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Abstract

Comprehending source code is an essential activity for software developers. It is
not only required for software maintenance but also when developers want to reuse
existing code. Many facilities in the development environment, such as software-
based development tools, frameworks, or documentation, are designed to support
software comprehension. Changing the design of these facilities does not only al-
low developers to perform their comprehension strategies more efficiently, but also
changes the strategies they use. In this thesis, we aim to understand in more depth
how the design of the development environment changes comprehension strate-
gies. Our results contribute to the corpus of knowledge of the cognitive models of
software developers, and can influence the design of future development tools.

First, we compare two frameworks to program animations. We show that one of
the most important design variables for frameworks is the level of abstraction. On
the one hand, abstractions can help to align the capabilities offered by a frame-
work with the developers’ high-level programming plans, on the other hand, ab-
stractions can lead to misconceptions about the behavior of the framework when
conceptual details are hidden.

Second, we study whether developers can be encouraged to write more documen-
tation and unit tests by improving the interaction design for these tasks. Our in-
teraction design promotes writing documentation and unit tests as part of the edit-
test-edit cycle, and leverages runtime information from manual tests performed by
developers to suggest updates to these documents. We found that for this interac-
tion design to be successful, it is crucial to not only simplify the authoring task but
to also provide near-term value for the developer.

Third, we explore in which way the use of call graph navigation tools changes when
these tools are designed to not require any setup and to provide information con-
tinuously. We present two tools that implement this design, and we compare these
tools to existing call graph navigation facilities. Developers using our tools could
solve maintenance tasks faster, because they adapted a more effective navigation
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strategy. We also present a novel analysis method that we used to quantitatively
describe the differences in navigation behavior.

Last, we analyzed the effect of live coding environments on the developers’ behav-
ior. These environments execute the application after every change automatically
in order to present information about its runtime behavior. We find that develop-
ers using such tools fix bugs they introduced faster, because they switch between
writing new code and debugging existing code more frequently. This behavior can
reduce the task completion time for certain coding tasks. To be able to use live cod-
ing in real-world scenarios, we present an interaction technique that allows to use
live coding on-demand for short code snippets. These snippets are automatically
contextualized to simulate how the code snippet would behave if it was executed
as part of the complete application.
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Überblick

Das Verstehen von Programmquellcode ist eine der essentiellen Aktivitäten von
Softwareentwicklern. Es ist nicht nur erforderlich um Wartungsarbeiten an existie-
render Software durchzuführen, sondern auch, wenn bereits existierender Quell-
code wiederverwendet werden soll. Viele Aspekte einer Softwareentwicklungsum-
gebung, wie z.B. Software-basierte Werkzeuge, Frameworks, oder Dokumentation,
sind so gestaltet, dass sie das Verständnis von Software unterstützen. Die Gestal-
tung dieser Aspekte hilft jedoch Softwareentwicklern nicht nur ihre existierenden
Strategien um Software zu verstehen effizienter anzuwenden, sondern ändert wel-
che Strategien sie nutzen. In dieser Arbeit werden wir untersuchen wie genau die
Gestaltung der Entwicklungsumgebung die Strategien zum Verständnis von Quell-
code beeinflusst. Unsere Ergebnisse erweitern das Wissen über die kognitiven Mo-
delle von Softwareentwicklern und können die Gestaltung zukünftiger Entwick-
lungswerkzeuge prägen.

Zuerst vergleichen wir zwei Frameworks zur programmatischen Erstellung von
Animationen. Wir zeigen, dass eine der wichtigsten Variablen in der Gestaltung
von Frameworks die Wahl des Abstraktionsniveaus ist. Einerseits können Ab-
straktionen helfen, die Möglichkeiten die das Framework bietet mit den Pro-
blemlösungsstrategien der Entwickler in Deckung zu bringen, andererseits können
Abstraktionen zu Fehlvorstellungen über das Verhalten des Frameworks führen,
wenn konzeptionelle Details durch die Abstraktion versteckt werden.

Im nächsten Teil untersuchen wir, ob Entwickler motiviert werden können mehr
Dokumentation und Komponententests zu erstellen, wenn die Interaktion für die-
se Aufgabe vereinfacht wird. Unser Interaktionsdesign propagiert, Dokumenta-
tion und Komponententests als Teil des Edit-Test-Edit-Kreislaufs zu schreiben.
Um Änderungen an diesen Dokumenten automatisiert vorzuschlagen, nutzen wir
Laufzeitinformationen, die während den manuellen Tests, die Entwickler als Teil
dieses Kreislaufs ausführen, gespeichert werden. Wir fanden heraus, dass, um die-
sem Interaktionsdesign zu Erfolg zu verhelfen, das resultierende Werkzeug den
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Entwicklern nicht nur bei der Erstellung von Dokumentation und Komponenten-
tests helfen muss, sondern darüber hinaus auch kurzfristig nützlich sein muss.

Im dritten Projekt untersuchten wir, wie sich die Nutzung von Werkzeugen zur
Call Graph Navigation ändert, wenn diese Werkzeuge so gestaltet sind, dass sie
vor der Nutzung nicht erst konfiguriert werden müssen und sie Informationen
kontinuierlich anzeigen. Wir stellen zunächst zwei Werkzeuge vor, die diese Ge-
staltungsideen implementieren, und vergleichen danach diese Werkzeuge mit an-
deren typischen Methoden zur Navigation entlang des Call Graphen. Entwickler,
die unsere Werkzeuge nutzten, konnten Wartungsaufgaben schneller lösen, weil sie
eine effizientere Strategie zur Navigation anwendeten. Wir stellen außerdem eine
neue Analysetechnik vor, die es uns erlaubte die Unterscheide zwischen Navigati-
onsstrategien quantitativ zu beschreiben.

Zuletzt analysieren wir den Effekt, den Live Coding Umgebungen, also Ent-
wicklungsumgebungen die die Applikation nach jeder Änderung automatisch
ausführen um dem Entwickler Informationen über das Laufzeitverhalten zeigen zu
können, auf das Verhalten der Entwickler haben. Wir fanden heraus, dass Entwick-
ler, die solche Werkzeuge nutzen, ihre Fehler schneller beseitigten und häufiger
zwischen dem Schreiben von neuem Quellcode und dem Korrigieren von existie-
rendem Quellcode wechseln. Dieses Verhalten erlaubt es manche Programmierar-
beiten auch schneller zu erledigen. Um Live Coding Werkzeuge auch unter realen
Bedingungen einsetzen zu können, präsentieren wir eine Interaktionstechnik, die
es erlaubt Live Coding spontan für kurze Teile des Quellcodes zu nutzen. Zu die-
sen Teilen des Quellcodes wird automatisch ein Kontext generiert, der repräsentiert
wie sich der Code verhalten würde, wenn er als Teil der kompletten Applikation
ausgeführt würde.
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The whole thesis is written in American English.

Definitions of technical terms or short excursus are set off
in colored boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

Definition:
Excursus

Source code and implementation symbols are written in
typewriter-style text.

myClass

Download links are set off in coloured boxes.

http://hci.rwth-aachen.de/myFile

Some of the software and studies described in this thesis
have been previously published by me and by students that
I supervised. At the beginning of each chapter I provide a
summary of collaborations and prior publications. It goes
without saying that every project was done in collaboration
with my advisor, Prof. Dr. Jan Borchers, hence, he is not
listed repeatedly in each of these summaries.
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1

Chapter 1

Introduction

“I [. . . ] am rarely happier than when spending
an entire day programming my computer to

perform automatically a task that would otherwise
take me a good ten seconds to do by hand.”

—Douglas Adams, Last Chance to See

Software has become an essential part of our daily lives. Software provides
generalizable
solutions to
real-world problems.

It helps us to perform office tasks more easily, it allows us
to communicate with people, or it can simply entertain us.
Software has also become irreplaceable in roles where the
end user does not immediately notice it, e.g., when it pre-
vents our cars from swinging off the road after breaking
suddenly, or it controls our heating to keep the temperature
in our homes comfortable. Generalizing from these exam-
ples, we establish that software solves a problem of a user
in the real world. The key strength of software-based solu-
tions to problems is that they are generalizable to multiple
or all instances of a problem: For example, a system to pre-
vent a car from swinging off the road is expected to work
not only in one specific situation but in all dangerous situ-
ations a driver might encounter.

From the perspective of a computer, software is comprised
of a set of calculations, decomposed into algorithms that
operate on a set of data structures [Wirth, 1976]. Hence,
a software developer needs to translate a generalizable so-
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lution to a problem in the real world into a suitable set ofProgramming means
to transform a
generalizable

solution to a problem
into a set of

calculations and data
structures.

calculations and data structures, and express the latter in
a way a microprocessor can understand. For this purpose,
developers use source code, a text (or a visualization) follow-
ing strict syntactical rules. Providing a general solution to
real world problems by authoring source code is called pro-
gramming [Pair, 2011].

Programming is a difficult task, because, as F. P. Brooks J.Our vision is to
design a

development
environments that
helps to cope with

complexity.

[1987] states in a famous article, software entities are “more
complex than perhaps any other human construct”. In the
same article, he also argues that there is no silver bullet
to remove this complexity, because it is essential to make
programming powerful enough to allow the creation of all
novel, irreplaceable technologies mentioned before. Thus,
our vision is not to remove the complexity of programming
but to design an environment for programmers that helps
them to cope with the inherent complexity of software. This
could ultimately help making software development eas-
ier and more productive, and allow more people to expe-
rience the joy in software development that is reflected in
the opening quote of this chapter. To make this vision come
true, we first need to understand the cognitive processes of
developers to find out in more detail which challenges they
have to face in their daily work.

One of the most difficult tasks for programmers identifiedOne of the most
difficult tasks for
programmers is

software
comprehension.

in previous research is to comprehend existing source code
[LaToza et al., 2006]. Unfortunately, this comprehension is
also essential for successful software development [Press-
man et al., 2014], because programmers have to work with
existing software in the majority of cases [Winograd, 1979].
The reasons for this are manifold: First, microprocessors
can only perform a handful of rudimentary operations, and
assembling a modern, complex application from only these
operations would be extremely tedious. Thus, developers
make use of reusable components, i.e., frameworks or li-
braries, that encapsulate frequently used algorithms and
data structures, e.g., for file access or network communi-
cation. Second, modern software often evolves for years to
fit the needs of users and adapt to changing requirements,
thus, a majority of software development is spent modify-



1.1 Structure 3

ing or extending existing software [Fisher, 1978; Winograd,
1979].

Many facilities in existing software development environ- In this thesis, we
investigate how tools
affect developers’
code comprehension
strategies.

ments, such as, software-based tools, frameworks, or docu-
mentation, are designed to support the strategies develop-
ers use to comprehend software. Every change to the de-
sign of the development environment, though, is likely to
change these comprehension strategies [Myers et al., 2004].
The goal of this dissertation, in a broad sense, is to un-
derstand in more detail how the design of facilities that
support software comprehension affects the cognitive pro-
cesses of software developers. To this end, we explored
novel interaction designs that are informed by existing re-
search about the developers’ cognitive processes. Using
prototypical implementations of the most promising de-
signs, we ran empirical studies to analyze how the changed
interaction affected the developers’ code comprehension
strategies. The insights gained contribute to the overall
understanding of how the design of development tools in-
fluences code comprehension strategies, and they help to
identify design guidelines for development tools that can
ultimately make developers more productive.

1.1 Structure

In Chapter 2, we will discuss the existing research on
both the developers’ cognitive models and problem solving
strategies. In particular, we find that strategies for source
code comprehension are similar to those for comprehen-
sion of natural language texts [Pennington, 1987], hence,
program comprehension can be supported by incorporat-
ing natural language text into the source code.

In frameworks, i.e., reusable software components, natu- Choosing the right
level of abstraction is
crucial when
designing an API.

ral language is incorporated when developers emphasize
or deemphasize certain information through naming, and
decide how these named entities are to be used together
[Gilmore et al., 1984]. In Chapter 3, we report on a study
that compared two different frameworks to programmat-
ically create animations. Both frameworks are similarly
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powerful, i.e., they allow to solve similar tasks with a simi-
lar amount of source code. They differ in their design, more
specifically, in the level of abstraction they provide. We will
show that a higher level of abstraction allows developers to
solve certain tasks faster and with less testing. However,
we also find that a higher level of abstraction is prone to
hiding crucial implementation details. In this case, abstrac-
tion can make comprehension harder instead of easier. The
success of the framework’s design is closely tailored to the
task at hand, i.e., if the abstraction does not match the task
its benefits diminish. This study is by far the smallest re-
search project presented in this dissertation, yet it already
shows how the developers’ strategies are affected by the
tools at their disposal. We find that by taking these insights
into account, the developers’ cognitive models proved to
be an effective method for the purpose of understanding
the benefits and limitations of framework designs.

Another common way to incorporate natural language textTools can encourage
developers to write

more documentation
and unit tests, if they

also provide
near-term value for

the task at hand.

into source code is through documentation, i.e., explana-
tions of the source code written by the developer. However,
developers often do not write sufficient documentation, be-
cause the creation causes additional effort. The same is
true for unit tests, which represent an expectation about
the source code and are known to support software main-
tenance, but are usually not created sufficiently. In Chap-
ter 4, we will explore if an improved interaction design for
authoring documentation and unit tests can encourage de-
velopers to create these documents more. To this end, we
introduce an authoring support tool called VESTA. VESTA’s
design is guided by the insight that developers frequently
manually test the software they are building. We lever-
age runtime traces from these manual executions to inform
the authoring interface. In a user study, we confirmed that
VESTA’s documentation authoring component worked as
intended, i.e., it provoked developers to write more and
more accurate documentation, while VESTA’s unit test com-
ponent only resulted in a minor improvement. By analyz-
ing the developers’ interactions with the tool more thor-
oughly, we found that the crucial design aspect for the suc-
cess of VESTA’s documentation component is that it pro-
vided near-term benefits for program comprehension be-
sides supporting documentation authoring.
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Source code is different from natural language text due to We formulate and
verify two design
guidelines for call
graph navigation
tools.

the fact that it is often not read sequentially. Instead, the
source code to solve a single goal is often spread across var-
ious methods in various locations. Thus, previous research
revealed that navigation along method calls, i.e., call graph
navigation, is an exceptionally important activity during
program comprehension. We designed and implemented
two call graph navigation tools, Stacksplorer and Blaze,
that incorporate two interface design concepts which were
previously uncommon for such tools: First, our tools are
in close spatial vicinity to the code editor and update auto-
matically in response to the developers’ navigations, hence,
they continuously provide peripheral information. Second,
the navigation options shown in the tools are constrained to
allow only specific call graph explorations, either breadth-
first (Stacksplorer) or depth-first (Blaze). In a comparative
lab study we found that both our tools lowered the task
completion times compared to a control condition, an IDE
without dedicated call graph exploration facilities, and to
the Call Hierarchy, a standard call graph exploration tool
in today’s IDEs.

In the next step, we wanted to find out if and how the suc- The design of more
effective call graph
navigation tools
causes developers to
change their
navigation behavior.

cess of our tools is related to the developers’ comprehen-
sion strategies. We invented a generalizable analysis tech-
nique to quantitatively compare the navigation behavior of
developers. Using this analysis technique, we were able to
show that only Stacksplorer and Blaze caused developers
to change their navigation strategies compared to the con-
trol condition while the Call Hierarchy did not. Our results
are especially interesting because the information accessi-
ble using each tool is similar. Hence, this project demon-
strates that the effect of a tool does not only depend on the
information presented but also on the tool’s interaction de-
sign.

So far, we have assumed that developers understand source Developers working
in a live coding
environment detect
bugs they introduce
faster.

code primarily by reading it. However, they also regu-
larly execute the source code and use tools to analyze its
behavior at runtime. This provides a high level overview
of goals and subgoals of the software, and, when using a
debugger to inspect the runtime behavior in more detail, it
is also valuable to understand low-level algorithms. Live
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coding tools provide runtime information without requir-
ing the developer to manually execute the source code. In-
stead, they re-execute the software automatically right after
it was changed. While the idea of live coding tools is well
known in previous research, implementing these tools with
interactive update rates has only recently become techni-
cally feasible. In Chapter 6, we present METIS, our work-
ing prototype of a live coding tool. The development of
this prototype allowed us to study the effect of live cod-
ing on the behavior of developers. We find that developers
who use live coding to implement three coding tasks detect
bugs they introduce faster and, hence, need less lengthy de-
bugging phases. We also identified several technical pitfalls
that still remain in live programming environments when
used to develop real world software. Instead of solving
these problems technically, we outline how we can avoid
them by using a novel interaction technique that supports
developers in selecting small chunks of source code to be
executed live in the remainder of the chapter.

In the final chapter of this dissertation, we will summarize
the results of the individual research projects we presented
and outline which questions are left open for future work.
We conclude with a discussion of how ideas from this thesis
could be applied to other domains of knowledge work.

1.2 Contributions

To summarize, in this dissertation we make the following
contributions:

• We show that, for the design of frameworks, the level
of abstraction provided by the framework and the
high-level programming plans formulated by devel-
opers should align. This causes developers to need
significantly fewer manual tests to be confident that
their code is correct. However, the behavior of the
framework needs to be plausible on the level of ab-
straction it provides, i.e., developers are unlikely to
understand hidden assumptions.
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• We show how runtime information gathered during
manual tests performed by the developers can be
used effectively to encourage developers to author
documentation and unit tests. Our key design idea
is to integrating the authoring process into the edit-
test-edit cycle that developers already perform. This
ensures that the runtime information used is up-to-
date, and developers can be expected to have a well-
formed conceptual model of the code they are about
to document and to test. In the analysis of our de-
sign, we learned that it is essential that the tool pro-
vides near-term value beyond authoring documenta-
tion and unit tests, in order to encourage developers
to author these documents.

• We formulated two design guidelines for call graph
navigation tools: Proactive information visualization
means that tools should provide potentially relevant
information automatically and continuously while
the developer is navigating. Comprehensible relevance
means that a developer needs to be able to easily un-
derstand how the information shown in the tool is rel-
evant to the task. We implemented these guidelines in
two newly designed call graph navigation tools. In a
comparative study of our tools, between the widely-
used Call Hierarchy tool and an IDE without dedi-
cated call graph navigation tools, we found that all
tools increase the task success rates but only tools im-
plementing our guidelines also succeeded in reduc-
ing the task completion time. We found that the de-
crease in the task completion time correlates with a
change in the developers’ navigation behavior.

• We present a new analysis technique that allows to
quantitatively compare the navigation behavior of
developers. We use a set of predictive models and
calculate the accuracy with which each model pre-
dicts the recorded navigation behavior. A vector of all
prediction accuracies characterizes the navigation be-
havior. To test whether or not the analysis technique
is sound, we applied it in one of our own studies and
compared the results to other quantitative metrics.
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• We show that developers use a different coding strat-
egy when working in a live coding environment, i.e.,
a development environment that re-execute the ap-
plication automatically after each change, compared
to a traditional environment. Developers in a live
coding environment are more likely to use the inter-
leaved coding strategy, i.e., they switch between writ-
ing new code and debugging the code in shorter in-
tervals. The interleaved strategy causes developers
to fix bugs faster, and yields shorter task completion
times for some tasks.

• Continuously re-executing the complete application
is technically challenging. We present a new interac-
tion design that allows to invoke inline editors, which
are embedded into the source code editor, to edit a
small code fragment live. The code fragments are au-
tomatically contextualized, to simulate their behavior
during a full program execution. A preliminary eval-
uation shows that the increase in the task completion
time that developers can achieve using this interac-
tion design is comparable to the increase we found
before for live coding environments.
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Chapter 2

Theory

“Software: do you write it like a book, grow it
like a plant, accrete it like a pearl, or construct it like

a building?”

—Jeff Atwood

Comprehending software is required to perform nearly all Comprehending
software is an
important activity for
programmers, and
one of the most
difficult activities.

programming tasks [Pressman et al., 2014]: It is needed for
creating software, when reusing code from libraries, exam-
ples, or old projects, and when performing maintenance
tasks on existing software, e.g., bug fixing or refactoring.
Studies have also repeatedly found code comprehension
to be among the biggest problems for software developers.
For example, Ko et al. [2005] observed programmers work-
ing on a maintenance task in a lab study and found that
comprehending source code was the most time-consuming
activity. Several subtasks involved in code comprehension
were found to be laborious, for example, developers spent
35% of their time on navigation and 46% of their time in-
specting code that they later recognized to be not relevant
for their task. These findings were also found for real-world
software developers. When surveying developers at Mi-
crosoft, LaToza et al. [2006] found that understanding the
rationale behind existing source code is the biggest problem
for developers. To circumvent the difficult task of compre-
hending source code, developers often resort to the devel-
oper who originally created the code. This, however, cre-
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ates more problems down the line: Even the original de-
veloper often does not remember the rationale behind his
old code, and having to deal with these interruptions also
negatively impacts this developer’s productivity.

In this chapter, we will discuss existing research that an-
alyzes developers’ cognitive models of software, and the
strategies they use for software comprehension. We will
also discuss studies that analyze developers working with
current development environments to identify common
problems of existing development tools. The results pre-
sented in this section will be used throughout the thesis
to provide a framework to motivate our interaction de-
signs and to discuss our results. Research projects that de-
scribe new development tools are mostly excluded from
this chapter. Instead, we discuss closely related research
tools as part of the the following chapters, in which our in-
dividual research projects are presented.

2.1 Developers’ Models of Software

As discussed in the introduction, programming means toMental models of
software are

multi-dimensional.
express a general solution to a class of real world problems
in a way that a computer can comprehend, i.e., by writ-
ing source code [Pair, 2011]. Consequently, the developer’s
mental model of software needs to be multi-dimensional:
It is at least comprised of the solution to the problem in the
application domain, and the algorithmic solution as well as
data structures in the computing domain [Détienne, 2002].
To understand the mapping between the application do-
main and the algorithmic solution, which is expressed in
source code, a developer forms a hierarchy of goals and
subgoals and identifies the strategies involved to achieve
each goal.

As a simple example, we consider an excerpt from a fic-
tional software to manage students at a university: Our
goal (in the application domain) is to sort a list of students
in a course by grades. The following code implements a
sorting algorithm to solve this problem:
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1 var length = students.length;
2 for (var i = 0; i < length; i++) {
3 for (var j = 0; j < (length - i - 1); j++) {
4 if(students[j].grade > students[j+1].grade) {
5 var tmp = students[j];
6 students[j] = students[j+1];
7 students[j+1] = tmp;
8 }
9 }

10 }

This simple example can already be decomposed into a Programs can be
decomposed into a
multi-level hierarchy
of goals and
subgoals

multi-level hierarchy of goals and subgoals: On the high-
est level, the problem can be decomposed into the subgoals
representing data, allowing data input, sorting the list of data en-
tries, presenting the result. The code example only shows the
solution for one subgoal: sorting the list of data entries. The
strategy to achieve this subgoal is a bubble sort algorithm.
It can be further decomposed into smaller subgoals. This
time, the subgoals are more technical and more closely re-
lated to the computing domain, because they describe parts
of the algorithm: The first goal is to take multiple passes
such that in the i-th pass the i-th last element of the list is
correctly sorted. This goal again has two subgoals: The first
goal is to implement multiple passes, which is realized with
the outer for-loop. The second goal again has two parts:
First, to iterate over the unsorted part of the list, second, to
swap each element with the adjacent one if these two are
ordered incorrectly. This description of the bubble sort al-
gorithm, even though all low-level goals are solely in the
computing domain, still needs to be translated into actual
source code. For example, the solution to swapping two
entries in an array requires three lines of code (lines 5-6).

2.1.1 (Delocalized) Programming Plans

Developers often know appropriate solutions for goals in A programming
schema represents a
generic solution to a
problem.

these hierarchies from their experience. To describe this
knowledge, the concept of schemas has been widely used
[Adelson, 1981; Détienne, 2002]. A schema is a knowledge
structure that represents a generic solution to a problem.
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Schemas are, just like the goals developers need to achieve,
hierarchical. For the example above, a developer would
first activate a schema representing the bubble sort algo-
rithm as a generic solution for sorting problems, and then
other schemas representing, e.g., how to use a temporary
variable to swap two elements in an array.

The hierarchy of schemas used by a developer to solve aA programming plan
is a hierarchy of

schemas to solve a
problem.

given programming problem is called a programming plan.
Soloway et al. [1984] showed that what makes expert de-
velopers comprehend source code faster is their ability to
quickly recognize the plans of the original developer. Rec-
ognizing plans allows developers to reason about the code
at a higher level of abstraction [LaToza et al., 2007], e.g.,
it allows experts to think about the complete code snippet
above as “sorting” instead of needing to make sense of all
individual statements. From the results by Détienne [2002]
and Soloway et al. [1984] we can conclude that schematic
knowledge can be applied in two ways: Either when creat-
ing source code to find a solution for a problem, or when
comprehending source code to reconstruct which problem
is solved by a solution encountered in the source code.

In the example we discussed above, the complete program-When different parts
of a programming

plan are
implemented in

different locations,
the plan becomes

delocalized. This is
also called a
cross-cutting

concern.

ming plan was executed in one contiguous piece of source
code. For example, we did not show the source code that
defines the data model, implements data entry, or presents
the results. All of these would be likely implemented else-
where, so they can be reused in other parts of the software.
Similarly, the sorting algorithm we discussed would likely
be implemented in a library, so that it can be reused to
sort arbitrary arrays. This causes a programming plan to
become delocalized [Détienne, 2002]; other authors have re-
ferred to the different fragments of source code that achieve
a single goal using the term cross-cutting concern. Cross-
cutting concerns are the reason why Ko et al. [2005], in their
lab study we mentioned before, found navigation to be an
important activity in program comprehension.

Today, object-oriented software architectures are widely
adopted, because they were found to model many appli-
cation domains reasonably well [Meyer, 1997]. In object-
oriented software, delocalized plans are especially com-
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mon, because plans and the organization of source code Cross-cutting
concerns are
common in
object-oriented
software.

into objects are orthogonal [Rist, 1996], i.e., a plan can use
multiple objects and a single object can be utilized in mul-
tiple plans. However, cross-cutting concerns pose a chal-
lenge for developers who need to identify and relate all rel-
evant parts of the source code. In Section 2.2.2 we will dis-
cuss the strategies developers use to identify delocalized
plans and the problems they have to face.

OBJECT-ORIENTATION:
In object-oriented software, runtime behavior is defined
by the interaction of objects. At runtime, objects inter-
act by calling each other’s methods. Each object is an
instance of a class, which defines a data structure, i.e.,
which properties an object has, and a set of methods. In
this dissertation, we will sometimes refer to an object’s
class as its type. Each class can declare its own proper-
ties and methods, but also inherit properties and methods
from a parent class. Using inheritance, classes form a hi-
erarchy that consists of one or more trees. It is called the
static hierarchy or inheritance hierarchy. Some implemen-
tations of object-orientation allow more than one parent
class, resulting in a more complex hierarchy.
Using an object-oriented programming language is not
required for object-oriented programming. However,
nowadays these languages are common because they
provide support for elementary operations such as defin-
ing a class, creating an instance of a class, and calling
methods of objects.

Definition:
Object-orientation

2.1.2 Cognitive Models

In the previous subsection, we have discussed software in Readers of natural
language text form
three structures:
Surface structure,
textbase, and
situational model.

terms of the goals and subgoals it achieves. Often it is use-
ful to also use different and orthogonal cognitive models to
describe developers’ code comprehension strategies. In this
section, we will describe some of these models that are in-
spired by research on text comprehension. Dijk et al. [1983]
have found that for text comprehension, readers form three
structures: The surface structure describes the verbatim
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structure of the text, i.e., the arrangement of words into
sentences, paragraphs, etc. The textbase is a propositional
structure that represents the actions and events in the text.
The situational model represents what the text is about ref-
erentially. The surface structure and the textbase are both
on linguistic grounds and represent only the verbatim text,
while the situational model includes the interpretation of
the text by the reader.

A similar model was found suitable to model the com-Cognitive models for
reading source code

are similar to those
for reading natural

language text.

prehension process developers use for procedural [Pen-
nington, 1987] and object-oriented [Burkhardt et al., 1997]
source code. The surface structure and the textbase are, in
the discourse about software comprehension, often com-
bined in the program model. The program model represents
the elementary operations and structural elements in the
source code. The situational model is the delinearization
of the source code, i.e., it is comprised of data flow, control
flow, and the hierarchical goal structure we have discussed
before. Vans et al. [1999] found that developers are more
likely to solve bug-fixing tasks successfully, when the situ-
ational model they form includes several different levels of
abstraction.

Burkhardt et al. [1997] have refined the model above forFor object-oriented
source code, the

situational model is
comprised of static

and dynamic
aspects.

the comprehension of object-oriented source code. They
distinguished two components of the situational model:
The static aspects contain information about the object hi-
erarchy, the objects’ relationships to the application do-
main, and goals of the software. The dynamic aspects re-
flect data flow, client-server relationships, and communi-
cation between objects at runtime. Burkhardt et al. com-
pared their results to Pennington’s [1987] earlier model,
which describes the comprehension of procedural source
code, in order to show that the developers working with
object-oriented source code build the situational model ear-
lier. This is a first example that shows that the choice of
tools in a wide sense, in this case structural programming
paradigms, influences how developers work and approach
comprehension tasks. We will find this fundamental in-
sight repeatedly in our own research projects, for both APIs
(Chapter 3) and software tools developers use (Chapter 4–
6).
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In the same study, Burkhardt et al. [1997] found that the Object-orientation
promotes developing
a thorough static
situational model.

static situational model is better developed than the dy-
namic situational model. Further, more experienced pro-
grammers create a better static situational model but not a
better dynamic situational model. Burkhardt et al. hypoth-
esize that this is a property of the object-oriented program-
ming paradigm, i.e., object-oriented source code promotes
building the static situational model.

LaToza et al. [2010a] investigated the difficulties involved Comprehending the
dynamic situational
model is harder than
the static situational
model.

in developing the dynamic situational model. They coined
the term reachability question to describe a search along
all feasible paths through a program. Answering reacha-
bility questions would primarily contribute to the dynamic
situational model. In a series of studies, including a large-
scale interview of professional software developers as well
as studies in the lab and in the field, LaToza and Myers
found that reachability questions are frequent but hard to
answer. Nine of the ten longest activities they observed in
their field study were concerned with answering a reacha-
bility question.

