user con-
trol over the visualization, Relo is a tool that promotes code
exploration without overwhelming the user with uninter-
esting and unnecessary details.

Code Gestalt is inspired by Relo’s design for the implemen- Code Gestalt uses
and expands many
ideas presented by
Relo for the class
diagram editing
functionality.

tation of a basic class diagram editor. We add new features
like live previews and the tag overlay on top of that (for de-
tails see section 6.1). The design of both the paper (see chap-
ter 4) and Silverlight prototypes (see chapter 5) were in-
spired by the direct manipulation and expansion metaphor
of Relo. For the mock-up of a tag overlay we actually used

22 2 Related work

Figure 2.10: A 3d relation diagram in the VisMOOS view. Taken from Fronk et al.
[2006].

a screen shot of a Relo diagram as starting point (see section
5.2).

2.4.2 VisMOOS

3d relation diagrams (3DRDs) are proposed by Alfert3DRDs use three
dimensions to avoid
line crossings.

and Fronk [2000] to offer more information than two-
dimensional class hierarchies. The third dimension is used
for displaying additional relations and obtain more layout
flexibility to avoid line crossings. The visualization is cre-
ated by VisMOOS, a three-dimensional view plug-in for
Eclipse. In the following, we will discuss a refined visu-
alization, as presented in Fronk et al. [2006]. An example
diagram is shown in figure 2.10.

2.4 SVs based on class diagrams 23

Cylinders represent packages and can therefore be nested. Code entities are
represented as
nested volumes.

To see inside a package, the user has to double-click the
package in the 3d view. Inside, types (represented as boxes)
are organized in cone trees, thus building a type hierarchy.
Packages and types are represented in different sizes pro-
portional to their LoC. Package and type geometry is con-
nected by dependency relations, using the additional de-
gree of freedom in 3d-space.

2.4.3 MetricView

Lange and Chaudron [2007] proposes the MetricView as one MetricView
augments class
diagrams with
metrics
visualizations.

of four SVs to help a user to better understand the model
of a software. In this view, three metrics are displayed in-
side the type boxes of a class diagram to give a programmer
additional information on the visualized classes (see figure
2.11).

Figure 2.11: Example of the MetricView displaying three
metrics per type. Taken from Lange and Chaudron [2007].

This idea is similar to the augmentation of type boxes in Code Gestalt
augments class
diagrams, too.

Code Gestalt, where we enhance them with Eclipse mark-
ers and a tag cloud.

24 2 Related work

Figure 2.12: In this UML-City several diagrams are shown next to each other. The
3d-heightbars visualize some metric of a class. Taken from Lange and Chaudron
[2007].

2.5 Map and city metaphors

A multitude of tools have been developed to visualize codeMap and city SVs
want to provide
better orientation in
code bases.

bases as landscapes or cities. The overall idea behind these
proposals is that a user is accustomed to using maps as a
help of orientation in complex domains (e.g., a public trans-
portation network). Thus it is plausible that the presenta-
tion of a code base as map or city can help a programmer
in building a mental model of the visualized software.

2.5.1 UML-city

The UML-city-view is one of four views proposed by LangeUML-cities combine
the MetricViews of
multiple UML
diagrams.

and Chaudron [2007] to improve the user’s understanding
of a codse base. It combines two other views, namely the
MetaView and the MetricView (see section 2.4.3) as shown in
figure 2.12.

2.5 Map and city metaphors 25

In this view, several diagrams (class, sequence, state, use Class boxes are
augmented with
three-dimensional
metrics
visualizations.

case) from different stages of the software design process
are set in context to each other to allow users to identify
objects in different abstraction levels. Each class box is aug-
mented by a three-dimensional height bar, depicting one
or two metrics (via the dimensions height and color). This
way, a ‘city’ is visualized.

2.5.2 CodeCity

The CodeCity4 visualization is presented in detail by Wettel In a CodeCity
buildings are classes
and districts are
packages.

[2010]. Software is visualized as a three-dimensional city
organized in districts and buildings. Buildings represent
classes, while districts represent packages. The properties
of a class, such as NoM, NoA, and LoC, are mapped to the
dimensions and color of the respective buildings. Figure
2.13 shows a visualization of the CodeCity code base.

Figure 2.13: A CodeCity created from the source code of the
visualization tool itself. Taken from the CodeCity home-
page.

4http://www.inf.usi.ch/phd/wettel/codecity.html

http://www.inf.usi.ch/phd/wettel/codecity.html

26 2 Related work

In this visualization, one can detect building archetypes,Buildings are shaped
using code metrics. such as ‘skyscrapers’ (many methods and few attributes)

and ‘parking lots’ (few methods and many attributes). It
can be augmented by displaying call-relations as bundled
edges (refer to section 2.3.2) or color coding other metrics,
such as the age of the code.

The user can interact with the visualization in CodeCityThe user can
visualize
dependencies and
metrics.

by selecting buildings, marking them by choosing colors
or transparency, perform queries, visualize dependencies
or code smells (the SVs of the latter are called disharmony
maps).

2.5.3 CodeMap

Thematic software maps were introduced by Kuhn et al.The layout of
thematic software
maps is consistent
over time.

[2008] to provide a software visualization layout that
would be consistent over time. The visualization is created
by the Eclipse plug-in CodeMap [Erni, 2010].

To create the map, the source code of a software project isClasses are
arranged based on
their vocabulary and
shown as hills on a
map.

parsed for all terms that are used in it. We denote the num-
ber of terms with n. Afterwards, all classes are located in an
n-dimensional space, where each dimension is a term, and
the position of a class in this dimension is determined by a
term weight. This space is flattened to a two-dimensional
plane, where each class is visualized as a shaded hill with a
height corresponding to its LoC.

This software map can be used for a multitude of visual-Additional
information can be
displayed on the
map.

izations, such as call relations and search results as shown
in figure 2.14. The user may display several metrics on this
map, such as a heat map of editing or the code coverage by
test cases.

Code Gestalt shares many similarities with thematic soft-Code Gestalt’s tag
overlay is an inverse
of the thematic
software map.

ware maps, but reverses the creation process to allow for
more flexibility and user control. While CodeMap creates a
map purely based on term analysis and allows the user to
display structure information and metrics afterwards, we
start with an editable diagram based on the static structure

2.6 Taxonomies and evaluation 27

Figure 2.14: A thematic software map created with CodeMap displaying a call
graph (left) and search results (right). Taken from Erni [2010].

of the code base and offer the user to augment that diagram
with thematic relations in a second step.

2.6 Taxonomies and evaluation

Up to the early 21st century, many visualizations were only Taxonomies give a
design space for
SVs, while evaluation
tells us, which
designs are useful.

proposed and implemented, but not properly evaluated.
It became apparent however that not all visualizations are
equally useful. Also, the questions of what the design space
for SVs looks like and where existing tools would fit in this
space needed to be answered.

28 2 Related work

2.6.1 Taxonomy by Price

Price et al. [1993] suggested a taxonomy for SVs based onThe taxonomy
categorizes SVs in
six major sections:
Scope, content, form,
method, interaction,
and effectiveness.

a categorization of software visualization in the following
mayor sections:

• Scope: The general characteristics of the SV

• Content: The contents of the SV diagram

• Form: The elements used in the SV

• Method: The specification of the SV

• Interaction: The interaction and control techniques to
work with the SV

• Effectiveness: The quality of the SV

Each of the major sections is divided into several sub-Each section
contains several
sub-sections.

sections. E.g. Form is divided into Medium, Graphical Ele-
ments, Colour5, Animation, Multiple Views, and Other Modal-
ities.

The taxonomy is demonstrated by categorizing seven SVWe demonstrate the
taxonomy using the
Eclipse
implementation of
Code Gestalt.

tools (none of which is discussed in this chapter, as they are
mostly limited to older or non-procedural programming
languages such as Pascal, Prolog and Logo). To illustrate
the taxonomy, we categorize Code Gestalt according to this
taxonomy:

1. Scope:

(a) System/Example: System

(b) Program Class: Java

(c) Scalability: Screen space and visibility limits

(d) Multiple Programs: Yes

(e) Concurrency: Limited

(f) Benign/Disruptive: Benign

5[sic], the taxonomy was presented in a paper written in Canadian
English

2.6 Taxonomies and evaluation 29

2. Content:

(a) Program/Algorithm Visualization: Program

(b) Code Visualization: Through IDE editor

(c) Data Visualization: No

(d) Compile/Run-Time: Compile

(e) Fidelity and Completeness: Partial

3. Form:

(a) Medium: Workstation

(b) Graphical Elements: 2d graphic primitives and
text

(c) Colour: Yes

(d) Animation: No

(e) Multiple Views: Yes

(f) Other Modalities: None

4. Method:

(a) Specification Style: Graphical editor

(b) Batch/Live: Live

(c) Fixed/Customizable: Customizable

(d) Code Familiarity: Some

(e) Invasive: No

(f) Customization Language: Interactive

(g) Same Language: N/A

5. Interaction:

(a) Navigation: Yes

(b) Elision: Yes

(c) Temporal Control Mapping: N/A

6. Effectiveness:

(a) Appropriateness and Clarity: subjective

(b) Experimental Evaluation: Yes

(c) Production Use: No

30 2 Related work

This taxonomy is used as a point of reference for severalThe dimensions of
the taxonomy have
not been examined
in detail.

other works. E.g., the questionnaire in Bassil and Keller
[2001] is roughly based on the categories of this taxonomy.
However, to our knowledge a detailed evaluation of its di-
mensions has not yet been conducted.

The benefits of the Price taxonomy against other sugges-Compared to other
works the Price
taxonomy is a good
compromise between
completeness and
level of detail.

tions (Myers [1990], Stasko and Patterson [1992]) is its sim-
plicity and relative completeness. One of its drawbacks is
that it does not clearly draw up the actual design space of
SVs, as many sections and sub-sections are wide open to
subjective interpretation (Effectiveness) or require their own
design space to determine their limits (Graphical Elements).
A slightly more fine grained classification of effectiveness
and visual aspects can be founds in Sensalire et al. [2008],
while Stasko and Patterson [1992] provide more detail with
regard to animation and algorithm visualization.

2.6.2 Survey by Bassil and Keller

Bassil and Keller [2001] conducted a user survey among 107One of the largest
exploratory surveys
of SVs was
conducted in 2001.

participants, asking them about the SV tools they currently
employ (Part I). A second questionnaire (Part II) was filled
by 41 “expert users” from the first survey.

Part I: This part consists of 21 questions organized in six107 users were
questioned about
their expectations of
SV tools.

groups. Among background questions this part asked the
participants about functional expectations, practical expec-
tations, evaluation of a concrete tool, and how to improve
that tool.

In summary, many functional aspects were deemed impor-The survey asked
about functional... tant for SV tools. E.g. navigation, search, the use of colors,

hierarchical representations, and source code visualization
in textual form. The functional aspects of SV tools that were
not perceived as useful by the users were animation effects,
3d representations, and the ability to record the steps of an
arbitrary navigation.

2.6 Taxonomies and evaluation 31

Among the practical aspects of SV tools that participants ... and practical
aspects of SV tools.found useful were content and quality of the documenta-

tion, tool reliability, ease of using the tool, quality of the
user interface, and ease of visualization of large-scale soft-
ware.

These expectations were confronted with an evaluation of Finally, users
reported on their
experience with SV
tools.

an “SV tool at hand”. In summary, these tools held up to
some expectations and failed others. Ease of use, useful-
ness of the generated results and the confidence in the gen-
erated results were all perceived positively with more than
50% approval. Gaps between expectations and the reality
of tools were identified at the quality of the user interface
and the ease of use (72% of the users rated this aspect ‘very
important’, yet only 63% indicated ‘high’ approval for that
aspect for the “tool at hand”).

Insufficient documentation and code complexity reduced SV tools offered time
saving advantages,
but suffered from
insufficient
documentation.

the effectiveness of an SV tool the most. The survey also
identified the gains through SV as perceived by the survey
participants. 15 tools offered time savings, six better code
comprehension, and four tools improved productivity and
complexity management each.

Part II: This part was designed to gain some insight into Expert users
classified SV tools.what current SV tools provide in terms of code analysis

support. The results yield that the majority of tools allow
the visualization of call graphs (75%), the visualization in-
heritance graphs (71%), and the separation of several levels
of detail in separate windows (63%). Aspects that were not
well represented were function cloning detection (25%) and
metrics calculation (21%).

The participants were also asked what they would like to SV tools shape the
users’ expectations
of desirable features.

see in future SV tools. The answers were strongly influ-
enced by the tools they already used. Among the most
wanted features were call graphs with recursion detection,
subsystem architecture graphs with relation to other visu-
alizations, inheritance graphs with multiple inheritance de-
tection and direct access to source code from call graph
nodes.

32 2 Related work

The results from this survey heavily influenced our ap-We designed Code
Gestalt to close
identified gaps and
avoid usability
pitfalls.

proach for Code Gestalt. The focus of our prototypes was
specifically geared towards high usability and a high qual-
ity user interface. Also, the findings on low animation and
3d acceptance were instrumental in pursuing a clean two-
dimensional approach and pushing back the use of anima-
tions. In response to the findings of Part II we do not al-
low for code artifacts to appear as multiple diagram wid-
gets, thus realizing automatic recursion detection in the call
graphs. Another consequence of the survey we realized in
Code Gestalt is that all diagram elements that relate to code
artifacts can be double-clicked in order to directly jump to
the corresponding source code.

2.6.3 Evaluation and the need for integration

Charters et al. [2003] observed that many of the SV tools areMany SVs are
lacking IDE
integration.

in fact stand-alone programs, which are cumbersome to use
on an everyday basis. The authors criticize the limitation
of the science community to improving several aspects of
SVs, without much regard for actual usability through IDE
integration.

Sensalire and Ogao [2007] asked five expert programmersUsers desire better
integration. to compare three representative SV tools (Code Crawler (see

section 2.2.1), Creole (see section 2.1.2), and Source Naviga-
tor6), to derive a list of features, desired by expert users,
but are not provided by current SV tools. The features in
high demand were:

• IDE integration

• speed of graph generation and overall responsiveness

• ability to work with arbitrary code bases without re-
formatting or conversion

• search functionality for SVs

• editable graphs

• simplicity and clarity
6http://sourcenav.sourceforge.net/

http://sourcenav.sourceforge.net/
http://sourcenav.sourceforge.net/

2.6 Taxonomies and evaluation 33

One year later, Sensalire et al. [2008] suggested a new tax- Sensalire et al.
[2008] propose a
simpler taxonomy.

onomy for SV tools based on the following categories:

• Effectiveness: Does the tool help the user in solving the
problem it was designed to address?

• Tasks supported: limited to code smell detection, code
refactoring, trace analysis, and debugging support

• Availability: license and platform

• Techniques used: visualization and interaction tech-
niques

15 tools were evaluated by 16 professional developers. 16 professional users
evaluated existing
tools. More than half
of them did not see
any advantages of
employing SVs over
built-in Eclipse views.

Each developer was assigned one to three tools for evalu-
ation based on his or her background. The results indicate
that the usability of an SV tool heavily depends on an ap-
propriate set of available interactions, where too many op-
tions are as bad as too little. A tight integration of SV pre-
sentation and analysis (queries and searches) is essential in
this regard. It is also important that users can tune the visu-
alization in terms of color, layout, and annotations. In gen-
eral, the use of colors, multiple views, user interaction, and
navigation were well implemented in the analyzed tools.
Users were much more willing to use SV tools that were
properly integrated with their accustomed IDE. However,
more than 50% of the users questioned the need for visual-
ization tools that went beyond of what Eclipse had to offer
with its built-in views. Moreover, users tend to prefer static
two-dimensional SVs over animated or three-dimensional
visualizations, although the data on this is not completely
conclusive, as not many of the analysized tools employed
these techniques.

Park and Jensen [2009] investigated, if SVs help newcomers The right SV tools
can aid newcomers
to an open source
project. Plug-ins did
not perform better
than stand-alone
tools.

to open source projects to get acquainted with the new code
base. The authors conducted a study with three groups:
Group A, the control group, was only allowed to use the
resources offered by sourceforge7 and the built-in tools of
Eclipse; group B was additionally given the Eclipse plug-
ins Version Tree8 and Creole (see section 2.1.2). Group C had

7http://sourceforge.net/
8http://versiontree.sourceforge.net/

http://sourceforge.net/
http://versiontree.sourceforge.net/

34 2 Related work

access to the stand-alone tools Augur [de Souza et al., 2005]
and SA4J9 which roughly offered the same feature set as the
plug-ins used by group B. Park and Jensen asked partici-
pants questions about the project history and organization
(“Who contributed the most in this package?”) and some
counting tasks about the code base (“How many classes are
in this package?”). They obtained mixed results for the vi-
sualization tools. Source code reading was sometimes more
effective and efficient than looking at SVs. There were in-
dications that the use of the right SV tool for the right task
lead to slower performance and higher correctness. How-
ever, the usefulness of SV tools was highly dependent on
the nature of the given task.

2.6.4 The effect of layout on comprehension

Sharif and Maletic [2009] performed an experiment to de-Arranging classes in
clusters depending
on the number of
relations between
them is more useful
than enforcing strict
orthogonal layouts.

termine what effect layout has on the comprehension of
UML class diagrams. The study compared an orthogonal
layout (90 degree bends, minimized line crossing) with a
multi-cluster layout (grouping of classes based on number
and importance of connections and association between
them). The participants’ accuracy, confidence, and time to
complete 22 tasks was measured. The results favor multi-
clustering layout. The layout impacts accuracy (medium
effect) in general, with the exception of refactoring and ad-
dition tasks (small effect). Speed in general is influenced
(low to medium effects, depending on the software frame-
work), especially for bug fixing, but not for refactoring
tasks. Also, the multi-cluster layout positively influences
confidence and comprehension preference scores. How-
ever, the layout does not impact the design experience or
aesthetic preference scores.

9http://www.alphaworks.ibm.com/tech/sa4j

http://www.alphaworks.ibm.com/tech/sa4j

2.7 Summary 35

2.6.5 Dynamic visualization tools

An evaluation of dynamic visualization tools is given by The investigated
tools were not able to
help with answering
questions about a
code base on a
large-scale.

Pacione et al. [2003]. Five tools from the field of research
are tested against general software comprehension and re-
verse engineering tasks. The findings of the evaluation re-
veal that the tested tools are more successful in dealing with
the later than the former. On average, the tools were only
able to answer roughly a third of the questions about the
code base (HotDraw10). The authors conclude with the ob-
servation that the dynamic tools examined are not able to
answer large-scale questions, e.g., about the high-level ar-
chitecture of the software or present design patterns. Small-
scale questions about data flow and object interaction how-
ever could be answered more satisfactory and more com-
pletely by some tools.

2.7 Summary

Existing SVs have influenced our approach to Code Gestalt. Related work
influenced many
aspects of Code
Gestalt’s design.

The five rudimentary concepts that we looked at for inspi-
ration were the following:

• Top-level visualizations: They try to capture a large part
or even the whole code base in a single picture.

• Special purpose tool sets: These collections of different
smaller tools that may work in concert or on their
own to deal with specific problems.

• Program execution: These SVs try to illustrate the be-
havior of a program at run-time and visualize calls
between functions or methods.

• SVs based on class diagrams: Some SVs take advantage
of the user’s familiarity with class diagrams and ex-
pand it.

• Map and city metaphors: A certain kind of mostly top-
level SVs that try to help a user orient in a code base
by rendering it as a city or map.

10http://st-www.cs.illinois.edu/users/brant/HotDraw/HotDraw.html

http://st-www.cs.illinois.edu/users/brant/HotDraw/HotDraw.html

36 2 Related work

Code Gestalt is influenced by these approaches to varyingWe decided to use
an editable class
diagram as baseline
of our SV.

degrees. Although a starting point for our development,
we moved away from the ‘one image tells it all’ visualiza-
tions when designing Code Gestalt, and considered how
elements from city and map SVs could serve our design
goals. Together with class diagrams as a baseline the map
metaphor is certainly the most relevant related SV. While
class diagrams allow the user to arrange his diagram more
freely, city and map SVs usually prescribe fixed layouts.
We integrate both approaches by keeping a flexible class
diagram editor as our primary user interface and SV, but
allow the user to display a tag overlay (a very simple the-
matic map) on top of it as an individual layer (see section
6.2.5). Of course, we sacrifice the consistency achieved by
Kuhn et al. [2008]. Since our tool is not meant to gener-
ate diagrams automatically, we believe this is no significant
drawback.

The other three categories had less influence on the finalData flow and
execution traces
could not be easily
incorporated, as they
introduced clutter.

draft of Code Gestalt, but were explored in various pre-
liminary concepts, and some ideas carried over to the final
implementation. Code Gestalt allows for rudimentary pro-
gram execution and data flow analysis using call graphs,
but not execution traces for reasons described in section
4.1.1. Through its tight integration with the Eclipse IDE,
Code Gestalt can be used as special purpose tool, side-by-
side with any number of other plug-ins, although it is de-
signed to be a general purpose editor. Last, but not least,
Code Gestalt can create top-level visualizations, if desired,
but does not provide dedicated features to support the cre-
ation of very large diagrams.

Table 2.1 lists the visualization tools from this chapter inCode Gestalt puts an
emphasis on
interaction
techniques and
diagram
customization.

comparison to Code Gestalt as presented in cahpter 6. Of
course, the table simplifies and abstracts from many de-
tails, and is not a complete categorization of all presented
tools (see section 2.6.1). The comparison shows that we put
an emphasis on user interaction and diagram customiza-
tion. While other tools are capable of creating larger-scale
or more detailed SVs, we decided on a visualization at the
class and member level based on our survey finding pre-
sented in chapter 3. Code Gestalt is limited in so far as
it offers only one optional overlay (the tag overlay) based
on a single metric (similarity in code vocablary). Addi-

2.7 Summary 37

tional information is given by indicating compiler errors
and warnings for all diagram elements, something we have
not found in any other SV tool, except the built-in Eclipse
views. With regard to the range of available metrics tools
like CodeMap, Cultivate, and MetricView allow for more
flexibility. However, we will discuss in chapter 7 how ad-
ditional metrics can be integrated with Code Gestalt.

The evaluation and surveys performed by other authors Related work points
out pitfalls and
important features,
presentation and
usability questions.

gave us direction what functional and practical features
were the most important when designing Code Gestalt.
The goals we described in section 1.1 are partially derived
from it. Some solutions to our requirements can be recog-
nized in several SVs and tools presented in this chapter. Es-
pecially with regard to usability and speedy diagram cre-
ation, many lessons can be learned from previous work.
Also, the evaluation of SVs has guided our design in find-
ing forms of presentation which are intuitive and meaning-
ful for users.

However, related work does not exemplify how we could Open research
questions remain.build an SV that aids users in understanding source code

on the basis of anything other than code syntax or struc-
ture. Instead, we are interested in a property that is rather
the product of human intelligence and understanding and
making it accessible to the user. Also, with the exception
of Relo, we have found no examples of systems that let
users stay in control of the visualization scope, while pro-
viding strong support through semi-automation. During
the development of Code Gestalt we dealt with both these
research questions, as presented through chapters 4–6.

The development of of Code Gestalt followed a cycle of de- We developed Code
Gestalt using the
DIA-cycle.

sign, implementation and analysis (DIA cycle). The designs
from section 4.1.1 were implemented as paper sketches and
evaluated using discussions with co-workers and related
work. Since we did not find any related work on what pro-
grammers do in lack of an SV tool that suit their needs we
conducted our own investigation into this matter, which is
presented in chapter 3.

38 2 Related work
To

ol
Sc

al
e

Pr
es

en
ta

ti
on

M
et

ri
cs

In
te

ra
ct

io
n

Ed
it

.
In

te
gr

.

C
al

lS
ta

x
Fu

nc
ti

on
s

3d
pr

im
it

iv
es

M
cC

ab
e

co
m

pl
ex

it
y,

Lo
C

,c
od

e
di

st
ri

bu
ti

on
Z

oo
m

in
g,

fil
te

ri
ng

N
o

N
o

C
od

e
G

es
ta

lt
C

la
ss

es
,m

et
ho

ds
,

at
tr

ib
ut

es
C

la
ss

di
ag

ra
m

,
ta

g
cl

ou
d

C
od

e
vo

ca
bu

la
ry

,
er

ro
rs

/w
ar

ni
ng

s
Z

oo
m

in
g,

fil
te

ri
ng

,t
og

gl
e

ov
er

la
ys

,e
xp

.&
co

lla
ps

e
Ye

s
Ec

lip
se

C
od

eC
it

y
Pa

ck
ag

es
,c

la
ss

es
3d

ci
ty

N
oM

,N
oA

,L
oC

Z
oo

m
in

g,
fil

te
ri

ng
,t

og
gl

e
ov

er
la

ys
N

o
N

o

C
od

eM
ap

C
la

ss
es

To
po

gr
ap

hi
c

m
ap

C
od

e
vo

ca
bu

la
ry

,L
oC

,
ad

di
ti

on
al

cu
to

m
iz

ab
le

Z
oo

m
in

g,
to

gg
le

ov
er

la
ys

N
o

Ec
lip

se

C
re

ol
e

To
p-

le
ve

l.
.s

ou
rc

e
co

de
N

es
te

d
2d

gr
ap

hs
N

on
e

Z
oo

m
in

g,
fil

te
ri

ng
,

ex
pa

nd
&

co
lla

ps
e

Ye
s

Ec
lip

se

C
ul

ti
va

te
M

ix
ed

2d
gr

ap
hs

,
ta

bl
es

,t
ex

t
C

us
to

m
iz

ab
le

D
ep

en
de

nt
on

th
e

vi
ew

M
ix

ed
Ec

lip
se

Ex
tr

av
is

To
p-

le
ve

l,
ru

nt
im

e
2d

di
ag

ra
m

s
N

on
e

Z
oo

m
in

g,
fil

te
ri

ng
N

o
N

o

M
et

ri
cV

ie
w

C
la

ss
es

,m
et

ho
ds

,
at

tr
ib

ut
es

U
M

L
di

ag
ra

m
s,

3d
pr

im
it

iv
es

C
us

to
m

iz
ab

le
Z

oo
m

in
g,

cr
ea

ti
on

of
ov

er
la

ys
Ye

s
N

o

R
el

o
Pa

ck
ag

es
..

so
ur

ce
co

de
C

la
ss

di
ag

ra
m

N
on

e
Z

oo
m

in
g,

ex
pa

nd
&

co
lla

ps
e

Ye
s

Ec
lip

se

Se
es

of
t

To
p-

le
ve

l,
fil

es
2d

pr
im

it
iv

es
,

he
at

m
ap

C
od

e
ag

e,
fil

e
si

ze
Fi

lt
er

in
g

N
o

N
o

Tr
ac

eC
ra

w
le

r
To

p-
le

ve
l,

ru
nt

im
e

3d
pr

im
it

iv
es

,
so

ur
ce

co
de

N
oM

,L
oC

Z
oo

m
in

g
N

o
N

o

V
is

M
O

O
S

Pa
ck

ag
es

,c
la

ss
es

3d
gr

ap
h

Lo
C

Z
oo

m
in

g
N

o
Ec

lip
se

X
-R

ay
Pa

ck
ag

es
,c

la
ss

es
2d

gr
ap

hs
N

oM
,L

oC
Z

oo
m

in
g,

to
gg

le
ov

er
la

ys
N

o
Ec

lip
se

Ta
bl

e
2.

1:
A

co
m

pa
ri

so
n

of
se

ve
ra

lS
V

to
ol

s
an

d
C

od
e

G
es

ta
lt

.

39

Chapter 3

Initial user survey

“USA Today has come out with a new survey —
apparently, three out of every four people make up

75% of the population.”

—David Letterman

While reviewing the related work, we wanted to get a bet- Observation:
Programmers rather
use pen and paper
than specialized SV
software.

ter understanding and quick overview about what worked
well with available SV tools and where we could make
out potential for improvement. In practice, our co-workers
seemed to prefer pen and paper or marker and white board
over any SV software. If that observation was confirmed by
the findings of a survey, what were the factors causing this?

To gain more insight into these matters, we conducted an An online survey was
conducted for ten
days.

online survey. It ran for ten days (November 6th – Novem-
ber 15th, 2009) and was primarily web based, comple-
mented with additional personal interviews with student
assistants from the Media Computing Group at the RWTH
Aachen University. The link to the bilingual (English and
German) online questionnaire was posted on roughly a

40 3 Initial user survey

dozen websites1, among them the Apple and Microsoft de-
velopment communities, and some university mailing lists.

3.1 Design

The survey consists of five parts:The questions of the
survey are divided in
five groups.

1. Background

2. Usefulness of software visualizations

3. Visualization software

4. Manual visualization

5. Software visualizations in documentation

The survey contained a total of 31 questions. Since some20 to 29 questions
were presented
depending on the
participant’s
answers.

questions are mutually exclusive based on answers given
in previous questions, a minimum of 20 and maximum of
29 questions can show up for any individual participant.
The complete survey is reproduced in appendix A.1.

A total number of 128 full responses was recorded by theThe survey
generated 128 full
responses.

survey software LimeSurvey 1.862. To our knowledge, this
is the largest number of participants to be questioned for a
survey on SVs. The remainder of this chapter will focus on
the results of the survey and our conclusions leading to the
development of the first prototype.

1http://www.apple.com, http://www.c-plusplus.de,
http://www.codecall.net, http://www.daniweb.com,
http://www.dreamingcode.net, http://www.free2code.net,
http://www.gamedev.net, http://www.infostudium.de,
http://msdn.microsoft.com, http://www.programmingforums.org,
http://www.tutorial.de

2http://www.limesurvey.org

http://www.limesurvey.org

3.2 Results 41

3.2 Results

This section will present the questions of the survey and the Details of and more
data from the survey
can be found in
appendix A.2.

analysis of the participants’ answers to them. The data was
exported from LimeSurvey to Excel 20103 and reformatted,
so it could be processed by Excel’s data analysis tools and
IBM SPSS Statistics 194. For basic descriptive statistics, we
used the built-in functionality of LimeSurvey. The inter-
ested reader can find details on the results and their statis-
tical analysis in appendix A.2.

3.2.1 Background

In the first part of the survey we asked the participants Our participants
were mostly male,
but covered a wide
range of age,
experience, and work
practice.

about their background such as their current occupation,
age, and programming experience. Our group was primar-
ily male (98.4%), but diverse with regard to age, occupation,
and experience. The ‘median participant’ is a male student
of age 25, who reads source code on a daily basis (40% or
less of that is unknown code) and has 10 years of program-
ming experience. For more details see appendix A.2.1.

