
Blaze: Supporting Two-phased
Call Graph Navigation
in Source Code

Jan-Peter Krämer
Joachim Kurz
Thorsten Karrer
Jan Borchers

RWTH Aachen University
52062 Aachen, Germany
{kraemer, kurz, karrer,
borchers}@cs.rwth-aachen.de

Figure 1: Blaze
visualizes a
complete path in
the call graph that
includes the
currently edited
method. The
developer can
navigate up- and
downstream from
the focus method
along the path, and
change the path by
selecting alternative
entries using the
arrow buttons next
to each method.

Copyright is held by the author/owner(s).
CHI’12, May 5–10, 2012, Austin, Texas, USA.
ACM 978-1-4503-1016-1/12/05.

Abstract
Understanding source code is crucial for successful
software maintenance. A particularly important activity to
understand source code is navigating the call graph [4].
Programmers have developed distinct strategies for
effective call graph exploration [3, 9]. We introduce Blaze,
a source code exploration tool tailored closely to these
strategies. In a study, we compare Blaze to Stacksplorer
[2], a tool that visualizes the immediate neighborhood of
the current method in the call graph, to a tool resembling
the standard Call Hierarchy view in the Eclipse IDE, and
to an unmodified Xcode installation. The call graph
exploration tools significantly increased success rates in
typical software maintenance tasks, and using Stacksplorer
or Blaze significantly reduced task completion times
compared to using the Call Hierarchy or Xcode.

Keywords
Development Tools / Toolkits / Programming
Environments; Visualization

ACM Classification Keywords
H.5.2 [Information Interfaces and Presentation (e.g.
HCI)]: User interfaces. - Graphical user interfaces.

General Terms
Design, Human Factors

Work-in-Progress CHI 2012, May 5–10, 2012, Austin, Texas, USA

2195



Introduction
Software maintenance is the task of fixing bugs, adding
new features, and performing other modifications after
software has been shipped. It accounts for up to 70% of
the total expenses in a software project [7]. Successful
software maintenance requires a modification of source
code without interfering with its overall structure or
introducing side effects. To do so, the developer has to
thoroughly understand the code. While numerous tools
have been proposed to support this task, software
developers still consider comprehending unknown code
one of their biggest problems [5].

A key activity in software maintenance is to navigate
source code [8]. Among the various types of navigation,
call graph based navigation is especially important to
determine where to implement a change [2, 4, 10]. The
call graph contains all methods as nodes, and each
method is connected to its callees through outgoing edges
and to its callers through incoming edges.

Phase 2

Phase 1

Start

Search high-level 
structures for 
anchor point

Anchor 
Point 
found

Explore a call graph 
branch including the 

anchor point

Branch 
leads to location 

for change?

Location 
for change 

found

Are there 
unexplored, interesting 

branches in the call graph 
that include the anchor 

point?

no

yes

no

yes

Figure 2: Developers intuitively
explore source code in two
phases. Figure taken from [2].

Previous studies [2, 3, 9] repeatedly document a
two-phase model for navigation in the call graph (Fig. 2):
Developers start by searching for an anchor point they
consider interesting (Phase 1). Once they found an
anchor point, they follow different paths starting from
there until they reach the part of the code they need to
work with (Phase 2). Developers seem to stick to this
model intuitively, as it was observed in multiple,
independent studies with different settings.

We introduce Blaze (Fig. 1), which specifically supports
this model. Blaze always shows one path through the call
graph next to the source code editor. During Phase 1,
Blaze automatically updates to show a path containing
the method currently being edited. Hence, Blaze provides
additional information scent [6] during Phase 1. In Phase

2, Blaze can be locked to disable automatic updates and
make sure the anchor point always remains on the
displayed path. Thus, Blaze supports structured
exploration of different paths involving the anchor point
during Phase 2.

We compared Blaze to Stacksplorer [2], a previous
research tool for call graph exploration, to a Call
Hierarchy tool, similar to what is found in Eclipse1, and
an unmodified Xcode2 installation in a quantitative study.
Our preliminary results indicate that users can solve
maintenance tasks significantly faster when using Blaze or
Stacksplorer compared to the Call Hierarchy and Xcode.

Related Work
Navigation Behavior
In a study, Ko et al. [3] found that navigation accounted
for 35% of the time developers needed to solve tasks
concerned with a 500 SLOC3 Java application using the
widely adopted Eclipse IDE. Although powerful tools for
call graph navigation are available in Eclipse, they were
seldom used.