In object-oriented source code, the static situational model
is usually represented explicitly in the surface structure
of the code. In contrast, other tools are required to sup-
port developers in comprehending the dynamic situational
model. In Chapter 5 we will argue that current tools only
provide inadequate support to develop the dynamic situa-
tional model. We will then present new tools to support de-
velopers in answering reachability questions, and we will
show that the most effective tools cause a change in devel-
opers’ behavior while comprehending code. Whether or
not tools cause this change depends on the tools’ interac-
tion design.

2.2 Strategies for Comprehension

In the last section, we have discussed how developers rep-
resent source code mentally, i.e., by using the program and
situational model, or by using programming plans. In this
section, we will discuss the strategies used to build these
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mental representations of source code. In a survey among
more than 100 developers at Microsoft, LaToza et al. [2006]
found that over 80% of the time spent in understanding
software is spent on working with the actual source code,
i.e., reading or using a debugger. The remainder of the total
time is spent in examining documentation, check-in mes-
sages in version control systems, or asking colleagues for
help. For the remainder of this section, we will focus on
strategies to examine the actual source code.

2.2.1 Top-down or Bottom-up Comprehension

As we have seen before, cognitive representations of soft-Developer using the
bottom-up

comprehension
strategy, form the

program model first.

ware are characterized by a hierarchical mapping from the
application domain into the programming domain. Sev-
eral researchers have examined whether this mapping is
created top-down or bottom-up. When Pennington [1987]
confirmed that the model by Dijk et al. [1983] for text
comprehension also applies to the comprehension of pro-
cedural programs, she noted that the program model is
built before the situational model. This means that devel-
opers first comprehend the control flow and literal struc-
ture of the program before inferring the software’s func-
tions and higher level goals. Similarly, Shneiderman et
al. [1979] observed that developers start by understanding
small chunks of source code and iteratively organize these
chunks into bigger functional units.

In contrast, Burkhardt et al. [1997] found that the situa-Developers using the
top-down

comprehension
strategy, form the
situational model

first.

tional model was better developed even in early phases of
program comprehension. This corresponds to a top-down
comprehension strategy, i.e., hypotheses about the func-
tions of the program are developed first. The hypothe-
ses are vague initially and are refined and checked iter-
atively using information obtained from the source code.
While the results by Burkardt et al. are specific to object-
oriented software, the top-down comprehension strategy
was found in numerous studies in a variety of program-
ming paradigms: R. Brooks [1983] was among the first to
theorize that the software comprehension process was top-
down and hypothesis driven. This theory could be con-
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firmed by Vessey [1989] in a series of lab studies using pro-
cedural source code. Later, LaToza et al. [2007] observed
thirteen developers while comprehending a large object-
oriented open-source software project and also found that
“program comprehension is driven by beliefs about facts”.

Top-down strategies were found to be especially common Top-down strategies
are common for
maintenance tasks.

for developers working on maintenance tasks. They often
start by forming a situational model of the correct program
that they can use as a reference [Vessey, 1989]. Starke et al.
[2009] noted that this early situational model is usually a
hypothesis based on past experiences.

When comparing the various studies mentioned above, we Developers often
switch between
strategies as
needed.

find that the tasks developers had to perform are slightly
different in each one. For example, in the study by Penning-
ton [1987], where the bottom-up strategy was observed,
participants had 45 minutes to read source code without
a specific task. Afterwards, they first answered compre-
hension questions, and then worked on a given mainte-
nance task. In contrast, in the study by Vessey [1989], where
the top-down model was observed, participants worked
on a maintenance task right from the start. Further, list-
ings showing correct and incorrect program output could
be used as a reference. These differences in task descrip-
tions and setup are likely to alter the behavior of develop-
ers, i.e., whether they prioritize to build the program or
the situational model [Mills et al., 1995]. Developers do
not only switch their strategies depending on the task but
might also utilize top-down and bottom-up strategies while
working on a single task, switching between both strategies
as needed [Corritore et al., 2001; Letovsky, 1987]. In sum-
mary, these results show that the task at hand, in addition
to the tools used, substantially influences the behavior of
developers.

2.2.2 Navigation Strategies

So far, we have distinguished between top-down and
bottom-up comprehension strategies, which both align
with the hierarchical structures found in the cognitive mod-
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Figure 2.1: The three-phase navigation model by Ko et al. [2006] shows how devel-
opers identify delocalized plans in source code.

els developers form about software. In this section, we will
focus on developers’ strategies to comprehend delocalized
programming plans.

In an early study about program comprehension, LittmanEffective developers
need to understand

cross-cutting
concerns.

et al. [1987] found that developers working on a mainte-
nance task in a lab study were only successful if they per-
formed a structured analysis of the program, i.e., tried to
form a coherent situational model. In contrast, develop-
ers using an as-needed strategy for program comprehen-
sion only focused on local program behavior and failed
to successfully solve the task. Robillard et al. [2004] ran
a similar study but using a substantially larger code base
(about 65k SLOC instead of 250 SLOC). They could confirm
that developers that read extended sections of the source
code to comprehend local program behavior are less effec-
tive than those that try to comprehend delocalized plans
by examining multiple locations in the source code to ulti-
mately form a complete situational model. The challenges
involved in the comprehension of delocalized plans are
substantial enough to ultimately compromise the quality of
real-world software: An analysis of open-source software
projects found that the more scattered a concern is the more
likely it is to contain defects [Eaddy et al., 2008]. Surpris-
ingly, this effect was independent of the total amount of
source code being involved of the concern.

The key problem for developers who want to apply the
more successful structured strategy, which involves the
identification of delocalized plans, is to find which loca-
tions in the code belong to a plan. Weiser [1982] coined the
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term slicing to describe the strategy of following the data Following the data
flow (slicing) is an
effective strategy to
comprehend
cross-cutting
concerns.

flow to identify a delocalized plan. Francel et al. [2001] per-
formed two lab studies with computer science students to
show that developers who use slicing when debugging are
more effective in identifying bugs and faulty parts of the
source code than those who do not use slicing.

The information relevant to a cross-cutting concern is al- The three-phase
navigation model
represents
developers’
navigation behavior
while comprehending
cross-cutting
concerns.

ways scattered around multiple locations in the source
code. Consequently, navigation is an important activ-
ity developers perform while trying to understand these
concerns. Ko et al. [2006] presented a three-phase naviga-
tion model of how developers navigate when comprehend-
ing delocalized programming plans (Figure 2.1). For this
model, we assume that the program and its metadata, such
as documentation and commit messages, can be repre-
sented by a graph. This graph contains the various pieces
of individual information as nodes, and different types of
relationships as edges. Relationships can represent the se-
mantics of the source code, e.g., calls, uses, and subclass-
ing, but they can also, e.g., link a piece of the source code
to its documentation. Developers start by looking for in-
formation relevant to their task in the environment (search
phase). Once the developer has found a relevant node, he
or she attempts to understand the node in the context of se-
mantically related nodes, i.e., by navigating along edges in
the graph (relate phase). Finally, if the information found
turns out to be relevant, the developer collects it in some
form of memory until he or she has understood enough in-
formation for the given task (collect phase). The information
that developers collect to work on a task is often referred to
as working set [Ko et al., 2005]. The three-phase navigation
model is not strictly linear, instead developers are expected
to frequently switch back to the search or relate phases if
they did not yet find sufficient information for the task at
hand yet.

The three-phase navigation model is compatible with all The three-phase
navigation model is
compatible with a
wide variety of
strategies.

of the results we discussed before: The structured explo-
ration required in the relate phase is consistent with re-
search showing that structurally guided exploration is re-
quired to perform successful maintenance [Littman et al.,
1987; Robillard et al., 2004]. Top-down and bottom-up com-
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prehension strategies can both be represented by choosing
a high-level or a low-level node in the initial search phase.
We found further support for the three-phase navigation
model as part of the research presented in Chapter 5.

The three-phase navigation model provides no insight intoInformation foraging
theory (IFT) models

how users search
information.

how developers identify relevant information in the search
phase and how they pick which relationships to explore
in the relate phase. Programmer Flow by Information Scent
(PFIS) [Lawrance et al., 2008] is a model to describe this
selection process. It is based on Information Foraging Theory
(IFT) [Pirolli et al., 1999], a model that describes how people
search information by using an analogy to predators hunt-
ing for prey. In IFT, the predator is a user who is hunting for
an information need, i.e., the prey. In pursuit of the prey, a
user can navigate to information resources (patches) by fol-
lowing links between the patches. IFT assumes that users
follow the link with the strongest information scent, i.e., that
is most likely to be relevant. In the original formulation, the
information scent of a link depends on the linguistic simi-
larity between the words in the link and words describing
the information needed.

In PFIS, the adaption of IFT to model developers’ nav-IFT can be adapted
to programmers, to

model how they
identify relevant

source code.

igation through source code, the predator is the devel-
oper hunting for an information. Every piece of informa-
tion that is accessible in the development environment is
a patch, e.g., variable definitions, methods, and documen-
tation. Which links exist between patches depends on the
capabilities of the development environment. In a mod-
ern IDE this often means that every identifier in the source
code is a link, as well as search results and items shown
in various navigation tools. To determine the scent of each
link, PFIS compares a task description, e.g., a bug report,
to the words used in the patch, i.e., the identifier in the
source code. This approach is consistent with previous re-
sults that showed the importance of identifier naming for
developers’ comprehension process [Liblit et al., 2006]. In
several iterations, PFIS was improved to also consider code
structure to calculate information scent and to account for
changing information needs during an exploration session
[Lawrance et al., 2010; Piorkowski et al., 2011]. Studies in
which the recorded navigation patterns of developers have
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been compared to the prediction created using PFIS have
shown that the navigation target that PFIS predicted was
correct up to 21% of the time, which is an impressive result
considering the huge number of patches available. We will
use the concept of information scent repeatedly throughout
this thesis to explain results we have found in our studies.

2.3 Use of Development Tools

So far, we have described developers’ mental models and
the strategies they employ on an abstract level. In this sec-
tion, we will relate these results to existing development
tools. Providing a complete overview of existing research
about novel development tools is beyond the scope of this
thesis, instead, we will focus on results that we need to refer
back to later.

2.3.1 APIs and Documentation

Today, nearly all software is created using libraries or When using a
framework,
developers need to
first comprehend the
high-level design
patterns it imposes.

frameworks that provide common functionality for a given
task. For example, graphical user interfaces are usually
created using a user interface toolkit (UITK) that provides
reusable interface components. The terms library and
framework are often used interchangeably, but in this the-
sis we will use a stricter definition: A library is a collection
of reusable components, e.g., methods. A framework or API
is a collection of object-oriented components and includes
a definition of patterns that describe how the components
interact and should be used together [Johnson, 1997]. Be-
cause a framework includes patterns, it constraints the so-
lution space for problems and requires developers to adapt
their schematic knowledge to be applicable in this space.
This causes problems for developers: They often know the
programming plan they want to use to implement a feature
but struggle to understand how to express this plan using
the API at hand [Mandelin et al., 2005]. As APIs become
more and more complex, these problems often arise early in
the design process, as developers first need to comprehend
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the high-level design patterns imposed by the framework
[Robillard, 2009].

These issues have led to efforts that employ user-centeredEmploying a
user-centered design

process helps
creating

comprehensible
APIs.

design to the APIs. Clarke [2004] adapts twelve factors
that have an impact on the usability of development tools
[Green et al., 1996] and reports that the Microsoft Visual
Studio usability group has successfully used these factors
in the design of new APIs. In a similar API design process,
Stylos et al. [2008] found the most problematic design as-
pect was choosing an appropriate level of abstraction. In
Chapter 3, we will present a study that explores in more
detail the effect of different abstraction levels in APIs for
designing animations.

A common strategy of developers to deal with problems inExamples are an
effective way to

explain a
framework’s design.

comprehending design patterns in frameworks, is to copy
and adapt example code. Fairbanks et al. [2006] proposed
that frameworks should include example code for recur-
ring programming tasks. Using these examples has several
benefits: Because they are authored by the original author
of the API, they are known to be correct. Also, they can
support developers reading the code later, because they can
recognize the example used to derive the design intent of
the original developer.

In current development practice, examples are often foundCopying examples
can help exploring

design alternatives in
rapid edit-test-edit

cycles.

on the web [Brandt et al., 2009b; Hartmann et al., 2011].
Brandt et al. [2009b] report that frequent web searches are
often part of an opportunistic coding strategy, that priori-
tizes speed and ease of coding over robustness and main-
tainability. Developers following this strategy use code to
develop ideas and experiment instead of following a well
thought out plan. To experiment efficiently, opportunistic
programmers perform very short edit-test-edit cycles, i.e.,
they execute their application frequently to test it. One
study of opportunistic programmers found 80% of edit-
test-edit cycles to be shorter than 5 minutes [Brandt et al.,
2009a]. Short edit-test-edit cycles in combination with op-
portunistic exploration of design alternatives seem to in-
crease programming performance especially for novice de-
velopers [Hundhausen et al., 2009]. In Chapter 6 we will
show that a development environment that executes the
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Figure 2.2: Eclipse is representative of a modern IDE. A
text editor in the center is augmented with numerous tools
for structurally guided navigation, unit testing, and other
tasks. Source: http://www.eclipse.org/screenshots/

application continuously, i.e., no longer requires the devel-
oper to test manually, can encourage developers to adapt
opportunistic coding strategies and helps them to reduce
the amount of bugs in their code. In Chapter 4 we will re-
veal how we can encourage opportunistic programmers to
create unit tests and documentation, i.e., increase maintain-
ability, by designing a tool that easily integrates into their
current workflow and provides immediate benefits.

2.3.2 Software Tools

Today, developers have various tools at their disposal that IDEs bundle a variety
of development tools.support program comprehension and creation. These tools

are often bundled in integrated development environments
(IDEs). A common modern IDE, such as Eclipse1, Xcode2,

1https://eclipse.org/ide/
2https://developer.apple.com/xcode/

https://eclipse.org/ide/
https://developer.apple.com/xcode/
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or Visual Studio3, is built around a text editor that is
augmented with numerous structurally guided navigation
tools, semantic editing tools, and a debugging interface (see
Figure 2.2). We will not go into detail of all available tools,
as this would be an insurmountable task. Instead, we will
discuss what is known about how developers use existing
tools and which problems remain. Tools that are closely
related to the individual research projects we present, are
discussed as part of the respective chapters.

As discussed in Section 2.2.2, one of the biggest problemsExisting tools to
support structurally

guided navigation
are often avoided by

developers.

developers have to face in code comprehension tasks is
the recovery of information about delocalized program-
ming plans. Support for this task appears to be inadequate
in many current IDEs. For example, Ko et al. [2005] ob-
served that all developers used structurally guided naviga-
tion tools in Eclipse to solve a given maintenance task, but
only two developers did so more than once. Instead, devel-
opers preferred simpler tools, such as a project-wide textual
search, to find information. Ko et al. attribute this observa-
tion to the interaction design of Eclipse’s more advanced
tools that were found to be cumbersome to use.

Once a developer found a useful piece of information, ac-Many IDEs do not
support the collection

of relevant
information in a

working set.

cording to the three-phase navigation model, he or she
wants to add it to a working set of all relevant information.
Support for this behavior was repeatedly found missing in
current IDEs [De Alwis et al., 2006; Ko et al., 2005; Sillito
et al., 2008]. The only common way to collect multiple rele-
vant source code locations is to open the various files in dif-
ferent tabs. However, tabs represent individual files instead
of the specific piece of information relevant to a developer,
hence developers often search through the open tabs to re-
trieve information from the working set [Ko et al., 2005].
Tabs are also mutually exclusive, i.e., only one tab’s content
is visible at a time. This makes it hard for developers to re-
late the different pieces of information [Green et al., 1996],
causing frequent back-and-forth switches between two re-
lated code locations [De Alwis et al., 2006].

The problems we have discussed so far concerned the in-
teraction design of existing tools. The interface design, i.e.,

3https://www.visualstudio.com/

https://www.visualstudio.com/
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Figure 2.3: Two examples of visual programming lan-
guages. Left: Code snippets from Scratch [Resnick et al.,
2009], a visual programming language. Source code state-
ments are displayed with rich visual formatting and can be
assembled using drag-and-drop. Image Source: [Resnick et
al., 2009]. Right: A simple LabVIEW program. LabVIEW
uses a metaphor resembling an electrical circuit. Methods
are represented by graphical objects instead of textual state-
ments. In-/Output of these objects can be connected with
virtual wires. Image Source: http://www.ni.com

the visual appearance of information and interactive ele- Text formatting in the
source code editor
affects how well
programmers
comprehend source
code.

ments, also has a substantial effect on how efficiently de-
velopers can perform software comprehension. Early stud-
ies already showed that the secondary notation, i.e., the
formatting of the program text, can influence how devel-
opers comprehend source code [Green et al., 1996]. Even
only changing the indentation level already significantly
impacted the developers’ program comprehension perfor-
mance [Miara et al., 1983].

Secondary notion does not only refer to text formatting. Visual programming
tools allow to specify
programs using
multi-dimensional
layouts.

More degrees of freedom in the visual layout of programs
are used in visual programming languages. Visual pro-
gramming is defined to be “any system that allows the
user to specify the program in a two(or more)-dimensional
fashion” [Myers, 1990]. A plethora of visual programming
tools has been created, and researchers have found repeat-
edly that these tools engage novices into programming,
help them to learn faster, and even support the transition
to textual languages [Hundhausen et al., 2009; Resnick et
al., 2009]. The large freedom in secondary notation does
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not come without a downside though: To utilize schematic
knowledge during program comprehension, developers
need to rely on recognizable patterns. Establishing these
patterns, however, is harder if the notation allows even
more freedom than text. This can hinder program com-
prehension especially for novices, leading to a significantly
reduced program comprehension performance compared
to merely using textual languages [Petre, 1995]. These
problems are especially pronounced in larger, more com-
plex programs [Fry, 1997], which explains why visual pro-
gramming has been found beneficial for learning but is not
widely used in professional programming.

In this thesis, we will not try to make a case for or against
visual programming. We believe that due to the enormous
amount of textual source code that already exists, it will be
around for years to come. In this dissertation, we will focus
on tools for textual programming languages. Nevertheless,
we will refer back to the research on visual programming
and the effect of secondary notation when discussing our
designs for development tools.

2.4 Conclusion

In this section, we gave an overview of existing research onCurrent development
environments are not
holistically designed

around the
developers’

comprehension
process.

the cognitive models developers form when comprehend-
ing source code and the strategies they use during the com-
prehension process. In a brief summary of studies on de-
velopers’ interaction with existing development tools, we
found that these often do not support the strategies devel-
opers employ. This substantiates previous critique voiced
by Sillito et al. [2008], who argued that the current devel-
opment environments only provide a collection of tools in-
stead of being holistically designed to support developers’
comprehension strategies.

Nevertheless, the problem is more complex: We repeatedly
found that not only tools should support existing strategies
of developers, but also that developers change their strate-
gies in response to certain tools. Hundhausen et al. [2002]
found that the effect of the strategies a tool encourages can
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be bigger than the effect of the actual information displayed
in the tool. This is also echoed in a quote by LaToza et al.
[2010b]:

“Understanding the strategies by which devel-
opers answer questions holds the potential to
both reveal new opportunities for tools and to
make it easier to understand how and why de-
velopers use the tools they do.”

How tools and the strategies employed by developers are
interdependent is the fundamental research question in-
spiring all projects presented in this thesis.
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Chapter 3

Programming Paradigms
for Animation

“Animation can explain whatever the mind of
man can conceive. This facility makes it the most

versatile and explicit means of communication yet
devised for quick mass appreciation.”

—Walt Disney as quoted in OpenGL Shading
Language (2006) by Randi J. Rost

Publications: The work in this chapter was done in collaboration with Joel Brandt and
Michael Hennings. It was funded in part by Adobe Research. The content of this chapter is
based in part on a previous publication of this work as a short paper at the CHASE work-
shop 2016 [Krämer et al., 2016b]. The materials used in the study and the data collected
have been published under the CC0 dedication to allow for open access [Hennings et al.,
2016a,b; Krämer et al., 2016c]. Michael Hennings ran the experiment described in this chap-
ter as part of his Master’s thesis [Hennings, 2016]. The author of this thesis supervised this
Master’s thesis, formulated the goals and research questions of this work, and contributed
to the design of the experiment and the analysis of the results.
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In Chapter 2, we learned that strategies for understandingThe design of a
framework imposes
which programming
schemas should be

applied to solve
certain problems.

source code are similar to those for understanding natu-
ral language texts. Consequently, one way to improve the
comprehensibility of source code is to incorporate natu-
ral language deliberately. This can be applied to the de-
sign of frameworks: By choosing names for variables and
functions, framework authors can emphasize or deempha-
size certain information [Gilmore et al., 1984]. By choosing
how these named entities are supposed to be used together,
the author of the framework imposes which programming
schemas should be applied to solve a certain problem.

As a result, the design of the framework influences how de-The level of
abstraction is one of

the most important
design properties of

frameworks.

velopers approach tasks and which strategies they employ.
We have learned in Section 2.3.1 that one of the most im-
portant design properties of APIs is the level of abstraction
they provide. Identifying the most suitable level of abstrac-
tion for a given task can be challenging. For example, Stylos
et al. [2008] found for one API that its usability could be im-
proved by increasing the level of abstraction, while Green
et al. [1996] pointed out that increasing abstraction can cre-
ate hidden dependencies and, thus, lead to problems. In
this chapter, we will compare two frameworks to program-
matically author animations, and analyze how the different
levels of abstraction in these frameworks affect the devel-
oper’s behavior.

Animations are widely used in a variety of scenarios andAnimations are
widely used in digital

artifacts.
tasks [Dahotre et al., 2010]. The most obvious example is
their use in movies, either as special effects or to render
a complete movie. But they are also added to user inter-
faces to provide feedback and convey a sense of plausibil-
ity [Chang et al., 1993], or in scientific visualizations to add
another dimension to the display of data. What makes an-
imations interesting for us, is that they frequently appear
in digital artifacts. Hence, it is not uncommon for software
developers to be tasked with creating animations.

Many animation can be abstracted as follows: Given aAn animation defines
property changes of
an object over time.

scene that contains a number of objects, where each object
has a set of animatable properties, such as position or size,
an animation defines how and when each of these prop-
erties changes over time [Parent, 2012]. Animations dif-
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fer in how these property changes are defined. For exam-
ple, motion capturing allows to generate timing informa-
tion for property changes of an object from a motion that is
recorded in the real world. Alternatively, a physics simula-
tion can be used to generate similar data. For this research
project, we focus on artistic animations, i.e., the animator
defines the property changes in an artistic process [Parent,
2012].

Very broadly, two kinds of authoring tools for animations Animations can be
authored using
graphical tools or
programming
languages.

can be distinguished: graphical tools and textual program-
ming languages. Graphical tools are frequently used, if
the scene and the objects in the scene are fixed. They al-
low animators to previsualize how the finished animation
will look like. Also, developers can use direct manipula-
tion [Shneiderman, 1983] to modify the properties of each
object at any given point in time during the animation. If
the scene and objects are not fixed, it often makes sense to
define the animation programmatically. This allows devel-
opers to modularize their animation definition and reuse
animation source code for various animation tasks. For ex-
ample, an animation can be implemented once and be ap-
plied repeatedly to various interface elements. Similarly,
when animating a character, a developer can implement a
breathing animation that runs continuously and adapts to
the character’s other actions.

We found two prevalent programming paradigms imple- In existing
frameworks for the
programmatic
creation of
animations, we found
two prevalent
paradigms:
procedural and
declarative.

mented in existing frameworks to support the program-
matic creation of animations: In procedural frameworks, the
developer implements an update method that is called by
the system at fixed time intervals. The update method is
responsible for updating the properties of all objects for the
given point in time. In declarative frameworks, the devel-
oper defines the animation by providing tuples that specify
the value of an object’s property at a point in time during
the animation. These tuples are called keyframes. Once
all keyframes are specified, the system runs the animation
automatically by interpolating all property values between
two keyframes. The interpolation function can be changed
by the developer if needed. We can interpret the differ-
ence between procedural and declarative animation pro-
gramming as a difference in the abstraction provided by
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1 function render(time) {
2 var loc = time % 300;
3 if (loc > 150) {
4 loc = 150-(loc % 150);
5 }
6 ball.top = loc;
7 }
8

9 window.requestAnimationFrame(render);

1 var actor = animator.addActor({
2 context: ball
3 });
4

5 actor.keyframe(0, {top: 0});
6 actor.keyframe(150, {top: 150});
7 actor.keyframe(300, {top: 0});
8

9 animator.play();

Listing 1: This first code snippet is a procedural implemen-
tation of a ball moving up and down. The second snipped
implements the same movement declaratively. Example
from [Krämer et al., 2016b]

either paradigm. While using a procedural framework the
developer needs to calculate all intermediate property val-
ues during an animation, in a declarative framework this
task is abstracted and performed by the library. An exam-
ple of both a declarative and a procedural definition of an
animation is shown in Listing 1.

In the remainder of this chapter, we will report on a within-
groups lab study in which we compared a procedural with
a declarative animation library in terms of how developers
work with the respective libraries.
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3.1 Comparing Declarative and Procedu-
ral Animation Frameworks

We performed a within-groups experiment with two condi-
tions: procedural and declarative. Our hypothesis is that the
higher abstraction provided in the declarative framework
allows for an easier mapping of high-level programming
plans to framework functions. We expect that this results
in a) a lower task completion time when using a declara-
tive framework, and b) in users preferring the declarative
condition.

3.1.1 Setup

In both conditions, participants used JavaScript to animate Study participants
animated HTML
elements using
JavaScript, once
using a procedural
and once using a
declarative
framework.

HTML elements on a website. The conditions differed in
the JavaScript framework used: In the procedural condi-
tion, developers used JavaScript’s native animation frames.
They allow to register a callback that is called for every
frame and has to update the properties of all animated
HTML elements. The predominant technique to animate
HTML elements declaratively is to specify the animation
using CSS. However, we opted to use Rekapi1 in the declar-
ative condition instead. Rekapi is a JavaScript framework
which makes its syntax more comparable to JavaScript’s
animation frames that are used in the procedural condition.
The examples in Listing 1 show both APIs in use. There
are plenty of other procedural and declarative animation
frameworks for JavaScript we could have chosen but in our
study we designed the tasks to only require the most fun-
damental features of the frameworks used. We assume that
these features exist virtually in any other implementation
of the respective programming paradigm as well. We pro-
vided cheat sheets containing the necessary API documen-
tation for each condition [Hennings et al., 2016a], which
were designed following the guidelines by Mayer [1997].

Participants had to implement five animation program-
ming tasks once in each condition. The starting condi-

1http://rekapi.com/

http://rekapi.com/
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t = 5% t = 50% t = 5% t = 50%

t = 50% t = 75% t = 100%t = 0% t = 25%

Task A, B Task C

Task D Task E

Figure 3.1: Participants had to implement each of the tasks above using both a
procedural and a declarative animation framework. Figure adapted from [Krämer
et al., 2016b].

tion was randomized for each participant, while keepingParticipants
implemented five

animations once in
each condition.

the number of participants starting in each condition equal.
Participants solved each task in both conditions before pro-
ceeding to the next task. The duration of the study was
fixed to two hours, i.e., when time ran out later tasks were
skipped. Participants had to solve the following tasks (see
also Figure 3.1):

Task A Participants had to animate a ball that continu-
ously moves up and down on a black bar. A realis-
tic bouncing animation was not required, i.e., the ball
did not need to deform when touching the bar, and it
should move at a constant speed.

Task B Participants had to add easing to the movement
of the ball, i.e., the ball should accelerate and de-
celerate while moving up and down. Rekapi pro-
vides pre-made easing functions that can be attached
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to a keyframe. They change the interpolation func-
tion used to calculate property values between the
keyframe and the previous state. To allow a fair com-
parison, we provided similar helper functions in the
procedural condition.

Task C Participants had to add a second ball that moves
like the first one but with a slight delay.

Task D Participants had to modify the bouncing animation
of a single ball to include a deformation of the ball
when it hits the ground. The key challenge in this
task is that the ball’s position is controlled by its offset
from the top. While the ball deforms and the height is
reduced, the offset from the top needs to be adjusted
continuously to compensate for the loss in height to
keep the bottom of the ball steady on the black bar.

Task E Participants had to implement a ball that moves
downwards and follows a pendulum-like movement,
i.e., it oscillates from left to right while falling. After
arriving on the black bar, the animation should stop.

In all tasks, we provided a code skeleton that included the We provided all
required HTML and
CSS code.

complete HTML and CSS code as well as all JavaScript
code except for the animation itself. For Tasks B and C,
the JavaScript skeleton included a working solution of the
previous task.

The tasks were designed in an iterative design process that The tasks were
designed to be
realistic but solvable
in two hours.

included multiple pilot studies to make sure that they could
be feasibly solved within two hours. Further, the tasks
were designed to be representative of common animations
in user interfaces that often only change few properties of
an object over time. For example, in Keynote2, a popular
tool to author presentation slides, 40% of all animations to
reveal an object can be recreated by changing no more than
three properties of the object over time.

Before the study, participants had to fill out a questionnaire We extended the
Brackets editor to
support the study
procedure.

to assess their coding skills and their previous experience
with programmatically defining animations. We informed

2http://www.apple.com/mac/keynote/

http://www.apple.com/mac/keynote/
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the participants that we wanted to compare two different
types of frameworks but did not reveal our research hy-
potheses before the study. During the study, all participants
worked using an identical 15-inch laptop computer, option-
ally using an external mouse and keyboard. Participants
had to use the Brackets3 code editor that we modified to
support the study procedure. At the start of a task, Brackets
opened all required documents, including the code skele-
ton and the task description. Participants had read-only
access to their own solutions for previous tasks. Brack-
ets included a play button to open the animation in the
Google Chrome4 browser that also provided a debugger.
When participants wanted to finish a task, they could sub-
mit their solution using Brackets. This caused all open files
to be saved and closed and the next task to be started. In
the background, Brackets recorded timestamps of all scroll
events, key strokes, and manual code executions. We also
recorded a video of the computer screen throughout the
trial.

3.1.2 Results

We recruited 14 students to participate in our study, all of14 students
participated in our

study.
them were majoring in computer science or a related field.
Participants were on average 24.1 years old (SD = 3.4)
and reported to spend an average of 14.3 hours (SD = 7.6)
per week programming. Three participants created anima-
tions regularly, while six reported to rarely or never imple-
ment animations. Two participants knew Rekapi before the
study and reported to have rudimentary knowledge about
it.

