Chair for Computer Rm
Science 10 (Media

Computing and Human-

Computer Interaction)

Embroidered
touchpad sensors

Thesis

submitted to the

Media Computing Group

Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

by

Philip Kindermann

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Dr. Bastian Leibe

Registration date: 16.01.2018
Submission date: 24.04.2018

Eidesstattliche Versicherung

Name, Vorname Matrikelnummer

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/
Masterarbeit* mit dem Titel

selbstandig und ohne unzulassige fremde Hilfe erbracht habe. Ich habe keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt. Fiir den Fall, dass die Arbeit zusétzlich auf
einem Datentrager eingereicht wird, erklare ich, dass die schriftliche und die elektronische
Form vollstandig tbereinstimmen. Die Arbeit hat in gleicher oder &hnlicher Form noch keiner
Prifungsbehorde vorgelegen.

Ort, Datum Unterschrift

*Nichtzutreffendes bitte streichen

Belehrung:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zusténdigen Behoérde eine solche Versicherung
falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei
Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlassiger Falscheid; fahrlassige fals che Versicherung an Eides Statt

(1) Wenn eine der in den 88 154 bis 156 bezeichneten Handlungen aus Fahrlassigkeit begangen worden ist, so
tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Tater die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158
Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnhis genommen:

Ort, Datum Unterschrift

Contents

| Uberblick

[Acknowledgements|

[Conventions|

1 Intr ion

[3.2 Our tirst Prototype| .

[3.3 Finishing a prototype|

ix

x1

xiii

XV

vi

Contents

3.4 Micro controller programming in Energial . .

341 Debugging|.

3.5 Applications in Processing|

[3.5.1 Interpolation|

[3.5.3 PressureSensing|

3.6 ResistiveSensing|

4__Evaluation|

4.1 EvaluationSetup|

[5> Summary and future work|

.1 Summary and contributions|

[Bibliography|

[Index

11

23

23

25

29

29

30

31

33

35

vii

List of Figures

B1

Our first prototype featuring a 4 by 4 grid| . .

8

B2

Side view of our jumping pattern not pierc-

ing our insulation|

B3

Left: Thread under our sensor before cutting

Right: After, ready for insulation|

B4

On the left broken insulation caused by loose

threadontherighty

B5

Left to right: capacitive design with 5mm,

/mm and 9mm pitch|o 0L

B6

Two finger input triggers 4 touches as our in-

put does not allow to discern which are actu-

ally occurring|

B.7

Our software 13 by 13 grid created by inter-

polatingpins|.

B3

Simple swipes, green is down, yellow up,

blue left, redright

B9

Simple snake game controlled by our touch

sensor’'s gestures|

B.10

A visualization of the pressure levels on each

intersection point of our grid. Darker means

MOTe Pressure| oo oo ..

viii

List of Figures

3.11 Resistive design with 9mm pitch| 21
4.1 Our evaluation setup. The black marks indi- |

cate the desired touch points|. 24
4.2 Accuracy on our 9mm pitch (54mm x 52mm)| 25
4.3 Accuracy on our 7mm pitch (42mm x 40mm)| 25
4.4 Accuracy on our Smm pitch (35mm x 34mm)| 26
4.5 Side view of the insulation on a 5mm pitch |

taking up most of the prototype(. 26

ix

Abstract

Textile touch pad sensors are fairly developed in scientific literature and are even
reaching into the consumer market. Even though this is the case textile touch pads
are still inaccessible for most even in the do-it-your-self (DIY) community. They
require lots of labor to create and connect multiple conductive and non-conductive
layers in such a manner that they can be used as a textile touch pad. With this
bachelor thesis we create an easily accessible textile touch pad with the use of an
embroidery machine.

Additionally we want this design to be at best on a single layer so that is easily
integrated into existing fabric e.g. clothing, furniture and the like. Given our tools
someone should be able to recreate our sensor design and use it for his creative
process. The tools we use are easily accessible embroidery machines in places like
fablabs or public institutions as well as conductive thread that can be found at
many retailers.

Abstract

xi

Uberblick

Textile Touch-Pad-Sensoren sind ziemlich fortgeschritten in der wissenschaftlicher
Literatur und reichen sogar in den Konsumentenmarkt. Doch obwohl dass der Fall
ist, sind textile Touch-Sensoren nicht erwerblich fiir die meisten selbst fiir Leute die
aktiv in do-it-yourself (DIY) Gemeinschaften sind. Aktuelle Ansétze erfordern viel
Arbeit und verbinden mehrere leitfdhige und nicht leitfadhige Lagen mit einander
sodass diese zusammen als textiler Touch-Sensor genutzt werden kann. Mit dieser
Bachelorarbeit entwickeln wir einen leicht herzustellenden Sensor, der mit einer
Stickmaschine hergestellt werden kann.

Zusétzlich wollen wir, dass dieses Design im besten Fall aus einer einzigen Lage
besteht und so leicht in bestehende Stoffe und Kleidungsstiicke integriert werden
kann. Jemand der unsere Werkzeuge gegeben hat sollte in der Lage sein unseren
Sensor zu rekreieren und fiir seine kreativen Zwecke zu nutzen. Die Werkzeuge
die wie dafiir benutzen sind leicht zugéngliche Stickmaschinen die man in FabLabs
oder offentlichen Einrichtungen vortreffen kann. Der zugehorige leitfahige Faden
ist erhdltlich bei vielen Einzelhdndlern zu giinstigen Preisen.

xiii

Acknowledgements

I'would like to thank Prof. Dr. Jan Borchers for supervising my thesis and Prof. Dr.
Bastian Leibe for being my second examiner.

