
How Tools in IDEs Shape Developers’ Navigation Behavior

Jan-Peter Krämer, Thorsten Karrer, Joachim Kurz, Moritz Wittenhagen, Jan Borchers
RWTH Aachen University
52062 Aachen, Germany

{kraemer, karrer, kurz, wittenhagen, borchers}@cs.rwth-aachen.de

ABSTRACT
Understanding source code is crucial for successful software
maintenance, and navigating the call graph is especially help-
ful to understand source code [12]. We compared mainte-
nance performance across four different development envi-
ronments: an IDE without any call graph exploration tool, a
Call Hierarchy tool as found in Eclipse, and the tools Stacks-
plorer [7] and Blaze [11]. Using any of the call graph explo-
ration tools more developers could solve certain maintenance
tasks correctly. Only Stacksplorer and Blaze, however, were
also able to decrease task completion times, although the Call
Hierarchy offers access to a larger part of the call graph. To
investigate if this result was caused by a change in navigation
behavior between the tools, we used a set of predictive mod-
els to create formally comparable descriptions of program-
mer navigation. The results suggest that the decrease in task
completion times has been caused by Stacksplorer and Blaze
promoting call graph navigation more than the Call Hierarchy
tool.

Author Keywords
Development Tools / Toolkits / Programming Environments;
Analysis Methods

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation (e.g. HCI):
User Interfaces

INTRODUCTION
Software maintenance, the process of fixing bugs or perform-
ing other modifications after the software has been released,
accounts for up to 70% of the total expenses in a typical soft-
ware project [19]. Since it requires developers to modify the
source code without introducing side effects or otherwise in-
terfering with its structure, they need to gather knowledge
about the program. For example, they have to find out which
methods are responsible for a given feature, and how methods
rely on each other. Despite the efforts to support source code

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2013, April 27–May 2, 2013, Paris, France.
Copyright 2013 ACM 978-1-4503-1899-0/13/04...$15.00.

a) A call graph b) Call Hierarchy

c) Stacksplorer d) Blaze

Figure 1. a) An example call graph. Each node represents one method,
edges point to callees. b) With the light orange method being the focus
method the Call Hierarchy allows browsing either the medium green
or the dark blue subtree (including the focus method). c) Stacksplorer
shows the neighborhood of the focus method. d) Blaze shows one path
including the focus method (dark blue nodes); medium green nodes are
options for alternative paths.

comprehension with modern development environments, de-
velopers still consider comprehending source code one of
their biggest problems [14].

The process of navigating through source code has been
found to be especially important for developers to build up
their mental model of the application [20, 23]. This is partic-
ularly true for navigation along the call graph [12, 25]. The
call graph represents methods as nodes, and an edge from a to
b means that method a, the caller, calls method b, the callee.

The call graph for many real world software projects, how-
ever, is a complex structure that cannot easily be visualized
completely. Tools to support call graph exploration thus have
to restrict visualization to a subgraph. Most tools let the de-
veloper pick a focus method and only visualize subgraphs in-
cluding this focus method. The most widespread tool for call
graph exploration is the Call Hierarchy, which is, for exam-
ple, found in the Eclipse IDE1. The subgraph visualized in
the Call Hierarchy is a tree with its root at the focus method;
the developer can choose if this tree is built up in caller or
callee direction. We previously proposed two alternative tools
for call graph exploration that offer access to a smaller sub-
graph than the Call Hierarchy: In Stacksplorer [7], the visual-
ized subgraph is the direct neighborhood of the focus method.
1http://www.eclipse.org/

Session: Design for Developers CHI 2013: Changing Perspectives, Paris, France

3073

Blaze [11] visualizes a single path through the focus method.
The three different approaches are visualized in Figure 1.

In the first half of this paper, we show that developers using
Stacksplorer and Blaze are faster in solving certain mainte-
nance tasks than developers using the Call Hierarchy. This
result is unexpected because the Call Hierarchy facilitates ac-
cess to a superset of the methods visible in Stacksplorer or
Blaze. In the second half of this paper, we analyze if this re-
sult can be explained by changes in the navigation behavior
of developers caused by using the different tools. This is done
by describing developers’ navigation histories using a set of
seven quantifiable features, where each feature is determined
by calculating how well the navigation can be predicted by
a stereotypic navigation model. These descriptions are then
compared between the tools.

Thus, this paper makes the following contributions: (1) We
present a study comparing the three call graph exploration
techniques described above to an IDE without any dedicated
call graph navigation tool. (2) We introduce an analysis tech-
nique to describe navigation behavior based on predictive
models. (3) We apply this technique to offer possible ex-
planations for the performance differences between the call
graph exploration tools.

RELATED WORK

Navigation Strategies
Ko et al. [9] found that navigation accounted for 35% of the
time developers needed to perform tasks within a 500SLOC2

Java application using the Eclipse IDE. The powerful navi-
gation tools available in Eclipse were rarely used. Similar
results were found by Murphy et al. [16] when analyzing
Eclipse usage logs from 41 Java developers.

LaToza et al. [12] found that one of the most important ques-
tions developers ask are reachability questions, i.e., searches
for feasible control flow paths. They surveyed 460 profes-
sional software developers, who consistently reported those
questions were at least “somewhat hard” to answer and came
up ten times a day or more.

Previous studies [7, 9, 21] repeatedly describe strategies for
navigation in the call graph by a two-phase model. In the first
phase, developers search for an anchor point they consider
interesting. In the second phase, they explore different paths
starting from the anchor point until they found the relevant
location in the source code.

Lawrence et al. [15] carried over results from information for-
aging theory [18] to model how developers navigate. Each
link to a piece of source code has a certain scent that de-
termines how likely a developer will follow the link when
searching for specific information. The model incorporates
structural aspects of the source code as well as linguistic sim-
ilarity of source code to a bug report. Predictions from this
model were on par with predictions generated from historical
navigation data recorded from actual developers.

