
Blaze

Jan-Peter Krämer, Joachim Kurz, Thorsten Karrer, Jan Borchers
RWTH Aachen University
52062 Aachen, Germany

{kraemer, kurz, karrer, borchers}@cs.rwth-aachen.de

Abstract—Understanding source code is crucial for suc-
cessful software maintenance. To understand source code,
navigation in the call graph has been shown to be particularly
important. Programmers often employ a two-phased strategy
for effective call graph exploration. We present Blaze, a
source code exploration tool designed to explicitly support
this strategy. In a study, we show that call graph exploration
tools significantly increase success rates in typical software
maintenance tasks and that using Blaze significantly reduces
task completion times compared to using the Call Hierarchy
or Xcode.

Keywords-Tools and environments, Software visualization,
Program comprehension

I. INTRODUCTION

Software maintenance, the task of fixing bugs, adding new
features, and performing other modifications after software
has been shipped, accounts for up to 70% of the total
expenses in a software project [4]. Successful software main-
tenance requires finding the correct location for a change
in the source code and performing the change without
introducing side effects. To do so, the developer has to
thoroughly understand the code. While numerous tools have
been proposed to support this task, software developers still
consider comprehending unknown code one of their biggest
problems [5].

A key activity in software maintenance is to navigate
source code [6]. Among the various types of navigation, call
graph based navigation is especially important to determine
where to implement a change [1], [7], [8]. The call graph
contains all methods as nodes, and each method is connected
to its callees through outgoing edges and to its callers
through incoming edges.

Previous studies [2], [3], [7] document a two-phase model
for navigation in the call graph: Developers start by search-
ing for an anchor point they consider interesting (Phase 1).
Once they have found an anchor point, they follow different
paths starting from there until they reach the part of the code
they need to work with (Phase 2). This navigation behavior
was observed in multiple, independent studies with different
settings. Blaze (Fig. 1), was designed to offer support for this
two-phase model.

II. RELATED WORK

Many current IDEs, for example Eclipse or Visual Studio,
implement a Call Hierarchy tool that uses a tree view to

a)
b)

c)

d)

e)

Figure 1. Blaze visualizes a complete path in the call graph that
includes the currently edited method. The developer can navigate up- and
downstream from the focus method along the path, and change the path by
selecting alternative entries using the arrow buttons next to each method.

show multiple levels of callers or callees, starting from a
given focus method as the root of the tree view. Users change
the root node explicitly by selecting a method identifier in
the source code as the new focus method. Call Hierarchy
tools are primarily useful during Phase 2 [10].

Stacksplorer [7] provides support for Phase 1. It gives
users access to the call graph neighborhood of a focus
method, i.e., the method the user is currently working on.
To show this information, two interactive views are added
as side columns next to the source code editor. While the
central source code editor shows the focus method in the
usual way, the left side column shows a list of callers,
and the right side column a list of callees. Clicking on
any method in the side columns navigates to this method.
Whenever the focus method changes in the central editor,
the side columns update automatically. Optional graphical
overlays connecting method calls in the source code with
the corresponding entries in the side columns help making
sense of the displayed information.

III. BLAZE

Blaze is designed to support both phases of the two-phase
navigation model. It adds an interactive view on the right
side of the source code editor (Fig. 1). This view shows
a single path through the call graph containing the focus

978-1-4673-1067-3/12/$31.00 c© 2012 IEEE ICSE 2012, Zurich, Switzerland
Posters and Informal Tool Demonstrations

1457

method, which is displayed in gray (a)). During Phase 1,
Blaze is unlocked and the focus method updates automat-
ically to match the method the user is currently working
on. When the method currently being edited changes, the
focus method changes accordingly, and the displayed path
is updated. An optional overlay connects the currently edited
method in the editor to the corresponding entry in the side
column (e)). The additional information scent that Blaze
provides while it is unlocked is important during Phase 1.

During Phase 2, Blaze can be locked (b)) to prevent the
focus method and the path displayed in Blaze from changing
due to navigation in the editor. The focus method becomes
the current anchor point. Blaze now allows developers to
more easily explore all paths starting from this anchor point.