Furthermore I want to thank Nur Al-huda Hamdan for her feedback and guidance.
Finally I want to thank Jan Thar, Christian Schmidt and all members of the Media
Computing Group at RWTH that provided me with feedback.

XV

Conventions

The whole thesis is written in American English.
This thesis is written in the first person plural due to aes-
thetic reasons.

Chapter 1

Introduction

Each year the maker community world wide is growing
steadily and with it the availability to their tools to en-
hance their possessions with smart textiles. Anyone can
go to their local Fab Lab, library or public institutions to
gain access to an embroidery machine. Combined with
widespread conductive yarns that are easily accessible to
buy online they can craft their own textile sensors to use for
anything they can think of. To ease the creation of these sen-
sors allows makers of all skill levels to think of new ways to
implement and improve them to further the field and ben-
efit it as a whole.

Google’s Project Jacquard by [Ivan Poupyrev and Robinson
[2016] collaborated with Levi to created the first consumer
product implementing conductive yarn into clothing on a
large scale. Commuter x Google Jacquard the smart denim
jacket created within this collaboration is able to recognize
simple gestures on it’s sleeve to control your smartphone in
whatever way you program those gestures to. This brought
smart clothing into the public light and created interest as
well as criticism. The commuter jacket shows the limits of
smart clothing on a large scale that also exist on smaller
scales in self made prototypes.

This thesis focuses on easily created and integrated textile
touch pads that can be used broadly in every day applica-
tions. That may include clothing, furniture to standalone
fabric controllers. Textile touch pads can be more intuitive
to use in a hands free scenario guiding the interaction with

DIY textile touchpads

Smart textiles on
consumer level

1 Introduction

Capacitive and
resistive touch

Contribution

their physical properties. Furthermore they can provide a
friendlier, warmer user experience.

Touch interfaces nowadays are mainly capacitive touch
screens in smartphones while there reside multiple way to
realize touch input. Opposite to capacitive touch resistive
touch is mostly resistant to noise as only pressure is also
needed to accidentally trigger a touch event. Capacitive
touch on the other hand relies on changes in the electric
tield and can be prone to noise. We want to explore both
capacitive and resistive textile touch pads in this thesis.

In this thesis we present out embroidered touch pad de-
signs. We explain how to create the touch pads and evalu-
ate their designs. Our touch pads will be used to recognize
multiple gesture and used in applications as a proof of con-
cept.

Chapter 2

Related work

This chapter is going to explore related work in the field of
interactive textiles. It is split into the work on two dimen-
sional textiles sensors that implement multi-layer solution,
work around wearable textile touch sensors as well as em-
broidered touch sensors.

2.1 Two dimensional textile touch sensors

Previous work on textile touch pad sensors was focused
on multi-layered approaches. Mostly two conductive lay-
ers that are separated by a non-conductive layer. These
are then aligned manually and require lots of labor to be
constructed properly. ”A Textile Based Capacitive Pressure
Sensor” by M. Sergio and Canegallo [2002] uses two fab-
ric layers lined with conductive fabric separated by a foam
layer between those. Their goal was to create a low cost,
flexible and simple pressure sensors. They equated presses
with a small surface area resulting in less change in capaci-
tance with light strokes. By using creating a grid with their
two separate conductive layers they were able to create a 24
by 16 pixel sensor with 384 intersection points. As a proof
of their work they were able to recreate a rough image of a
fist touching their sensors by reading out their input.

Textile Based
Capacitive Pressure
Sensor

2 Related work

The Textile Interface
Swatchbook

Embroidered EMG
sensor

Inviz: Low-power
Personalized
Gesture Recognition
using Wearable
Textile Capacitive
Sensor Arrays

GestureSleeve

2.2 Embroidered touch sensors

S. Gilliland and Zeagler| [2010] created a collection of tex-
tile widgets with the use of an embroidery machine. These
widgets over different ways to interact with graphical user
interfaces. They focused on novel interactions and pro-
vided insights on embroidering their designs successfully.
Linz [2007] used embroidery machines to create a small
wearable capacitive EMG sensor. They connected their
multi-layer sensor to a flexible PCB by embroidering thread
onto it as a connection point. They were able to deliver
similar results as contact electrodes by reducing the noise
of their sensor and were reliably able to distinguish resting
periods from exercising ones.

2.3 Wearable textile touch sensors

Gurashish Singh and Banerjee [2015] used conductive
thread to create a robust wearable sensor for disabled peo-
ple with limited mobility. Relying on imprecise and prox-
imity based gesture detection users are able to control smart
homes. The sensor aims to be unobtrusive while being easy
to use to put minimal amounts of strain on the users. Ini-
tially they worked with capacitive patches but later on went
on to use embroidery to automate the creation of their sen-
sors to study the scalability of the production of said sensor.
Schneegass and Voit [2016] used a multi-layer approach to
create a smart sleeve to augment the forearm with touch
functionality. It is envisioned as a touch input device for
smart watches to bridge the gap between small touch in-
terfaces and mid-air gestures. The sensor consists of three
layers. On top and on the bottom are 32 parallel stripe elec-
trodes and in between is a layer of piezo-resistive fabric.
This results in 1024 pressure sensor points to sense taps and
gestures. Their prototype out performed regular touch in-
teractions on the smart watch in terms of completion time
and they want to further evaluate other application scenar-
ios.