2SLOC: Non-comment, non-empty lines of source code

Navigation Tools
Recommender tools use models of navigation behavior to
constantly predict and show the methods the developer will
most likely navigate to in order to make them more easily
accessible. These tools calculate a degree of interest (DOI)
for all methods in a project and show navigation shortcuts
to those with the highest DOI in a list. DOI may be deter-
mined by factors such as the reading and editing history or
textual similarity to information from version control systems
[4, 8, 22, 24]. For all of these tools, controlled experiments
revealed a significantly reduced navigation effort.

REACHER [13] can restrict searches to reachable branches of
the call graph originating in or leading to a specific method.
The relevant portions of the connection between the method
and the search result are displayed graphically. A study
showed significantly increased success rates among develop-
ers using REACHER compared to those using Eclipse in six
tasks involving reachability questions. In contrast to the tools
we compare, REACHER is a search tool, requiring the devel-
oper to formulate a query.

The Whyline [10] allows to determine the cause of certain as-
pects of an application’s graphical and textual output. Users
can, for example, formulate the question “Why did this cir-
cle’s color = blue” about a circle drawn in the interface. The
Whyline then computes a dynamic slice from a runtime trace
of the application, i.e., it computes which methods influenced
the relevant property. This dynamic slice is presented as a
graph. The tool allowed novice programmers to fix a bug sig-
nificantly faster than expert developers not using the tool. In
contrast to the navigation tools we compare in this paper, the
Whyline is a dedicated debugging tool.

Code Bubbles [2] and Code Canvas [5] introduced IDE con-
cepts in which source code is laid out by arranging pieces
of information, such as individual methods or bug reports, in
bubbles on a 2D plane. Bubbles are connected to indicate
relationships between two items, such as a method call con-
necting two methods. This layout greatly simplifies glanc-
ing at related methods after they have been first visited and
opened in a bubble.

REACHER, the Whyline, Code Bubbles, and Code Canvas all
introduce new possibilities to explore the call graph. In con-
trast, we compare call graph navigation tools that visualize a
subgraph of the call graph and that extend an existing IDE.
This subgraph depends on a focus method the user has to se-
lect in some way. A comparison of these tools with the ones
presented above is an interesting endeavor for future work.

CALL GRAPH NAVIGATION TOOLS
In our first experiment, we compare three call graph navi-
gation tools in terms of how they impact participants’ per-
formance and navigation behavior: a Call Hierarchy tool,
Stacksplorer, and Blaze. The tools differ in which subgraph
of the call graph they visualize (Figure 1), how the displayed
subgraph can be changed, and how developers can navigate
using the tool. All tools were implemented as plug-ins for
Apple’s Xcode 3 IDE and were using the same backend for
code analysis and call graph creation.

Session: Design for Developers CHI 2013: Changing Perspectives, Paris, France

3074

Figure 2. The screenshots show how each tool is presented in Xcode. The
user interface elements circled in blue are provided by the tool and are
not part of a standard Xcode installation.

Call Hierarchy
Our Call Hierarchy plug-in (see top of Figure 2) closely re-
sembles the equally named tool in Eclipse. The user starts by
selecting a root method (the light orange node in Figure 1b)
for a tree view. Expanding any element in the tree view shows
its callers (the dark blue nodes in Figure 1b) or callees (the
medium green nodes in Figure 1b), depending on the mode
the Call Hierarchy tool is in. The mode can be changed using
two buttons at the bottom. If a method appears multiple times
in the list of callers or callees of a method, it is displayed
only once. In callee view mode, children of an element are
ordered in the same way they appear in the implementation
of the element; in caller view mode the order is arbitrary.

The root method is changed by selecting the “Show Call Hi-
erarchy...” command from the context menu for a method
identifier anywhere in the source code. To navigate, users
can click on the elements in the tree view. If callers are
shown, this opens the method in the editor and the call to
the parent method is highlighted. In case callees are shown,
clicking a method opens its parent method and the call to the
clicked method is highlighted. Consistently across modes,
the “Open” command in the context menu of an element in
the tree view opens this element in the editor.

Our Call Hierarchy tool does not detect cycles in the call
graph, but our user study avoided such cycles. Xcode does
not allow users to freely place tools in the interface, so our
Call Hierarchy is always displayed on the right side of the
source code editor. This allows a fair comparison in terms of
screen real estate to the other tools that both reduce the width
but not the height of the editor.

Stacksplorer
Stacksplorer [7] (see middle of Figure 2) visualizes the call
graph neighborhood of the focus method (the blue nodes in
Figure 1c). It shows one interactive side column view on
each side of the source code editor. The left column shows
a list of callers of the focus method, the right column shows
a list of callees. In Stacksplorer, the focus method is always
synchronized to the method in which the cursor is placed in
the central source code editor. Because Stacksplorer occupies
two side columns, it takes up more space than the other tools.

Clicking any method in one of the side columns opens it in the
central editor. This implicitly also causes the focus method to
change and the side columns to update. The focus method
also changes when the user navigates to a different method
in the central editor by other means. Thus, even when the
developer is not exploring the call graph, the automatically-
updated side columns provide auxiliary information.

Like in the Call Hierarchy tool, callees in the right column
are sorted by their order of appearance in the source code,
but Stacksplorer shows the same method more than once if it
is called more than once. The side columns’ content scrolls
automatically to keep the on-screen distance to the related
code minimal. Additional overlays can be turned on, which
connect an entry in the side column with the corresponding
method call in the source code. This is especially helpful for
densely written code, e.g., nested method calls.

Session: Design for Developers CHI 2013: Changing Perspectives, Paris, France

3075

Blaze
Blaze [11] (see bottom of Figure 2) implements depth-first
call graph exploration, and shows one path through the call
graph including the focus method (the blue nodes in Fig-
ure 1d). Blaze shows all methods on this path in a view at
the right side of the source code editor. The path is displayed
top-to-bottom, i.e., each entry calls the one immediately be-
low. As in Stacksplorer, clicking any method in the Blaze
column navigates to this method.

