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Figure 1. To improve the workflow of writing unit tests, Vesta offers test templates that are instantiated with runtime information.

ABSTRACT
Documentation and unit tests increase software maintain-
ability, but real world software projects rarely have adequate
coverage. We hypothesize that, in part, this is because
existing authoring tools require developers to adjust their
workflows significantly. To study whether improved inter-
action design could affect unit testing and documentation
practice, we created an authoring support tool called Vesta.
The main insight guiding Vesta’s interaction design is that
developers frequently manually test the software they are
building. We propose leveraging runtime information from
these manual executions. Because developers naturally exer-
cise the part of the code on which they are currently working,
this information will be highly relevant to appropriate docu-
mentation and testing tasks. In a complex coding task, nearly
all documentation created using Vesta was accurate, com-
pared to only 60% of documentation created without Vesta,
and Vesta was able to generate significant portions of all tests,
even those written manually by developers without Vesta.
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INTRODUCTION
Documentation and unit tests increase software maintain-
ability [19]. They describe expectations about a part of
the source code, e.g., a parameter is expected to always
have the documented type. Our goal is to support creating
documentation and unit tests in JavaScript. JavaScript is
dynamic: it uses dynamic and weak typing, polymorphic
call sites, and runtime type modifications [26]. Hence, few
expectations about a program are represented explicitly in
JavaScript code. This makes documentation and unit tests
especially valuable. However, creating them requires extra
effort, so they are often missing or out of date [16, 30].

To specify expectations about JavaScript programs, static and
dynamic analysis tools have been proposed. Static tools of-
ten focus on inferring type information [14, 23, 12]. They
usually require initial manual source code annotations pro-
vided through either a JavaScript dialect that syntactically al-
lows variables to have types [14, 23], or JSDoc-formatted [8]
documentation [12]. Even with these annotations, though,
JavaScript’s dynamic features make static analysis difficult
[26]. Dynamic tools can often suggest other expectations be-
yond types, and create corresponding unit tests [2, 22].

Despite the variety of powerful tools available, real-world
projects often lack documentation and unit tests [30]. We
believe one reason for this to be that existing tools require
developers to change their workflows, either to manually cre-
ate annotations, or to handle the setup and regular execution
of a dynamic analysis tool. Imposing these workflow require-
ments can impair flexibility, which is one of the most im-
portant reasons developers choose to use dynamic languages
[25]. To explore how an improved interaction design affects
the documentation and test authoring process, we created a
prototype tool called Vesta. It is comprised of two authoring
components, one for documentation and one for unit tests.
Our key idea is to leverage the fact that developers frequently
execute their program manually to verify their work – in one



Figure 2. Vesta’s documentation interface shows that a recorded type
conflicts with the documentation.

study [4], 80% of edit-test-edit cycles were shorter than 5
minutes. Vesta is a dynamic analysis tool that uses runtime
traces of these manual executions to suggest updates to docu-
mentation and unit tests. Because developers already perform
these manual executions, Vesta does not change their existing
workflow.

In the following section, we present design challenges re-
lated to leveraging traces from manual execution, and show
how Vesta’s interface is designed to address these challenges.
In evaluating our prototype, we learned that (a) nearly all
method documentation created with Vesta was completely ac-
curate compared to only 60% of documentation created with-
out Vesta, and (b) Vesta was able to generate all unit tests,
even those written manually by developers without access to
Vesta. Vesta also allowed developers to use the collected run-
time data for other tasks, e.g., locating bugs.

THE VESTA PROTOTYPE
To prototype the interaction we propose, we used a dynamic
analysis technique that only analyzes method parameters and
return values, i.e., it only supports authoring function docu-
mentation. We considered this small subset of documentation
to be useful for developers, while being reasonably efficient
to capture. As we explored the design of Vesta, we found that
working with information obtained only from runtime traces
of manual executions posed four design challenges: (1) Man-
ual executions rarely execute all possible code paths, causing
the information to be incomplete. (2) Information can only
be updated when the developer chooses to perform a man-
ual execution, potentially causing information to become out-
dated. (3) Many manual executions are performed while the
code is not yet working as expected, causing the information
to be incorrect. (4) Information gathered during executions
is impermanent – information that was correct at some point
is likely to change when code evolves.