Latoza et al. [4] confirmed the importance of reachability
questions, i.e., searches for feasible call graph paths, for
software maintenance tasks. In a survey among 460
professional developers, all reported consistently that
these questions have to be answered often (ten times a
day or more), and over 80% of all participants considered
these questions at least “somewhat hard” to answer.

Lawrence and Burnett [6] carried over results from
information foraging theory, in which each link between
two pieces of information has a certain scent that

1www.eclipse.org
2http://developer.apple.com/technologies/tools/
3SLOC: non-empty, non-comment source lines of code

Work-in-Progress CHI 2012, May 5–10, 2012, Austin, Texas, USA

2196



determines how likely a user is to follow this link while
searching for a specific piece of information, to model
where developers navigate to. In an experiment, the set of
methods generated by their model mostly contained the
methods actually visited by professional software
developers while working on a bug-fixing task.

Figure 3: The screenshot shows
the Call Hierarchy in caller view
mode.

Call Graph Exploration Tools
Many current IDEs, for example Eclipse or Visual Studio,
implement a Call Hierarchy tool that uses a tree view to
show multiple levels of either callers or callees, starting
from a given focus method as the root of the tree view. In
Eclipse, expanding the children of an element in the tree
view shows all callers or callees of this element. Two
buttons are used to select whether children of an element
are its callers or callees. To change the root node, every
method identifier in the source code can be right-clicked
to access the “Show Call Hierarchy...” context menu item.
When callers are displayed, clicking a method opens it and
highlights the call to the parent element. If the callee view
is selected, clicking a method opens the parent method
and highlights the call to the clicked method. For
consistency, in both modes right-clicking an entry in the
tree view and selecting the “Open” context menu item
opens the clicked method without any highlights.

Code Bubbles [1], although not primarily a call graph
exploration tool, simplifies navigation by changing the way
code is laid out. It shows individual methods and auxiliary
information in bubbles that can be arranged freely on a
2D plane. Arrows between bubbles indicate relationships
between them, e.g., information about the call graph.
This layout significantly reduced the need for
back-and-forth navigation in a controlled experiment
comparing Code Bubbles and Eclipse.

Stacksplorer [2] (Fig. 4) gives users access to the call
graph neighborhood of a focus method, i.e., the method
the user is currently working on. To show this
information, two interactive views are added as side
columns next to the source code editor. While the central
source code editor shows the focus method in the usual
way, the left side column shows a list of callers, and the
right side column a list of callees. Clicking on any method
in the side columns navigates to this method. Whenever
the focus method changes in the central editor, the side
columns update automatically. Optional graphical overlays
connecting method calls in the source code with the
corresponding entries in the side columns help making
sense of the displayed information.

Figure 4: The left column in Stacksplorer lists all callers of the
current focus method, the right column lists all callees.

Design of Blaze
The existing call graph exploration tools support the
two-phase navigation model (Fig. 2) to varying degrees:
The Call Hierarchy allows structured analysis of a sub-tree
starting at a given anchor point, and thus supports
primarily Phase 2. Stacksplorer primarily supports Phase 1
by providing additional information scent and direct

Work-in-Progress CHI 2012, May 5–10, 2012, Austin, Texas, USA

2197



navigation to the call graph neighborhood. Blaze is
designed to support both phases.

Blaze adds an interactive view (Fig. 5) on the right side of
the source code editor (Fig. 1). This view shows a single
path through the call graph containing a focus method,
which is displayed in gray (a)). During Phase 1, the focus
method is unlocked and updates automatically to match
the method the user is currently working on, i.e., when
the cursor in the editor moves to a different method the
focus method changes accordingly, and the displayed path
is updated. Changes to the path are minimized, i.e., the
path does not change at all if the developer navigates to a
method that is already on the path. While the focus
method is unlocked, Blaze provides important additional
information scent, which is important during Phase 1.

a)

c)

d)

e)

b)

Figure 5: Blaze shows a single
path through the call graph.
Methods on the path are called
from top to bottom.

During Phase 2, the focus method can be locked (b)) to
prevent the focus method and the path displayed in Blaze
from changing due to navigation in the editor. This makes
finding an anchor point explicit. Blaze now allows
developers to explore all possible paths involving the
anchor point, i.e., the locked focus method.