To change which path through the call graph is displayed,
Blaze uses a combination lock metaphor: For each entry in
the path, several alternatives exist (the medium green nodes
in Figure 1d). Because the focus method has to be part of the
path, each entry below the focus method can be exchanged
with another callee of the preceding method; above the fo-
cus method, each entry can be exchanged with another caller
of the following method. When an entry is exchanged, the
following (below the focus method) or preceding (above the
focus method) path changes accordingly. To exchange an en-
try on the path, a user can either click the arrow between two
entries to reveal a list of all options, or use the arrows next to
each entry. A line of dots is displayed in each entry to show
the number of possible options and the current selection.

As in Stacksplorer, the focus method in Blaze is automatically
synchronized to the method the user is currently working on.
When the focus method changes, the displayed path is up-
dated accordingly, but changes are kept minimal, i.e., if the
developer navigates to a method that is already visible on the
path, the path does not change at all. Optionally, Blaze can be
locked to prevent automatic updates to the focus method. To
keep users aware of their location on the path, an overlay is
shown that connects the currently edited method in the editor
to the corresponding entry in the side column.

The two states Blaze supports (locked and unlocked) can be
mapped to the two-phase navigation model described before.
While Blaze is unlocked, the automatically displayed path is
additional auxiliary information that might help finding an
anchor point during the first phase. When Blaze is locked
with the anchor point being the focus method, it allows to
browse all paths involving the anchor point in the second
phase.

STUDY SETUP
We analyzed the data from two previous studies [7, 11], of
participants working on maintenance tasks for BibDesk3, an
open-source bibliography manager for Mac OS X. Partici-
pants were given a typical maintenance task: firstly, they had
to identify a location for a change (task 1), and secondly, they
had to identify possible side effects (task 2). The first task
concerned BibDesk’s Autofile feature, which automatically
moves and renames PDF files according to a user specified
naming convention. Subjects were asked to change the fea-
ture so that it would prepend a fixed string to the name regard-
less of the specified naming convention. To successfully solve
this task, the participant had to suggest a modification that
would have achieved the intended effect. Because we were
3Rev. 17029, Objective-C, 80.000SLOC

only interested in how developers navigate between methods
for finding a change location, implementing the change was
not required. The second task required finding a side effect
introduced by a given solution for the first task.

For both tasks, an expert judged a solution as correct when
the suggested change would lead to the effect described in
the task. We saw no non-standard solution that would have
required more effort to be verified. The unsuccessful partici-
pants either could not complete the task in time or presented
solutions that would clearly not have the desired effect. The
complete maintenance task was considered correct if both in-
dividual tasks were solved correctly. In [7], the tasks were
referred to as tasks 1.1 and 1.2.

We recruited 33 subjects—31 students and two professional
software developers—for our study. On average, participants
were 26.3 years old (SD = 2.6), spent an average of 12.6
hours (SD = 11.6) on programming per week, and had
an average of 2.6 years (SD = 2.1) of experience with
Objective-C. A minimum of half a year of experience with
Objective-C was required to participate in the study. No par-
ticipant had seen the BibDesk source code before, although
half of them had used BibDesk before.

Participants were randomly assigned to one of four condi-
tions: Xcode (XC), the control condition, used the unmodi-
fied interface of Apple’s Xcode 3 IDE. It includes no dedi-
cated call graph navigation tool, but users can navigate to a
callee from within the editor using the “Jump to definition”
context menu command for a method call. Call Hierarchy
(CH), Stacksplorer (SP), and Blaze (BL), the experimental
conditions, used the same version of Xcode but extended with
the respective plug-in. Each condition was similarly sam-
pled in terms of number of participants (XC: 8, CH: 9, SP: 8,
BL: 8), programming experience (in years), and coding done
per week. In the three experimental conditions, the session
started with a brief introduction to the tool using an unrelated
code base. To make sure not to bias participants, the experi-
menter did not tell the participants if the tools were designed
by us or not.

After the introduction, participants were allowed to familiar-
ize themselves with the BibDesk project for up to 10 minutes.
Then, we handed tasks 1 and 2 to the participants one task at
a time, so that while working on task 1 they would not be
aware of task 2 yet. Time to finish the tasks was limited to
25 minutes for task 1 and 15 minutes for task 2. We encour-
aged participants to work quickly but to make sure to arrive
at a correct solution, as they had only one chance to provide
an answer. When exceeding the time limit or giving an in-
correct answer, we used the respective time limit as the task
completion time.

Consistent with previous studies [2, 20], using runtime analy-
sis tools such as the debugger was prohibited. However, par-
ticipants were allowed to run a compiled executable of the
application.

PERFORMANCE COMPARISON
Firstly, we compared success rates between the different
tools. We found a significant increase in success rates for the

Session: Design for Developers CHI 2013: Changing Perspectives, Paris, France

3076

Task 2Task 1

Ti
m

e
(m

in
)

25

20

15

10

5

0

Xcode Call Hierarchy Stacksplorer Blaze

Figure 3. The graph shows task completion times per condition and 95%
confidence intervals. Task and condition both have a significant effect on
task completion times.

complete maintenance task between the experimental con-
ditions and the control (one-sided Fisher’s exact test: p =
0.015). No significant differences in terms of success rates
were found between the experimental conditions.

Next, we compared the task completion times and assumed to
find similar results. An ANOVA4 revealed a significant effect
of task and of condition.

Task: F (1, 29) = 65.281 p < 0.001 η2 = 0.666

Condition: F (3, 29) = 3.720 p = 0.022 η2 = 0.278

Using a post-hoc Dunnett t-test we found that task completion
times in the Stacksplorer and Blaze conditions were signifi-
cantly lower than in the control condition, but those in the
Call Hierarchy condition were not. A post-hoc Tukey’s test
comparing Blaze and Stacksplorer was not significant.