We addressed the problems of incomplete and outdated in-
formation by designing the interaction with Vesta around cur-
rent development practice: Vesta encourages writing docu-
mentation and unit tests as part of the rapid edit-test-edit cy-
cles that developers already perform routinely [4]. Immedi-
ately after new code has been manually tested, Vesta suggests
updates to documentation and unit tests. Because the pur-
pose of a developer’s manual testing is to exercise the code
she is currently writing (and thus documenting), information

obtained by Vesta is likely relevant even though it might be
incomplete. Further, the developer has just performed the
manual execution Vesta analyzes, so the information is not
yet outdated.

After a new runtime trace is recorded, Vesta compares
information gathered during function invocations with the
documentation. If no documentation exists for a function,
Vesta inserts documentation for types of function parameters
and return values. Otherwise, Vesta checks if the values
recorded at runtime match the documented types and presents
type conflicts (Fig. 2). Developers can navigate to the call
site, which is useful when the conflict may constitute a bug.
They can also instruct Vesta to update the documentation
either by replacing existing type information, or by merging
existing and new type information to indicate polymorphism.

To support the user in assembling a test suite (a group of
unit tests), Vesta offers two test templates that can be instan-
tiated with information gathered at runtime. The first tem-
plate (Fig. 1) allows programmers to automatically recreate
one recorded invocation of a function and test that it returns
the recorded return value. Using this template, developers can
already achieve good test coverage by picking correct combi-
nations of parameter and return values from their edit-test-
edit cycles. The second template helps programmers create
test cases for common edge cases for parameters of a func-
tion, based on the parameter types stored in the documenta-
tion. This template is designed to encourage writing tests that
cover erroneous behavior. Because all templates require run-
time information, this workflow provides little benefit during
test-first development. This is a limitation common among all
test authoring systems that rely on program analysis. Users
can also write custom test cases using Vesta, using all fea-
tures of the Jasmine [1] unit test framework.

We address the problems of incorrect and impermanent in-
formation by applying design guidelines: Visualizations need
to be easy to parse, because a developer needs to spot in-
correct information quickly. At the same time, they should
not draw attention after every manual execution, since these
often occur during debugging phases that are already cogni-
tively demanding. Faced with impermanent information, de-
velopers need to be able to change or extend the information
quickly. To implement these guidelines, we build on previous
design ideas to combine visual representations of source code
with keyboard-based text editing [3, 17].

When documentation is not being edited, it is rendered in an
easy to parse, visually appealing non-code format (see Fig. 2).
For editing, Vesta switches to a JSDoc-formatted textual rep-
resentation as soon as the cursor is moved into the documen-
tation block. Cursor movement is identical to standard text
editors: the cursor can be positioned using either the arrow
keys or the mouse pointer.

To provide developers with a starting point for test organiza-
tion, Vesta maintains one associated test suite for every func-
tion. Vesta’s unit test interface adds visual elements to the
source code to provide an easy to parse overview of tests: A
separate area to the right of the source code shows one test



suite at a time. By default, this is the associated test suite for
the function that is currently being edited. Every test is shown
in a box that shows the test title and current failure status in
its header. The source code of each test can be collapsed to
view a concise list of test case names. As for documentation,
text-editor-like cursor navigation is available throughout the
interface.

Vesta is implemented as an extension for the Brackets editor
[13] and uses a modified version of Theseus [21] to record
runtime traces. The video figure shows a complete walk-
through of the interaction with Vesta.

EVALUATION: LAB STUDY
To learn about how developers use Vesta, we compared de-
velopers using Vesta with those using an unmodified version
of Brackets [13] in a lab study. We tested whether the quality
of documentation and unit tests produced by participants us-
ing Vesta is higher. Quality was assessed along the following
axes: (1) amount, accuracy, and completeness of documenta-
tion; (2) number of test cases; (3) number of test cases testing
failure cases; and (4) source code lines covered by all tests.

Setup
Participants implemented a web-based API to access menus
of restaurants on a college campus. The API had to provide
a list of restaurants, opening hours, menu languages, and
daily menus for the current week. To obtain the information,
developers had to fetch and parse the official websites listing
the menus. Participants had 6 hours to work on this task.
Having this large open-ended task gave us rich and eco-
logically valid qualitative results—though sometimes at the
expense of statistical significance in low-level quantitative
measures. If the task had been too simple, effects of a tool on
developer productivity could have been over-exaggerated [9].