Chapter 3

Fabrication

All of our prototypes presented in this theses are designed
using their proprietary Bernina Embroidery Software 8 De-
signer Plus software and created with the use of our Bern-
ina B880 embroidery machine. We used a embroidery nee-
dle with a 75 needle size and a straight stitch needle plate.
We used a hoop with the dimensions of 26.5 cm by 16.5 cm
to fit our designs. Lastly we used a universal drop-shaped
embroidery foot, Bernina’s embroidery foot #26. Finally
when we were tasked with trouble shooting the bernina we
referred to their trouble shooting guideﬂas a reference for
embroidering

'Troubleshooting Embroidery Designs

Fabrication setup

https://www.bernina.com/en-US/Experience-en-US/Embroidery/Embroidery-ebooks/JEITroubleshootingEmbDesigns/BERNINA-JustEmbroiderIt-eBook-Troubleshooting.pdf

3 Fabrication

Definition:
Relaxation Oscillator

Starting out with an
Arduino Uno

Using a MSP430 for
more precise sensing

3.1 Choice of micro controller

RELAXATION OSCILLATOR:

A relaxation oscillator is in our context of use a nonlin-
ear oscillator circuit. The circuit consists of a feedback
loop using a comparator that repeatedly charges a built
in capacitor until it reaches a certain threshold. Then the
capacitor is discharged again and the cycle repeats. This
results in a waveform of charge and discharge cycles.
Typically the amount of these cycles are then measured
within a fixed time frame with standard relaxation oscil-
lator method. A increase of capacitance through a touch
thus means a decrease of cycles within that time frame.

We used an Arduino Uno at first for all of our prototypes.
The Arduino Uno uses a software approach to mimic an
relaxation oscillator to measure capacitance in processor
ticks. The time needed to change the pin state is measured
from 0 to 17 ticks. We connect this cell to our micro con-
troller to use it as a capacitive sensor. This approach how-
ever is very limited as a not having the actual circuit for
an relaxation oscillator on board of our PCB makes for a
cruder sensing. This is because the board has to use the dig-
ital pins to see if they are low or high and measure in ticks
how much time it takes with the current capacitance until
they change states. Another problem with this is that lower
changes in capacitance are not recognized because the the
pin never reads high. Because of this interaction with the
insulated lower thread are not recognized. This way we
can not use our Arduino Uno for designs with fully insu-
lated lines. But we can use our Arduino for resistive de-
signs with only partly insulated lines.

Realizing the limits of our Arduino Uno we change our pro-
totyping board to an MSP430G2553 with an on-board relax-
ation oscillator circuit for capacitive sensing. The MSP430
allows for a more delicate sensing ranging in values from as
low as a hundred cycles to multiple thousands to differen-
tiate touches. The biggest limits we encountered with this
micro controller is the limited amount of pins. Looking for
more pins being able of capacitive sensing we thought of
using the SMD version of this micro controller with a cus-

3.2 Our first Prototype

tom PCB to allow for a higher resolution. This would have
went beyond the purpose of this thesis and may be subject
of future work.

To allow for higher resolutions without getting into custom
PCBs and soldering we explored the Tiva C shortly for a
higher resolution pin offering potentially 40 digital pins for
a 20 by 20 resistive sensor. We did not explore this further as
we were more invested in capacitive sensing as it provides
a better user experience by recognizing even faint touches.
Lastly we used the LilyPad as well an Adafruit MPR121
for more wearable options. The LilyPad uses the same li-
brary for capacitive sensing thus offering no benefits other
than being more wearable. The Adafruit MPR121 was very
promising being designed for capacitive sensing but test-
ing it we ran into problem again with our insulated lines.
We could not get the micro controller to recognize touch in-
put on insulated lines and thus discarded that board and
focused ultimately on the MSP430G2553.

3.2 Our first Prototype

PiTCH:

The pitch of a sensor refers to the spacing between the
threads on the rows or columns. E.g. a sensor with 9mm
pitch means that the columns and rows are spaced 9mm
apart from another

The first step in towards creating our first prototype is cre-
ating a design for our sensor in Bernina’s proprietary de-
sign software. We simply create a 4 by 4 grid by aligning
4 horizontal and 4 vertical threads. On top of the horizon-
tal lines we place zic-zac embroidery patterns to insulate
the lower thread. By color coding all those separate pieces
of our design we can later embroider them according to
their assigned color in the software. This way we first em-
broider the horizontal lower thread using our conductive
thread. Then on top of that we embroider our insulation
using the non-conductive thread. Lastly we use our con-
ductive thread again to embroider our vertical lines on top.
This proves to be a tricky step as our conductive thread may

Alternatives

Definition:
Pitch

Creating a 4 by 4 grid

3 Fabrication

Jumping over the
insulation

Choice of threads

Figure 3.1: Our first prototype featuring a 4 by 4 grid

not pierce through our insulation. That way we would cre-
ate a short circuit rendering our sensor or at least a parts of
our sensor unusable. In our first prototype the last step was
done manually as we had to find the right settings first.