XC vs. CH: p = 0.662 ST: p = 0.038 BL: p = 0.020

ST vs. BL: p = 0.992

In summary, call graph exploration tools have a positive
impact on the success of a typical code maintenance task.
Stacksplorer and Blaze also have a significant effect on task
completion times, while the Call Hierarchy unexpectedly
does not. Blaze and Stacksplorer perform similarly although
they implement different approaches for presenting a sub-
graph of the call graph to the user.

MODEL-BASED ANALYSIS OF NAVIGATION BEHAVIOR
The comparison shows that performance differences between
the tools exist. We argue that there are two possible reasons
for these differences: Either the user interface of the more
successful tools was better or easier to use, or the tools en-
couraged different navigation strategies, which then caused
the differences in efficiency. In the following we focus on the
latter.
4All ANOVAs carried out are Repeated-Measures ANOVAs, where
task is a within-groups factor and condition is a between-groups fac-
tor.

To compare the different navigation strategies, we first need
a consistent way to formally describe navigation. This de-
scription should be independent of the tool and development
environment used. We therefore propose to characterize nav-
igation behaviors by a set of quantifiable features, where each
feature represents the degree to which the navigation behav-
ior conforms to one of a set of well known micro navigation
patterns. To measure a feature for a recorded session, we use
the navigation models compared by Piorkowski et al. [17]:
Since these models all predict navigation targets according
to different micro strategies of navigating source code, the
prediction accuracy of each model is a quantitative indicator
for how well the overall navigation behavior of the session
resonates with these micro strategies. We thus use these pre-
diction accuracies as our features.

Note that, while originally Piorkowski et al. tried to find the
most accurate model for predicting developers’ navigation,
we do not evaluate the models in terms of their prediction
accuracies, but we characterize the different navigation tools
in terms of their effect on the individual prediction accuracies
of all models.

Formally, the models as described by Piorkowski et al. [17]
assume that navigation in a single study session is coded as
a sequence of visited methods H = (m1,m2, ...,mn) where
∀mi,mi+1 ∈ H : mi 6= mi+1. Using the navigation se-
quence up to an elementmj as input, the models try to predict
mj+1.

To do so, they calculate the probability that a developer navi-
gates to a method for all methods in Mj − {mj}, where Mj

is a set of methods approximating all methods known to the
developer and comprises all methods in files that have been
opened so far or that have been visible in call graph explo-
ration tools or search results.

Models calculate their prediction by creating an activation
functionAj :Mj−{mj} 7→ R, with higher activation values
indicating a higher probability of the developer navigating to
a method. Then, a ranking function Rj : Mj − {mj} 7→ N
is obtained by rank-transforming Aj . For methods with the
same activation value, the average of all involved ranks is
used. All models share a parameter N that determines how
many of the top ranked methods are returned by the model.
If more than N methods are assigned the highest available
rank, the models do not predict anything. Characteristic for
each model is the definition of Aj .

We will provide only a qualitative description of Aj for
the different models here, and explain which navigational
“micro-pattern” we think is represented by each model. For
the formal definition of each model please refer to [17].

Recency assigns higher activation values if a method has
been visited more recently. It correlates with navigating
back and forth between related methods to understand their
connection, which was shown to be a common and impor-
tant pattern in [9].

Frequency assigns higher activation values the more fre-
quently a method has been visited. It correlates with go-

Session: Design for Developers CHI 2013: Changing Perspectives, Paris, France

3077

ing back frequently to very important methods, such as the
anchor point found in the two-phase navigation model.

Working Set assigns an activation of 1 to all methods visited
during the last δ navigation steps and 0 to all other meth-
ods. δ is an estimate of the size of the working set, in our
analysis we used δ = N . The Working Set model is sim-
ilar to Recency, but implies that there is a fixed-sized set
of methods that are particularly important to the task, as
suggested in [3].

Bug Report Similarity assigns a methodm the tf-idf weight
[1] of the bug report compared to the words in m. Before
calculating the tf-idf weight, stop words are removed and
camelCase identifiers are split apart. The Bug Report Simi-
larity model correlates with the micro-pattern of searching
for locations in the source code based on textual clues in
the bug report, which was reported previously in [15].

The following models all maintain a graph G containing the
methods in Mj as nodes. Aj(m) is calculated inversely pro-
portional to the distance between m and mj−1. The models
differ in what edges are included in G.

Within-File Distance adds an undirected edge between two
nodes if they are adjacent in a source file document. It cor-
relates with scrolling in a file, which is commonly used to
explore the file based decomposition of the software [20].

Forward Call Depth adds a directed edge between two
nodes ma, mb if mb is called from the implementation of
ma. It correlates with navigation to callees, which is possi-
ble in many IDEs even without the use of a dedicated tool
using the “Jump to definition...” command from the con-
text menu for a method call in the editor.

Undirected Call Depth is a modified variant of Forward
Call Depth with directed edges being replaced by undi-
rected edges. This model correlates with the call graph
navigation supported by the call graph exploration tools we
compared.

Analysis of Navigation Behavior
Navigation events were coded manually in video recordings
of the user study sessions using ChronoViz [6], annotating all
clicks on UI elements that lead to changes in the source code
editor as well as navigations via text search and scrolling.
User actions that were less than 0.5s apart were consoli-
dated into one navigation action, e.g., clicking the back button
twice. For every navigation, the tool used for navigation and
the target of the navigation action were recorded. Targets of
navigations are methods, unless the target method could not
be clearly determined. If the target method was unclear, e.g.,
after opening a file, either a set of possible target methods
was recorded or a more abstract target, such as the file, was
annotated as navigation target.