3.2.2 Usefulness of software visualizations

In this part we investigated how useful the participants rate We presented 11
SVs to the
participants

existing SVs. We asked them to look at both common SVs
like UML diagrams and experimental SVs from research.

3http://office.microsoft.com/en-us/excel/
4http://www.spss.com/software/statistics/

http://office.microsoft.com/en-us/excel/
http://www.spss.com/software/statistics/

42 3 Initial user survey

Common visualizations

The participants were shown a series of common visualiza-The participants
rated seven common
visualizations for
their usefulness.

tions:

• Class diagram

• Call graph

• Flowchart

• Data flow diagram

• Software layer diagram

• Sequence diagram

• Package diagram

Each visualization was illustrated by a sample diagram,All SVs were
illustrated with
examples.

shortly explained, and linked to respective articles on
Wikipedia.5 Based on this information, the participants were
asked to rate the diagram as ‘useful’, ‘not useful’, or ‘don’t
know/never used’6. Table 3.1 shows an overview of the
responses.

Visualization Useful Not useful Don’t know/never used

Class diagram 80.47% 9.38% 10.15%
Flowchart 61.72% 28.91% 9.37%
Sequence diagram 44.53% 21.88% 33.59%
Software layer diagram 43.75% 23.44% 32.81%
Call graph 38.28% 22.66% 39.06%
Data flow diagram 36.72% 24.22% 39.06%
Package diagram 24.22% 30.47% 45.31%

Table 3.1: Perceived usefulness of common visualizations (N = 128)

To easily compare the overall perceived usefulness of vi-We computed mean
usefulness scores for
easier comparison.

sualizations, we represented the data in a different for-
mat. Mapping ‘useful’ to 1, ‘not useful’ to −1, ‘don’t

5http://en.wikipedia.org/wiki/Main_Page
6The survey form allowed for participants to give no answer. We

interpret these votes as ‘don’t know/never used’.

http://en.wikipedia.org/wiki/Main_Page

3.2 Results 43

0.71

0.33

0.23 0.20
0.16

0.13

-0.06

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Class

diagram

Flowchart Sequence

diagram

Software

layer

diagram

Call graph Data flow

diagram

Package

diagram

Figure 3.1: Ranking of common visualizations by mean of perceived usefulness
from −1 (‘not useful’) to 1 (‘useful’).

know/never used’ to 0, and dividing the result by the num-
ber of participants, figure 3.1 shows how the means of com-
mon visualizations rank on a normalized scale from 1 to−1.

In general, class diagrams were rated most useful and pack- There are significant
differences in the
perceived usefulness
of several SVs
between groups.

age diagrams least useful. Package diagrams were the
only common visualization with a negative mean. When
looking at the perceived usefulness of SV by different
groups, we found some interesting results. Students rate
call graphs and software layer diagrams significantly lower
than programmers, U = −1123.5, z = −2.085, p < .05, r =
−.20 and U = −1105.0, z = −2.201, p < .05, r = −.21.
However, we found a significant negative correlation τ =
−0.16, p < .05, rs = −.19, p < .05 between program-
ming experience and the perceived usefulness of class di-
agrams when looking at all participants. We also found
a highly significant trend that the more often developers
read source code, the less useful software layer diagrams
become, J = 1990, z = −2.81. Similarly, we detected a sig-
nificant trend for package diagrams, J = 1751, z = −2.004.
Tests splitting the participants in groups according to the

44 3 Initial user survey

percentage of unknown source code read did not reveal any
significant results or trends. Details on the statistical analy-
sis can be found in appendix A.2.2.

Visualizations from research

We selected four visualizations from the research commu-The participant were
shown four
experimental SVs.

nity and asked the participants of the study to rate their
usefulness as before, based on their first impression. Again,
we provided samples of each visualization, a short descrip-
tion of how the visualization worked, and a link to the
project home page.

The chosen visualizations were:

• CodeCity (see section 2.5.2)

• Thematic software map (see section 2.5.3)

• 3d relation diagram (see section 2.4.2)

• CallStax (see section 2.3.1)

The selection of visualizations was limited by the require-This selection is not
complete. ment to offer the participants a link to a project page. Also,

literature research was still ongoing at the time of the sur-
vey, so not all visualizations from chapter 2 were known to
us, yet. Table 3.2 gives a summary of the responses for this
question and figure 3.2 an overview of the mean scores on
the normalized scale.

Visualization Useful Not useful Don’t know/never used

3d relation diagram 27.34% 42.97% 49.69%
Thematic software map 19.53% 50.00% 30.47%
CallStax 16.41% 49.22% 34.37%
Code city 17.97% 57.81% 24.22%

Table 3.2: Perceived usefulness of visualizations from research

3.2 Results 45

-0.16

-0.30
-0.33

-0.40
-0.50

-0.40

-0.30

-0.20

-0.10

0.00

3D relation

diagram

Thematic

software

maps CallStax CodeCity

Figure 3.2: Ranking of research visualizations by normal-
ized score of perceived usefulness from −1 (‘not useful’) to
1 (‘useful’).

Overall, experimental visualizations got lower scores than Common SVs were
rated higher than
SVs from research.

the common visualizations. That is to be expected, since the
meaning of the uncommon visualization might not be as
clear, despite our attempt to provide a short explanation for
each sample and a link to the research project home page
for further information.

Interestingly, the 3DRD received the best score, although We got conflicting
evidence about the
usefulness of a third
dimension.

six participants stated (unprompted) in an open-ended
question that they disliked three-dimensional representa-
tions. In our opinion, the 3DRD pursuits the use of three
dimensions the most rigorously among those SVs that em-
ploy three-dimensional graphics. While Code City and
CallStax also render three-dimensional visualizations, they
arrange elements still in one (Code City) or two (CallStax)
planes. Yet, this more restrictive use of the third degree of
freedom does not result in higher perceived usefulness.

We, did not find any significant differences in the evalua- Different groups did
not rate these SVs
significantly
differently.

tion of experimental SVs by our participants, when taking
different background into consideration (occupation, pro-
gramming experience, frequency of code reading, percent-
age of unknown code dealt with). For details refer to ap-
pendix A.2.2.

46 3 Initial user survey

Comments

The participants were encouraged to answer an open-We collected
qualitative feedback. ended question to give comments about SVs in general. 22

users took the opportunity to tell us about their impres-
sions.

The most frequent comment stated that three-dimensionalIn comments users
were very vocal
about
three-dimensional
SVs.

visualizations were less desirable than two-dimensional vi-
sualizations (six participants). Three participants felt that
diagrams created by SV tools were too big to be compre-
hensible. Two comments mentioned that there existed good
work flow visualizations that should be carried over to the
software domain.

Other comments were singular. several participants disre-Participants
questioned the
usefulness of several
aspects of the shown
SVs.

garded the usefulness of SVs for different reasons. Cod-
ing guidelines were deemed more important, the need for
SVs did not exist, and the visualizations were too unintu-
itive. One commenter noted that no single diagram could
capture everything. Individual comments were concerned
with specific SVs, but mostly fall in the above categories.
E.g., occlusion problems in CodeCity and CallStax were
mentioned, the usefulness of specific metrics (LoC for en-
tity size) questioned, and varying usefulness of common
visualizations discussed.

3.2.3 Visualization software

We asked the participants about their experience and prac-SV tools are rarely
used by most
developers.

tice working with SV tools in preparation for parallel ques-
tions regarding sketching. The participants from our sur-
vey were quite reluctant to use SV tools. More than half of
them used SV tools less than once a month, almost a third of
all participants never use SV tools. We set up the the ques-
tionnaire to display different questions to the 41 non-users
than the 87 tool users.

3.2 Results 47

SV tool users

SV application users were asked, what SVs they usu- SV tools are primarily
used to create class
diagrams.

ally create. Class diagrams were by far the most of-
ten used SV (81.6%), followed by flowcharts (23.8%) and
sequence diagrams (20.7%). The reasons for creating
SVs were mainly internal documentation (73.6%), per-
sonal use/understanding (65.5%), and public documenta-
tion (33.3%).

To get an impression of the SV tools used in practice, we A wide range of SV
tools are used in
practice.

asked users to name their most often employed SV solu-
tion. We got a wide range of answers. Frequently men-
tioned tools were Visual Studio7 (11 mentions), Doxygen8

(10), and Eclipse9 (8). It should be noted that two partici-
pants used this opportunity, to express their (negative) feel-
ings about the software they use:

• “bluej, leider gezwungenermaßen in der Schule”10

• “inkscape, uml sculptor (in Ermangelung besserer
Software)”11

Half of the users were able to create SVs in 15 minutes or The majority of tools
works seamlessly
with given projects
and creates
satisfying results.

less. The users were asked, if said tool would work seam-
lessly and without compatibility issues regarding their
code bases. Compatibility was an issue for 37% of the users.
We also asked about their satisfaction with the produced
SVs, which was positively answered by 79%.

We asked the users to categorize the tool they use most of- Tool automation does
reduce SV creation
time, but does not
significantly impact
result satisfaction.

ten as either automatic, semi-automatic, or manual using
criteria laid out in an accompanying explanation. Partic-
ipants reported 39% automatic, 25% semi-automatic, and
36% manual tools. Using this categorization we were not
able to make out any significant differences in the satisfac-
tion reported for tools of different automation-levels. How-
ever, we found significant differences for creation times

7http://www.microsoft.com/visualstudio/en-us/
8http://www.stack.nl/ dimitri/doxygen/
9http://www.eclipse.org/

10“compelled to use bluej at school, unfortunately”
11“inkscape, uml sculptor (for lack of better software)”

http://www.microsoft.com/visualstudio/en-us/
http://www.stack.nl/~dimitri/doxygen/
http://www.eclipse.org/

48 3 Initial user survey

(H(2) = 12.46, p < .05) and a highly significant trend with
J = 1687.50, z = 3.58, r = .38, p < .001, meaning that tools
with less automation demand more of the users’ time to
produce diagrams (medium effect).

However, this result must be treated carefully. StarUMLThere are problems
with generalizing the
result.

(Mdn = ‘> 60 min’), a dedicated tool to design UML dia-
grams, performs significantly slower than the more general
purpose tool Dia (Mdn = ‘5-15 min’), U = 4, p = .04, r =
−.68, or sketches (see next section), U = 46, p < .001, r =
−.30. We also tested the differences between the most auto-
matic tool (Doxygen, Mdn = ‘5-30 min’) and the most man-
ual (Dia, Mdn = ‘5-15 min’) for which we have at least five
samples. Their comparison shows that we cannot transfer
the general trend to any two tools from different ends of
the spectrum of automation: U = 28.5, p = .54, ns. More
details can be found in appendix A.2.3.

Non-users

We asked non-users of SV tools to give us their reasons forTime consumption is
an important factor to
avoid SV tools.

avoiding these applications. Half of the non-users (51%)
stated to have no need for SVs. Equally many found the
creation process too time consuming. 39% considered the
results to be unsatisfying. For more details see appendix
A.2.3.

Comments

At the end of this survey part, we requested the partici-Developers feel that
automated tools
cannot emphasize
important aspects of
a code base.

pants to leave comments on SV tools. 27 participants pro-
vided us with feedback. Four comments were concerned
with automatically generated SVs not being able to weight
important aspects like a human designer would. Three de-
velopers stated that they needed SVs only as a reminder.
Two participants reported, they had trouble gaining new
insight from SVs. That reading source code was more effi-
cient than using SVs was stated by two developers. Also,
two users felt that SVs were not practical for large code
bases. Two other participants claimed that, although very

3.2 Results 49

important, run-time behavior was not represented with SV
tools.

The other comments were individual remarks. Two partici- Some SV users have
grievances.pants reported their frustration with different SV tools, one

in particular was unhappy with the slow processing speed
of Doxygen. Two comments underlined the usefulness of
SVs for various reasons, and one participant stated, he felt
the use of pen and paper was simpler than using SV tools.

3.2.4 Manual visualization

In this part we asked the participants about their experi- Sketching is more
commonplace than
using SV tools.

ence with sketching. The questions in this part are simi-
lar to those in the previous one, modified to be applicable
for sketching techniques.We found that more than half our
participants create sketches at least once a month or more
often. Only 12.5% never sketch. Again, the survey braches
into one part for participants who sketch al least occasion-
ally and those who selected ‘never’.

Sketching participants

Most of the sketches contain elements from class hier- Sketches visualize
more than regular
class diagrams and
are used for personal
understanding.

archies (66%) and class dependencies (54%). But also
dataflow and function/method calls are often represented
(both 41%). The primary mean to create sketches is the
use of pens/pencils (99%) and paper (98%). Other tools
and materials used are white boards (45%), multiple colors
(36%), and erasers/sponges (32%). Most developers cre-
ate sketches for personal use and understanding (85%), fol-
lowed by internal documentation (44%) and project man-
agement (25%). 62.5% our participants spend 15 minutes
or less on creating a sketch. For further details refer to ap-
pendix A.2.4.

50 3 Initial user survey

Non-sketching participants

We asked the 16 participants, who indicated to neverMany non-sketchers
see no use in
visualizations.

sketch, to give us their reasons for staying away from pen
and paper and other tools. 56% reported to have no need
for visualizing code. Again, time consumption was also
an important aspect (44%), as was the difficulty of creat-
ing sketches (31%). More details can be found in appendix
A.2.4.

Comments

18 of 128 participants gave feedback in the comments sec-Sketches are often
used for planning
and building mental
models.

tion of this survey part. Two of them entered only place-
holders. Four users found sketching useful rather in the
planning stages of a software project or code change, but
not for existing code bases. Two use sketches for building
mental models or discussing source code with colleagues
each. Our participants liked the fast creation of sketches
(two mentions), their easily disposable nature (two men-
tions), and their availability in the physical world (one
mention). The latter however was also regarded as an dis-
advantage by one user, since physical documents require
additional effort for digitalization, when distributed elec-
tronically.

We also got a number of individual comments. One par-Individual comments
were often
concerned with
individual working
conditions.

ticipant integrated UI graphics with his sketches. Another
user noted he visualized algorithmic and functional be-
havior with sketches. One developer reported that sketch-
ing was redundant for him, since work processes required
him to create SVs anyway. One participant claimed that
pure imagination of code was faster than using sketching.
Sketches were not clean enough for public documentation
in the opinion of one participant. One user created sketches
only for short-term overviews.

3.3 Summary 51

3.2.5 Software visualization in documentation

We wanted to briefly touch upon the topic of source code SVs in
documentation are
more sought after in
the initial phase of
investigating source
code.

documentation, as we intended for Code Gestalt to be us-
able as such. 59% of the questioned developers actively
seek out visualizations in order to understand unknown
code. When asked, if they would consult SVs in docu-
mentation regularly when they were more familiar with a
project, only 29% affirmed that.

Comments

We got 10 relevant responses in the comments section for SVs are considered
a good starting point
for exploring
unknown code.

this part of the survey. These comments stated that SVs
were a good start for discovering unknown code (two par-
ticipants), provided a mental map (two participants), and
were more expressive than code (one participant). Other
comments suggested that tutorials in general are more im-
portant, that the quality of the SV was heavily dependent
on the quality of the visualized code, that the process of
reading code and documentations are intertwined, that a
mental model does not need to have a visual counterpart,
that listings of code artifacts might be equally appropriate,
and that usually neither documentation nor SVs exist (one
mention each).

3.3 Summary

Our findings regarding SV tools are mostly in line with We find our results in
line with related
work.

related work (see section 2.6). We have gathered addi-
tional insight in what users actually do in order to create
SVs, even if they do not find a suitable tool. There is a
wide range from pen and paper sketches to general pur-
pose painting programs and white board drawings to plain
text files that fill this role.

52 3 Initial user survey

Programmers faced with the task of visualizing source codeUsers tend to prefer
sketching over SV
software. Creation
speed is of the
essence.

are more likely to fetch pen and paper than using a special-
ized SV software. More than half of our participants cre-
ate a sketch at least once a month, while less than every
third uses SV tools that often. Although it appears likely
that a computer offers a significant speed advantage over
hand drawings of class and interface boxes, users say they
are faster using manual means. The time required to create
SVs and sketches is an important factor for programmers
to avoid visualization. We call this circumstance time con-
sumption problem.

Automation features can help with regard to the time con-Automation can
reduce effort for SV,
if done right.

sumption problem. But this general result does not guaran-
tee that any automation reduces time effort. E.g., StarUML,
a dedicated tool to design UML diagrams, performs signif-
icantly slower than the general purpose diagram drawing
tool Dia. Also, no significant differences in creation times
between the manual tool Dia and the automatic tool Doxy-
gen were found.

Surprisingly, automatic tools created as satisfying results asResult satisfaction
does not depend on
the level of
automation offered
by a tool.

manual tools, although one might expect that less automa-
tion and more customization would allow users to create
SVs that better fit their vision. This encouraged us to pur-
sue automation in Code Gestalt, but we remained cautions
to design automation features in a way that they would be
controllable and predictable for the user.

In general, SV software creates the results envisioned bySV is suited for
professional looking
results.

the users. The survey also suggests that one of the primary
advantages of SV software over sketches are professional
looking results. Also, users appreciate visualizations for il-
lustration purposes in publications and documentation.

Sketching on the other hand is more suitable for informalSketching helps with
understanding and
communication.
Class diagrams are a
good common
denominator.

information exchange between co-workers and self-study
of code. Many sketches seem to be loosely based on class
diagrams, but is much easier to hide irrelevant details in
sketching and to convey human insight by deliberately em-
phasizing certain aspects over others.

3.3 Summary 53

From the comment sections we gather that SVs help pro- It is also more
flexible and captures
human insight better.

grammers with building a mental model and support ini-
tial understanding. According to qualitative feedback auto-
matic SV tools lack understanding of a code base and might
become less useful as a project grows due to increasing di-
agram size. We call this property of SVs lack of insight.

In the following three chapters we describe the develop- Code Gestalt tackles
lack of insight and
the time consumption
problem.

ment the SV tool Code Gestalt. We tackle lack of insight
by designing visualizations and interaction techniques for
users to harness some of the human intelligence present in
the vocabulary of a code base. Our SV should reduce the
time consumption problem, to become attractive for those
users, who avoid SVs for that reason. When designing dif-
ferent aspects of the SV we will refer to the results from the
survey and related work, to make informed decisions on
what techniques to use.

55

Chapter 4

Paper prototype

“Ideas are elusive, slippery things. Best to keep a
pad of paper and a pencil at your bedside, so you can

stab them during the night before they get away.”

—Earl Nightingale

In this chapter we discuss, how we initially conceived Code The first
implementation of
Code Gestalt was a
paper prototype.

Gestalt and built a paper prototype with a fleshed out UI
and interaction scheme. In section 4.1 we will take a look at
the initial concepts that mostly manifested as rough draw-
ings to explore various ideas of software visualization dur-
ing the stages of literature research, the survey, and the in-
terviews. The final paper prototype is presented in section
4.2. We performed a qualitative evaluation of the proto-
type, which is presented in section 4.3.

4.1 Design

The concepts in this section were conceived in the initial We want to grant
programmers better
access to the ‘big
picture’ of a software
system.

phase of the thesis while investigating related work. Look-
ing at the problem of dealing with unknown code the idea
of Code Gestalt emerged: creating a tool that would com-
municate the ‘big picture’ needed to understand a piece of
software. The programmer should be able to get a rough
understanding of the most important pieces of a code base.

56 4 Paper prototype

Even if she did not understand the details, the visualization
should be clear and meaningful as to identifying major and
important software components.

Around this initial idea we developed several concepts forUsing concept
sketches we
explored several
directions for Code
Gestalt.

visualizations, some of which were tested in paper proto-
types prior to the creation of more sophisticates mock-ups
and the final implementation (see chapters 5 and 6). In the
following, we will discuss some of the very early designs
for which we created concept drawing.

4.1.1 Early concepts

The following section will discuss several preliminary de-
signs, and how they evolved based on survey findings, user
feedback, and pragmatic considerations.

Thematic heat map

The paper of Kuhn et al. [2008] about thematic software maps
inspired the first fleshed out concept, namely the thematic
heat map.

In this concept the whole code base is represented as a hi-The code is
represented as a
hierarchy of shapes.

erarchical composition of nested two-dimensional shapes,
representing types and namespaces/packages. So a pack-
age shape contains a sub-shape for each type or package in
that package. The size of any region is determined by its
LoC. A paper prototype of this visualization and its user
interface is shown in figure 4.1.

Using a filter and search interface the user is able to spec-The user can place
landmark icons and
specify terms for
which to draw heat
maps.

ify landmarks by entering a term and associating it with an
icon. All types containing this term in their identifier are
then identified by that icon on the map. Moreover, the user
can specify regions of interest, i.e., a heat map based on a
term and an assigned color. All types that use the given
term in their source code are highlighted using an impor-
tance weight derived from tag synthesis.

4.1 Design 57

Figure 4.1: One of the earliest concepts for Code Gestalt
used heat maps as visualization.

Discussion: This early concept would not have allowed The concept did not
allow for much user
editing, but core
ideas made it into the
final implementation.

the user to actually modify the structure of the diagram.
Instead, the user would have been restricted to specify one
or more overlays that allowed for visual searches in the
code base (very much like CodeMap, see section 2.5.3). We
deemed the concept to be too limiting. Nevertheless, both
the idea of highlighting regions of interest and the concept
of creating landmarks for better orientation ended up as
core features in the final Code Gestalt implementation.

Data trace

The concept of data flow was revisited several times dur- We were
unsuccessful in
developing clear SV
for data flow.

ing the design phases of Code Gestalt, but was ultimately
dropped, as visualizing the flow of data between objects re-
sulted in too much visual cluttering, when displaying other
relations. However, our online survey suggested that data
flow is an important property for users to visualize, so we
will briefly discuss our concepts for this aspect of SV.

The data traces in figure 4.2 were the first such concept. It Traffic between types
is illustrated as lines
of varying thickness.

traces objects over several method calls and visualizes them
as colored lines between shapes that represent types. The
idea is to illustrate how a data structure is passed from type
to type, where it may be known under different parameter
names. The thickness of the lines indicates the amount of
traffic between types, i.e., the number of objects send from
one type to the next and their memory footprint.

58 4 Paper prototype

Figure 4.2: A dropped concept for tracing the flow of ob-
jects.

Discussion: This concept was pursued further, when theThe concept is hard
to implement and
produces much
clutter.

online survey revealed the importance of data flow for po-
tential users (see sections 3.2.2 and A.2.4). However, the
technical implementation of this concept would have been
quite challenging. E.g., branching and merging of traces
would have required some understanding of cloning and
integration of objects by the SV tool. Ultimately, the concept
was abandoned, since other relations were deemed more
important, and the data traces introduced another level of
visual clutter to the diagrams.

4.1.2 Designs in light of the online survey

After reviewing the survey results we iterated on our pre-
vious designs and developed new concepts on our path to-
ward a UI to be tested with users.

4.1 Design 59

Figure 4.3: This concept visualizes the composition of framework objects and their
communication.

Framework flow

This concept is based on the idea of message flow in appli- Framework flow
visualizes event
routing and
composition in UI
frameworks.

cation frameworks. We derived this design from a discus-
sion with a student after conducting an interview along the
lines of our survey. The rough paper prototype in figure 4.3
shows, how messages are passed around in a fictive shop-
ping application. Framework messages (e.g., button clicks)
and data become relations that connect the elements of a
static type hierarchy. Also, the composition of framework
objects is shown. Basic framework components are shown
as labels attached with ‘plugs’ (small squares) to the custom
user classes that use them.

Discussion: Visualizing the composition and message The concept only
works for a very
limited number of
code bases and is
very centered on
code structure.

routing of modern application frameworks is a logical step
in terms of static hierarchy visualizations such as class di-
agrams and call graphs. The SV tool, however, becomes
usable only for those frameworks and framework versions
it has been adopted for. Like the data trace concept, this
requires a deep level of understanding not only of the pro-
gramming language, but the framework as well. After
some consideration this concept was put off, since it was
another SV of the static structure of the source code, with-

60 4 Paper prototype

out much emphasis of the desired properties (see sections
2.7 and 3.3). We wanted Code Gestalt’s capabilities to go
beyond these structural relations and find new ways to pro-
mote program understanding on a more conceptual and se-
mantic level.

Structured context diagram

This SV was a low-level approach designed to maintain asThe structured
context diagram
incorporates
elements from
Nassi-Shneiderman
diagrams.

much information as possible from the actual source code.
It is an SV based on class diagrams. We looked at the group
of participants, who claimed that reading code, good nam-
ing conventions, and syntax highlighting were their most
favorite ways to learn unknown code. It draws inspira-
tion from Nassi-Shneiderman diagrams [Yoder and Schrag,
1978], as the code inside a method is structured to indicate
the occurrence of alternatives and loops.

In this concept, the diagram is created automatically in aThe diagram is
created
automatically,
centered around the
currently edited
method.

view of the IDE, centered at the method the developer is
currently working with (see figure 4.4 for a case study per-
formed with a real code base of a 3d engine). The type hier-
archy for the current class is shown vertically. The current
method is shown inside the box of the current class. We
structured its code by vertical bars to group local functions,
alternatives and loops. Horizontally, the call hierarchy for
the current method is shown. In our example, DrawGl is
only called by Button, a child class of Label. If calls from
other classes outside the class hierarchy of Label had been
used, they were to appear in a column to the left of the type
hierarchy, just like called methods are shown in a column
to the right. The numbers labeling the call relations indicate
the fan-in of call relations at the target. Although automati-
cally generated, the user would be able to interact with the
visualization by highlighting call and inheritance relations
by hovering.

Discussion: Initially, the concept promised to provide theStudies with practical
code bases led to
much clutter.

developer with an informative context of what she was cur-
rently working with, since we managed to capture the most
important properties of the code in a well organized format.

4.1 Design 61

Figure 4.4: The diagram is centered at the current method
DrawGl from the class Node. Incoming calls are visual-
ized on the left, outgoing calls on the right of the method.
Vertical relations (top and bottom of the type) make up the
type hierarchy. The calls to gl.h are highlighted. This case
study of the structured context diagram convinced us to not
pursue it further.

Therefore we applied the principles of this technique to the
case study, shown in figure 4.4, that illustrates problems of
this visualization. The call hierarchy could not be displayed
without a lot of clutter. Also, the visualization did not of-
fer much potential for user customization, abstraction, and
other desired features.

62 4 Paper prototype

Figure 4.5: Concept drawing for the local context view. On the left the local type
hierarchy and on the right the local call hierarchy are shown. The call hierarchy
tracks individual parameters across calling and uses symbols to indicate the use of
them before and after the method call.

However, some of the design elements like vertical layoutWe kept some layout
ideas in Code
Gestalt.

for type and horizontal layout for call hierarchies were kept
and developed further. We came back to this concept, when
designing the local context view (see section 4.1.2).

Local context view

Our last noteworthy concept before the final paper proto-This SV is an
iteration of the
structured context
view.

type was the local context view. This concept was an itera-
tion of the structured context design, putting more empha-
sis on data flow and hiding implementation details on the
source code level. The idea behind the local context view
is to allow developers to track parameters across multiple
method calls. Again, the view is centered on the method
currently edited in the IDE. The view is divided vertically
into two sections (see figure 4.5.

On the left we have a local type hierarchy, similar to theWe show the type
hierarchy on the left
an a call hierarchy on
the right.

one in the structure context diagram. On the right a spe-
cial call hierarchy is displayed. At the top there is a list of
all methods calling the currently edited method. For each

4.1 Design 63

parameter we are given the local name of the passed vari-
able. Two icons illustrate, how the calling method obtained
the local variable and how it will treat it after the current
method returns to it.

• Carriage return symbol in front of the local variable name: Icons give details on
the role of
parameters.

indicates that it is a parameter of the calling method
(i.e. passed down from another method)

• Carriage return symbol behind the local variable name: in-
dicates that the calling method will pass the same
variable to another method after the current method
has returned to it

• Looped arrow: a special case of the carriage return for
recursions

• Square: indicates that the calling method will not pass
the variable along to another method

• Square with a star: indicates that the variable was de-
clared locally in the calling method

Similarly, a list for each parameter illustrates, how they are
passed by the curring method to called methods, and what
these called methods do with the parameter.

Discussion: This concept was another instance of an in- The view allows for
little customization.
We kept the idea of
augmenting the
diagram with icons.

flexible visualization, focused only on structural features
of the code base. Although it allows developers to gain
more information than from a regular call graph, it does
not allow them to go beyond very basic syntactical infor-
mation. This visualization, however, introduces the idea of
using icons for conveying additional information, an idea
that we revisited in the implementation of the Eclipse plug-
in, when we added icons to all Java entities to present more
information.

64 4 Paper prototype

Diagram widgets

When we settled for class diagrams as baseline visualiza-Our diagram type
boxes should provide
a UI elements for
interaction.

tion, we needed some sort of user interface to manipulate
diagram elements (or widgets). We designed some UI ele-
ments to directly work with types, methods and relations.
A tabbed browsing interface as in figure 4.6 was based on the
idea that users would work with the diagram over a longer
period of time and add or remove members on the fly in
analogy to the management of tabs in web browsers like
Mozilla Firefox1. Note that the concept drawing follows the
idea of framework specific relations from section 4.1.2.

Figure 4.6: Members are added to types as tabs.

1http://www.mozilla.com/firefox/

http://www.mozilla.com/firefox/

4.1 Design 65

Since the horizontal layout of tabs requires a lot of screen Horizontal layout of
members is more
practical than vertical
tabs.

space, we redesigned the interface to add and remove
members in a vertical layout, converging to a more familiar
representation of types in class diagrams and Relo. Figure
4.7 shows this layout. The concept was drawn before we
decided to use a vertical layout for inheritance and a hori-
zontal layout for call relations.

Figure 4.7: Members are added to types as list entries.

Users can directly manipulate these widgets, by using com- The widgets allow for
much direct
manipulation.

mon UI elements, such as close buttons and the resize han-
dles. Widgets can be dragged around and rearranged. Re-
lations are added and removed by selecting elements and
clicking context sensitive expansion controls (see section
4.2.3).

66 4 Paper prototype

Discussion: We kept most of the design and interactionMost elements from
this design are
present in the final
implementation.

techniques from these prototypes in the paper prototype.
As they were immediately understood by all participants,
the design is very close to what we later realized in Code
Gestalt.