At first we tried to force the embroidery machine to jump
from one continuous line to another. This did not work as
the thread is automatically cut jumping from on line to an-
other. While we could have followed this approach we real-
ized this would yield a fragile connection between the lines
at best as the single connection point could prove to be a
breaking point. So we followed a simpler approach in di-
viding the upper thread into to two sections. The first on
is a jJumping stitch that stitches into the fabric every pitch
distance. So if we have 9mm pitch our jumping stitch also
jumps 9mm. We adjust our jumping stitch to always stitch
into the center of our pitch and then jump over the insula-
tion until it has jumped over every insulation. From there
our stitching pattern changes to a regular stitch that we em-
broider outwards to have space for our alligator clips to
connect our board with the fabric.

There are a multitude of threads available for use in smart
textiles. They can be made up completely made up from
conductive material such as stainless steel. The result is
less prone to wear but often more hairy and harder to con-
trol in a embroidery machine as the machine has problems
managing the frays. Other approaches use a nylon core for

3.3 Finishing a prototype

|

Figure 3.2: Side view of our jumping pattern not piercing
our insulation

example and plate it with conductive material such as sil-
ver. Because it consists mostly of nylon it also behaves sim-
ilarly to nylon and can be used just like normal thread in-
side a embroidery machine. This approach comes with the
down side of being prone to wear as once the silver plat-
ing is worn of the thread is no longer conductive opposed
to a fully stainless steel thread. We decided to use a ny-
lon based conductive thread as the reliability proves to be
more important than the longevity of our sensor as our em-
broidery machine was not able to produce reliable textile
sensors for us to use with other threads.

3.3 Finishing a prototype

In order to improve the output of working sensors we
added additional steps creating a sensor. After our horizon-
tal lower thread has been embroidered we remove the hoop
from our embroidery machine. The embroidery machine
waits for confirmation to embroider the next thread allow-
ing us to later add our hoop back without missing a step.
We then remove every stray thread of conductive thread
under our thread and above it without removing the fabric
from the hoop. When possible threads should be pulled out
lightly without force.

Cutting our sensor

10

3 Fabrication

Figure 3.3: Left:
insulation

Thread under our sensor before cutting Right: After, ready for

Figure 3.4: On the left broken insulation caused by loose thread on the right

Thread loops

Continuity testing

Additionally sometimes while embroidering the embroi-
dery machine creates little loops because the bobbin thread
did not pull tightly onto the thread. Because we use a triple
stitch these, they may be cut when they are to excessive to
discard any chance of this loop later on piercing our insu-
lation allowing for short circuits on our sensor. Sometimes
these loops can be evened out by pulling the thread next
to the loop to pull the loop somewhat back into the fabric
allowing the insulation later on to correctly jump over the
thread and insulate it.

After our grid is done we have to ensure there are no short
circuits. To do this we use a multimeter. We test continuity
over the whole grid connecting the multimeter probes to

3.4 Micro controller programming in Energia

11

Figure 3.5: Left to right: capacitive design with 5mm, 7mm and 9mm pitch

each row and column in every possible combination. Once
we detect a connection we check for stray threads and pull
it out or cut the thread and continue testing. This is usually
not the case though as our sensor should come out with-
out short circuit if the threads were cut accordingly and the
embroidery machine worked without error.

We are using alligator clips with pigtails to connect our
grid with our micro controller. Previous attempts with wire
piercing the thread did not create stable enough connec-
tions and separated easily. The alligator clips help creating
a sturdy connection with low resistance through a big con-
tact area for our thread to connect to.

3.4 Micro controller programming in En-
ergia

CAPTOUCH:

We make use of the CapTouch library provided by Ener-
gizﬂto support the Capacitive Touch Booster Pack made
by Texas Instruments for the MSP430 Launchpads. This
library provides a high level abstraction of the registers
that are used to read out the current capacitance in cycles.
Additionally it manages a baseline to adjust for chang-
ing levels in capacitance. It compares this baseline to the
currently measured capacitance and checking whether a
threshold is passed. If that is the case a touch is detected.

Connecting the
sensor

Definition:
CapTouch

12

3 Fabrication

Low level and high
level programming

Filtering the touches
to increase reliability

Recognizing only
one touch

In terms of software there are two components. The first
component is the code running on the microcontroller
getting the input and the second one is the code running
on the computer using said input. The first component is
our Energia code running on the MSP430G2553. For each
horizontal and vertical threads we have a pin connected.
These pins are each associated with a CapTouch instance.
The pins are split. The first part is used for the vertical
threads counting from the left to right and the second
part is used for the horizontal threads counting from top
to bottom. These are defined under gridy and gridx
respectively. Each pin is internally connected to the relax-
ation oscillator and it’s capacitance is measured in cycles
through that oscillator. From that the base line is derived.
If a pin or the thread connected to that pin is touched
there is a change in capacitance. If that change oversteps
a certain threshold the touch is recognized. The difficulty
there in lies to be as lax as possible to recognize even the
lightest touch but strict enough to deny false positives. For
each pin we sent a either a '0’ if it is untouched or a "1” if it
is touched over the serial port. After all pins are sent a line
break determines the end of one input set.