A model prediction was counted as correct if the next method
mj+1 was contained in the set of suggestions returned by the
model. When the navigation led to a set of methods, a model
predicted this navigation correctly if it predicted any method
in the set; when navigating to anything else than a method or
a set of methods a prediction could not be correct.

We compare prediction accuracy of the models for different
prediction list sizes 1 ≤ N ≤ 20. Model prediction accu-
racies for different N and the different models are depicted
in Figure 4. In the following, we will analyze one model
at a time. Statistical tests were performed only for N = 1,
N = 10, and N = 20, results of which are listed in Table 1.

Frequency
For the Frequency model we expected to see a lower predic-
tion accuracy in the more successful tools Stacksplorer and
Blaze, because previous studies [9] showed the importance
of back and forth navigation to gather contextual information
but also that it requires a lot of time.

There is a significant effect of condition on the prediction
accuracy of the Frequency model for N = 10. A post-hoc
Tukey test only shows a significantly higher prediction accu-
racy in the Stacksplorer condition than in the Call Hierarchy
condition (p = 0.018). There is no evidence that this in-
creased number of revisits did decrease the number of distinct
methods visited throughout the session (p = 0.815).

Stacksplorer allows, in contrast to our assumption, to per-
form more navigation to previously viewed methods but fast
enough to still save time compared to the control condition
and the Call Hierarchy. This indicates that frequent revis-
its to previously explored methods do not necessarily slow
down the process of understanding source code. One expla-
nation for that might be found in the two-phase navigation
model, which states that revisits occur when backtracking to
the focus method. In Stacksplorer, this often happens using
the “Back” button in Xcode, because the focus method is not
explicitly stored as in Blaze or the Call Hierarchy.

Recency & Working Set
We expected to see no effect of the condition on the prediction
accuracy of the Recency and the very similar Working Set
model. Methods might be included in a working set for a
variety of reasons, not only because they are connected in the
call graph, which is what a call graph exploration tool would
support.

No effect of condition was found for the Recency model. We
found a significant effect of condition, though, for the Work-
ing Set model for N = 10. Here again, a difference ex-
ists between Stacksplorer and the Call Hierarchy (Tukey test,
p = 0.017).

Together with the previous result that the number of revisits
was higher when using Stacksplorer, we can conclude that
developers using Stacksplorer performed longer exploration
phases in rather limited subsets of methods (likely connected
by the call graph). Because they were also faster in solv-
ing the tasks than participants using Xcode alone or the Call
Hierarchy, this result supports previous results by Sillito et
al. [21], pointing out the importance of thoroughly under-
standing closed subsets of related methods.

For all conditions, prediction accuracy in the Recency and
Working Set model becomes constant roughly for N > 10.
This can be interpreted as an estimate about the maximum
size for a working set for our tasks.

Session: Design for Developers CHI 2013: Changing Perspectives, Paris, France

3078

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Call HierarchyXcode

BlazeStacksplorer

Fwd Call Depth (FD) Bug Report Similarity (B) Frequency (F) Recency (R) Undirected Call Depth (UD) Within File Distance (D)Working Set (W)

FD

UD

D

F
W
R

B

FD

UD
D

F

W
R
B

FD

UD

D

F
W
R

B

FD

UD

D

F

W
R

B

N

accuracy

N

accuracy

N

accuracy

N

accuracy

Figure 4. Plots of prediction accuracy against prediction list sizes N per condition for all models. When using a call graph navigation tool, Fwd Call
Depth and Undirected Call Depth improve considerably.

Bug Report Similarity
We assumed that call graph navigation tools have no effect on
the prediction accuracy of the Bug Report Similarity model,
because the call graph, from which all navigation targets
available in the tools are taken, does not provide any infor-
mation about the textual content of the methods.

The prediction accuracy of the Bug Report Similarity model
changes significantly with condition for N = 20. Here, the
most important differences exist between Stacksplorer and
both the Call Hierarchy and the control condition (Post-hoc
Tukey’s test, XC: p = 0.035, CH: p = 0.004).

One possible explanation for this result is that Stacksplorer, in
contrast to the Call Hierarchy, automatically updates the list
of navigation targets from which developers then preferably
select textually similar navigation targets [15]. Of course, the
degree to which the call graph neighborhood contains textu-
ally similar navigation targets depends on the source code.

Within-File Distance
In the BibDesk source code, as in most object-oriented source
code, one file implements one class. Hence, by scrolling
through a file, the different methods comprising the class can
be explored. This structure of methods belonging to classes
is orthogonal to the call graph, and consequently we assumed
navigation behavior through this hierarchy would not be in-
fluenced by any call graph exploration tool.

No significant effect of condition was found for the Within-
File Distance model. This result matched our expectations.

Forward Call Depth & Undirected Call Depth
We did expect an effect of the condition on the Call Depth
models. Navigation along the call graph is what all tested
tools specifically support.

This was confirmed; significant effects of condition are found
for N = 10 and N = 20 for both the Forward Call Depth
model and the Undirected Call Depth model. For the For-
ward Call Depth model, post-hoc tests (for N = 20) reveal
significantly higher accuracy for Stacksplorer and Blaze com-
pared to the control condition (one-sided Dunnett t-test, ST:
p = 0.004, BL: p = 0.022) and compared to the Call Hier-
archy (Tukey’s test, ST: p = 0.003, BL: p = 0.022). Simi-
lar results are obtained for the Undirected Call Graph model,
however, here no significant difference between Blaze and the
Call Hierarchy was found in post-hoc tests. Over all tests, we
did not find differences in prediction accuracy between the
Call Hierarchy and Xcode.