Most participants did not manage to complete all tasksMost participants did
not solve all tasks in

time.
within the two-hour time limit. Table 3.1 shows how many
participants submitted a solution for each task, and how
many of these solutions were correct.

First, we compared the developers’ subjective ratings of
both libraries. Half of all developers preferred the declara-

3http://brackets.io
4https://www.google.com/chrome/

http://brackets.io
https://www.google.com/chrome/
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Task A B C D E
Condition P D P D P D P D P D
Submitted 14 14 13 13 12 11 7 7 2 2
Succesful 13 14 8 13 12 10 4 6 2 2

Table 3.1: For every combination of task and condition, this
table shows the number of participants handing in a solu-
tion and the number of correct solutions.
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Figure 3.2: Participants solved tasks 2.4 times faster on av-
erage in the declarative condition. Task C is a notable ex-
ception, in this tasks developers on average needed more
time using the declarative framework.

tive condition, while only one developer preferred the pro- Only one participant
preferred the
procedural condition.

cedural condition. The remaining six participants reported
that they liked the declarative condition better but felt that
the expressiveness of the declarative framework was lim-
ited. Hence, they would have liked a combination of both
approaches that allowed them to switch to a procedural im-
plementation as needed. Several participants suggested to
introduce a special type of keyframe that defines a times-
pan during which properties are not interpolated but have
to be updated manually in a callback, as in the procedural
condition.
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Speed-up from first to second condition

Task A

Task B

Task C

Task D

Task E

0,03 0,04 0,06 0,1 0,2 0,3 0,4 0,5 0,6 0,8 1 2 3 4 5 6 7 8 9

Figure 3.3: Participants solved every task twice, once in
each condition. The figure shows how much faster each
task was solved in the second trial. Values greater than one
indicate that participants finished faster in the second trial.

To analyze the developers’ performance, we compared theOn average,
participants solved

tasks 2.4 times faster
in the declarative

condition.

task completion times of the developers who solved a task
in both conditions (see Figure 3.2). We excluded Task E
due to the low number of participants completing this task.
Condition and task had a significant effect on task com-
pletion time with participants in the declarative condition
solving tasks 2.4 times faster on average.

Task: F (3, 53.37) = 7.62 p = 0.002

Condition: F (1, 50.68) = 13.4 p = 0.006

Interaction: F (3, 50.25) = 3.71 p = 0.017

We observed a significant interaction effect between task
and condition. In task C, unlike any other tasks, develop-
ers were faster in the procedural condition. We found no
learning effect caused by repeating the same task in both
conditions, i.e., when solving the same task again in a dif-
ferent condition participants were not significantly faster
(see Figure 3.3).

To compare the developers’ strategies between both condi-Developers
performed less

manual tests when
using the procedural

framework.

tions, we use two different analysis methods. We started
with a quantitative analysis of the number of manual exe-
cutions of the animation, i.e., the number of edit-test-edit
cycles (see Figure 3.4). Previous research has shown that
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frequent edit-test-edit cycles (see Chapter 2) are especially
common in animation creation tasks [Brinkmann, 2008].
We found a significant effect of condition on the number
of manual executions per task, and a significant interaction
between condition and task.

Task: F (4, 67.6) = 2.05 p = 0.0.097

Condition: F (1, 60.5) = 10.1 p = 0.002

Interaction: F (4, 60.5) = 2.93 p = 0.028

In the declarative condition, developers performed signif-
icantly less manual executions then in the procedural con-
dition. Closer inspection of the results shows that the ob-
served difference is caused by Task A and B, while the
number of manual tests is nearly equal for Task C and D.
We found no effect of condition on the test frequency, i.e.,
when normalizing the number of tests to the task comple-
tion time.

The second analysis of the developers’ strategies compared We expected
solutions using the
declarative
framework to be
more consistent.

the consistency of the solutions created by different partic-
ipants and of the strategies used to implement these solu-
tions. We expected that developers can easier express their
high-level programming plans if the framework provides
a higher level of abstraction, because fewer intermediate
programming schemas need to be instantiated. Hence, we
expect to find less diversity in solutions in the declarative
condition.

We could only confirm this hypothesis for task A: In the Task A was solved
nearly identical by all
participants in the
declarative condition.

declarative condition, nearly all participants implemented
the same programming plan that includes three keyframes
(see Listing 1). Only one participant came up with an al-
ternative solution and calculated keyframes for all inter-
mediate positions of the ball. In the procedural condition,
we found two different strategies, each of which was used
by half of the participants. The first strategy was to calcu-
late the ball’s offset from the starting position as a function
of elapsed time (see Listing 1). The second strategy was
to move the ball by a fixed distance in every frame. Both
strategies result in a visually similar animation, however,
only using the first strategy the speed of the animation is
independent of the system refresh rate.
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Figure 3.4: The figure shows how often developers man-
ually tested the animation by task and condition. In the
declarative condition, developers performed significantly
less manual tests. This result is caused mostly by a sub-
stantial difference in Task A and B.

In task B, we found consistent strategies in both conditions:In task B, solutions
were consistent in

both conditions.
All participants who solved the task successfully ended up
using the provided helper functions. One participant in the
procedural condition and two participants in the declara-
tive condition split the animation into two parts in order to
then use separate helper functions for easing in and easing
out. Two participants in the declarative condition added
easing to all keyframes, even though adding it to the start-
ing keyframe has no effect.

For task C, strategies were not only consistent within eachTo solve task C, all
developers in both
conditions copied

existing code.

condition but also across all conditions. All developers in
both conditions solved the task by copying the first ani-
mation and altering the copied code to implement the de-
lay. No developer attempted to use modularization and
parametrization, e.g., by implementing a method to ani-
mate an arbitrary ball with an arbitrary delay.
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The strategies we observed in task D were again mostly For task D, we
observed some
diversity in both
conditions.

consistent in both conditions. In the procedural condition,
three participants moved the ball further downwards while
changing its height. One participant implemented a state
machine to distinguish two phases of the animation. In
the first phase, the ball falls and in the second phase, the
ball deforms. In the declarative condition, five participants
added keyframes to represent these two phases. One par-
ticipant introduced a separate animator for the deformation
of the ball, i.e., a set of keyframes that is animated using a
separate timeline. Hence, the participant needed to man-
ually synchronize two animators, one for the deformation
and one for the downward movement.

3.1.3 Discussion

Participants subjectively preferred declarative animation Overall, the
declarative
framework was
preferred and more
efficient.

programming. This preference aligns with many quan-
titative results we found: Developers were significantly
faster using the declarative framework, and they per-
formed fewer manual tests. For two of the tasks, we found
that several participants could not solve them at all unless
they used the declarative framework.

In the task-wise analysis of the developers’ strategies, we In many tasks, the
abstraction provided
in the declarative
framework matched
developers’
programming plans.

found several examples in which the abstraction provided
by the declarative framework is helpful: For example, in
task A, we observed that the declarative framework suc-
cessfully hides low level implementation details. This pre-
vented potentially unintended results, such as the anima-
tion speed being related to the system frame rate. In task
B, participants again benefit from the higher level of ab-
straction, because they do not need to worry how easing
affects each intermediate position of the ball. This allows
them to solve the task faster and with more confidence in
their solution. Even if developers did not fully compre-
hend how the framework works, e.g., when adding easing
to the starting keyframe, the framework proved to be fault
resistant and the animation worked as intended. In task D,
we observed one participant implementing the declarative
concept in the procedural condition. This supports our hy-
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pothesis that the declarative paradigm aligns well with the
developer’s high-level programming plans.

Despite these positive results in favor of declarative anima-When developers get
stuck, they want to

go back to the
procedural paradigm.

tion programming, several developers indicated that they
would like to have the option to switch to the procedu-
ral paradigm if needed. This is surprising, because in our
study both frameworks were sufficient enough to solve all
tasks. We assume that understanding how to utilize the
framework was sometimes more difficult in the declarative
condition than in the procedural condition.

During the study, we first found support for this hypoth-In task C, the
abstraction provided

by the declarative
framework led to

unexpected behavior.

esis in task C, which is the only task where participants
were slower on average in the declarative condition than
in the procedural condition. All but one developer first at-
tempted to copy the keyframes that existed for the first ball
and adapt them for the second ball. To implement the delay,
they then moved all new keyframes back on the timeline by
a fixed delay. This extends the complete length of the time-
line, i.e., when the animation loops the first ball will move
up and down and then stop until the second ball has also
reached the top. The problem was that the timeline was
not explicitly represented in code but created implicitly by
adding keyframes. In this case, the abstraction provided
led to unexpected behavior for the developer. This effect
was severe enough to mitigate all positive effects of the
declarative paradigm. To solve the problem, developers re-
sorted to a trial-and-error strategy, in which they tested var-
ious parameter values. Thus, the number of manual tests
is comparable to the procedural condition. Trial-and-error
exploration of possible parameter values is a common but
ineffective method that developer use to avoid completely
comprehending the existing code [Détienne, 2002], in this
case the abstract concepts of the declarative framework.

In task D, we again found no clear benefit of declarative ani-The declarative
paradigm provided

little support for
animating two

dependent properties
concurrently.

mation programming over procedural animation program-
ming. The key difficulty in task D is that the ball’s position
has to be changed according to its height, i.e., two depen-
dent properties are animated concurrently. The declarative
paradigm does not provide any abstraction that helps with
this particular problem. As a result, we found that develop-



3.2 Conclusion and Future Work 43

ers needed a similar amount of testing as in the procedural
conditions. However, more participants completed the task
successfully in the declarative condition, and participants
could solve the task faster. We assume that for task D the
abstraction provided by the declarative framework lowers
the cognitive load of developers, because it allows them to
reason about a solution to the problem on a higher level of
abstraction.

3.2 Conclusion and Future Work

We found that developers could implement many anima- The abstraction
provided by a
framework should
align with developers’
high-level
programming plans.

tions faster using a declarative framework than using a pro-
cedural framework. Our results indicate that this is caused
by a better coherence between the level of abstraction pro-
vided by the framework and the high-level programming
plans formulated by developers. This influences the de-
velopers’ testing behavior: They need significantly fewer
manual tests to be confident that their code is correct. We
believe that this result has implications for the design of
frameworks, in general: If common high-level program-
ming schemas are known, the level of abstraction in the
framework can be designed to align with these schemas.
This reduces the depth of the hierarchy of lower level
schemas that is required to solve the programming task.

One problem we observed was caused by a lack of abstrac-
tion suitable to support the implementation of animations
that need to change multiple dependent parameters con-
currently. This problem is consistent with the positive re-
marks above: It exemplifies that for programming schemas
that do not match the exposed interface of the framework,
abstraction yields no benefits.

The second problem we observed points to a potential pit- A framework should
expose all underlying
concepts that affect
its behavior.

fall in the design of frameworks with a high level of abstrac-
tion: Developers are likely to only comprehend a frame-
work at the level of abstraction they need to apply pro-
gramming schemas. In our study, this led to unexpected
behavior because the interface exposed by the framework
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did not facilitate comprehension of important underlying
concepts, e.g., the fact that all keyframes define a timeline.

We conclude that considering the developers’ conceptualWe contribute two
design

recommendations for
designers of APIs.

models when designing a programming framework is im-
portant to successfully support developers. This result
is consistent with previous case studies on the design of
frameworks [Green et al., 1996; Stylos et al., 2008]. These
previous studies pointed out that the level of abstraction
is one of the most crucial design aspects for programming
frameworks. In our example, we specifically compared
frameworks that provide a different level of abstraction and
found two design recommendations: First, the designer of
a framework should try to find well-known high-level pro-
gramming schemas developers use and design the abstrac-
tions in the framework to make it easy to express these
plans. Second, the designer should check which underly-
ing concepts need to be exposed to prevent unexpected be-
havior.

We believe there is potential for future improvements of
tools for the programmatic design of animations:

First, we observed that developers often resorted to shortSpecialized tools
could support
developers in

repeatedly testing
their animation.

edit-test-edit cycles when problems occurred. These could
be more effective when using a live coding environment,
i.e., restarting the animation automatically after every
change. We will discuss live coding environments for gen-
eral purpose programming in more detail in Chapter 6. An-
imations are special, though, because all intermediate states
are transient, hence, important timing and movement de-
tails can be hard to spot. Also, if the animation is very long
the relevant part of it might be visible only after a substan-
tial waiting period. Future research projects should explore
how to visualize important information about a continu-
ously restarted animation effectively.

Second, we propose that concurrently changing propertiesDependencies
between multiple

animated properties
could be expressed

using constraints.

can be modeled more effectively when introducing con-
straints as another abstraction into declarative animation
frameworks [Duisberg, 2009; Oney et al., 2012b]. A con-
straint should represent a temporal or spatial relationship
between objects, that is maintained throughout the anima-
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tion. For example, this would allow to solve task C by an-
imating the first ball and defining two constraints for the
second ball. The first constraint fixes the second ball’s x-
coordinate at 200px right of the first ball. The second con-
straint fixes the second ball’s y-coordinate to be the first
ball’s y-coordinate 500ms ago.
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Chapter 4

Authoring of
Documentation and Unit
Tests

“I don’t think a program is finished until you’ve
written some reasonable documentation. [. . . ] I

think it’s unprofessional these people who say,
’What does it do? Read the code.’ The code shows

me what it does. It doesn’t show me what it’s
supposed to do.”

—Joe Armstrong, from an interview in Peter Seibel
– Coders at Work

Publications: This work started during an internship of the author at Adobe Research
under supervision of Joel Brandt. The collaboration and this project continued after the
internship ended, and was partially funded by Adobe Research. This project was published
before as a short paper at CHI 2016 [Krämer et al., 2016a]. The author contributed to the
definition of the research questions, the interaction design, the study setup, and the analysis
of the results. He also implemented the prototype and administered the user study.
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In the previous chapter we found that the design of frame-Documentation and
unit tests describe

expectations about
the source code.

works affects the behavior of developers. A huge part of a
framework’s design is made up through its use of natural
language for the naming of variables and functions. An-
other important and common way to use natural language
in source code is by including documentation. Documen-
tation is a plain text comment written by the author of the
code to explain the expected behavior of the source code
to readers, i.e., other developers. Documentation does not
alter the behavior of the program, it is ignored by the com-
puter when the software is executed. Unit tests are similar
to documentation in that they also describe an expectation
about the software and do not alter the behavior of the soft-
ware. For example, documentation can describe that a pa-
rameter is expected to have the specified type, or unit tests
can describe that a function is expected to always throw an
exception when certain parameter values are passed in. In
contrast to documentation, unit tests can be executed to en-
able a computer to verify that the expectation is met.

Documentation and unit tests are well known to facilitateDocumentation and
unit tests increase

software
maintainability but

are often missing or
out-of-date.

the construction of the situational model [Détienne, 2002]
and, thus, support software maintainability [Bhat et al.,
2006; Kotula, 2000]. However, creating documentation and
unit tests is laborious and writing them does not immedi-
ately improve the application. The benefit of maintaining
up-to-date documentation and unit tests is often only ob-
vious in hindsight. As a result, these documents are often
missing or are out of date [Kajko-Mattsson, 2001; Maalej et
al., 2014; Taylor et al., 2002]

We decided to work on this problem in the context ofJavaScript source
code represents few
expectations about a

program explicitly.

JavaScript. JavaScript is a dynamically and weakly typed
language, i.e., the type of a variable can change at runtime
and is generally unknown at compile time. This flexible
type system yields call sites that are potentially polymor-
phic, because which implementation of a method is called,
depends on the current type of a variable. As a result,
JavaScript source code represents few expectations for a
program explicitly. This makes documentation and unit
tests particularly valuable.
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Several tools have been proposed to specify expectations Static and dynamic
approaches can be
used to infer some
expectations about
code automatically.

about JavaScript applications, using either static or dy-
namic analysis. Many static tools perform type inference
and check for errors based on the inferred types. Sev-
eral of these tools have gained attention in the developer
community, e.g., Flow1, TypeScript2, or Tern3. Often the
type inference is bootstrapped using initial manual source
code annotations. These can be provided either by using a
JavaScript dialect that syntactically allows typed variables,
or by providing JSDoc4-formatted function documentation.
Even with manual type annotations, the dynamic features
of JavaScript always limit the capabilities of static analysis
techniques [Richards et al., 2010]. Dynamic tools inspect
the actual program execution to circumvent this problem.
Commonly, these tools first identify potentially invariant
expectations about a program. This information can be
used, for example, to create corresponding unit tests that
ensure that the invariants hold [Artzi et al., 2011; Mesbah
et al., 2009].

Despite the variety of existing tools to support capturing Current tools require
developers to change
their workflow, while
providing little
near-term value.

expectations about the source code, developers still do not
create sufficient documentation and unit tests in many real-
world projects [Taylor et al., 2002]. We believe that this
originates from two reasons: First, the interaction design
of existing tools requires developers to change their work-
flow, e.g., by asking them to manually create type anno-
tations, or by requiring them to setup and regularly exe-
cute a dynamic analysis tool. These imposed requirements
on the workflow of developers can impair their flexibility,
which is one of the key reasons for developers to use a
dynamic language [Paulson, 2007]. Second, as discussed
above, documentation and unit tests have little near-term
value. Hence, developers are likely to prioritize other tasks
that they would consider to be more productive.

In this chapter, we will investigate whether or not an im-
proved interaction design can encourage developers to cre-
ate more documentation and unit tests. Our key idea is

1http://flowtype.org/
2http://www.typescriptlang.org/
3http://ternjs.net/
4http://usejsdoc.org/

http://flowtype.org/
http://www.typescriptlang.org/
http://ternjs.net/
http://usejsdoc.org/
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to integrate these activities into the edit-test-edit cycle thatVESTA integrates
documentation and
unit test authoring

into the edit-test-edit
cycle.

developers already perform – in one study, 80% of these
cycles were shorter than 5 minutes [Brandt et al., 2009a].
We implemented our idea in VESTA, an authoring tool for
documentation and unit tests. It uses runtime traces of the
manual executions developers perform to suggest updates
to documentation and unit tests. Further, while actively
working on a part of the source code, developers should
have a rich situational model of the code. Consequently,
right after a successful test would be an ideal time to write
corresponding unit tests and documentation. The down-
side of our design is that VESTA can be used only in a work-
flow in which tests and documentation are written after the
actual source code, i.e., we do not target proponents of test-
first development. VESTA shares this limitation with all
tools that rely on static or dynamic analyses of the existing
application to generate information.

In the next section, we are going to present previous re-
search projects related to our ideas. After that, we will
present a detailed rationale for VESTA’s design, and finally
we will report on a study to evaluate VESTA’s effect on de-
velopers’ documentation and unit test authoring practice.

4.1 Related Work

Developers usually manually execute their program to testRuntime analysis is
often performed to
analyze erroneous

behavior.

its correctness. Most tools analyzing these manual execu-
tions, such as a traditional debugger, support this task and
focus on debugging erroneous executions. For example,
tools can allow to recreate failure states repeatedly [Burg
et al., 2013], or retrospectively analyze the execution to find
which sequence of method calls caused erroneous behav-
ior [Ko et al., 2009]. Theseus [Lieber et al., 2014] aimed
to provide timely information about the manual execu-
tion: It visualizes calls to each method immediately after
it was called during the manual execution. VESTA is differ-
ent from these tools in two ways: First, while all of these
runtime analysis tools focus on analyzing erroneous exe-
cutions, VESTA utilizes error-free test runs best. Second,
all of these tools support developers in the primary task
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for which they perform a manual execution, i.e., testing the
correctness of the program, whereas VESTA uses runtime
information to encourage developers to work on a different
task once the program works as intended.

VESTA’s interface is based on the concept of mixed- Mixed-initiative
interfaces implement
a collaborative
interaction between a
system and the user.

initiative user interfaces [Horvitz, 1999]. These interfaces
implement a collaborative interaction in which a system
provides automatically generated information that the user
can easily customize and extend. Several other authoring
tools for documentation and unit tests from research [Buse
et al., 2010; Tan et al., 2012] and industry (e.g., JAutodoc5),
are built around the same concept.

To generate the system provided information, tools can use Different static and
dynamic techniques
could complement
VESTA’s capabilities
in the future.

either static or dynamic analysis techniques. Using static
analysis, Sridhara et al. [2010] analyzed a function’s body
to identify the most important function calls and then trans-
lates these into a natural language description. Buse et al.
[2010] were able to automatically document the effect of a
change to the source code, or possible exceptions thrown by
a function [Buse et al., 2008]. Dynamic analysis, as used in
VESTA, was previously used in Daikon [Ernst et al., 2007]
to search for likely invariants, e.g., invariable variable types
or fixed values. The Daikon invariant detector has been
used successfully to generate suggestions for new unit tests
[Xie et al., 2006]. Atusa [Mesbah et al., 2009] also utilizes
dynamic analysis, and searches possible paths through the
user interface of a website to generate tests that assert user
specified invariants. Research on different techniques to
automatically generate information about invariants is or-
thogonal to VESTA. Many of these projects could comple-
ment VESTA’s capabilities in the future and, hence, benefit
from our interaction design.

Rothermel et al. [2000] explored, similar to our research In spreadsheets,
runtime information
to support test
authoring is always
available.

question, how the generation of tests for spreadsheets can
be integrated into the workflow of spreadsheet users. Users
can check off cells as correct, which generates a test case
that ensures that given the current input of relevant input
cells, the output cell shows the current value. Because a
spreadsheet updates automatically immediately after a cell

5http://jautodoc.sourceforge.net/

http://jautodoc.sourceforge.net/
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Figure 4.1: This screenshot shows an overview of Brackets with the VESTA exten-
sion. VESTA adds two authoring interfaces: Documentation editors are embedded
into the source code editor, the unit test editor is located on the right side of the
editor.

or formula is changed, recent runtime results to extract a
test case are always available. We intent to complement
their work and explore a similar interaction in an environ-
ment that relies on the developer to manually execute the
program as part of his or her existing workflow.

4.2 The prototype VESTA

To prototype the interaction we suggest, we used a simpleOur prototype
analyzes only

function parameters
and return values.

dynamic analysis technique that is only capable of analyz-
ing function parameters and return values. In consequence,
the prototype of VESTA is only able to create function docu-
mentation. We believe that this subset of documentation is
already useful for developers, while being reasonably easy
to capture.
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VESTA includes two authoring components, one for doc- Vesta contains
separate authoring
components for
documentation and
unit tests.

umentation and one for unit tests (see Figure 4.1). In the
remainder of this section, we will first present design chal-
lenges we were confronted with when exploring the design
of VESTA. Then, we will briefly describe the key technical
problems we encountered when implementing the proto-
type and how we solved them.

4.2.1 Design

When exploring how to integrate runtime information from
manual tests of the application into the development pro-
cess, we found four design challenges that needed to be
solved:

1. Usually, not all possible paths through the code are
executed at runtime. Hence, runtime information ob-
tained from an arbitrary execution is likely incom-
plete.

2. Because runtime traces are only captured from man-
ual executions that are performed by the developer,
information can become outdated.

3. The code that developers test manually is often incor-
rect and unfinished. In this case, expectations about
the code that are inferred from a runtime trace are
likely also incorrect.

4. Software changes throughout the development, caus-
ing information to be impermanent, i.e., information
that was correct at one point is not necessarily correct
for all future versions of the software.

Interaction Design: Authoring Documentation and Unit
Tests in the Edit-Test-Edit Cycle

To solve the first two problems, we designed the interac-
tion with VESTA to encourage writing documentation and
unit tests continuously while working on the source code.
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Figure 4.2: Vesta detected that type information recorded
at runtime does not match the documentation. It allows to
navigate to the responsible call site, or to update the docu-
mentation. Figure Source: [Krämer et al., 2016a]

Ideally, developers maintain these documents as part ofWriting
documentation and
unit tests as part of

the edit-test-edit
cycle solves problem

1 and 2.

the rapid edit-test-edit cycles they already perform rou-
tinely. To encourage this behavior, VESTA suggests likely
updates to documentation and unit tests immediately af-
ter each manual execution. The manual execution exer-
cised the same code that is about to be documented, hence,
the information presented in VESTA is likely relevant even
though it is incomplete. Information is also not outdated,
because the developer has just performed the execution.

To implement the workflow as described above for doc-Vesta checks the
documentation after

every manual
execution.

umentation, VESTA compares the information obtained at
runtime, i.e., types of function parameters and return val-
ues, with the current documentation. If a function is not yet
documented, VESTA inserts the recorded types into the doc-
umentation automatically. Otherwise, VESTA shows type
conflicts in case the types recorded at runtime and the doc-
umented types do not match (see Figure 4.2). VESTA sup-
ports two ways to resolve the type conflict: First, if the con-
flict may constitute a bug, VESTA allows developers to nav-
igate to the erroneous call site to fix the bug. Second, de-
velopers can instruct VESTA to update the documentation
by either replacing the current documentation to reflect the
newly observed types, or by merging the new and the ex-
isting type information to indicate polymorphism.
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Figure 4.3: Vesta offers two test templates that can be instantiated with runtime
information. The first template recreates a recorded method invocation and tests if
it returns the recorded result. The second template helps create tests for common
edge cases based on the documented types of function parameters.
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While documentation is inserted automatically if no previ-Unit tests are created
from templates that

are pre-populated
with runtime
information.

ous documentation exists, unit tests are not created with-
out user interaction. Instead, VESTA supports the user in
assembling test suites by offering two test templates that
can be pre-populated with runtime information (see Figure
4.3). The first available template recreates a previous in-
vocation of a function. The resulting test calls the tested
function with the previously recorded parameters and tests
if it returns the recorded result. Using this template alone,
developers can already capture their manual tests in per-
sistent, re-executable unit tests. The test coverage that can
be achieved using only tests generated from this template
correlates with how thoroughly developers test their appli-
cation using manual executions.

A second test template helps developers to create tests forCommon edge cases
to be checked in unit

tests are inferred
from the documented

types.

common edge cases, based on the types of function param-
eters. This template uses the type information that is stored
in the function documentation. For example, if a function
expects a string parameter, the test template would sug-
gest to test the function behavior in case the parameter is
an empty string or undefined. The list of suggested val-
ues for each type is currently hardcoded in VESTA. This
template should encourage developers to write more tests
that cover erroneous behavior.

All tests created with VESTA can be modified, and usersDevelopers can
customize all tests

created with VESTA.
can create their own custom tests. The current implemen-
tation of our prototype is designed for the Jasmine6 testing
framework. Hence, VESTA’s test templates use the Jasmine
API, and users can use all Jasmine features when creating
or modifying tests.

Interface Design: Different Representations for Reading
and Editing

The remaining problems, potentially incorrect and imper-Following two design
guidelines can solve

problem 3 and 4.
manent information, can be solved by following two de-
sign guidelines: First, developers need to judge the correct-
ness of information quickly, to deal with potentially incor-

6http://jasmine.github.io/

http://jasmine.github.io/
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Figure 4.4: Vesta switches between two representations of documentation as
needed. For reading, documentation is formatted in an easy to parse, non-code
format (left). For editing, it shows a textual representation of the documentation
formatted in JSDoc (right).

rect information. Thus, information needs to be presented
in a way that is easy to parse but does not draw attention
after every manual execution, because they often occur dur-
ing debugging phases that are already cognitively demand-
ing. Second, to deal with impermanent information, de-
velopers need to be able to change or extend information
quickly. To implement these guidelines, VESTA makes use
of secondary notation (see Chapter 2.3.2), i.e., visually rich
formatting.

To implement these guidelines, VESTA’s documentation VESTA’s
documentation
component switches
between two
representations for
reading or writing.

component switches between two modes (see Figure 4.4):
For reading, documentation is formatted in an easy to
parse, visually appealing, non-code format. For editing,
VESTA shows a textual representation of individual docu-
mentation lines formatted in JSDoc, a markup language for
documentation in JavaScript. Additionally, Markdown7, a
popular markup language for text formatting, can be used
to format the documentation for the reading mode. VESTA

switches between both representations automatically, when
developers move the cursor from the source code into the
documentation. Developers can rely on standard cursor
navigation using either the keyboard or the mouse as they
are used to from regular source code editing.

Unit tests are commonly organized in test suites, which bun- VESTA hides the
file-based storage of
unit tests.

dle a set of related unit tests. Groups of related test suites
are usually stored in one source file. VESTA hides the file-

7https://daringfireball.net/projects/markdown/

https://daringfireball.net/projects/markdown/
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based storage from the user and instead calls a group of re-
lated test suites a test collection. To provide a starting point
for test organization, VESTA maintains one test collection
associated with each source file in the project, and one test
suite associated with each function.

VESTA’s unit test component is shown in a separate areaVESTA uses
secondary notation

to improve the
readability of unit

tests.

on the right side of the source code (see Figure 4.1). It al-
ways shows one test suite at a time. By default, this is
the associated test suite for the currently edited function.
At the top, the user can select the displayed test collection
and test suite using drop-down menus. Individual tests
are shown in boxes that include a header to show the test
name and failure status. The source code of each test can
be collapsed (as is the case for the test shown in Figure 4.1),
which allows to read the test suite as a concise list of ex-
pectations and their failure status. Similar as for documen-
tation, keyboard-based cursor navigation is possible in the
entire unit test component.

VESTA also introduces a toolbar button that allows to runTests can be
executed from within

VESTA.
all unit tests. When running unit tests from within VESTA,
a runtime trace is automatically recorded to provide addi-
tional information about the tests. In particular, VESTA rec-
ognizes which functions are called at some point during the
execution of each test. This allows developers to see all unit
tests from which the currently edited function is called at
some point. Given that every test case specifies a behav-
ior of the application, this yields a quick overview of the
different behaviors or cross-cutting concerns a single func-
tion is involved in. Of course, VESTA also shows all errors
recorded during the test execution.

4.2.2 Implementation

VESTA is implemented as an extension of Brackets, anVESTA is
implemented as a

plugin for Brackets.
open-source source code editor. For runtime tracing, VESTA

uses a modified version of the Theseus [Lieber et al., 2014]
runtime tracer.
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VESTA stores all information transparently: Unit tests are All information is
stored transparently
in source files.

stored as source files and documentation is stored in docu-
mentation blocks inside the edited source file. To uniquely
identify a function even after it was renamed or moved,
Vesta stores a uniqueFunctionIdentifier in the doc-
umentation block for each function. Theseus was changed
to also read these function identifiers when recording a run-
time trace.