While our setup does support multiple inputs from various
pins at once we have noticed improved reliability with
restricting the pins we actually read out. Currently we im-
plement three different modes of our Energia code to filter
the input we receive on our board. Our approach is quite
simple the strongest filter only gives out the intersection
with the highest values currently and discards all other
inputs. Of course our basic threshold has to be surpassed
anyways. This is the most robust approach allowing in-
teraction as expected under almost all circumstances as an
touch provides always higher values than noise disturbing
the sensor. With this approach however we can’t support
multi-touch or interpolation to increase the accuracy of our
Sensor.

To improve upon this while not letting our sensor be totally
unreliable when noise disturbs our sensing we implement
a hybrid approach that still seeks out the intersection
with the highest values but instead of only reading that

*http:/ /energia.nu/

3.4 Micro controller programming in Energia

13

input also reading out input from the rows and columns
around it if the threshold is surpassed on those as well.
This allows us to implement interpolation to increase the
precision of our sensor while decreasing the robustness of
our sensor. Lastly we also have a simple multi-touch mode
that recognizes each pin that surpasses our given threshold
allowing ideal interaction if noise does not disturb our
sensing.

To further improve the performance of our sensor we
make us of the adjusting baseline of the CapTouch library.
In a perfect scenario our touch detection would work
as follows. If our touch measurement jumps to such a
an extend that it exceeds our threshold we recognize a
touch and we only release that touch if we drop below
our threshold adjusting. To do that we have to have a
baseline to compare to as we can not rely on previous
measurements alone.

At the very beginning of our code we just set our starting
base according to a rough average of our last measure-
ments. Assuming there are no touches occurring at that
time we have a representation of our measurements while
there is no touch occurring. We use this baseline for our
touches from now on. Every time a measurement exceeds
our threshold compared to our baseline we recognize a
touch and do not change our baseline. If however no
touch occurred when going through a certain pin we will
level the baseline for that pin to approach our average
measurements after the last recognized touch. We do
this because no touch means we should be a neutral state
not slowly building up towards a touch resulting in a
false positive. Neither should our baseline be decreasing
resulting in unregistered touches. So in case of our delta
between the baseline and our current measurement being
positive we will add our baseline and that measurement
and divide them by two slowly bringing our delta over
the course of our next measurements towards zero. If our
delta is positive we do not decrease it so rapidly at first
because we might adjust our baseline too much in case of
the capacitance rising when a touch occurs. That way a
touch that would barely make our threshold would fall
short and therefore would not be recognized. This is the
reason why we only slowly decrease our baseline by one
every time we check for touches when our delta is above

Adjusting baseline as
a reference point

Adjusting the
baseline

14

3 Fabrication

Checking for proper
connections

Setting thresholds

Pins getting stuck

Limiting the serial
transmission

Zero.

3.4.1 Debugging

Once our code was up and running we had to check if our
sensor is performing as expected. For this we implemented
a debug mode transmitting our current baseline as well
as the delta between our current measurement and base-
line. We simply check at first that touching the exposed
thread on each row and column without touching the al-
ligator clips provides deltas in the range of 2000 cycles at
least. If that is not the case we adjust the alligator clips and
press them down firmly to connect them tightly to the fab-
ric. When all our rows and columns are connected properly
we go on to set the thresholds.

At first we set the threshold of all pins connected to verti-
cal threads to 800 cycles and all pins connected to horizon-
tal threads to 150 cycles. Then we inspect our serial bus
to ensure that when we lightly touch a intersection point
both the horizontal and vertical pin are being touched in-
dicated by a "1’ being transmitted on their position. If that
is not the case even though the sensor is touched we must
lower the threshold accordingly. We check delta when we
touch the thread to see what threshold would be appro-
priate. The threshold should be the lowest delta recorded
while touching the thread to ensure even a light touch is
detected. If that is not possible without noise and/or the
pins next to the one misbehaving then we should go back
to ensure proper connections and maybe even create a new
Sensor.

Additionally pins may be indicate that they are being
touched without that being the case. This can be remedied
by raising the threshold slightly over the delta. This then al-
lows the baseline adjusting to kick in leveling out our base-
line to adjust for the capacitance on that pin.

After having completed our debugging process making our
sensor work smoothly we disable the debug flag in order to
only transmit the information that is necessary to run our
processing code. This is either only transmitting the delta
levels on our pins separated by tabs or a single bit string

3.5 Applications in Processing 15

Figure 3.6: Two finger input triggers 4 touches as our input does not allow to dis-
cern which are actually occurring

containing which pin are touched. We do this to limit the
serial transmission which slows down our sensing notice-
ably because our interrupt time increases as we have to wait
until one line is being transmitted and processed.

3.5 Applications in Processing

The second component is our code running on our PC us- Processing Code
ing Processing. Here we receive the input stream and parse running on our PC
it into a 32-bit integer variable input whenever a serial

event occurs. The application then determines using bit

shifts on our integer whether a pin was pressed or not. We

go through the first seven bits to determine which horizon-

tal thread was touched and then through the next seven bits

after those for the vertical threads. This way we see all pos-

sible intersections given our input stream.

Though this technically allows multi-touch the input is Multi-Touch issues
not processed correctly as one might expect. All multi-

ple presses on a diagonal line trigger always the amount

of presses squared. That happens because every possible

intersection point according to the pin assignment is trig-

gered regardless of the actual touches occurring. This is

resolvable by timing the input and deriving the correct in-

tersection points based on the sequence of pins being set.

Because it is nearly impossible to have multiple touches oc-

curring within one interrupt this should be a plausible so-

lution to that error.