In all call graph navigation tool conditions, accuracy of the
Call Depth models increases substantially for N > 6. This
can be explained by the average neighborhood size of a
method. Among the 277 methods visited in all sessions, the
average number for callers or callees is 1.81 (SD = 5.93)
and 3.49 (SD = 4.63), respectively. Considering only meth-
ods that have been visited by at least half of the participants,
the averages are even higher (callers: 3.33 (SD = 2.58),
callees: 11.33 (SD = 6.83)). The Call Depth models do
rank all neighbors (or callees in case of the Forward Call
Depth model) of a method equally, so if there are more than
N neighbors (or callees) they predict nothing.

Session: Design for Developers CHI 2013: Changing Perspectives, Paris, France

3079

N = 1 N = 10 N = 20
F p F p F p

Frequency
T 27.13 .001 28.60 .001 18.31 .001
C 2.729 .062 3.384 .031 2.482 .081
I 1.733 .182 .384 .766 .813 .497

Recency
T 27.82 .001 11.64 .002 9.215 .005
C 2.4 .088 2.728 .062 2.009 .122
I .696 .562 .793 .508 1.248 .311

Working
Set

T 22.28 .001 14.49 .001 9.518 .004
C 2.757 .06 3.432 .030 2.222 .107
I .823 .492 1.559 .221 1.124 .356

Bug
Report
Similarity

T 3.8 .061 36.88 .001 142.3 .001
C .366 .778 3.056 .044 5.279 .005
I .182 .908 2.784 .059 1.681 .193

Within-
File
Distance

T 39.09 .001 11.30 .002 13.55 .001
C .679 .572 1.178 .335 1.682 .193
I 1.269 .303 .914 .447 .561 .645

Forward
Call
Depth

T .048 .828 .548 .465 0.299 .589
C .1.688 .191 6.470 .002 7.023 .001
I .334 .801 1.693 .190 1.771 .175

Undirected
Call
Depth

T 5.969 .021 6.000 .021 5.395 .027
C .857 .474 5.791 .003 9.514 .001
I .125 .944 2.141 .117 5.344 .005

Table 1. The table shows comparisons between prediction accuracies of
each model. The factors analyzed are task (T), condition (C), and their
interaction (I). For task df = 1, for condition and interaction df = 3,
for error df = 29. All significant effects of condition are in bold face.

For all tools, roughly two thirds of call graph navigations
were performed using the tool and not via means existing in
Xcode.

CH: M = 68.2% SD = 37.1%

ST: M = 65.0% SD = 31.2%

BL: M = 65.0% SD = 39.8%

An ANOVA, however, reveals a significant effect of task
and condition on the percentage of navigations that happened
along an edge in the call graph, and a significant interaction.

Task: F (1, 29) = 10.892 p = 0.003 η2 = 0.211

Condition: F (3, 29) = 11.002 p < 0.001 η2 = 0.532

Interaction: F (3, 29) = 3.877 p = 0.019 η2 = 0.226

A post-hoc Tukey’s test shows a significantly higher percent-
age in the Stacksplorer condition as in all other conditions; a
Dunnett test additionally shows significantly higher percent-
age in the Blaze condition but not in the Call Hierarchy con-
dition compared to the control condition.

Tukey’s: ST vs. XC: p < 0.001 CH: p < 0.001 BL: p = 0.023

Dunnett: XC vs. CH: p = 0.602 BL: p = 0.036

These results indicate that Xcode and the Call Hierarchy pro-
moted call graph navigation similarly, Blaze did so signifi-
cantly more and Stacksplorer again more than Blaze.

Differences in how the tools were used also show up when
looking at the average length of a call graph navigation se-
quence. A call graph navigation sequence is a subsequence
S = (mm, ...,mn) of H , such that for all m ≤ i < n mi

and mi+1 are connected in the call graph. The condition has

a significant effect on the average length of these sequences.

Condition: F (3, 29) = 5.819 p = 0.003 η2 = 0.376

No significant effect of task, no interaction.

Post-hoc one-sided Dunnett t-tests revealed significantly
longer sequences in the Stacksplorer and Blaze conditions but
not in the Call Hierarchy condition when compared to Xcode.

XC vs. CH: p = 0.451 ST: p = 0.002 BL: p = 0.009

Blaze and the Call Hierarchy allow call-graph navigation
along more than one edge at a time. When accommodating
for that by allowing navigations back to a method previously
visited in the sequence, results do not change. The reason is
that, despite the possibility to navigate in that manner, these
navigations only occurred 9 times over all sessions.

When no call graph navigation tool is used, developers seem
to exhibit other strategies to find the desired information, one
of which is using the project wide search. There is a sig-
nificant effect of condition on the percentage of navigations
performed using the project wide search (F (3, 29) = 9.487,
p < 0.001, no effect of task). Post-hoc one-sided Dunnett
t-tests show that the project wide search was used signifi-
cantly more in the control condition than in all other condi-
tions (p < 0.001 for all conditions). The project wide search
in Xcode is often used to navigate to callers of a method by
searching for the method name. This workaround to access
callers is slow to invoke and error prone because of simi-
larly named methods. Consequently, people stopped using
this technique when dedicated tools were available.

We can conclude that Stacksplorer and Blaze can promote
navigation along the call graph effectively. But the opportu-
nity to shape navigation behavior by making additional nav-
igation targets available seems to be limited: The option to
navigate along multiple edges of the call graph at once, as it
is offered by Blaze and the Call Hierarchy, was seldom used.
We assume that backtracking multiple edges in the call graph
at once is cognitively too challenging and developers fear to
get lost in relatively unknown source code. However, this
may be different when developers are familiar with the source
code.

Comparing the three call graph exploration tools we tested,
we find that Stacksplorer, which provides access to just the
neighborhood of the focus method and synchronizes the fo-
cus method to the method currently being edited, promotes
call graph navigation the most. Blaze still encourages more
call graph navigation than the Call Hierarchy or Xcode alone.
With Blaze, developers can perform some call graph explo-
ration completely within the tool, without the need to nav-
igate to each method on the path. This might explain why
we observed less call graph navigation being performed us-
ing Blaze than using Stacksplorer.