To manage information internally, VESTA represents func- Internally, VESTA

uses an
object-oriented data
model.

tion documentation, type information, and unit tests using
an object-oriented data model. This model can be rendered
into different representations as needed: To source code for
editing and saving, or to VESTA’S rich HTML-based visual-
izations for viewing.

Our prototype is available online as an open-source project.

http://hci.rwth-aachen.de/vesta

4.3 How Developers use VESTA

VESTA was created to explore if we can encourage docu- We expect
developers using
Vesta to write more
and better
documentation and
unit tests.

mentation and unit test authoring by designing an interac-
tion around current development practice. In this section,
we will present a between-groups lab study we performed
in order to understand how developers use VESTA. We ex-
pect that developers using VESTA write more documenta-
tion and unit tests and in addition, the quality of these doc-
uments improves. To assess the quality of documentation
and unit test, we used the following metrics:

For documentation:

1. amount of created documentation

2. accuracy of documentation

3. completeness of documentation

For unit tests:

http://hci.rwth-aachen.de/vesta
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1. number of test cases

2. number of test cases testing failure cases

3. source code lines covered by all tests

Further, we assumed that developers would not need to
radically change their strategies to incorporate VESTA into
their workflow.

4.3.1 Setup

We randomly assigned participants to one of these two con-We used a
between-groups

study design with two
conditions.

ditions: In the VESTA condition, participants used Brack-
ets and the VESTA extension. In the control condition,
participants used Brackets and the FuncDocr8 extension,
which analyzes function headers to provide a documenta-
tion skeleton that includes markup for all required state-
ments to document parameter types and the return type.
Features matching those of FuncDocr are available in many
IDEs to support the creation of function documentation.

We designed our study around a large open-ended task thatParticipants worked
on a large

open-ended coding
task.

could give us rich and ecologically valid qualitative results,
even though this could come at the expense of statistical
significance in low-level quantitative measures [Seaman,
1999]. When researching the effect of development tools
on developer productivity, effects can be over-exaggerated
if the tasks used in a study are too simple [De Alwis et
al., 2007]. In our experiment, participants implemented
a server application that fetches and parses the menus of
restaurants on a college campus from the official college
website, and provides a web-based API to access these
menus. We allowed participants to work on this tasks for
up to 6 hours.

To implement the server, participants had to use Node.js9.To keep solutions
comparable, we

restricted the use of
third-party libraries.

A large number of libraries for Node.js is available that pro-
vide useful abstractions for parts of the task. To keep solu-

8https://github.com/Wikunia/brackets-FuncDocr
9https://nodejs.org/

https://github.com/Wikunia/brackets-FuncDocr
https://nodejs.org/
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tions comparable, we selected a set of libraries that partici-
pants were allowed to use:

Express10 Express provides basic routing for server appli-
cations, i.e., it allows to attach functions to individual
HTTP requests.

lodash11 Lodash is a widely used utility library to manip-
ulate arrays and objects.

cheerio12 Cheerio provides functions for parsing HTML
that are similar to those provided by jQuery, which is
widely used for HTML parsing and manipulation on
websites. jQuery itself cannot be used in Node.js, be-
cause it relies on a web browser to provide functions
for standard DOM manipulation.

Participants used 27-inch iMacs on which we preinstalled All participants used
identical hardware
with all required tools
preinstalled.

all libraries, required software, and a minimal project tem-
plate. The experimenter was present at all times as a
silent observer, and we recorded the participants’ screens
throughout the study. In each session, three to four par-
ticipants worked in parallel. Participants were allowed to
talk to share ideas and help each other out. This not only
made the study more manageable, but also made the sce-
nario more realistic, because interruptions from co-workers
were found to be common to regular software developers
[González et al., 2004]. Due to the length of the study, we
included a lunch break. We compensated participants for
their expenditure of time with a 100e gift certificate.

To assess the participants’ experience, we asked them to Participants filled out
a questionnaire
before and after the
study.

fill out a questionnaire about their current documentation
and unit testing practices before the trial. We informally
interviewed participants during the lunch break and after
the study about their problems and their opinions about
our prototype. After the study, we asked participants in
the VESTA condition to fill out an additional question-
naire about the tool. All questionnaire questions were an-
swered using a 5-point Likert scale, where 1 corresponds to
“strongly disagree” and 5 corresponds to “strongly agree”.

http://expressjs.com/
https://lodash.com/
https://github.com/cheeriojs/cheerio
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4.3.2 Results

We recruited 14 participants (12 males, 2 female) for ourAll participants were
students with prior

experience in
JavaScript.

study, one of which was excluded from the analysis due
to technical problems during the trial. This left us with 7
participants in the VESTA condition, and 6 participants in
the control condition. Participants were 24 years old on av-
erage (SD = 2.6). All participants were computer science
students. Participants reported to have an average of 3.0
years (SD = 1.8) experience with JavaScript, and to spent
13.1 hours/week (SD = 7.3) programming.

Analyzing responses to the pre-study questionnaire, weParticipants report
value documentation

and unit tests but
rarely write them.

found that participants were not consistently required to
write documentation (Mdn = 3) or unit tests (Mdn = 2)
for their regular programming work. Most agreed to know
how good tests should look like (Mdn = 4). Participants
very consistently disagreed that it is not worth it to write
tests (Mdn = 1) or documentation (Mdn = 1), but still
admitted to skip writing these documents (Mdn = 4 for
both). Consequently, most participants found that they
should write more documentation (Mdn = 4) and unit tests
(Mdn = 4).

Documentation

We analyzed the quality of documentation using the met-The number of
created

documentation lines
is similar in both

conditions.

rics listed before. To quantify the amount of created doc-
umentation, we used the number of documentation lines
per function. In both conditions, we counted the lines of
documentation when formatted using JSDoc. We found no
significant effect of condition on the number of created doc-
umentation lines (one-sided t-test p = 0.330, t(8.8) = 0.45).

To quantify the accuracy of the created documentation, weDocumentation
created using VESTA

is nearly always
correct.

analyzed the individual type specifications contained in the
documentation. We considered a type to be documented
accurately, if it was syntactically and semantically correct,
i.e., if it conformed to the rules according to the task de-
scription. VESTA is designed to perform well under this
metric, as the automatically created type specifications are
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Figure 4.5: Type specifications created with VESTA were
nearly always accurate, because VESTA creates them auto-
matically, while about one in three types documented with-
out VESTA was inaccurate. Developers using VESTA also
created more complete documentation. None of the differ-
ences is statistically significant.

always accurate. A type specification can become inaccu-
rate, only if a user manually adjusts a type, e.g., to gen-
eralize it to allow more types, and then does not execute
the function again in a manual test. This happened for
one user in our study, because time ran out. Hence, we
ended up with three inaccurate type specifications (created
by the same user) in the VESTA condition, while 38.9%
(SD = 37.2%) of type specifications in the control con-
dition were inaccurate (see Figure 4.5). Only one user in
the control condition documented all types accurately. The
effect of condition on the percentage of inaccurate types
is close to being significant (one-sided t-test p = 0.072,
t(6.2) = −1.67).

We defined a function to be completely documented, if type
specifications were present for every parameter and the re-
turn value (if applicable), and a description was present
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Figure 4.6: The graphs show the number of tests created by participants in each
condition, and the percentage of statements executed when running all tests. Four
participants in the control condition and one participant in the VESTA condition
wrote no tests at all.

for every parameter and the complete function. This met-Documentation
created with VESTA

was slightly more
complete.

ric does not favor VESTA, because descriptions have to be
created manually in both conditions. Participants in the
control condition documented 51.9% (SD = 30.9%) of all
functions completely, compared to 68.4% (SD = 32.7%) in
the VESTA condition (see Figure 4.5). Again, this difference
is not statistically significant (one-sided t-test p = 0.093,
t(10.3) = 1.42).

Unit Tests

For unit tests, we again started by comparing the amountIn the control
condition more than

half of all participants
did not write unit

tests at all.

of unit tests created in each condition (see Figure 4.6). Four
of six participants in the control condition and one partici-
pant in the VESTA condition wrote no tests at all. The effect
of condition on the number of tests is marginal significant
(one-sided t-test, p = 0.056, t(11.0) = 1.73).

Only one participant in each condition tested a failure case,
e.g., the behavior of a function called with invalid parame-
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ters or in case of network failures. Four of these tests were Only one participant
per condition tested
for failure cases.

created in the VESTA condition compared to two in the con-
trol condition. Because only a single participant in each
condition created tests for failure cases at all, we performed
no statistical tests.

We analyzed the code coverage of each test suite by mea- Participants using
VESTA achieved
higher test coverage.

suring the percentage of statements exercised when run-
ning all tests (see Figure 4.6). As a result of the low number
of test cases, the percentage of source code lines covered by
the test suites is mediocre in both conditions as well. The ef-
fect of condition on the percentage of statements exercised
by the complete test suite is marginal significant (one-sided
t-test, p = 0.060, t(9.1) = 1.72).

4.3.3 Discussion

VESTA encouraged developers to create more documenta-
tion and unit tests. However, while we found substantial
improvements for documentation, the amount of unit tests
created was little in both conditions. To find reasons for
this result, we will discuss in this section how developers
adopted each component.

Documentation

The design idea we explored with VESTA is to encourage Our interaction
design improved
documentation.

documentation and unit test authoring by integrating these
activities into the existing workflow of developers. To im-
plement a seamless integration, we collect runtime infor-
mation from manual tests performed by the developer, and
use this information to support the authoring process. For
documentation authoring, this approach yielded promising
results: The documentation was more accurate and more
complete when it was authored using VESTA. The develop-
ers strongly agreed (Mdn = 5) that VESTA made authoring
documentation more enjoyable.

When analyzing the type information developers recorded,
we found that they usually assumed a fixed type and did
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not actually use dynamic typing. Storing type informa-Developers usually
assumed fixed types. tion in the documentation instead of introducing strong

typing as a language feature matched the developers’ re-
quirements: Type information can evolve over time, and
multiple types can be specified if polymorphism is allowed
explicitly. We also confirmed that the type information
recorded using VESTA was sufficient to transition to more
advanced static analyzing tools, such as Tern13.

By observing participants during the trial and reviewingVESTA solved three
problems typically

leading to incomplete
documentation.

screen recordings after the trial, we found that the reason
for increased accuracy and completeness of documentation
when using VESTA is its interaction design. We found that
VESTA provided support for three common problems de-
velopers in both conditions have faced:

1. Developers forgot to update documentation when-
ever code evolved. VESTA showed a type mismatch
when the documentation needed to be updated; that
served as a reminder for developers. Without VESTA

some developers tried to avoid dealing with updates
to the documentation throughout the development
process and instead wrote all documentation at the
end of trial. This often led to inaccuracies when doc-
umenting methods that were implemented a while
ago.

2. Developers neglected to create any documentation or
to include all required parts. When using VESTA, de-
velopers regularly checked the automatically created
type information to check if their code was correct,
i.e., if the created type descriptions match their expec-
tations. When performing this check, developers op-
portunistically added the required descriptions. Fur-
ther, because developers have just experienced the
value of documentation, they are more willing to put
effort into completing it.

3. Developers had insufficient knowledge about third-
party APIs, e.g., they confused whether a DOM ma-
nipulation method returned an array or a single DOM
element. The type information generated by VESTA

13http://ternjs.net/

http://ternjs.net/
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showed developers the correct type and, hence, pre-
vented numerous programming errors.

These observations, especially the latter two, show that de- VESTA increased the
near-term value of
documentation.

velopers turned to the information in VESTA not in order
to author documentation but because it was useful for their
current task at hand, i.e., creating working software. Devel-
opers regularly identified bugs by inspecting the informa-
tion or warnings shown in VESTA. The interaction design
we proposed for authoring documentation was successful,
because it enabled additional uses of runtime information
besides authoring documentation. We conclude that an ef-
fective strategy to motivate developers to pay more atten-
tion to the creation of documentation is to provide them
with more near-term rewards for this task, i.e., support dur-
ing their actual programming task.

Unit Tests

All developers in our study strikingly under-prioritized No developer created
sufficient unit tests.unit tests authoring. This matches their self-assessment in

the pre-study questionnaire. Surprisingly, several partici-
pants in the control condition did not write a single unit
test, even though the task description clearly asked to pri-
oritize proper testing and documentation of partial results
over finishing the task.

For documentation, we found that increasing its near-term The
cost-benefit-tradeoff
for unit tests is
perceived to be
worse than for
documentation.

value was important to encourage developers to create it.
We believe that the near-term value of unit tests was un-
clear for the participants in our study. Further, unit tests are
harder to create than documentation, because they necessi-
tate to write executable source code using a specific unit test
framework. Once unit tests require mocking objects or test
asynchronous methods, the source code of the unit test can
become quite complex and creating it becomes cognitively
demanding. We assume that developers consider the cost-
benefit-tradeoff for creating unit tests to be worse than for
creating documentation, where they only need to adhere to
a simple syntax.
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VESTA is designed to improve the cost-benefit-tradeoff forVESTA succeeded in
simplifying the

creation of unit tests.
creating unit tests. When relying on test templates to create
new tests, developers do not need to know how to use the
unit test API. VESTA also automatically provides parame-
ter and return values to use in the test, hence, the devel-
oper does not need to manually create examples for com-
plex input data, such as HTML strings. These improve-
ments in the authoring process encouraged all but one par-
ticipants in the VESTA condition to create at least some unit
tests. This is a promising result which indicates that the use
of runtime information we propose is useful for authoring
unit tests.

The tests created in the VESTA condition were still not suf-The abstracted
organization of unit

tests was hard to
grasp.

ficiently thorough. One reason for this is that develop-
ers rarely test failure conditions when manually executing
their application. This is likely to translate into test suites
that also lack these tests, because the majority of tests cre-
ated in VESTA use the template that recreates a manual exe-
cution. Another reason is that users found VESTA’s organi-
zation concept for unit tests, which hides files and instead
uses dropdown menus, to be cumbersome to use. Many
participants agreed (Mdn = 4) that they would write better
tests without this system. We conclude that, while the inter-
action design of VESTA’s unit test component is promising,
a future iteration of the tools should explore alternative in-
terfaces to organize tests.

4.4 Conclusion and Future Work

In this chapter, we explored how we can encourage devel-Our key idea is to
use runtime traces to

integrate
documentation and
unit test authoring

into the edit-test-edit
cycle.

opers to author more documentation and unit tests. To this
end, we presented an interaction design for authoring doc-
umentation and unit tests that integrates into current devel-
opment workflows. Our key idea is to use runtime informa-
tion to provide updates to these documents immediately
after each manual execution, which is already performed
regularly developers. We implemented this interaction de-
sign in a prototype called VESTA.
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In studying this prototype, we found that it is crucial to de- It is crucial to provide
near-term value for
the developer.

sign the tool in such a way that it provides near-term value
for the developer. For example, VESTA’s authoring inter-
face for documentation was very successful, because it al-
lowed developers not only to author documentation more
efficiently but also to check the correctness of their source
code. It successfully increased the near-term value of doc-
umentation enough to encourage developers to properly
maintain it. VESTA’s unit test authoring tool also provided
useful assistance to create unit tests, but, on the other hand,
could not increase their near-term value for the developer
enough to encourage them to create more tests.

To expand VESTA’s existing strengths, we propose to inte- More advanced static
and dynamic
analysis techniques
could extend VESTA

in the future.

grate a static analysis tool that uses the information stored
in the documentation. This tool would be automatically
bootstrapped using runtime information, to allow develop-
ers to experience the benefits of static type checking with-
out needing to set it up first. This could further extend the
near-term value of documentation. More advanced meth-
ods to generate unit tests should be added, as we found
that developers highly regarded the option to use template-
based unit tests suggestions to assemble their test suites.

To increase the near-term value of unit tests, we propose Continuous testing
and even simpler
generation of tests
could increase the
near-term value of
unit tests.

to add continuous testing to VESTA. This would provide
immediate feedback about program errors, similar to the
automatic checks performed on documentation after man-
ual executions. Additionally, we propose to study the effect
of a system that further lowers the barrier to creating unit
tests. For example, we envision a one-button interface to
specify whether the last manual execution was erroneous
or successful. With this information, the system could gen-
erate a characterization test [Feathers, 2004] without requir-
ing further interaction. We prototyped this interaction for a
live coding environment [Ulmen, 2014], but an evaluation
of this idea is still in need of future work.

Lastly, we recommend to evaluate the interaction design A longer evaluation
can test if the
positive effects
remain once the
novelty wears off.

we propose in a field study over a longer period of time
in a real development project. This study should analyze
if VESTA’s positive effects diminish after the novelty effect
wears off. While logistically challenging, we believe that
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such a study could reveal interesting insights in the way
real developers approach documentation and unit test au-
thoring.



71

Chapter 5

Call Graph Navigation

“Habitability is the characteristic of source code
that enables programmers coming to the code later

in its life to understand its construction and
intentions and to change it comfortably and

confidently. [. . . ] What is important is that it be
easy for programmers to come up to speed with the
code, to be able to navigate through it effectively, to
be able to understand what changes to make, and to

be able to make them safely and correctly.”

—Richard P. Gabriel, Patterns of Software

Publications: The work in this chapter was done in collaboration with Björn Hartmann,
Thorsten Karrer, Jonathan Diehl, Moritz Wittenhagen, and Joachim Kurz. Initial results on
Stacksplorer were first published as a poster at UIST 2010 [Krämer et al., 2010] and later as
a full paper at UIST 2011 [Karrer et al., 2011]. Blaze was presented in 2012 as a poster at CHI
[Krämer et al., 2012b] and as a demo at ICSE [Krämer et al., 2012a]. The complete analysis
of call graph navigation tools presented here is based on a full paper published at CHI 2013
[Krämer et al., 2013]. The author of this thesis implemented and evaluated Stacksplorer as
part of his Diploma thesis [Krämer, 2011] under supervision of Björn Hartmann, Thorsten
Karrer, and Jonathan Diehl. Blaze was implemented and evaluated as part of the Bache-
lor’s thesis by Joachim Kurz [Kurz, 2011], under supervision of the author. The author of
this thesis contributed to the design of all tools, the study design, the development of the
analysis methodology, and the analysis of all results.



72 5 Call Graph Navigation

Source code is different from natural language text in thatNavigation is a
time-consuming

activity in
object-oriented

source code.

it is often not read sequentially. Instead, the source code
often includes cross-cutting concerns, i.e., a single pro-
gramming plan whose implementation is delocalized and
spread across different locations. Developers then need to
perform navigation between different parts of the source
code. In Chapter 2.1.1 we learned that delocalized pro-
gramming plans are especially common in object-oriented
source code. Unfortunately, current navigation tools were
found to provide inadequate support for comprehending
cross-cutting concerns: Ko et al. [2005] studied developers
working on a maintenance task in an object-oriented project
and found that they spent on average 35% of their time on
the mechanics of navigation alone, which is more than they
spent on actually reading code.

Object-oriented programming is one of the most widelyObject-orientation is
one of the most

widely used
programming

paradigms today.

used programming paradigms today. Nine of the top ten
languages on the TIOBE language index1, an index rating
the popularity of programming languages, support object-
oriented programming as a language feature. In conse-
quence, there is a huge potential benefit in improving the
navigation tools for object-oriented source code.

The structure of object-oriented software can help to un-To work with
object-oriented

software, developers
need to comprehend

the object structure
and the procedural

structure.

derstand which types of navigation are required in object-
oriented source code. Every object-oriented software is
composed of two orthogonal dimensions [Détienne, 2002]:
The object structure describes how data attributes and as-
sociated functions are organized in classes, and how classes
are organized in a hierarchy formed through inheritance.
The procedural structure describes how data and functions
of various objects are used together to accomplish a given
goal. It is usually formed by message-passing between
objects, i.e., method calls. The hierarchy of method calls
in an application can be represented by the call graph, a
graph that represents each method as a node and represents
method calls as edges. We have discussed the consequences
these two orthogonal dimensions have for program com-
prehension in Chapter 2: Because the procedural structure
spans various objects, the source code implementing one
concern is often delocalized. Hence, navigation along the

1http://www.tiobe.com/tiobe index

http://www.tiobe.com/tiobe_index
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call graph becomes a crucial activity for developers under-
standing object-oriented software projects.

On the one hand, the semantic structure of object-oriented The semantic
structure of
object-oriented
source code only
represents the object
structure.

source code usually aligns well with the object structure.
Each class is implemented in a separate file, i.e., developers
can navigate inside a class by scrolling and between classes
by switching files. On the other hand, to navigate the call
graph developers need to find out from where methods
are called or where a called method is implemented. Call
graph navigation tools aim to support this task. Ko et al.
[2005] found that existing call graph navigation tools in the
Eclipse IDE2 are rarely used, because they require complex
setup. In addition, they make it difficult for developers to
relate two methods that are connected in the call graph.

In this project, we wanted to explore how an improved
interaction design can help developers navigate the call
graph more effectively. We suspected that two design prin-
ciples can mitigate the problems of existing tools: Proac-
tive information visualization means that the tools present
navigation targets without prior setup, and comprehensi-
ble relevance means that the navigation targets presented
in the tool can be easily related to the code currently be-
ing inspected by the developer. Over the course of this re-
search project, we created two call graph navigation tools,
Stacksplorer and Blaze. Both tools implement the princi-
ples above. Blaze, additionally, implements two dedicated
modes, one for the Search phase and one for the Relate and
Collect phases in the three-phase navigation model (see
Chapter 2). We will compare these tools in a laboratory
study to two comparative conditions: First, as a baseline, to
an IDE without any dedicated call graph exploration tool,
and second, to the Call Hierarchy, a call graph navigation
tool that is common in many existing IDEs. Our compari-
son will reveal that while all tools led to better task success
rates, only Stacksplorer and Blaze managed to also reduce
task completion times. Finally, we will introduce an analy-
sis framework to compare inter-method navigation behav-
ior. Using this framework, we found that the design prin-
ciples implemented by Stacksplorer and Blaze cause de-
velopers adopt a more effective navigation behavior. We

2https://eclipse.org/ide/

https://eclipse.org/ide/
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will start the chapter by presenting closely related research
projects.

5.1 Existing Tools for Call Graph Naviga-
tion

In an object-oriented programming language, the procedu-Method calls in
object-oriented

software can be
formalized as the call

graph.

ral structure is formed by message passing, i.e., method
calls between different objects that accomplish a goal. The
method calls in a program can be formalized as the call
graph G = (V,E), with V = {m1,m2, ....,mn} being
the set of methods in the program and E = {(v, u) |
v, u ∈ V, u is called from the implementation of v}. Navi-
gation tools for the procedural structure usually facilitate
the exploration of a subgraph of the call graph.

The most commonly available method for call graph navi-Commonly, IDEs
allow to navigate

from a method call to
the definition of the

called method.

gation in current IDEs is to jump from a method call to the
definition of this method, i.e., navigate the call graph in the
direction of the edges, one edge at a time. This feature is
usually invoked from the source code editor, either using a
shortcut or a context menu.

Several IDEs, such as Eclipse and Visual Studio, offer a CallThe call hierarchy
shows all method

calls originating from
or leading to one

method.

Hierarchy tool (see Figure 5.1), which allows to select one
method as a starting point and to browse all paths in the
call graph that include the starting point. Usually navi-
gation is performed in a tree view that can be configured
to show either paths originating from the starting point or
paths leading to the starting point.

More advanced navigation tools, if they exist in an IDE,Advanced call graph
navigation tools are

often not used.
are often not widely used. Ko et al. [2006] observed that
few developers working on a small (500LOC) Java appli-
cation using the Eclipse IDE employed the available tools
for call graph navigation more than once. Instead, they
resorted to the package browser and the search tool, both
of which are very ineffective in answering questions about
the call graph. Similar results are also found when analyz-
ing Eclipse usage data obtained from real world developers
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Figure 5.1: A Call Hierarchy tool allows to pick one method
as the root of a tree view and browse the hierarchy of callers
or callees of the root method. The figure shows our imple-
mentation. Figure adapted from [Krämer et al., 2013]

[Murphy et al., 2006]. We suspect that existing tools are not
well aligned with the developers’ strategies for code com-
prehension.

Research has tackled this problem by building tools in two
categories: Tools in the first category try to provide useful
information in the context of a task automatically. Tools in
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the second category implement more sophisticated search
features to find information in the call graph.

5.1.1 Recommender Tools

In Chapter 2 we introduced the two phase navigationRecommender tools
try to predict the

working set.
model by Ko et al. [2006]. It shows that by navigating, de-
velopers try to collect all information that is required for
their task. This set of information is called the working set.
Recommender systems try to estimate the working set auto-
matically. They calculate a degree of interest (DOI) for every
entity (depending on the systems this can be files, classes,
methods, or more) in the project, which is then used to fil-
ter the entities shown in other tools of the IDE, e.g., the
package browser, such that only entities are shown where
the DOI exceeds a threshold. Most recommender systems
use an algorithm based on the concept of computational wear
[Hill et al., 1992] to determine the DOI for each entity. Com-
putational wear represents information about the history of
an entity, i.e., when it was authored, when it was edited,
and finally, when it was read. To calculate the DOI of an
entity in a software project, tools have analyzed a variety of
factors, i.e., when the developer looked at the entity, when
the developer edited the entity, the history of edits by all
developers, and the information provided about the entity
in version control systems [Čubranić et al., 2003; R DeLine
et al., 2005; Kersten et al., 2005; Singer et al., 2005].

In lab studies, all of these tools caused a significant reduc-Recommender tools
only reduce the

number of navigation
targets in existing

tools.

tion of navigation effort. They also allowed participants
to orient themselves faster in unknown projects. Recom-
mender tools, however, leave developers with the same
navigation tools and only reduce the amount of navigation
targets.

5.1.2 Search Tools

The second category of tools we would like to discuss aims
to simplify navigation by allowing developers to search for
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relevant information more effectively. REACHER [LaToza REACHER offers
semantic search
across paths in the
call graph.

et al., 2010c] is a tool specifically designed to answer ques-
tions regarding the procedural structure of an application.
Searches can include search strings but also restrictions
on the parts of the call graph that should be considered.
For example, a developer could search for a method that
includes the term “PDF” and occurs downstream from a
method called “export”. REACHER automatically removes
paths from the search that are infeasible, i.e., which can
never be executed. To present search results, REACHER uses
a visual representation of the relevant portion of the call
graph. A lab study showed that REACHER significantly im-
proves answering times for reachability questions, but due
to the rather complex visualization used, it does require
some training.

JQuery [Janzen et al., 2003] uses a logical programming JQuery is a semantic
query language to
search in both the
procedural and the
object hierarchy.

language to specify queries allowing even more specific
searches. In contrast to REACHER, it is not limited to
searches in the call graph, but can also inspect the object
hierarchy. Results are visualized in a hierarchical browser,
similar to Eclipse’s Package Browser. To refine the results,
every entry in the browser can again be queried using
JQuery. Similar to REACHER, JQuery suffered from com-
plexity and a steep learning curve, causing many develop-
ers to use extremely simplistic queries only.

The tools presented so far assume that developers compre- The Whyline
analyzes which
methods were
actually called during
an execution of the
program.

hend the source code exclusively by reading and navigat-
ing through it. However, it is not uncommon for devel-
opers to manually execute the application to understand
what it does. The Whyline [Ko et al., 2008] supports this be-
havior and allows developers to ask questions about the vi-
sual output of an application. The Whyline will then show
the relevant methods that contributed to the selected out-
put property. Because the Whyline relies on the application
being executed, it can filter the call graph based on which
methods were actually called during execution. Exploiting
runtime information to identify relevant information was
shown to substantially increase maintenance performance.
However, the Whyline is only applicable for specific prob-
lems: The application needs to have a graphical user inter-
face, the defect needs to manifest in the graphical output,
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and the defect must not prevent the application from com-
piling.

The tools presented differ in the part of the call graph theyLittle is known about
the effectiveness of

these tools for
real-world

development tasks.

make available for navigation, in their design, i.e., the visu-
alization used to show the relevant part of the call graph,
and in the interaction used to navigate or refine a search.
Unfortunately, little is known about the potential adoption
of these tools in real development scenarios. One study
comparing JQuery to two recommender systems found that
in real world development tasks the effect of inter-subject
differences completely overshadowed the effect of any tool
[De Alwis et al., 2007].

Code Bubbles [Bragdon et al., 2010] and Code CanvasCanvas-based IDEs
allow to represent

both the object
structure and the

procedural structure
visually.

[Robert DeLine et al., 2010] introduced IDE concepts that
allow developers to lay out individual parts of the source
code, e.g., methods, in bubbles on a 2D canvas. The parts
can be connected to indicate relationships between two
parts, such as a call graph edge. This concept allows to lay
out a complete delocalized programming plan so that all
parts are visible simultaneously. Because both tools allow
for unconstraint layout of bubbles, they might suffer from
some disadvantages of visual programming approaches we
have discussed before (see Chapter 2). An experimental
comparison between our tools and canvas-based program-
ming tools is an interesting endeavor for future work.

5.2 Stacksplorer and Blaze

Over the course of this research project, we designed two
call graph exploration tools: Stacksplorer and Blaze. Our
design is built around two key concepts:

Proactive Information Visualization Our tools should be
usable without prior setup, e.g., by specifying a
search query. Instead, both continuously provide rel-
evant information and navigation affordances.
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Comprehensible Relevance Developers should be able to
easily relate the navigation targets presented to the
source code they are currently reading.

Based on these concepts, we first created Stacksplorer. Stacksplorer
visualizes the
1-neighborhood of
the currently edited
method.

Stacksplorer refers to the method currently being edited in
the source code editor as the focus node. Stacksplorer visu-
alizes and allows navigation to the 1-neighborhood of the
focus method in the call graph. It implements comprehen-
sible relevance, because the focus method and the potential
navigation targets are closely connected in the call graph,
and we expected developers to be able to easily understand
how the navigation targets are related to the focus method.
To implement proactive information visualization, Stack-
splorer automatically updates whenever the focus method
changes, due to any kind of navigation. The navigation that
can be performed using Stacksplorer can be described as
breadth-first call graph exploration.

In a first study comparing Stacksplorer to an IDE without Stacksplorer
provides no support
to navigate to indirect
dependencies.

dedicated call graph navigation tools, we found a substan-
tial positive effect of Stacksplorer on task completion time
and task success rates for certain maintenance tasks. But we
have also found potential limitations of Stacksplorer: First,
Stacksplorer’s breadth-first navigation does not provide
support for navigating indirect dependencies, i.e., naviga-
tion to a method that is connected to the focus method
through a longer path in the call graph. Ko et al. [2005]
pointed out that these navigations are important to allow
developers to understand the connection between differ-
ent items in the working set. Second, previous studies
have shown that several phases can be distinguished in
the developers’ navigation behavior (see Chapter 2): De-
velopers first search an initial node that seems relevant, and
then start exploring different paths through the source code
from there [Ko et al., 2006]. The design of Stacksplorer does
not make allowance for these phases.