16

3 Fabrication

Definition:
Interpolation

Increasing resolution

Calculating the
center

Storing time

3.5.1 Interpolation

INTERPOLATION:

In a mathematical sense interpolation means finding a
continuous function for given discrete points. In context
of this paper this means using given sensor input and
concluding the actual position of the finger on our touch
pad. Thus interpolating the actual position of the finger
from out discrete input data.

In order to increase our resolution on our limited 7 by 7 grid
with only 49 intersection points we apply a simple form of
interpolation. This way we increase our software grid to a
size of 13 by 13 with 169 different touch points. We do this
by differentiating touches on a intersection point that only
trigger one pin on each axis opposed to touches that are off
the intersection point between two threads triggering both
respective pins.

Previously going through each half of our pins in our vari-
able input we stored each touched pin for different touch
event. Now we add the positions of every pin that is
touched up and increase our counter by one for each. We
then divide the sum of positions by our counter calculat-
ing the center position of all pins. We then multiply that
position with two to adjust for our rectangle array indices.
With our previous indices ranging from 0 to 6 they now
range from 0 to 12. To visualize which point is currently
being touched we color the rectangle related to that index

grey.

3.5.2 Gesture

To recognize gestures we need to remember in which se-
quence our touches occurred. To do that we simple asso-
ciate a time whenever a touch occurs and we therefore color
a rectangle grey. We store this time in our two dimensional
array hist with the same indices as our rect array. If no
touch has occurred on given indices the value on that entry
is zero. With this we can iterate over hist to determine if
3 touches occurred in sequence on a row or column.

3.5 Applications in Processing

17

Figure 3.7: Our software 13 by 13 grid created by interpo-
lating pins

At first we go through each row of our array checking if the
order of values is increasing. We disregard entries with the
value zero doing this and stop after having found 3 entries
with increasing values. This would indicate that the verti-
cal threads on our grid have been touched from left to right
indicating a swipe to the right. Then in a similar fashion we
check if the order of values is decreasing while disregard-
ing zeros. This would indicate a left swipe on our grid.
Having checked for all possible left and right swipes on
each line we transpose our array turning our columns to
rows and we repeat our process. We check for increas-
ing and decreasing orders of values indicating down or up
swipes on a given column. If we did find a swipe we vi-
sualize it by coloring that row or column according to the
swipe detected as seen in the figure 3.8

In order to continually recognize gestures we need to reset
our history from time to time to correctly access our history
and deter false positives as well as unrecognized swipes.
We do this after 500ms when there has been no input on
our grid.

Having implemented our simple gestures we use them to
control our implementation of snake. In order to control
the snake we have to swipe in the direction we want it to
go. Every time a swipe is registered we reset our history to
allow the user to leave his finger on the grid.

Processing our
history

Transposing our
array

Resetting the history

Implementing snake

18

3 Fabrication

Figure 3.8: Simple swipes, green is down, yellow up, blue left, red right

FD

Figure 3.9: Simple snake game controlled by our touch sensor’s gestures

3.5 Applications in Processing

19

3.5.3 Pressure Sensing

RGB COLOR MODEL:

The RGB color model is additive color model that color
describes colors by separating them into their proportion
of red, green and blue light on a scale from 0 to 255. This
way every color display with this model is described us-
ing these three values. The values (0,0,0) refer to black
while the values (255,255,255) represent white.

By increasing the touched area on our threads we increase
the change in capacitance and thus our measured cycles.
M. Sergio and Canegallo|[2002] has shown that you can use
that increased change in capacitance to correlate the pres-
sure of the touch. As we touch the grid with more pressure
we also increase the touch area of our finger on our grid in-
creasing the change in capacitance. Thus an bigger change
in capacitance correlates to more pressure.

In order to get the necessary information for our pressure
sensor we change our micro controller code to transmit the
delta between our current measurement and our baseline of
each pin. We then found the values for a strong touch and
used them as the upper boundary. We used our already set
thresholds as the lower boundary. Each delta transmitted
is then checked if it passes our lower boundary and if it
does it is then divided by our upper boundary. This is then
the percentage of touch strength. We do this differently for
our horizontal and vertical threads as the insulated threads
have smaller changes in capacitance. This means as we
have different thresholds for our threads we also have dif-
ferent upper boundaries for our pressure sensing.

To visualize the pressure on a given intersection point we
color it according to the pressure on that point. With in-
creasing pressure the percentage of our delta in relation to
our upper boundary increases. We map this factor in a lin-
ear fashion on the RGB color model. We do this by multi-
plying our factor by 127.5. Doing this on both pins repre-
senting our horizontal and vertical threads we can add this
up to a maximum value of 255 for an intersection point. Us-
ing the RGB color scheme we start out with a value of 255
for red, green and blue. We subtract our calculated RGB

Definition:
RGB color model

Relating touch area
to pressure

Working with delta

Visualizing our
pressure

20

3 Fabrication

Figure 3.10: A visualization of the pressure levels on each intersection point of our
grid. Darker means more pressure

Adjusting the sensor

Recognizing a touch

that we based on our delta level from that. This means
as our factor increases the intersection point gets darker as
seen in figure 3.10.

3.6 Resistive Sensing

The idea behind our resistive sensor is that we can use our
fingers to bridge the connection at intersection points. This
way we have to change our design as we can not full in-
sulate the horizontal threads. For our resistive design we
only partly insulate the horizontal threads at intersection
points in order to avoid short circuits while still allowing
our fingers to connect the vertical threads with the horizon-
tal ones.