Both Stacksplorer and Blaze present meaningful parts of the
call graph: The direct call graph neighborhood usually con-
tains very closely related methods; a single path through the
call graph is familiar to many developers, e.g., from call
stacks in a debugger. Unrestricted exploration as it is possible
in the Call Hierarchy seems to be overwhelming and could

Session: Design for Developers CHI 2013: Changing Perspectives, Paris, France

3080

not substantially change how developers explore the source
code. It was, however, successful in replacing the cumber-
some project wide searches to find callers of a method, which
were utilized in the Xcode condition.

LIMITATIONS

UI Differences
We cannot clearly differentiate between the effects caused by
the tools exposing different parts of the call graph or by the
presentation of this information. Stacksplorer and Blaze have
user interfaces specifically designed for the respective explo-
ration strategy; the Call Hierarchy was designed to be com-
parable with currently existing tools.

One of the most obvious differences between Blaze and
Stacksplorer and the Call Hierarchy are automatic updates to
the focus method. With automatic updates, Blaze and Stacks-
plorer present additional information with no interaction re-
quired. In post-session interviews half of the participants in
the Call Hierarchy condition suggested to add automatic up-
dates, even though they were not aware of the other tools.
However, adding automatic updates to the Call Hierarchy tool
would require adding a locking state as in Blaze, because oth-
erwise we would lose any way to navigate back to the original
root once we have navigated to a subtree node.

If the information displayed in the tool can be refined man-
ually, as in Blaze and the Call Hierarchy, we observed mode
errors happening. For example, in Blaze problems occurred
if the path length required scrolling the part of the path up- or
downstream from the focus method, which could cause meth-
ods to be hidden between the focus method and the method
directly above or below it on the screen. This could be solved
by allowing the full path to scroll instead of scrolling in
two separate parts. Using the Call Hierarchy, many partici-
pants had issues with the caller and callee view modes, and
some forgot that the method they read in the editor is not the
one selected as root of the Call Hierarchy. The latter prob-
lem did not occur in Blaze even if it was locked, because
overlays always maintain a graphical connection between the
method currently inspected in the editor and the informa-
tion displayed in Blaze. Overlays are another property spe-
cific to Blaze and Stacksplorer, which simplifies parsing the
additional information displayed while trying to understand
source code in the central editor.

We already identified several problems with the design of
Blaze: Mode errors might happen, and navigation targets
that were more than one edge away from the currently edited
method were rarely used. Nevertheless task completion
times were on par with those in the Stacksplorer condition.
Hence, the information displayed in Blaze seems relevant
even though not all methods displayed are also navigated to
directly using Blaze.

Effects of Task and Setup
The task had a significant effect on the prediction accuracy of
all models except for the Forward Call Depth model. This
indicates that the navigation behavior overall is influenced
considerably by the task at hand. Further, both tasks used

in our study were concerned with the same code base, which
also might have an influence on the navigation behavior. This
makes comparisons with other studies using different tasks
and environments difficult.

Another problem when trying to study tools in development
environments seems to be the large diversity in developers’
strategies [20]. While in our experiment the groups of partic-
ipants were comparable in terms of programming experience
(in years) and coding done per week, we acknowledge that
these measures cannot capture individual differences in cod-
ing strategies.

Of all methods we saw being visited during the sessions, 45%
were visited by only one participant; only six methods were
visited by more than half of the participants. These six meth-
ods were the ones essential for the task, they were either the
solution (i.e., the method to be changed) or very closely re-
lated to it. All those 45% of methods were not important to
the task at hand and hence likely visited during the initial ex-
ploration and search phase. This divergence in the first phase
added noise to our model-based analysis.

SUMMARY AND FUTURE WORK
We presented a comparative study of three call graph naviga-
tion tools: the Call Hierarchy, which is ubiquitous in current
IDEs, Stacksplorer, and Blaze. Call graph navigation tools
support developers in performing software maintenance and
yield higher task success rates compared to an IDE without
any of these tools. Stacksplorer and Blaze could also decrease
task completion times and thus make developers potentially
more productive.

An analysis of navigation patterns in the different condi-
tions indicated how the tools change developers’ strategies.
Without call graph navigation tools developers resort to
workarounds for call graph navigation, such as text searches.
Stacksplorer and Blaze changed developers behavior to in-
clude more call graph navigation than we observed in the Call
Hierarchy condition. This is one potential explanation for the
increased efficiency of these tools.

Call graph navigation mostly happens between neighboring
methods, which benefits Stacksplorer. Only rarely developers
navigate along multiple edges at a time, even though the tool
at hand might support it.

For the comparison of the call graph exploration tools, we
presented a new method to formally describe navigation be-
havior. This method quantifies the degree to which any given
navigation history complies with a number of characteristic
navigation models, yielding a representation that can be an-
alyzed statistically. We found the results to be very helpful
to find and analyze differences in navigation behavior among
the conditions tested.

In future work it would be interesting to determine the influ-
ence of various other factors on navigation behavior. Promis-
ing factors to look at would be the programming language or
API used, the task at hand, or the design patterns used in the
application. It would also be interesting to examine how other
performance measures, e.g., learnability or user satisfaction,

Session: Design for Developers CHI 2013: Changing Perspectives, Paris, France

3081

are influenced by the different tools. Further, while we chose
to compare three tools that could each be embedded into the
same IDE to maintain a high internal validity of the study, it is
an important task for future work to analyze other navigation
tools as well.

REPLICHI
The navigation sequences obtained through video annota-
tion that were used for this study are available for further
analysis as XML files generated with ChronoViz [6]. We
also published a Mac OS X tool that uses the ChronoViz
files and a call graph stored in an XML format to ana-
lyze the navigation behavior using the methodology we pre-
sented. The material can be downloaded at http://hci.rwth-
aachen.de/developerNavigation. We would like to invite oth-
ers to pick up our format to annotate navigation and our
methodology to quantify navigation in their own studies. This
would allow a comparison of navigation behavior among a
wide variety of environments, tasks, and developers.