Based on these insights, we developed Blaze, a second Blaze visualizes one
path including the
currently edited
method.

call graph navigation tool: The key difference between
Blaze and Stacksplorer is that Blaze does not show the 1-
neighborhood of the focus method but one path through
the call graph that includes the focus method. In contrast
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to Stacksplorer, the navigation that can be performed us-
ing Blaze can be considered as a depth-first exploration of
the call graph. This allows developers to navigate to dis-
tant navigation targets in the call graph, i.e., to navigate
to indirect dependencies. Blaze reuses the concept of a fo-
cus node: By default, the focus node is always the method
currently being edited, but Blaze allows to lock the focus
node to prevent automatic updates to the visualized path.
This design supports the two navigation phases described
above: During the initial search phase, Blaze shows context
for the method in the source code editor. Once a relevant
initial node was identified, this node can be stored by lock-
ing the focus node and Blaze can be used to explore the
various paths that include the initial node.

Both Stacksplorer and Blaze were implemented as fullyWorking prototypes
of both tools were

implemeted as
Xcode plugins.

functional prototypes on top of Apple’s Xcode IDE3 in ver-
sion 3 for the Objective-C langauge. For the purpose of ex-
position, we will first introduce the design of both tools in
depth, before presenting a comparative evaluation of both
tools.

5.2.1 Stacksplorer

Herman et al. [2000] presented a technique for graph ex-In Stacksplorer, the
focus node is the
method currently

being edited.

ploration that places a window on top of the graph to
show one logical frame at a time. The content of the log-
ical frame is determined by its focus node [Huang et al.,
1998]. Stacksplorer applies this concept to the call graph:
The focus node is the method currently being edited in the
source code editor, and the logical frame includes the call-
graph neighborhood of this method. Semantically, this cor-
responds to all callers of and all methods called by (callees
of) the focus node.

Showing the neighborhood of the focus method has sev-The list of callees
can serve as a

summary of the
method.

eral potential benefits: A list of methods called from the fo-
cus method that is ordered by the occurrence of the method
call in the focus node’s implementation can serve as a sim-
ple summary of the method implementation, even though

3https://developer.apple.com/xcode/

https://developer.apple.com/xcode/
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Figure 5.2: A navigation to a caller in Stacksplorer causes the logical frame to shift.
The navigation target becomes the new focus method, the old focus method now
appears in the right column, and the left column is populated with new informa-
tion. Figure adapted from [Karrer et al., 2011].

it does not retain information about any control structures.
Further, the list of methods calling the focus method pro-
vides a quick overview of the contexts in which the focus
method is used.

To visualize information as close to the focus node as Stacksplorer shows
callers on the left
side of the editor
showing the focus
method, and callees
on the right.

possible and, hence, implement comprehensible relevance,
Stacksplorer is integrated into the IDE and adds two in-
teractive views, one on each side of the source code editor
(see Figure 5.2). The side views combined with the central
source code editor show the current logical frame and act
as a fisheye view [Furnas, 1986]: The focus node is shown
completely, while its neighborhood is visualized in a se-
mantically simplified version. Stacksplorer lists all meth-
ods calling the focus node (i.e., incoming edges of the call
graph) on the left, and all methods that are called from the
focus node (i.e., outgoing edges of the call graph) on the
right.

This design enables two orthogonal navigation “axes” to
be used: Usually, developers can navigate through all
methods that belong to one class by scrolling vertically in
the central source code editor (given that in most object-
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oriented projects each class is implemented in a separateStacksplorer’s design
enables use of a

horizontal navigation
axis for call graph

navigation.

source file). With Stacksplorer, developers can also nav-
igate horizontally to a method visible in one of the side
views. Clicking a method reveals it in the central source
code editor and it becomes the new focus node, causing the
side views to update accordingly. Consider the example in
Figure 5.2: In the first picture, the developer is currently
reading the convert method in MainController. When
clicking on the init method of MainController that is
listed as a caller, the logical frame shifts to the right: The
old focus node convert moves to the right column and
is now listed as one method being called by the new focus
node init; the init method moves from the left column
to the center and is now visible completely; and the left col-
umn is updated with new information.

Methods in the side views are represented by their name,Methods defined in
external frameworks

can be hidden.
the name of the class in which they are defined, and by an
icon that allows to discern methods and properties (i.e., ac-
cessor methods defined in a formalized way in Objective-
C). The side columns can be filtered to hide properties or
methods defined in external frameworks, if the developer
wants to focus on the control structure within their own
code.

Stacksplorer automatically arranges the list entries in theOptional graphical
overlays connect

navigation targets in
Stacksplorer with the
focus node’s source

code.

side views to minimize the on-screen distance to the cor-
responding code in the editor. For densely written code,
e.g., nested method calls, the assignment of list entries
in the side columns to code locations can still be unclear.
In this case, graphical overlays connecting a method call
in the source code with the corresponding entry in the
side views can be enabled. These overlays visually clar-
ify Stacksplorer’s implementation of comprehensible rele-
vance. Highlighting the correspondence between source
code and visualization was identified by Hundhausen et al.
[2009] to be an important feature for development tools.

As discussed before, developers collect the relevant infor-Methods could be
tagged to store
important paths

through the source
code.

mation they found during navigation in a working set. To
support this collection of knowledge, Stacksplorer imple-
ments a tagging mechanism that allows to assign one or
more tags to every method. An important path through the
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call graph, e.g., a successfully identified delocalized pro-
gramming plan, can be stored by tagging all methods on
the path. In our first evaluation, however, we found that
this mechanism was nearly never used. Our design re-
quired developers to tag methods one at a time while navi-
gating, but until developers reached the method they were
looking for they could not know whether or not they are
on the correct path. This insight helped us design a differ-
ent form of support for the Relate and Collect phases of the
three-phase navigation model in Blaze.

5.2.2 Blaze

Stacksplorer is designed to show navigation targets that are Blaze can show a
complete path
including the focus
node.

closely related to the focus method, such that either side
column becomes semantically meaningful: The left column
shows the context of the focus method, the right column
can serve as a summary of the focus method. This de-
sign does not allow, however, to visualize a complete de-
localized programming plan at a time, i.e., sequences of
method calls that implement a certain goal. Blaze is de-
signed specifically to support this task: Instead of showing
the neighborhood of the focus node, Blaze shows one com-
plete path through the call graph that contains the focus
node.

Blaze (see Figure 5.3) shows only one list of methods on the Blaze uses a column
on the right side of
the source code
editor.

right side of the source code editor. Each method in the
list calls the one below. This ordering and the inverse were
both tested in a pen and paper prototype, but developers
showed no clear preference for either design. The focus
node (a)) is highlighted visually and always remains in a
fixed position, to allow developers to utilize spatial mem-
ory to find it on screen. It splits the path in two halves,
which both can be scrolled individually. The focus node
can be moved up and down to change the ratio in which the
available screen space is distributed between both halves
of the path. To visualize comprehensible relevance, the
focus node is connected to the corresponding method in
the source code editor using an overlay (e)) spanning both
views, similar to the overlays in Stacksplorer.
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a)
b)

c)

d)

e)

Figure 5.3: Blaze visualizes a complete path through the source code that includes
the currently edited method. The developer can change the path using the arrows
next to each method on the path. Image Source: [Krämer et al., 2012a]

Interaction with Blaze is designed to support the three-In the Search phase,
Blaze updates

automatically when
the focus node

changes.

phase navigation model [Ko et al., 2006] discussed before:
During the search phase, the focus node is synchronized
to the method currently being edited in the editor. To im-
plement proactive information visualization, Blaze updates
after every change of the focus node to show a path that in-
cludes it. The amount of changes to the path are minimized,
e.g., by keeping the path unchanged if the developer nav-
igates to a method that is already on the path. During the
search phase, Blaze aims to show additional navigation tar-
gets that are likely to be relevant, similar to Stacksplorer.

Once developers move to the second phase, they can lockIn the Relate and
Collect phases,
developers can

explore different
paths using Blaze.

the focus node (b)), thus, disabling any automatic updates.
They can now explore different paths that include the focus
node. Blaze uses a combination lock metaphor to enable
developers to exchange methods on the path with other
alternatives while guaranteeing that the focus method re-
mains on the path: Upstream of the focus node, i.e., in the
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part of the path that ends up calling the focus node, every
method can be exchanged with another caller of the follow-
ing method; downstream of the focus node, i.e., in the part
of the path that originates in the focus node, every method
can be exchanged with another method called by the pre-
ceding one. Developers can either scroll through all possi-
ble alternatives using arrow buttons on either side of each
list entry (d)), or reveal a context menu showing all options
using a button that connects two methods (c)).

5.2.3 A Common Backend

To obtain information about the call graph, Stacksplorer Stacksplorer and
Blaze share a
backend built on top
of Xcode’s internal
features.

and Blaze share the same technical backend. Our backed
uses static analysis and is built on top of Xcode’s internal
parser. This yields a level of robustness that is comparable
to Xcode’s existing tools.

After opening a project, our backend caches a complete, The call graph is
cached to improve
performance.

doubly linked representation of the call graph to reduce
access times for information. An edge from method A to
method B is stored in the call graph, if a method call exists
in A such that B’s name is equivalent to the called method’s
name and the name of the class implementing B is equiva-
lent to the receiver’s class name.

Whether or not a path in the graph is actually reachable The backend cannot
detect method calls
performed using
dynamic dispatch.

at runtime is an undecidable problem [Lewis et al., 1997].
Static traces as proposed by LaToza et al. [2010c] can detect
some infeasible paths and could extend our backend in the
future. Further, our static analysis technique does not find
method calls that are performed using dynamic dispatch at
runtime. However, for the purpose of comparing the differ-
ent interaction techniques in a controlled experiment, these
technical tradeoffs were acceptable.
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5.3 Comparing Call Graph Navigation
Tools

The first call graph navigation tool we created was Stack-In our first
experiment, we

compared
Stacksplorer to an

unmodified version of
Xcode.

splorer. To evaluate this tool, we compared it to an unmod-
ified version of Xcode 3 as a baseline condition [Karrer et
al., 2011]. Xcode 3, by default, only supports call graph ex-
plorations with a Jump to definition command. This allows
developers to select a method call in the source code and
navigate to the implementation of this method, effectively
following one edge of the call graph.

As we have explained before, the insights we had gained inBlaze was informed
by the results from
the first study and

evaluated using the
same setup.

the first study informed the design of Blaze. Both Stack-
splorer and Blaze implement the same key design ideas,
comprehensible relevance and proactive information visu-
alization, but while Stacksplorer implements a breadth-first
approach and shows the complete neighborhood of the fo-
cus node in the call graph, Blaze implements a depth-first
approach and shows one complete path including the fo-
cus node. To investigate the effect of the design changes we
implemented in Blaze, we reused the study setup we had
used in the first comparison between Stacksplorer and our
baseline condition.

At the same time, we decided to add a fourth condition toIn our second
experiment, we also
compared our tools
to the widely used

Call Hierarchy.

the study. We wanted to compare our call graph navigation
tools to the popular Call Hierarchy tool, which is available
in many IDEs except for Xcode. The Call Hierarchy is an
interesting alternative design for comparison: Compared
to Stacksplorer and Blaze, it can show a larger fraction of
the call graph at once, but it does not implement our de-
sign principles. To allow for a fair comparison, we imple-
mented a version of this tool ourselves (see Figure 5.1). Our
implementation matches the interaction design used in the
Eclipse IDE, and uses the same backend as Stacksplorer and
Blaze.

In our first study, each participant solved two sets of two
tasks, one in each condition. We found this design to pro-
vide little benefits for the analysis. Because the tasks are
not comparable in terms of difficultly, we had to perform a
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separate between-groups analysis for each task. When we We streamlined the
study procedure
when analyzing
Blaze and the Call
Hierarchy.

extended the study to include Blaze and the Call Hierar-
chy, we removed the second set of tasks and only assigned
participants to one condition. This allowed us to perform
a complete between-groups analysis with four conditions
and two tasks, while reducing the time needed for each
trial.

In this thesis, we will only report on the combined analysis In this thesis we will
present a joint
analysis of both
experiments.

of all four conditions, i.e., we will not address the earlier
comparison between Stacksplorer and Xcode separately.
We found that all call graph exploration tools, namely, the
Call Hierarchy, Stacksplorer, and Blaze, improve task suc-
cess rates for certain bug fixing tasks when compared with
the baseline. As call graph exploration is required to un-
derstand procedural schemas, this result is to be expected.
More surprisingly, only Stacksplorer and Blaze were able
to also improve task completion times. Possible reasons for
this are either that Stacksplorer and Blaze are just easier to
use or that they change the navigation strategies of devel-
opers to more efficient ones.

In this section, we will first explain how the study was set
up and which differences in performance metrics we have
observed. Next, we are going to introduce an analysis tech-
nique that allows to operationalize navigation behavior. Fi-
nally, we will apply this technique to show that only Stack-
splorer and Blaze cause a change in navigation behavior
which in turn causes a reduction in task completion times.

5.3.1 Study Setup

The user study was designed to simulate a realistic soft-
ware maintenance task in a controlled laboratory environ-
ment.
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Tasks

Participants worked on two typical maintenance tasks thatParticipants solved
maintenance tasks in

BibDesk.
built on one another in BibDesk4, an open-source bibliogra-
phy manager for Mac OS X. During the study, participants
should imagine that BibDesk was a commercial software
and they were responsible for creating a trial version that
comes with some limitations. Task 1 was concerned with
BibDesk’s Autofile feature that moves and renames PDF
files according to a user-defined format string. Participants
should modify this feature to always prepend a string to
the generated filename to indicate the file was saved by a
trial version. In task 2, participants were asked to identify
a side effect of one possible solution of task 1.

As we were only interested in analyzing navigation be-Participants only had
to point out which

method needed to be
changed.

havior, participants did not need to actually implement
changes. In task 1, the participants had to name the method
in which the change could be implemented. Two different
methods were possible which we both considered as cor-
rect. In task 2, the participants had to verbally describe
which side effect could occur. We had no issues to deter-
mine whether or not answers were correct, since all incor-
rect answers given during the study could easily be proved
to be incorrect.

Participants

In our study, 33 Objective-C developers (32 males, 1 female)Participants were
mostly students and
had to have at least

some experience
with Objective-C.

participated. Two participants were professional software
developers while all other participants were students ma-
joring in computer science. By recruiting mostly students,
we intended to reduce the difference in programming ex-
pertise between participants, as proposed by Bragdon et
al. [2010]. Participants were on average 26.3 years old
(SD = 2.6). A minimum of 0.5 years of experience with
Objective-C was required to participate in the study; the
actual participants had an average of 2.6 years (SD = 2.1)

4http://bibdesk.sourceforge.net/

http://bibdesk.sourceforge.net/
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experience and spent an average of 12.6 hours per week
(SD = 11.6) programming.

Procedure

First, participants were assigned to one of four conditions: We used a
between-groups
experiment design.

In the Stacksplorer, Blaze, and Call Hierarchy conditions,
participants worked using Xcode and the respective call
graph navigation tool; in the control condition, participants
worked using an unmodified version of Xcode. Nine par-
ticipants worked in the Call Hierarchy condition, eight par-
ticipants in each other condition. All conditions were sim-
ilarly sampled in terms of coding experience in years and
coding done per week.

Before each trial, we prepared a Mac Pro computer with All participants used
identical hardware.a fresh installation of Mac OS X, Xcode, and a call graph

navigation tool depending on the condition. Participants
used a 23-inch screen with a pixel resolution of 1920×1200.

In all but the control conditions, the sessions started with The experimenter
explained the call
graph navigation tool.

the experimenter explaining the call graph navigation tool.
Participants could try the tool while navigating in a code
base unrelated to the task. The experimenter made sure not
to reveal that the tool was designed by us.

Next, participants were allowed to browse the source code The study started
with an open
exploration of
BibDesk’s source
code.

of the BibDesk project for 10 minutes. After this exploration
phase, the experimenter handed task 1 and task 2 to the
participants one task at a time, i.e., while working on task
1 participants did not know about task 2. Participants had
a maximum of 25 minutes to finish task 1 and a maximum
of 15 minutes to finish task 2. We recorded task completion
time and task success as qualitative productivity measures.
The task completion time ended after the participants gave
the first answer to each task, regardless of the correctness of
the answer. If time ran out, we recorded the maximum time
as task completion time and the task as not being solved
correctly.
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During the study participants had access to a compiledUse of runtime
analysis tools was

prohibited during the
study.

version of BibDesk to understand what the software does.
They were not allowed, however, to use runtime analysis
tools, which is consistent with previous studies [Bragdon
et al., 2010; Robillard et al., 2004]. The experimenter was
present at all times during the experiment and did answer
questions about Xcode, Objective-C, and the Cocoa frame-
works, as long as they did not directly relate to the BibDesk
implementation.

Participants were asked to think aloud during the studyWe recorded audio
and video during the

study.
but not reminded to do so if they stopped, in order to not
disturb them. Audio and screen contents were recorded
throughout the study.

After all tasks were completed, participants using any ofCall graph navigation
tools were evaluated
by participants after

the study using a
questionnaire.

the call graph navigation tools were asked to fill out a
questionnaire that was comprised of the questions of the
standard System Usability Scale (SUS) and six tool-specific
questions in similar style. The study concluded with an
open interview with every participant.

5.3.2 Performance Measures

We analyzed the effect of condition on two performance
metrics: task completion time and task success.

Task Success

Using any call graph navigation tool, at least half of the par-Developers were
more successful

when using any call
graph exploration

tool.

ticipants were successful in completing both tasks, while
only one participant in the control condition solved both
tasks correctly. This difference is significant (one-sided
Fisher’s exact test, p = 0.015), and was also found for task 2
alone (p = 0.024) but not for task 1. No other pairwise com-
parisons between conditions showed any significant differ-
ences in task success.
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Figure 5.4: The graph shows the average task completion
time by task and condition. An ANOVA shows a significant
effect of task and condition, and Stacksplorer and Blaze are
significantly faster than the control condition in pairwise
tests.

Task Completion Time

We expected similar results for the task completion time We found an effect of
condition on task
completion time.

(see Figure 5.4): Any tool to explore the call graph should
allow developers to solve maintenance tasks faster. A
MANOVA with condition modeled as a between-groups
factor and task modeled as a within-groups factor revealed
a significant effect of task and condition but no interaction.

Task: F (1, 29) = 65.281 p < 0.001

Condition: F (3, 29) = 3.720 p = 0.022

Interaction: F (3, 29) = 1.257 p = 0.307
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Pairwise post-hoc comparisons using a Dunnet-t test re-Task completion time
was only reduced

when using
Stacksplorer or

Blaze.

vealed that task completion times were significantly lower
when using Stacksplorer or Blaze compared to the control
condition, but there was no significant advantage of using
the Call Hierarchy compared to Xcode. Post-hoc Tukey’s
tests comparing the different call graph navigation tools to
each other showed no significant differences.

XC vs. CH: p = 0.662 ST: p = 0.038 BL: p = 0.020

CH vs. ST: p = 0.167 BL: p = 0.095

ST vs. BL: p = 0.992

Discussion

Participants’ responses to our post-study questionnaireSubjective ratings of
all tools were similar. match the quantitative findings about task success rates.

We found no significant differences in terms of users’ us-
ability rating of the tool, or the perceived benefits for code
comprehension, navigation speed, or orientation in the
source code.

In summary, we found that all call graph navigation tools
successfully increased task success rates but only Stack-
splorer and Blaze also decreased the task completion times.
This is surprising, as the same information can be explored
with all tools. In fact, the Call Hierarchy is able to show the
biggest amount of information at a time. There are two po-
tential reasons for this result: Either, Stacksplorer and Blaze
are easier to use, i.e., the time is saved by reducing the time
required to interact with the tool, or Stacksplorer and Blaze
encourage developers to use different navigation strategies
that are more effective and hence reduce task completion
times.

5.3.3 Model-based Comparison of Navigation
Strategies

In the following analysis, we want to test the latter hypoth-
esis: Do Stacksplorer and Blaze cause developers to employ
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different navigation strategies than the other tools used in To understand the
results of our study,
we want to analyze
the differences in
navigation behavior
between conditions.

the other conditions? If this hypothesis is true, it would
show that the interdependence between tools and develop-
ers’ strategies can be influenced through interaction design,
even if the accessible information is similar. To compare
navigation strategies in different conditions, we first need
to be able to consistently quantify navigation behavior. In
this section, we will present a methodology for this task,
which is independent of the development environment and
programming language used. We will use this method to
compare the navigation strategies observed in our study
and verify the obtained results using alternative metrics.

Methodology

We are interested only in navigation between methods, We use the accuracy
with which a set of
models can predict
participants’
navigations to
describe their
behavior.

consequently, we represent the navigation that was ob-
served in one study session formally as a sequence of meth-
ods visited by the developer H = (m1,m2, ...,mn) where
∀mi,mi+1 ∈ H : mi 6= mi+1. To quantify the behavior ex-
hibited in these sequences, we propose to characterize each
sequence by a set of features. Each feature represents to
which degree the sequence can be explained by one of a
set of well-known micro navigation patterns. We calculate
this degree by using predictive models that predict navi-
gation according to these micro navigation patterns. The
models, and hence, the micro navigation strategies we use
as features, have been compared by Piorkowski et al. [2011]
before. The important difference between their use of these
models and ours is that we are not interested in comparing
the models in terms of their prediction accuracy. Instead,
we use the prediction accuracy of all models to characterize
a navigation sequence.

Formally, each model takes a subsequence of H up to the Each model is
characterized by the
activation function it
uses.

element mi as input and tries to predict mi+1. The mod-
els predict mi+1 from the set Mi − {mi}, with Mi approxi-
mating the methods known to a developer. That approxi-
mation includes all methods in files that have been opened
so far, have been visible in a call graph navigation tool, or
were included in a search result. The models first assign



94 5 Call Graph Navigation

an activation value to every method in Mi − {mi} using
an activation function Ai : Mi − {mi} 7→ R. The higher
the activation value assigned to a method the more likely
the developer is navigating to this method. The activa-
tion function is characteristic to each model and depends
on the micro navigation pattern represented by the model.
Next, Ai is rank-transformed to obtain a ranking function
Ri : Mi − {mi} 7→ N. If multiple methods share the same
activation value, the average rank is used. The models re-
turn a list of possible navigation targets that is comprised of
the N top ranked methods. If the highest rank is assigned
to more thanN methods, the returned list is empty. We con-
sider the prediction of a model correct, if the actual method
mi+1 is contained in the returned list. Hence, N is a tuning
parameter for all models: WithN increasing, the prediction
accuracy of a model also increases, at the expense of practi-
cal relevance of the prediction.

The difference between the individual models used is how
each activation function works. We use the same activa-
tion functions as Piorkowski et al. [2011] and will only pro-
vide qualitative descriptions of the micro-navigation pat-
terns represented by the models here:

Recency
The Recency model represents back and forth navi-
gation between related methods, which is common
to be able to understand the connection between two
methods. It assigns higher activation values the more
recently a method was visited.

Frequency
The Frequency model represents frequent revisits of
important methods, e.g., the anchor point. It assigns
higher activation values to more frequently visited
methods.

Working Set
The Working Set model represents revisiting any
method in the working set, i.e., a set of methods rele-
vant to the task. The model assumes that the working
set is comprised of the methods visited in the last δ
navigation steps. It assigns methods in the working
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set an activation value of 1 and an activation value of
0 otherwise. Our analysis technique uses δ = N .

Bug Report Similarity
The Bug Report Similarity model represents search-
ing for methods using keywords found in the bug
report, or, more generally, the task description. It
uses the tf-idf weight [Baeza-Yates et al., 1999], a
well-known text similarity metric, of the bug report
compared to the words in a method as the activa-
tion value. To calculate the tf-idf weight, a cleanup
is performed by removing stop words and breaking
camelCase identifiers apart.

The remaining models all use a graph G′ = (Mi, E
′). The

activation value assigned to a method is higher the smaller
the distance of the method is to mi. The models differ in
their definition of E′.

Within-File Distance
The Within-File Distance model represents naviga-
tions between methods that are close to each other in
the source file. Since in object-oriented source code
each class is often implemented in a separate file, this
navigation represents navigation in the object hierar-
chy. E′ is defined to contain undirected edged be-
tween methods that are adjacent in a source file.

Forward Call Depth
The Forward Call Depth model represents naviga-
tions to methods called from the current method,
which is possible in many IDEs using the “Jump to
definition” command. Consequently, E′ is defined
such thatG′ is the subgraph of the call graphG that is
induced by Mi. More explicitly, E′ = {(u, v) | (u, v) ∈
V and u, v ∈Mi}.

Undirected Call Depth
The Undirected Call Depth model represents naviga-
tions to methods called from the current methods as
well as to methods calling the current method, i.e., all
navigations along the call graph. E′ is defined as for
the Forward Call Depth model but using undirected
edges.
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Figure 5.5: The graphs show for each condition the prediction accuracy of each
model for values of N between 1 and 20. A visual inspection of the graphs re-
veals more call graph navigation in the Stacksplorer and Blaze conditions. Figure
adopted from [Krämer et al., 2013].

Differences in Navigation Strategies

To apply the analysis of differences in navigation strategiesThe navigation
sequences of our
study participants

were generated
using video
annotation.

to our study, we first needed to generate the formal nav-
igation sequences from the video recordings of each trial.
For this task, we used ChronoViz [Fouse et al., 2011] to an-
notate all navigation events in each user study session. We
stored the target method of the navigation action and the
tool used. For some actions, no single method could be de-
termined as the target of a navigation. In these cases, we
recorded the most precise abstract navigation target, such
as a file, or a set of methods, e.g., when performing a search.
Model predictions were still considered correct if at least
one method in a set of methods was correctly predicted.
For navigation targets that were not either a method or a
set of methods, model predictions were always considered
incorrect. Successive navigation actions that were less than
0.5 seconds apart were merged into one (e.g., navigating
back twice).



5.3 Comparing Call Graph Navigation Tools 97

For the analysis of our study, we calculated the predic- Prediction accuracies
were compared for
values of N between
1 and 20.

tion accuracy of each model for values of N between 1 and
20. The prediction accuracy averages in each condition are
plotted over N in Figure 5.5. Statistical comparisons were
performed only for N = 1, N = 10, and N = 20. An
overview of all statistical results is presented in Table 5.1.

N = 1 N = 10 N = 20
Model Factor F p F p F p

Frequency
Task 27.13 .001 28.60 .001 18.31 .001
Condition 2.729 .062 3.384 .031 2.482 .081
Interaction 1.733 .182 .384 .766 .813 .497

Recency
Task 27.82 .001 11.64 .002 9.215 .005
Condition 2.4 .088 2.728 .062 2.009 .122
Interaction .696 .562 .793 .508 1.248 .311

Working Set
Task 22.28 .001 14.49 .001 9.518 .004
Condition 2.757 .06 3.432 .030 2.222 .107
Interaction .823 .492 1.559 .221 1.124 .356

Bug Report
Similarity

Task 3.8 .061 36.88 .001 142.3 .001
Condition .366 .778 3.056 .044 5.279 .005
Interaction .182 .908 2.784 .059 1.681 .193

Within-File
Distance

Task 39.09 .001 11.30 .002 13.55 .001
Condition .679 .572 1.178 .335 1.682 .193
Interaction 1.269 .303 .914 .447 .561 .645

Forward
Call Depth

Task .048 .828 .548 .465 0.299 .589
Condition .1.688 .191 6.470 .002 7.023 .001
Interaction .334 .801 1.693 .190 1.771 .175

Undirected
Call Depth

Task 5.969 .021 6.000 .021 5.395 .027
Condition .857 .474 5.791 .003 9.514 .001
Interaction .125 .944 2.141 .117 5.344 .005

Table 5.1: The table shows the results of ANOVAs testing the effect of task, con-
dition, and their interaction on the prediction accuracy of each model. For task
df = 1, for condition and interaction df = 3, for error df = 29. All significant effects
of condition are in bold face. Table adapted from [Krämer et al., 2013]

Frequency Revisiting few methods repeatedly is typical The Frequency
model correlates with
frequently
backtracking to the
focus method.

in the three-phase navigation model: Developers backtrack
to the focus method and explore different paths from there.
Blaze and the Call Hierarchy both allow to save the fo-
cus method in the tool and allow exploration of different
paths including the focus method without opening the fo-
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cus method in the editor again. Hence, we assumed that the
prediction accuracy of the Frequency model was reduced in
these conditions.

The prediction accuracy of the Frequency model was signif-Prediction accuracy
in the Stacksplorer

condition was lower
than in the Call

Hierarchy condition.

icantly different between conditions for N = 10. Pairwise,
post-hoc Tukey tests only find a significant difference be-
tween Stacksplorer and the Call Hierarchy (p = 0.018) with
the prediction accuracy being higher in the Stacksplorer
condition. This confirms our hypothesis that participants
performed less revisits to previously visited methods when
using the Call Hierarchy.

Recency & Working Set Developers frequently navigateThese models
represent back and

forth navigation
between related

methods.

back and forth between two methods to be able to under-
stand how they are related (see Chapter 2). For this rea-
son, we expected this kind of navigation to happen less
frequently in conditions with lower task completion time.
This behavior is represented by the Recency model, by the
very similar Working Set model, and, in part, by the Fre-
quency model.

The prediction accuracy of the Recency model was not sig-A significant
difference was only

found between
Stacksplorer and the

Call Hierarchy.

nificantly different between conditions for any N . For the
Working Set model, in contrast, we found a significant ef-
fect of condition for N = 10. Pairwise, post-hoc Tukey tests
again only found a significant difference between Stack-
splorer and the Call Hierarchy with prediction accuracy
being higher in the Stacksplorer condition. The increase
in back and forth navigation between previously visited
methods did not influence the number of distinct meth-
ods visited throughout the trial, as those were similar in
the Stacksplorer and Call Hierarchy condition (p = 0.815).