For each entry on the path, several alternatives exist.
Because the focus method has to remain on the path,
each entry below the focus method can be exchanged
with another callee of the preceding method; above the
focus method, each entry can be exchanged with another
caller of the following method. When an entry is
exchanged, the following (below the focus method) or
preceding (above the focus method) path changes
accordingly. To exchange an entry on the path, a user can
either click the arrows between two entries (c)) to reveal a
list of all options, or use the arrows next to each entry
(d)) to flip through the alternatives. The latter option is
similar to turning discs on a combination lock. A “line of

dots”-style page indicator (e)), similar to the one found
on the iPhone’s home screen, is displayed in each entry to
show the number of options and the current selection.
This interface contains a lot of information (as much as
the Call Hierarchy tool), but consumes relatively little
screen space because it never shows more than one single
path at a time. It also allows for a very structured
(depth-first) exploration of all possible paths involving the
focus method.

To link the Blaze view to the source code editor, an
overlay similar to those in Stacksplorer is shown, which
connects the currently edited method in the editor to the
corresponding entry in the side column (Fig. 1).

Study
We compared Blaze, Stacksplorer, the Call Hierarchy, and
an unmodified Xcode installation to test if the call graph
exploration tools can reduce the time spent on
maintenance tasks. All tools were implemented as Xcode
plugins using the same call graph parsing backend, so the
tools only differed regarding the user interface. The Call
Hierarchy was designed to resemble the behavior of the
equally named tool in Eclipse as closely as possible. We
carried out a between-subjects study with 35 subjects and
four conditions (three call graph exploration tools and
Xcode without any plug-ins). All participants were
students, except for two professional software developers.
On average, participants had 2.6 years (SD = 2.1) of
experience with Objective-C. The assignment of
participants to conditions was randomized. Two subjects
were removed from the quantitative evaluation because of
technical problems during the test, leaving us with 9
participants in the Call Hierarchy condition and 8
participants in each of the other conditions.

Work-in-Progress CHI 2012, May 5–10, 2012, Austin, Texas, USA

2198



Participants had to work on two maintenance tasks in the
source code of BibDesk, an open-source bibliography
manager for Mac OS X (Rev. 17029, 80.000 SLOC, 400
classes). We used the same two subtasks that were used
in the first task of the previous evaluation of Stacksplorer
[2]. In both tasks no implementation was required. Task 1
was concerned with BibDesk’s Autofile feature, which can
automatically move PDF files of publications into a
dedicated folder and rename them according to a naming
scheme. Users were asked where a change had to be
implemented to prepend a fixed string before the
generated file name. In Task 2, we proposed one solution
for Task 1 that changed the return value of a method. We
asked users to identify side effects caused by this solution.
Given participants found an optimal anchor point with the
information we gave in the tasks, Task 1 required
navigation along at least three edges in the call graph
during Phase 2, Task 2 along at least two edges. For each
task, we measured the completion time and the
correctness of the solution.

Xcode Call Hierarchy
Stacksplorer Blaze

0 3 6 9 12 15 20 25 30 35 40

Time (minutes)

0 3 6 9 12 15 20 25 30 35 40

0 3 6 9 12 15 20 25 30 35 40

Task 1
Task 2

C
om

plete Trial

Task Completion Time

Figure 6: Task completion times
by task and condition.
Stacksplorer and Blaze
outperformed Xcode and the Call
Hierarchy for Task 1 and for the
complete trial.

Quantitative Results
Using any call graph exploration tool, more participants
solved the complete trial (i.e., both tasks) successfully
than with Xcode without any additional tools (Fisher’s
test, p = 0.030, one-sided).

After removing outliers (Fig. 6), the task completion
times were compared using a planned contrast ANOVA.
For the complete trial, the comparison shows a significant
advantage of Stacksplorer and Blaze compared to Xcode
and the Call Hierarchy (p = 0.001, F (1, 25) = 12.76).
The difference is also significant for Task 1 alone
(p = 0.004, F (1, 28) = 9.95), but not for Task 2
(p = 0.111, F (1, 27) = 2.71). The boxplots in Figure 6
and our qualitative observations suggest a possible reason

for this result: The Call Hierarchy might be useful
specifically in Task 2, which dealt with the assessment of
side effects of changes. We will explore this hypothesis in
the future.

No significant differences in task completion time were
found between Stacksplorer and Blaze (Complete Trial:
p = 0.882, F (1, 25) = 0.02). This result is particularly
interesting because Blaze, which was designed to
completely support the established two-phase navigation
model, should aid developers better than Stacksplorer.
We will analyze this effect in more depth in future work.
One possible explanation for this result is that the
advantage of Blaze offering explicit support for Phase 2
may be counterbalanced by Stacksplorer’s superior
support for Phase 1; having all choices of local navigation
targets displayed at the same time might be an advantage
during the initial code exploration.