ACKNOWLEDGMENTS
This work was funded in part by the German B-IT Foundation
and by the German Government through its UMIC Excel-
lence Cluster for Ultra-High Speed Mobile Information and
Communication at RWTH Aachen University.

REFERENCES
1. Baeza-Yates, R. A., and Ribeiro-Neto, B. Modern

Information Retrieval. Addison-Wesley Longman, 1999.

2. Bragdon, A., Zeleznik, R., Reiss, S. P., Karumuri, S.,
Cheung, W., Kaplan, J., Coleman, C., Adeputra, F., and
LaViola, J. J. Code Bubbles: A Working Set-based
Interface for Code Understanding and Maintenance. In
Proc. CHI ’10, ACM (2010).

3. Coblenz, M. J., Ko, A. J., and Myers, B. A. JASPER :
An Eclipse Plug-In to Facilitate Software Maintenance
Tasks. In Proc. 2006 OOPSLA Workshop on Eclipse
Technology eXchange, ACM Press (2006).

4. DeLine, R., Czerwinski, M., and Robertson, G. Easing
Program Comprehension by Sharing Navigation Data.
In Proc. VLHCC ’05, IEEE (2005).

5. DeLine, R., and Rowan, K. Code canvas: zooming
towards better development environments. In Proc.
ICSE ’10, ACM (2010).

6. Fouse, A., Weibel, N., Hutchins, E., and Hollan, J. D.
ChronoViz: a system for supporting navigation of
time-coded data. In Proc. CHI ’11, ACM (2011).

7. Karrer, T., Krämer, J.-P., Diehl, J., Hartmann, B., and
Borchers, J. Stacksplorer: Call graph navigation helps
increasing code maintenance efficiency. In Proc. UIST
’11, ACM (2011).

8. Kersten, M., and Murphy, G. C. Mylar: A
Degree-of-Interest Model for IDEs. In Proc. AOSD,
ACM (2005).

9. Ko, A., Myers, B., Coblenz, M., and Aung, H. An
Exploratory Study of How Developers Seek, Relate, and
Collect Relevant Information during Software
Maintenance Tasks. IEEE Transactions on Software
Engineering 32, 12 (2006).

10. Ko, A. J., and Myers, B. A. Debugging Reinvented:
Asking and Answering Why and Why Not Questions
about Program Behavior. In Proc. ICSE ’08, IEEE
(2008).

11. Krämer, J.-P., Kurz, J., Karrer, T., and Borchers, J.
Blaze: supporting two-phased call graph navigation in
source code. In Proc. CHI EA ’12, ACM (2012).

12. LaToza, T. D., and Myers, B. A. Developers Ask
Reachability Questions. In Proc. ICSE ’10, ACM
(2010).

13. LaToza, T. D., and Myers, B. A. Visualizing Call
Graphs. In Proc. VLHCC ’11 (2011).

14. LaToza, T. D., Venolia, G., and DeLine, R. Maintaining
Mental Models: A Study of Developer Work Habits. In
Proc. ICSE ’06, ACM (2006).

15. Lawrance, J., Bellamy, R., Burnett, M., and Rector, K.
Using information scent to model the dynamic foraging
behavior of programmers in maintenance tasks. In Proc.
CHI ’08, ACM (2008).

16. Murphy, G. C., Kersten, M., and Findlater, L. How Are
Java Software Developers Using the Eclipse IDE? IEEE
Software 23, 4 (2006).

17. Piorkowski, D., Fleming, S. D., Scaffidi, C., John, L.,
Bogart, C., John, B. E., Burnett, M., and Bellamy, R.
Modeling programmer navigation: A head-to-head
empirical evaluation of predictive models. In Proc.
VL/HCC ’11 (2011).

18. Pirolli, P., and Card, S. K. Information Foraging.
Psychological Review 106, 4 (1999).

19. Pressman, R. S. Software Engineering: A Practitioner’s
Approach, 7th ed. McGraw-Hill, 2010.

20. Robillard, M. P., Coelho, W., and Murphy, G. C. How
Effective Developers Investigate Source Code:An
Exploratory Study. IEEE Transactions on Software
Engineering 30, 12 (2004).

21. Sillito, J., Murphy, G. C., and Volder, K. D. Asking and
Answering Questions during a Programming Change
Task. IEEE Transactions on Software Engineering 34, 4
(2008).

22. Singer, J., Elves, R., and Storey, M.-A. NavTracks:
Supporting Navigation in Software Maintenance. In
Proc. ICSM ’05, IEEE (2005).

23. Singer, J., Lethbridge, T., Vinson, N., and Anquetil, N.
An Examination of Software Engineering Work
Practices. In Proc. 1997 Conference of the Centre for
Advanced Studies on Collaborative Research, IBM
Press (1997).

24. Čubranić, D., and Murphy, G. C. Hipikat:
Recommending Pertinent Software Development
Artifacts. In Proc. ICSE ’03, IEEE (2003).

25. Winograd, T. Breaking the complexity barrier again.
ACM SIGIR Forum (1974).

Session: Design for Developers CHI 2013: Changing Perspectives, Paris, France

3082

	Introduction
	Related Work
	Navigation Strategies
	Navigation Tools

	Call Graph Navigation Tools
	Call Hierarchy
	Stacksplorer
	Blaze

	Study Setup
	Performance Comparison
	Model-Based Analysis of Navigation Behavior
	Analysis of Navigation Behavior
	Frequency
	Recency & Working Set
	Bug Report Similarity
	Within-File Distance
	Forward Call Depth & Undirected Call Depth

	Limitations
	UI Differences
	Effects of Task and Setup

	Summary and Future Work
	RepliCHI
	Acknowledgments
	REFERENCES