Contrary to previous results and our own assumptions, weStacksplorer allowed
frequent

back-and-forth
navigations without

impairing
performance.

found Stacksplorer to allow frequent back and forth navi-
gation without impairing performance. Because revisiting
some functions frequently was also more common in the
Stacksplorer condition than in the Call Hierarchy condition,
we conclude that using Stacksplorer allowed developers to
perform a thorough exploration of relatively closed subsets
of methods that are connected by the call graph. Under-
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standing those subsets well was shown to be important to
for code comprehension before [Sillito et al., 2008].

The maximum prediction accuracy for the Recency and These models also
allow to estimate the
size of the working
set.

Working Set models is achieved roughly for N = 10. Fur-
ther increasing N only marginally improves the prediction
accuracy. This can serve as an estimate of the size of a typi-
cal working set in our study.

Bug Report Similarity We did expect participants to This model
represents searches
for textual clues from
the task description.

search for textual clues from the task description to get
started. However, this task was not supported by any call
graph navigation tool, as none of these shows information
about the textual content of the method.

Surprisingly, we found a significant effect of condition on We found significant
differences between
Stacksplorer and
both the Call
Hierarchy and control
condition.

the prediction accuracy of the Bug Report Similarity model
for N = 20. Pairwise, post-hoc Tukey’s tests show a signif-
icant difference between Stacksplorer and the Call Hierar-
chy as well as between Stacksplorer and the control condi-
tion (XC: p = 0.035, CH: p = 0.004).

This result can be explained using information foraging Stacksplorer
provides additional
navigation targets
and developers likely
pick textually related
ones.

theory: By implementing proactive information visualiza-
tion and constantly updating automatically, Stacksplorer
provides additional information targets. Developers are
likely to select from those targets based on textual similar-
ity to the task description [Lawrance et al., 2008]. Stack-
splorer can only increase the discoverability of these tar-
gets, textually meaningful identifiers have to be already
present in the source code. Because developers using Stack-
splorer were also faster than those using the Call Hierarchy
or Xcode, these results show that using good identifiers im-
proves code comprehension. This is consistent with pre-
vious research that indicates that a careful API design can
make source code easier to understand (see Section 2.3.1
and Chapter 3).

Within-File Distance Navigation that is predicted cor-
rectly by the Within-File Distance model corresponds to the
navigation along the object hierarchy, because a source file
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usually correlates with one class. We expected call graphThis model
correlates with

navigation along the
object hierarchy.

navigation tools, which specifically support navigating the
procedural hierarchy, to have no effect on the prediction ac-
curacy of this model.

The statistical results match our expectation: Condition hadWe found no
differences between

conditions.
no effect on the prediction accuracy of the Within-File Dis-
tance model for any N .

Forward Call Depth and Undirected Call Depth TheThese models
correlate with call
graph navigation.

Forward Call Depth and Undirected Call Depth models
specifically represent navigation along the call graph, and
therefore, we expect their prediction accuracy to improve
when a call graph navigation tool is available.

In fact, for both models and values of N = 10 and N = 20,Prediction accuracy
in the Stacksplorer

and Blaze conditions
is higher than in the

other conditions.

we found a significant effect of condition on prediction ac-
curacy. Post-hoc tests (for N = 20 and the Forward Call
Depth model) show results similar to those observed for the
task completion time: In both the Stacksplorer and Blaze
conditions prediction accuracy is significantly higher than
in the control condition (Dunnett test, ST: p = 0.004, BL:
p = 0.022) or the Call Hierarchy condition (Tukey’s test, ST:
p = 0.003, BL: p = 0.022). Results for the Undirected Call
Depth model are similar, except that the pairwise compar-
ison between the Blaze and the Call Hierarchy conditions
was not significant. No difference between Xcode and the
Call Hierarchy could be found.

It is important to note that both Call Depth models predictThese models need
larger N to provide
useful predictions.

badly for small values of N . In our data accuracy increases
notably for N > 6. The reason for this effect is that for
the Forward Call Depth model all methods called by mi

(with mi being the current method) are assigned the high-
est rank. For the Undirected Call Depth model, all meth-
ods callingmi are also assigned the highest rank. However,
a model only predicts anything if N is greater or equal to
the number of methods having the highest rank. The 277
methods visited during the study by at least one partici-
pant had an average of 1.81 (SD = 5.93) callers and 3.49
(SD = 4.63) callees. Those methods that were visited by at
least half the participants had even more neighbors (callers:
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3.33 (SD = 2.58), callees: 11.33 (SD = 6.83)). On that ac-
count, useful predictions can only be expected for relatively
large N .

Factor Analysis

When designing the model-based analysis methodology, A factor analysis can
determine which
navigational patterns
commonly appear
together.

we assumed that every model corresponds to a spe-
cific navigation micro-pattern. After having applied this
methodology, we performed a factor analysis to find mod-
els with similar prediction accuracy, i.e., to find naviga-
tional micro-patterns that commonly appear together.

We performed a factor analysis for N = 10 and N = 20 for We used the
Maximum Likelyhood
method with Oblimin
rotation.

each task individually, yielding four separate analyses. For
all analyses, the Kaiser criterion indicated three underlying
factors, except forN = 20 and task 2 where it only indicated
two underlying factors. Hence, in the next step, we calcu-
lated the factor loading for three underlying factors in all
analyses. We used the Maximum Likelihood method with
Oblimin rotation. ForN = 20 and task 2 the correlation ma-
trix was not positive definite, so the Maximum Likelihood
method was not applicable and we removed this case from
the further analysis.

In the next step, we performed chi-square tests to test We found three
underlying factors.whether or not common factors still exist and whether or

not three factors are sufficient. The first test was significant
in all cases, while the second test was significant in no case.

N = 10 N = 20

task 1 task 2 task 1
H0: no common factors p < 0.001 p < 0.001 p < 0.001

H0: 3 factors are sufficient p = 0.831 p = 0.719 p = 0.316

In combination, these results confirm that the information
can be reduced to three factors. On average, the three
extracted components were able to explain 85, 5% (SD =
12, 8%) of the total variance found.
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N = 10
Task 1 Task 2

Components 1 2 3 1 2 3
Frequency 0.584 0.253 -0.376 0.637 -0.018 -0.005
Recency 0.970 0.084 0.049 0.637 -0.018 -0.005
Working Set 1.001 -0.032 0.073 0.600 0.068 0.009
Bug Report Similarity -0.150 0.070 0.544 0.077 -0.114 1.006
Within-File Distance 0.199 -0.053 0.781 -0.062 0.101 0.572
Forward Call Depth 0.108 0.714 -0.160 0.150 0.827 0.052
Undirected Call Depth -0.033 0.982 0.158 -0.066 0.876 -0.019

N = 20
Task 1

Components 1 2 3
Frequency 0.827 0.016 -0.225
Recency 1.001 -0.011 0.113
Working Set 0.987 0.015 0.110
Bug Report Similarity -0.037 -0.087 0.499
Within-File Distance 0.067 0.106 1.015
Forward Call Depth 0.014 0.969 -0.095
Undirected Call Depth -0.010 0.871 0.067

Table 5.2: The table shows the factor loading for three underlying factors. We
performed task-wise analyses for N = 10 and N = 20. For N = 20 and task 2 the
Maximum Likelihood method was not applicable. Factor loadings are consistent
across analyses.

The structure of the three components identified was iden-The structure of the
three factors was
identical in every

analysis.

tical in every analysis (see Table 5.2): The first component
is comprised of the Frequency, Recency and Working Set
models. The alignment of these models was to be expected:
The Recency and Working Set models are very similar be-
cause the Working Set model estimates the working set us-
ing the most recently used methods. Further, navigating
back to a recently visited method will always also increase
the frequency with which this method is visited. The sec-
ond component is comprised of the Forward and Undi-
rected Call Depth models. Again, the similar definitions of
these models are indicative for their alignment as one fac-
tor. The third component is comprised of the Within-File
Distance and the Bug Report Similarity models. Here, the
similarity between both models is less intuitive and statis-
tically less pronounced. We assume that developers first
searched for a term they found in the task description to



5.3 Comparing Call Graph Navigation Tools 103

find a class which is relevant to implement the specific fea-
ture they needed to work on. Then, developers would ex-
plore the object structure of this class, which, given it is rel-
evant to the task, likely contains other words found in the
task description as well.

The results of the factor analysis seem plausible but should The factor analysis
should be confirmed
after applying the
analysis method in
more studies.

nevertheless be interpreted carefully, because the factor
analysis of our model-based analysis technique is based on
data from only one study. Further, we could not apply a
consistent statistical method in all analyses.

5.3.4 Non Model-Based Comparison of Call Graph
Navigation Strategies

The model-based analysis methodology we used to charac- We used other
measures for the
amount of call graph
navigation to verify
our analysis method.

terize and to compare navigation strategies between condi-
tions is a new technique we have created. To verify that the
results obtained using this technique are sound, we also an-
alyzed our data using other quantitative measures that de-
scribe the amount of call graph navigation performed and
the tools used for this purpose.

We first analyzed if the percentage of navigations along a We compared the
percentage of call
graph navigations
between conditions.

call graph edge is influenced by either task or condition (see
Figure 5.6). An ANOVA reveals a significant effect of both
factors as well as a significant interaction effect.

Task: F (1, 29) = 10.892 p = 0.003

Condition: F (3, 29) = 11.002 p < 0.001

Interaction: F (3, 29) = 3.877 p = 0.019

The effect of task is to be expected as both tasks were dif- The analysis
revealed a significant
interaction effect
between task and
condition.

ferent in difficulty and complexity. Post-hoc tests on the
effect of condition have to performed individually for each
task to understand the interaction effect. We found that in
task 1 the percentage of call graph navigations was gener-
ally lower and there were less differences between the con-
ditions, while in task 2 the differences between the condi-
tions increased substantially (see Figure 5.6). This is also
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Figure 5.6: The figure shows the percentage of navigation
actions that followed an edge in the call graph. In task 2,
we find substantial differences between the conditions.

reflected in the results of post-hoc t-tests using Bonferroni
correction. In task 1, no differences between individual
conditions could be found.

XC vs. CH: p = 1.000 ST: p = 0.972 BL: p = 1.000

CH vs. ST: p = 0.112 BL: p = 0.694

ST vs. BL: p = 1.000

In task 2, we found that developers using Stacksplorer per-
formed significantly more navigations along the call graph
than those who did not use a call graph navigation tool or
the Call Hierarchy.

XC vs. CH: p = 1.000 ST: p < 0.001 BL: p = 0.133

CH vs. ST: p = 0.001 BL: p = 0.584

ST vs. BL: p = 0.118
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In the second task, developers did not need to perform an
initial search phase, because a starting point was given in
the task description. We suspect that this difference to task
1 caused the more pronounced effects in task 2.

Next, we analyzed the length of call graph navigation se- A call graph
navigation sequence
is a series of
navigations along a
call graph edge.

quences, i.e., exploration phases during which only call
graph navigation occurred. Formally, a call graph navi-
gation sequence S = (mm,mm+1, . . . ,mn−1,mn) is a sub-
string of the developer’s navigation history H , such that
∀mi,mi+1 ∈ S, (mi,mi+1) ∈ E or (mi+1,mi) ∈ E. An
ANOVA revealed a significant effect of condition on the av-
erage length of these sequences.

Task: F (1, 31) = 0.379 p = 0.543

Condition: F (3, 31) = 5.834 p = 0.003

Interaction: F (3, 31) = 1.679 p = 0.192

Post-hoc Tukey’s tests again showed that sequences in the Call graph navigation
sequences were
longer using
Stacksplorer and
Blaze compared to
the control condition.

Stacksplorer and Blaze conditions were significantly longer
than those in the control condition, while sequences in the
Call Hierarchy condition were not. Additionally, call graph
navigation sequences in the Stacksplorer condition were
significantly longer than those in the Call Hierarchy con-
dition.

XC vs. CH: p = 0.901 ST: p = 0.007 BL: p = 0.035

CH vs. ST: p = 0.031 BL: p = 0.133

ST vs. BL: p = 0.904

An exploration phase in the call graph was not counted as Indirect call graph
navigation only
occurred very rarely.

a call graph navigation sequence, when developers navi-
gated along more than one edge at a time. This could poten-
tially influence results for Blaze and the Call Hierarchy, as
both tools support these navigations. Surprisingly though,
in all trials combined, we found only nine instances of such
navigations.

Developers all preferred call graph navigation tools to ex-
isting means in Xcode to perform call graph navigations. In
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all treatment conditions, developers performed about twoAll tools were used
for a similar

percentage of call
graph navigations.

thirds of navigations along a call graph edge using the call
graph navigation tool.

CH: M = 68.2% SD = 37.1%

ST: M = 65.0% SD = 31.2%

BL: M = 65.0% SD = 39.8%

In the control condition, participants still needed to per-Call graph navigation
tools reduced the

amount of
project-wide textual

searches.

form call graph navigation to solve the tasks. The most
important strategy to do so was to use project-wide textual
search. Developers wanting to find all callers of a method
would search for the method name using the project-wide
search. This technique is slow and error prone. Errors often
occur when methods are called similarly, especially when
a method’s name is the prefix of another method’s name.
Condition had a significant effect on the number of times a
project-wide search was performed.

Task: F (1, 29) = 9.542 p = 0.004

Condition: F (3, 29) = 4.224 p = 0.014

Interaction: F (3, 29) = 0.522 p = 0.671

Using a post-hoc Dunnett test, we found that the usage of
the project-wide search declined significantly in all treat-
ment conditions compared to the control condition (p ≤
0.001 for all conditions).

5.3.5 Discussion

After comparing task completion times and task successWe investigated if
differences in task

completion times can
be explained by

changed navigation
strategies.

rates between conditions, we wondered why participants
using the Call Hierarchy could not solve tasks faster than
those in the control condition, but participants using Stack-
splorer and Blaze could. We suspected that Stacksplorer
and Blaze are not just easier to use, but encourage devel-
opers to use different navigation strategies, which in turn
were more effective to comprehend the source code in our
study.
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To be able to detect changes in navigation strategies, we
presented a new analysis technique that allows to quan-
tify and compare inter-method navigation strategies. In the
remainder of this section, we will first discuss our results
with respect to the initial research question and then dis-
cuss what we have learned about our analysis technique.

Differences Between Call Graph Navigation Tools

The analysis of tool usage in the different conditions All tools replaced
cumbersome
project-wide
searches.

showed that adoption rates in the Call Hierarchy condi-
tions were comparable to the Stacksplorer and Blaze con-
ditions. In the control condition, developers often explore
the call graph using project-wide searches. This interaction
is replaced by a far more streamlined and less error prone
interaction in all tool conditions. We believe this shift to a
more reliable interaction causes participants in all tool con-
ditions to achieve higher task success rates compared to de-
velopers in the control condition.

Stacksplorer and Blaze, in contrast to the Call Hierarchy, Only Stacksplorer
and Blaze
encouraged
developers to change
their navigation
behavior.

change the developers’ navigation strategies towards a
strategy that is more focused on call graph exploration than
before. Adopting this strategy allowed developers to solve
tasks faster than developers in the Xcode and Call Hierar-
chy conditions. We believe that this change in navigation
strategy is promoted by the two design concepts shared
by Stacksplorer and Blaze: proactive information visualization
and comprehensible relevance.

With comprehensible relevance we refer to the fact that vi- Comprehensible
relevance increases
the usefulness of
navigation targets for
developers.

sualized information should be connected to the task in
a way that is immediately understandable to a developer.
Stacksplorer, which caused the most substantial shift in the
developer’s behavior, only showed methods directly con-
nected to the focus method in the call graph. The relation-
ship between these methods and the focus method is easy
to understand, especially when using a bottom-up compre-
hension strategy. Stacksplorer does not allow developers
to disable automatic updates, hence developers can rely on
the side columns always being related to the focus method
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in the same way. Blaze still adheres to the principle of com-
prehensible relevance more than the Call Hierarchy, as one
path through the call graph roughly maps to a single con-
cern the focus method is involved in. In contrast, the Call
Hierarchy allows nearly unrestricted exploration, only en-
forcing that every visible method is connected to the focus
method in the call graph somehow.

The presumed benefit of Blaze and the Call Hierarchy isComprehensible
relevance of

navigation targets
seems to decrease

with their distance in
the call graph.

that both allow navigation to methods that were more than
one edge away from the focus method. However, in con-
trast to previous results [Ko et al., 2005], these navigations
were rarely performed in our study. We suspect that the rel-
evance of methods further away in the call graph is hard to
assess, especially, when developers are, like in our partic-
ular setup, unfamiliar with the source code and fear to get
lost. Additionally, both Blaze and the Call Hierarchy allow
some exploration of distant navigation targets, i.e., reading
the method and class name, without actually performing
the navigation.

With proactive information visualization we refer to automati-By implementing
proactive information

visualization,
Stacskplorer and

Blaze provide
additional

information scent.

cally displaying information instead of waiting for the user
to perform a query. This provides navigation targets and,
thus, information scent (see Chapter 2.2.2) automatically
and can encourage navigations that a user would other-
wise not have performed. Both Stacksplorer and Blaze im-
plement this property, and about half of the participants
in the Call Hierarchy condition proposed to add automatic
updates in post-session questionnaires, even though they
were not aware of the other tools.

Limitations We could show a correlation between theDifferent design
decisions of the tools
could have cause the
change in strategies.

performance measures that distinguish the different tools
and the navigation strategies that the tools promote. How-
ever, it remains unclear if the ability to change navigation
behavior is caused by the tools visualizing different parts of
the call graph or by the different presentation of the infor-
mation. For example, overlays help parsing the displayed
information in Stacksplorer and Blaze, but are absent in the
Call Hierarchy condition.
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One of the most common errors we observed in the Blaze The interaction of
Blaze and the Call
Hierarchy could be
improved by
preventing mode
errors.

and Call Hierarchy conditions were mode errors: Partici-
pants using the Call Hierarchy often confused caller and
callee view modes, or they forgot that the currently selected
method in the Call Hierarchy is not necessarily the one vis-
ible in the editor. When using Blaze, mode errors occurred
when the path was too long to fit the screen. In this case, de-
velopers could scroll the part of the path below and above
the focus method, eventually hiding a part of the path be-
tween the focus node and the next visible method. Chang-
ing the design to prevent these mode errors could improve
the performance of both tools.

Even though we identified different problems of the Blaze The design
guidelines we
applied mitigated the
negative effects of
these mode errors in
Blaze.

user interface, e.g., that participants rarely navigated to tar-
gets distant from the focus method, or that mode errors oc-
curred, task completion times in the Blaze condition were
on par with those in the Stacksplorer condition. This indi-
cates that selecting which information to display (compre-
hensible relevance) and providing information automati-
cally (proactive information visualization) are important
enough to mitigate certain interface design problems.

All results we have found are specific to navigation in Our results are
specific to
Objective-C source
code.

Objective-C source code. To be able to generalize the re-
sults to other object-oriented programming languages, we
performed a formative study about navigation behavior be-
forehand [Karrer et al., 2011; Krämer, 2011]. In observing
and interviewing six Objective-C developers in a real life
scenario, we found that the navigation behavior we ob-
served with these developers is qualitatively identical to
the behavior observed in previous studies (see Chapter 5).

In our study, only six methods were visited by more than A huge diversity in
methods visited
during the Search
phase likely added
noise to our analysis.

half of the participants. These methods were either the so-
lution to a task or very closely related. Nearly half of all the
methods we saw being visited during the sessions (45%),
were only visited by one participant. These methods were
probably visited during the first phase of the three-phase
navigation model, during which developers search for an
anchor point. This diversity of methods visited during the
first phase likely added noise to our model-based analysis.
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Model-based Navigation Analysis Method

The model-based analysis method to describe and compare
navigation behavior was first proposed and used in this
study. While it is difficult to appropriately judge the ca-
pabilities of such a method after only one application, we
found several indications that the method we propose is
sound.

In the factor analysis, we found that our method generatesThe factor analysis
showed that our
analysis method

detects similar
navigation strategies

as observed in
previous studies.

results along three major axes. A first indication for the
soundness of the obtained results is that these axes corre-
spond to previous empirical results of common navigation
patterns of developers: According to the three-phase navi-
gation model, developers collect a working set of important
methods and try to understand their relationship in depth.
For that task, they frequently switch back and forth be-
tween methods in the working set. The first underlying fac-
tor of our analysis method is comprised of models specifi-
cally designed to represent such navigation: Frequency, Re-
cency, and Working Set. The second axis describes navi-
gation related to exploration of the procedural structure of
the program, represented by the Forward and Undirected
Call Depth models. The last axis describes navigation re-
lated to exploration of the (orthogonal) object structure of
the program, represented by the Within-File Distance and
Bug Report Similarity model.

The last axis is likely most reliant on artificial assump-Within-File Distance
and Bug Report

Similarity are reliant
on assumptions

about the project.

tions about the project: The object structure of a program
only aligns with Within-File Distance if each class is imple-
mented in a separate file and can be browsed by scrolling
through this file. While this assumption relies on the spe-
cific development environment used, we think it likely
holds for many software projects implemented with cur-
rent tools. Bug Report Similarity only aligns with the object
structure if the terms used in the bug report correlate with
terms used in the source code, and if the source code related
to these terms is located in a common class or sub-graph of
the class hierarchy. We suspect that whether or not these
requirements are met is largely dependent on the specific
bug report and project.
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We obtained similar results from our model-based anal- Other metrics for call
graph navigation
confirm the results
obtained using our
analysis method.

ysis as using other quantitative measures to describe the
amount of call graph navigation performed (see Section
5.3.5). This further supports the validity of our method.
When discussing the results of all the analyses we per-
formed, we found that the model-based analysis is helpful
to establish that a difference in navigation behavior does
exist between different conditions. To identify the reasons
for the observed difference, we propose to cross-validate
results with other metrics that describe specific details on
the navigation behavior.

To allow other researchers to apply our analysis method-
ology, we have released a tool for Mac OS X to calculate
prediction accuracies from a ChronoViz annotation file and
an XML representation of the call graph.

http://hci.rwth-aachen.de/developerNavigation

5.4 Future Work

This work leaves several opportunities for future work. We hope that our
analysis method is
adopted in future
research projects.

First, we hope to see our analysis methodology being ap-
plied in a broader variety of studies to find further sup-
port for its viability. The software we provided should help
researchers in adopting our method. With a larger set of
analyses of navigation behavior, researchers could identify
differences depending on tasks, work environments, and
various tools used in the development process.

In our study, we sampled a comparatively small variety Stacksplorer and
Blaze should be
compared to a
broader range of
development tools.

of call graph navigation tools. Apart from two conditions
representative of current development environments, we
created two tools based on the same design concepts. In
the future, this evaluation should be extended to other
tool designs, especially those that more holistically rethink
the interface paradigm of an IDE, such as Code Bubbles.
This could provide further support for our design guide-

http://hci.rwth-aachen.de/developerNavigation
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lines and help identify other design aspects responsible for
changes in developers’ behavior. Further, our guidelines
should be evaluated individually, e.g., by creating a vari-
ant of the Call Hierarchy that updates automatically to im-
plement proactive information visualization, to explore the
effect of each individual guideline.

We found that the observed changes of developers’ strate-We propose to
investigate how a

changed navigation
behavior correlates

with other aspects of
development.

gies correlate with reduced task completion times. In the
future, it would be interesting to explore how the changed
strategies correlate with other aspects of development, such
as learnability or the quality of the resulting code.
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Chapter 6

Live Coding

“I object to doing things that computers can do.”

—Olin Shivers

Publications: The work presented in this chapter on METIS was done in collaboration
with Thorsten Karrer, Björn Heinen, Ewgenij Belzmann, and Joachim Kurz. It was pre-
sented as a short paper at VL/HCC 2014 [Krämer et al., 2014]. The work on FIDDLETS was
done in collaboration with Joel Brandt, and Dennis Lewandowski. Björn Heinen performed
an early exploration of possible designs for a live coding editor in his Bachelor’s thesis
[Heinen, 2012]. This refined version of this prototype, METIS, was created and studied as
part of the Master’s thesis of Joachim Kurz [Kurz, 2013]. At the same time, Ewgenij Belz-
mann implemented the required backend [Belzmann, 2013]. Hendrik Wolf explored novel
visualization techniques for complex runtime information in his Bachelor’s thesis [Wolf,
2014]. FIDDLETS was iteratively designed and studied as part of Dennis Lewandowski’s
Master’s thesis [Lewandowski, 2015]. The author of this thesis supervised all theses men-
tioned and contributed to all stages of prototypes, to the software architecture, and to the
design of the studies. He later extended the analyses of Kurz and Lewandowski to the state
presented here.
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So far, we have supported developers in comprehendingDevelopers regularly
execute the

application they
develop manually.

source code by reading it. However, because source code is
written to be executed by a computer, it is often easier for
developers to execute the code instead of simulating the
computation mentally, and to observe the behavior of the
code using debugging tools [Maalej et al., 2014]. Develop-
ers perform these manual executions of the code frequently
[Brandt et al., 2009a], and we already exploited this behav-
ior in Chapter 4.

Manually executing the source code repeatedly through-Manual edit-test-edit
cycles require

developers to switch
between activities.

out the development process can lead to several problems:
First, developers have to switch constantly between multi-
ple tools, usually a debugging tool and a code editor. Sec-
ondly, developers need to repeatedly provide input manu-
ally for the application they create in order to exercise the
part of the software they are currently working on. Due to
this cumbersome interaction, developers do not often per-
form manual tests if they are confident that their change is
correct. However, edit-test-edit cycles that are too long can
delay the discovery of newly introduced bugs, because the
sooner a bug is discovered, the faster it can be fixed [Saff
et al., 2003].

To mitigate these problems, we will apply the concept ofLive development
tools automatically

execute the
application after each

change.

proactive information visualization that we have identified in
Chapter 5 to the design of runtime analysis tools. The re-
sulting tool is a live programming environment that pro-
vides feedback on the program execution immediately after
each change to the source code. More precisely, these sys-
tems can show values of method parameters, conditions,
variable assignments, or the order in which methods were
called. Live coding environments are not a new concept;
and in the first section of this chapter we will summarize
previous work on the topic. Next, we are going to present
a study to analyze how using a live coding environment
affects the developers’ behavior. We will show that devel-
opers working with a live coding environment fix bugs sig-
nificantly faster and switch between creating and correct-
ing code more frequently. In the last section of this chapter,
we will discuss the technical challenges of live coding tools.
We will present an approach to scale live coding to big, real-
world projects by using live coding only for a small snippet
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of the actual application. Our system contextualizes this
snippet to simulate an execution of the complete applica-
tion.

6.1 Related Work

The term liveness to classify the immediacy with which pro- Tanimoto introduced
a scale for the
liveness of
programming
environments.

gramming environments provide feedback to the devel-
oper was first introduced by Tanimoto [1990, 2013]. In Tani-
moto’s original classification [Tanimoto, 1990], systems can
achieve four different levels of liveness; later the scale was
extended to include a fifth and sixth level [Tanimoto, 2013].
The first level refers to non-executable program descrip-
tions, such as UML diagrams or requirements documents.
The second level refers to executable program descriptions,
i.e., source code. The third level describes executable pro-
gram descriptions that are automatically executed after ev-
ery change. The fourth level refers to environments that
keep the software running while code is changed, so that
changes to the source code affect all future events with-
out requiring a restart. The fifth level describes systems
that concurrently execute nearby versions that a developer
might want to explore. The sixth level extends this idea
to describe systems that understand higher level goals and
predict larger chunks of code. In this chapter, we will call
systems live if they achieve at least level 3 on Tanimoto’s
liveness scale.

In the past, several coding environments have imple- Live-coding has
frequently been
implemented in
special purpose
programming
environments.

mented levels 3 liveness and above. The earliest imple-
mentation of a system that achieved level 3 liveness we are
aware of is Visicalc in 1979 [Grad, 2007], the first spread-
sheet environment. Henderson et al. [1985] discussed only
a few years later, how the live concepts in Visicalc could
be applied to a programming environment for textual pro-
gramming languages. Burnett et al. [1998] showed how
spreadsheets can be extended to achieve level 4 liveness
by applying a lazy algorithm to mark cells that need to be
reevaluated after events. Morphic [Maloney et al., 1995],
the user interface toolkit of the Self programming language
[Smith et al., 1995], first brought level 4 liveness to graphi-
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cal user interfaces. In Morphic, developers can change both
the source code of each widget and the widget hierarchy
without stopping or restarting the application. Today, level
4 liveness is most commonly found in visual, flow-based
programming environments, such as Quartz Composer1

or Max2. In these environments, a program is assembled
by connecting different patches on a two-dimensional can-
vas (i.e., methods). As we have discussed in Section 2.3.2,
though, we will focus on textual programming languages
in this thesis.

The most common feature related to liveness in textualExample-based
programming

implements level 3
liveness for textual

programming
languages.

programming environments is continuous compilation. It
allows for faster startup times when performing manual
tests, and it immediately reveals errors that can be detected
using static analysis. Continuous execution of the appli-
cation is less common for textual languages. One possible
implementation of continuous execution are programming
with example systems [Myers, 1990]. The examples provide
the required input values for the re-execution of the appli-
cation. Edwards [2004] implemented a programming with
example system for object-oriented Java source code. Saff
et al. [2004] used existing test cases to provide input for
the continuous re-execution of the application. Their con-
tinuous testing tool provided only information about the
test success of failure and no further runtime information,
hence, it can detect defects but does not allow developers to
inspect the runtime behavior to support the comprehension
process.

The tools discussed so far all require manual setup from de-Rehearse combines
live coding with

manual tests.
velopers to perform continuous executions. Rehearse [Choi
et al., 2008] uses a manual program execution performed
by a developer to set up a live coding environment. For the
setup, developers specify which method will be defined in-
teractively. When this function is first called during execu-
tion, the program halts and the developer can implement
the method. Every line is now executed immediately after
it was typed. However, to change previously typed lines

1https://developer.apple.com/library/mac/documentation/
GraphicsImaging/Conceptual/QuartzComposerUserGuide

2https://cycling74.com/products/max/

https://developer.apple.com/library/mac/documentation/GraphicsImaging/Conceptual/QuartzComposerUserGuide
https://cycling74.com/products/max/
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Figure 6.1: Brett Victor’s mockup of a live coding tool
shows source code on the left and the resulting draw-
ing on the right. Parameter values can be adjusted by
dragging, the output changes immediately. Figure Source:
http://worrydream.com/#!/LearnableProgramming

the developer has to undo all changes that happened after
that line.