Typically we would go through our grid setting one pin as
an input and the other pins as output and high and check if
our input pin changes states. This proves to be impossible
with the high resistance of our fingers and our thread. So
in order to recognize a touch we used a code snippet from
Arduino Playgrouncﬂ They set out to measure the capacity

3.6 Resistive Sensing

21

Figure 3.11: Resistive design with 9mm pitch

of a pin using the internal pull-up. They resistance of our
finger would slow down the time the pin takes to pull up
after discharging that pin. This time is measured in hard-
ware ticks by checking every hardware tick 17 times if the
internal pull-up of the pin is now on. After that the pin
is set to output and low discharging the pin again. While
it is called a capacitive sensor it does not contain a capaci-
tor making it resistant to noise. Every time we connect the
threads with our fingers at an intersection it takes one or
two hardware ticks until the internal pull-up is on on these
pins.

So every time we measure a value higher than zero we
transmit a "1” instead of a "0’ for that pin similar to our ca-
pacitive setup. We process this exactly as we do with our
bit strings for capacitive sensing to determine which inter-
section point is being touched.

3Arduino Playground Snippet

Transmitting a touch

https://playground.arduino.cc/Code/CapacitiveSensor

23

Chapter 4

Evaluation

In this chapter we will evaluate the success rate of our pro-
totypes. We will be using our 7 by 7 prototypes using capc-
itive sensing with differently sized pitches.

4.1 Evaluation Setup

Maurin Donneaud and Strohmeier|[2017] proposed in their
paper “Designing a MultiTouch eTextile for Music Perfor-
mances” a standardized evaluation in order to gauge the
accuracy of textile touch interfaces. They measured the ac-
curacy of their prototype by comparing it to a ground truth.
In this case the ground truth is the physical input on the
prototype. This is then compared with the input the proto-
type receives and maps as a physical representation of the
received input.

To do this we marked randomly 10 spots on a blank piece
of paper with the dimensions of our respective prototype.
We did this to decrease any possible bias in choosing touch
points. We then transferred these spots onto our prototypes
and measured the distance on the x-axis and y-axis from the
top left of our grid. The position of our spots is our ground
truth we use as a measurement for accuracy:.

Then we map the input our micro controller gets. Each

Testing our
prototypes

Comparing to ground
truth

Mapping our input

24

4 Evaluation

Figure 4.1: Our evaluation setup. The black marks indicate the desired touch points

Differences in pitch
sizes

pin resembles are row or a column on our grid and thus
a x-coordinate or a y-coordinate on it. If multiple pins get
touched we take the center of them for up to 3 pins on a row
or column. This way we should be able to accurately map
touches in jumps of half of our pitch size. On our grid with
a 9mm pitch this means we can map with a 4.5mm interval.
So in theory the worst we are off on our 9mm pitch should
be 2.25mm.

Because our prototypes are not perfectly square these di-
mensions are off for our horizontal lines which are used to
map our y-coordinates. Their interval still remains half of
their actual pitch size with the highest expected offset be-
ing half of the interval they can map. Having considered
all of this we write the mappings of our input into a text
file marking each touch with the current point we want to
touch as well as the program time to avoid any confusion.
If we have touched a point 10 times we press the next num-
ber starting from 1 up to 10 to write the log for our next
point. After touching our 10th point for 10 times we press
enter and go on to evaluate our resulting log file.

4.2 Evaluation Results

25

Accuracy 9mm

25

T
2
W 3VErage X error
. I averagey error
expected error
1
05
0

Figure 4.2: Accuracy on our 9mm pitch (54mm x 52mm)

=
wn

Offset in mm

Accuracy 7mm

25

N

N avVerage X error

15 . averagey error
expected error
05
0

Figure 4.3: Accuracy on our 7mm pitch (42mm x 40mm)

Offset in mm

fury

4.2 Evaluation Results

Taking the data from our log files we subtract the touch
points we measured from the one we mapped and we take
the absolute of that. This is our error for each touch. We
average this for our x- and y-coordinates. We also take the
standard deviation of our error values to visualize the pos-
sible variation of our results. Lastly we add a horizontal
line to show the highest expected error on our given pitch
size.

Visualizing our data

26

4 Evaluation

Evaluating our
results

5mm pitch under
performing

Accuracy 5Smm
25
2
E 15 m— Gverage X error
.g I average y eror
% 1 e @XPECtEd Error

0.5

Figure 4.4: Accuracy on our 5mm pitch (35mm x 34mm)

Figure 4.5: Side view of the insulation on a 5mm pitch tak-
ing up most of the prototype

The results for the prototypes with a pitch size of 9mm or
7mm fall into our expectations as our expected error was
not exceeded. The standard deviation is quite high as each
touch we enter is different from the one before just by hu-
man error. Additionally every time a touch is off a devi-
ation of up to half the pitch size is possible allowing even
few deviations in measurement over our 100 touches to cre-
ate a high standard deviation.

More surprisingly though was our prototype with a 5mm
pitch exceeding our highest expected error on both x- and

4.2 Evaluation Results

27

y-coordinates. This is due to our prototype under perform-
ing compared to our other prototypes resulting in inaccu-
rate mappings. It is also notable that on this prototype the
insulation takes over most of the grid making it very hard
to touch the fabric in between the insulation possibly in-
creasing the error even further.