Qualitative Results
All tools were used more frequently in Task 2. In the
Blaze and Call Hierarchy conditions, where browsing the
call graph is possible without switching the source code
file in the editor, more than half of the participants made
up theories entirely by browsing the call graph using the
tool at hand. They called up methods in the source code
editor only to verify their theories. This effect seems to be
specific to Task 2, where a starting point was clearly given
in the task description.

Automatic updates when users navigate in the editor and
graphic connections between the tool and the source code,
two features specific to Stacksplorer and Blaze, seem to be
particularly important. When observing participants using
the Call Hierarchy, we found that the lack of automatic
updates led to frequent mode errors, because users forgot
to open the method they discoverd using the editor in the

Work-in-Progress CHI 2012, May 5–10, 2012, Austin, Texas, USA

2199



Call Hierarchy. Another common reason for mode errors
in the Call Hierarchy condition was the explicit switch
between caller and callee view modes. The visualizations
of Blaze and Stacksplorer avoided these problems.

In the control condition (Xcode without additional tools),
we observed that participants sometimes hesitated to
navigate too far away from their anchor point in order not
to lose it. Blaze and the Call Hierarchy solve this issue
because they allow keeping an explicit reference to the
focus method around.

Future Work
We are planning to study in more detail why Blaze was no
significant improvement over Stacksplorer. For that, we
will analyze the actual navigation paths from our video
recordings of the study sessions to see how they were
influenced by the tools used.

We also want to identify the influence of individual design
aspects on the usefulness of a tool. Possible design
aspects to look at are, e.g., whether a tool auto-updates
and whether the tool is visually integrated with the source
code editor. Once the beneficial properties of both designs
are identified, we will try to combine them in an improved
version of Blaze.

Acknowledgements
This work was funded in part by the German B-IT
Foundation and by the German Government through its
UMIC Excellence Cluster at RWTH Aachen University.

References
[1] A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri,

W. Cheung, J. Kaplan, C. Coleman, F. Adeputra,
and J. J. LaViola. Code Bubbles: A Working

Set-based Interface for Code Understanding and
Maintenance. In Proc. CHI ’10. ACM, 2010.

[2] T. Karrer, J.-P. Krämer, J. Diehl, B. Hartmann, and
J. Borchers. Stacksplorer: Call graph navigation
helps increasing code maintenance efficiency. In
Proc. UIST ’11. ACM, 2011.

[3] A. Ko, B. Myers, M. Coblenz, and H. Aung. An
Exploratory Study of How Developers Seek, Relate,
and Collect Relevant Information during Software
Maintenance Tasks. IEEE Transactions on Software
Engineering, 32(12), 2006.

[4] T. D. LaToza and B. A. Myers. Developers Ask
Reachability Questions. In Proc. ICSE ’10. ACM,
2010.

[5] T. D. LaToza, G. Venolia, and R. DeLine.
Maintaining Mental Models: A Study of Developer
Work Habits. In Proc. ICSE ’06. ACM, 2006.

[6] J. Lawrance, R. Bellamy, M. Burnett, and K. Rector.
Using information scent to model the dynamic
foraging behavior of programmers in maintenance
tasks. In Proc. CHI ’08. ACM, 2008.

[7] R. S. Pressman. Software Engineering: A
Practitioner’s Approach. McGraw-Hill, 7th edition,
2010.

[8] M. P. Robillard, W. Coelho, and G. C. Murphy. How
Effective Developers Investigate Source Code:An
Exploratory Study. IEEE Transactions on Software
Engineering, 30(12), 2004.

[9] J. Sillito, G. C. Murphy, and K. D. Volder. Asking
and Answering Questions during a Programming
Change Task. IEEE Transactions on Software
Engineering, 34(4), 2008.

[10] T. Winograd. Breaking the complexity barrier again.
ACM SIGIR Forum, 1974.

Work-in-Progress CHI 2012, May 5–10, 2012, Austin, Texas, USA

2200


	Introduction
	Related Work
	Navigation Behavior
	Call Graph Exploration Tools

	Design of Blaze
	Study
	Quantitative Results
	Qualitative Results

	Future Work
	Acknowledgements
	References