A similar tool, ALVIS Live!, was introduced by Hund- ALIVS Live! uses live
coding to generate
algorithm
visualizations.

hausen et al. [2007a]. To go back and forth between states
of the execution, developers do not need to delete lines of
code but use a playback control instead. In contrast to the
tools discussed so far, ALVIS Live! is not primarily de-
signed to provide developers with runtime information. In-
stead, it shows an algorithm visualization designed to teach
programming to novices. After every newly entered line of
source code, the visualization immediately updates.

Recently, the idea of live coding regained attention after a Live coding is
frequently used as a
learning tool.

highly successful talk by Brett Victor3. He showed a mock-
up of a live coding editor for JavaScript drawing code, in
which the generated drawing was displayed side-by-side
with the source code and updated automatically after every
change (see Figure 6.1). Later, Victor extended his ideas4

to incorporate new visualizations for various kinds of data
and he proposed to show one line of information per line
of code. We adopted the latter idea in our prototype. Vic-
tor’s designs inspired several tools, e.g., an online learn-
ing tool for novice programmers developed for the Kahn
Academy5 or the web development tool Lighttable6 that al-
lows inline inspection of all variables. This development
is likely supported by the increase in available computing

3http://worrydream.com/#!/InventingOnPrinciple
4http://worrydream.com/#!/LearnableProgramming
5https://www.khanacademy.org/cs/programming
6http://lighttable.com/

http://worrydream.com/#!/InventingOnPrinciple
http://worrydream.com/#!/LearnableProgramming
https://www.khanacademy.org/cs/programming
https://www.khanacademy.org/cs/programming
http://lighttable.com/
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power and the availability of powerful just-in-time compil-
ers for scripting languages, as these technologies make con-
tinuous re-executions of an application feasible.

In stark contrast to the multitude of tools that have beenThe behavior of
developers using live

coding is still
relatively unknown.

proposed, few results are available on the effect of work-
ing with a live coding environment for the developers’ be-
havior. Snell [1997] reported on a preliminary study of
a live coding environment according to which developers
fixed more bugs during initial code entry and completed
tasks faster than in traditional development environments,
but he also warns that formal experiments are still missing.
Wilcox et al. [1997] compared a live and a non-live version
of Forms/3, an experimental spreadsheet environment. For
bug fixing tasks, results were inconclusive and indicated
that the effect of live coding depends on the task and the
kind of bug. ALVIS Live! was used in a study to compare a
version featuring live updates after every change to a ver-
sion that required developers to refresh the visualization
manually. In an evaluation with novice users, no difference
in correctness of solutions could be found between these
conditions [Hundhausen et al., 2007b].

Our work complements the corpus of studies on live cod-
ing environments. We are going to investigate how live
coding affects the developers’ coding behavior during code
creation tasks and when working with a textual program-
ming language.

6.2 How Live Coding Affects Developers
Strategies

Exploring how developers change their behavior when us-For our evaluation we
required a live coding

tool with interactive
update rates.

ing a live coding tool for a realistic coding task was difficult
in the past, because live coding tools have often been held
back by a lack of processing power to return the results
in time. Today, we have the tools available to implement
a prototypical live coding environment that provides run-
time information at interactive rates. In this section, we will
introduce the prototype we have created to run our exper-
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iment before presenting the setup and results of our study.
We will conclude this section with a discussion of the re-
sults and lessons learned from our experiment.

6.2.1 Prototype

Our prototype needed to fulfill two requirements to serve
our purposes:

1. The prototype should provide a realistic experience
of live coding, i.e., it needs to provide updated infor-
mation at interactive rates.

2. Developers should be able to work without restric-
tions.

To fulfill these requirements, a mock-up with prerecorded METIS is a fully
functional live coding
environment for
JavaScript.

information about certain code snippets was infeasible and
the tool had to execute the code under development after
every change. We implemented METIS, a live coding en-
vironment for JavaScript. We decided on using JavaScript
because it can be executed without prior compilation. Fur-
ther, JavaScript is the most popular language for the imple-
mentation of web-based applications, and a lot of effort is
currently put into the creation of fast runtime environments
for JavaScript, such as Google’s V87. We released METIS as
an open-source prototype.

http://hci.rwth-aachen.de/liveCoding

METIS is comprised of two parts: A backend server runs METIS separates
backend and
frontend.

the JavaScript source code under development and records
runtime information. A frontend displays the collected in-
formation visible to the user. In the following subsections,
we will give an introduction to each component.

7https://developers.google.com/v8/

https://developers.google.com/v8/
http://hci.rwth-aachen.de/liveCoding
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Client Controller Runtime

Runtime

...

Runtime

Websocket IPC

Server

Figure 6.2: The backend communicates with clients via a
WebSocket connection, and to individual sandboxes that
execute versions of the code via the child process API in
node.js. Figure adopted from [Belzmann, 2013].

Backend

The backend is responsible for executing a chunk ofThe backend
consists of a

controller and
sandboxed runtimes

that execute the code
under development.

JavaScript source code and tracing the execution. It is com-
prised of two components: A controller communicates with
the client and manages multiple runtimes that instrument
and run the code. Separating these two parts allows to
sandbox the execution of code under development, i.e., the
code runs in a separate process. If the execution takes too
long or does not terminate at all, the affected runtime can
be safely killed without impacting the stability of the back-
end. The client communicates with the controller via a
WebSocket connection, while the controller communicates
with the individual instances of the runtime via the child
process API of Node.js (see Figure 6.2). In the current ver-
sion of the backend server, providing input to the running
app is not possible. Still, in a future version this can be
easily added by routing standard input and output streams
of each runtime through the controller to the client. This
would even allow the client to repeatedly replay a prere-
corded interaction sequence.

To record runtime information, the backend instruments
the code before execution. The instrumentation procedure
adds callbacks to the source code that send variable val-
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ues and other information about the code execution back to To record runtime
information, the
backend instruments
the code.

the backend controller where the information is chunked
and sent to the client. We strive to insert the required call-
backs without impacting the usual program behavior. To
manipulate the original source code efficiently, the runtime
first parses the source code to obtain an abstract syntax tree
(AST). In the AST, each node represents a construct in the
source code, such as a variable definition, a function, or a
single literal. The types of outgoing edges of each node de-
pend on the type of the node: For example, a literal node is
always a leaf while a function node needs to have an out-
going edge referencing its body. All instrumentation is per-
formed on the AST.

Currently, the backend is capable of tracking information
about the following events:

• assignments of variables

• function calls

• if and switch conditional statements

• for, for-in, and while loops

• error handling using try-catch

• uncaught exceptions

• log statements using console.log

A complete description of the instrumentation applied to
the source code is part of Ewgenij Belzmann’s Diploma the-
sis [Belzmann, 2013].

To test the efficiency of our runtime tracing backend we Instrumentation
takes less than 1ms
per line of code.

measured the time required to instrument different large
JavaScript libraries. We found that the instrumentation
takes 0.51ms on average (SD = 0.29) per line of code. Of
course, the time required varies depending on the complex-
ity of the source code.

Next, we measured the performance impact of our instru-
mentation. For this test, we used three simple algorithms:
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Figure 6.3: METIS shows one line of runtime information
next to each line in the source code editor. Figure from
[Krämer et al., 2014]

Merge sort and bubble sort to sort 4000 array elements,Instrumented code
runs significantly

slower than the
original version.

and the babylonian method to iteratively approximate the
square root of a number using 100.000 iterations. Tracing
the execution of these algorithms using our tool causes a
significant performance decrease, with execution times of
the instrumented code being slower than for the original
code by a factor between 140 and 3200. This is caused
mostly by the cost of message passing between the runtime,
the controller, and the client. In our study, we managed to
avoid this problem by designing our tasks appropriately.
Hence, in our study the total delay between a change to the
code and updated runtime information was always well be-
low 500ms.

Frontend

We implemented the frontend for METIS as an extension forMETIS shows
runtime information

in a separate view on
the right side of the
source code editor.

Brackets8, an open-source JavaScript IDE. The METIS ex-
tension adds a separate area on the right side of the source
code editor (see Figure 6.3). In this area, one line of informa-
tion obtained from the backend is shown next to each line of
code. Scrolling in the source code editor and the new view

8http://brackets.io/

http://brackets.io/
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is synchronized, thus, the runtime information for a line of
code is always right next to the line in the editor. The de-
sign is adopted from Brett Victor’s popular concept9 of a
live coding tool for applications without graphical output.
Since this concept gained a lot of attention but was not yet
evaluated, we considered it an interesting starting point for
our evaluation. Based on Victor’s concept, we tested sev-
eral design concepts in informal user tests until we settled
on the final design [Heinen, 2012; Kurz, 2013].

METIS visualizes all information that can be provided by METIS can visualize
all information
provided by the
backend.

the backend. When visualizing the value of a condi-
tion, e.g., to provide information about an if -statement,
METIS additionally shows if the value is truthy or falsy
(i.e., evaluates to true or false in a Boolean context) in
JavaScript (see line 12-14 in Figure 6.3). The distinction
between truthy and falsy values is one of the common id-
iosyncrasies of JavaScript that is difficult to understand for
novice JavaScript developers [Crockford, 2008]. For long
values, such as long strings or complex objects, METIS ab-
breviates the visualization using “. . . ”. By clicking on the
dots, users can expand the visualization to print out the
string or object completely. To maintain the side by side
view of source code and runtime information, Metis still
displays the complete value in a single line and therefore
requires horizontal scrolling.

For lines that are executed more than once, because they Developers can
inspect all executions
of loops and
functions.

are inside of a loop or function, the execution to visualize
can be selected using a selector next to the loop or function
declaration (see line 1, 12, 13 in Figure 6.3). The selected
execution is restored after live re-executions of the appli-
cation, as long as the selected index still occurs in the new
runtime trace. The selector supports scrubbing, i.e., click-
ing on the number and dragging the cursor left and right,
for fast navigation through a large number of executions.
The mapping between cursor movement and the selected
execution is non-linear and designed to allow precise ac-
cess to the first and last few iterations, as these are typical
edge cases that might cause errors. If the execution fails due
to an uncaught exception, METIS will show the exception in
an overlay.

9http://worrydream.com/InventingOnPrinciple/
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6.2.2 Study

We want to analyze how working in a live coding environ-We compared live
coding with

traditional
development.

ment affects developers’ coding behavior. Our study used a
between-groups design with two conditions: In the exper-
imental condition, developers used METIS, the JavaScript
live coding environment we developed; in the control con-
dition, developers worked using a traditional development
environment.

We expected developers in the experimental condition to
be able to fix bugs right after they were introduced, be-
cause they do not need to switch to a dedicated debugging
phase. We formulated three hypotheses about the behav-
ioral changes we would observe:

Hypothesis 1 We call the time between introducing a bug
and fixing it the total fix time. We expect the average
total fix time to decrease in the experimental condi-
tion.

Hypothesis 2 As a consequence, we expect total task com-
pletion times to be lower in the experimental condi-
tion.

Hypothesis 3 We expect developers in the experimental
condition to adapt a coding strategy in which code
creation and bug fixing happen interleaved through-
out the development process. In contrast, we ex-
pect developers in the control condition to perform
a majority of bug fixing at the end of the trial. More
precisely, we expect that editing activities are more
evenly spread over the total time spent working on a
task in the experimental condition.

Setup

Participants in our study had to solve three coding tasksTasks were designed
to circumvent

limitations or our
prototype.

that were designed to pose realistic challenges while cir-
cumventing the limitations of our prototype. All tasks had
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to be implemented in JavaScript for the Node.js JavaScript
runtime.

Task 1 Developers should parse the RSS feed of daringfire-
ball.net, a popular news website using the stream-
based XML parser sax-js10. A stream-based XML
parser reads the XML document serially and reports
every node immediately. The challenges in this task
were that developers had to use an unknown API,
they had to work with an unfamiliar structure of
the RSS feed, and they had to write asynchronous
callback-based code.

Task 2 The developers should convert between two dif-
ferent date formats. This task was designed to pro-
voke programing slips, i.e., small programming errors.
They could be caused by mixing up different property
names or by forgetting necessary conversions, e.g.,
from local time to UTC, or vice versa.

Task 3 The developers should implement Dijkstra’s algo-
rithm, an algorithm that calculates the shortest paths
from one node in a graph to all other nodes. This task
was challenging due to its algorithmic complexity.

All participants worked on a 15-inch MacBook Pro with Participants worked
on identical hardware
but could choose
their preferred
operating system.

an external 23-inch screen and all required software pre-
installed. Participants could choose Mac OS X or Windows
as their operating system to allow them to use all shortcuts
they were accustomed to. Participants in both conditions
used Brackets11. In the experimental condition, we also en-
abled the METIS extension.

Live coding can partially replace two well-known features In both conditions we
provided continuous
compilation and a
debugger.

of modern IDEs: A debugger and continuous compilation.
We provided both features in a consistent way in both con-
ditions to isolate the effect of live coding from the estab-
lished benefits of debuggers and continuous compilation.

10https://github.com/isaacs/sax-js
11Sprint 24

https://github.com/isaacs/sax-js
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Figure 6.4: Our continuous compilation plugin was avail-
able in both conditions. It shows error indicators next to
the line number and indicates the position of the error in
the line. Clicking the error indicator reveals a textual er-
ror description as shown here. Figure from [Krämer et al.,
2014].

To provide a debugger, we installed node-inspector12, aParticipants could
use the well-known
Chrome debugger.

graphical debugger for Node.js applications. The debug-
ger is mostly identical to the widely used debugger in the
Chrome browser. We provided shortcuts that allowed par-
ticipants to start the debugger without using the command
line.

Saff et al. [2003] reported that continuous compilation (forWe created an
extension for

Brackets to provide
continuous

compilation.

scripting languages this is equivalent to syntax checking
or static error checking) increases the developers’ perfor-
mance. Live coding always implements continuous com-
pilation as a side effect. Brackets includes JSLint, a style
and syntax checker for JavaScript, to provide continuous
compilation, but it is only invoked on file save and not con-
tinuously. Hence, we developed a continuous compilation
extension for Brackets, that runs JSLint after every change
and shows errors inline in the source code (see Figure 6.4).
This extension was available in both conditions. It was re-
leased as an open-source project alongside METIS.

We created templates as a starting point for every task.We provided
templates as starting
points including calls
to the methods to be

implemented to
enable live coding.

They included references to all required libraries and a def-
inition of the method participants needed to implement.
The template included calls to this method and documenta-
tion about the expected return value for these invocations,
to allow participants to test whether or not their code was
correct. Participants were allowed to use any external re-
source they found useful, e.g., code snippets from the web.

12https://github.com/node-inspector/node-inspector

https://github.com/node-inspector/node-inspector
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They could also use third-party libraries they found online
except for replacements for sax-js in Task 1.

During the study, participants were filmed and their screen We recorded
time-stamped
revisions of the code
and videos of
participants’ screens.

was recorded. We also stored time-stamped revisions of the
code after every change (on a character level) to the source
code. There was no time limit to complete the tasks but
participants could stop working on a task at any point. If
they took a considerable amount of time without narrow-
ing down a solution, the experimenter would ask the par-
ticipant whether they want to stop. Participants received
25e in compensation for their expenditure of time.

Results

When we recruited participants, we posted an online We recruited
students with prior
experience in
JavaScript.

JavaScript self-assessment to allow developers to test
whether or not they had the necessary experience to solve
the tasks in our study successfully. However, we did not
check if the participants completed this self-assessment or
how they scored, accordingly, the study was open for ev-
eryone. Since overly huge differences in the developers’
experience have been shown to potentially mask effects be-
tween conditions [R. Brooks, 1980; Sackman et al., 1968], we
decided to remove outliers that had severe problems solv-
ing the task. After the outlier removal, we analyzed data
from 10 participants (1 female, 9 males). All participants
were students of computer science. They reported to have
an average of 13.4 years (SD = 9.23) experience program-
ming and an average of 1.25 years (SD = 5.23) experience
programming with JavaScript. Participants engaged in pro-
gramming for 13.0 hours (SD = 13.0) per week.

We first tested Hypothesis 1 and compared the average to- We annotated the
introduction and fix of
each bug in the
time-stamped
version history of
each trial.

tal fix time of bugs, i.e., the total time between the introduc-
tion of a bug and its fix, between both conditions. One re-
searcher analyzed the introduction and fixing of each bug
in the time-stamped version history of each participant’s
solution. We annotated 205 bugs in all trials.
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Figure 6.5: The total fix time decreases significantly in the
experimental condition in all tasks.

Any change to the source code that led to erroneous behav-We used a heuristic
to not count planned

modifications as
bugs.

ior in the context of the current source code version was
counted as a bug. This potentially includes false positives:
During planned modifications, the source code will likely
be erroneous for a short time. To compensate for this error,
we removed bugs that were fixed within 30 seconds after
their introduction, unless unrelated code was written be-
tween the introduction of the bug and its correction. Again,
this heuristic is not perfect and might filter out actual bugs
that happened to be fixed within 30 seconds. As a result,
the measured average total fix time will increase. Because
we expect shorter total fix times in the experimental con-
dition, where participants had live updating information
available to identify bugs, the filtering mechanism effec-
tively benefits the control condition.

To compare the average bug fixing time, we used a mixedAverage total fix time
decreased when

using live coding.
linear model that included task, condition, and their inter-
action as fixed factors and the allocation of participants to
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conditions as a random factor. We found a significant de-
crease of the average total fix time in the experimental con-
dition (see Figure 6.5).

Task: F (2, 197.1) = 2.635 p = 0.074

Condition: F (1, 9.124) = 6.941 p = 0.027

Interaction: F (2, 197.1) = 2.025 p = 0.135

This result confirms Hypothesis 1 and shows that develop-
ers fix bugs significantly faster when using live coding.

We verified that the number of bugs per participant The number of bugs
per trial was similar
in both conditions.

was similar in both conditions using a repeated-measures
ANOVA with the task as within-groups factor and the con-
dition as a between-groups factor. No effect of either con-
dition was found. The effect of task is very close to being
significant, but since the tasks are not designed to be simi-
lar, this result is not surprising.

Task: F (2, 22) = 3.429 p = 0.051

Condition: F (1, 24) = 1.826 p = 0.189

Interaction: F (2, 22) = 0.541 p = 0.590

Next, we tested Hypothesis 2: We expected that decreasing No effect of condition
on task completion
time was found.

the average total fix time would also result in a decreased
task completion time. Using an ANOVA to compare the
task completion times between the different conditions (see
Figure 6.6), we found no significant effect of the condition
on the task completion time. Hence, we cannot confirm Hy-
pothesis 2.

Task: F (2, 16) = 12.11 p = 0.006

Condition: F (1, 8) = 2.794 p = 0.133

Interaction: F (2, 16) = 0.162 p = 0.851

Lastly, we tested if developers would adapt a different Condition had a
significant influence
on the distribution of
edit activity over
time.

strategy in the experimental condition. More specifically,
we suspected that developers working in a live coding en-
vironment would switch between creating new code and
correcting code more frequently, and that phases in which
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Figure 6.6: We found no significant decrease of task com-
pletion time in the experimental condition. We assume that
this is caused by a relatively low sample size in our study.

code correction is performed are more homogeneously dis-
tributed over the course of the trial. To compare the tem-
poral distribution of edits during the trial between condi-
tions, we used a Kolmogorov-Smirnov test. We found that
these distributions differ significantly between conditions
(D = 0.05, p < 0.001). This confirms Hypothesis 3.

Questionnaire Results

We asked participants in the live coding condition to fillNo major usability
flaws in METIS were

reported.
out a questionnaire after the trial, to gather informal feed-
back from participants. The questionnaire included a Sys-
tem Usability Scale test to confirm that no major usability
flaws confounded the results of our study. METIS scored
81.4 on average (SD = 10.7) on this scale, which is an ex-
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cellent result, according to the interpretation of the System
Usability Scale presented by Bangor et al. [2008].

All but one participants agreed or strongly agreed that they Participants state
that working live
gives them more
confidence in their
code.

found live coding helpful for code understanding. Every-
one agreed that working with the live coding environment
gave them more confidence that their code is correct. For
each task, participants using METIS agreed that this tool
helped them to solve the task.

Discussion

The analysis of our study confirms our first hypothesis: De- Shorter total fix times
did not result in a
decrease of task
completion time.

velopers fix bugs faster when using live coding compared
to a traditional development environment. As a result of
this effect, we expected task completion times do decrease
in the experimental condition as well (Hypothesis 2). How-
ever, we could not confirm this statistically.

One reason for being able to confirm Hypothesis 1 but not Our results could be
influenced by a small
sample size.

Hypothesis 2 could be the statistical methodology: When
testing Hypothesis 1, the units of analysis were the anno-
tated bugs, allowing us to work with 205 samples. In con-
trast, when testing Hypothesis 2, the units of analysis were
participants, hence, we only worked with 10 samples. This
lower sample size causes small effect sizes, even if the effect
exists, to be difficult to detect using a parametric test. Small
sample sizes also cause inter-subject differences to be more
likely to overshadow underlying effects. Our data suggests
that this is a likely explanation for the non-significant re-
sults: The mean task completion time of each task is lower
in the experimental condition than in the control condition,
however, the standard deviations are in the same order of
magnitude as the means (see Figure 6.6).

In the experimental condition we found that edits by devel- Developers used two
different strategies.opers are more evenly distributed over time compared to

the control condition (Hypothesis 3). This again indicates a
change in the developers’ strategies. We qualitatively could
differentiate two strategies that participants chose to solve
the tasks:
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A
B

Figure 6.7: Each graph shows the edit activity of a developer over time. Developer
A uses the sequential strategy, i.e., in the first phase many edit activities occur,
while in the second phase long pauses between edits indicate debugging phases.
Developer B uses the interleaved strategy with a more homogenous distribution of
edits over time. Figure Source: [Krämer et al., 2014]

Sequential Strategy Participants using the sequential
strategy started by implementing the complete appli-
cation and then tried to fix all bugs in one debugging
session.

Interleaved Strategy Participants using the interleaved
strategy tested and verified each incremental change
to keep the source code correct throughout the whole
development process. This strategy corresponds to
performing numerous, short edit-test-edit cycles.

Figure 6.7 shows examples for both strategies from ourWhen using the
interleaved strategy,

edit activities are
evenly spread over

time.

study. Developer A, who is at the top, uses the sequen-
tial strategy and two phases can be visually discriminated:
In the first phase, pauses between edits are short because
the developer hardly ever stopped creating new code. At
the same time, the length of his source file is monotonically
increasing. In the second phase, edits only happen in short
bursts, because the developer mostly works with the de-
bugger to identify causes for bugs that he or she then fixes
in short edit phases. For developer B, who is at the bottom,
no phases can be discriminated: He or she uses the inter-
leaved strategy and edits are uniformly spread over time.

Which strategy developers adopt depends on the task andDevelopers pick
strategies depending

on task and
condition.

the condition. All participants in both conditions adopted
the interleaved strategy when working on the first task.
When working on the second and third task, all but one
(two in the third task) participants used the sequential strat-
egy in the control condition, while all participants in the ex-
perimental condition adopted the interleaved strategy. We
assume that the first task was particularly easy to split up
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into smaller parts that could be tested individually, and
therefore promoted performing multiple edit-test-edit cy-
cles.

To be able to understand the effect of the different strate- In some tasks
adopting the
interleaved strategy,
which live coding
encourages, can
reduce task
completion time.

gies, we re-ran our previous analysis of task completion
times and included the strategy used as a separate factor.
To exclude the first task, in which all developers used the
interleaved strategy, we performed separate analyses for
each task. For the second task, we found a significant re-
duction in task completion times in the experimental con-
dition and for the interleaved strategy.

Condition: F (1, 6) = 13.19 p = 0.01

Strategy: F (1, 6) = 7.41 p = 0.03

No significant effects were found for the third task. We con-
clude that adopting the interleaved strategy can improve
completion times for certain tasks, even when performing
manual edit-test-edit cycles. In summary, live coding envi-
ronments encourage the adoption of the interleaved strat-
egy.

6.2.3 Limitations and Future Work

We presented a first evaluation of the effect live coding en- Developers behavior
might change further
when learning how to
use live coding over
a longer timespan.

vironments have on the coding strategies developers ex-
hibit. Our study is only a first step towards the perfect
understanding how developers utilize these environments,
though. A longer exposure to a live coding system could re-
sult in developers learning how to incorporate the tool into
their workflow best. For future work, we propose to study
developers using a live coding system for an extended pe-
riod of time, ideally for their usual daily programming
tasks.

The development of live coding environments also leaves
several open questions for future work. METIS is a pro-
totype of a live coding environment that was developed
specifically to allow us to run the study described above.
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Figure 6.8: Xcode playgrounds combine a single line of runtime information in the
right column with optional bigger visualizations that are presented inline with the
source code.

Our design aimed to visualize all runtime information thatFuture work is
needed to further

improve the design
and implementation
of live coding tools.

we can capture. This design is useful to explore the fun-
damental effects a live coding environment has on a devel-
oper’s work habits. However, we found several limitations
both of the interface design of METIS and of the practical
applicability of our implementation of live coding. We will
discuss both of these problems in the following section.

Design Limitations

To allow for a natural mapping between the source codeOne line of
information per code

line impedes the
visualization of

complex objects.

and the information visualized in METIS, we presented no
more than one line of runtime information per line of code.
This impedes the effective visualization of complex objects,
such as the HTML source of a website or a complex object.
More effective visualizations are also required for applica-
tions generating graphical output.

The space limitation on information is also problematicOur visualization did
not handle chains of
method calls in one

line.

for chains of mutating functions. For example, the line
arr.reverse().push(5) reverses the array arr and
then appends the value 5. Both methods work in-place, i.e.,
the result of the expression is stored in arr. METIS would
show no information for this line, because it is unclear if
the user is interested in the value of arr, the return value
of arr.reverse(), or in the result of the complete expres-
sion. In our study, developers often added additional calls
to console.log, to output the information they required.
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Figure 6.9: We proposed a three-column design, in which
the right column can be used for detailed visualizations of
runtime data. In this screenshot, the leftmost column that
contains the source code is not shown. The central column
shows one line of runtime information for an HTTP GET
request that returns the complete HTML source code of a
website. A user configured a widget to be displayed in the
third column that renders a realistic preview of the HTML
code. Figure Source: [Wolf, 2014]

In the future, we propose to allow users to open visualiza- Dedicated
visualizations for
complex runtime
information can be
opened on demand.

tions that extend beyond a single line for specific runtime
information. One approach to solve this problem is imple-
mented in Xcode playgrounds feature13: For every value
displayed next to the source code, a developer can open
a larger visualization area that is inserted inline below the
corresponding line of code (see Figure 6.8). The downside
of this approach is that the opened visualizations disrupt
the source code. This might impact its readability because
it alters the code’s visual gestalt.

We explored a different approach to provide richer visu- We explored a
three-column design
with one column
being dedicated for
on-demand
visualizations of
complex runtime
information.

alizations for individual lines of code on demand [Wolf,
2014]. We propose to use a probe metaphor that allows the
user to attach a probe to a specific variable or line of code.
For this purpose, we introduce a third area on the right side
of METIS. The user can select individual values in the cen-
tral column, which shows the current information visual-
ization, to open them in a larger visualization area in the
new column (see Figure 6.9). These larger visualizations
are highly customizable to suit the user’s needs: He or she

13https://developer.apple.com/swift/blog/?id=24

https://developer.apple.com/swift/blog/?id=24
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can choose between different visualizations, e.g., an array
of numbers could be visualized as a table or as a diagram. It
is also possible to apply transformations to fully customize
the visualization, e.g., using the map function to transform
an array of objects into an array of string representations of
these objects. A thorough evaluation of this design is left
for future work.

Another visualization problem we found when analyzingFor some coding
activities automatic

updates were
disturbing.

METIS was, that users felt distracted by the continuous up-
dates when working on a conceptually challenging chunk
of code. The obvious solution is to allow developers to
turn off live updates when required. However, more ex-
periments are needed to analyze if live coding can still pro-
mote the more effective interleaved strategy when it is not
activated constantly.

METIS does not offer any means to provide input for theLive coding
environments need
to provide input the

application to
exercise a relevant

code path.

application under development. As discussed before, the
backend could technically be extended to route the input
and output streams of the application under development
to the client. It is infeasible, however, to have the user re-
peatedly provide the necessary input to exercise a certain
point in the source code. For future work, we propose two
approaches to solve this problem:

1. If test cases for the software exist, test cases can be
used to exercise specific portions of the source code.
By using runtime analysis, a test that exercises the
part of the source code that is currently being edited
can be automatically selected [Kiel, 2009]. This ap-
proach is particularly promising, if a test-first devel-
opment strategy is already applied. If multiple tests
exist to describe multiple requirements for the same
part of the source code, the interface could even en-
able developers to experiment with various inputs.
The downside of this approach is that it requires de-
velopers to provide the execution context for their
code manually in the form of a test. This approach
is similar to several existing research projects, which
we have already discussed in Section 6.1. Automated
testing tools that generate a test harness for software
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automatically [Fröhlich et al., 2000] could help reduc-
ing the required user interaction.

2. The live coding tool could allow the user to provide
input to the application manually and store this in-
put to recreate it for future executions of the code.
This approach is particularly suitable for applica-
tions with a user interface of some kind [Burg et al.,
2013]. To combine this approach with the previous
one, the manually performed test of the application
could even be stored in the form of a unit test. In
this case, the system would provide a programming-
by-demonstration [Cypher, 1993] interface for unit
tests. This idea was implemented prototypically in
Tanja Ulmen’s Bachelor’s thesis [Ulmen, 2014] and ul-
timately inspired the design of VESTA, which we have
discussed elaborately in Chapter 4.

Technical Limitations

An application being developed in a live coding environ- Our backend
impeded
performance and
was not sandboxed
in a way to prevent
accidental resource
access.

ment not only requires input for every re-execution but
also resources, i.e., system memory or files on a hard drive.
Accessing these resources repeatedly can yield unexpected
side effects, e.g., a developer might accidentally delete
files while working with APIs for file access. Similarly, if
the application is doing memory or processing intensive
calculations, a developer might experience severe perfor-
mance issues when the application is re-executed after ev-
ery keystroke. These issues might be addressed with sand-
boxing and optimization of re-executions on the level of
JavaScript’s just-in-time compiler. In the next section, we
are going to present an alternative solution based on an in-
teraction design that allows to selectively perform live cod-
ing for small code fragments.



138 6 Live Coding

Figure 6.10: Codepen.io is an online experimentation en-
vironment for HTML, CSS, and JavaScript. After every
change to the code on top, the output below is automati-
cally reloaded.