4.1.3 Designing the paper prototype

The paper prototype was geared toward closing existingSurvey results lead
to using class
diagrams as a
baseline for Code
Gestalt’s
visualization.

usability gaps and was rather conservative in terms of SV.
The results from the survey indicate that the visualiza-
tion metaphor should revolve around concepts like classes,
methods, and data flow, as well as inheritance, dependency,
and call relations. We decided to use class diagrams as a
baseline for the visualization, since they are built around
many of the above concepts. As shown in the previous sec-
tion, incorporating data flow proved to be difficult and was
dropped in favor of call relations.

After exploring different approaches (see section 4.1.2), weWe enhance the UI
of Relo to create a
simple and fast editor
for partial class
diagrams.

came back to an interface and diagram design that is rem-
iniscent of Relo (see section 2.4.1). Our design is based on
partial class diagrams created through interaction with a
context sensitive interface. This way we intend to address
the time consumption problem and promote simplicity. A
user adds new elements to a class diagram by simply ex-
panding it along relations of the elements in the diagram
to new elements not yet visible. Our prototype adopts the
notion of class diagrams as a familiar baseline for our visu-
alization that is then augmented with information that goes
beyond structural properties.

Since the user survey shows that package diagrams areRemove the drawing
of packages and
instead allow for user
grouping.

least favored by users among the common visualizations,
our prototype does not include the package container boxes
drawn by Relo. Instead we allow users to group and color
classes freely by criteria of their choice. In order to assist the
user in finding diagram entities for grouping, the prototype
provides visual search a and filter functions..

4.2 Implementation 67

From the related work we know that the ability to search Search is
implemented using
filters, results are
displayed within the
diagram.

SVs is important, but missing in many implementations.
We think is an important reason for lack of insight. Relo
has no built in search option and does not support the IDE
search functionality. Eclipse’s find-feature is tailored to-
wards text and presents its results in a sortable list. Re-
sults from a diagram, however, are more naturally visual-
ized spatially, since line numbers (or coordinates) in a list
are not intuitively suited to quickly locate an occurrence.
Therefore, we designed a new search feature from scratch,
present in the prototype as sidebar. This feature allows
the user to specify filters in different scopes (like method
names, comments, or parameter names) and to combine
several of these filters.

One of the few disadvantages of sketches in relation to Sketches cannot be
mailed easily and
create overhead.
Therefore we
integrate our
diagrams tightly into
the IDE project
structure.

SVs is their physical nature that makes them inconvenient
for electronic communication. Scanning sketches or pho-
tographing white board drawings creates overhead that re-
duces or cancels the advantage in speed during creation.
To explore this aspect, our prototype had one use case ded-
icated to the integration of persistent diagram documents
in the structure of an IDE project. We envision that such
a tight integration of diagrams in the project and there-
fore its version control system would almost eliminate any
overhead in sharing and synchronizing the visualizations
among co-workers.

4.2 Implementation

The prototype was realized using printed screen shots of Drawings on printed
screen shots and
sticky-notes make up
the paper prototype.

the Eclipse IDE with two empty editor windows equally
sharing the majority of the screen. In these editor windows,
source code and diagrams were drawn by hand to illustrate
three use cases. Menus were realized using sticky-notes,
changing diagrams by swapping smaller pieces depicting
one editor window.

68 4 Paper prototype

We following considered the following use cases:We considered a
total of twelve use
cases grouped in
three major tasks. 1. The user has to identify and open diagrams from the

project view.

2. The user creates a new diagram from selected source
code.

3. The user edits an open diagram.

(a) The user changes the diagram by

i. adding a parent type of a type.
ii. adding a calling method (and the corre-

sponding type) of a type.
iii. adding a called method (and the corre-

sponding type) of a method.
iv. deleting a type.
v. adding a child type (and overwritten meth-

ods) of a type.

(b) The user creates filters to hide irrelevant ele-
ments/groups.

(c) The user creates filters to hide irrelevant rela-
tions.

(d) The user edits a filter.

(e) The user groups and highlights elements.

(f) The user edits the appearance of an element/a
group.

For each use case the users had to answer questions before
given the actual task, to identify interactive elements and
to describe their affordances. After describing how they
would perform the task, the participants were asked open-
ended questions on how intuitive the UI was and what
problems they had with the interaction both conceptually
and practically.

4.2 Implementation 69

4.2.1 Project integration

Figure 4.8 shows, how we presented the integration of di- Diagrams integrate
with the IDE project.agrams with the IDE project structure. A diagram can be

a child of any package or type, indicating that the diagram
visualizes an aspect of that package or type. This mock-up
was used to test use case #1.

Figure 4.8: Eclipse package explorer displaying the con-
tents of a Java project with Code Gestalt diagrams

70 4 Paper prototype

4.2.2 Creation of a diagram

We designed the prototype to allow for multiple ways toDiagrams are
created using the
default mechanisms
in Eclipse.

create a new Code Gestalt diagram from a given method.
One solution is depicted in figure 4.9. All solutions were
based on putting a Code Gestalt command in Eclipse’s
‘Show in’ sub-menu, accessible from various locations of
the IDE. This decision was made for consistency reasons
and had to be revised, when the evaluation demonstrated
a lack of visibility (see section 4.3).

4.2.3 Expanding a diagram

The paper prototype contained samples to test use casesWe use a consistent
interaction scheme
for editing
interactions.

3.(a)i.–3.(a)v. All, but 3.(a)iv (delete a type), are based on
the same interaction-scheme:

1. The user selects a code artifact (type or member).

2. Code Gestalt searches for related code artifacts in the
source code, displaying those not already contained
in the diagram as semi-transparent live previews.

3. When the user clicks any preview it is added to the
diagram and made persistent. Previews ignored by
the user disappear as the selection changes.

LIVE PREVIEW:
Live previews show a user the results of a possible inter-
action, before it is performed and any actual changes are
applied. When the user decides to take no action, the pre-
view is removed without effect and the edited document
remains unchanged.

Definition:
Live Preview

Related elements are identified by having either a call orRelations are shown
using live previews. inheritance relation to the current selection. The interaction

for an expansion is exemplified in figure 4.10, which shows
how the user may explore a type hierarchy.

4.2 Implementation 71

Fi
gu

re
4.

9:
C

re
at

io
n

of
a

C
od

e
G

es
ta

lt
di

gr
am

fr
om

fil
e

co
nt

ex
tm

en
u.

Th
e

us
er

se
le

ct
s

a
m

et
ho

d
(1

),
op

en
s

th
e

co
nt

ex
tm

en
u

(2
)

an
d

se
le

ct
s

th
e

‘S
ho

w
in

’e
nt

ry
.

Fr
om

th
e

su
b-

m
en

u
(4

)
th

e
us

er
pi

ck
s

C
od

e
G

es
ta

lt
(5

)
an

d
a

ne
w

C
od

e
G

es
ta

lt
ed

it
or

w
in

do
w

w
it

h
th

e
se

le
ct

ed
m

et
ho

d
an

d
ty

pe
bo

dy
is

op
en

ed
(6

).

72 4 Paper prototype

Figure 4.10: Expanding a Code Gestalt using context sensitive previews. The user
selects a type (1) and the diagram shows semi-transparent live previews of related
code artifacts, e.g. a parent type (2). By clicking the preview, it becomes persistent
and added to the diagram. Selecting the new element (3) triggers Code Gestalt to
display previews in the new context (4).

4.2.4 Search a diagram

For use cases 3.(b)–3.(d) we designed a visual filter inter-Users search the
diagram visually by
specifying filters.

face. We allow the user to search for terms in the source
code and define the scope of the search. E.g., if a user
wants to find controllers in a code base dealing with user
accounts, she could first define a filter for the search term
‘controller’ with scope ‘Type Name’ and then a second filter
‘account’ with scope ‘Source Code’.

The second iteration of this interface is shown in figure 4.11.We updated the filter
interface during
testing.

The difference between the first and second iteration is the
replacement of an eye-symbol next to each entry with a list
view allowing for multi-selection.

4.2 Implementation 73

Figure 4.11: Searing a diagram using the filter side bar. The user enters a search
term (1) and selects a search scope (2). The search results are shown in the diagram
by highlighting corresponding code artifacts (3). The user may save the filter (4)
and manage saved filters in a list (5).

4.2.5 Grouping and tagging

We designed a tool palette for use cases 3.(e) and 3.(f). The Groups are created
and edited using a
palette.

palette contains several tools and an context sensitive prop-
erties panel that is only shown, when editing a group (this
mode is shown in figure 4.12). Using the grouping tool (1),
users may create groups of types by dragging a box in the
diagram (2). In order to make the group a recognizable
landmark, we allowed for customization using the prop-
erties panel (3–5). This customization is not only limited to
the diagram editor, but causes custom color highlighting in
the Java editor (6) and package explorer (7). There, we also
create a virtual folder for the elements of the group.

74 4 Paper prototype

Figure 4.12: Creating groups and landmarks. The user selects the grouping tool (1)
and drags a box around the elements of the diagram, she wants to group (2). The
group can be assigned a name (3), icon (4) and color (5). The icon and color will
be used to highlight group elements in the code editor (6) and project browser (7),
where a virtual folder for the group members is created.

4.3 Evaluation

Five student assistants not involved with the project (allA small user study to
check for design
flaws and gather
user input.

male) were interviewed. They were shown the screen shots
depicting the different stages of the IDE and asked to per-
form the twelve tasks described in the use cases from sec-
tion 4.2. The investigator changed the interface based on
the actions the testers choose (Wizard of Oz technique [Kel-
ley, 1983]). You can find the instructor guide in appendix
B. All participants were encouraged to provide qualitative
feedback on the prototype.

4.3 Evaluation 75

4.3.1 Test results

Project integration

For the first use case, users had to identify and assign dia- The hierarchy level of
a diagram raised
different expectations
of its scope.

grams in the project. The diagrams were integrated into the
hierarchical project structure and could be mounted into
each package or type. The intention was that root-level di-
agrams illustrated general concepts, while diagrams at the
leave-level only showed type-specific relations. Although
all participants had no problems with identifying the dia-
grams in the project explorer, two had another understand-
ing of what the scope of the diagrams at different levels in
the project hierarchy meant. In the open-ended questions
the idea was proposed to collect all diagrams in one virtual
project folder and to make the individual diagrams acces-
sible by each class via the classes context menu, if that di-
agram included the respective class. However, most users
preferred to freely place diagrams in the project tree.

Creating a diagram

The second use case gave an interesting insight into the af- Starting a diagram
was predominantly
accomplished using
a drag-and-drop
metaphor.

fordances of IDEs in general (or at least those similar to
Eclipse). Although the task description made no sugges-
tion as how to create a new diagram (a total of five different
ways were prepared in the prototype), four of the five users
chose to use drag-and-drop from a piece of source code or an
item from the project explorer to the Code Gestalt editor.
Only one user started the diagram using a context-menu
after wanting to know the keyboard shortcut, which was
not implemented in the prototype. Another user suggested
a button in the IDE toolbar to start a new diagram from
selected code, which was also not present in the paper pro-
totype.

76 4 Paper prototype

Editing a diagram

The third use case is divided into several smaller tasks.The input (and
live-preview) focus
should follow each
expansion, thus
making
in-depth-exploration
easier than breadth-
first-expansion.

Only use case 3.(a) had a detailed full interface mock-up for
3.(a)i. The other sub-use cases were demonstrated using a
partial view showing only changes to the diagram widgets,
ignoring the rest of the IDE UI. The interaction was well
conceived by all but one participant, who expected differ-
ent results based on his conceptual problem with the static
nature of the SVs. The participants expressed a preference
for an interface allowing for one-click selection in all cases
and therefore making exploration (depth-first navigation)
more fluid, but expansion of the diagram after a breadth-
first scheme a bit more click-intensive (since the focus cre-
ating the extension preview would change with each ex-
pansion step and thus changing the selection of available
extensions).

The live preview was so effective as to allowing two of theLive previews were
intuitive for users. An
auto-scroll feature
was suggested to
follow current focus.

five participants to identify a minor inconsistency in one
of the paper prototype screens. The way another screen
was accidentally drawn, triggered one participant to wish
for an auto-scroll-feature panning the editor canvas, so that
all newly available expansion options were visible when
changing the focus and not cut-off by the canvas border.

For use cases 3.(b), (c) and (d) the one-page screen shot ofFiltering with several
scopes for searching
were intuitive, but
multi-selection lists
and layer-metaphor
for filter maintenance
did cause confusion.

the paper prototype was supplemented with a larger hand
drawn sidebar depicting the filter UI. All users were imme-
diately able to filter a given diagram using different scopes
and combining two filters to refine their search results. Dis-
abling and enabling existing filters from a list however pre-
sented a challenge to the testers. Originally, each filter
had an eye symbol assigned to its row. This ‘Photoshop
layer’-metaphor did not work well, since disabling the fil-
ter (closing the eye) would display more information in the
diagram, not less as suggested by the metaphor. Using a
multi-selection list without additional UI elements, where
selected elements indicated active filters, was also a prob-
lem due to the low affordance of the list for multi-selection
and poor visibility. These difficulties were one reason for us
to design a much simpler filtering interface and metaphor
for the next prototypes (see section 5.1).

4.3 Evaluation 77

The filtering of the diagram was followed by the use case to After filtering, users
want a one-click
solution for creating
a group from the
results.

group the so found elements, thus making the result persis-
tent and highlighting it permanently in the diagram. Pre-
sented with a hand drawn palette of tools available in the
editor, three of the participants started looking for a tool al-
lowing them to group the filter results with a single click.
The grouping tool from the palette had such an affordance,
but we intended it to work differently. After explaining to
the testers that the tool was meant to draw a grouping box
manually in the diagram to allow for groups other than
those generated from filtering, all participants created the
group without problems.

To highlight and annotate the newly created group the Changing color and
other attributes
worked well.

users were asked to assign it a name, color, and icon. All
users were able to perform tis task using the palette tools.
Some users requested to change the order of the tools in the
palette to better represent the importance of each property
(in descending order: name, color, and icon).

After these tasks the testers were presented with a render- Users wanted to
keep syntax and file
highlighting using the
group’s color and
icon optional.

ing of how the other parts of the IDE changed in response
to the grouping and tagging. The identifiers of group mem-
bers were highlighted in the color of that group in the code
editor and assigned the corresponding icon on the left hand
side of the editor window. In the project explorer group
members were also highlighted using the chosen color and
their generic icon swapped with the user selected icon. Ad-
ditionally, another virtual folder with the group name ap-
peared in the project, containing links to all group mem-
bers. Two participants voted for keeping the syntax high-
lighting optional and three participants wanted the icons
in the project explorer removed from the files in the pack-
age browser. We were also made aware that the icons on
the left side of the editor window might overlap with the
Eclipse icons indicating errors and warnings.

78 4 Paper prototype

4.3.2 Further feedback and observations

Two students expressed an explicit interest in having a toolA fundamental
problem with the SVs
conception occurred
with one participant.
Two participants
were enthusiastic
about prototype
realization.

like the one portrayed in the paper prototype for their fa-
vorite IDE. One of the participants had conceptual prob-
lems with the limitations of the SVs to the static analysis
of the program structure. Therefore, this participant had
problems understanding the tasks given by the use cases
during the test. We chose not to change the conceptual ba-
sis of the prototype on his feedback, since the user survey
clearly demonstrated an overwhelming majority of users
prefer class diagrams over any other visualization.

The testers suggested a number of interesting ideas toUser suggestions
made us rethink
filtering and
grouping.

change and augment Code Gestalt. Most of them were con-
cerned with the filtering and grouping mechanism:

• Provide debugging features by display-
ing/manipulating breakpoints directly within
the diagram and visualize the run of a program in
the diagram.

• Save the filters created from searches with the project
file for future reference by the programmer.

• Allow for optional display of parameter types along
call edges

• Provide an interface to collapse and expand groups.

• Allow for auto-grouping by defining a filter once and
let the system automatically add new classes match-
ing the specified criteria to the corresponding group
afterwards.

4.3.3 Impact on next prototype

We reacted to the feedback and the results from the userWe refined the
prototype by
simplifying the filter
interaction.

tests by simplifying the filtering and grouping interactions.
We introduce thematic relations and the tag overlay. These
concepts are presented in the following chapter and were
implemented in a Silverlight prototype and the final Eclipse
plug-in.

79

Chapter 5

Silverlight prototype

“We don’t trust it
until we can see it and feel it.”

—Win Ng

In light of the paper prototype evaluation presented in the We redesigned the
filtering and grouping
interaction.

last chapter, we decided to redesign the visualization and
interaction concerning filters and groups. To this end we
introduce the concept of thematic relations and the tag over-
lay, which are fundamental contributions of Code Gestalt.
We evaluated these ideas using a low-fidelity online soft-
ware prototype1 built with the application framework Sil-
verlight2.

We introduce the design rationale behind the tag overlay We built and
evaluated a software
prototype.

and thematic overlay in section 5.1. The implementation of
a proof of concept prototype with the SketchFlow3 prtotyp-
ing framework in Silverlight is discussed in section 5.2. We
present an evaluation of this prototype in section 5.3.

1http://www.startrek-journey.de/webcontent/prototype/index.html
2http://silverlight.net/
3http://www.microsoft.com/expression/products/Sketchflow_Overview.aspx

http://www.startrek-journey.de/webcontent/prototype/index.html
http://www.startrek-journey.de/webcontent/prototype/index.html
http://silverlight.net/
http://silverlight.net/
http://www.microsoft.com/expression/products/Sketchflow_Overview.aspx

80 5 Silverlight prototype

5.1 Design

Introducing filters and thus augmenting the visualizationFour reasons led to
the redesign of
filtering and
grouping.

of a class diagram with information derived from the code
vocabulary was a first step to harness the human intelli-
gence present in the naming conventions of source code.
There were however four reasons to redesign the filtering
and grouping features of the paper prototype:

• User confusion about the filter interface

• The dichotomy of filters and groups

• Users requested to save filters and to automatically
add new code entities to existing filters

• Filtering solely relies on the user to understand the
code base and does not help in code exploration

We attempt to solve these issues by introducing two inter-We introduce the tag
overlay and thematic
relations.

twined visualizations, namely the thematic relation and the
tag overlay. Using tags to filter the diagram and to group
types, unifies the models of filters and groups, thus allow-
ing types to automatically update their group membership
based on their source code without surprising the user. Fi-
nally, we eliminate the vocabulary problem, by making the
search space explicit and allow for exploration of the vo-
cabulary of the source code.

VOCABULARY PROBLEM:
The vocabulary problem states that users, designers, and
systems often use different words to identify a thing
[Furnas et al., 1987]. We encounter this problem,
when searching source code for code entities. E.g.,
the generic data structure known as HashMap in Java
is called Dictionary in the .NET framework and
NSMutableDictionary in Cocoa. Similarly, program-
mers might call a concrete observer from the observer pat-
tern a number of different things (and name the class ac-
cordingly): listener, observer, controller, server, receiver,
etc.

Definition:
Vocabulary Problem

5.1 Design 81

Where visualizations like the thematic software map pre- In Code Gestalt
metrics augment the
SV, but do not
prescribe the layout.

scribe a rigid layout of the diagram based on vocabulary
metrics and allow for the display of structural visualiza-
tions afterwards, we want to start with an editable class di-
agram and display the vocabulary information as augmen-
tation. While we loose some expressiveness and precision
with regard to the metric, we gain a lot of flexibility and
customizability for the created diagrams.

5.1.1 Tag overlay

The tag overlay is an additional layer on top of an existing The tag overlay is a
tag cloud for class
diagram.

class diagram that displays a tag cloud. The sketch in fig-
ure 5.1 shows, how we originally envisioned it. Each tag
has three visible attributes: a term (single word), a weight
(expressed in font size), and a location.

Figure 5.1: Our initial concept for the tag overlay. The layer
in front of the class diagram displays a tag cloud to indicate
where in the diagram certain themes and concepts are im-
plemented.

82 5 Silverlight prototype

TAGS AND TERMS:
We differentiate between a tag and its term. While a term
is a simple lower case string (ideally, a meaningful word,
acronym, or symbol), the tag is a tuple of a term and a
list of classes that use that term in their source code. The
latter information is required to calculate the weight and
location of the tag. We visualize the weight (based on a
simple frequency analysis) of tags using different font-
sizes.

Definition:
Tags and Terms

The terms from the tag overlay are extracted from the iden-Terms are extracted
from identifiers and
positioned near
those types using
them.

tifiers used in the source code of all types present in the di-
agram. To determine weight and position we calculate tag
clouds for each individual type. Each tag is assigned the
mean weight of its term in each class that uses it. Similarly,
the position is the center of gravity between these classes,
where each class ‘pulls’ at the tag with a strength propor-
tional to the individual weight in the tag cloud of that class.

Visualization

We visually display the vocabulary of the source code asThe position of tags
conveys where in the
diagram types
implement themes
and concepts.

overlay to the existing diagram. Since the position of each
tag is based on the frequency of its term for the visualized
classes, the position of each tag has an intuitive meaning.
Ideally, terms with similar semantics are located close to
each other and close to types that deal with these concepts.
This way, the user can get a quick overview, what regions
of the diagram cover which functionality.

However, there is no guarantee that classes with similarTags might be
positioned away from
related types.

vocabulary are located close to each other, since the un-
derlying class diagram is organized along structural rela-
tions (calls, inheritance). One might suspect that classes us-
ing the same term end up at different ends of the diagram
and thus most tags would be positioned close to the cen-
ter of the diagram, nowhere near the classes that use their
terms. Kuhn et al. [2008] however found indications that
classes with similar vocabulary have indeed structural con-
nections, if the developer uses reasonable naming conven-
tions for identifiers (a prerequisite for Code Gestalt). So we

5.1 Design 83

are confident that in most cases tags are positioned close to
their referencing types, since the types are likely part of a
cluster.

Our proof of concept (in section 5.3) strengthens the in- Tags were rarely
positioned
inappropriately in the
prototype.

tuition that problematic situations like the one described
above are rare. We reserved the possibility to use cluster-
ing techniques to ‘split’ tags if necessary.

Another anticipated problem is the overlap of tags with We resolved
overlaps between
tags manually.

similar meaning and use. In the Silverlight prototype we
had no trouble dealing with it, since we created the tag
overlay manually and could resolve overlaps easily. Still,
we would have to deal with this problem in an actual ap-
plication. Our solution is a sweep line algorithm that is pre-
sented in section 6.2.5.

Our initial visualization used two different colors for tags, Orange marks
introduced terms,
blue reused terms.

based on the distinction of introduced terms (orange) and
terms reused from other sources (blue). Introduced terms
are those that can not be found in the source code the cur-
rent type is structurally dependent on (e.g. term introduced
by the framework or a parent type). This distinction was
adopted from Cultivate’s term dependency and term cloud
views (see section 2.2.2).

Interaction

The tag overlay is a semi-static visualization, meaning its The position of tags
is computed from the
position of types.

layout cannot be edited directly, e.g., by dragging and drop-
ping tags. This would compromise the usefulness of tag
positions as metric for code vocabulary similarity. Instead,
the user may rearrange the underlying class diagram, thus
shifting the center of gravity for related tags and hence in-
directly rearrange them.

The primary interaction technique is a highlighting func- The user can quickly
create heat maps
from terms...

tion, similar to the filters in the paper prototype. The user
may click any tag in order to display a highlight of classes
that use its term in their source code. The more intense
the highlight, the more frequent the term is in the source
code of the class. With this heat map the user may quickly

84 5 Silverlight prototype

identify the classes that implement key features for a given
concept (compare the thematic heat map concept in section
4.1.1). E.g., clicking a tag with the term ‘undo’ will probably
highlight those classes that allow an application to revert
user actions.

Likewise, the user may select classes to highlight tags. In... and types to find
diagram areas of
interest.

this case, the intensity of the highlight represents the term
frequency according to the ‘local’ tag cloud of the selected
class. We expect this feature to help a user identify rela-
tions to other parts of the diagram, not made explicit by
structural relations in the source code of the project (e.g., re-
lations that exist in the framework and are not in the scope
of the diagram).

However, the position of a highlighted tag does not con-The tag overlay is a
highly transient
interactive medium.

vey much information about a relation between the selected
class and another. Also, the highlight is highly transient,
since it depends on the current selection and we only al-
low one highlight to be shown at any given time. In ad-
dition, the optional overlay will eventually be toggled off,
so that the user may continue working with the class dia-
gram without the clutter induced by the tag cloud. These
are some reasons that led to our second augmentation of
class diagrams: the thematic relation.

5.1.2 Thematic relation

The thematic relation is a new relation for class diagramsThematic relations
extend class
diagrams to indicate
that types use a
common term.

and a supplement to the tag overlay as it is presented in the
previous section. Thematic relations replace the grouping
feature of the paper prototype (see section 4.2.5). Thematic
relations are undirected hyperedges between classes using
the same term in the identifiers of their source code. They
are visualized as geometric shape, connecting all relevant
classes with the relevant tag.

5.1 Design 85

Visualization

Figure 5.2 shows our first sketch of thematic relations. We The relation visually
links types and tags.thought of thematic relations as landmarks, with which

users highlight important concepts and themes and where
these are implemented in the code base. The thematic rela-
tion is made up of a tag in the center, representing a them
or concept, and connection lines to all types that use the
corresponding term.

Figure 5.2: The first rough concept drawing of thematic re-
lations. Boxes represent classes, circles tags.

86 5 Silverlight prototype

Interaction

Thematic relations can be created from the tag overlay byTags are converted
into thematic
relations.

pinning a tag. By clicking the tag, it is converted into a the-
matic relation and added to the persistent elements in the
diagram. Thus, the thematic relation does not disappear,
when the tag overlay is deactivated. When the user identi-
fies a tag that represents an important concept, she can pin
it to be shown alongside the classes in the diagram.

Once pinned, the tag becomes the widget to control the ap-The user can
manually position
pinned tags.

pearance of the thematic relation. Unlike the tags of the tag
overlay, pinned tags can be moved and rearranged by the
user to resolve overlaps with other diagram elements and
allow for manual correction, in case the automatic arrange-
ment creates a wrong emphasis on less important types.

We also wanted to allow the user to edit the relation further,Fonts and colors are
customizable. by making several properties editable. Finally, we decided

to provide an interface for color and font customization.

5.1.3 Class diagram

Since the layout and interaction techniques used for theWe kept the design
of type box widgets
from the paper
prototype.

class diagram in the paper prototype were well received,
the Silverlight prototype used an almost identical visual-
ization and interaction scheme. One addition was a small
tag cloud at the bottom of each type widget, displaying the
ten most important terms used in the identifiers of the cor-
responding source code. This was meant to provide a de-
veloper with a very condensed abstract of the themes and
concepts dealt with in each class.

5.2 Implementation 87

5.2 Implementation

Our prototype was created using the SketchFlow prototyp- We used Sketchflow,
Clutivate and Relo to
create a prototype.

ing framework of the Silverlight authoring tool Expression
Blend 34. We used the edu.cmu.hcii.paint code base
from Ko et al. [2006] and created a class diagram using Relo.
For tag metrics we used the term cloud view from Culti-
vate.

The prototype consists of three animations and one interac- The prototype has
four mock-up
screens.

tive mock-up of the tag overlay:

• Create a new diagram (animation)

• Expand an existing diagram (animation)

• Filtering using the tag overlay (interactive)

• Creating and customizing a thematic relation (anima-
tion)

The following sections will focus on these individual parts
of the prototype.

5.2.1 Creating a new diagram

The first animation of the prototype shows, how the user The user creates a
diagram with
drag-and-drop.

can create a new diagram (figure 5.3). We showcase the
drag-and-drop interface that was missed by our testers in
the paper prototype.

The user drags-and-drops a file from the project explorer The editor creates a
type box from a
dropped source file.

of the IDE to an empty Code Gestalt editor window. A
minimal widget with a header (including package and type
names) and a tag cloud are generated (1).

Instead of a list of members, only a button ‘+’ with a label ‘8 Members are hidden
by default to prevent
clutter.

methods’ is shown to prevent visual clutter. By clicking the
button the widget expands to show a list of all methods,

4http://www.microsoft.com/expression/products/blend_overview.aspx

http://www.microsoft.com/expression/products/blend_overview.aspx
http://www.microsoft.com/expression/products/blend_overview.aspx

88 5 Silverlight prototype

Figure 5.3: The minimal type widget (1) is expanded to show all methods (2). The
user has selected four methods to be added to the SV and collapses the list again to
show only the selected ones (3).

from which the user selects those she wants to add to the
visualization (2).

By clicking outside the widget, the list collapses to onlyThe user can add
members using
standard
interactions.

those entries chosen by the user (3). The button label
changes accordingly to ‘4 methods’, since only four of eight
methods remain hidden.

The complete interface is shown in figure 5.4. We use a veryThe IDE in our
mock-up is highly
abstracted.

simple layout of a left sidebar listing all files in the project
and a large area on the right shared by Code Gestalt and
source code editors.

5.2.2 Expanding an existing diagram

The second animation shows, how the user is offeredDiagrams are
expanded using
context sensitive live
previews.

context sensitive options to expand an existing dia-
gram. Figure 5.5 illustrates, how the current input
focus toggles live previews of related entities. The user
has selected the method constructionBeginning,
which is an implementation of the same method in
the interface PaintObjectConstructorListerner.
Moreover, the method calls another method, namely
setTemporalObject of PaintCanvas. Hence, the two
methods and a minimal widget of their types are displayed
as semi-transparent live previews, while the method is
selected.

5.2 Implementation 89

Figure 5.4: The user has created a new diagram by drag-
ging ‘PaintWindow’ to the editor and adding four methods
to the class.

Figure 5.5: Context sensitive expansion options for
constructionBeginning. An implemented method is
shown above (constructionBeginning) and a called
method on the right (setTemporalObject).

90 5 Silverlight prototype

Note that the new elements are placed on different axis: In-Method calls are
shown horizontally,
inheritance vertically.

heritance/implementation relations are shown on a verti-
cal, the call relations on a horizontal axis. The user may
click the previews to make them persistent in the diagram,
thus expanding it. In the animation, the user chooses to
make PaintCanvas persistent by clicking the ghosted pre-
view. This technique is almost identical to the one shown
in the paper prototype (see section 4.2).