Looking at these results we can conclude that our prototype
with a 7mm pitch is best at mapping a touch accurately
with around 1.75mm error due to covering a smaller area
than our 9mm pitch but also because it works more reliably
than our prototype with a 5mm pitch.

Conclusion

29

Chapter 5

Summary and future
work

5.1 Summary and contributions

We created a easy to recreate two dimensional textile touch
pad sensor using an embroidery machine and conductive
yarn. Our sensor is capable of recognizing touch inputs and
simple gestures reliably in real time with little delay. On top
of that we can sense pressure with our capacitive sensor in a
rudimentary manner. Because we embroider our design on
one textile layer with multiple layers of thread we refined
our design to reduce possible short circuits that would de-
stroy our sensor. We encountered troubles with our sens-
ing in resistive as well as capacitive design. In the resis-
tive design we had problems with the high resistance of our
fingers. The capacitive design naturally encountered trou-
bles with noise especially when coming into contact with a
users.

Our design is scalable in size and resolution to accommo-
date different needs. Because we work on a single layer
creating our design with an embroidery machine we can
easily bring our design to existing clothing or other fabric.
We describe how to create these sensors and how to imple-
ment them using our code. Furthermore we evaluated our
capacitive sensor showing it can map touches up to one or

30

5 Summary and future work

two millimeters error accurately.

5.2 Future work

The most important step in future work is implementing
our design into existing fabric with the most challenging
application being clothing. This will need improved ro-
bustness for our capacitive design and higher responsive-
ness for our resistive design to work reliably in such a cir-
cumstance.

This means implementing shielding techniques for our ca-
pacitive design to shield the sensor from possible noise of
the human body especially in motion. More over the mi-
cro controller as well as the wiring has to be adjusted to be
wearable and must be shielded as well. Using our sensor
in clothing also means that we have to greatly improve it’s
resistance to wear as our sensors are susceptible to wear.
Additionally we have to adjust our design with small pitch
sizes in order to let the sensor remain flexible instead of
becoming increasingly stiff with the relatively increasing
amount of insulation

Furthermore with increased stability of our design multi-
touch could be implemented allowing complex gestures al-
lowing for many different use cases.

31

Appendix A

Chapter 6

Source Code and Bernina filed¥

“https:/ /hci.rwth-aachen.de/embroideredTouchpads

33

Bibliography

Ryan Robucci Chintan Patel Gurashish Singh, Alexan-
der Nelson and Nilanjan Banerjee. Inviz : Low-power
personalized gesture recognition using wearable textile
capacitive sensor arrays. In In Pervasive Computing and
Communications (PerCom), IEEE International Conference,
2015.

Shiho Fukuhara M. Emre Karagozler Carsten Schwesig
Ivan Poupyrev, Nan-Wei Gong and Karen Robinson.
Project jacquard: Manufacturing digital textiles at scale.
In Proceedings of the 34th Annual ACM Conference on Hu-
man Factors in Computing Systems, ACM, 2016.

L.; Langereis G. Linz, T.; Gourmelon. Contactless emg sen-
sors embroidered onto textile. In Proceedings of the 4th In-
ternational Workshop on Wearable and Implantable Body Sen-
sor Networks, Aachen, Germany, volume 13, pages 29-34,
2007.

M. Tartagni R. Guerrieri M. Sergio, N. Manaresi and
R. Canegallo. A textile based capacitive pressure sensor.
In Proc. IEEE Sensors, vol. 2, no. 12-14, pp. 1625-1630, 2002.

Cedric Honnet Maurin Donneaud and Paul Strohmeier. De-
signing a multitouch etextile for music performances. In
Proceedings of the 17th International Conference on New In-
terfaces for Musical Expression, 2017.

T. Starner S. Gilliland, N. Komor and C. Zeag]ler. The textile
interface swatchbook: Creating graphical user interface-
like widgets with conductive embroidery. In Proc. ISWC
"10, pages 1-8, 2010.

Stefan Schneegass and Alexandra Voit. Gesturesleeve: us-
ing touch sensitive fabrics for gestural input on the fore-

34

Bibliography

arm for controlling smartwatches. In ISWC, pages 108-
115, 2016.

Index

Adafruit MPR121, 7
adjusting baseline, 13
Arduino Playground, 20
Arduino Uno, 6

Bernina B880, 5
Bernina Embroidery Software 8 Designer Plus, 5

CapTouch, 11

Energia, 11
evaluation, 23-27

future work, 30
interpolation, 16
jumping stitch, 8
LilyPad, 7
MSP430G2553, 6

pitch, 7
Processing, 15

relaxation oscillator, 6
RGB color model, 19

TivaC, 7

zic-zac embroidery pattern, 7

Typeset April 23, 2018

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Related work
	Two dimensional textile touch sensors
	Embroidered touch sensors
	Wearable textile touch sensors

	Fabrication
	Choice of micro controller
	Our first Prototype
	Finishing a prototype
	Micro controller programming in Energia
	Debugging

	Applications in Processing
	Interpolation
	Gesture
	Pressure Sensing

	Resistive Sensing

	Evaluation
	Evaluation Setup
	Evaluation Results

	Summary and future work
	Summary and contributions
	Future work

	Chapter 6
	Bibliography
	Index