6.3 Fiddlets: Live Coding for Small Code
Fragments

Frequent re-executions of an entire application are oftenWe propose to use
live coding for small
code fragments as

needed.

technically impracticable. Hence, we propose to only ap-
ply live coding to small code fragments that contain the
currently edited line. This line should be executed in a con-
text that is similar to its actual context when the complete
application is executed.

Currently, developers can execute small code fragmentsOnline
experimentation tools

allow tinkering with
small code fragments
but are disconnected

from the IDE.

using online experimentation environments, such as jsfid-
dle14, jsbin15, or codepen16 (see Figure 6.10). While the
various experimentation environments differ slightly, they
still share these fundamental properties: They allow to edit
HTML, JavaScript, and CSS files for a single web site. The
output is shown next to the code editors and can either
be refreshed manually or automatically after each change.

14http://jsfiddle.net
15http://jsbin.com
16http://codepen.io

http://jsfiddle.net
http://jsfiddle.net
http://jsbin.com
http://codepen.io
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Typically, inspection of runtime information is not possi-
ble, except for manually logging intermediate results to a
console. The biggest problem of experimentation environ-
ments is that the user needs to set them up manually. This
involves implementing a context for the part of code that
users want to experiment with. Users can either create that
context from scratch or by selectively copying code frag-
ments from the source application. In practice, these on-
line tools are used primarily for communication and shar-
ing code, e.g., a solution to a specific problem [Squire et al.,
2015].

An alternative tool for experimenting with a source code in Importing all classes
of the software under
development does
not provide enough
context for
experimentation.

real time is a Read-Eval-Print-Loop (REPL). This tool allow
developers to enter a line of code and execute this line im-
mediately, similar to a text chat in which the environment
answers with the execution result of the executed line. In
its most basic form, it suffers from the same problem as
online experimentation environments, i.e., the user needs
to set up a context manually for running the code he or
she is interested in. To mitigate this problem, some tools
load all classes that are part of the application, hence, the
user can access the existing code. This is implemented, for
example, in the development console of Ruby on Rails17.
While this is useful sometimes, it still leaves several prob-
lems open: The imported classes still need to be initialized
manually, which is especially hard if parts of the applica-
tion are supposed to be set up by the system when the ap-
plication launches. The code that users want to edit live
will often be located in one of the imported classes, how-
ever, those are only loaded but cannot be edited from the
REPL. Further, the code under development can be located
in a block that is executed asynchronously, in response to
an external event, e.g., a HTTP request. In consequence,
actually exercising the relevant code path can still be chal-
lenging in a REPL or live coding environment.

17http://rubyonrails.org

http://rubyonrails.org
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;["12:00:00,32.68ºC,sky is clear\n","15:00:00,32.26ºC,sky is clear\n","18:00:00,29.7ºC,few clouds\n"]

  "12:00:00,32.68ºC,sky is clear\n",
  "15:00:00,32.26ºC,sky is clear\n",
  "18:00:00,29.7ºC,few clouds\n"   "time,temperature,description\n",

  "18:00:00,29.7ºC,few clouds\n"

0
2

Figure 6.11: Fiddlets shows an inline editor for the live execution of a part of the
source code. In this screenshot, the developer wants to tweak the parameters for
the splice function in line 23. The context for this line inferred by Fiddlets is shown
at the top of the inline editor. The bottom half of the inline editor is a custom
visualization for the output of the splice function. Figure Source: [Lewandowski,
2015]

6.3.1 Design and Implementation

We propose to moderate the problems of online experimen-Fiddlets provide a
realistic context for

working on a line of
code live.

tation environments and REPLs by providing a potential
context for a part of the source code automatically. Our
prototypical implementation of this idea is called Fiddlets
[Lewandowski, 2015]. Like METIS, it is implemented as a
plugin for Brackets. Fiddlets are inline editors that can be
invoked for any line of source code, called the source line.
A Fiddlet allows to experiment with this line of code in an
live inline editor that is pre-populated with a realistic con-
text for the source line.

An example of a Fiddlet is shown in Figure 6.11. InThe context
suggested by

Fiddlets can be
customized by the

developer.

this example, a developer is interested in tweaking the
parameters for the splice function in line 23. The Fid-
dlet has inferred that the context for this line needs to in-
clude the variables weatherInfoCSV and csvHeader.
These variables are copied over to the context of the source
line, which is shown in the top part of the Fiddlet. The
variables are initialized with values that are realistic and
could occur in an actual execution of the program. For
the weatherInfoCSV variable, multiple possible initial-
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izations are available and the user can switch between
them. The context can also be manually edited by the de-
veloper. The bottom half of the Fiddlets shows the output
of the source line, using a visualization that is tailored to
the splice function. If no function-specific visualization is
available, Fiddlets shows the return value of the function
call.

The design of Fiddlets is inspired by Codelets [Oney et Fiddlets are inspired
by Codelets.al., 2012a]. Codelets are inline editors that allow the cus-

tomization of inserted code snippets. Creators of snippets
can completely customize the editor provided by Codelets
to support the user in understanding and using the snip-
pet. They were found to greatly improve the usefulness of
snippets compared to the same snippets being available as
part of an API documentation. Using Codelets, developers
could solve certain tasks involving a set of snippets signifi-
cantly faster than without it.

The visualization used in Fiddlets is also custom designed Fiddlets uses
dedicated
visualizations
depending on the
function being edited.

for the specific function being edited. In contrast to
Codelets, though, this function is executed live in a context
that is similar to its context in the actual application. This
allows Fiddlets to be used not only for creating new code
but also for changing, correcting, and finally understand-
ing existing code.

To create the context for the source line, two techniques are
used:

1. Fiddlets use static analysis to set up the context for
the source line if possible. The static analysis algo-
rithm first identifies all variables used in the source
line and then adds them to a variable list. For each
of these variables, the static analyzer searches all us-
ages of the variable before the source line that change
it or initialize it. If the variable is initialized from a
literal, this initialization is copied to the context and
the variable is removed from the variable list. If the
variable is initialized from an expression, the analyzer
adds all variables in this expression to the variable
list and searches initializations for these variables as
well. While this static analysis method seems to be re-
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source intensive, it is limited to search in the scope of
the source line and hence only works in a rather small
part of the source code.

2. If no initialization from a literal was found for a vari-
able, Fiddlets searches for values of the variable in
runtime traces. A runtime trace can store the values of
each variable at any point of the execution (for more
details on runtime traces and their uses in software
development environments see Chapter 4). Fiddlets
uses runtime traces both from manual executions per-
formed by the developer and from unit tests.

Fiddlets show all possible initializations for a variable it hasDevelopers can pick
different possible
initializations for

each variable.

found and allows users to choose between them. This en-
ables testing the behavior of the source line in various sce-
narios.

6.3.2 Evaluation

In the evaluation of Fiddlets, we wanted to find out if the
significantly reduced live execution capabilities are still suf-
ficient enough to provide a benefit to developers. We ex-
plored two different hypotheses:

1. Developers will replace manual edit-test-edit cycles
with usage of Fiddlets.

2. Developers can solve implementation and bug-fixing
tasks faster when using Fiddlets than when perform-
ing manual edit-test-edit cycles.

Setup

To explore these hypotheses, we carried out a between-We carried out a
between-groups

study with five tasks.
groups study to compare developers using either Fiddlets
or an unmodified version of Brackets. Participants had to
solve five tasks, all of which required an implementation or
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change of single line of code using a given function. For ex-
ample, participants had to provide the parameter for a reg-
ular expression that was required in the code, or they had
to change the parameters of array manipulation functions
such as split or splice. All tasks demanded the understand-
ing of both, how the function being used works and with
which values it is used. We created the tasks by changing
the source code of mustache.js18, a widely-used JavaScript
templating engine. For example, we deleted a line that the
participants needed to implement, or we introduced a bug
into a line.

For the purpose of our study, we created a prototype of Fid- The Fiddlets
prototype used a
mockup of the
proposed runtime
analysis.

dlets that supported all functions used in our study. The
static analysis method to find variable initializations was
implemented completely, but the runtime analysis tech-
nique was mocked up by reading runtime information
from pre-recorded traces. A complete description of all in-
dividual Fiddlets and tasks is included in the Master’s the-
sis by Dennis Lewandowski [2015].

Results

We recruited 14 participants (12 males, 2 female) for our We removed two
participants as
outliers.

study, two of which were removed as outliers after the
study. One outlier (in the Fiddlets condition) only com-
pleted one of five tasks successfully, the other outlier (from
the control condition) had unusually long task completion
times (more than twice as long than the group average in
two tasks). We believe the outliers were indicative of a huge
variance in JavaScript experience among participants. For
the remainder of this section, all presented results exclude
the outliers.

All participants were students, except for one IT consultant. Participants in the
control condition
were more
experienced with
JavaScript.

They were 26.5 years old on average (SD = 8.856). Partic-
ipants reported to be experienced with JavaScript for 3.8
years on average (SD = 3.6), with responses ranging from
1 year to 10 years. Plotting JavaScript experience by con-
dition (see Figure 6.12) reveals that by randomizing partici-

18https://mustache.github.io/

https://mustache.github.io/
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Figure 6.12: By randomizing participant to condition as-
signment we ended up with participants in the control con-
dition being significantly more experienced than those in
the Fiddlets condition.

pants to condition assignments we ended up having partic-
ipants in the control condition that were substantially more
experienced with JavaScript than those in the Fiddlets con-
dition.

To analyze hypothesis 1, we used two metrics to charac-Participants opened
a median of five

Fiddlets during each
task.

terize the adoption of Fiddlets: The number of times par-
ticipants invoked Fiddlets per task, and the percentage of
the total task completion time during which each Fiddlet
was opened. The median count of Fiddlets invocations per
task was 5, with a maximum of 45. Fiddlets remained open
for an average of 21.7% (SD = 15.8%) of the task comple-
tion time. The Fiddlet that remained open for the longest
was open for an average of 52.4% (SD = 27.7%) of the task
completion time (see Figure 6.13). Half of the participants
had a Fiddlet open for over 90% of the task completion time
at least for one task.
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Figure 6.13: The figure shows the percentage of time, rel-
ative to the total task completion time, a Fiddlet remained
open. The upper and lower lines indicate the average max-
imum and minimum values, the orange center line is the
total average.

To analyze hypothesis 2, we compared task completion Participants in the
control condition tend
to solve tasks faster.

times (see Figure 6.14) of participants solving each task
correctly using a repeated-measures ANOVA, modeling
task as a within-groups factor and condition as a between-
groups factor. We found a significant effect of task and a
nearly significant effect of condition.

Task: F (4, 34.26) = 6.67 p < 0.001

Condition: F (1, 11.6) = 4.39 p = 0.059

Interaction: F (4, 34.26) = 0.68 p = 0.609

Participants in the control condition tended to be faster When using one task
for calibration,
participants in the
Fiddlets condition
tend to be faster.

than those in the Fiddlets condition. Inspecting the data
reveals that only for Task 5 the task completion times are
substantially different, for all other tasks 95% confidence
intervals overlap. In a second analysis, we tried to compen-
sate the differences in JavaScript experience by using Task
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Figure 6.14: Task completion time was higher in the ex-
perimental condition (E) than in the control condition (C).
When calibrating for inter-subject differences using Task 5
as a calibration task, the effect reverses.

5, in which we previously found the most striking differ-
ence, as a calibration task. More precisely, we calculated a
correction factor Cexp = TCT5/Avg(TCT5) for each partici-
pant, where TCT5 is the participant’s task completion time
in Task 5 and Avg(TCT5) is the average task completion
time in Task 5 for all participants. We then scaled the task
completion time for all other tasks by dividing it by the cor-
rection factor. Using the scaled task completion times, we
again found a nearly significant difference between condi-
tions and lower corrected task completion times in the Fid-
dlets condition by a factor of 1.8.

Task: F (3, 19.82) = 1.30 p = 0.301

Condition: F (1, 9.06) = 3.64 p = 0.089

Interaction: F (3, 19.82) = 0.27 p = 0.849
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Discussion

We found that participants quickly adopted Fiddlets for Fiddlets were used
as probes all around
the code.

their work. They not only used Fiddlets to use live cod-
ing in the line they needed to edit, but also as probes all
around the source code. Fiddlets allowed developers to ex-
plore the context of the line they needed to change in much
detail without using a debugger. Participants often kept the
Fiddlet for the line that needed to be changed open for an
extended period to regularly check if they had solved the
task correctly.

Inexperienced developers using Fiddlets could solve tasks Task completion time
of inexperienced
developers using
Fiddlets was on par
with experienced
developers without
Fiddlets.

as fast as experienced developers without Fiddlets. How-
ever, the analysis of task completion times was overshad-
owed by inter-subject differences. This was also appar-
ent when observing participants while working on their
tasks. Inexperienced developers often spent a considerable
amount of time understanding how the function they had
to use was useful to solve the task at all. In contrast, ex-
perienced developers spent most of their time finding the
context in which the function they needed to implement is
executed, i.e., how data that is passed in is formatted. Af-
ter that, they typically found the correct parameters of this
function quickly, even if it required some experimentation,
e.g., to find a correct regular expression. The first step is
vastly improved with Fiddlets, because Fiddlets automati-
cally find examples of data that is used in the application.
However, we observed that developers needed to get used
to trusting those examples.

Overall, this preliminary evaluation proved that Fiddlets is Our preliminary
results are
promising.

a promising interaction technique in order to provide live
coding without the need to execute the complete applica-
tion repeatedly. Generating a realistic context for the execu-
tion of a single line using a mix of static slicing and cached
runtime information seems to be an effective approach to
generate a complete context in many scenarios. Fiddlets
also carry over the key benefit of Codelets, i.e., they provide
a visualization tailored to the currently edited function call.
This allows Fiddlets to effectively communicate informa-
tion about complex functions. A complete implementation
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of Fiddlets runtime analysis and an evaluation with simi-
larly sampled participant groups are interesting directions
for future work.

6.4 Conclusion and Future Work

In this chapter, we first presented a study to investigateLive coding
encourages the

interleaved coding
strategy, which in
turn reduces task

completion time for
some tasks.

how developers change their coding behavior when they
work in a live coding environment. Our evaluation is
among the first to use a live coding system with rich out-
put of runtime information for a realistic coding task. We
were able to demonstrate that working in this environment
causes developers to adapt the interleaved coding strategy,
in which they frequently switch between editing and cor-
recting their application. This strategy caused developers
to fix bugs faster after their introduction, and it led to a de-
crease in task completion time for some tasks. More stud-
ies are needed to fully understand in which cases the inter-
leaved coding strategy is beneficial, whether or not it may
even be harmful for other tasks, and how to design an inter-
face that only encourages the strategy if it is suitable. Also,
studies on the long term impact of working in a live coding
environment are missing. Since live coding environments
present a huge amount of information to developers that
they are not used to, they may need some training time to
learn how to best utilize the presented information.

This problem can also be addressed by the interaction de-A challenge of live
coding tools is the

presentation of huge
amounts of runtime

information.

sign: To allow developers to cope with the large amount of
runtime information, live coding environments need new
types of interaction to quickly select which information to
view in more or less detail. We propose a probing metaphor
to set up more detailed visualizations for runtime informa-
tion quickly, though an evaluation of the various possible
designs is left for future work. Data visualization is also an
important field of research for the future improvement of
Fiddlets.

Live coding also poses technical challenges. We proposed
an interaction technique that circumvents the continuous
re-execution of the complete application and only applies
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live coding to small code fragments. Our first study re- Fiddlets show how
technical problems
can be circumvented
through interaction
design.

sults are promising: Developers quickly adopt Fiddlets as
a code inspection tool, and we found no downsides of con-
straining live coding to a small code fragment. However,
our study was flawed by an uneven distribution of pro-
gramming experience between the conditions. Therefore,
we want to replicate the study we have performed with
more participants to obtain more similarly sampled groups
in terms of JavaScript experience. Second, a more advanced
prototype of Fiddlets using a complete implementation of
runtime analysis is needed in order to test if the interaction
concepts work in a real development task.
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Chapter 7

Summary and Future
Work

“The trouble with programmers is that you can
never tell what a programmer is doing until it’s too

late.”

—Seymour Cray

Research on the human aspects of software development is This thesis aims to
understand how
interaction design
affects developers
cognitive processes.

a wide field that encompasses many facets: It encompasses
questions from cognitive psychology, which is essential for
understanding basic cognitive processes of software devel-
opers, questions of how to visualize information and how
to design effective interactions, and technical issues of how
to efficiently obtain useful information to support develop-
ers. All of these facets contribute to the goal of making soft-
ware development easier, faster, and more enjoyable for de-
velopers. None of these facets can stand on its own: Tech-
nical capabilities of a system can limit or enable potential
interaction designs. Knowledge of the cognitive processes
of software developers should impact on the design of new
software development tools on the one hand, but on the
other hand, a newly designed tool can change the cognitive
processes of software developers. In this thesis, we have
tried to understand these interdependencies in more detail.
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7.1 Summary and Contributions

In the first research project we presented, we compared aFor APIs, choosing
the level of

abstraction is one of
the most important

design decisions.

procedural and a declarative framework for the program-
matic authoring of animations in order to explore how their
effects on the developers’ behavior differ. The procedu-
ral framework allows developers to specify the properties
of animated elements for each frame. Using the declar-
ative framework, developers only specify keyframes, i.e.,
the properties of elements at certain points in time, and the
framework interpolates between these keyframes automat-
ically. Hence, the declarative framework provides a higher
level of abstraction, i.e., it encapsulates the interpolation of
properties. We found that the abstraction level is a cru-
cial aspect in the design of frameworks. For many tasks
the higher level of abstraction aligned well with the devel-
opers’ programming plans. This resulted in less need for
manual tests, a higher confidence of participants in their
own solutions, and lower task completion time. However,
providing a higher level of abstraction requires a careful
design. In our study, the declarative framework implicitly
created a timeline based on the keyframes created. Because
the concept of a timeline was not made visible through the
naming of functions, this behavior led to misconceptions of
developers that can more than mitigate the previously de-
scribed benefits. In this case, developers are actually faster
when using the procedural framework, that is, a lower level
of abstraction.

Documentation and unit tests can help to comprehend soft-Integrating
documentation and
unit test authoring

into the edit-test-edit
cycle can encourage

developers to write
more of these

documents.

ware, but developers often do not create these documents
sufficiently enough. We explored whether or not an im-
proved interaction design can encourage developers to cre-
ate these documents more. Our design is based on the idea
to inform the authoring tool with runtime information cap-
tured during manual tests of the application performed by
the developer. We propose to write documentation and
unit tests as part of the edit-test-edit cycle developers al-
ready perform, in other words, to write documentation and
unit tests for the part of the code a developer just tested
manually. This ensures that runtime information is avail-
able for the part of the code that is about to be documented,



7.1 Summary and Contributions 153

and moreover, it ensures that developers have a complete
and recent mental model of the code. We implemented this
idea in a prototype called VESTA. In evaluating VESTA,
we found that in order to encourage developers success-
fully it is crucial to provide near-term value for their cur-
rent activity as part of the authoring process. We success-
fully implemented this in VESTA’s documentation compo-
nent: Because it provided type information for parameters
in JavaScript, it was useful for developers to verify the cor-
rectness of code and to spot misconceptions of the return
values of framework functions easily.

In our next research project, we compared different call We proposed two
design guidelines for
call graph navigation
tools: proactive
information
visualization and
comprehensible
relevance.

graph navigation tools. Call graph navigation tools al-
low to navigate along method calls and aim to support
developers in comprehending the procedural structure of
object-oriented source code. We propose two design guide-
lines for the design of such tools: proactive information
visualization and comprehensible relevance. We created
Stacksplorer based on these design guidelines. It shows
the call graph neighborhood of the focus method, i.e., the
method currently being edited in the source code editor.
Stacksplorer implements proactive information visualiza-
tion and comprehensible relevance, because firstly it au-
tomatically updates when the developer opens a different
method in the source code editor, and secondly, all visi-
ble navigation targets are directly connected to the focus
method in the call graph. The downside of this design is
that it does not allow to navigate to methods further away
in the call graph efficiently. Blaze was designed to solve this
problem, while still implementing our design guidelines. It
shows one path through the call graph including the focus
method. Because plenty of such paths might exist, Blaze
allows developers to adjust the visualization to show the
path they are most interested in.

We show that, compared to developers using an IDE with- Tools implementing
these guidlines
cause developers to
change their
navigation behavior.

out any call graph navigation tool, Stacksplorer and Blaze
can substantially alter the developers’ navigation behavior
and encourage them to adopt a more effective navigation
strategy. This ultimately results in lower task completion
times for certain maintenance tasks. However, developers
using the Call Hierarchy, a widely used call graph naviga-
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tion tool in modern IDEs that does not implement either of
our guidelines, do not alter their navigation behavior. In
our study, they were still more successful than developers
without any tool but not faster. Navigation to distant tar-
gets in the call graph, which was possible using Blaze or
the Call Hierarchy, was rarely used. Hence, the additional
interaction required is unlikely to be worth it.

To be able to quantitatively describe and identify the differ-We developed a new
analysis technique to

detect and describe
changes in

navigation behavior.

ences in navigation behavior, we developed a novel anal-
ysis technique. Our method uses a set of predictive mod-
els that each represents a typical micro-navigation pattern,
e.g., navigation to another method of the same object, or
navigation to a recently visited method. For all models, we
calculate the accuracy with which they predict a recorded
navigation behavior. A vector combining all prediction ac-
curacies represents the navigation behavior. This represen-
tation allows for quantitative comparisons and enabled the
analysis described above. We show how our technique can
be used in concert with other metrics to precisely describe
how the navigation behavior changed between conditions.

In all projects summarized so far, we assumed that a de-Live coding tools
encourage

developers to adopt
a different coding
strategy that can

decrease task
completion time for

some tasks.

veloper comprehends source code by reading it. Frame-
works can support this process by providing good nam-
ing and abstractions, while call graph navigation supports
this process by allowing easier access to related parts of the
source code. To complement the reading-based compre-
hension of source code, developers regularly execute the
application using some exemplary input to observe its run-
time behavior, either by only looking at the program output
or by using a debugger. Live coding environments support
this strategy: After every change, they automatically ex-
ecute the application, analyze the execution, and provide
rich runtime information. We implemented METIS, a work-
ing, prototypical live coding environment, and found that
developers using METIS fix bugs they introduced in newly
written code faster. This is caused by a change in their cod-
ing strategy: Developers using live coding are more likely
to adopt the interleaved coding strategy, i.e., they quickly
alternate between writing new code and correcting existing
code. Adopting this strategy can decrease the task comple-
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tion time significantly for some tasks, even when develop-
ers do not use a live coding environment.

Live coding environments are also an example of develop- Fiddlets allows to
use live coding for
small code
fragments, while still
reflecting how the
code would behave
when executed as
part of the complete
application.

ment tools that need to be designed around technical limi-
tations. Re-executing the complete application as described
above leads to various technical problems. For example,
the runtime analysis implemented in METIS introduces a
substantial performance penalty, hence, it cannot be used to
develop larger applications live. While these technical chal-
lenges in the implementation of live coding environments
can likely be overcome in the future, we present Fiddlets,
an interaction design to circumvent these problems. Fid-
dlets provide live coding environments for small fragments
of source code as in-line editors, which are embedded into
the source code editor. A developer can invoke a Fiddlet
for a single line of source code. The Fiddlet automatically
generates a context for the line of code that simulates the
context in which the line would be executed during a com-
plete execution of the application. A preliminary evalua-
tion of Fiddlets shows that the benefits for developers are
comparable to those of METIS, a full live coding environ-
ment. In our study, novice developers using Fiddlets could
solve five programming tasks as fast as expert developers
not using it.

7.2 Future Work and Closing Remarks

Each research project presented in this thesis offers mani-
fold opportunities for future work that have been described
as part of the individual chapters before. We will not re-
peat the previously reported ideas here and instead focus
on how our research aligns with larger scale trends both in
current development tools as well as in future development
and research.

We are delighted to see that many of the interaction de- We found improved
call graph navigation
tools in more recent
IDEs.

sign concepts we have explored and proposed slowly make
their way into widely used development tools. For exam-
ple, newer versions of Apple’s Xcode IDE implemented an
assistant feature that implements proactive information vi-
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Figure 7.1: Newer versions of Xcode allow to show Assistant columns (middle and
right) next to the primary source code editor (left). They can be configured to show
source code related to the currently edited method, e.g., one of its callers or callees.

sualization (see Figure 7.1). The feature adds new editors
to the view, that show source code related to the currently
edited method in the primary editor and, like Stacksplorer
and Blaze, update when the user navigates in the primary
editor. For example, assistant editors can show one caller
or callee of the currently edited method. However, Apple’s
implementation only shows a single method. Hence, it is
unlikely to provide sufficient information scent to substan-
tially increase the discoverability of important related code.
We propose to use our analysis methods to quantify the ef-
fects of such interface design choices, and use the results to
iteratively improve the design of newly developed tools.

At the same time, the requirements for navigation toolsAnonymous
functions are

increasingly used
and add complexity

to the procedural
hierarchy of software.

change with recent advancements in programming lan-
guages and common patterns. For example, many mod-
ern languages implement lambda functions, i.e., anony-
mous functions that can be passed as arguments to other
functions. Lambda functions are not accessible using call
graph navigation, because they are not instance methods
of a class. Still, they contribute to the procedural struc-
ture of the application, and, hence, developers have to face
the problem of understanding their purpose in the applica-
tions. These new features in programming languages pose
new challenges and opportunities for the design of future
navigation tools. Further, little is known about the specific
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Figure 7.2: The Kahn Academy uses a live coding editor in
their programming courses. The output on the right side is
re-rendered after every change to the source code. Numeric
values can be adjusted interactively by dragging with the
mouse instead of typing.

cognitive models developers use to mentally comprehend
these constructs.

Another example for a development tool that is increas- Live coding is
increasingly used,
especially as
experimentation
environment.

ingly adopted in real-world development tools is live cod-
ing. Light Table1 is a newly developed live coding environ-
ment for web development. Xcode implements live cod-
ing in a feature called Playgrounds that allows develop-
ers to use live coding for a short source code snippet. It
is mainly built for ad-hoc experimentations. Our research
on live coding and the Playgrounds feature were released
around the same time and our prototype METIS is very sim-
ilar to Xcode Playgrounds. While Xcode Playgrounds al-
low to import classes used in the application a developer is
working on, these need to be instantiated and contextual-
ized with realistic parameters by the developer. With Fid-
dlets we proposed an interaction design that can simplify
this task and could substantially increase the usefulness of
Playgrounds.

Probably, the most active field adopting live coding is pro-
gramming education: Live coding editors are used in the
courses by the Kahn Academy2 (see Figure 7.2), the Start

1http://lighttable.com/
2https://www.khanacademy.org/computing/computer-

programming

http://lighttable.com/
https://www.khanacademy.org/computing/computer-programming
http://start-coding.de/
http://start-coding.de/
http://start-coding.de/
http://start-coding.de/
http://start-coding.de/
http://start-coding.de/
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Coding Initiative3, and many others. Research has alreadyAnalyzing the effect
of using live coding

to learn
programming is an

interesting future
research direction.

started to investigate the didactic effect of live coding, and
in the long term, we believe that this trend is interesting to
investigate in. Future research could explore which com-
prehension strategies programmers develop when they
learn programming right from the start using a live cod-
ing environment. Reasoning is often driven by prior ex-
perience, and the investigation of learning tools and com-
prehension strategies of learners could allow to control this
effect to some degree.

One of the hardest problems researchers have to face whenExtensible
development

environments can
support the research

about development
tools.

studying the comprehension process of developers, is to
control for inter-subject differences, e.g., due to different
prior experience. Deploying a tool into a real development
environment would allow the study of how a large number
of developers use the tool over an extended period of time
and how they learn to integrate the tool into their work-
flow. However, these studies are often impractical, because
the development effort to create a robust prototype is very
high, developers are often cautious about changes to their
working environment, and capturing data is difficult be-
cause the source code of real world projects is often a busi-
ness secret. In the future, we propose that development
tools could implement better support for researchers to de-
ploy prototype features. A plug-in architecture tailored
to the researcher’s needs should offer support for radical
interface changes (e.g., for drawing the overlays used in
Stacksplorer and Blaze, or the rich formatting embedded
into the source code editor we used in VESTA), it should
also provide an anonymized and centralized framework for
the collection of usage data, and it should implement sand-
boxing for plug-ins to ensure stability and security for cau-
tious developers. Many recent development tools, such as
Brackets4 or Atom5, provide a first step in this direction.

The research presented in this thesis focused entirely on
software developers. We believe that software developers
can be a window into the larger space of knowledge work-
ers, who face various cognitively demanding comprehen-Future research

should explore how
cognitive processes
of other knowledge

workers are
influenced by the

tools they use.

3http://start-coding.de/
4http://brackets.io/
5https://atom.io/

http://start-coding.de/
http://start-coding.de/
http://start-coding.de/
http://brackets.io/
https://atom.io/
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sion tasks. In the future, it would be interesting to inves-
tigate how our results translate to other domains. For ex-
ample, one interesting type of knowledge workers to in-
vestigate are literary scholars. Similar to developers, they
need to comprehend information that is spread across dif-
ferent resources. Future research might help to understand
how their use of resources and the conclusions they draw
changes depending on the tools they use. Another inter-
esting domain might be stock trading: Do the decisions
of stock traders change depending on the tools they use
to browse the information at their disposal? Similar ques-
tions can even arise for non-professionals: For example,
it would be interesting to explore how the perception of
movies changes when we offer novel non-linear navigation
tools based on the content of the movie [Pavel et al., 2015].

In all of these examples, a knowledge worker needs to com-
prehend some kind of media, such as source code, prose
text, numerical information, or a movie. A tool in these ex-
amples would support the comprehension of some struc-
tural aspect of the media, e.g., links between different tex-
tual resources, the relevance of specific performance indi-
cators, or the relationships between actors in a movie. We
could compare tools across different types of media by first
identifying the underlying structure of the specific kind of
media [Karrer, 2013] and then analyzing how tools facili-
tate browsing it. Using this approach, we hope to gener-
alize our findings about the interdependence of tools and
cognitive processes for various types of media.

We believe that understanding how tools not only support
cognitively demanding tasks but change how humans ap-
proach these tasks is a fascinating field of research in HCI
for years to come. The research presented in this thesis
aimed to contribute some insights into this topic.
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