5.2.3 Tag overlay

The center piece of the prototype is the interactive mock-upUsing Cultivate and
Relo we created an
interactive mock-up
of the tag overlay.

of the tag overlay. We created a class diagram with Relo and
used it as basis for the visualization. For each of the types
in the diagram we generated a tag cloud with Cultivate’s
cloud view and used these to create an approximation of
what the overlay would look like for the 13 most frequent
terms. The result is shown in figure 5.6.

The prototype allows the user to perform highlighting ofThe mock-up allows
for interactive
highlighting.

types by selecting tags and vice versa as described in sec-
tion 5.1.1.

5.2.4 Thematic relations

Manually drawn Bézier splines represent thematic relationsBézier splines
represent thematic
relations.

in our prototype. The shapes connect all types using a term
with the corresponding tag. The different weights assigned
to the term by individual types is represented by the diam-
eter of the shape of the thematic relation around each type
(see figure 5.7).

We allow for tag font and relation color customization.Colors and fonts are
changed from a
radial menu.

Figure 5.8 shows a radial context menu that is displayed
around a pinned tag, when the user clicks it. A half-circle
in the upper half showcases a number of different fonts,
which may be used to customize the appearance of the tag.
At the bottom a color palette is displayed. The user may
select a color from this palette to change the fill color of the

5.2 Implementation 91

Figure 5.6: Our mock-up of the tag overlay. The user has selected ‘paint’, which
is used by PaintObject, PencilPaint, and PaintCanvas. The orange (as op-
posed to the blue) highlight indicates that the term is introduced by PaintObject
and PencilPaint.

Bézier geometry. This customization allows users to cre-
ate easily recognizable landmarks and emphasize impor-
tant relations in the SV.

The Bézier geometry creates a visual landmark that allows Landmarks help
users to orient in the
diagram.

for quick orientation in the otherwise monotonous dia-
gram. The visualization was streamlined and simplified for
real-time rendering in the final Eclipse implementation (see
section 6.2.6), but the concept remained unchanged.

The Silverlight prototype contains an animation that shows An animation shows
the customization of
a relation.

the user interaction of selecting three tags and pinning
them to the diagram. The user resolves an overlap manu-
ally, with the shape adjusting accordingly. Finally, she uses

92 5 Silverlight prototype

Figure 5.7: Three thematic relations in the Silverlight pro-
totype: ‘temporary’, ‘paint’ and ‘thickness’.

Figure 5.8: Customization options for a thematic relation,
here ‘temporary’. The original tag widget is shown in the
center, a selection of different font styles can be chosen and
the color may be modified using the bottom palette.

the radial menu to change the color of the thematic relation
and the font of the tag (see section 5.1.2)

5.3 Evaluation 93

5.3 Evaluation

The prototype was made available online and a link was The prototype was
available online, but
we got little
response.

distributed through mailing lists at the RWTH Aachen Uni-
versity and the University of Bonn on March 17th, 2010. The
build-in features of the SketchFlow player allow for annota-
tions and free-hand drawings in the prototype. Users were
encouraged to leave such feedback. We offered a download
key of the video game World of Goo5 to be given to a random
participant as incentive. However, we only got feedback
from one user in the time until March 31st, 2010.

To gather more feedback on the prototype, we evaluated it We gathered
feedback from other
CS students and
researchers.

with one research assistant and one student assistant (who
were both not involved with the project) during think-
aloud sessions. Also, we presented the prototype at the
Institut für Informatik III of the University of Bonn and gath-
ered feedback from an open discussion.

Overall, the prototype was well received. Some shortcom- Testers had minor
complaints about the
presentation.

ings were mentioned by testers that were due to the limi-
tations of the prototype. E.g. the ‘+’ button was not iden-
tifiable as such, since it was realized with a label. Another
common problem was the high speed of the animations and
sparse explanation. This is something we will keep in mind
for future prototypes of the kind. Also, the class diagram
created by Relo was perceived as cluttered and unattrac-
tive.

Apart from such problems that are clearly traceable to the Testers were irritated
by tag colors. The
tag overlay and
thematic relations
were well received.

limited capabilities of an animation prototype, all testers
not familiar with Cultivate had problems with the concept
of the two different tag and highlight colors. Even after
explaining the meaning, this was not conceived as intu-
itive. However, the newly introduced concepts of filtering
the code base visually using the tag overlay and the intro-
duction of thematic relations were received positively by all
reviewers.

5http://worldofgoo.com/

http://worldofgoo.com/

94 5 Silverlight prototype

Hence, we decided to concentrate our further efforts on cre-
ating a working visualization tool to evaluate Code Gestalt
in practice.

95

Chapter 6

Eclipse implementation

“Borgus frat! ‘Let’s see what she’s got,’ said the
captain. And then we found out, didn’t we?”

—Montgomery Scott about the new starship
Enterprise (Star Trek V: The Final Frontier)

After evaluating the Silverlight prototype, we were con- We used the
Silverlight prototype
as design for an
Eclipse plug-in.

fident that our design was mature enough to be imple-
mented as actual SV tool. The centerpieces are the tag over-
lay and and the thematic relations. Both these new concepts
are derived from our work on the online survey and the pa-
per prototype.

We will shortly revisit design changes between the Sil- We present design,
implementation and
evaluation of the
plug-in.

verlight prototype and our final Eclipse plug-in in sec-
tion 6.1. The technical aspects and practical considerations
needed to implement Code Gestalt are discussed in section
6.2. Finally, section 6.3 presents our two-step evaluation of
Code Gestalt.

6.1 Design

The design of Code Gestalt was already well established We unified the color
of tags.as augmented class diagram editor by both the paper and

Silverlight prototypes (see chapters 4 and 5). The Eclipse

96 6 Eclipse implementation

implementation follows the Silverlight prototype closely,
since it was intended to be a working tool to evaluate the
validity of both the tag overlay and the thematic relations.
However, a change by design is the removal of differently
colored tags, since this metric was not well perceived by the
testers.

We needed to simplify and alter some visuals and interac-Some features from
the Silverlight
prototype had to be
adaptedx for Eclipse.

tions from the Silverlight prototype to comply with the UI
guidelines of Eclipse and work around some framework
limitations. We will discuss these changes and our solu-
tions in detail in the following section.

From the paper prototype we kept the concept that dia-Diagrams behave like
any other project file. grams follow a default document life cycle of open, edit, and

save. Also, the diagrams should integrate with the IDE
project (and file) structure, so they are compatible with ver-
sion control systems and are available to all project devel-
opers.

6.2 Implementation

6.2.1 Framework

Code Gestalt was implemented as a plug-in for the cross-Code Gestalt is an
Eclipse plug-in to
visualize Java code.

platform IDE Eclipse1. We decided on Java as the program-
ming language to create visualizations for, since among the
numerous languages supported by Eclipse, the tool set for
Java2 is the best documented and most comprehensive one
(Eclipse itself is mostly written in Java [Clayberg and Rubel,
2008]).

There are two principal options to extend the Eclipse IDECode Gestalt adds a
new file type and
editor to the IDE.

with windowed areas suitable for displaying large visuals:
views and editors. While views are meant to display com-
plementary information (call hierarchies, errors, properties,
etc.), editors are reserved for modifying resources that fol-
low the document life cycle. Hence, Code Gestalt is imple-

1http://www.eclipse.org/
2http://www.oracle.com/us/technologies/java/index.html

http://www.eclipse.org/
http://www.oracle.com/us/technologies/java/index.html

6.2 Implementation 97

mented as an editor, while most other visualizations from
section 2 are implemented as views (if they are available as
Eclipse plug-in).

The graph-based nature of Code Gestalt made it an easy We use the GEF as
application
framework.

choice to use the Graphical Editing Framework3 (GEF) to im-
plement our editor. GEF enforces the separation of model,
view (called Figure), and controller (called EditPart). The
framework is specialized on interactions for graph editors
and the representation of (nested) model data. It also al-
lows for the easy implementation of commands that sup-
port undo.

We use the Java Development Toolkit4 (JDK) to extract a JDK provides us with
the Java model,
Cultivate with the tag
metrics.

model from the Java source code and Cultivate to gener-
ate tag metrics (used for tag clouds, the tag overlay and
thematic relations).

6.2.2 Other resources

We loosely followed Moore et al. [2004] in the imple- The implementation
was guided using
external references.

mentation of Code Gestalt, but also used several articles
and tutorials, most prominently the shape diagram edi-
tor5, UML diagram6, and drag-and-drop7 Eclipse Corner
articles. For implementation details we also referred to
the open source code bases of Relo, Cultivate, and the
examples provided by the GEF project in the package
org.eclipse.gef.examples. Very late in the develop-
ment process we also used Clayberg and Rubel [2008] for
reference.

Although Code Gestalt’s basic graph editing capabilities Code Gestalt does
not use code from
Relo.

very closely resemble those of Relo, Code Gestalt uses a dis-
crete code base. Our implementations of model extraction
from Java code, interaction design, and rendering were de-

3http://www.eclipse.org/gef
4http://www.eclipse.org/jdt/
5http://www.eclipse.org/articles/Article-GEF-diagram-

editor/shape.html
6http://www.eclipse.org/articles/Article-GEF-Draw2d/GEF-

Draw2d.html
7http://www.eclipse.org/articles/Article-GEF-dnd/GEF-dnd.html

http://www.eclipse.org/gef
http://www.eclipse.org/jdt/
http://www.eclipse.org/articles/Article-GEF-diagram-editor/shape.html
http://www.eclipse.org/articles/Article-GEF-diagram-editor/shape.html
http://www.eclipse.org/articles/Article-GEF-Draw2d/GEF-Draw2d.html
http://www.eclipse.org/articles/Article-GEF-dnd/GEF-dnd.html

98 6 Eclipse implementation

veloped from scratch. The biggest commonality with Relo
on the source code level is the use of the GEF.

6.2.3 Eclipse integration

One of the development goals was to seamlessly integrateCode Gestalt follows
the Eclipse User
Interface Guidelines.

Code Gestalt with the target IDE. Our intend is to mini-
mize teething troubles caused by the introduction of users
to a new and unfamiliar user interface. Figure 6.1 shows
how Code Gestalt integrates with the Eclipse workbench.
We tried to adhere to the Eclipse User Interface Guidelines8

as much as possible. Accordingly, the icons introduced by
Code Gestalt to the Eclipse IDE were designed with Ex-
pression Design9 and Paint.NET10 using the guidelines on UI
graphics.

We did not implement syntax highlighting in the Java Edi-Code highlighting in
Java editors is not
changed by Code
Gestalt.

tor based on thematic relation colors as we did with group
colors in the paper prototype. This decision is based on
the mixed feedback we got from the evaluation of the
paper prototype (see section 4.3.1). A second reason to
not implement the feature was the open question of how
to achieve consistent highlighting of code, when multiple
Code Gestalt diagrams were opened or types were part of
multiple thematic relations.

Diagram creation

Code Gestalt is made available to the user through the newCode Gestalt
diagrams are
provided through
default Eclipse
wizards.

file type Code Gestalt Diagram that integrates with all default
mechanisms in Eclipse to create new files. Since users asked
for this in the paper prototype (see section 4.3), we also
added a button for access to the New Code Gestalt Diagram
wizard (all files in Eclipse are created through so called wiz-
ards). Figure 6.2 shows the interface to create a new Code
Gestalt diagram file. The layout follows other Eclipse wiz-
ard very closely to achieve consistency in the user interface.

8http://wiki.eclipse.org/User_Interface_Guidelines
9http://www.microsoft.com/expression/products/Design_Overview.aspx

10http://www.getpaint.net/

http://wiki.eclipse.org/User_Interface_Guidelines
http://www.microsoft.com/expression/products/Design_Overview.aspx
http://www.microsoft.com/expression/products/Design_Overview.aspx
http://www.getpaint.net/

6.2 Implementation 99

Fi
gu

re
6.

1:
Th

e
ID

E
Ec

lip
se

w
it

h
th

e
C

od
e

G
es

ta
lt

Pl
ug

in
.T

he
sc

re
en

sh
ot

sh
ow

s
an

op
en

C
od

e
G

es
ta

lt
ed

it
or

in
th

e
ce

nt
er

of
th

e
w

or
ks

pa
ce

.C
od

e
G

es
ta

lt
in

te
gr

at
es

w
it

h
th

e
to

ol
ba

r
(s

ix
th

ic
on

fr
om

th
e

le
ft

),
th

e
pr

oj
ec

t(
fil

es
P
r
e
v
i
e
w
D
r
a
w
i
n
g
.
c
g
t

an
d
R
e
n
d
e
r
i
n
g
P
i
p
e
l
i
n
e
.
c
g
t

in
Pa

ck
ag

e
Br

ow
se

r)
an

d
th

e
O

ut
lin

e
(o

n
th

e
ri

gh
t)

.

100 6 Eclipse implementation

Figure 6.2: The dialog to create a new Code Gestalt dia-
gram.

The diagrams created in this manner are empty and need toUsers can create
diagrams from
selected Java
entities.

be populated by the user by dragging-and-dropping code
entities from a view. An alternative is the creation of a new
diagram from the context menu of one or more selected
Java entities (see figure 6.3). This feature was requested by
a tester, when tracking down bugs in an early build of the
plug-in. We provide different levels of pre-population of
the generated type boxes:

• Collapsed Types: Only the selected elements will be in-
serted in the new diagram. I.e., no members other

6.2 Implementation 101

than those explicitly selected are added to the type
member lists.

• Expand Public Members: All elements selected and all
public members of selected types will be inserted in
the new diagram.

• Expand All Members: All members from all selected
types will be inserted in the new diagram.

Figure 6.3: The granularity options for creating a new dia-
gram from a selection, e.g., in the package explorer.

Editor

The Code Gestalt editor follows the open, edit, and save Users can arrange
Code Gestalt editors
freely on their
workspace.

document life cycle. It can be deployed anywhere, other
Eclipse editors can. Multiple instances for multiple docu-
ments can be open simultaneously. This allows for a mul-
titude of possible workspace setups. E.g., tabbed editors,
side-by-side of Java code and Code Gestalt diagram, or
even multi-monitor configurations.

The editor introduces a very limited set of additional UI Code Gestalt adds
only few UI elements
to Eclipse.

elements to the Eclipse tool bar:

• a button to toggle the tag overlay

• undo and redo buttons

• a drop-down list for zooming

102 6 Eclipse implementation

The same set of commands is also available through theDifferent locations in
the UI provide
access to editor
commands.

main menu. The context menu of the editor supports undo
and redo. All user actions in Code Gestalt are executed
through GEF commands. Our implementation fully sup-
ports undo and redo.

Complementary Eclipse views

Like many other Eclipse editors Code Gestalt supports theCode Gestalt
supports Eclipse’s
outline and
properties views.

use of two standard views, the outline and the properties
views. The outline contains a hierarchical view of the con-
tents in the current selection. In the case of Code Gestalt all
types and members are shown which are visible in the dia-
gram (see figure 6.1). The properties view allows for man-
ual editing of diagram elements, usually exact positioning
as in figure 6.4.

Figure 6.4: Properties view for a selected type

Drag-and-drop

Code Gestalt supports drag-and-drop of Java entities fromBy popular demand
we implemented
drag-and-drop as
interaction to edit
diagrams.

any Eclipse view. When a selection of elements is dropped
to the diagram, Code Gestalt automatically creates a type
box for the Java entities. However, the Code Gestalt editor
does not accept drag-and-drop of source code or diagram
elements from other Code Gestalt editors. This is a limita-
tion that will be removed in future versions (compare sec-
tion 6.3.4).

6.2 Implementation 103

Code editors

The user can always access the source code of any visual- Double-clicking
diagram elements
opens a code editor.

ized Java entity by double-clicking it. The respective code
is opened in an Eclipse Java editor and can be reviewed and
edited as usual.

6.2.4 Class diagram editor

Type boxes

The Code Gestalt editor allows users to create class dia- Boxes in the diagram
represent types.grams. We represent classes as boxes that contain a list of

members and a tag cloud displaying the ten most frequent
terms (see figure 6.5). The tag cloud is sorted alphabetically,
since this layout is the quickest to parse [Halvey and Keane,
2007].

Which types and which members are visible is completely The user controls the
scope of the
diagram.

up to the user to decide. Based on the results from the on-
line survey, we let users stay in control over the scope and
level of detail. This way, Code Gestalt diagrams are less
prone to clutter and the diagram designer can keep the vi-
sualization focused.

Therefore, users add types to the diagram by simple drag- Members can be
added automatically
using several
presets.

and-drop from any other Eclipse view, such as the package
explorer. Methods can be added using one of several inter-
actions:

1. Drag-and-drop: If the type of the member is not in-
cluded in the diagram, it will be added with only
the dragged member(s) visible. If the type is already
present, the user must drop the member on that type.

2. Contextual buttons: When a type is selected, two but-
tons in the top right corner of the box allow for
quickly expanding the type to show all members or
collapsing it to show none (see figure 6.5).

104 6 Eclipse implementation

Figure 6.5: The representation of a type in Code Gestalt. In
the header we have the type name and package with their
default Eclipse icons. In this case the class PaintCanvas
from the package edu.cmu.hcii.paint contains warn-
ings as indicated by the yellow sign. In the top right we
present the user with contextual buttons for closing, ex-
panding and collapsing the type box. The header is fol-
lowed by a list of members. Default Eclipse icons identify
the nature of the members. At the bottom we display a tag
cloud of the ten most frequent terms. A contextual resize
handle is shown in the bottom right corner.

3. Context menu presets: To assist users in quickly filter-
ing the list of available members, we provide six con-
venience presets via the context menu (see figures 6.6
and 6.7).

Inheritance and call relations

Code Gestalt supports two structural relation types,Call relations pass
horizontally,
inheritance relations
vertically.

namely inheritance and call relations. As in previous proto-
types, inheritance relations are connecting top and bottom
edges of type boxes, call relations the left and right edges of
methods. Similary to types and members, we designed vi-

6.2 Implementation 105

Figure 6.6: Options in the context menu of types for adding
members.

Figure 6.7: Options in the context menu of types for remov-
ing members.

sualization and interaction techniques to both prevent clut-
ter and support the user in quickly creating and finding rel-
evant entities at the same time.

Thus, we visualize relations in two steps. When the user se- Code Gestalt
searches for relations
and displays live
previews of them.

lects a diagram element, Code Gestalt automatically parses
the inheritance or call hierarchy (depending on the selec-
tion being a type or method) and displays any relation to
other diagram elements as gray arrows (see figure 6.8). We
call these faint and transient objects live previews.

The preview relations are visible as long as a connected el- Users decide which
relations to add to
the persistent
diagram by clicking
previews.

ement has a selection focus. This way, the user is informed
about the presence of a relation by Code Gestalt. If the user
feels a relation to be important for the aspect of the software
he wants to visualize, he can make the relations persistent
by clicking them. Also, all incoming or outgoing relations

106 6 Eclipse implementation

Figure 6.8: The selected type PencilPaint extends
PaintObject and is extended by EraserPaint and
LinePaint. The user can click any individual relation to
make it persistent. The two arrow symbols in the top and
bottom center of the PencilPaint type box are contextual
buttons that allow the user to make all incoming or outgo-
ing preview relations persistent.

can be made permanent at once by clicking contextual an-
chor buttons. Persistent relations are rendered black and
stay visible, regardless of the current selection (see figure
6.9).

Due to time constraints we were unable to implement liveLive previews only
work for relations to
existing diagram
elements.

previews for types and methods which are not already in-
cluded in the diagram, as shown in the third use case of the
paper prototype (section 4.2.3) and the second animation
of the Silverlight prototype (section 5.2.2). When prioritiz-
ing features, we felt that to our research goals the preview
technique was secondary to the tag overlay and thematic
relations and could be studied, at least superficially, using
the implementation for relations presented in this section.

6.2 Implementation 107

Figure 6.9: Preview and persistent call relations. The method define
in PaintObject is selected, which is called by all visible methods in
PaintObjectConstructor.

6.2.5 Tag overlay

The tag overlay can be toggled by the user with a dedicated The tag overlay
fades out the class
diagram and displays
a tag cloud in front.

tool bar button. When the overlay is active, the terms from
the source code identifiers are shown in front of the faded
class diagram (figure 6.10). As presented in section 5.1.1,
the tags are spatially arranged, so that they are positioned
near those types in which the corresponding terms are most
frequently used.

The implementation of the tag overlay is based on tag met- Cultivate provides
the tag metrics.rics obtained from Cultivate. We calculate a tag cloud for

each type, mapping each term to its occurrence frequency.
We use this information to determine the ‘center of gravity’
and font-size for the tags in the overlay.

Provided, that a consistent and reasonable naming scheme Given a consistent
naming scheme, the
tag overlay provides
a thematic map.

was used in the creation of the source code, the tag over-
lay is a thematic map. The position of terms hint at the
distribution of responsibilities, concepts and themes in the
source code. While the class diagram uses syntactical anal-
ysis to visualize structural features of the source code, the
tag overlay uses vocabulary analysis to allow for a more
semantical approach to the code base.

108 6 Eclipse implementation

Figure 6.10: The tag overlay for the four types EraserPaint, PaintCanvas,
PaintObject, and PaintWindow. thickness is the most frequent term.

Sweepline algorithm

Since multiple terms tend to appear in the same types inMultiple tags might
overlap. similar frequency, it is quite probable that positioning tags

around their center of gravity (using the term frequency as-
signed by the individual types as weights) will cause over-
laps.

We resolve this problem using a custom sweepline algo-We resolve overlaps
with a sweepline
algorithm.

rithm. The algorithm groups tags that directly or indirectly
overlap, and ‘stacks’ them on top of each other around a
common center (figure 6.11). Thus, tags are no longer posi-
tioned exactly at the center of gravity in favor of readability.

This solution of course has its limitations, since two stacksAn ideal solution is
not efficiently
computable.

of previously non-overlapping tags might overlap after the
transformations of the algorithm are applied to the tags.
However, the solution for this problem is known to be NP-
hard [Marks and Shieber, 1991]. In practice our algorithm
resolves overlaps to a degree, where there is little to no tag
overlapping, so we consider this solution an acceptable and
efficient compromise.

6.2 Implementation 109

Figure 6.11: The sweepline algorithm detects tag overlaps
(left) and resolves them by stacking the tags on top of each
other around the common center (right).

Highlighting

As in the Silverlight prototype, we implemented a two-way Users can create
heat map highlights
for tags and types.

highlighting function in Code Gestalt. Through this feature
we allow for visual searches. The user may select a tag in
order to visualize the term frequency in the types of the
diagram (figure 6.12), or select a type to visualize the term
frequencies for that type (figure 6.13). Code Gestalt creates
a heat map of relates diagram and tag overlay elements.
The intensity of the highlight color is proportional to the
respective frequency.

6.2.6 Thematic relations

The user creates thematic relations from tags in the tag Tags are converted
into thematic
relations using a pin
button.

overlay. Since in GEF single-clicking is reserved for select-
ing items, we chose another way to convert tags to thematic
relations: a pin-shaped button. Hence, we speak of pinning
a tag to the diagram.

A pinned tag becomes the center of the created thematic Users may rearrange
pinned tags.relation (see figure 6.14). Its position is now editable by the

user and is no longer changed automatically, when other
parts of the diagram are rearranged. This way, we want to
keep the SV predictable and controllable for the user. Also,

110 6 Eclipse implementation

Figure 6.12: By selecting the tag ‘thickness’, the term frequencies are visualized as
highlight in the type boxes.

Figure 6.13: The user has selected EraserPaint and highlights tags based on the
term frequency in its identifiers.

6.2 Implementation 111

the user can rearrange tags to resolve overlaps and change
the emphasis on different parts of the diagram.

Figure 6.14: The thematic relation can be manipulated us-
ing contextual controls. The tag of the relation can be un-
pinned, removing the relation from the diagram (1), the the-
matic relation can be recolored (2), and the font of the tag
may be changed (3).

Due to limitations in the GEF framework and real-time ren- We replaced Bézier
splines with cones of
varying opacity.

dering requirements, the geometry of the thematic relations
is a lot simpler than in the Silverlight prototype. Instead
of Bézier splines, we use cones to connect types with the
center tag. We do not visualize different term frequencies
by the diameter of the connection geometry, but rather the
opacity of the cone segments. So cones connecting types
that have a high term frequency are more intense than cone
segments to types with a lower term frequency.

Figure 6.14 shows the context sensitive controls that replace Contextual buttons
allow for color and
font customization.

the radial menu from the Silverlight prototype. We found
this interface to be more consistent with the way we allow
interaction with type boxes and notes. Next to a selected
tag, we display three contextual buttons. The pin allows the
user to unpin the tag from the diagram, which also removes
the thematic relation. The two other buttons open dialogs
to pick the color of the thematic relation and the font for the
tag.

Note, that the types connected by a thematic relation form Thematic relations
constitute
auto-updated groups.

a group, very much like the groups in the paper prototype
(see section 4.2.5). However, groups in the paper proto-
type were created independent from filters (although filters

112 6 Eclipse implementation

could help users to identify types as potential group mem-
bers). Thus, it was not possible to create groups that would
automatically update, when the source code changed or a
new type was added. The thematic relation however is up-
dated automatically. E.g., the opacity of cone segments is
updated, when the source code changes. Similarly, newly
added types that contain matching terms are automatically
connected to existing thematic relations.

6.2.7 Notes

To allow users to freely annotate diagrams Code GestaltUsers can create
notes to annotate
diagrams.

provides notes. These are simple boxes that a user may may
type into (see figure 6.15). New notes can be created from
the editor context menu. The note widget only supports
plain text.

Figure 6.15: Notes allow users to annotate Code Gestalt di-
agrams

6.3 Evaluation

We evaluated Code Gestalt in late 2010 at the RWTH AachenTesters were
members of the CS
departments from
two universities.

University and the University of Bonn by means of a user
study. In the following we will present the goals, design,
and results of that study.

6.3 Evaluation 113

6.3.1 Goals

Let us revisit the original design goals from section 1.1: We defined four
primary goals and
requirements for
Code Gestalt.1. Use semi-automation features (live previews, drag-

and-drop diagram creation, etc.) to support users in
creating diagrams and prevent the creation of invalid
diagrams that do not match a given code base, but let
users stay in control of the diagram scope.

2. Employ a new visualization metaphor that allows the
user to harness the human intelligence present in the
source code (through code vocabulary analysis) and
to better organize the diagram.

3. Achieve good usability and fast diagram creation to
compete with pen and paper techniques.

4. The created SVs should be meaningful for any pro-
grammer, not only Code Gestalt users, so they can be
used for inter-developer communication and project
documentation.

To evaluate these goals, we decided to perform a two-step We evaluate Code
Gestalt with a user
study and a follow-up
online survey.

user study. In the first step, 16 users were asked, to com-
plete four code visualization tasks using pen and paper and
Code Gestalt. The competitiveness of Code Gestalt was
quantitatively evaluated by measuring completion rates,
completion time, and errors made by the users. To asses
the usability of Code Gestalt we used a standardized Sys-
tem Usability Scale (SUS) questionnaire from Brooke [1996]
(Goal 3).

Goal 1 is partially enforced by our implementation of Code The study helps us to
evaluate Code
Gestalt as a system.

Gestalt and we asked testers to evaluate some related fea-
tures using a questionnaire. Similarly, we asked testers to
assess the features related to the tag overlay and thematic
relations to evaluate point 2.

The diagrams created by the testers were then used for a The survey helps us
to evaluate Code
Gestalt as an SV.

second step of the evaluation. We designed two online sur-
veys, in which testers were asked to compare pen and pa-
per sketches against Code Gestalt diagrams in several cate-

114 6 Eclipse implementation

gories. These results give us the means to evaluate goals 2
and 4.

6.3.2 Test design

Each test session was scheduled to require at most 90 min-Testers performed
four tasks in 10
minutes each.

utes. After discussing the test situation and explaining the
informed consent form (see appendix C.1.1), we gave the
testers a short introduction to the Eclipse IDE and the Code
Gestalt plug-in. The testers were given a 10 minutes train-
ing period to get some hands-on experience with the IDE
and SV tool. The testers were allowed and encouraged to
study the source code of the project to be visualized in the
next phase of the test.

The main part of the user study was a series ofCode Gestalt was
compared to pen and
paper sketching.

four test tasks that asked the participants to under-
stand and visualize different aspects and features of the
edu.cmu.hcii.paint package11 (see appendix C.1.2).
Two tasks were to be performed with pen and paper
(sketching) and two with Code Gestalt each. For sketching,
we provided the testers with blank Din A4 paper sheets, a
black pen (0.5 mm tip) and four highlighter pens (yellow,
orange, magenta, and green; 2–5 mm tip). Both the order
of tasks and tools was counterbalanced to prevent learning
effects. We allowed participants to use the full feature set
of Eclipse to explore the code. They were also allowed to
use any number of sheets or Code Gestalt diagrams to note
intermediate results, but were asked to turn in one sheet or
diagram file at the end of each test task.

The testers had 10 minutes to complete each task after read-After 10 minutes
testers had to turn in
one task solution.

ing the description and clearing any questions with the
principal investigator. The testers could indicate that they
finished a task early, otherwise they were interrupted after
10 minutes and asked, if they considered the diagram to be
complete or not.

11We use a modified source from Ko et al. [2006]

6.3 Evaluation 115

The final part of the test session was the completion of a Testers filled out a
complimentary
questionnaire.

survey form, including the SUS questionnaire, questions to
rate existing features and open ended questions, comparing
the Code Gestalt user experience to that of pen and paper.

Two weeks after the start of the first session participants We send participants
a follow-up online
survey 14 days after
principal testing.

were contacted by e-mail to complete one of two surveys.
For each original test task, we selected two pairs of sketches
and Code Gestalt diagrams that had to be compared in four
categories. The pairs were selected, so that no tester had
to review her own solution for any task. Consequentially,
both surveys were send to eight participants each. Both
surveys also included a list of requested features proposed
by the testers during the study that should be rated by the
testers for usefulness.

6.3.3 Results

In the following we present the results from the user study,
the complementary questionnaire and the online survey.

Population

Our 16 testers were recruited from the computer science de- The participants
covered a wide range
of programming and
SV experience.

partments of the RWTH Aachen University and the Uni-
versity of Bonn. Our test population covered a wide range
of different experience levels, from novices with less than a
year of programming practice to Java veterans who worked
with early public versions of the programming language.
For details refer to appendix C.2.1.