We asked participants to write complete documentation and
a thorough test harness along with the code. Participants had
to use JSDoc [8] for documentation and Jasmine [1] for unit
tests. The task description included an introduction to JSDoc
and rules on the required accuracy for type information.

Participants had to use Node.js [31] and the libraries express
[15], lodash [29], and cheerio [24]. This restricted set of
libraries was chosen to give participants a helpful starting
point, and to reduce the variety in solutions to make com-
parison between participants more meaningful. All libraries,
required software, and a minimal project template were pre-
installed on identical 27-inch iMacs with screen recording.

Participants in the study were randomly assigned to one
of two conditions: In the treatment condition, participants
worked with Brackets and the Vesta extension; in the control
condition, participants worked with Brackets and the Func-
Docr [20] extension, which analyses the header of a function
to provide templates for all required @param and @return
statements. The features of FuncDocr match the documenta-
tion support in many IDEs.

Participants filled out a questionnaire about their current
documentation and unit testing practices before the trial.
Those in the Vesta condition also filled out a questionnaire

about Vesta after the trial. Two to four participants were
invited to each trial to work in parallel. They were allowed
to talk to each other to share implementation ideas and
help when problems arose. The study also included a lunch
break in which participants were allowed to talk. Allowing
communication made the setup more ecologically valid, as
during a regular work day interruptions from co-workers are
common for software developers [11]. The experimenter was
present as a silent observer at all times. Participants received
a 100AC gift certificate as compensation for their time.

Results
14 computer science students (two female) participated in our
study (average age: 24 years, SD: 2.6). One participant in the
control condition was excluded afterwards due to technical
problems during the trial. On average, participants reported
to have 3.0 years of experience with JavaScript (SD: 1.8), and
to spend 13.1 h/week programming (SD: 7.3).

Participants did not consistently report to be required to write
documentation (Mdn: 3)1 or unit tests (Mdn: 2) in their daily
work. Still, they reported to know what good tests should
look like (Mdn: 4). Despite strongly disagreeing that it is not
worth it to write tests (Mdn: 1) or documentation (Mdn: 1),
participants often skip writing tests (Mdn: 4) and documenta-
tion (Mdn: 4). Most agreed that they should write tests (Mdn:
4) and documentation (Mdn: 4) more often.

Documentation
We first analyzed the number of documentation lines created
per function. We found no significant difference between
conditions, i.e., the number of documentation lines was cor-
related roughly linearly with the number of functions in both
conditions. This result shows that most participants complied
to our requirement to write documentation as part of the task.
Variance in length of documentation blocks is mostly intro-
duced because the number of parameters and return values
that need to be documented differs for each function.

A type specification was considered accurate if it was syntac-
tically and semantically correct (i.e., conformed to the rules
in the task description). This metric favors Vesta, as a type
specification is always accurate unless it was edited manu-
ally in a way that impaired accuracy. This happened for one
participant who generalized type specifications at the end of
the study, introduced three errors, and time ran out before she
was able to check her changes using Vesta. More surprisingly,
38.9% (SD: 37.2%) of type specifications created in the con-
trol condition were not accurate, showing that Vesta solves a
real problem.

We considered a function completely documented if type
specifications were present for every parameter and the re-
turn value (if applicable), and a description was present for
the function and each parameter. The latter had to be added
manually in both conditions. In the control condition, 51.9%
(SD: 30.9% ) of functions were completely documented, vs.
68.4% (SD: 32.7%) in the Vesta condition. This difference
is encouraging, though not strongly statistically significant
(one-sided t-test p = 0.093, t(10.3) = 1.42).
15-point Likert scale, 1 - “strongly disagree”, 5 - “strongly agree”.



Unit Tests
Both groups wrote fewer tests than expected, with four of
six participants in the control condition and one in the Vesta
condition writing no tests at all (control: M: 1.50 tests, SD:
2.81, Vesta: M: 4.43 tests, SD: 3.31).

85% of all test cases tested the default behavior of a function,
i.e., they checked whether the function returned the correct
result when called with a correct parameter. In the Vesta con-
dition, these tests were exclusively authored using Vesta, and
all but one participant used the test suites Vesta associates
with each function. Only 2 participants (one in each condi-
tion) wrote at least one test checking the behavior in failure
cases, e.g., invalid requests or network failures. No partici-
pant tested every function.