For each entry on the displayed path, several alternatives
may exist. Because the focus method has to remain on the
path, each entry below the focus method can be exchanged
with another callee of the preceding method; above the focus
method, each entry can be exchanged with another caller
of the following method. When an entry is exchanged, the
following (below the focus method) or preceding (above the
focus method) path changes accordingly. To exchange an
entry on the path, a user can either click the arrows between
two entries (c)) to reveal a menu with all options, or use the
arrows next to each entry (d)) to flip through the alternatives.
This interface contains as much information as the Call
Hierarchy tool, but consumes relatively little screen space
because it never shows more than one single path at a time.
It also allows for a very structured (depth-first) exploration
of all possible paths that include the focus method.

We developed a fully functional prototype of Blaze as
a plug-in for Apple’s Xcode IDE. It is developed us-
ing Objective-C and utilizes Xcode’s internal source code
parsers.

IV. STUDY

We studied developers working on maintenance tasks
using Blaze, a Call Hierarchy tool, Stacksplorer, or an
unmodified Xcode IDE. 35 students participated in the
between groups study, two of which were removed from the
evaluation due to technical problems, yielding 9 participants
in the Call Hierarchy condition and 8 participants in all
remaining conditions. The participants had to solve two
tasks in 40 minutes. If the participants proposed an incorrect
solution for a task or time ran out, we considered the
participant not successful.

All call graph exploration tools led to a significantly
increased number of successful participants compared to
Xcode alone. Both Stacksplorer and Blaze could reduce task
completion times significantly compared to the status quo,
i.e., the unmodified Xcode installation and the Call Hierar-
chy. Surprisingly, Blaze could not outperform Stacksplorer
in terms of task completion time, although Blaze should, by

design, more completely support the two-phase navigation
model than Stacksplorer. One possible explanation for this
result is that Stacksplorer’s support for Phase 1 is superior
to Blaze’s, so Stacksplorer can compensate for its missing
specific support for Phase 2.

V. FUTURE WORK

We plan to study in more detail why Blaze was no
significant improvement over Stacksplorer. For that, we
will analyze the actual navigation paths from our video
recordings of the study sessions to see how they were
influenced by the tools used.

ACKNOWLEDGEMENTS

This work was funded in part by the German B-IT
Foundation and by the German Government through its
UMIC Excellence Cluster at RWTH Aachen University.

REFERENCES

[1] T. D. LaToza and B. A. Myers, “Developers Ask Reachability
Questions,” in Proc. ICSE ’10. ACM, 2010.

[2] A. Ko, B. Myers, M. Coblenz, and H. Aung, “An Exploratory
Study of How Developers Seek, Relate, and Collect Rele-
vant Information during Software Maintenance Tasks,” IEEE
Trans. Softw. Eng., vol. 32, no. 12, 2006.

[3] J. Sillito, G. C. Murphy, and K. D. Volder, “Asking and
Answering Questions during a Programming Change Task,”
IEEE Trans. Softw. Eng., vol. 34, no. 4, 2008.

[4] R. S. Pressman, Software Engineering: A Practitioner’s Ap-
proach, 7th ed. McGraw-Hill, 2010.

[5] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining
Mental Models: A Study of Developer Work Habits,” in Proc.
ICSE ’06. ACM, 2006.

[6] M. P. Robillard, W. Coelho, and G. C. Murphy, “How
Effective Developers Investigate Source Code:An Exploratory
Study,” IEEE Trans. Softw. Eng., vol. 30, no. 12, 2004.

[7] T. Karrer, J.-P. Krämer, J. Diehl, B. Hartmann, and
J. Borchers, “Stacksplorer: Call graph navigation helps in-
creasing code maintenance efficiency,” in Proc. UIST ’11.
ACM, 2011.

[8] T. Winograd, “Breaking the complexity barrier again,” ACM
SIGIR Forum, 1974.

[9] J. Lawrance, R. Bellamy, M. Burnett, and K. Rector, “Using
information scent to model the dynamic foraging behavior of
programmers in maintenance tasks,” in Proc. CHI ’08. ACM,
2008.

[10] J.-P. Krämer, J. Kurz, T. Karrer, and J. Borchers, “Blaze:
Supporting two-phased call graph navigation in source code,”
in Proc. CHI ’12, ser. CHI EA ’12. New York, NY, USA:
ACM, 2012.

1458