Completion rates and completion time

The testers had 10 min to complete each task. When the We found no
significant difference
in the completion
rates of the two
systems.

time was up, the testers were interrupted and asked, if they
had finished the sketch or SV. We tested the null hypothesis
H1: ‘The completion rates for sketching and using Code
Gestalt do not differ.’ The differences between sketching

116 6 Eclipse implementation

and the use of Code Gestalt were not significant according
to Mann-Whitney tests for each of the four tasks. In other
words, we cannot refute the null hypothesis.

We also tested the null hypothesis H2: ‘The completionSketching was
significantly faster for
task #4.

times for sketching and Code Gestalt do not differ.’ For the
comparison of task completion times we only consider the
times recorded for completed test tasks. We detected a sig-
nificant difference between sketching and the use of Code
Gestalt for test task #4, U = 9.00, z = −1.98, p < .05 , with
a large effect of r = −.53, meaning Code Gestalt users re-
quired significantly more time to complete the task. Hence,
we can refute the null hypothesis for task #4. For details
on the tests of completion rates and completion time please
refer to appendix appendix C.2.2.

Threats to validity Time measurement was not preciseThere was some
inaccuracy in time
measurement.

for all test runs, when the principal tester failed to start
the clock. In these cases we used an approximation of the
completion time obtainable from screen recording or notes.
Also, many testers reacted on the time limit and tried very
hard to complete the task in the given time interval. One
tester stated that he felt uncomfortable with the time limit,
but wanted to continue the test nonetheless.

Errors

Our participants created diagrams that were meant to ex-We counted errors in
five categories. plain certain features in the edu.cmu.hcii.paint code

base. For each task we created a list of code entities that
had to be visualized for a diagram to be considered com-
plete. These lists can be found in appendix C.1.4. When a
sketch or diagram was missing an element from a list, we
counted it as error in the respective category. Using the lists
we check for the presence of five types of entities:

• Types

• Attributes

• Methods

6.3 Evaluation 117

• Call relations

• Inheritance relations

Using Mann-Whitney tests we tested the null-hypotheses Code Gestalt
improved
correctness of types
and methods,
sketching
correctness of call
relations.

H3: ‘The error count for sketching and Code Gestalt do
not differ.’ for each of the five categories and each of the
four tasks. We can refute the null hypothesis in four of the
20 tested cases. Code Gestalt lowered error rates for types
highly significantly for task #1, U = 8.0, z = −2.56, p < .01,
and significantly for task #2, U = 9.5, z = −2.41, p < .05.
In both cases we found a large effect with r#1 = −.64
and r#2 = −.60. Likewise, Code Gestalt users made sig-
nificantly fever method errors in task #2, U = 12.0, z =
−2.15, p < .05, again we found a large effect r#2 = −.54.
Finally, sketching produced highly significantly fewer call
relation errors in task #3, U = 6.5, z = −2.92, p < .01, the
effect was large with r#3 = −.73. For details refer to ap-
pendix C.2.3.

Qualitative feedback

We prepared two complementary open ended questions
for testers to report advantages and disadvantages of Code
Gestalt and pen and paper.

Which aspects of Code Gestalt did you like? Did it of-
fer any advantages over pen-and-paper sketches? All
16 participants responded to this question. Seven testers Many participants felt

that working with
Code Gestalt was
faster than pen and
paper. The tag
overlay and thematic
relations helped
them understand the
code.

found Code Gestalt diagrams to be advantageous, because
they were easy to edit and correct. Six users perceived Code
Gestalt to be faster than pen and pager, especially when it
came to copying identifiers and signatures. Also, six testers
stated that at least one of the new features (tag overlay, the-
matic relations, tag cloud) supported them in understand-
ing the code base. An additional tester stated that paper
would not teach a user anything about the code. The result-
ing diagrams were considered to be clearer than sketches
by five participants. Four testers commended the automa-
tion features (live previews). Similarly, the usability was

118 6 Eclipse implementation

highlighted by four participants, with special emphasis on
the drag-and-drop feature. Four users also attested good
IDE integration. Four testers stated that they found the re-
sulting diagram esthetically pleasing. The ability to open a
Java editor displaying the code of a double-clicked diagram
element was positively mentioned by three users. Two par-
ticipants commented on the better legibility of Code Gestalt
diagrams in comparison to handwriting in sketches. Again
two users appreciated the integration of diagrams with the
project.

We also got some individual responses. Very concisely,
these were similarity to UML class diagrams, high infor-
mation density, usefulness of call relations, simplicity, flex-
ibility, interactivity, layout consistency, and WYSIWYG.

Which aspects of Code Gestalt did you dislike? Which
advantages did pen-and-paper sketches offer? We gotSketching offers

more flexibility and
allows for parallelism.

responses from 13 users to this question. Five participants
felt sketching was more flexible than using Code Gestalt,
with two users noting the ability of drawing arbitrary re-
lations on paper. Two testers attributed poor performance
to our test system. Again, two users were missing those re-
lation previews for elements not included in the diagram,
with one additional participant stating that Code Gestalt
was a good add-on, but highly dependable on other Eclipse
views. Two users preferred sketches over Code Gestalt be-
cause of speed benefits, with one tester mentioning the ben-
efits of parallelism, when sketching on paper. The tag cloud
in type boxes was explicitly dismissed by two participants.

A quick overview of other singular responses:Single users gave
feedback on a
multitude of mostly
UI related limitations.

• Code Gestalt diagrams can clutter easily.

• Code Gestalt is an “unintuitive” name.

• Code Gestalt lacks expressiveness.

• Sketches allow the portrayal of objects without source
code backing.

• ‘Remove All But Selected Members’ command is
missing.

6.3 Evaluation 119

• Code Gestalt should automatically add inheritance
relations.

• Annotations in handwriting are faster than Code
Gestalt annotation tool.

• Code Gestalt annotation tool is too simplistic.

• Dragging handle area on type boxes is not always
clear.

• Code Gestalt does not allow for inter-type relations.12

Questionairre

All participants were asked to fill out a survey at the end of Testers filled out a
three-part
questionnaire.

the session. The questionnaire had three parts:

1. 10 questions taken from SUS, complemented by
four questions specially tailored to determine Code
Gestalt’s competitiveness in relation to sketching; an-
swers could be given on a five-point Likert scale
(‘strongly disagree’ to ‘strongly agree’)

2. 16 questions to determine the usefulness of individ-
ual Code Gestalt features; answers could be given on
a five-point Likert scale (‘not useful’ to ‘very useful’)

3. two open ended questions asking the testers to de-
scribe advantages of Code Gestalt and sketching over
the other

The complete questionnaire form can be found in appendix
C.1.3. We map the answers from the five-point Likert
scale to a normalized [−1..1] range, where −1 represents
‘strongly disagree’ or ‘not useful’, 1 ‘strongly agree’ or ‘very
useful’, and 0 a neutral answer.

12We do not know how the tester arrived at this conclusion, since
Code Gestalt allows and actively searches for call relations within types
and shows previews of them.

120 6 Eclipse implementation

System Usability Scale From the 16 testers Code GestaltAccording to SUS,
Code Gestalt has
good usability.

received a mean SUS score of 79.5 (Mdn = 77.5, s = 8.4),
putting Code Gestalt’s usability in the ‘good’ to ‘excellent’
range [Bangor et al., 2009].

Additional usability questions

The testes were given the following four statements ex-Testers agreed on
Code Gestalt being a
practical alternative
to sketching.

panding the default SUS set. The questions and descriptive
statistics of the answers are given in table 6.1. While our
testers had mixed impressions on Code Gestalt’s flexibil-
ity, they perceived its predictability, competitiveness with
sketching, and clearness of the SV favorably.

Statement M Mdn s

11 I found Code Gestalt to be
very flexible.

0.03 0.00 0.39

12 I could not predict the out-
come of my interactions with
Code Gestalt.

-0.44 -0.50 0.48

13 I believe using Code Gestalt
is a practical alternative to
creating diagrams by hand.

0.66 1.00 0.47

14 I expect the diagrams cre-
ated with Code Gestalt to be
confusing for most program-
mers.

-0.63 -1.00 0.50

Table 6.1: Response to the four statements on a scale from
-1 (‘strongly disagree’) to 1 (‘strongly agree’).

Individual features

In the second part of the survey we asked the participantsWe asked users to
rate individual Code
Gestalt features.

about the usefulness of individual features to review our
design decisions. Each feature could be rated on a five-
point Likert scale from ‘not useful’ to ‘very useful’. The
features with the descriptive statistics of the results are re-

6.3 Evaluation 121

ported in table 6.2. Numbers refer to the question in the
questionnaire from appendix C.1.3.

The individual features of Code Gestalt were rated ‘useful’ The tag overlay and
thematic relations
were rated useful.

(0.2 − 0.6) and ‘very useful’ (0.6 − 1.0) with the exception
of the tag cloud included in each type box. The features
specifically tied to the tag overlay and the thematic rela-
tions (#22–#26) received ratings in the range from ‘useful’
to ‘very useful’.

6.3.4 Second online survey

To determine, if we succeeded in delivering an SV that of- We let users
compare pairs of
sketches and Code
Gestalt diagrams.

fers some degree of ‘human insight’ and is meaningful on
its own without a tool and IDE allowing for further explo-
ration, we designed two surveys, pitting a sketch against a
Code Gestalt diagram for each test task. The participants of
our survey were contacted by e-mail to evaluate the pairs
against four categories on a seven-point Likert scale:

• Which diagram is clearer?

• Which diagram is more understandable?

• Which diagram would you rather use as aid to solve
the task?

• Which diagram is better suited to document the
source code?

To find pairs of sketches and diagrams that were roughly We used squared
differences of errors
and clutter and
manual filtering to
find comparable
pairs.

comparable, we computed the squared differences of errors
and clutter for each pair in all five error categories. The
amount of clutter was determined by counting the number
of code artifacts in each category that were unnecessary to
solve the task but included in the diagram. We allowed for
some variation by adding optional entities that were not
deemed essential, but also no clutter. These are the items
in parenthesis found in appendix C.1.4. We reviewed the
pairs with the lowest squared sums, but did not follow this
ad-hoc heuristic blindly. We devised two sets of four pairs

122 6 Eclipse implementation

Feature M Mdn s

15 Similarity to UML class dia-
grams

0.73 1.0 0.32

16 Generation of diagrams from
a Project Explorer selection

0.96 1.0 0.13

17 Adding types and methods
using drag-and-drop

0.84 1.0 0.40

18 Integration of Eclipse sym-
bols and markers for Java en-
tities

0.87 1.0 0.30

19 Adding relations using pre-
views for selected entities

0.81 1.0 0.25

20 Number and selection of ‘ex-
pand’ and ‘collapse mem-
bers’ commands for types via
context menu

0.43 0.5 0.50

21 Inclusion of a tag cloud in
type boxes

-0.03 0.0 0.77

22 Visualization of tags in an
overlay

0.29 0.5 0.75

23 Highlighting of tags by se-
lecting types in the tag over-
lay

0.35 0.5 0.67

24 Highlighting of types by se-
lecting tags in the tag overlay

0.41 0.5 0.66

25 Pinning tags from the overlay
to the diagram

0.68 1.0 0.46

26 Visualizing the influence of a
tag using a ‘fan’ in the back-
ground of the diagram

0.85 1.0 0.24

27 Adding notes 0.56 0.5 0.44
28 Opening a Java Editor by

double-clicking a diagram
entity

0.96 1.0 0.13

29 Use of selection-dependent
buttons (e.g. ‘Close’ and
‘Change Color’)

0.54 0.5 0.50

30 Limitation to one box per
Java type

0.33 0.5 0.67

Table 6.2: Usability of 16 Code Gestalt features on a scale
from -1 (‘not useful’) to 1 (‘very useful’)

6.3 Evaluation 123

each, so that each set would only include diagrams from
one half of our test group. That way, we prevented that
testers reviewed their own diagrams.

The survey was concluded by a list of suggested features, Participants rated the
importance of
proposed features.

which users made during the test sessions and the open-
ended questions of the test questionnaire. The participants
were asked to rate each feature on a five-point Likert scale.
For further details refer to appendix D.1.

LimeSurvey recorded 14 responses from the 16 testers we
invited to take the survey between December 16th, 2010 and
January 2nd, 2011.

Comparison of sketches with Code Gestalt diagrams

Code Gestalt diagrams are considered slightly clearer (M = Code Gestalt
diagrams have minor
advantages over
sketches.

.24;Mdn = .33, s = .53) and better suited for documenta-
tion (M = .23;Mdn = .33, s = .51) than sketches. They
are however not perceived as offering a better means of un-
derstanding source code (M = −.01;Mdn = 0, s = .52)
or better task support (M = .04;Mdn = 0, s = .52) than
sketches.

Qualitative feedback

12 testers left feedback in an open-ended question asking We asked testers to
compare the pairs in
their own words.

the participants to draw the balance on the four pairs they
evaluated and describe in their own words which visual-
izations were more appropriate under which aspects. The
testers were encouraged to give feedback beyond the four
comparison categories of the survey.

Four participants noted that sketches were more suitable Some positive
feedback did not only
consider the
individual diagram,
but also interactions
possible using Code
Gestalt.

for conveying ideas and unusual circumstances, since Code
Gestalt was always bound closely to the actual implemen-
tation, but sketches could omit implementation details and
take a more abstract point of view on the code base. The
clearness of Code Gestalt diagrams was preferred over
sketches by four testers. In this context testers noted that

124 6 Eclipse implementation

the undo and editing features of the tool made it easy to
keep a diagram clear, even if the diagram creator had to
make corrections to the diagram after an error. Three partic-
ipants expressed their preference for sketches when it came
to the possibility of annotating the diagram. However, two
testers mentioned that the readability of Code Gestalt anno-
tations was better than those from hand writing. Sketches
were more capable to portray the sequence of actions ac-
cording to two testers. Interestingly, two participants con-
sidered sketches to be more precise and expressive than
Code Gestalt diagrams and two users made the opposite
statement. Code Gestalt was also deemed more appropri-
ate for documenting code by two participants. Two testers
mentioned the high usability and the speed advantages of
Code Gestalt each, although this was not directly prompted
by the question.

We also got a number of individual remarks: One partic-Individual comments
are concerned with
relation
customization,
clutter, and
comprehensibility.

ipant attributed the difference between the diagram pairs
more to the skill of the creators than the capabilities of the
tools used to make them. The visualization options for
terms were positively attributed to Code Gestalt by one
tester. Another user mentioned that Code Gestalt type
boxes tended to be cluttered by unnecessary members, as
users did not bother to remove unneeded members. The
complementary use of both systems was preferred by one
participant. While one tester felt that Code Gestalt made
it hard to detect coherences, another user stated that Code
Gestalt diagrams were more comprehensible than sketches.
One tester noted that the flexibility of relations in sketches
were only preferable, because Code Gestalt did not allow
users to label them, yet.

Requested features

We compiled a list of features that were requested by testersUsers were asked to
rate proposed Code
Egstalt features for
importance.

during the initial study and its questionnaire. We presented
the list in the online survey and asked the participants to
rate the importance of each feature on a five-point Likert
scale from ‘completely insignificant’ to ‘very important’.
Rating each feature was optional, thus we recorded vary-
ing response counts, identified by n in table 6.3.

6.3 Evaluation 125

Feature Description n M Mdn s

Automatic search for and preview relations to elements
that are not yet included in the diagram

13 0.69 1.00 0.43

Labeling of relations 14 0.61 0.50 0.45
New relation type ‘override/implements’ between meth-
ods in a type hierarchy

14 0.54 0.50 0.31

Make tag cloud at bottom of type box optional (default:
disabled)

13 0.54 0.50 0.52

New relation type ‘dependence’ between types 9 0.50 0.50 0.35
‘Open Call Hierarchy’ and ‘Open Type Hierarchy’ com-
mands in diagram context menu

14 0.39 0.50 0.35

‘Remove members from inverse selection’ command in
context menu

14 0.29 0.50 0.54

Add members to types using a text box with incremental
search

13 0.23 0.50 0.53

Manual relation drawing tools 14 0.21 0.50 0.80
Drag-and-drop of members to any location and automati-
cally add them to the correct type box

14 0.18 0.50 0.50

Framework specific relations (e.g. from a button to an ac-
tion)

10 0.30 0.25 0.35

Allow highlighting of tags/types in tag overlay for multi-
ple elements

10 0.25 0.25 0.42

Drag-and-drop source code to diagram 14 0.04 0.25 0.66
New relation ‘Access’ from methods to fields 12 0.17 0.00 0.33
Support ‘Link with Editor’ feature of Eclipse Package Ex-
plorer

11 0.17 0.00 0.50

JavaDoc tool tips 11 0.14 0.00 0.39
Preview relations during drag-and-drop from Package Ex-
plorer

13 0.12 0.00 0.58

Full support for anonymous and local types 11 0.09 0.00 0.38
Assign random colors to thematic relation fans on creation 13 0.08 0.00 0.49
Routing-algorithm for relations (to minimize overlap) 11 0.05 0.00 0.42
‘Send to Diagram’ command in context menu of Package
Explorer and Java Editor

14 0.04 0.00 0.66

‘Find’ command for diagram 13 0.00 0.00 0.50
Show thematic relation fan in tag overlay 12 0.00 0.00 0.37
Show context sensitive controls (i.e. ‘Expand All’, ‘Change
Color’) on mouse-hover (instead of selection)

14 -0.04 0.00 0.57

Automatic layout (optional) 12 -0.04 0.00 0.62
‘Find’ command for tag overlay 14 -0.07 0.00 0.39
Show tag overlay only while holding down a key (quasi-
mode)

14 -0.25 0.00 0.51

Rich Text for sticky notes 14 -0.50 -0.50 0.48

Table 6.3: Importance of suggested features for future versions of Code Gestalt on
a scale from -1 (‘completely insignificant’) to 1 (‘very important’)

126 6 Eclipse implementation

The feature with the highest importance was the live pre-Users want more
flexibility with regard
to relations and more
live previews.

view of relations to types not already included in the di-
agram. Many testers told us, they wanted this feature,
so they did not need to use Eclipse’s type hierarchy and
call hierarchy views anymore, which introduced a lot of
time overhead, when using Code Gestalt. Moreover, users
wanted additional relation types and customization op-
tions, as well as additional automation and IDE integration.
There was also a high demand for making the type box tag
cloud an optional element and disable it by default. This
was expected, since we noticed during the user study that
users tended to ignore the tag clouds and use the tag over-
lay instead, when they wanted access to the vocabulary of
the source code.

Interestingly, our users did not put much weight on a tradi-Explicit searching
was not a feature in
high demand.

tional search mechanism. This was unexpected, as related
work suggested this would be a feature in high demand.
The mixed results regarding automatic layout and routing
features are however in line with our expectations and the
design premise of Code Gestalt.

6.3.5 Summary

The user study indicates that most of our design goals were
met by the Eclipse implementation of Code Gestalt.

From the SUS score and the individual feature evaluationSUS indicated good
usability. we gather that Code Gestalt has good usability and that the

implemented features are perceived as useful by our tar-
get group. The null hypothesis regarding task completion
times and error counts could not be rejected for the major-
ity of the test conditions. This might indicate that our test
group was too small, however, the significant results we
found, speak another language.

We see indications for Code Gestalt to improve correctnessCode Gestalt tends
to improve
correctness at the
cost of time.

at the cost of time overhead. This is in line with the find-
ings of Park and Jensen [2009]. The easiest of the the four
tasks (#4, which had the highest completion rates and low-
est completion times) was significantly faster processed by
users who sketched the solution. Is should be noted that an

6.3 Evaluation 127

overhead is to be expected, since Code Gestalt users have
to switch between editors and views in the IDE in order
to create the visualization, while pen and paper allow par-
ticipants to work on the visualization in parallel to using
the IDE. The completion times suggest that the overhead is
getting less relevant for more complex tasks, where Code
Gestalt’s ability to support the user in finding key code
artifacts plays a more important role. Most interestingly,
the subjective perception of participants was inverse to our
quantitative results: While only two users stated in an open
ended question that sketching was faster than Code Gestalt,
six testers stated the opposite.

Code Gestalt significantly improved the solution correct- The time overhead
can be reduced by
providing more live
previews.

ness for tasks #1 and #2. However, for task #3 sketching
was more successful in revealing important call relations.
The comments gathered during the sessions and from the
open-ended questions lead us to believe that live previews
for relations to non-included code artifacts would have in-
creased efficency of Code Gestalt users. Many testers re-
ported independently from another that they would have
wanted this feature, so they could have built the diagram
without the IDE views to find call and inheritance relations.
This is backed up by the importance assigned to the respec-
tive features in table 6.3.

We believe that Code Gestalt is in fact competitive to Code Gestalt is a
competitive to
sketching.

sketching, but has a different trade-off between completion
time and correctness. The competitiveness is also strongly
agreed upon by the testers (see #13 in table 6.1). We think,
we can greatly improve completion rates and times by pro-
viding additional live previews as outlined in the previous
section.

The usefulness of the newly introduced SV is supported by The tag overlay and
thematic relations
support code
understanding.

the results of the user survey. The thematic relations and
the pinning interaction are rated ‘very useful’ (Mdn = 1.0),
while the tag cloud and the highlighting interactions are
rated ‘useful’ (Mdn = 0.5). Qualitative feedback from the
study indicates that the tag overlay and thematic relations
in fact support programmers in understanding unknown
source code.

128 6 Eclipse implementation

Our second survey investigated the expressiveness of CodeThe created SVs
have slight
advantages over
sketches.

Gestalt diagrams without the backing of an IDE in di-
rect comparison with sketches. The results show that our
users slightly prefer Code Gestalt diagrams over sketches
as far as clearness and suitability for documentation are
concerned. However, for understanding source code and
the support of concrete tasks we have not detected a ten-
dency that would favor one system over the other. These
results are encouraging, when we remember that pen and
paper are the most often used SV solution (see chapter 3).

The features requested by our testers partially consist ofThe automation
features did not take
control away from the
user.

features that were part of our design (like the live preview
of relations to non-included entities), but had to be cut for
time and framework limitations. That our users ask for
more automation and system assistance suggests that our
implementation was successful in giving the user control,
while still automatically searching for options and provid-
ing previews. Features that would automate diagram cre-
ation at the cost of user control were rated less important.

The participants also requested features that expand theMultiple terms might
be more appropriate
for identifying
concepts.

tag overlay, especially the selection of multiple elements for
cross-referencing. This is interesting for two reasons. First,
the tag overlay and its highlighting features seem to be nat-
ural and intuitive enough for users to internalize the con-
cept. Second, it suggests that a theme or concept is more
precisely captured by more than one term. In that case
one could also consider thematic relations that are based
on multiple terms and logical compositions thereof (AND,
OR, etc.).

Finally, we learned a valuable lesson from our users’ wishWe identified a case
of feature creep in
our system.

to remove the tag cloud at the bottom of a type box. This UI
element was a typical case of feature creep. Our paper pro-
totype had no such tag cloud, however it managed to end
up in the final version of Code Gestalt, as we were comput-
ing the tag cloud for the tag overlay anyway, and thought,
without justification, it would be an interesting addition to
the type box.

129

Chapter 7

Summary and future
work

“I wanted to write that my work consists of two
parts: of the one which is here, and of everything

which I have not written. And precisely this second
part is the important one.”

—Ludwig Wittgenstein

In this thesis we presented the SV tool Code Gestalt and its
development process. Section 7.1 discusses our approach,
implementation, and findings. In section 7.2 we will take
a look at the next steps of our research and the open ques-
tions that remain to be answered.

7.1 Summary and contributions

Visualizing source code is an everyday task for many de- We investigated
sketching as means
of code visualization.

velopers. However, related research and our own obser-
vations indicate that software visualization tools are not
as widely used as one might expect. In a user survey we
found that many programmers use traditional sketching
techniques rather than SV tools, although the analog na-
ture of sketches is adverse to modern communication and
version control systems.

130 7 Summary and future work

The reasons for users to prefer sketching over SV tools areSV tools must be
carefully designed. manifold, but we identified some key aspects from our own

investigations and related work. Many SV tools take away
control from the human user, thus creating SVs that do
not represent the developers concept of the visualized code
base. Where the user is able to focus on important aspects
of a code base, most SV tools are quite indifferent and can-
not emphasize regions of interest. Also, speed, IDE integra-
tion, and usability are key components in the acceptance of
an SV tool.

We designed Code Gestalt to meet these design goals, mostCode Gestalt allows
users to harness
source code
vocabulary for code
exploration.

prominently developing a new SV that would allow users
to create landmarks of focus to emphasize important re-
gions of their diagram. The visualization was also geared
toward helping users explore the source code not only by
following structural relations (such as call and inheritance
relations), but themes and concepts. Our approach aimed
at mining the vocabulary of the source code for such the-
matic information and make it accessible for the user of the
SV tool.

To ground the new visualization in a familiar environment,Familiarity with class
diagrams, IDE
integration, and live
previews ease
learning curve.

we designed it as augmentation to class diagrams. Also,
we designed the user interface in a way that would auto-
matically assist the user whenever possible, without taking
away any control over the scope and layout of the class di-
agram. We realized this by working with live previews that
are displayed in context to the current selection. The user
immediately sees, what expansion options are available to
her and can decide to convert any number of previews into
persistent parts of the diagram or ignore them.

The design of Code Gestalt was refined twice using a paperThe tag overlay and
thematic relations
are the center pieces
of our design.

prototype and a Silverlight mock-up. During this process,
we developed two dependent visualizations based on the
vocabulary of the source code:

1. Tag Overlay: a layer on top of a class diagram to visu-
ally search the vocabulary of the source code and to
detect thematic similarities between types

7.2 Future work 131

2. Thematic Relations: a new relation type for class di-
agrams, connecting those types who share common
terms in their identifiers

We implemented Code Gestalt as plug-in for Eclipse. This Code Gestalt is
competitive with
sketching

implementation was evaluated in a two-step user study.
The results from the study suggest good to excellent us-
ability of Code Gestalt in general according to Bangor et al.
[2009]. Moreover, we can establish competitiveness of Code
Gestalt compared to sketching with pen and paper.

Testers missed fewer types and attributes in their visualiza- Code Gestalt
reduced errors and
help users
understand unknown
code.

tions compared with sketches, however they missed more
call relations and needed more time to create a diagram
for simple tasks. We found evidence that the tag overlay
and thematic relations help users in understanding source
code by providing ways to harness the human intelligence
present in the naming of source code identifiers.

When we directly compared Code Gestalt diagrams with Code Gestalt
diagrams are
preferred over
sketches for
clearness and
readability.

sketches, testers attributed better clearness and suitability
for documentation to Code Gestalt diagrams. Testers did
not have clear preference between pen and paper sketches
and Code Gestalt diagrams with regard to understandabil-
ity and use for practical task support.

7.2 Future work

Code Gestalt was well received by our test group. The user
test revealed potential for improvement and poses new re-
search questions.

7.2.1 Implementation

We gathered suggestions for additional features and fea- Users suggested
numerous new
features.

ture changes from our participants during the test session
and the following survey. The collection of suggestions was
then presented to all testers to rate them for importance (see

132 7 Summary and future work

section 6.3.4). This list is a good indicator for the direction
of Code Gestalt’s development.

Some of the requested features are identical with what wasUsers would like
Code Gestalt to
dispense with
Eclipse’s hierarchy
views.

part of the original design and could not be implemented
due to time constraints. We are very interested in bring-
ing Code Gestalt on par with the feature set of Relo, so
users can use Code Gestalt without the assistance of Eclipse
views to find call and inheritance relations to artifacts not
already visualized in the code. We believe this would
greatly reduce the time overhead our testers experienced
when working with Code Gestalt.

7.2.2 Diagram customization

Users requested the addition of further customization fea-Additional
customization
options should
borrow from
sketching.

tures and better annotation tools. While it is relatively
straight forward to add more sophisticated customization
options known from text and image processors, the reaction
of testers to the suggested Rich Text sticky notes is a clear
indicator that this kind of customization is not desired. In-
stead, we should be looking for customization techniques
inspired by what users do when sketching.

A more detailed analysis of how users annotate sketches isWe need more
detailed data about
sketches.

required to find appropriate metaphors and interactions to
integrate them with Code Gestalt. An alternative approach
is the direct integration of hand drawings as in Lichtschlag
and Borchers [2010]. This must be done carefully though,
because we do not want to sacrifice the clearness and con-
sistency currently found in Code Gestalt diagrams.

7.2.3 Scalability

We used a relatively small code base (ten files) in the eval-Code Gestalt’s
scalability has not yet
been assessed.

uation of Code Gestalt. For this project size, the tag overlay
is appropriate as our users gave it good usability ratings
and were indifferent to a dedicated search feature.

7.2 Future work 133

We estimate this to change for larger code bases. The naive Clustering algorithms
and tf-idf could
improve tag overlay.

approach of positioning tags at the center of gravity might
lead to great disparities between the position of a tag and
the location of the types where the corresponding concept
or theme is implemented. Such disparities would break the
map metaphor of the tag overlay, as tags would no longer
correctly label areas of interest. We expect to resolve these
issues with more sophisticated tag metrics, such as tf-idf 1

[Spärck Jones, 1972], and clustering algorithms.

7.2.4 Further evaluation

Although our user study has established the usability of Separately
investigate Code
Gestalt’s influence on
code understanding.

Code Gestalt and its new concepts, our setup did not allow
us to gather quantitative data on the question, if the tag
overlay and thematic relations help users gain more insight
into the given code base compared to traditional SVs, like
class diagrams. A second user study might be helpful, in
which we compare a modified version of Code Gestalt with
disabled tag overlay against the full system. In such a study
we would give testers tasks that require them to answer
conceptual questions about an unknown code base.

7.2.5 Multiple selection in tag overlay

An interesting suggestion from our testers was the sup- Users want to be
able to create heat
maps from multiple
tags.

port of multiple selection in the tag overlay to create more
refined highlights. E.g., by selecting multiple tags all
types would be highlighted according to their multiplied
weights. This feature request suggests that concepts and
themes might be better represented using multiple terms.
If that is the case, we should investigate thematic relations
based on multiple terms and evaluate, if they capture con-
cepts better than the current single-term thematic relations.

1term frequency–inverse document frequency determines the weight of
tags not only by term frequency in an individual document, but also by
considering its importance in relation to other documents.