Discussion
Documentation was more accurate and more complete when
authored with Vesta, and developers strongly agreed (Mdn:
5) that Vesta made writing documentation more enjoyable.
We observed that, despite the availability of dynamic typ-
ing, developers usually assume a fixed type. Type informa-
tion that is stored in the documentation without being a lan-
guage feature can represent the developer’s model accurately,
e.g., by allowing two alternative types to be specified at the
same time. The type information authored using Vesta is suf-
ficient to transition to more advanced analysis tools such as
Tern [12].

Qualitative observations indicate that Vesta’s interaction de-
sign is crucial for its success: (1) Developers often forgot
to update documentation when their code evolved. Vesta
reminded participants to update documentation, increasing
completeness and accuracy. In the control condition, some
participants wrote all documentation at the end of the trial,
which led to errors when documenting methods implemented
long ago. (2) Developers often neglected to either create any
documentation or to include all required parts. When us-
ing Vesta, developers regularly checked if Vesta generated
the correct types to verify their source code. On this occa-
sion, they opportunistically filled in descriptions, leading to
higher completeness. (3) Developers often had insufficient
knowledge about third party APIs. E.g., participants confused
whether an API method returned an array of strings or DOM
elements. In such cases, Vesta helped to create correct doc-
umentation and, additionally, prevented programming errors.
These observations show that Vesta’s interaction design en-
ables additional uses of runtime information beyond creating
documentation. Developers regularly identified bugs using
the information generated by Vesta.

Characterizing all developers, we found a striking under-
prioritization of unit test authoring. This was reported in
the pre-study questionnaire, and confirmed in the experiment:
Several participants in the control condition did not write a
single test, even though we asked to prioritize writing tests
for partial functionality over finishing the task. Prioritization
of authoring tests improved slightly when using Vesta.

All unit tests authored during our study – even those written
manually when Vesta was not available – could be generated

by only analyzing developer-initiated manual executions.
Developers appreciated the template-based assembly of
test suites, especially to test methods that require complex
parameters like HTML strings. We identified two reasons
why, regardless of these encouraging results, even in the
Vesta condition no sufficiently thorough test suites were
created: First, developers rarely tested for potential failures
when manually executing their application, yielding tests
suites that did not cover these cases either. Applying more
advanced test suggestion algorithms could address this. Sec-
ond, participants frequently found Vesta’s test organization
cumbersome, and thought they would write better tests with-
out it (Mdn: 4). A future iteration of Vesta’s interface should
use a more familiar organizational concept for test suites.

RELATED WORK
Rothermel et al. [27] presented an interaction similar to Vesta
to generate tests for spreadsheets. Users could mark cells
as correct, and the system determined relevant input cells to
generate a test case. Spreadsheets automatically update after
every change; in contrast, Vesta needs to rely on when and
what developers manually execute.

Previous tools used runtime traces of developers’ manual pro-
gram executions mostly to support debugging. These tools
allow, e.g., recreating failure states [5], retrospectively ana-
lyzing which sequence of method calls caused errors [18], or
observing which methods are called while the program is run-
ning [21]. In contrast to these debugging tools, Vesta provides
the most benefit with error-free test runs.

Many techniques to generate parts of documentation and unit
tests can be complemented by our interaction design and
could extend Vesta’s technical capabilities in the future. Ex-
isting tools using static analysis and symbolic execution for
static languages can describe, e.g., important function calls
in a part of the source code [28], the effect of a change [7],
or possible exceptions thrown by a function [6]. Daikon [10]
can detect multiple kinds of potential invariants, e.g., static
types or values, in a runtime trace. These can be used, e.g., to
generate suggestions for new unit tests [32].

SUMMARY AND FUTURE WORK
We presented an interaction for the creation of documenta-
tion and unit tests that is designed around current develop-
ment workflows. Our key idea is to provide updates to these
documents immediately after manual executions, which are
already performed regularly during development. We showed
that Vesta does improve the quality of documentation and unit
tests created. Documentation accuracy increased significantly
because maintaining type information allowed for automatic
type checking as an additional immediate benefit. In the fu-
ture, we plan to integrate existing static analysis tools into
Vesta, and use its recorded type data to bootstrap static anal-
ysis. Similarly, we plan to explore other test generation algo-
rithms with the hope of improving code coverage and quality
of authored test suites. Finally, to further strengthen the ex-
ternal validity of our results, we plan to conduct a field study.
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