134 7 Summary and future work

7.2.6 Additional metrics

Code Gestalt incorporates only a very limited number ofOther metrics could
hold similar potential
as the code
vocabulary.

metrics and visualizations thereof. Our results show that
the tag overlay and thematic relations allow users to man-
age the information distilled from source code vocabulary.
There are however numerous metrics to detect code smells
(indicators for code in need of improvement) and other
properties that might be equally useful for developers in
their endeavor of understanding and illustrating source
code.

Those metrics could be integrated with Code Gestalt by fol-Use Code Gestalt’s
design as pattern for
new SVs.

lowing the design of the tag overlay and thematic relations.
The research question at hand is, if our design methodol-
ogy of using overlays and live previews to keep this new
source of information manageable and usable for the user.
If so, it might be abstracted to become a successful pattern
for building new SVs.

135

Appendix A

Additional online
survey materials

“It’s time to reappreciate the original software:
paper.”

—Dale Dauten

In chapter 3 we present the results of the online survey in
context of our development of Code Gestalt. This appendix
contains the complete set of survey questions and the de-
tailed statistical analysis that led to the results presented in
this thesis (see section 3.2).

A.1 Survey questions

In the following we reprint the questions used in the online The questions of the
survey are divided in
five groups.

survey discussed in chapter 3. The survey consists of five
parts:

1. Background information

2. Usefulness of software visualizations in general

3. Visualization software

136 A Additional online survey materials

4. Manual visualization

5. Visualizations in documentation

Please note that the writing of the survey was less formal
than the usual style of this thesis. Users were able to in-
put data using HTML form elements like text boxes, drop-
down lists, check boxes, and radio buttons. We do not re-
produce these UI elements, but give details on the answers
and modalities for each question. Unless otherwise noted,
participants had to select one of several predetermined an-
swers.

A.1.1 Background

To get started I’d like to ask some general questions on your
background as a programmer.

Voluntary e-mail contact: Free text (optional)

Help: This survey contains some open ended questions.
Sometimes the answers to these questions may inspire a fol-
low up question or the need for clarification. If you provide
an e-mail contact it will be exclusively used for that single
purpose and deleted at the end of the evaluation process.

What is your current occupation? Programmer; Student;
Researcher; Teacher; Other (mandatory)

Help: If the occupation you want to select is not listed,
choose ‘Other’ to manually enter one.

What is your gender? Female; Male (mandatory)

Help: Please select the corresponding sex.

A.1 Survey questions 137

What is your age? Numerical input (mandatory)

Help: Please enter your age in years.

For how many years have you gathered programming ex-
perience? Numerical input (mandatory)

Help: Please input the number of years you have been pro-
gramming regularly.

How regularly do you read source code in your current
occupation? Daily; Not daily, but several times per week;
At least once a week; At least once a month; At least once
a quarter; Less than once a quarter, but occasionally; Never
(mandatory)

Help: Please give a rough estimate how often you are occu-
pied with reading source code.

How much of the code you deal with is unknown to you
by the time you read it? < 20%; 20%–40%; 40%–60%;
60%–80%; >80% (mandatory)

Help: E.g., this can be code from a colleague who works on
another project, students (e.g. correcting exercises), third
party libraries, or legacy projects.

Visualizations In this subsection I’d like to ask you
about what you think about common and some aca-
demic/experimental visualizations of software.

Please rate the following common visualizations of
source code regarding their usefulness. Useful; Not use-
ful; Don’t know/never used (optional) for each of the fol-
lowing: Class Diagram; Call Graph; Flowchart; Data Flow
Diagram; Software Layer Diagram; Sequence Diagram;
Package Diagram; Other (refer to next question)

138 A Additional online survey materials

Help: In the following Wikipedia articles you can find ex-
amples of the diagram types mentioned above (links open
in new window): Class Diagram: Classes are represented
as boxes, usage relations as labeled lines and inheritance
relations as arrows. Call Graph: Functions/methods are
represented as boxes and calls as arrows. Flowchart: Be-
ginning and end of a process are represented as rounded
rectangles, Input/Output as parallelograms, and data flow
as labeled arrows. Data Flow Diagram: The arrows
indicate the flow of data between files/databases (open
boxes). Software Layer Diagrams: e.g. visualizing the
OSI model or an operation system. This Software Layer
Diagram shows how the layers of an operating system
encapsulate the functionality of the layers above and be-
low. Sequence Diagram: The diagram illustrates the inter-
action/messages (labeled horizontal arrows) between ob-
jects/processes (dotted lines) over time (negative y-axis)
and highlights the active phases of each object (vertical
bars). Package Diagram: are represented as boxes, nested
packages are represented as nested boxes. Usage relations
are shown as labeled arrows.

If you evaluated the usability of the ‘Other’ common vi-
sualization above, what is it called? Free text (manda-
tory, only shown when ‘Other (refer to next question)’ was
rated in the previous question)

Help: Please enter the name of the visualization and if pos-
sible a link to a sample visualization or a more detailed de-
scription of what the visualization looks like.

Please rate the following visualizations that have been
proposed by researchers in recent years based on your
first impression by looking at them. Consider whether
you think these diagrams are useful in understanding
source code. Useful; Not useful; Don’t know/never used
(optional) for each of the following: CodeCity; Thematic
Software Maps; 3d Relation Diagram; CallStax

Help: Please just skim quickly over the example pictures.
Give an answer based on your first impression. CodeCity:

A.1 Survey questions 139

In a CodeCity classes are represented as buildings and
packages as districts. The size of the buildings represents
statistical information such as number of attributes and
number of methods. Thematic Software Map: Classes
are represented as elevations proportional to their size in
lines of code. The distance between classes is determined
by their similarity in source code vocabulary. 3d Relation
Diagram: (German website, but English pdf-papers at bot-
tom of page) 3d Relation Diagrams use three dimensions to
layout classes, interfaces and packages. Usage, inheritance
and inclusion relations are represented by lines, arrows and
nested geometry. CallStax: CallStax’ show the paths of a
function call tree as separate ‘towers’. Individual functions
are represented by blocks of different colors.

Comments: Free text (optional)

Help: Did I miss an important visualization type? Do you
want to comment on why you think certain visualizations
are more useful than others? If so or if you have any other
comment on the topic of visualization techniques in gen-
eral, please feel free to leave a comment right here. All
comments will be read and considered.

A.1.2 Visualization software

The next subsection covers questions on your experience as
a user of software visualization systems.

How often do you use software tools (within or outside
your IDE) to create visualizations of your software project
or certain source code artifacts like classes? Daily; Not
daily, but several times per week; At least once a week; At
least once a month; At least once a quarter; Less than once
a quarter, but occasionally; Never (mandatory)

Help: Only give a rough estimate on how often you use
software to visualize source code.

140 A Additional online survey materials

SV users

The questions in this subsection were only presented to
participants, who indicated to use SV tools in the previous
question.

What visualizations do you usually create with a software
visualization application? Class Diagram; Call Graph;
Flowchart; Data Flow Diagram; Software Layer Diagram;
Sequence Diagram; Package Diagram (mandatory, multi-
ple answers possible)

Help: Please check only those visualizations you actually
create regularly.

For what purpose do you create visualizations of your
project using visualization software? Internal documen-
tation, Documentation for public release, Project presen-
tation, Personal use (source code understanding), Project
management; Complexity control; Code reviews; Quality
assessment (mandatory, multiple answers possible)

Help: Check only those scenarios you create visualizations
for on a regular basis.

What software do you use most often when creating visu-
alizations? Free text (mandatory)

Help: This may be an IDE with visualization features, an
IDE plug-in or a standalone application. If you use a suite
of several smaller tools that need to be used in combination
please state the name of the suite.

Does the above tool work seamlessly and smoothly with
your source code and projects? Mainly yes; Mainly no
(mandatory)

A.1 Survey questions 141

Help: Perfectly working tools should require no effort at all
to load and parse your code. Very badly working tools will
require you to take great lengths in making your project
and code compatible with it or it withholds options and
functionality e.g. because your project is created with the
IDE of another vendor.

Does the above tool create a visualization to your satisfac-
tion? Mainly yes; Mainly no (mandatory)

Help: The satisfaction with the visualization tool should in-
clude several aspects. Some of the questions you might ask
yourself are: Is the visualization customizable or is it ran-
dom? Is the use of colors tasteful and useful or annoying
and confusing? Is the layout clear or confused? Can the
visualization be easily printed and exported? Is the visual-
ization understandable or does one need ‘rocket science’ to
make heads and tails of it?

Does the above tool create the visualization automati-
cally? Automatic; Semi-automatic; Manual (mandatory)

Help: A short elaboration on the three options: Automatic
tools should be able to create the complete visualization
without user input, although they might offer options that
allow the user to change some global features of the vi-
sualization or allow for manual edits after the creation of
an automatically generated diagram. Semi-automatic tools
should have a basic understanding of the code and offer
features to generate visualizations of at least basic software
artifacts, although the user must e.g. select manually what
pieces to include in a diagram or how to layout the sin-
gle parts. Manual tools are basically drawing applications.
Although they might have some basic support by provid-
ing predefined shapes and layouts, they are not capable of
parsing a project or source code in order to create any part
of a diagram automatically.

How much time do you normally spend using the tool
mentioned above on creating a visualization of your

142 A Additional online survey materials

project? < 5 min, 5–10 min, 15–30 min, 30–60 min, > 60
min (mandatory)

Help: Please give a rough estimate on how much time you
spend on creating one visualization.

SV non-users

This question was given to participants who indicated to
never use SV tools.

Why do you not use a visualization software? I did not
know that there are ways to visualize source code; I did not
know that there are programs for creating such visualiza-
tions; I have no need to create such visualizations; There is
no tool that can create the visualizations I need; The visu-
alization tool I need is not affordable; Usability issues; Un-
desired/unsatisfying results; Too time consuming (manda-
tory, multiple answers possible)

Help: Please check only those answers that specifically hin-
der you from using a visualization software, not shortcom-
ings that do not usually keep you from using software.

All participants

All participants were give the following question.

Comments: Free text (optional)

Help: Please leave any comments that you think are impor-
tant with regard to visualization software.

A.1 Survey questions 143

A.1.3 Manual visualization

This subsection takes a look at how you visualize source
code using sketches.

How often do you use sketches (paper, white board, flip
chart, Tablet PC etc.) to create visualizations of your soft-
ware project or certain source code artifacts like classes?
Daily; Not daily, but several times per week; At least once
a week; At least once a month; At least once a quarter; Less
than once a quarter, but occasionally; Never (mandatory)

Help: Only give a rough estimate on how often you use
sketches to visualize source code.

Sketching participants

The following questions were only given to those partici-
pants, who indicated in the previous question to sketch at
least occasionally.

What aspects of your software project or code
artifact do you usually cover in your sketches?
Class hierarchy; Class dependency; Membership;
Data flow; Software layers; Function/method calls;
Framework/package/namespace hierarchy; Frame-
work/package/namespace dependency; Sequence and
timing (mandatory, multiple answers possible)

Help: Please check only those properties you actually
sketch regularly.

What materials do you use to create sketches? Paper;
Pen/pencil; Multiple colors; White board; Flip chart; Ruler;
Set square; Compass; Eraser/sponge; Computer graphics
tablet; Magnets; Sticky notes (mandatory, multiple answers
possible)

144 A Additional online survey materials

Help: Please check only those materials you use regularly
to create sketches.

For what purpose do you create sketches of your project
or software artifacts? Internal documentation; Documen-
tation for public release; Project presentation; Personal use
(source code understanding); Project management; Com-
plexity control; Code reviews; Quality assessment (manda-
tory, multiple answers possible)

Help: Check only those scenarios you create sketches for
on a regular basis.

How much time you usually spend on creating a sketch?
< 5 min; 5–10 min; 15–30 min; 30–60 min; > 60 min (manda-
tory)

Help: Please give a rough estimate on how much time you
spend on creating one sketch.

Non-sketching participants

The following questions were only given to those partici-
pants, who indicated to never sketch.

Why do you not use sketches to visualize your code? I
did not know that there are ways to visualize source code;
I did not think of doing sketches to visualize code; I have
no need to create such sketches; I can not sketch the visu-
alizations I need (e.g. they are to complicated); I can not
afford the materials; I find sketching too hard to do; Un-
desired/unsatisfying results; Too time consuming (manda-
tory, multiple answers possible)

Help: Please check all answers that hinder you from draw-
ing sketches to illustrate your code.

A.1 Survey questions 145

All participants

This question was again given to all participants.

Comments: Free text (optional)

Help: Please leave any comments that you think are impor-
tant with regard to sketches of code.

A.1.4 Documentation

In this subsection we will discuss how visualizations of
code are used in source code documentation.

Do you initially consult the documentation of a previ-
ously unknown project to find visualizations in order to
understand it? Mainly yes; Mainly no (mandatory)

Help: Also consider such cases where you wanted to look
at a visualization, but there was no documentation to start
with.

Do you use visualizations of a documentation regularly
when you are more familiar with a project? Mainly yes;
Mainly no (mandatory)

Help: This does not only include foreign code you came to
understand, but also your own projects.

Comments: Free text (optional)

Help: Please leave any comments that you think are also
important in your use of documentation visualizations.

146 A Additional online survey materials

A.2 Results and analysis

In this section we offer the reader a detailed report on the
data gathered from the survey and its statistical analysis
that is omitted from section 3.2 for better readability.

A.2.1 Background

The following data are the basis for the results presented in
section 3.2.1.

What is your current occupation? Roughly half of the 128A majority of the
participants were
male students.

participants were students (67 participants or 52.34%). The
second biggest group were programmers (43 / 33.59%) fol-
lowed by researchers (11 / 8.59%). Two participants were
teachers (1.56%), four participants came from other profes-
sions in the field of software development (3.12%).

What is your gender? Only two participants were female
(1.56%), the rest was male (126 / 98.44%).

What is your age? Figure A.1 illustrates the distributionThe participants
cover a wide range of
age and
programming
experience.

of the participants’ age and programming experience. Par-
ticipants were 27.17 years old on average (Mdn = 25y, s =
8.39y). There were 13 participants who were 40 years of age
and older. These are indicated as outliers in the box plot di-
agram.

For how many years have you gathered programming ex-
perience? Our sample group had a mean of 11.18 years of
programming experience (Mdn = 10y, s = 7.41y). Five par-
ticipants had 30 or more years of programming experience.
These are indicated as outliers in the box plot diagram in
figure A.1.

A.2 Results and analysis 147

0 20 40 60 80

Age

Programming

experience

years

Figure A.1: Box plots of the survey participants’ age and
programming experience (N = 128).

How regularly do you read source code in your current
occupation? Table A.1 shows the distribution of how fre- Two thirds of the

participants read
source code every
day.

quently our participants read source code. Almost two-
third (62.50%) of the participants were reading source code
on a daily basis.

Answer Count Percentage

Daily 80 62.50%
Not daily, but several times
per week

32 25.00%

At least once a week 14 10.94%
At least once a month 1 0.78%
At least once a quarter 1 0.78%
Less than once a quarter, but
occasionally

0 0.00%

Never 0 0.00%

N 128 100.00%

Table A.1: Frequency of source code reading

How much of the code you deal with is unknown to you
by the time you read it? The distribution of the amount Only every sixth

participant works
with 60% or more
unknown code

of unknown code read by our sample group is shown in ta-
ble A.2. Only every sixth participant (17.97%) was working
with 60% or more unknown source code, but every third
(33.59%) dealt with 20% or less.

148 A Additional online survey materials

Answer Count Percentage

< 20% 43 33.59%
20% – 40% 30 23.44%
40% – 60% 32 25.00%
60% – 80% 7 5.47%
> 80% 16 12.50%

N 128 100.00%

Table A.2: Percentage of unknown source code dealt with

A.2.2 Visualizations

The following data are the basis for the results presented in
section 3.2.2.

Please rate the following common visualizations of
source code regarding their usefulness. The mean scores
for all participants were presented in 3.2.2. In the follow-
ing we will focus on how the usefulness varied among the
participants, when we take their background into consider-
ation:

• perceived usefulness between occupations

• correlation with programing experience

• correlation with code reading regularity

• correlation with percentage of unknown code read

Since our data for individual occupations are not normallyStudents rated call
graphs and software
layer diagrams less
useful than
programmers.

distributed (Kolmogorov-Smirnov and Sharpio-Wilk tests for
each occupation significant with p < .05), we used a
non-parametric Kruskal-Wallis test to determine significant
differences in the perceived usefulness (see table A.3).
Call graphs were better received by programmers (M =
0.33, s = 0.104,Mdn = 0) than students (M = 0.01, s =
0.094,Mdn = 0). This difference is significant with U =

A.2 Results and analysis 149

−1123.500, z = −2.085, p < .05, r = −.20. Similar differ-
ences occurred for the rating of software layer diagrams,
U = −1105.000, z = −2.201, p < .05, r = −.21. All di-
agrams but the package diagrams received positive mean
scores among all occupations. The package diagram re-
ceived negative mean usefulness ratings from all groups.

Visualization H(4) p Significance

Call graph 10.74 .02 p < .05
Class diagram 2.33 .70 ns
Data flow diagram 8.29 .07 ns
Flowchart 0.94 .94 ns
Package diagram 3.72 .47 ns
Sequence diagram 3.53 .50 ns
Software layer diagram 9.86 .03 p < .05

Table A.3: Kruskal-Wallis test comparing perceived useful-
ness of common visualizations between occupations. We
found significant differences for call graphs and software
layer diagrams. In both cases, programmers perceived the
diagrams to be more useful than students.

When looking at the data by programming experience in The perceived
usefulness of class
diagram decreases
with growing
programing
experience.

years, we used Kendall’s and Spearman’s tests to find sig-
nificant two-tailed correlations as shown in table A.4. We
found a significant negative correlation τ = −0.16, p <
.05; rs = −.19, p < .05 between programming experience
and the perceived usefulness of class diagrams.

The responses can also be organized by the regularity by
which the participants read source code. Again, partitioned
by the regularity of code reading the data are not normally
distributed. Thus we use Kruskal-Wallis (table A.5) and
Janckheere-Terpstra (table A.6) tests for analysis.

We have a highly significant result for software layer dia- The more frequently
developers read
source code, the less
useful software layer
diagrams are
perceived.

grams with H(4) = 11.53, p < .01. The Jonckheere-Terpstra
test shows a highly significant trend, indicating that the
more often developers read source code, the less useful
software layer diagrams become, J = 1990, z = −2, 81.
Similarly, we detected a significant trend for package di-
agrams, J = 1751, z = −2.004, however the Kruskal-
Wallis test fails to detect significant differences between the

150 A Additional online survey materials

Kendall’s τ Spearman’s rs
Visualization τ p rs p Significance

Call graph .05 .51 .07 .46 ns
Class diagram -.16 .03 -.19 .03 p < .05
Data flow diagram .10 .15 .13 .14 ns
Flowchart -.05 .53 -.06 .53 ns
Package diagram -.06 .37 -.08 .37 ns
Sequence diagram .02 .82 .02 .81 ns
Software layer diagram .07 .33 .09 .31 ns

Table A.4: Correlation between programming experience and perceived usefulness
of common visualizations. Programming novices perceive class diagrams signifi-
cantly more useful than veterans.

Visualization H(6) p Significance

Call graph 8.00 .06 ns
Class diagram 6.67 .18 ns
Data flow diagram 2.26 .78 ns
Flowchart 8.00 .06 ns
Package diagram 6.56 .12 ns
Sequence diagram 2.31 .80 ns
Software layer diagram 11.53 .01 p < .01

Table A.5: Differences in perceived diagram usefulness be-
tween participants by code reading regularity. We detected
significant differences between groups for software layer
diagrams.

groups. Also, the Kruskal-Wallis results for call graphs and
flowcharts are interesting, but fail being considered signifi-
cant. Moreover, we cannot report any significant trends for
them.

A similar investigation, grouping participants by the per-The percentage of
unknown code
encountered by the
participants did not
significantly influence
the perceived
usefulness of any SV.

centage of unknown code read, did not reveal any signif-
icant results (see tables A.7 and A.8). This was a bit of a
surprise to us, since we expected that users that need to an-
alyze code would have learned to gain more information
from diagrams than those users who primarily deal with
known code.

A.2 Results and analysis 151

Visualization J z p Sig.

Call graph 2091.5 0.51 .61 ns
Class diagram 2217.5 0.19 .85 ns
Data flow diagram 2262.0 0.37 .71 ns
Flowchart 2023.5 0.93 .35 ns
Package diagram 1751.0 -2.00 .05 p < .05
Sequence diagram 1990.0 -0.75 .45 ns
Software layer diagram 1645.5 -2.81 .01 p < .01

Table A.6: Trends in perceived diagram usefulness be-
tween participants by code reading regularity. Frequent
readers of source code perceive software layer diagrams
less useful than infrequent readers.

Visualization H(4) p Significance

Call graph 4.20 .39 ns
Class diagram 1.89 .77 ns
Data flow diagram 3.39 .50 ns
Flowchart 4.05 .40 ns
Package diagram 3.80 .44 ns
Sequence diagram 8.08 .08 ns
Software layer diagram 1.57 .82 ns

Table A.7: Differences in perceived diagram usefulness be-
tween participants dealing with different percentages of
unknown code. No significant differences were found. (p
values are an approximation calculated with IBM SPSS 19)

The participants were allowed to indicate an additional The selection of
common SVs was
rather
comprehensive.

type of common visualization, they felt was missing from
the given list. 11 participants used this opportunity, but
most entries were irrelevant. Examples include code high-
lighting, sketches, and visualizations covered in other parts
of the survey. Relevant entries were gource1, state charts, and
use case diagrams. Only individual responses for the useful-
ness of these visualizations were given, so the results are
not usable for analysis.

1http://code.google.com/p/gource/

http://code.google.com/p/gource/

152 A Additional online survey materials

Visualization J z p Sig.

Call graph 3317.5 1.10 .27 ns
Class diagram 3198.0 0.75 .45 ns
Data flow diagram 3075.0 -0.01 .99 ns
Flowchart 3258.0 0.90 .37 ns
Package diagram 2826.5 0.96 .34 ns
Sequence diagram 3111.0 0.36 .72 ns
Software layer diagram 3345.0 1.23 .22 ns

Table A.8: Trends for perceived diagram usefulness be-
tween participants dealing with different percentages of
code. No significant differences were found. (p values are
an approximation calculated by IBM SPSS 19)

Please rate the following visualizations that have been
proposed by researchers in recent years based on your
first impression by looking at them. Consider whether
you think these diagrams are useful in understand-
ing source code. Again, we investigated, how different
groups perceive the usefulness of the presented SVs. Table
A.9 shows the results of a Kruskal-Wallis test to find differ-
ences between participants of different occupations.

Visualization H(4) p Significance

3d relation diagram 5.05 .29 ns
CallStax 1.12 .90 ns
Code city 2.42 .69 ns
Thematic software map 8.07 .08 ns

Table A.9: Kruskal-Wallis test comparing perceived use-
fulness of common visualizations between occupations. A
Mann-Whitney test discovered a significant difference be-
tween students and researchers regarding thematic soft-
ware maps.

Using a Mann-Whitney test we found a highly significantResearcher find the
thematic software
map more useful
than students.

difference in the perceived usefulness of thematic software
maps between students (M = −0.3, s = 0.78) and re-
searchers (M = 0.9, s = 0.91), U = 169, z = −2.73, p <
.01, r = −.24, indicating that researcher find the thematic
software map more useful than students.

A.2 Results and analysis 153

The programming experience does not significantly corre- Programing
experience, code
reading frequency,
and the percentage
of unknown code
dealt with do not
significantly impact
the perceived
usefulness.

late with the perceived usefulness, as shown by the correla-
tion tests in table A.10. Also, the regularity with which the
participants read source code does not impact their rating
of the diagrams significantly, the results of a Kruskal-Wallis
test are shown in table A.11. Similarly, there were no signifi-
cant differences in the perceived usefulness between partic-
ipants grouped by the percentage of unknown source code
read. The results from a Kruskall-Wallis test are shown in
table A.12.

Kendall’s τ Spearman’s rs
Visualization τ p rs p Significance

3d Relation Diagram -.09 .21 -.12 .19 ns
CallStax -.02 .77 -.03 .78 ns
Code city -.09 .21 -.12 .19 ns
Thematic software map .11 .13 .14 .12 ns

Table A.10: Correlation between programming experience and perceived useful-
ness of experimental visualizations. No significant results were found.

Visualization H(6) p Significance

3d relation diagram 1.14 .97 ns
CallStax 1.43 .95 ns
Code city 6.68 .48 ns
Thematic software map 1.05 .99 ns

Table A.11: Differences in perceived usefulness of experi-
mental visualizations between participants by code reading
frequency. No significant results were found.

A.2.3 Visualization software

How often do you use software tools (within or outside
your IDE) to create visualizations of your software project
or certain source code artifacts like classes? Table A.13
shows the answers to this question. Half the participants
from our survey use SV tools only several times per year or
never.

154 A Additional online survey materials

Visualization H(4) p Significance

3d relation diagram 4.89 .30 ns
CallStax 1.96 .75 ns
Code city 2.60 .64 ns
Thematic software map 4.70 .32 ns

Table A.12: Differences in perceived usefulness of exper-
imental visualizations between participants by percentage
of unknown code. No significant results were found.

Answer Count Percentage

Daily 5 3.91%
Not daily, but several times
per week

9 7.03%

At least once a week 12 9.38%
At least once a month 14 10.94%
At least once a quarter 23 17.97%
Less than once a quarter, but
occasionally

24 18.75%

Never 41 32.03%

N 128 100.00%

Table A.13: Frequency of SV tool usage. Half of our partic-
ipants use SV tools very scarcely or never.

Depending on the answer to this question, participantsUsers and non-users
were given different
questions.

were given different follow-up questions. We will present
the results for questions that followed for SV tool users (87
participants) first, then the question for non-users (41 par-
ticipants).

SV tool users

What visualizations do you usually create with a software
visualization application? For this question participantsClass diagrams are

by far the most often
created SV.

were allowed to choose any number of given SV types and
up to one additional type using a text box. Again, we of-
fered the seven common diagram types from section 3.2.2.

A.2 Results and analysis 155

Note that the percentages in table A.14 do not sum up to
100%, since each user could select several SVs.

Answer Count Percentage

Class diagram 71 81.61%
Flowchart 19 21.84%
Sequence diagram 18 20.69%
Call graph 16 18.39%
Software layer diagram 13 14.94%
Data flow diagram 11 12.64%
Packet diagram 6 6.90%
Other 10 11.49%

n 87 100.00%

Table A.14: Most frequently created SV types using soft-
ware tools

Other SV types given were relational database diagrams
(nr = 3), state charts (ns = 2), and several individual di-
agrams.

For what purpose do you create visualizations of your
project using visualization software? In order to de- SVs are created

mostly for internal
documentation and
personal use.

termine the right use case scenario for Code Gestalt we
wanted to know about the situations, in which SV tools
were used. Again, participants were allowed to select mul-
tiple reasons, as shown in table A.15.

What software do you use most often when creating visu-
alizations? The participants used a large variety of differ- Visual Studio,

Doxygen, and
Eclipse are the most
popular SV tools.

ent tools. Table A.16 lists all tools used by at least two par-
ticipants. Note that only 87 of 128 participants answered
this question. Also, several participants used the text box
to indicate more than one visualization tool, so the values
do not sum up to 100%.

156 A Additional online survey materials

Answer Count Percentage

Internal documentation 64 73.56%
Personal use (source code un-
derstanding)

57 65.52%

Documentation for public re-
lease

29 33.33%

Project presentation 21 24.14%
Code reviews 20 22.99%
Project management 20 22.99%
Complexity Control 17 19.54%
Quality assessment 15 17.24%
Other 5 5.75%

n 87 100.00%

Table A.15: The reasons for which users create SVs. The
most prominent uses are inter-developer communication
and personal understanding.

Does the above tool work seamlessly and smoothly with
your source code and projects? 63% of the participantsMost SVs work on

given source code
without major
problems.

chose ‘Mainly yes’, 37% ‘Mainly no’, 41 participants were
not asked, since they selected ‘Never’ in the first question
of this part of the survey.

For the most popular tools we looked at their individualMany participants
entered more than
one tool, thus biasing
our results.

scores. Please note that these results are biased by the fact
that several participants indicated more than one tool. We
decided to count answers for each indicated tool. The re-
sults (normalized to 100% per group) are given in table
A.17.

Does the above tool create a visualization to your sat-
isfaction? 79% participants chose ‘Mainly yes’ and 21%
‘Mainly no’. The individual results are shown in table A.18.
Again, these results are biased, since some answers could
not be unequivocally assigned to a single tool.

A.2 Results and analysis 157

Answer Count Percentage

Visual Studio 11 12.64%
Doxygen 10 11.49%
Eclipse 8 9.20%
Dia 7 8.05%
StarUML 5 5.75%
Xcode 5 5.75%
Visio 4 4.60%
bouml 3 3.45%
Custom software solution 3 3.45%
Unnamed IDE 3 3.45%
Magicdraw 3 3.45%
OmniGraffle 3 3.45%
ArgoUML 2 2.30%
Enterprise Architect 2 2.30%
JavaDoc 2 2.30%
Paint 2 2.30%
Rational Software Architect 2 2.30%
Umbrello 2 2.30%
Other 30 34.48%

n 87 100.00%

Table A.16: List of primarily used SV tools. The SV user
base is very fragmented.

Answer n Mainly Yes Mainly No

Visual Studio 11 91% 9%
Doxygen 10 80% 20%
Eclipse 8 75% 25%
Dia 7 43% 57%
StarUML 5 20% 80%
Xcode 5 60% 40%

Overall 87 63% 37%

Table A.17: The compatibility of SV tools with the code
bases of our participants.

158 A Additional online survey materials

Answer n Mainly Yes Mainly No

Visual Studio 11 91% 9%
Doxygen 10 70% 30%
Eclipse 8 88% 12%
Dia 7 86% 14%
StarUML 5 40% 60%
Xcode 5 40% 60%

Automatic 39 85% 15%
Semi-automatic 25 77% 23%
Manual 36 74% 26%

Overall 87 79% 21%

Table A.18: User satisfaction with results produced by SV
tools.

The categorization in automatic, semi-automatic, and man-The results from
automatic tools are
as satisfying as
manually created
SVs.

ual tools was provided by the participants’ answers to the
following question. Interestingly, there is no significant
difference between automatic, semi-automatic, and man-
ual SV tools, H(2) = 1.28, p = .53, and also the slight
decrease in our sample group is not a significant trend,
J = 1143, p = .266, z = −1.11 (two-tailed Jonckheere-
Terpstra test).

Does the above tool create the visualization automati-
cally? The participants were given three possible answersParticipants rated the

automation level of
their most often used
tool.

with the following explanation:

• Automatic tools should be able to create the com-
plete visualization without user input, although they
might offer options that allow the user to change
some global features of the visualization or allow for
manual edits after the creation of an automatically
generated diagram.

• Semi-automatic tools should have a basic understand-
ing of the code and offer features to generate visual-
izations of at least basic software artifacts, although
the user must, e.g., select manually what pieces to in-
clude in a diagram or how to layout the single parts.

A.2 Results and analysis 159

• Manual tools are basically drawing applications. Al-
though they might have some rudimentary support
by providing predefined shapes and layouts, they are
not capable of parsing a project or source code in or-
der to create any part of a diagram automatically.

This categorization was apparently not sharp enough, since Users had very
different perceptions
of the automation of
many tools.

only the users of Dia2 could unanimously classify it as man-
ual tool. The results are given in table A.19. Bear in mind
that we needed to map answers to more than one tool in
some cases.

Answer n Automatic Semi-automatic Manual

Visual Studio 11 36% 64% 0%
Doxygen 10 70% 20% 10%
Eclipse 8 38% 62% 0%
Dia 7 0% 0% 100%
StarUML 5 39% 25% 36%
Xcode 5 39% 25% 36%

Overall 87 39% 25% 36%

Table A.19: The categorization of SV tools by level of au-
tomation. The categorization is not always clear.

How much time do you normally spend using the tool
mentioned above on creating a visualization of your
project? The participants were given five time intervals
to choose from. Table A.20 shows the results for all tools
grouped by automation and the frequently mentioned in-
dividual tools.

Interestingly, StarUML (Mdn = ‘> 60 min’), a dedicated tool Dedicated UML
drawing tools are not
always faster than
general purpose
tools.

to design UML diagrams, performs significantly slower
than the more general purpose tool Dia (Mdn = ‘5–15 min’),
U = 4, p = .04, r = −.68, or sketches (see next section),
U = 46, p < .001, r = −.30. These finding are probably
biased, as StarUML was rarely mentioned exclusively, but

2http://live.gnome.org/Dia

http://live.gnome.org/Dia

160 A Additional online survey materials

A
ns

w
er

n
<

5
m

in
5-

15
m

in
15

-3
0

m
in

30
-6

0
m

in
>

60
m

in
M
d
n

V
is

ua
lS

tu
di

o
11

45
%

27
%

9%
9%

9%
5–

15
m

in
D

ox
yg

en
10

20
%

30
%

20
%

20
%

10
%

5–
30

m
in

Ec
lip

se
8

25
%

53
%

13
%

0%
0%

5–
15

m
in

D
ia

7
0%

14
%

72
%

14
%

0%
5–

15
m

in
St

ar
U

M
L

5
0%

0%
20

%
20

%
60

%
>

60
m

in
X

co
de

5
40

%
40

%
20

%
0%

0%
5–

15
m

in

A
ut

om
at

ic
39

47
%

21
%

12
%

14
%

6%
5–

15
m

in
Se

m
i-

au
to

m
at

ic
25

18
%

36
%

18
%

14
%

14
%

5–
15

m
in

M
an

ua
l

36
3%

23
%

42
%

16
%

16
%

15
–3

0
m

in

O
ve

ra
ll

87
24

%
26

%
24

%
15

%
11

%
15

–3
0

m
in

Ta
bl

e
A

.2
0:

SV
to

ol
ti

m
e

re
qu

ir
em

en
t

pe
r

vi
su

al
iz

at
io

n.
W

e
fo

un
d

a
si

gn
ifi

ca
nt

tr
en

d
th

at
m

or
e

au
to

m
at

io
n

de
cr

ea
se

s
th

e
ti

m
e

re
qu

ir
ed

to
pr

od
uc

e
SV

s.

A.2 Results and analysis 161

in combination with several other tools (Doxygen, Netbeans
UML Plugin3 & MagicDraw4, and PowerPoint & Rational).

In more general terms, comparing the time required by tool More automation
leads to faster
diagram creation.
But there are
exceptions.

automation support, there are significant differences with
H(2) = 12.46, p < .05. We also found a highly significant
trend with J = 1687.50, z = 3.58, r = .38, p < .001, mean-
ing that for tools with less automation, the median time re-
quired to produce diagrams increases (medium effect). We
also tested the differences between the most automatic tool
(Doxygen, Mdn = ‘5–30 min’) and the most manual (Dia,
Mdn = ‘5–15 min’) for which we have at least five sam-
ples. Their comparison shows that we cannot transfer the
general trend to any two tools from different ends of the
spectrum of automation: U = 28.5, p = .54, ns.

Non-users

This question was given to those participants, who indi-
cated to never use an SV tool.

Why do you not use a visualization software? We
offered eight reasons and the ability to type in a ninth. Par- Many users avoid SV

tools, because they
do not need them, or
they are too time
consuming.

ticipants could select multiple options. Table A.21 gives
the results to this question. Please note that percentages do
not sum up to 100%, since more than one answer could be
given. The question was only answered by 41 participants.

Two additional reasons given in the ‘Other’ text box were
variations of ‘I did not know that there are programs for
creating such visualizations’ and ‘Undesired/unsatisfying
results’ and were merged with these cases.

3http://netbeans.org/community/releases/55/uml-
download.html

4http://www.magicdraw.com/

http://netbeans.org/community/releases/55/uml-download.html
http://netbeans.org/community/releases/55/uml-download.html
http://www.magicdraw.com/

162 A Additional online survey materials

Answer Count Percentage

I have no need to create such
visualizations

21 51.22%

Too time consuming 21 51.22%
Undesired/unsatisfying
results

16 39.02%

There is no tool that can cre-
ate the visualizations I need

12 29.27%

I did not know that there are
programs for creating such
visualizations

6 14.63%

I did not know that there are
ways to visualize source code

3 7.32%

Usability issues 3 7.32%
The visualization tool I need
is not affordable

0 0.00%

Other 0 0.00%

n 41 100.00%

Table A.21: Reasons for not creating SVs. Participants
could give multiple answers.

A.2.4 Manual visualization

The following data are the basis for the results reported in
section 3.2.4.

How often do you use sketches (paper, white board, flip
chart, Tablet PC etc.) to create visualizations of your soft-
ware project or certain source code artifacts like classes?
Table A.22 shows the responses to this question. Half the
participants create a sketch at least once a month.

Sketching participants

The following questions were only given to the 112 partici-
pants who sketch at least occasionally.

A.2 Results and analysis 163

Answer Count Percentage

Daily 14 10.94%
Not daily, but several times
per week

24 18.75%

At least once a week 19 14.84%
At least once a month 27 21.09%
At least once a quarter 12 9.38%
Less than once a quarter, but
occasionally

16 12.50%

Never 16 12.50%

N 128 100.00%

Table A.22: Frequency of sketching. More than half of our
participants sketch at least once a month or more often.

What aspects of your software project or code artifact
do you usually cover in your sketches? The participants Sketches often

depict the relations
between classes.

were given nine aspects to choose from and the option to
enter a tenth in a text box. The results are shown in table
A.23. Note that the percentages do not sum up to 100%,
since the 112 participants, who were given this question,
could select an arbitrary number of answers.

Answer Count Percentage

Class hierarchy 74 66.07%
Class dependency 61 54.46%
Data flow 46 41.07%
Function/method calls 46 41.07%
Sequence and timing 44 39.29%
Software layers 24 21.43%
Membership 13 11.61%
Framework/package/namespace hierarchy 10 8.93%
Framework/package/namespace dependency 8 7.14%
Other 13 11.61%

n 112 100.00%

Table A.23: Most used aspects in sketches. Participants could give multiple an-
swers.

164 A Additional online survey materials

Actually, 14 participants provided information in theParticipants also
sketch the workings
of algorithms and
data storage.

‘Other’ text box, but one was identified as data flow as-
pect and merged with that category. Five participants vi-
sualize algorithms and four data storage aspects. One par-
ticipant uses sketches for testing locking requirements, for
hardware setup and peripheral devices, for interactions be-
tween program parts using the actor model each. One par-
ticipant sketches aspects “je nachdem”5.

What materials do you use to create sketches? We useThe tools used most
often for sketching
are pen and paper,
followed by
whiteboards.

a very wide definition of sketches. Thus, we provided a
wide range of options to choose from for this question. Par-
ticipants could select any number of tools and materials.
Please note that the results in table A.24 are only answered
by 112 participants, and that multiple answers could be
chosen. Thus, the percentages do not sum up to 100%.

Answer Count Percentage

Pen, pencil 111 99.11%
Paper 110 98.21%
Whiteboard 50 44.64%
Multiple colors 40 35.71%
Eraser, sponge 36 32.14%
Ruler 12 10.71%
Sticky notes 11 9.82%
Flip chart 7 6.25%
Set square 7 6.25%
Magnets 6 5.36%
Computer graphics tablet 5 4.46%
Compass 0 0.00%
Other 5 4.46%

n 112 100.00%

Table A.24: Materials used for sketches. Participants could
give multiple answers.

5English: “it depends”

A.2 Results and analysis 165

Among ‘other’ materials were two entries mentioning dif- Developers
repurpose many
different applications
to create sketches.

ferent software tools (OmniGrafle6, Paint7, and Gimp8). Two
users employ plain text editors. One participant uses “ver-
schiebbare Schnipsel”9, which we merged with the ‘sticky
notes’ category. One user employs mind maps and the soft-
ware CUEcards10.

For what purpose do you create sketches of your project
or software artifacts? We gave the participants the same A majority creates

sketches for personal
use and
understanding.

options as for the related SV question. The results are
shown in table A.25, again note that only 112 participants
responded and could give more than one answer each.

Answer Count Percentage

Personal use (source code understanding) 95 84.82%
Internal documentation 49 43.75%
Project management 28 25.00%
Complexity control 20 17.86%
Project presentation 20 17.86%
Code reviews 19 16.96%
Quality assessment 8 7.14%
Documentation for public release 6 5.36%
Other 11 9.82%

n 112 100.00%

Table A.25: Tools and materials used for creating sketches. Participants could give
multiple answers.

How much time you usually spend on creating a sketch?
The same time intervals as for the corresponding SV ques- Sketches often take

less than 15 minutes
to create.

tion were offered. The percentages in table A.26 are based
on the 112 participants who answered this question. More
than half of the participants create a sketch in 15 min or
less. When we compare these results with the times for
the creation of SVs, we find no significant difference: U =
4263, z = −1.56, ns.

6http://www.omnigroup.com/products/omnigraffle/
7http://windows.microsoft.com/en-US/windows7/products/features/paint
8http://www.gimp.org/
9English: “movable snippets”

10http://www.mhst.net/cuecards/

http://www.omnigroup.com/products/omnigraffle/
http://windows.microsoft.com/en-US/windows7/products/features/paint
http://www.gimp.org/
http://www.mhst.net/cuecards/

166 A Additional online survey materials

Answer Count Percentage

< 5 min 26 23.21%
5-15 min 44 39.29%
15-30 min 25 22.32%
30-60 min 13 11.61%
> 60 min 4 3.57%

n 112 100.00%

Table A.26: Time requirement per sketch. Half of our par-
ticipants draw up a sketch in 15min or less.

Non-sketching participants

The following question was displayed for the 16 partici-
pants, who indicated in the first question of this part that
they never sketch.

Why do you not use sketches to visualize your code? We
suggested eight reasons and a text box for users to provideSketches are

avoided, when
deemed
unnecessary or time
consuming.

a ninth. Table A.27 show the results. Percentages are based
on 16 out of 128 participants who could select an arbitrary
number of reasons.

The ‘Other’ reason given by one user was the fact that
he needed to provide SVs for documentation purposes
and therefore it was not economical for him to also create
sketches.

A.2.5 Software visualization in documentation

In this section we give the results for the last two questions,
as reported in section 3.2.5.

Do you initially consult the documentation of a pre-
viously unknown project to find visualizations in or-
der to understand it? 76 participants chose ‘Mainly yes’

A.2 Results and analysis 167

Answer Count Percentage

I have no need to create such
sketches.

9 56.25%

Too time consuming 7 43.75%
I find sketching too hard to
do.

5 31.25%

Undesired/unsatisfying
results

3 18.75%

I did not think of doing
sketches to visualize code.

2 12.50%

I can not sketch the visualiza-
tions I need (e.g., they are to
complicated).

2 12.50%

I did not know that there
are ways to visualize source
code.

1 6.25%

I can not afford the materials. 0 0.00%
Other 1 6.25%

n 16 100.00%

Table A.27: Reasons for not creating sketches. Participants
could give multiple answers.

(59.38%), while 52 chose ‘Mainly no’ (40.62%), the two an-
swers offered to that question.

Do you use visualizations of a documentation regularly
when you are more familiar with a project? 37 partici-
pants chose ‘Mainly no’ (28.91%), 91 ‘Mainly yes’ (71.09%).

169

Appendix B

Paper prototype user test

“If you were really great and powerful,
you’d keep your promises!”

—Dorothy challenges the Wizard of Oz
(The Wizard of Oz, 1939)

The following guide was used by the instructor to perform
the user test of the paper prototype (see section 4.3).

• Show mock-up for use-case 1

– Ask: “How many diagrams are contained in this
project?”

– Ask: “What is probably visualized in each of the
diagrams?”

– Ask: “What would you do to open the diagram
offering the most abstract view on the project?”

• Show mock-up for use case 2

– Ask: “How would you create a
new diagram containing the method
fireResizePerformed?”

– Ask: “What would you do to manipulate the
newly created type box in the diagram?”

• Show mock-up for use case 3(a)

170 B Paper prototype user test

– Ask: “How would you expand the diagram with
the parent class of JResizeHandle?”

– Show original situation on mock-up of use case
3(a)

– Ask: “How would you expand the diagram with
the methods calling fireResizePerformed?”

– Ask: “How would you delete mouseDragged?”

– Ask: “Which methods are called by
fireResizePerformed?”

– Ask: “How would you expand the diagram with
the method resized of ResizeListener?”

– Ask: “What is visualized by the preview?”

– Ask: “How would you expand the diagram with
the child class of ResizeListener?”

– Ask: “Why was the method resized added to
JStatusBar?”

– Ask: “Do you consider this behavior reason-
able?”

– Ask: “How intuitive is the interaction? What
changes do you propose?”

• Show mock-up for use case 3(b)–3(d)

• Show mock-up of complete diagram and filter side-
bar

– Ask: “What functionality do you expect from
this sidebar?”

– Ask: “What would you do to find all listeners?”

• Show mock-up of diagram with filtered elements

– Ask: “How would you restrict the search to
only show calls that use ‘Listner’ as a parame-
ter name?”

• Show mock-up of diagram with filtered relations

– Ask: “How would you save a filter?”

• Turn sidebar

– Ask: “How would you disable the filter?”

– Ask: “How would you re-enable the filter?”

171

– Ask: “How would you change the filter scope to
look for types?”

• Show mock-up of diagram with filtered types

– Ask: “How would you change the search term?”

– Ask: “How would you disable all filters?”

• Ask: “How intuitive is the interaction? What changes
do you propose?”

• Show mock-up of palette

– Ask: “How would you create a group of listener
types?”

– Show mock-up of diagram with group

– Ask: “How would you set the color of the group
to green?”

– Ask: “How would you assign an icon of an ear
to the group?”

– Ask: “How would you assign a name to the
group?”

• Show mock-up with updated IDE

– Ask: “Do you consider the changes to the pack-
age explorer and code editor to be reasonable?”

173

Appendix C

Additional user study
materials

“In the end we retain from our studies only that
which we practically apply.”

—Johann Wolfgang von Goethe

In this appendix we present the interested reader with de- We presents details
on the user study.tails on the user study described in 6.3. We reproduce orig-

inal forms used for the study in section C.1 and give details
on the results in section C.2.

C.1 User study forms

We used several forms for the evaluation of the Eclipse
plug-in Code Gestalt (see section 6.3). In the following
you find the original forms handed to the testers, namely
the consent form (section C.1.1), task descriptions (section
C.1.2), and final questionnaire (section C.1.3). We also re-
produce the checklist used to determine error and clut-
ter counts for the created sketches and diagrams (section
C.1.4).

174 C Additional user study materials

C.1.1 Consent form

The consent form on the following page was given to eachEach tester signed a
consent form. participant at the beginning of a test session. After explain-

ing to the tester and answering any questions regarding the
study, the form was signed by both the participant and the
principal investigator.

Informed Consent Form
Code Gestalt Evaluation

Purpose of the study: The goal of this study is to evaluate the

Eclipse plug-in Code Gestalt. Participants will be asked to use

Code Gestalt as well as pen and paper to create diagrams that

explain how several aspects of a sample program work. Both the time needed to complete these drawings

and their accuracy will then be used in an analysis to evaluate the software.

Procedure: You will be asked to understand software functions in a given Java painting application and

then draw diagrams either by hand or using Code Gestalt to illustrate these functions. A video of the UI will

be captured in background along with an Audio recording. This study should take about an hour to

complete, depending on your proficiency with Java and Eclipse. After the study, we will ask you to fill out a

questionnaire to evaluate the tested system.

In about two weeks we will contact you again via e-mail. The e-mail will contain several diagrams drawn by

other users and the painting application source code. You will be asked to compare pairs of pen and paper

sketches with Code Gestalt diagrams using another questionnaire. It is possible, that during this second

phase other participants of the survey will get access to anonymized versions of the diagrams you created.

Risks/Discomfort: You may become fatigued during the course of your participation in the study. You will

be given several opportunities to rest, and additional breaks are also possible. There are no other risks

associated with participation in the study. Should completion of either the task or the questionnaire

become distressing to you, it will be terminated immediately.

Benefits: The results of this study will be useful in understanding which features are required for a software

visualization application to be competitive with traditional pen and paper sketches.

Alternatives to Participation: Participation in this study is voluntary. You are free to withdraw or

discontinue the participation.

Cost and Compensation: Participation in this study will involve no cost to you. There will be snacks and

drinks for you during and after the participation. Also you may enter a lottery for six copies of the computer

game World of Goo.

Confidentiality: All information collected during the study period will be kept strictly confidential. You will

be identified through identification numbers. No publications or reports from this project will include

identifying information on any participant. If you agree to join this study, please sign your name below.

I have read and understood the

information on this form.
I have had the information on this form

explained to me.

Participant’s Name Participant’s Signature Date

 Principal Investigator Date

If you have any questions regarding this study, please contact Christopher Kurtz at christopher.kurtz@rwth-

aachen.de

Christopher Kurtz

Media Computing Group

RWTH Aachen University

christopher.kurtz@rwth-aachen.de

176 C Additional user study materials

C.1.2 Test tasks

The following four pages contain the test tasks to be com-The testers were
given four tasks in
counterbalanced
order.

pleted by the participants over the course of the study.
Note that the order and assignment of tools was counter-
balanced, so different users were getting tasks in different
order and were to complete them with different tools.

We internally numbered the test tasks in the order of which
they are presented on the following pages:

1. Switching Between Tools

2. Drawing Tool Preview

3. Changing Drawing Tool Attributes

4. Erase the Drawing Area

These are the numbers referred to in section 6.3.3.

Switching Between Tools
In Paint the user can choose between three drawing tools: Pencil, Eraser and Line. In order to enable

another programmer to create additional drawing tools, you need to communicate to her how the

software realizes the support for them.

Study the source code of Paint and draw a diagram explaining how the different drawing tools (pen,

eraser, line) are implemented. The diagram should explain how switching between tools is realized

and contain the relevant classes and methods.

Hint: Paint uses Java’s ability for dynamic binding and reflection.

Drawing Tool Preview
In Paint the user is given a preview of the shape and color of the selected tool when moving the

mouse over the drawing area. You want to visualize how this function is realized.

Study the source code of Paint and draw a diagram explaining how the preview works. The diagram

should incorporate all method calls needed beginning by the mouse cursor hovering over the

drawing area and ending with the code that renders the shape.

Hint: You do not need to understand or illustrate how the switching between drawing tools works.

Changing Drawing Tool Attributes
There are three sliders in Paint with which the user can manipulate the RGB values of the drawing

color. You are to explain to a fellow programmer how the change of the sliders in the UI results in the

drawing tool to produce pixels of a different color, so he may implement other controls with which

the user can manipulate attributes of the drawing tools.

Study the source code of Paint and draw a diagram explaining how changing the sliders impacts the

drawing tools. The diagram should contain all relevant code artifacts involved with communicating

the color set by the UI up to the ultimate manipulation of the image by the drawing tool.

Erase the Drawing Area
Paint has a button labeled Clear the canvas that erases the contents of the drawing area. You want to

understand, how clicking the button results in the drawing area to change its contents, so you can

implement other global image manipulation features like filters.

Study the source code of Paint and draw a diagram that illustrates how clicking the button changes

the drawing area. The diagram should contain the involved code artifacts.

Hint: Java Swing allows for programmers to directly assign actions to buttons without a mediating

listener object.

C.1 User study forms 181

C.1.3 User study questionnaire

At the end of each test session, participants were given The testers filled out
a questionnaire at
the end of the
session.

the questionnaire reproduced on the following three pages.
The first ten statements are an adaptation of the SUS ques-
tionnaire, replacing ‘the system’ with ‘Code Gestalt’.

Code Gestalt Questionnaire
Participant ID:

Please choose one response per statement by marking the corresponding square with an “X”.

 Strongly
Disagree

Strongly
Agree

1. I think that I would like to use Code
Gestalt frequently.

2. I found Code Gestalt unnecessarily
complex.

3. I thought Code Gestalt was easy to use.

4. I think that I would need the support of
a technical person to be able to use
Code Gestalt.

5. I found the various functions in Code
Gestalt were well integrated.

6. I thought there was too much
inconsistency in Code Gestalt.

7. I would imagine that most people would
learn to use Code Gestalt very quickly.

8. I found Code Gestalt very cumbersome
to use.

9. I felt very confident using Code Gestalt.

10. I needed to learn a lot of things before I
could get going with Code Gestalt.

11. I found Code Gestalt to be very flexible.

12. I could not predict the outcome of my
interactions with Code Gestalt.

13. I believe using Code Gestalt is a practical
alternative to creating diagrams by
hand.

14. I expect the diagrams created with Code
Gestalt to be confusing for most
programmers.

Continued overleaf

Please rate the following features of Code Gestalt for their usefulness:

 Not
useful

Very
useful

15. Similarity to UML class diagrams

16. Generation of diagrams from a Project
Explorer selection

17. Adding types and methods using drag-
and-drop

18. Integration of Eclipse symbols and
markers for Java entities

19. Adding relations using previews for
selected entities

20. Number and selection of “expand” and
“collapse members” commands for
types via context menu

21. Inclusion of a tag cloud in type boxes

22. Visualization of tags in an overlay

23. Highlighting of tags by selecting types in
the tag overlay

24. Highlighting of types by selecting tags in
the tag overlay

25. Pinning tags from the overlay to the
diagram

26. Visualizing the influence of a tag using a
“fan” in the background of the diagram

27. Adding notes

28. Opening a Java Editor by double-clicking
a diagram entity

29. Use of selection-dependent buttons (e.g.
“Close” and “Change Color”)

30. Limitation to one box per Java type

Please use the spaces to answer the following two open-ended questions.

1. Which aspects of Code Gestalt did you like? Did it offer advantages over pen-and-paper
sketches?

2. Which aspects of Code Gestalt did you dislike? Which advantages did pen-and-paper
sketches offer?

Thank you for participating!

C.1 User study forms 185

C.1.4 Error and clutter evaluation scheme

We used the following list of required and optional code We used a check list
to count errors and
clutter.

artifacts to determine the error count for all user created
diagrams in section 6.3.3 and the error and clutter counts
for section 6.3.4. The items in parenthesis are optional and
were neither considered an error when missing nor clutter
when present.

Task #1

• Types

– Actions

– PaintWindow

– PaintObject

– PencilPaint

– LinePaint

– EraserPaint

– PaintObjectConstructor

– (JRadioButton)

– (AbstractAction)

– (Class)

• Attributes

– PaintWindow

∗ actions
∗ pencilButton
∗ eraserButton
∗ lineButton
∗ objectConstructor
∗ (toolButtonGroup)

– Actions

∗ paintWindow
∗ eraserAction
∗ lineAction
∗ pencilAction

186 C Additional user study materials

– PaintObjectConstructor

∗ paintObjectClass
∗ (temporaryObject)

• Methods

– Actions or AbstractAction

∗ Actions() or actionPerformed()

– PaintWindow

∗ setPaintObjectClass()
∗ (PaintWindow())

– PaintObjectConstructor

∗ setClass()

• Calls

– actionPerformed() or Actions() →
setPaintObjectClass()

– setPaintObjectClass()→ setClass()

– (newInstance())

– (PaintWindow()→ Actions())

• Inheritance

– PencilPaint→ PaintObject

– LinePaint→ PencilPaint

– EraserPaint→ PencilPaint

Task #2

• Types

– PaintWindow

– PaintObjectConstructiorListener

– PaintObjectConstructor

– PaintCanvas

– PaintObject

– (MouseListener)

– (MouseMotionListener)

– (JPanel)

C.1 User study forms 187

• Attributes

– PaintWindow

∗ objectConstructor
∗ canvas

– PaintObjectConstructor

∗ constructionListener
– PaintCanvas

∗ hoveringObject

• Methods

– PaintWindow

∗ hoveringOverConstructionArea()
∗ (PaintWindow())

– PaintObjectConstructorListener

∗ hoveringOverConstructionArea()
– PaintObjectConstructor

∗ mouseMoved()
∗ makeHoveringPrototype()
∗ (PaintObjectConstructor())
∗ (mouseDragged())
∗ (mousePressed())
∗ (mouseReleased())
∗ (mouseExited())

– PaintCanvas

∗ setHoveringObject()
∗ paintComponent()
∗ (addMouseListener())
∗ (addMouseMotionListener())

– PaintObject

∗ paint()
∗ (define())
∗ (setColor())
∗ (setThickness())

• Calls

– mouseMoved() →
hoveringOverConstructionArea()

188 C Additional user study materials

– (mouse*()→ hoveringOverConstructionArea())

– mouseMoved() →
makeHoveringPrototype()

– (mouse*()→ makeHoveringPrototype())

– hoveringOverConstructionArea() →
setHoveringObject()

– paintComponent()→ paint()

– (makeHoveringPrototype()→ define())

– (makeHoveringPrototype() →
setColor())

– (makeHoveringPrototype() →
setThickness())

– (PaintWindow() →
PaintObjectConstructor())

• Inheritance

– PaintWindow→ PaintObjectConstructor

Task #3

• Types

– PaintWindow

– PaintObjectConstructor

– PaintObject

– (ChangeListener)

– (JSlider)

• Attributes

– PaintWindow

∗ colorChangeListener
∗ rSlider
∗ gSlider
∗ bSlider
∗ objectConstructor

– PaintObjectConstructor

∗ color

C.1 User study forms 189

– PaintObject

∗ color

• Methods

– ChangeListener

∗ (stateChanged())

– PaintObjectConstructor

∗ setColor()
∗ mousePressed()

– PaintObject

∗ setColor

• Calls

– stateChanged()→ setColor()

– mousePressed()→ setColor()

• Inheritance

– None

Task #4

• Types

– PaintWindow

– Actions

– PaintCanvas

– (AbstractAction)

– (JButton)

• Attributes

– PaintWindow

∗ actions
∗ clearButton
∗ canvas

– Actions

∗ clearAction
∗ (paintWindow)

190 C Additional user study materials

• Methods

– PaintWindow

∗ clear()
∗ (PaintWindow())

– PaintCanvas

∗ clear()
– Annonymous, AbstractAction, or Actions

∗ actionPerformed() or Actions()

• Calls

– actionPerformed() or Action() →
PaintWindow.clear()

– PaintWindow.clear() →
PaintCanvas.clear()

• Inheritance

– None

C.2 Results and analysis

The following data and their analysis are the basis of the
results reported in section 6.3.3. All data is based on N =
16, unless noted otherwise.

C.2.1 Population

Two participants were female (12.5%), 14 were maleMost participants
were male student
assistants.

(87.5%). Four testers were doctoral students/research as-
sistants (25%), eight student assistants (50%), three diploma
thesis students (18.75%), and one tester was a Bachelor stu-
dent (6.25%). Participants had a mean of 10.03 years of
general programming experience (Mdn = 8.25, s = 6.34),
3.69 years Java programming experience (Mdn = 2.5, s =
3.90), and 3.01 years of experience with the Eclipse IDE
(Mdn = 2.5, s = 2.30). Seven testers had none, six only
ephemeral experience with SV tools. The remaining four

C.2 Results and analysis 191

participants had a mean of 2.94 years of SV experience
(Mdn = 2.5, s = 2.63). Our participants spent a mean of
14.47 hours a week on programming tasks (Mdn = 10, s =
14.27), and dealt with a mean of 37.8% of unknown code
(Mdn = 27.5%, s = 30.0%).

C.2.2 Completion rates and times

We report the completion rates (10 minutes per task) in ta- We found no
significant
differences in the
completion rates of
sketching and Code
Gestalt.

ble C.1. The differences in completion rates are not signifi-
cant. The results of Mann-Whitney tests for each of the four
tasks are listed in table C.2. We found no significant differ-
ences.

Task Sketching Code Gestalt

#1 50.0% 62.5%
#2 25.0% 25.0%
#3 62.5% 25.0%
#4 87.5% 87.5%

M 56.3% 50.0%

Table C.1: Completion rates for each task/system combi-
nation.

Task U z p Significance

#1 28.00 -.49 1.00 ns
#2 32.00 .00 1.00 ns
#3 20.00 -1.46 0.32 ns
#4 32.00 .00 1.00 ns

Table C.2: Comparison of completion rates between
sketching and Code Gestalt.

We report the completion times for completed tasks in ta- We found one
significant
differences in the
completion times of
sketching and Code
Gestalt.

ble C.3. Deciding on a statistical test for comparing com-
pletion times is not straightforward, as data from some
test conditions are normally distributed, whereas others
are not (probably due to the small sample size). For rea-
sons of uniformity, we chose to compare completion times

192 C Additional user study materials

using the non-parametrized Mann-Whitney test. The re-
sults are shown in table C.4. Sketches were significantly
faster completed than Code Gestalt diagrams for task #4,
U = 9.00, z = −1.98, p < .05, the effect size r = −.53 is
large.

Sketching Code Gestalt
Task n M Mdn s n M Mdn s

#1 4 540 525 42.4 5 526 570 127.0
#2 2 517.5 517.5 116.7 2 570 570 42.4
#3 5 424 420 123.4 2 600 600 0
#4 7 364.3 300 123.6 7 511.4 511.4 49.7

Table C.3: Completion times (in seconds) for each task/system combination.

Task U z p Significance

#1 7.50 -.62 .603 ns
#2 1.5 -.41 1.000 ns
#3 1.00 -1.61 .238 ns
#4 9.00 -1.98 .048 p < .05

Table C.4: Comparison of completion times between sketching and Code Gestalt.

C.2.3 Errors

For each diagram created by our testers we counted theWe counted errors
for each diagram in
five categories.

number of missing essential artifacts (errors) according to
appendix C.1.4. The descriptive statistics in table C.5 are
based on the eight diagrams created by the participants for
each test task/system combination.

Again, both Kolmogorov-Smirnov and Shapiro-Wilk tests
indicate that most of the data sets are not normally dis-
tributed. Thus, we again use Mann-Whitney tests to com-
pare the error counts as reported in table C.6.

C.2 Results and analysis 193

Ty
pe

s
A

tt
ri

bu
te

s
M

et
ho

ds
C

al
lR

el
at

io
ns

In
he

ri
ta

nc
e

R
el

at
io

ns
Te

st
Ta

sk
Sy

st
em

M
M
d
n

s
M

M
d
n

s
M

M
d
n

s
M

M
d
n

s
M

M
d
n

s

#1
Sk

et
ch

3.
75

4.
0

1.
39

7.
50

7.
0

1.
93

1.
88

1.
5

0.
99

1.
25

1.
0

0.
71

1.
88

2.
5

1.
36

C
G

1.
38

1.
0

1.
69

5.
75

5.
5

2.
12

1.
13

1.
0

1.
13

1.
13

1.
0

0.
84

0.
75

0.
0

1.
39

#2
Sk

et
ch

3.
38

3.
5

1.
60

3.
13

3.
0

0.
84

5.
00

5.
5

1.
85

2.
50

3.
0

1.
41

0.
88

1.
0

0.
35

C
G

1.
75

2.
0

0.
71

1.
75

2.
0

0.
71

3.
00

3.
0

0.
76

2.
13

2.
0

0.
35

0.
88

1.
0

0.
35

#3
Sk

et
ch

1.
00

1.
0

1.
07

1.
00

1.
0

1.
07

1.
50

1.
0

1.
07

0.
75

1.
0

0.
71

0.
00

0.
0

0.
00

C
G

0.
88

1.
0

0.
64

0.
88

1.
0

0.
64

1.
75

2.
0

1.
04

1.
88

2.
0

0.
35

0.
00

0.
0

0.
00

#4
Sk

et
ch

0.
63

0.
0

1.
06

1.
88

2.
0

0.
84

1.
00

1.
0

0.
54

0.
63

0.
5

0.
74

0.
00

0.
0

0.
00

C
G

0.
75

1.
0

0.
46

2.
38

2.
0

0.
92

1.
25

1.
0

0.
71

1.
25

1.
0

0.
71

0.
00

0.
0

0.
00

Ta
bl

e
C

.5
:E

rr
or

co
un

tf
or

ea
ch

of
th

e
fiv

e
ca

te
go

ri
es

pe
r

ta
sk

/s
ys

te
m

co
m

bi
na

ti
on

.

194 C Additional user study materials

Ty
pe

s
A

tt
ri

bu
te

s
M

et
ho

ds
C

al
lR

el
at

io
ns

In
he

ri
ta

nc
e

R
el

at
io

ns
Te

st
Ta

sk
U

z
p

U
z

p
U

z
p

U
z

p
U

z
p

#1
8.

0
-2

.5
6

.0
07

17
.0

-1
.5

9
.1

24
19

.5
-1

.3
7

.2
41

29
.5

-0
.2

8
.9

84
18

.0
-1

.6
2

0.
13

2
#2

9.
5

-2
.4

1
.0

13
21

.0
-1

.2
7

.3
02

12
.0

-2
.1

5
.0

36
22

.0
-1

.1
3

.2
69

32
.0

0.
00

1.
00

0
#3

32
.0

0.
00

1.
00

0
26

.5
-0

.5
9

.5
61

27
.0

-0
.5

5
.6

20
6.

5
-2

.9
2

.0
06

32
.0

0.
00

1.
00

0
#4

23
.0

-1
.0

6
.3

15
22

.5
-1

.0
6

.4
07

25
.0

-0
.8

5
.4

95
17

.5
-1

.6
3

.1
61

32
.0

0.
00

1.
00

0

Ta
bl

e
C

.6
:E

rr
or

co
un

tc
om

pa
ri

so
n

be
tw

ee
n

sy
st

em
s

fo
r

ea
ch

of
th

e
fiv

e
ca

te
go

ri
es

pe
r

te
st

ta
sk

.

C.2 Results and analysis 195

The tests detected the following significant differences be- We found four
significant results in
the 20 observed
cases.

tween sketching and Code Gestalt:

• Users of Code Gestalt missed significantly fewer
types in tasks #1 and #2, r#1 = −.64, r#2 = −.60.
With p < .01, the difference for task #1 is highly sig-
nificant with a large effect.

• Users of Code Gestalt missed significantly fewer
methods in task #2, r#2 = −.54. The effect is large.

• Sketchers missed significantly fewer call relations in
task #3, r#3 = −.73. With p < .01, this result is highly
significant with a large effect.

197

Appendix D

Second online survey
materials

“You just don’t get it, do you, Jean-Luc?
The trial never ends. We wanted to see if you had

the ability to expand your mind and your horizons.
And for one brief moment, you did.”

—Q (Star Trek: The Next Generation)

We invited all 16 testers from the user study (see section 6.3) We present details
on the online survey
following the user
test.

to take a second survey between December 16th, 2010 and
January 2nd, 2011, in which we let them compare four pairs
of sketches and Code Gestalt diagrams for each of the test
tasks. We present the questions of the survey in appendix
D.1, as well as additional data gathered and its analysis in
appendix D.2.

D.1 Survey questions

We used the following questions in the second survey for
the evaluation of Code Gestalt as described in section 6.3.4.

198 D Second online survey materials

D.1.1 Diagram/sketch comparison

Each participant was given a set of four pairs of CodeTesters compared for
pairs of sketches and
Code Gestalt
diagrams.

Gestalt diagrams and sketches (one per user study task).
The original task text was reproduced (see appendix C.1.2)
for each pair of diagrams. The pairs were to be rated in four
categories using seven-point Likert scales.

Please rate the following two diagrams. Four seven-
point Likert scales from ‘strongly favor pen and paper’ to
‘strongly favor Code Gestalt’ (mandatory) for each of the
following:

• Which diagram is clearer?

• Which diagram is more understandable?

• Which diagram would you rather use as aid to solve
the task?

• Which diagram is better suited to document the
source code?

After comparing the four pairs, which type of diagram is
particularly well suited for which scenario? Free text

Help: You may also discuss this from a point of view not
expressed in the four previous questions.

D.1.2 Additional features

We compiled a list of all features suggested by participantsTesters rated a list of
suggested features
for importance.

during the user test. This list was used for the final ques-
tion.

During the user study many participants gave sugges-
tions for improvement of Code Gestalt. To guide the fur-
ther development of Code Gestalt, please rate the impor-
tance of the following features: 28 five-point Likert scales
from ‘entirely insignificant’ to ‘very important’ (optional)

D.1 Survey questions 199

• Automatic search for and preview relations to ele-
ments that are not yet included in the diagram

• Labeling of relations

• New relation type ‘override/implements’ between
methods in a type hierarchy

• Make tag cloud at bottom of type box optional (de-
fault: disabled)

• New relation type ‘dependence’ between types

• ‘Open Call Hierarchy’ and ‘Open Type Hierarchy’
commands in diagram context menu

• ‘Remove members from inverse selection’ command
in context menu

• Add members to types using a text box with incre-
mental search

• Manual relation drawing tools

• Drag-and-drop of members to any location and auto-
matically add them to the correct type box

• Framework specific relations (e.g. from a button to an
action)

• Allow highlighting of tags/types in tag overlay for
multiple elements

• Drag-and-drop source code to diagram

• New relation ‘Access’ from methods to fields

• Support ‘Link with Editor’ feature of Eclipse Package
Explorer

• JavaDoc tool tips

• Preview relations during drag-and-drop from Pack-
age Explorer

• Full support for anonymous and local types

• Assign random colors to thematic relation fans on cre-
ation

• Routing-algorithm for relations (to minimize overlap)

200 D Second online survey materials

• ‘Send to Diagram’ command in context menu of Pack-
age Explorer and Java Editor

• ‘Find’ command for diagram

• Show thematic relation fan in tag overlay

• Show context sensitive controls (i.e., ‘Expand All’,
‘Change Color’) on mouse-hover (instead of selec-
tion)

• Automatic layout (optional)

• ‘Find’ command for tag overlay

• Show tag overlay only while holding down a key
(quasi-mode)

• Rich Text for sticky notes

D.2 Results and analysis

The following data is the basis of the results reported in
section 6.3.4.

D.2.1 Comparison of sketches with Code Gestalt
diagrams

We report the descriptive statistics of the survey results inCode Gestalt is
slightly clearer and
more suitable for
documentation.

table D.1. Again, we normalized the Likert scale to the
range of [−1..1]. −1 represents ‘strongly prefer pen and pa-
per sketch’, 1 ‘strongly prefer Code Gestalt diagram’, and 0
‘no preference’.

D.2 Results and analysis 201

C
le

ar
ne

ss
U

nd
er

st
an

da
bi

lit
y

Ta
sk

Su
pp

or
t

D
oc

um
en

ta
ti

on
Te

st
Ta

sk
G

ro
up

n
M

M
d
n

s
M

M
d
n

s
M

M
d
n

s
M

M
d
n

s

#1
A

8
0.

21
0.

17
0.

56
0.

17
0.

00
0.

47
0.

17
0.

33
0.

47
0.

38
0.

50
0.

52
B

6
0.

50
0.

50
0.

35
-0

.3
3

-0
.3

3
0.

37
-0

.1
7

-0
.3

3
0.

55
0.

44
0.

33
0.

50

#2
A

8
0.

50
0.

67
0.

44
0.

54
0.

67
0.

31
0.

58
0.

67
0.

35
0.

67
0.

67
0.

25
B

6
0.

67
0.

67
0.

21
0.

33
0.

33
0.

30
0.

44
0.

33
0.

17
0.

50
0.

50
0.

18

#3
A

8
-0

.2
9

-0
.1

7
0.

38
-0

.5
0

-0
.3

3
0.

36
-0

.3
8

-0
.3

3
0.

28
-0

.3
8

-0
.3

3
0.

40
B

6
-0

.0
6

0.
17

0.
65

-0
.5

5
-0

.5
0.

27
-0

.5
0

-0
.6

7
0.

41
-0

.2
2

-0
.3

3
0.

54

#4
A

8
0.

33
0.

33
0.

40
0.

25
0.

33
0.

46
0.

17
0.

17
0.

31
0.

25
0.

33
0.

35
B

6
0.

17
0.

17
0.

62
-0

.1
1

0.
00

0.
34

-0
.1

1
-0

.1
7

0.
40

0.
17

0.
17

0.
46

A
ll

Bo
th

56
0.

24
0.

33
0.

53
-0

.0
1

0.
00

0.
52

0.
04

0.
00

0.
50

0.
23

0.
33

0.
51

Ta
bl

e
D

.1
:

C
om

pa
ri

ng
pa

ir
s

of
di

ag
ra

m
s

on
a

sc
al

e
fr

om
-1

(‘s
tr

on
gl

y
fa

vo
r

sk
et

ch
’)

to
1

(‘s
tr

on
gl

y
fa

vo
r

C
od

e
G

es
ta

lt
di

ag
ra

m
’).

203

Bibliography

Klaus Alfert and Alexander Fronk. 3-dimensional visual-
ization of java class relations. In Proceedings of the 2000
IDPT Conference - The Fifth World Conference on Integrated
Design & Process Technology, 2000.

Thomas Ball and Stephen G. Eick. Software visualization in
the large. IEEE Computer, 29:33–43, April 1996.

Aaron Bangor, Philip Kortum, and James Miller. Determin-
ing what individual sus scores mean: Adding an adjec-
tive rating scale. Journal of Usability Studies, 4:114–123,
May 2009.

Sarita Bassil and Rudolf K. Keller. Software visualization
tools: Survey and analysis. In In proceedings of the 9 th
International Workshop on Program Comprehension, pages
7–17. IEEE Computer Society Press, 2001.

John Brooke. Sus - a quick and dirty usability scale. In In
Usability Evaluation in Industry, 1996.

Stuart M. Charters, Nigel Thomas, and Malcolm Munro.
The end of the line for software visualisation. In In Pro-
ceedings of the 2 nd Workshop on Visualizing Software for
Analysis and Understanding, pages 110–112. Society Press,
2003.

Eric Clayberg and Dan Rubel. Eclipse Plug-ins. Pearson Ed-
ucation, Inc., 2008.

Bas Cornelissen, Danny Holten, Andy Zaidman, Leon
Moonen, Jarke J. van Wijk, and Arie van Deursen. Under-
standing execution traces using massive sequence and
circular bundle views. In In Proceedings of the 15th Interna-
tional Conference on Program Comprehension (ICPC, pages
49–58. IEEE, 2007.

204 Bibliography

Cleidson de Souza, Jon Froehlich, and Paul Dourish. Seek-
ing the source: software source code as a social and tech-
nical artifact. In Proceedings of the 2005 international ACM
SIGGROUP conference on Supporting group work, GROUP
’05, pages 197–206. ACM, 2005.

Stephen G. Eick, Joseph L. Steffen, and Jr. Eric E. Sumner.
Seesoft — a tool for visualizing line oriented software
statistics. IEEE Transactions on Software Engineering, 18:
957–968, November 1992.

David Erni. Codemap – improving the mental model of
software developers through cartographic visualization.
Master’s thesis, University of Bern, 2010.

Andy Field. Discovering Statistics using SPSS. SAGE Publi-
cations Ltd, 3 edition, 2009. ISBN 978-1-84787-907-3.

Alexander Fronk, Armin Bruckhoff, and Michael Kern. 3d
visualisation of code structures in java software systems.
In Proceedings of the 2006 ACM symposium on Software vi-
sualization, SoftVis ’06, pages 145–146. ACM, 2006.

George W. Furnas, Thomas K. Landauer, Louis M. Gomez,
and Susan T. Dumais. The vocabulary problem in
human-system communication. Commun. ACM, 30:964–
971, November 1987.

Orla Greevy, Michele Lanza, and Christoph Wysseier. Vi-
sualizing live software systems in 3d. In Proceedings of
the 2006 ACM symposium on Software visualization, SoftVis
’06, pages 47–56. ACM, 2006.

Martin Halvey and Mark T. Keane. An assessment of tag
presentation techniques. In Proceedings of the 16th 16th In-
ternational World Wide Web Conference, WWW 2007, pages
1313–1314, May 2007.

J. F. Kelley. An empirical methodology for writing user-
friendly natural language computer applications. In Pro-
ceedings of the SIGCHI conference on Human Factors in Com-
puting Systems, CHI ’83, pages 193–196, December 1983.

Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and
Htet Htet Aung. An exploratory study of how develop-
ers seek, relate, and collect relevant information during
software maintenance tasks. IEEE Transactions on Soft-
ware Engineering, 32:971–987, December 2006.

Bibliography 205

Adrian Kuhn, Peter Loretan, and Oscar Nierstrasz. Con-
sistent layout for thematic software maps. In Proceed-
ings of 15th Working Conference on Reverse Engineering
(WCRE’08), pages 209–128, 2008.

Christian F.J. Lange and Michael R.V. Chaudron. Interactive
views to improve the comprehension of uml models - an
experimental validation. In 15th IEEE International Con-
ference on Program Comprehension, 2007. ICPC ’07., pages
221–230, June 2007.

Michele Lanza. Combining metrics and graphs for object-
oriented reverse engineering. Master’s thesis, University
of Bern, Switzerland, 1999.

Michele Lanza and Stéphane Ducasse. Polymetric views
— a lightweight visual approach to reverse engineer-
ing. IEEE Transactions on Software Engineering, 29:782–795,
September 2003.

Michele Lanza and Radu Marinescu. Object-Oriented Met-
rics in Practice. Springer, 2006.

Leonhard Lichtschlag and Jan Borchers. Codegraffiti: Com-
munication by sketching for pair programming. In UIST
2010 Extended Abstracts, New York, NY, October 2010.

Rob Lintern, Jeff Michaud, Margaret-Anne D. Storey, and
Xiaomin Wu. Plugging-in visualization: experiences in-
tegrating a visualization tool with eclipse. In Proceedings
of the 2003 ACM symposium on Software visualization, pages
47–56, 209, June 2003.

Jacopo Malnati. X-ray — an eclipse plug-in for software
visualization. Bachelor thesis, University of Lugano,
Switzerland, 2007.

Joe Marks and Stuart Shieber. The computational complex-
ity of cartographic label placement. Technical Report TR-
05-91, Harvard University Center for Research in Com-
puting Technology, Cambridge, Massachusetts, Decem-
ber 1991.

Thomas J. McCabe. A complexity measure. IEEE Transac-
tions on Software Engineering, 2:308–320, 1976.

206 Bibliography

Hausi A. Müller, Mehmet A. Orgun, Scott R. Tilley, and
James S. Uhl. A reverse engineering approach to subsys-
tem structure identification. Software Maintennance: Re-
search and Practice, pages 181–204, December 1993.

William Moore, David Dean, Anna Gerberm, Gunnar Wa-
genknecht, and Philippe Vanderheyden. Eclipse Develop-
ment using the Graphical Editing Framework and the Eclipse
Modeling Framework. IBM Corp., 2004.

Brad A. Myers. Taxonomies of visual programming and
program visualization. Journal of Visual Languages and
Computing, 1:97–123, March 1990. ISSN 1045-926X.

Inc. Object Management Group. Uni-
fied modeling language version 2.3.
http://www.omg.org/spec/UML/2.3/, May 2010.

Michael J. Pacione, Marc Roper, and Murray Wood. A com-
parative evaluation of dynamic visualisation tools. In
10th Working Conference Proceedings on Reverse Engineer-
ing, 2003. WCRE 2003., pages 80–89, November 2003.

Yunrim Park and C. Jensen. Beyond pretty pictures: Exam-
ining the benefits of code visualization for open source
newcomers. In 5th IEEE International Workshop on Visu-
alizing Software for Understanding and Analysis, 2009. VIS-
SOFT 2009., pages 3–10, September 2009.

Blaine A. Price, Ian S. Small, and Ronald M. Baecker. A
principled taxonomy of software visualization. Journal of
Visual Languages and Computing, 4:211–266, 1993.

Manojit Sarkar and Marc H. Brown. Graphical fisheye
views of graphs. In CHI ’92 Proceedings of the SIGCHI con-
ference on Human factors in computing systems, pages 83–
91, 1992.

Mariam Sensalire and Patrick Ogao. Visualizing object ori-
ented software: Towards a point of reference for devel-
oping tools for industry. In 4th IEEE International Work-
shop on Visualizing Software for Understanding and Analysis,
2007. VISSOFT 2007., pages 26–29, June 2007.

Mariam Sensalire, Patrick Ogao, and Alexandru Telea.
Classifying desirable features of software visualization
tools for corrective maintenance. In Proceedings of the

Bibliography 207

4th ACM symposium on Software visualization, SoftVis ’08,
pages 87–90. ACM, 2008.

Bonita Sharif and Jonathan I. Maletic. The effect of lay-
out on the comprehension of uml class diagrams: A con-
trolled experiment, 2009.

Janice Singer, Timothy Lethbridge, Norman Vinson, and
Nicolas Anquetil. An examination of software engineer-
ing work practices. In Proceedings of CASCON, pages 209–
223, 1997.

Vineet Sinha, David Karger, and Rob Miller. Relo: Helping
users manage context during interactive exploratory vi-
sualization of large codebases. In Visual Languages and
Human-Centric Computting (VL/ HCC), pages 4–8. IEEE
Computer Society, 2006.

Daniel Speicher and Sebastian Jancke. Smell detection in
context. In 12. Workshop Software-Reeingineering (WSR
2010), May 2010.

Daniel Speicher and Jan Nonnen. Consistent considera-
tion of naming consistency. In 12. Workshop Software-
Reeingineering (WSR 2010), May 2010.

Karen Spärck Jones. A statistical interpretation of term
specificity and its application in retrieval. Journal of Doc-
umentation, 28:11–21, 1972.

John T. Stasko and Charles Patterson. Understanding and
characterizing software visualization systems. In Proceed-
ings of the 1992 IEEE Workshop on Visual Languages, pages
3–10, September 1992.

Magaret-Anne D. Storey. A Cognitive Framework For Describ-
ing And Evaluating Software Exploration Tools. PhD thesis,
Simon Fraser University, December 1998.

Margaret-Anne D. Storey and H.A. Müller. Manipulat-
ing and documenting software structures using shrimp
views. In Proceedings of International Conference on Soft-
ware Maintenance, 1995, pages 275–284, October 1995.

Richard Wettel. Software Systems as Cities. Doctoral disser-
tation, University of Lugano, Switzerland, 2010.

208 Bibliography

Cornelia M. Yoder and Marilyn L Schrag. Nassi-
shneiderman charts: An alternative to flowcharts for de-
sign. Software Engineering Notes, 3, November 1978.

Peter Young and Malcolm Munro. A new view of call
graphs for visualising code structures. Computer Science
Technical Report, March 1997.

209

Index

3DRD, see 3d relation diagram
3d relation diagram, 22, 44

algorithm visualization, 9, 30
Apple, 40
Augur, 34

Bézier spline, 90, 111

call graph, 16, 17
call relation, 21, 90, 104
CallStax, 17, 44
circular bundle view, 18
city metaphor, 24
class diagram, 2, 86

- layout, 34
- SVs based on, 20

cloud view, 15, 90
Code Crawler, 32
Code Gestalt, 1, 129

- diagram, 98
- Eclipse implementation, 95
- future work, 131
- paper prototype, 55
- Silverlight prototype, 79

CodeCity, 25, 44
CodeCrawler, 14, 19
CodeMap, 26
contextual buttons, 111
Creole, 13, 32, 33
CUEcards, 165
Cultivate, 15, 90, 107
CVS, 13

data trace, 57
degrees of freedom, xxx
Dia, 159
DIA cycle, 37
diagram widget, 64

210 Index

disharmony maps, 26
document life cycle, 96
Doxygen, 47, 161
drag-and-drop, 75, 87, 102
dynamic feature interaction view, 19

Eclipse, 47, 96
- call hierarchy, 126
- editor, 96
- Java editor, 103
- outline view, 102
- properties view, 102
- type hierarchy, 126
- User Interface Guidelines, 98
- view, 96
- wizard, 98

EditPart, 97
effect, xxxi
Excel, 41
execution trace, 18
Expression Blend, 87
Expression Design, 98
Extravis, 18

feature creep, 128
fisheye view, 11
framework flow, 59

GEF, see Graphical Editing Framework
Graphical Editing Framework, 97
grouce, 151

hash map, 80
heat map, 56, 83, 109

IBM SPSS Statistics, 41
icon, 56
IDE, see integrated development environment
inheritance relation, 21, 90, 104
Institut für Informatik III, 93
integrated development environment, 32, 98

Java, 80, 96, 115
Java Development Toolkit, 97
JDK, see Java Development Toolkit
JTransformer, 15

Kendall’s tau, xxx
Kruskal-Wallis test, xxx

lack of insight, 53

Index 211

landmark, 56, 91
LimeSurvey, 40
lines of code, 10
live preview, 70, 88, 105, 127
LoC, see lines of code
local context view, 62
Logo, 28

MagicDraw, 161
Mann-Whitney test, xxx
map metaphor, 24
massive sequence view, 18
McCabe complexity, 18
mean, xxx
Media Computing Group, 39
median, xxx
MetaView, 24
MetricView, 23
Microsoft, 40
model–view–controller pattern, 97
modification request number, 10
Moose, 19
Mozilla Firefox, 64
MR number, see modification request number

Netbeans UML Plugin, 161
NoA, see number of attributes
NoM, see number of methods
number of attributes, 14
number of methods, 14

OmniGraffle, 165

Paint, 165
Paint.NET, 98
paper prototype

- design, 66
- evaluation, 74
- implementation, 67

Pascal, 28
Pearson correlation coefficient, xxx
polymetric view, 14

- three-dimensional, 19
PowerPoint, 161
probability, xxx
program execution, 16
Prolog, 28

quartile, xxx

radial menu, 90

212 Index

Relo, 20, 66, 87, 97, 132
Rigi, 12
RWTH Aachen University, 39, 93, 112

SA4J, 34
Seesoft, 10
SHriMP, see Simple Hierarchical Multi-Perspective views
Silverlight, 79
Silverlight prototype

- design, 80
- evaluation, 93
- implementation, 87

Simple Hierarchical Multi-Perspective views, 11
sketch, 3, 49
SketchFlow, 79, 87
Smalltalk, 15
software visualization, 3, 9

- dynamic, 35
- evaluation, 32
- perceived usefulness of, 41
- taxonomy, 28
- tool, 46

Source Navigator, 32
sourceforge.net, 33
Spearman’s rank correlation coefficient, xxx
special purpose tool sets, 13
standard deviation, xxx
StarUML, 159
state chart, 151
structured context diagram, 60
Superscape Viscape, 17
survey, 30, 39
SUS, see System Usability Scale
SV, see software visualization
system complexity view, 14, 19
System Usability Scale, 113

tabbed browsing, 64
tag, 82

- overlapping of, 83, 108
- pinning a, 86, 109

tag cloud, 84, 103, 107, 126
tag overlay, 6, 130

- design, 81
- highlighting, 83, 109, 133
- implementation, 107
- prototype, 90
- sweepline algorithm, 108

Tcl/Tk, 12
term, 82

Index 213

tf-idf, 133
thematic heat map, 56
thematic relation, 6, 131

- design, 84
- implementation, 109
- prototype, 90

thematic software map, 26, 44, 81
time consumption problem, 52
top-level visualization, 10
TraceCrawler, 19
TraceScraper, 19
type box, 5

- concept, 64
- implementation, 103
- paper prototype, 70
- Silverlight prototype, 86

UML-city, 24
undo, 97, 102
University of Bonn, 93, 112
unknown source code, 1
use case diagram, 151

version control system, 3, 10, 67, 129
Version Tree, 33
virtual reality, 17
VisMOOS, 22
Visual Studio, 47
vocabulary problem, 80

World of Goo, 93

X-Ray, 15
Xia, 13

z-score, xxx

Typeset March 31, 2011

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Goals and requirements
	Contribution

	Related work
	Top-level visualizations
	Seesoft
	SHriMP
	Creole

	Special purpose tool sets
	CodeCrawler
	X-Ray

	Cultivate

	Program execution
	CallStax
	Extravis
	TraceCrawler

	SVs based on class diagrams
	Relo
	VisMOOS
	MetricView

	Map and city metaphors
	UML-city
	CodeCity
	CodeMap

	Taxonomies and evaluation
	Taxonomy by Price
	Survey by Bassil and Keller
	Evaluation and the need for integration
	The effect of layout on comprehension
	Dynamic visualization tools

	Summary

	Initial user survey
	Design
	Results
	Background
	Usefulness of software visualizations
	Common visualizations
	Visualizations from research
	Comments

	Visualization software
	SV tool users
	Non-users
	Comments

	Manual visualization
	Sketching participants
	Non-sketching participants
	Comments

	Software visualization in documentation
	Comments

	Summary

	Paper prototype
	Design
	Early concepts
	Thematic heat map
	Data trace

	Designs in light of the online survey
	Framework flow
	Structured context diagram
	Local context view
	Diagram widgets

	Designing the paper prototype

	Implementation
	Project integration
	Creation of a diagram
	Expanding a diagram
	Search a diagram
	Grouping and tagging

	Evaluation
	Test results
	Project integration
	Creating a diagram
	Editing a diagram

	Further feedback and observations
	Impact on next prototype

	Silverlight prototype
	Design
	Tag overlay
	Visualization
	Interaction

	Thematic relation
	Visualization
	Interaction

	Class diagram

	Implementation
	Creating a new diagram
	Expanding an existing diagram
	Tag overlay
	Thematic relations

	Evaluation

	Eclipse implementation
	Design
	Implementation
	Framework
	Other resources
	Eclipse integration
	Diagram creation
	Editor
	Complementary Eclipse views
	Drag-and-drop
	Code editors

	Class diagram editor
	Type boxes
	Inheritance and call relations

	Tag overlay
	Sweepline algorithm
	Highlighting

	Thematic relations
	Notes

	Evaluation
	Goals
	Test design
	Results
	Population
	Completion rates and completion time
	Errors
	Qualitative feedback
	Questionairre
	Additional usability questions
	Individual features

	Second online survey
	Comparison of sketches with Code Gestalt diagrams
	Qualitative feedback
	Requested features

	Summary

	Summary and future work
	Summary and contributions
	Future work
	Implementation
	Diagram customization
	Scalability
	Further evaluation
	Multiple selection in tag overlay
	Additional metrics

	Additional online survey materials
	Survey questions
	Background
	Visualization software
	SV users
	SV non-users
	All participants

	Manual visualization
	Sketching participants
	Non-sketching participants
	All participants

	Documentation

	Results and analysis
	Background
	Visualizations
	Visualization software
	SV tool users
	Non-users

	Manual visualization
	Sketching participants
	Non-sketching participants

	Software visualization in documentation

	Paper prototype user test
	Additional user study materials
	User study forms
	Consent form
	Test tasks
	User study questionnaire
	Error and clutter evaluation scheme
	Task #1
	Task #2
	Task #3
	Task #4

	Results and analysis
	Population
	Completion rates and times
	Errors

	Second online survey materials
	Survey questions
	Diagram/sketch comparison
	Additional features

	Results and analysis
	Comparison of sketches with Code Gestalt diagrams

	Bibliography
	Index

